Science.gov

Sample records for massive relaxed galaxy

  1. Relaxation and tidal stripping in rich clusters of galaxies. III. Growth of a massive central galaxy

    SciTech Connect

    Merritt, D.

    1985-02-01

    The rate at which a massive galaxy (''cannibal'') grows by capturing other galaxies at the center of a rich, relaxed cluster is calculated. It is shown that the orbital decay preceding capture tends to leave the distribution of orbital velocities isotropic. As a result, most captures occur from nearly radial orbits, and relatively few from circular orbits. The capture rate is initially very low, due to the paucity of low-velocity galaxies, and to the fact that orbital decay times are comparable to a Hubble time. Encounters between galaxies further inhibit their orbital decay; this effect is important when the fraction of a cluster's mass that is bound to galaxies exceeds approx.15%. Assuming that less than approx.20% of a cluster's mass is attached to galaxies, and that the cluster velocity dispersion exceeds approx.500 km s/sup -1/, the typical rate of growth of a central galaxy by capture is rather small, amounting to somewhat less than 1 L* in a cluster lifetime. It is suggested (as in a previous paper) that most cD galaxies formed relatively rapidly, during the collapse and virialization of compact groups or poor clusters, and not during the quieter postcollapse stages as previous authors have advocated. The peculiar object V Zw 311 may be an example of a cD galaxy that is presently forming in this way. Subject headings: clustering-galaxies: evolution-galaxies: structure

  2. The flat density profiles of massive, and relaxed galaxy clusters

    SciTech Connect

    Popolo, A. Del

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total

  3. Long-term Evolution of Massive Black Hole Binaries. IV. Mergers of Galaxies with Collisionally Relaxed Nuclei

    NASA Astrophysics Data System (ADS)

    Gualandris, Alessia; Merritt, David

    2012-01-01

    We simulate mergers between galaxies containing collisionally relaxed nuclei around massive black holes (MBHs). Our galaxies contain four mass groups, representative of old stellar populations; a primary goal is to understand the distribution of stellar-mass black holes (BHs) after the merger. Mergers are followed using direct-summation N-body simulations, assuming a mass ratio of 1:3 and two different orbits. Evolution of the binary MBH is followed until its separation has shrunk by a factor of 20 below the hard-binary separation. During the galaxy merger, large cores are carved out in the stellar distribution, with radii several times the influence radius of the massive binary. Much of the pre-existing mass segregation is erased during this phase. We follow the evolution of the merged galaxies for approximately three central relaxation times after coalescence of the massive binary; both standard and top-heavy mass functions are considered. The cores that were formed in the stellar distribution persist, and the distribution of the stellar-mass BHs evolves against this essentially fixed background. Even after one central relaxation time, these models look very different from the relaxed, multi-mass models that are often assumed to describe the distribution of stars and stellar remnants near a massive BH. While the stellar BHs do form a cusp on roughly a relaxation timescale, the BH density can be much smaller than in those models. We discuss the implications of our results for the extreme-mass-ratio inspiral problem and for the existence of Bahcall-Wolf cusps.

  4. THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. II. SEPARATING LUMINOUS AND DARK MATTER IN CLUSTER CORES

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Sand, David J.

    2013-03-01

    We present stellar and dark matter (DM) density profiles for a sample of seven massive, relaxed galaxy clusters derived from strong and weak gravitational lensing and resolved stellar kinematic observations within the centrally located brightest cluster galaxies (BCGs). In Paper I of the series, we demonstrated that the total density profile derived from these data, which span three decades in radius, is consistent with numerical DM-only simulations at radii {approx}> 5-10 kpc, despite the significant contribution of stellar material in the core. Here, we decompose the inner mass profiles of these clusters into stellar and dark components. Parameterizing the DM density profile as a power law {rho}{sub DM}{proportional_to}r {sup -{beta}} on small scales, we find a mean slope ({beta}) = 0.50 {+-} 0.10(random){sup +0.14} {sub -0.13}(systematic). Alternatively, cored Navarro-Frenk-White (NFW) profiles with (log r {sub core}/kpc) = 1.14 {+-} 0.13{sup +0.14} {sub -0.22} provide an equally good description. These density profiles are significantly shallower than canonical NFW models at radii {approx}< 30 kpc, comparable to the effective radii of the BCGs. The inner DM profile is correlated with the distribution of stars in the BCG, suggesting a connection between the inner halo and the assembly of stars in the central galaxy. The stellar mass-to-light ratio inferred from lensing and stellar dynamics is consistent with that inferred using stellar population synthesis models if a Salpeter initial mass function is adopted. We compare these results to theories describing the interaction between baryons and DM in cluster cores, including adiabatic contraction models and the possible effects of galaxy mergers and active galactic nucleus feedback, and evaluate possible signatures of alternative DM candidates.

  5. THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. I. THE TOTAL DENSITY OVER THREE DECADES IN RADIUS

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Sand, David J.; Nipoti, Carlo; Richard, Johan; Jullo, Eric

    2013-03-01

    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive (M {sub 200} = 0.4-2 Multiplication-Sign 10{sup 15} M {sub Sun }), relaxed galaxy clusters with centrally located brightest cluster galaxies (BCGs) at z = 0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of {approx_equal} 3-3000 kpc. We present Keck spectroscopy yielding seven new spectroscopic redshifts of multiply imaged sources and extended stellar velocity dispersion profiles of the BCGs. Lensing-derived mass profiles typically agree with independent X-ray estimates within {approx_equal} 15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated or compressed along the line of sight. The inner logarithmic slope {gamma}{sub tot} of the total density profile measured over r/r {sub 200} = 0.003-0.03, where {rho}{sub tot}{proportional_to}r{sup -{gamma}{sub t}{sub o}{sub t}}, is found to be nearly universal, with a mean ({gamma}{sub tot}) = 1.16 {+-} 0.05(random){sup +0.05} {sub -0.07} (systematic) and an intrinsic scatter {sigma}{sub {gamma}} < 0.13 (68% confidence). This is further supported by the very homogeneous shape of the observed velocity dispersion profiles, which are mutually consistent after a simple scaling. Remarkably, this slope agrees closely with high-resolution numerical simulations that contain only DM, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold DM is a better description of the total mass density at radii {approx}> 5-10 kpc than that of DM alone. Hydrodynamical simulations that include baryons, cooling, and

  6. HOW MASSIVE ARE MASSIVE COMPACT GALAXIES?

    SciTech Connect

    Muzzin, Adam; Van Dokkum, Pieter; Marchesini, Danilo; Franx, Marijn; Kriek, Mariska; Labbe, Ivo

    2009-11-20

    Using a sample of nine massive compact galaxies at zapprox 2.3 with rest-frame optical spectroscopy and comprehensive U -> 8 mum photometry, we investigate how assumptions in spectral energy distribution (SED) modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fitted to tau-models with a range of metallicities, dust laws, and different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than, our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual and Charlot; however, when using models with updated treatment of TP-AGB stars, the fits are poorer. The two-component models predict masses that are 0.08-0.22 dex larger than the tau-models. We also test the effect of a bottom-light initial mass function (IMF) and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the tau-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.

  7. Dark matter in massive galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2013-07-01

    The spatial distributions of luminous and dark matter in massive early-type galaxies (ETGs) reflect the formation processes which shaped these systems. This article reviews the predictions of cosmological simulations for the dark and baryonic components of ETGs, and the observational constraints from lensing, hydrostatic X-ray gas atmospheres, and outer halo stellar dynamics.

  8. Massive relic galaxies prefer dense environments

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc

    2016-09-01

    We study the preferred environments of z ˜ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ˜ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ˜ 2 is ˜0.04 per cent for the whole massive galaxy population with M⋆ > 1010 M⊙. This fraction rises to ˜0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  9. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  10. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  11. Superdense Massive Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Cenarro, A. Javier; de Lorenzo-Cáceres, Adriana; Vazdekis, Alexandre; de la Rosa, Ignacio G.; Cava, Antonio

    2009-02-01

    Superdense massive galaxies (re ~ 1 kpc; M ~ 1011 M sun) were common in the early universe (z gsim 1.5). Within some hierarchical merging scenarios, a non-negligible fraction (1%-10%) of these galaxies is expected to survive since that epoch, retaining their compactness and presenting old stellar populations in the present universe. Using the NYU Value-Added Galaxy Catalog from the Sloan Digital Sky Survey Data Release 6, we find only a tiny fraction of galaxies (~0.03%) with re lsim 1.5 kpc and M sstarf gsim 8 × 1010 M sun in the local universe (z < 0.2). Surprisingly, they are relatively young (~2 Gyr) and metal-rich ([Z/H] ~0.2). The consequences of these findings within the current two competing size evolution scenarios for the most massive galaxies ("dry" mergers vs. "puffing up" due to quasar activity) are discussed.

  12. Hyper massive black holes in evolved galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Cruz, Fernando J.

    2015-09-01

    From the SDSS DR7 we took a sample of 16733 galaxies which do not show all of the emission lines required to classify their activity according to the classical BPT diagram (Baldwin et al. 1981 PASP). Since they do not show these emission lines they are thought to be evolved enough so to host Hyper Massive Black holes. We compared their statistical properties with other galaxies from the SDSS DR7 which do show emission lines and confirmed that their M-sigma relationship correspond to HMBHs (Gutelkin et al. 2009 ApJ) and also that their SFH confirms evolution. We also analyzed them with a new Diagnostic Diagram in the IR (Coziol et al. 2015 AJ) and found that their position in the IR color space (W3W4 vs W2W3) correspond to AGN activity with current low SF, another confirmation of an evolved galaxy. The position of our final sample in the IR diagram is in the same region in which Holm 15A lies, this galaxy is considered to host the most massive BHs in the nearby universe (Lopez-Cruz et al. 2014 ApJL). The morphology of these galaxies (all of them are classified as elliptical) confirms that they are very evolved. We claim that the hyper massive BH lie in galaxies very evolved and with very low SF and without clear AGN activity in the BPT diagram.

  13. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  14. Dwarf galaxy evolution within the environments of massive galaxies

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Klypin, Anatoly A.; Ceverino, Daniel; Trujillo-Gomez, Sebastian; Primack, Joel R.

    2016-01-01

    Understanding galaxy evolution depends on connecting large-scale structure determined by the ΛCDM model with, at minimum, the small-scale physics of gas, star formation, and stellar feedback. Formation of galaxies within dark matter halos is sensitive to the physical phenomena occurring within and around the halo. This is especially true for dwarf galaxies, which have the smallest potential wells and are more susceptible to the effects of gas ionization and removal than larger galaxies. At dwarf galaxies scales comparisons of dark matter-only simulations with observations has unveiled various differences including the core-cusp, the missing satellites, and the too-big-to-fail problems. We have run a new suite of hydrodynamical simulations using the ART code to examine the evolution of dwarf galaxies in massive host environments. These are cosmological zoom-in simulations including deterministic star formation and stellar feedback in the form of supernovae feedback, stellar winds, radiation pressure, and photoionization pressure. We simulates galaxies with final halo masses on the order of 1012 M⊙ with high resolution, allowing us to examine the satellite dwarf galaxies and local isolated dwarf galaxies around each primary galaxy. We analyzed the abundance and structure of these dwarfs specifically the velocity function, their star formation rates, core creation and the circumgalactic medium. By reproducing observations of dwarf galaxies in simulations we show how including baryons in simulations relieves tensions seen in comparing dark matter only simulations with observations.

  15. Empirical measurements of massive galaxy and active galaxy evolution

    NASA Astrophysics Data System (ADS)

    Cool, Richard Jacob

    Using new wide-area galaxy redshift surveys, we explore the evolution of the most massive galaxies and the most luminous quasars in the universe over much of cosmic history. Quasars and massive red galaxies both are extremes; the most luminous high redshift quasars likely play a key role in shaping their nearby environment and the universe as a whole. The most massive galaxies represent the end points of galaxy evolution and contain a fossil record of the galaxy evolution process. Using the AGES redshift survey completed with the MMT and the Hectospec multi- object spectrograph as well as new z -band observations of the NOAO Deep Wide- Field Survey Bootes field, we report the discovery of three new quasars at z > 5. We explore new mid-infrared selection in light of these three new quasars and place constraints on the slope of the high-redshift quasar luminosity function. At lower redshift (0.1< z <0.4) we measure the scatter in red galaxy colors around the optical red-sequence using imaging and spectroscopy from the Sloan Digital Sky Survey. With our sample of nearly 20,000 massive early-type galaxies ( L [Special characters omitted.] 2.2 L *), we find that the scatter around the color-magnitude relation is quite small in colors studied. Each of three model star formation histories can reproduce the scatter we measure, none of the models produce color distributions matching those observed. We measure the evolution of the LRG luminosity function in the redshift range 0.1< z <0.9. We find that the LRG population has evolved little beyond the passive fading of its stellar populations since z ~ 0.9. The most massive (L > 3 L *) red galaxies have grown by less than 50% (at 99% confidence) since z = 0.9 in stark contrast to the factor of 2 to 4 growth observed in the L * red galaxy population over the same epoch. Finally, we introduce the PRIsm MUlti-object Survey (PRIMUS), a new redshift survey aimed at collecting ~300,000 galaxy spectra over 10 deg 2 to z ~ 1. We

  16. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' Multiplication-Sign 107''), allowing us to achieve remarkably high signal-to-noise ratios of {approx}20-70 pixel{sup -1} in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions {sigma}{sub *} > 150 km s{sup -1}, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by {approx}50%, and only a weak correlation between {sigma}{sub *} and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are {approx} an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 R{sub e} , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high {alpha}-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  17. Cosmology and astrophysics from relaxed galaxy clusters - I. Sample selection

    NASA Astrophysics Data System (ADS)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; Schmidt, Robert W.; von der Linden, Anja; Urban, Ondrej

    2015-05-01

    This is the first in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here we present a new, automated method for identifying relaxed clusters based on their morphologies in X-ray imaging data. While broadly similar to others in the literature, the morphological quantities that we measure are specifically designed to provide a fair basis for comparison across a range of data quality and cluster redshifts, to be robust against missing data due to point source masks and gaps between detectors, and to avoid strong assumptions about the cosmological background and cluster masses. Based on three morphological indicators - symmetry, peakiness, and alignment - we develop the symmetry-peakiness-alignment (SPA) criterion for relaxation. This analysis was applied to a large sample of cluster observations from the Chandra and ROSAT archives. Of the 361 clusters which received the SPA treatment, 57 (16 per cent) were subsequently found to be relaxed according to our criterion. We compare our measurements to similar estimators in the literature, as well as projected ellipticity and other image measures, and comment on trends in the relaxed cluster fraction with redshift, temperature, and survey selection method. Code implementing our morphological analysis will be made available on the web (http://www.slac.stanford.edu/amantz/work/morph14/).

  18. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    SciTech Connect

    Volonteri, Marta; Ciotti, Luca

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  19. SEGUE 2: THE LEAST MASSIVE GALAXY

    SciTech Connect

    Kirby, Evan N.; Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj; Cohen, Judith G.; Geha, Marla

    2013-06-10

    Segue 2, discovered by Belokurov et al., is a galaxy with a luminosity of only 900 L{sub Sun }. We present Keck/DEIMOS spectroscopy of 25 members of Segue 2-a threefold increase in spectroscopic sample size. The velocity dispersion is too small to be measured with our data. The upper limit with 90% (95%) confidence is {sigma}{sub v} < 2.2 (2.6) km s{sup -1}, the most stringent limit for any galaxy. The corresponding limit on the mass within the three-dimensional half-light radius (46 pc) is M{sub 1/2} < 1.5 (2.1) Multiplication-Sign 10{sup 5} M{sub Sun }. Segue 2 is the least massive galaxy known. We identify Segue 2 as a galaxy rather than a star cluster based on the wide dispersion in [Fe/H] (from -2.85 to -1.33) among the member stars. The stars' [{alpha}/Fe] ratios decline with increasing [Fe/H], indicating that Segue 2 retained Type Ia supernova ejecta despite its presently small mass and that star formation lasted for at least 100 Myr. The mean metallicity, ([Fe/H]) = -2.22 {+-} 0.13 (about the same as the Ursa Minor galaxy, 330 times more luminous than Segue 2), is higher than expected from the luminosity-metallicity relation defined by more luminous dwarf galaxy satellites of the Milky Way. Segue 2 may be the barest remnant of a tidally stripped, Ursa Minor-sized galaxy. If so, it is the best example of an ultra-faint dwarf galaxy that came to be ultra-faint through tidal stripping. Alternatively, Segue 2 could have been born in a very low mass dark matter subhalo (v{sub max} < 10 km s{sup -1}), below the atomic hydrogen cooling limit.

  20. Spiderwebs and Flies: Observing Massive Galaxy Formation in Action

    NASA Astrophysics Data System (ADS)

    Miley, George

    2009-07-01

    Distant luminous radio galaxies are among the brightest known galaxies in the early Universe, pinpoint likely progenitors of dominant cluster galaxies and are unique laboratories for studying massive galaxy formation. Spectacular images with the ACS and NICMOS of one such object, the "Spiderweb Galaxy" at z = 2.2, show in exquisite detail, hierarchical merging occurring 11 Gyr ago. By imaging 3 additional Spiderweb-like galaxies we wish to study this potentially crucial phase of massive galaxy evolution, when hierarchical merging, galaxy downsizing and AGN feedback are all likely to be occurring. Properties of the complete sample of Spiderweb galaxies will be used to {i} constrain models for the formation and evolution of the most massive galaxies that dominate rich clusters and {ii} investigate the nature of chain and tadpole galaxies, a fundamental but poorly understood constituent of the early Universe. We shall image rest-frame UV and optical continuum emission from 3 radio galaxies with 2.4 < z < 3.8 that appear clumpy and large in shallow WFPC/PC observations. The new observations will typically reach 2 magnitudes fainter over 20-40 times larger area than previously. Photometric and morphological parameters will be measured for satellite galaxies {"flies"} in the clumpy massive hosts and for galaxies in 1.5 Mpc x 1.5 Mpc regions of surrounding protoclusters. Locations, sizes, elongations, clumpiness, masses, and star formation rates of the merging satellite and protocluster galaxies will be compared with new state of the art simulations. Combination of ACS and WFC3 images will help disentangle the properties of the young and old populations.Specific goals include: {i} investigating star formation histories of the satellite galaxies and the extended emission, {ii} studying "downsizing" and merging scenarios and {iii} measuring the statistics of linear galaxies and relating them to models for the formation of massive galaxies and to the properties of the

  1. The dynamical fingerprint of core scouring in massive elliptical galaxies

    SciTech Connect

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  2. The origin of the α-enhancement of massive galaxies

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom

    2016-09-01

    We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe]*, of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M* > 1010.5 M⊙, [α/Fe]* increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a `downsizing' galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe]* in M* > 1010.5 M⊙ galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars.

  3. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations. PMID:23192149

  4. The role of stellar relaxation in the formation and evolution of the first massive black holes

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Khochfar, Sadegh

    2016-04-01

    We present calculations on the formation of massive black holes of 105 M⊙ at z > 6, which can be the seeds of supermassive black holes at z ≳ 6. Under the assumption of compact star cluster formation in merging galaxies, star clusters in haloes of ˜ 108-109 M⊙ can undergo rapid core collapse, leading to the formation of very massive stars (VMSs) of ˜ 1000 M⊙ that collapse directly into black holes with similar masses. Star clusters in haloes of ≳ 109 M⊙ experience Type II supernovae before the formation of VMSs, due to long core-collapse time-scales. We also model the subsequent growth of black holes via accretion of residual stars in clusters. Two-body relaxation refills the loss cones of stellar orbits efficiently at larger radii and resonant relaxation at small radii is the main driver for accretion of stars on to black holes. As a result, more than 90 percent of stars in the initial cluster are swallowed by the central black holes before z = 6. Using dark matter merger trees, we derive black hole mass functions at z = 6-20. The mass function ranges from 103-105 M⊙ at z ≲ 15. Major merging of galaxies of ≳ 4 × 108 M⊙ at z ˜ 20 leads successfully to the formation of ≳ 105 M⊙ black holes by z ≳ 10, which could be the potential seeds of supermassive black holes seen today.

  5. MASSIVE GALAXIES AT HIGH z: ASSEMBLY PATTERNS, STRUCTURE, AND DYNAMICS IN THE FAST PHASE OF GALAXY FORMATION

    SciTech Connect

    Onorbe, J.; Dominguez-Tenreiro, R.; Knebe, A.; Martinez-Serrano, F. J.; Serna, A.

    2011-05-10

    Relaxed, massive galactic objects have been identified at redshifts z = 4, 5, and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high-mass end of the galaxy distribution at these high z's, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms of the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previously involved in caustic formation and the mass dependence of the energy available to heat the gas.

  6. The massive star content of blue irregular galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hunter, D. A.; Gallagher, J. S., III

    1986-01-01

    Three regions of recent star formation in blue irregular galaxies were observed with the IUE in the short wavelength, low dispersion mode. The spectra indicate that the massive star content is similar in 2 of the 3 regions and is best fit by a synthesized spectrum of a burst of massive stars 2.5 to 3.0 million yr old.

  7. AN UPPER LIMIT TO THE VELOCITY DISPERSION OF RELAXED STELLAR SYSTEMS WITHOUT MASSIVE BLACK HOLES

    SciTech Connect

    Miller, M. Coleman; Davies, Melvyn B.

    2012-08-10

    Massive black holes have been discovered in all closely examined galaxies with high velocity dispersion. The case is not as clear for lower-dispersion systems such as low-mass galaxies and globular clusters. Here we suggest that above a critical velocity dispersion {approx}40 km s{sup -1}, massive central black holes will form in relaxed stellar systems at any cosmic epoch. This is because above this dispersion primordial binaries cannot support the system against deep core collapse. If, as previous simulations show, the black holes formed in the cluster settle to produce a dense subcluster, then given the extremely high densities reached during core collapse the holes will merge with each other. For low velocity dispersions and hence low cluster escape speeds, mergers will typically kick out all or all but one of the holes due to three-body kicks or the asymmetric emission of gravitational radiation. If one hole remains, it will tidally disrupt stars at a high rate. If none remain, one is formed after runaway collisions between stars, and then it tidally disrupts stars at a high rate. The accretion rate after disruption is many orders of magnitude above Eddington. If, as several studies suggest, the hole can accept matter at that rate because the generated radiation is trapped and advected, then it will grow quickly and form a massive central black hole.

  8. The formation of massive, quiescent galaxies at cosmic noon

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2016-05-01

    The cosmic noon (z ˜ 1.5-3) marked a period of vigorous star formation for most galaxies. However, about a third of the more massive galaxies at those times were quiescent in the sense that their observed stellar populations are inconsistent with rapid star formation. The reduced star formation activity is often attributed to gaseous outflows driven by feedback from supermassive black holes, but the impact of black hole feedback on galaxies in the young Universe is not yet definitively established. We analyse the origin of quiescent galaxies with the help of ultrahigh resolution, cosmological simulations that include feedback from stars but do not model the uncertain consequences of black hole feedback. We show that dark matter haloes with specific accretion rates below ˜0.25-0.4 Gyr-1 preferentially host galaxies with reduced star formation rates and red broad-band colours. The fraction of such haloes in large dark matter only simulations matches the observed fraction of massive quiescent galaxies (˜1010-1011 M⊙). This strongly suggests that halo accretion rate is the key parameter determining which massive galaxies at z ˜ 1.5-3 become quiescent. Empirical models that connect galaxy and halo evolution, such as halo occupation distribution or abundance matching models, assume a tight link between galaxy properties and the masses of their parent haloes. These models will benefit from adding the specific accretion rate of haloes as a second model parameter.

  9. Understanding the size growth of massive galaxies through stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, Ignacio

    2015-08-01

    The growth of massive galaxies remains an open problem. The observational evidence seems to converge on a two-stage scenario, where a compact massive core is formed during an early, intense burst, followed by a more extended process of mass and size growth at intermediate redshift (z<2). This talk focuses on the latter, exploring the growth of massive galaxies through a detailed analysis of the stellar populations in close pairs, to study their formation history. Two surveys are explored (SHARDS and GAMA), probing the stellar populations of pre-merging systems out to z~1.3, and down to a mass ratio ~1:100. We will compare the results between medium band spectral fitting (SHARDS) and those from a more targeted analysis of line strengths in the GAMA data. The combination of the two datasets provide a unique insight of the growth channel of massive galaxies via mergers.

  10. Most Massive Globular Cluster in Our Galaxy

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Far down in the southern sky, in the constellation of Centaurus, a diffuse spot of light can be perceived with the unaided eye. It may be unimpressive, but when seen through a telescope, it turns out to be a beautiful, dense cluster of innumerable stars [1]. Omega Centauri, as this object is called, is the brightest of its type in the sky. We refer to it as a "globular cluster", due to its symmetric form. It belongs to our Milky Way galaxy and astrophysical investigations have shown that it is located at a distance of about 16,500 light-years (1 light-year = 9,460,000,000,000 km). Nobody knows for sure how many individual stars it contains, but recent estimates run into the millions. Most of these stars are more than 10,000 million years old and it is generally agreed that Omega Centauri has a similar age. Measurements of its motion indicate that Omega Centauri plows through the Milky Way in an elongated orbit. It is not easy to understand how it has managed to keep its stars together during such an extended period. MEASURING STELLAR VELOCITIES IN OMEGA CENTAURI A group of astronomers [2] have recently carried through a major investigation of Omega Centauri. After many nights of observations at the ESO La Silla observatory, they now conclude that not only is this globular cluster the brightest, it is indeed by far the most massive known in the Milky Way. The very time-consuming observations were made during numerous observing sessions over a period of no less than 13 years (1981-1993), with the photoelectric spectrometer CORAVEL mounted on the 1.5-m Danish telescope at La Silla. The CORAVEL instrument (COrelation RAdial VELocities) was built in a joint effort between the Geneva (Switzerland) and Marseilles (France) observatories. It functions according to the cross-correlation technique, by means of which the spectrum of the observed star is compared with a "standard stellar spectrum" [3]. HOW HEAVY IS OMEGA CENTAURI? In the present study, a total of 1701

  11. ON THE ASSEMBLY HISTORY OF STELLAR COMPONENTS IN MASSIVE GALAXIES

    SciTech Connect

    Lee, Jaehyun; Yi, Sukyoung K.

    2013-03-20

    Matsuoka and Kawara showed that the number density of the most massive galaxies (log M/M{sub Sun} = 11.5-12.0) increases faster than that of the next massive group (log M/M{sub Sun} = 11.0-11.5) during 0 < z < 1. This appears to be in contradiction to the apparent 'downsizing effect'. We attempt to understand the two observational findings in the context of the hierarchical merger paradigm using semi-analytic techniques. Our models closely reproduce the result of Matsuoka and Kawara. Downsizing can also be understood as larger galaxies have, on average, smaller assembly ages but larger stellar ages. Our fiducial models further reveal details of the history of the stellar mass growth of massive galaxies. The most massive galaxies (log M/M{sub Sun} = 11.5-12.0 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via merger accretion. The role of merger accretion monotonically declines with galaxy mass: 40% for log M/M{sub Sun} = 11.0-11.5 and 20% for log M/M{sub Sun} = 10.5-11.0 at z = 0. The specific accreted stellar mass rates via galaxy mergers decline very slowly during the whole redshift range, while specific star formation rates sharply decrease with time. In the case of the most massive galaxies, merger accretion becomes the most important channel for the stellar mass growth at z {approx} 2. On the other hand, in situ star formation is always the dominant channel in L{sub *} galaxies.

  12. Tracing the Formation and Evolution of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh

    Massive galaxies at higher redshift, z > 2, show different characteristics than their local counterparts. They are compact and most likely have a disk. Understanding the evolutionary path of these massive galaxies can give us some clues on how the universe has been behaving in the last 10 billion years. How well can we measure the bulge and disk properties of these systems? We perform two sets of comprehensive simulations in order to systematically quantify the effects of non-homology in structures and the methods employed. For the first set of simulations, by accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. For the second set of simulations, we employ empirical scaling relations to produce realistic-looking two-component local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the first set of simulations for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T . We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≥ 0.2. The disk component, by contrast, can be measured with little difficulty. Next, we trace back the evolution of local massive galaxies but performing detailed morphological analysis: namely, single Swrsic fitting and bulge+disk decomposition. CANDELS images and catalogues offer an ideal dataset for this study. We

  13. The fate of high-redshift massive compact galaxies

    NASA Astrophysics Data System (ADS)

    de la Rosa, Ignacio G.; La Barbera, Francesco; Ferreras, Ignacio; Sánchez Almeida, Jorge; Dalla Vecchia, Claudio; Martínez-Valpuesta, Inma; Stringer, Martin

    2016-04-01

    Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge-disc decomposition catalogues based on the Sloan Digital Sky Survey to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or discs of present-day massive galaxies. In this study, we designate a compact core as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass-size and mass-density relations are used to show that, in the inner regions of galaxies at z ˜ 0.1, there are abundant compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ˜ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red nuggets with elliptical galaxies, a comparable fraction of red nuggets might have ended up embedded in discs. This result generalizes the inside-out formation scenario; present-day massive galaxies can begin as dense spheroidal cores (red nuggets), around which either a spheroidal halo or a disc is formed later.

  14. Massive Quiescent Disk Galaxies in the CANDELS survey

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    Using data from the GOODS-S field of the CANDELS survey, we find evidence for an increasing fraction of disk-dominated galaxies at high-redshift ( 2) among the quiescent, or non-star-forming galaxy population, in agreement with a growing body of evidence from recent results in the literature. We selected all galaxies with mass M>1010 Msun within the redshift range 0.5 ≤ z ≤ 2.5, and imposed a two-color selection criteria using rest-frame U, V, and J-band flux to separate quiescent from star-forming galaxies. From this sample, we performed a qualitative visual classification and a quantitative classification using the galaxy-fitting program Galfit. Of the original 140 quiescent galaxies, 23 have a disk component that contributes 50% or more of the total integrated galaxy light, and most of these are at high-redshift. At a redshift of z ~ 2 a significant fraction of all quiescent galaxies showed strong disk components with 30% being disk-dominated. We also find that massive disk galaxies seem to live in less densely populated environments while massive ellipticals live in environments with more neighbors, which leads us to believe that there are two mechanisms for the creation of massive quiescent galaxies. For the disks, the lower density environment and the disk nature of these galaxies lead us to favor cold streams over the major merger model of galaxy formation. The ellipticals, which live in higher density environments, could be assembled through major mergers of already aged stellar populations (e.g., dry mergers). This research is supported by the Clare Boothe Luce Foundation.

  15. The evolution of galaxy star formation activity in massive haloes

    NASA Astrophysics Data System (ADS)

    Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; Berta, S.; Elbaz, D.; Dickinson, M.; Lutz, D.; Altieri, B.; Aussel, H.; Cimatti, A.; Fadda, D.; Ilbert, O.; Le Floch, E.; Nordon, R.; Poglitsch, A.; Xu, C. K.

    2015-02-01

    Context. There is now a large consensus that the current epoch of the cosmic star formation history (CSFH) is dominated by low mass galaxies while the most active phase, between redshifts 1 and 2, is dominated by more massive galaxies, which evolve more quickly. Aims: Massive galaxies tend to inhabit very massive haloes, such as galaxy groups and clusters. We aim to understand whether the observed "galaxy downsizing" could be interpreted as a "halo downsizing", whereas the most massive haloes, and their galaxy populations, evolve more rapidly than the haloes with lower mass. Methods: We studied the contribution to the CSFH of galaxies inhabiting group-sized haloes. This is done through the study of the evolution of the infra-red (IR) luminosity function of group galaxies from redshift 0 to redshift ~1.6. We used a sample of 39 X-ray-selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel satellite. Results: Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute ≤10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift ≳1, the most IR-luminous galaxies (LIRGs and ULIRGs) are mainly located in groups, and this is consistent with a reversal of the star formation rate (SFR) vs. density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z ~ 1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Conclusions: Our results are consistent with a "halo downsizing" scenario and highlight the

  16. The stellar populations of massive galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.

    2013-07-01

    I present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurence of young stellar ages, cold gas, and ongoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed `in situ' - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.

  17. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-01

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly. PMID:19340075

  18. Understanding the size growth of massive galaxies through stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, I.; Trujillo, I.; Mármol-Queraltó, E.; Pérez-González, P.

    Massive early-type galaxies undergo a significant process of evolution with redshift on the stellar mass vs size plane. Furthermore, this trend does not depend on the age of their stellar populations. Therefore, such an evolution should involve processes that do not include a significant amount of star formation, leaving (mostly) dry mergers as the main growth channel. By studying close pairs involving a massive galaxy, one can quantify the role of mergers on the growth of massive galaxies. A recent study based on the SHARDS dataset reveals that minor mergers cannot be the dominant mechanism to explain the bulk of size growth in these systems. Merging is found to provide a constant fractional growth rate of ~10% per Gyr from redshift z=1, corresponding to an overall stellar mass increase of 2× between z=1 and z=0.

  19. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Soeren

    2015-08-01

    Dwarf galaxies are often characterized by very high globular cluster specific frequencies, in some cases exceeding that of the Milky Way by a factor of 100 or more. Moreover, the GCs are typically much more metal-poor than the bulk of the field stars, so that a substantial fraction (up to 20-25% or more) of all metal-poor stars in some dwarf galaxies are associated with GCs. The metal-poor components of these galaxies thus represent an extreme case of the "specific frequency problem". In this talk I will review the current status of our understanding of GC systems in dwarf galaxies. Particular emphasis will be placed on the implications of the high GC specific frequencies for the amount of mass loss the clusters could have experienced and the constraints this provides on theories for the origin of multiple populations in globular clusters.

  20. Do Relaxed Clusters of Galaxies Exist?

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Burns, Jack O.; Norman, Michael L.

    2004-05-01

    Clusters of galaxies lacking observational signatures of mergers and other complications are popular targets as cosmological probes. However, the assumptions of structural simplicity must be approximations that are valid to only a certain level. Especially in the new era of precision cosmology where efforts are underway to investigate the nature and evolution of dark energy, it is crucial to calibrate the approximations used to reduce cluster observations to cosmological measurements. We use high-resolution simulations of clusters of galaxies, evolved within their cosmological environment, to study the process of reducing X-ray and/or Sunyaev-Zeldovich data to cluster observables such as the gravitating mass and Hubble constant. This allows us to measure the impact of structure formation on these observables and quantify the approximations used in interpreting cluster observations.

  1. A study of massive and evolved galaxies at high redshift

    SciTech Connect

    Nayyeri, H.; Mobasher, B.; Hemmati, S.; De Barros, S.; Ferguson, H. C.; Wiklind, T.; Dahlen, T.; Kassin, S.; Koekemoer, A.; Dickinson, M.; Giavalisco, M.; Fontana, A.; Paris, D.; Ashby, M.; Willner, S.; Barro, G.; Guo, Y.; Hathi, N. P.; Dunlop, J. S.; Targett, T. A.

    2014-10-10

    We use data taken as part of Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) observations of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) to identify massive and evolved galaxies at 3 < z < 4.5. This is performed using the strength of the Balmer break feature at rest-frame 3648 Å, which is a diagnostic of the age of the stellar population in galaxies. Using the WFC3 H-band-selected catalog for the CANDELS GOODS-S field and deep multi-waveband photometry from optical (HST) to mid-infrared (Spitzer) wavelengths, we identify a population of old and evolved post-starburst galaxies based on the strength of their Balmer breaks (Balmer break galaxies, BBGs). The galaxies are also selected to be bright in rest-frame near-IR wavelengths and hence massive. We identify a total of 16 BBGs. Fitting the spectral energy distribution of the BBGs shows that the candidate galaxies have average estimated ages of ∼800 Myr and average stellar masses of ∼5 × 10{sup 10} M {sub ☉}, consistent with being old and massive systems. Two of our BBG candidates are also identified by the criteria that are sensitive to star-forming galaxies (Lyman break galaxy selection). We find a number density of ∼3.2 × 10{sup –5} Mpc{sup –3} for the BBGs, corresponding to a mass density of ∼2.0 × 10{sup 6} M {sub ☉} Mpc{sup –3} in the redshift range covering the survey. Given the old age and the passive evolution, it is argued that some of these objects formed the bulk of their mass only a few hundred million years after the big bang.

  2. Linking the Spin Evolution of Massive Black Holes to Galaxy Kinematics

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M.

    2014-10-01

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  3. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  4. Massive neutrinos and the pancake theory of galaxy formation

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    Three problems encountered by the pancake theory of galaxy formation in a massive neutrino-dominated universe are discussed. A nonlinear model for pancakes is shown to reconcile the data with the predicted coherence length and velocity field, and minimal predictions are given of the contribution from the large-scale matter distribution.

  5. Stellar dynamics around a massive black hole - II. Resonant relaxation

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.

  6. GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z = 1.6

    SciTech Connect

    Tal, Tomer; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.

    2013-05-20

    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  7. DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES

    SciTech Connect

    Reines, Amy E.; Greene, Jenny E.; Geha, Marla

    2013-10-01

    We present a sample of 151 dwarf galaxies (10{sup 8.5} ∼< M{sub *} ∼< 10{sup 9.5} M{sub ☉}) that exhibit optical spectroscopic signatures of accreting massive black holes (BHs), increasing the number of known active galaxies in this stellar-mass range by more than an order of magnitude. Utilizing data from the Sloan Digital Sky Survey Data Release 8 and stellar masses from the NASA-Sloan Atlas, we have systematically searched for active BHs in ∼25,000 emission-line galaxies with stellar masses comparable to the Magellanic Clouds and redshifts z < 0.055. Using the narrow-line [O III]/Hβ versus [N II]/Hα diagnostic diagram, we find photoionization signatures of BH accretion in 136 galaxies, a small fraction of which also exhibit broad Hα emission. For these broad-line active galactic nucleus (AGN) candidates, we estimate BH masses using standard virial techniques and find a range of 10{sup 5} ∼< M{sub BH} ∼< 10{sup 6} M{sub ☉} and a median of M{sub BH} ∼ 2 × 10{sup 5} M{sub ☉}. We also detect broad Hα in 15 galaxies that have narrow-line ratios consistent with star-forming galaxies. Follow-up observations are required to determine if these are true type 1 AGN or if the broad Hα is from stellar processes. The median absolute magnitude of the host galaxies in our active sample is M{sub g} = –18.1 mag, which is ∼1-2 mag fainter than previous samples of AGN hosts with low-mass BHs. This work constrains the smallest galaxies that can form a massive BH, with implications for BH feedback in low-mass galaxies and the origin of the first supermassive BH seeds.

  8. Gas Accretion and Mergers in Massive Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Ownsworth, Jamie; Mortlock, Alice; Bluck, Asa F. L.

    2013-07-01

    Galaxy assembly is an unsolved problem, with ΛCDM theoretical models unable to easily account for among other things, the abundances of massive galaxies, and the observed merger history. We show here how the problem of galaxy formation can be addressed in an empirical way without recourse to models. We discuss how galaxy assembly occurs at 1.5 < z < 3 examining the role of major and minor mergers, and gas accretion from the intergalactic medium in forming massive galaxies with log M* > 11 found within the GOODS NICMOS Survey (GNS). We find that major mergers, minor mergers and gas accretion are roughly equally important in the galaxy formation process during this epoch, with 64% of the mass assembled through merging and 36% through accreted gas which is later converted to stars, while 58% of all new star formation during this epoch arises from gas accretion. We also discuss how the total gas accretion rate is measured as Ṁ = 90+/-40 M⊙ yr-1 at this epoch, a value close to those found in some hydrodynamical simulations.

  9. Constructing massive blue elliptical galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim

    Over cosmic time, galaxy mass assembly has transitioned from low-mass, star-forming disk galaxies to massive, quiescent elliptical galaxies. The merger hypothesis for the formation of new elliptical galaxies provides one physical explanation to the observed buildup of this population, a key prediction of which is a brief phase of morphological transformation from highly-disturbed remnant to blue elliptical. We study 12 plausible new ellipticals with varying degrees of morphological peculiarities visually selected from a larger parent sample of nearby (0.01 ≤ z ≤ 0.04), massive (M* ≥ 10 10 M⊙ ), concentrated (Petrosian R90/R50 ≥ 2.6), and optically blue galaxies from the SDSS DR4 catalog. Using integral field spectroscopy, we construct two-dimensional spectra of the stellar populations and azimuthally bin them into concentric annuli to determine the relative ages of the stellar populations as a function of radius. Using this data and conclusions from simulations, we seek to distinguish post-mergers from galaxies undergoing other modes of mass assembly. We find that 1/3 of our sample is consistent with having undergone a recent, gas-rich major merger. Another 1/3 of our sample is consistent with having undergone a 'frosting' of recent star formation. The final 1/3 of our sample is either inconsistent with or inconclusive of having undergone a recent, gas-rich major merger.

  10. MAJOR MERGING: THE WAY TO MAKE A MASSIVE, PASSIVE GALAXY

    SciTech Connect

    Van der Wel, Arjen; Rix, Hans-Walter; Bell, Eric F.; Robaina, Aday R.; Holden, Bradford P.

    2009-11-20

    We analyze the projected axial ratio distribution, p(b/a), of galaxies that were spectroscopically selected from the Sloan Digital Sky Survey (DR6) to have low star formation rates. For these quiescent galaxies we find a rather abrupt change in p(b/a) at a stellar mass of approx10{sup 11} M{sub sun}: at higher masses there are hardly any galaxies with b/a < 0.6, implying that essentially none of them have disk-like intrinsic shapes and must be spheroidal. This transition mass is approx3-4 times higher than the threshold mass above which quiescent galaxies dominate in number over star-forming galaxies, which suggests that these mass scales are unrelated. At masses lower than approx10{sup 11} M{sub sun}, quiescent galaxies show a large range in axial ratios, implying a mix of bulge- and disk-dominated galaxies. Our result strongly suggests that major merging is the most important, and perhaps only relevant, evolutionary channel to produce massive (>10{sup 11} M{sub sun}), quiescent galaxies, as it inevitably results in spheroids.

  11. Infrared Color Selection of Massive Galaxies at z > 3

    NASA Astrophysics Data System (ADS)

    Wang, T.; Elbaz, D.; Schreiber, C.; Pannella, M.; Shu, X.; Willner, S. P.; Ashby, M. L. N.; Huang, J.-S.; Fontana, A.; Dekel, A.; Daddi, E.; Ferguson, H. C.; Dunlop, J.; Ciesla, L.; Koekemoer, A. M.; Giavalisco, M.; Boutsia, K.; Finkelstein, S.; Juneau, S.; Barro, G.; Koo, D. C.; Michałowski, M. J.; Orellana, G.; Lu, Y.; Castellano, M.; Bourne, N.; Buitrago, F.; Santini, P.; Faber, S. M.; Hathi, N.; Lucas, R. A.; Pérez-González, P. G.

    2016-01-01

    We introduce a new color selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H160 (H) and Infrared Array Camera (IRAC) 4.5 μm bands, specifically H-[4.5]\\gt 2.25 mag. These galaxies, called “HIEROs,” include two major populations that can be separated with an additional J - H color. The populations are massive and dusty star-forming galaxies at z\\gt 3 ({JH}-{blue}) and extremely dusty galaxies at z≲ 3 ({JH}-{red}). The 350 arcmin2 of the GOODS-North and GOODS-South fields with the deepest Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared and IRAC data contain as many as 285 HIEROs down to [4.5]\\lt 24 mag. Inclusion of the most extreme HIEROs, not even detected in the H band, makes this selection particularly complete for the identification of massive high-redshift galaxies. We focus here primarily on {JH}-{blue} (z\\gt 3) HIEROs, which have a median photometric redshift < z> ˜ 4.4 and stellar mass {M}*˜ {10}10.6 {M}⊙ and are much fainter in the rest-frame UV than similarly massive Lyman-break galaxies (LBGs). Their star formation rates (SFRs), derived from their stacked infrared spectral energy distributions (SEDs), reach ˜240 {M}⊙ yr-1, leading to a specific SFR, {{sSFR}}\\equiv {{SFR}}/{M}*˜ 4.2 Gyr-1, suggesting that the sSFRs for massive galaxies continue to grow at z\\gt 2 but at a lower growth rate than from z = 0 to z = 2. With a median half-light radius of 2 kpc, including ˜ 20% as compact as quiescent (QS) galaxies at similar redshifts, {JH}-{blue} HIEROs represent perfect star-forming progenitors of the most massive ({M}*≳ {10}11.2 {M}⊙ ) compact QS galaxies at z˜ 3 and have the right number density. HIEROs make up ˜ 60% of all galaxies with {M}*\\gt {10}10.5 {M}⊙ identified at z\\gt 3 from their photometric redshifts. This is five times more than LBGs with nearly no overlap between the two populations

  12. THE GROWTH OF MASSIVE GALAXIES SINCE z = 2

    SciTech Connect

    Van Dokkum, Pieter G.; Whitaker, Katherine E.; Brammer, Gabriel; Bezanson, Rachel; Muzzin, Adam; Tal, Tomer; Wake, David; Franx, Marijn; Quadri, Ryan; Kriek, Mariska; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.

    2010-02-01

    We study the growth of massive galaxies from z = 2 to the present using data from the NOAO/Yale NEWFIRM Medium Band Survey. The sample is selected at a constant number density of n = 2 x 10{sup -4} Mpc{sup -3}, so that galaxies at different epochs can be compared in a meaningful way. We show that the stellar mass of galaxies at this number density has increased by a factor of approx2 since z = 2, following the relation log M{sub n} (z) = 11.45 - 0.15z. In order to determine at what physical radii this mass growth occurred, we construct very deep stacked rest-frame R-band images of galaxies with masses near M{sub n} (z), at redshifts (z) = 0.6, 1.1, 1.6, and 2.0. These image stacks of typically 70-80 galaxies enable us to characterize the stellar distribution to surface brightness limits of approx28.5 mag arcsec{sup -2}. We find that massive galaxies gradually built up their outer regions over the past 10 Gyr. The mass within a radius of r = 5 kpc is nearly constant with redshift, whereas the mass at 5 kpc < r < 75 kpc has increased by a factor of approx4 since z = 2. Parameterizing the surface brightness profiles, we find that the effective radius and Sersic n parameter evolve as r{sub e} propor to (1 + z){sup -1.3} and n propor to (1 + z){sup -1.0}, respectively. The data demonstrate that massive galaxies have grown mostly inside-out, assembling their extended stellar halos around compact, dense cores with possibly exponential radial density distributions. Comparing the observed mass evolution to the average star formation rates of the galaxies we find that the growth is likely dominated by mergers, as in situ star formation can only account for approx20% of the mass buildup from z = 2 to z = 0. A direct consequence of these results is that massive galaxies do not evolve in a self-similar way: their structural profiles change as a function of redshift, complicating analyses which (often implicitly) assume self-similarity. The main uncertainties in this study are

  13. BRIGHT Lights, BIG City: Massive Galaxies, Giant Ly-A Nebulae, and Proto-Clusters

    SciTech Connect

    van Breugel, W; Reuland, M; de Vries, W; Stanford, A; Dey, A; Kurk, J; Venemans, B; Rottgering, H; Miley, G; De Breuck, C; Dopita, M; Sutherland, R; Bland-Hawthorn, J

    2002-08-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. They report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-{alpha} nebulae centered on the galaxies and to search for over-dense regions around them. They discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  14. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  15. Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth

    NASA Astrophysics Data System (ADS)

    Daddi, E.; Dickinson, M.; Morrison, G.; Chary, R.; Cimatti, A.; Elbaz, D.; Frayer, D.; Renzini, A.; Pope, A.; Alexander, D. M.; Bauer, F. E.; Giavalisco, M.; Huynh, M.; Kurk, J.; Mignoli, M.

    2007-11-01

    Examining a sample of massive galaxies at 1.4galaxy assembly. For z~2 galaxies with moderate luminosities (L8μm<1011 Lsolar), we find that the SFR can be estimated consistently from the multiwavelength data based on local luminosity correlations. However, 20%-30% of massive galaxies, and nearly all those with L8μm>1011 Lsolar, show a mid-IR excess that is likely due to the presence of obscured active nuclei, as shown in a companion paper. There is a tight and roughly linear correlation between stellar mass and SFR for 24 μm-detected galaxies. For a given mass, the SFR at z=2 was larger by a factor of ~4 and ~30 relative to that in star-forming galaxies at z=1 and 0, respectively. Typical ultraluminous infrared galaxies (ULIRGs) at z=2 are relatively ``transparent'' to ultraviolet light, and their activity is long lived (>~400 Myr), unlike that in local ULIRGs and high-redshift submillimeter-selected galaxies. ULIRGs are the common mode of star formation in massive galaxies at z=2, and the high duty cycle suggests that major mergers are not the dominant trigger for this activity. Current galaxy formation models underpredict the normalization of the mass-SFR correlation by about a factor of 4 and the space density of ULIRGs by an order of magnitude but give better agreement for z>1.4 quiescent galaxies.

  16. Dual Stellar Halos in Early-type Galaxies and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. It is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. We present photometry and metallicity of the resolved stars in the inner and outer regions of M105. These provide strong evidence that there are two distinct stellar halos in this galaxy, a metal-poor (blue) halo and a metal-rich (red) halo. Then we compare them with those in other early-type galaxies and use the dual halo mode formation scenario to describe how massive galaxies formed.

  17. COSMOLOGICAL SIMULATIONS OF MASSIVE COMPACT HIGH-z GALAXIES

    SciTech Connect

    Sommer-Larsen, J.; Toft, S. E-mail: sune@dark-cosmology.d

    2010-10-01

    In order to investigate the structure and dynamics of the recently discovered massive (M{sub *} {approx}> 10{sup 11} M{sub sun}) compact z {approx} 2 galaxies, cosmological hydrodynamical/N-body simulations of a {approx}50,000 Mpc{sup 3} comoving (Lagrangian), proto-cluster region have been undertaken. At z = 2, the highest resolution simulation contains {approx}5800 resolved galaxies, of which 509, 27, and 5 have M{sub *}>10{sup 10} M{sub sun}, M{sub *}>10{sup 11} M{sub sun}, and M{sub *}>4 x 10{sup 11} M{sub sun}, respectively. Total stellar masses, effective radii, and characteristic stellar densities have been determined for all galaxies. At z = 2, for the definitely well-resolved mass range of M{sub *} {approx}> 10{sup 11} M{sub sun}, we fit the relation R{sub eff} = R{sub eff,12} M {sup 1/3}{sub *,12} to the data, where M{sub *,12} is the total stellar mass in units of 10{sup 12} M{sub sun}. This yields R{sub eff,12} = (1.20 {+-} 0.04) kpc, in line with observational findings for compact z {approx} 2 galaxies, though somewhat more compact than the observed average. The only line-of-sight velocity dispersion measured for a z {approx} 2 compact galaxy is very large, {sigma}{sub *,p} = 510{sup +165}{sub -95} km s{sup -1}. This value can be matched at about the 1{sigma} level, although a somewhat larger mass than the estimated M{sub *} {approx_equal} 2 x 10{sup 11} M{sub sun} is indicated. For the above mass range, the galaxies have an average axial ratio (b/a) = 0.64 {+-} 0.02 with a dispersion of 0.1, and an average rotation to one-dimensional velocity-dispersion ratio (v/{sigma}) = 0.46 {+-} 0.06 with a dispersion of 0.3, and a maximum value of v/{sigma} {approx_equal} 1.1. Both rotation and velocity anisotropy contribute significantly in flattening the compact galaxies. Some of the observed compact galaxies appear flatter than any of the simulated galaxies. Finally, it is found that the massive compact galaxies are strongly baryon dominated in their inner

  18. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    SciTech Connect

    Rodriguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-08-20

    Several occupational distributions for satellite galaxies more massive than m{sub *} Almost-Equal-To 4 Multiplication-Sign 10{sup 7} M{sub Sun} around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m{sub *}. For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are Almost-Equal-To 0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N{sub s} ({>=}m{sub *}) , down to the mass of the Fornax dwarf is within the 1{sigma} distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N{sub s} ({>=}m{sub *}) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N{sub s} ({>=}m{sub *}). Then, it is not possible to accurately determine the MW halo mass by means of its N{sub s} ({>=}m{sub *}); from our catalog, we constrain a lower limit of 1.38 Multiplication-Sign 10{sup 12} M{sub Sun} at the 1{sigma} level. Our analysis strongly suggests that the abundance of massive

  19. Satellite galaxies around present-day massive ellipticals

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo; Trujillo, Ignacio; Mármol-Queraltó, Esther

    2014-07-01

    Using the spectroscopic New York University Value-Added Galaxy Catalogue and the photometric photo-z catalogues of the Sloan Digital Sky Survey Data Release 7, we have explored the satellite distribution around ˜1000 massive (M⋆ ≳ 2 × 1011 M⊙) visually classified elliptical galaxies down to a satellite mass ratio of 1:400 (i.e. 5 × 108 ≲ Msat ≲ 2 × 1011 M⊙). Our host galaxies were selected to be representative of a mass complete sample. The satellites of these galaxies were searched within a projected radial distance of 100 kpc to their hosts. We have found that only 20-23 per cent of the massive ellipticals have at least a satellite down to a mass ratio 1:10. This number increases to 45-52 per cent if we explore satellites down to 1:100 and is >60-70 per cent if we go further down to 1:400. The average projected radial distance of the satellites to their hosts for our whole sample down to 1:400 is ˜59 kpc (which can be decreased at least down to 50 kpc if we account for incompleteness effects). The number of satellites per galaxy host only increases very mildly at decreasing the satellite mass. The fraction of mass which is contained in the satellites down to a mass ratio of 1:400 is 8 per cent of the total mass contained by the hosts. Satellites with a mass ratio from 1:2 to 1:5 (with ˜28 per cent of the total mass of the satellites) are the main contributor to the total satellite mass. If the satellites eventually infall into the host galaxies, the merger channel will be largely dominated by satellites with a mass ratio down to 1:10 (as these objects have 68 per cent of the total mass in satellites).

  20. The size and mass evolution of the massive galaxies over cosmic time

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio

    2013-07-01

    Once understood as the paradigm of passively evolving objects, the discovery that massive galaxies experienced an enormous structural evolution in the last ten billion years has opened an active line of research. The most significant pending question in this field is the following: which mechanism has made galaxies to grow largely in size without altering their stellar populations properties dramatically? The most viable explanation is that massive galaxies have undergone a significant number of minor mergers which have deposited most of their material in the outer regions of the massive galaxies. This scenario, although appealing, is still far from be observationally proved since the number of satellite galaxies surrounding the massive objects appears insufficient at all redshifts. The presence also of a population of nearby massive compact galaxies with mixture stellar properties is another piece of the puzzle that still does not nicely fit within a comprehensive scheme. I will review these and other intriguing properties of the massive galaxies in this contribution.

  1. Radioactive 26Al from massive stars in the Galaxy.

    PubMed

    Diehl, Roland; Halloin, Hubert; Kretschmer, Karsten; Lichti, Giselher G; Schönfelder, Volker; Strong, Andrew W; von Kienlin, Andreas; Wang, Wei; Jean, Pierre; Knödlseder, Jürgen; Roques, Jean-Pierre; Weidenspointner, Georg; Schanne, Stephane; Hartmann, Dieter H; Winkler, Christoph; Wunderer, Cornelia

    2006-01-01

    Gamma-rays from radioactive 26Al (half-life approximately 7.2 x 10(5) years) provide a 'snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (+/- 1.1) events per century. PMID:16397491

  2. Cosmology and astrophysics from relaxed galaxy clusters - III. Thermodynamic profiles and scaling relations

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.

    2016-03-01

    This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.

  3. Most Massive Spiral Galaxy Known in the Universe

    NASA Astrophysics Data System (ADS)

    2000-12-01

    The VLT Observes Rapid Motion in Distant Object Summary The most massive spiral galaxy known so far in the Universe has been discovered by a team of astronomers from Garching, Padova, Leiden, ESO and London [1]. They base their conclusion on recent observations with ISAAC , an infrared-sensitive, multi-mode instrument on ESO's Very Large Telescope at the Paranal Observatory. This galaxy has been designated ISOHDFS 27 and is located at a distance of approx. 6 billion light-years (the redshift is 0.58). Its measured mass is more than 1000 billion times that of the Sun [2]. It is thus about four times more massive than our own galaxy, the Milky Way, and twice as heavy as the heaviest spiral galaxy known so far. The determination of the mass of ISOHDFS 27 is based on a unique measurement of the motions of its stars and nebulae around the center. The faster the motion is, the greater is the mass. It is, in essence, the same method that allows determining the mass of the Earth from the orbital speed and distance of the Moon. This is the first time a "rotation curve" has been observed in such a distant galaxy by means of infrared observations, allowing a very detailed dynamical study. Other observations by the team concern a pair of distant, interacting galaxies that were also found to possess comparably high masses. They also have observations of a third galaxy at a distance of about 10 billion light-years, with a mass that approaches that of ISOHDFS 27 . The new result has important cosmological implications, as it demonstrates that very heavy structures had already been formed in the Universe at a comparatively early epoch . PR Photo 33a/00 : ISOHDFS 27 , the heaviest spiral galaxy known. PR Photo 33b/00 : The "raw" ISAAC spectrum of ISOHDFS 27 . PR Photo 33c/00 : H-alpha profile of ISOHDFS 27 . Star formation in young galaxies It is of fundamental importance to current cosmological studies to understand how stars evolve within galaxies and how the galaxies themselves

  4. Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of ultracompact dwarf galaxies

    SciTech Connect

    Amaro-Seoane, Pau; Konstantinidis, Symeon; Freitag, Marc Dewi; Coleman Miller, M.; Rasio, Frederic A. E-mail: simos@ari.uni-heidelberg.de E-mail: miller@astro.umd.edu

    2014-02-20

    Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼10{sup 4}-10{sup 6} M {sub ☉} in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies. Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.

  5. The growth of massive galaxies and clusters at high redshift

    NASA Astrophysics Data System (ADS)

    Lindner, Robert Raymond

    Massive galaxies and galaxy clusters gain much of their mass by merging with their neighbors; this hierarchical structure formation is the foundation of our understanding of galaxy evolution. Nevertheless, the detailed evolutionary processes needed to form the structures we see in the local Universe remain poorly understood. This thesis comprises four projects examining the growth of galaxies and clusters at high redshift by using radio, sub/millimeter, and X-ray observations to provide empirical constraints on their cosmic evolution. Chapter 2 presents deep 1.2mm imaging of the inner 20' x 20' of the Lockman Hole North (LHN) field to search for submillimeter galaxies (SMGs), rapidly star-forming, high-redshift galaxy mergers. We detect 41 SMGs with S/N>4.0 and use Monte Carlo simulations to estimate their number counts and angular clustering properties. Chapter 3 investigates the nuclear accretion properties of the LHN SMGs. In the sample's average rest-frame X-ray spectrum, we detect strong Fe K alpha emission (equivalent width EW >=1 keV) from highly-ionized Fe species -- evidence that beneath the galaxies' heavy obscuration, supermassive black holes may be growing rapidly. Chapter 4 describes a new 345 GHz and 2.1 GHz imaging campaign to study the intracluster media (ICM) of eleven massive Sunyaev Zel'dovich Effect (SZE)-detected clusters from the Atacama Cosmology Telescope (ACT) southern survey. In six of eleven, 345 GHz SZE increments are detected and used to characterize the spatial distribution and energy content of the ICM at high (19.2") resolution. This work helps us understand how SZE-mass scaling relations are affected by contamination from other sources along the line of sight and by dynamical properties of the ICM. Chapter 5 studies the non-thermal radio emission in one exceptional z=0.870 binary cluster merger (ACTJ0102-4915, ``El Gordo'') with the help of newly-acquired radio observations. El Gordo is the highest-redshift cluster known to host

  6. The Massive Hosts of Radio Galaxies Across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Seymour, Nick; SHzRG Collaboration

    2007-05-01

    We present the results of a comprehensive Spitzer survey of 69 radio galaxies across 1galaxy stellar emission at rest-frame H-band. Stellar masses derived from rest-frame near-IR data, where AGN and young star contributions are minimized, are significantly more reliable than those derived from rest-frame optical and UV data. We find that the fraction of emitted light at rest-frame H-band from stars is >60% for 75% the high redshift radio galaxies. As expected from unified models of AGN, the stellar fraction of the rest-frame H-band luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5um) luminosity. Additionally, while the stellar H-band luminosity does not vary with stellar fraction, the total H-band luminosity anti-correlates with the stellar fraction as would be expected if the underlying hosts of these radio galaxies comprise a homogeneous population. The resultant stellar luminosities imply stellar masses of 10^{11-11.5}Msun even at the highest redshifts. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the stellar contribution to their mid-IR SEDs at shorter-wavelengths. The mid-IR luminosities alone classify most HzRGs as LIRGs or ULIRGs with even higher total-IR luminosities. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. Sub-mm observed starformation rates imply very high specific starformation rates, higher than other massive galaxies at these redshift ranges, suggesting we are watching the final formation of massive galaxies and black holes. We also present new evidence that the blackhole accretion rate (from mid-IR luminosity) correlates with radio lobe size and anti

  7. Quiescent Compact Galaxies at Intermediate Redshift in the COSMOS Field. II. The Fundamental Plane of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.; Chilingarian, Igor

    2015-06-01

    We examine the relation between surface brightness, velocity dispersion, and size—the fundamental plane (FP)—for quiescent galaxies at intermediate redshifts in the COSMOS field. The COSMOS sample consists of ˜150 massive quiescent galaxies with an average velocity dispersion of σ ˜ 250 km s-1 and redshifts between 0.2 < z < 0.8. More than half of the galaxies in the sample are compact. The COSMOS galaxies exhibit a tight relation (˜0.1 dex scatter) between surface brightness, velocity dispersion, and size. At a fixed combination of velocity dispersion and size, the COSMOS galaxies are brighter than galaxies in the local universe. These surface brightness offsets are correlated with the rest-frame g - z color and Dn4000 index; bluer galaxies and those with smaller Dn4000 indices have larger offsets. Stellar population synthesis models indicate that the massive COSMOS galaxies are younger and therefore brighter than similarly massive quiescent galaxies in the local universe. Passive evolution alone brings the massive compact quiescent (MCQ) COSMOS galaxies onto the local FP at z = 0. Therefore, evolution in size or velocity dispersion for MCQ galaxies since z ˜ 1 is constrained by the small scatter observed in the FP. We conclude that MCQ galaxies at z ≲ 1 are not a special class of objects but rather the tail of the mass and size distribution of the normal quiescent galaxy population.

  8. The Ubiquity of Coeval Starbursts in Massive Galaxy Cluster Progenitors

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.

    2016-06-01

    The universe’s largest galaxy clusters likely built the majority of their massive >1011 M {}ȯ galaxies in simultaneous, short-lived bursts of activity well before virialization. This conclusion is reached based on emerging data sets for z\\gt 2 proto-clusters and the characteristics of their member galaxies, in particular, rare starbursts and ultraluminous active galactic nuclei (AGN). The most challenging observational hurdle in identifying such structures is their very large volumes, ∼104 comoving Mpc3 at z\\gt 2, subtending areas of approximately half a degree on the sky. Thus, the contrast afforded by an overabundance of very rare galaxies in comparison to the background can more easily distinguish overdense structures from the surrounding, normal density field. Five 2≲ z≲ 3 proto-clusters from the literature are discussed in detail and are found to contain up to 12 dusty starbursts or luminous AGN galaxies each, a phenomenon that is unlikely to occur by chance even in overdense environments. These are contrasted with three higher-redshift (4≲ z≲ 5.5) dusty star-forming galaxy (DSFG) groups, whose evolutionary fate is less clear. Measurements of DSFGs’ gas depletion times suggest that they are indeed short-lived on ∼100 Myr timescales, and accordingly the probability of finding a structure containing more than 8 such systems is ∼0.2%, unless their “triggering” is correlated on very large spatial scales, ∼10 Mpc across. The volume density of DSFG-rich proto-clusters is found to be comparable to all of the >1015 M {}ȯ galaxy clusters in the nearby universe, which is a factor of five larger than expected in some simulations. Some tension still exists between measurements of the volume density of DSFG-rich proto-clusters and the expectation that they are generated via short-lived episodes, as the latter suggests that only a fraction (\\lt \\tfrac{1}{2}) of all proto-clusters should be rich with DSFGs. However, improved observations of

  9. Applying galactic archeology to massive galaxies using deep imaging surveys

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain

    2015-04-01

    Various programs aimed at exploring the still largely unknown low surface brightness Universe with deep imaging optical surveys have recently started. They open a new window for studies of galaxy evolution, pushing the technique of galactic archeology outside the Local Group (LG). The method, based on the detection and analysis of the diffuse light emitted by collisional debris or extended stellar halos (rather than on stellar counts as done for LG systems), faces however a number of technical difficulties, like the contamination of the images by reflection halos and Galactic cirrus. I review here the on-going efforts to address them and highlight the preliminary promising results obtained with a systematic survey with MegaCam on the CFHT of nearby massive early-type galaxies done as part of the ATLAS3D, NGVS and MATLAS collaborations.

  10. Massive Emission-Line Stars in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Lim, P. L.; Holtzman, J. A.; Walterbos, R. A. M.

    2003-12-01

    The evolution of massive stars is still poorly understood because of critical effects of mass loss during the post-main sequence phase. Of particular relevance is the Luminous Blue Variable phase, during which high mass loss may occur over a brief period. It would be useful to know the mass range of stars that enter this phase, and the life time of the phase. For that, better estimates of the numbers of LBVs in different environments is crucial. In a study of M31, we detected candidate LBVs as luminous stars with strong Hα emission-lines and no nebular [SII] emission. (King, N.L., Walterbos, R.A.M., & Braun, R., 1998, ApJ, 507:210-220). HST's sensitivity offers the capability to identify these candidate LBVs in galaxies beyond the Local Group. We identify massive Hα emmision-line stars in nearby spiral galaxies within 10 Mpc, using data from the HST WFPC2 archive. We obtained stellar photometry in Hα (F656N) and various broadband filters, with methods developed for the HST Local Group Stellar Photometry archive (Holtzman, J., Afonso, C., & Dolphin, A., 2003, ApJS, submitted). We identify candidates based on the amount of Hα excess in two-color plots. We also require an absolute magnitude MV ≤ -5, and photometry fit parameters consistent with point source characteristics. Candidates are inspected visually on the images for verification purpose. We find promising candidates in several nearby galaxies. We will present a catalog of the objects, and discuss their properties and the environments in which they are found. Support for this work was provided by NASA through grant numbers AR-08372.01-97A and HST-AR-08749.01-A from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555.

  11. A faint galaxy redshift survey behind massive clusters

    SciTech Connect

    Frye, Brenda

    1999-12-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of {approximately}20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  12. Massive star-forming regions across the galaxy

    NASA Astrophysics Data System (ADS)

    Rygl, Kazi Lucie Jessica

    2010-04-01

    Star-forming regions trace the spiral structure of the Galaxy. They are regions of increased column density and therefore traced well by the extinction in the mid-infrared based on the Spitzer/GLIMPSE 3.6-4.5 micron color excess maps. A sample of 25 high extinction clouds (HECs) was studied in the 1.2 mm dust continuum emission, and followed up by observations of ammonia plus several other molecules using the Effelsberg 100m, IRAM 30m and APEX telescopes. With these data we want to investigate the most early stages of massive star formation, which are currently still largely unknown. Three cloud classes were defined from their morphology in the 1.2 mm continuum maps: the early diffuse HECs, with a low contrast between the clump and cloud emission; the peaked HECs, with an increased contrast; the late multiply peaked HECs, with more than one clump and a high contrast between the clump and the cloud emission. The clouds are cold (T 16 K) and massive (M 800 M_sun) and contain dense clumps (n 10^5 cm^{-3}) of 0.3 pc in size. These clumps were investigated for evidence of gravitational collapse or expansion, for high velocity outflows, and for the presence of young stellar objects. Based on these results we interpret the three cloud classes as an evolutionary sequence of star-forming clouds. Accurate distances are a crucial parameter for establishing the mass, size, and luminosity of an object. Also, for understanding the spiral structure of the Galaxy trustworthy distances are necessary. The most accurate method to measure these is the trigonometric parallax. Using the European Very Large Baseline Interferometry Network of radio antennas we measured, for the first time, parallaxes of 6.7 GHz methanol masers. This transition belongs to the strongest maser species in the Galaxy, it is stable and observed toward numerous massive star-forming regions. We measured distances and proper motions toward L 1287, L 1206, NGC 281-W, ON 1 and S 255, and obtained their 3-dimensional

  13. WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT z = 2.3? THE POPULATION OF MASSIVE GALAXIES AT z > 3 FROM NMBS AND CANDELS

    SciTech Connect

    Stefanon, Mauro; Rudnick, Gregory H.; Marchesini, Danilo; Brammer, Gabriel B.; Whitaker, Katherine E.

    2013-05-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z {approx} 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z {approx} 2, implying that the SFRs for all of these galaxies must be much lower by z {approx} 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening {approx}1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z {approx} 3 that are compact (R{sub e} < 1.4 kpc) and have stellar mass M{sub *} > 10{sup 10.6} M{sub Sun }; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z {approx} 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z {approx} 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z {approx} 2 that are consistent with the observed number density. Better agreement with the observed

  14. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  15. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1

    NASA Astrophysics Data System (ADS)

    Buitrago, Fernando; Trujillo, Ignacio; Conselice, Christopher J.; Häußler, Boris

    2013-01-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar ≥ 1011 h- 270 M⊙) galaxies in the redshift interval 0 < z < 3. Our sample of 1082 objects comprises 207 local galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sérsic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ˜20-30 per cent at z ˜ 3 to ˜70 per cent at z = 0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1.

  16. OBSERVATIONS OF DARK AND LUMINOUS MATTER: THE RADIAL DISTRIBUTION OF SATELLITE GALAXIES AROUND MASSIVE RED GALAXIES

    SciTech Connect

    Tal, Tomer; Wake, David A.; Van Dokkum, Pieter G.

    2012-05-20

    We study the projected radial distribution of satellite galaxies around more than 28,000 luminous red galaxies (LRGs) at 0.28 < z < 0.40 and trace the gravitational potential of LRG groups in the range 15 < r/kpc < 700. We show that at large radii the satellite number-density profile is well fitted by a projected Navarro-Frenk-White (NFW) profile with r{sub s} {approx} 270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks, we demonstrate that this small-scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number-density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r > 25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early-type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.

  17. Massive Elliptical Galaxies at High Redshift: NICMOS Imaging of z~1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Zirm, Andrew W.; Dickinson, Mark; Dey, Arjun

    2003-03-01

    We present deep, ~1.6 μm, continuum images of 11 high-redshift (0.811galaxies observed with NICMOS on board the Hubble Space Telescope. Our NICMOS images probe the rest-frame optical light where stars are expected to dominate the galaxy luminosity. The rest-frame ultraviolet light of eight of these galaxies demonstrates the well-known ``alignment effect,'' with extended and often complex morphologies elongated along an axis close to that of the Fanaroff-Riley type II (FRII) radio source. As has been previously noted from ground-based near-infrared imaging, most of the radio galaxies have rounder, more symmetric morphologies at rest-frame optical wavelengths. Here we show the most direct evidence that in most cases the stellar hosts are normal elliptical galaxies with r1/4-law light profiles. For a few galaxies, very faint traces (less than 4% of the total H-band light) of the UV-bright aligned component are also visible in the infrared images. We derive both the effective radius and surface brightness for nine of 11 sample galaxies by fitting one- and two-dimensional surface-brightness models to them. We compare the high-redshift radio galaxies to lower redshift counterparts. We find that their sizes are similar to those of local FRII radio source hosts and are in general larger than other local galaxies. The derived host galaxy luminosities are very high and lie at the bright end of luminosity functions constructed at similar redshifts. This indicates that the high-redshift radio galaxies are likely rare, massive sources. The galaxies in our sample are also brighter than the rest-frame size-surface-brightness locus defined by the low-redshift sources. Passive evolution roughly aligns the z~1 galaxies with the low-redshift samples with a slope equal to 4.7. This value is intermediate between the canonical Kormendy relation (~3.5) and a constant luminosity line (=5). The optical host is sometimes centered on a local minimum in the rest-frame UV

  18. Feeding a Leviathan: The Growth of Massive Red Galaxies Through Minor Mergers

    NASA Astrophysics Data System (ADS)

    Tal, Tomer

    Observations of massive red galaxies have demonstrated gradual evolution since z = 2, with stellar mass doubling and size quintupling in the last ten billion years. One possible mode for mass and size growth in such galaxies is through minor mergers, which are expected to increase the size of galaxies by the square of the growth in mass. In this thesis we present an analysis of the importance of minor mergers to the evolution of massive red galaxies in the nearby universe. We acquire and process large samples of galaxy observations to study minor mergers before, during and after the interaction takes place. We show that stellar tidal features are found around nearly all nearby ellipticals, suggesting that minor mergers are common. We calculate the implied mass evolution and show that it is in agreement with observations. We then study the faint outskirts of Luminous Red Galaxies by stacking more than 40,000 images and find that their color gradients are consistent with minor mergers and low mass galaxy accretion. In addition, we utilize statistical background subtraction techniques to measure the projected radial distribution of satellite galaxies around massive red galaxies. Our analysis shows that the most probable channel for mass growth in such galaxies is through mergers with significantly lower mass galaxies. Finally, the distribution of satellites around massive red galaxies is consistent with the minor merger model and suggests that most of the stellar mass in these halos is already locked in the central galaxy itself. In conclusion, we find that minor mergers likely play a significant role in the evolution of massive galaxies, even in the nearby universe.

  19. Fully cosmological virtual massive galaxies at z = 0: kinematical, morphological and stellar population characterization

    NASA Astrophysics Data System (ADS)

    Navarro-González, Javier; Ricciardelli, Elena; Quilis, Vicent; Vazdekis, Alexandre

    2013-12-01

    We present the results of a numerical adaptive mesh refinement hydrodynamical and N-body simulation in a Λ cold dark matter cosmology. We focus on the analysis of the main properties of massive galaxies (M* > 1011 M⊙) at z = 0. For all the massive virtual galaxies, we carry out a careful study of their one-dimensional density, luminosity, velocity dispersion and stellar population profiles. In order to best compare with observational data, the method to estimate the velocity dispersion is calibrated by using an approach similar to that performed in the observations, based on the stellar populations of the simulated galaxies. With these ingredients, we discuss the different properties of massive galaxies in our sample according to their morphological types, accretion histories and dynamical properties. We find that the galaxy merging history is the leading actor in shaping the massive galaxies that we see nowadays. Indeed, galaxies having experienced a turbulent life are the most massive in the sample and show the steepest metallicity gradients. Beside the importance of merging, only a small fraction of the final stellar mass has been formed ex situ (10-50 per cent), while the majority of the stars formed within the galaxy. These accreted stars are significantly older and less metallic than the stars formed in situ and tend to occupy the most external regions of the galaxies.

  20. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    SciTech Connect

    Spitler, Lee R.; Rees, Glen; Straatman, Caroline M. S.; Labbé, Ivo; Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya; Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R.; Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J.; Van Dokkum, Pieter; Allen, Rebecca

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  1. SATELLITES AROUND MASSIVE GALAXIES SINCE z {approx} 2: CONFRONTING THE MILLENNIUM SIMULATION WITH OBSERVATIONS

    SciTech Connect

    Quilis, Vicent; Trujillo, Ignacio

    2012-06-20

    Minor merging has been postulated as the most likely evolutionary path to produce the increase in size and mass observed in the massive galaxies since z {approx} 2. In this Letter, we directly test this hypothesis, comparing the population of satellites around massive galaxies in cosmological simulations versus the observations. We use state-of-the-art, publically available, Millennium I and II simulations, and the associated semi-analytical galaxy catalogs to explore the time evolution of the fraction of massive galaxies that have satellites, the number of satellites per galaxy, the projected distance at which the satellites locate from the host galaxy, and the mass ratio between the host galaxies and their satellites. The three virtual galaxy catalogs considered here overproduce the fraction of galaxies with satellites by a factor ranging between 1.5 and 6 depending on the epoch, whereas the mean projected distance and ratio of the satellite mass over host mass are in closer agreement with data. The larger pull of satellites in the semi-analytical samples could suggest that the size evolution found in previous hydrodynamical simulations is an artifact due to the larger number of infalling satellites compared to the real universe. These results advise us to revise the physical ingredients implemented in the semi-analytical models in order to reconcile the observed and computed fraction of galaxies with satellites, and eventually, it would leave some room for other mechanisms explaining the galaxy size growth not related to the minor merging.

  2. VizieR Online Data Catalog: Massive early-type galaxies (Buitrago+, 2013)

    NASA Astrophysics Data System (ADS)

    Buitrago, F.; Trujillo, I.; Conselice, C. J.; Haussler, B.

    2013-08-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar>=1011h-270M⊙) galaxies in the redshift interval 0galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sersic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ~20-30 per cent at z~3 to~70 per cent at z=0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z~1. (1 data file).

  3. Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing

    NASA Astrophysics Data System (ADS)

    Applegate, D. E.; Mantz, A.; Allen, S. W.; der Linden, A. von; Morris, R. Glenn; Hilbert, S.; Kelly, Patrick L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.

    2016-04-01

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9 per cent (stat) ± 9 per cent (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c_{200} = 3.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30-50 per cent, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.

  4. Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    DOE PAGESBeta

    Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al

    2016-02-04

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less

  5. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  6. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; et al.

    2015-05-21

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  7. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGESBeta

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; et al

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  8. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. Fausti; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-05-01

    We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1°(approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  9. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  10. CORE CREATION IN GALAXIES AND HALOS VIA SINKING MASSIVE OBJECTS

    SciTech Connect

    Goerdt, Tobias; Moore, Ben; Stadel, Joachim; Read, J. I.

    2010-12-20

    We perform a detailed investigation into the disruption of central cusps via the transfer of energy from sinking massive objects. Constant density inner regions form at the radius where the enclosed mass approximately matches the mass of the infalling body. We explore parameter space using numerical simulations and give an empirical relation for the size of the resulting core within structures that have different initial cusp slopes. We find that infalling bodies always stall at the edge of these newly formed cores, experiencing no dynamical friction over many dynamical times. As applications, we consider the resulting decrease in the dark matter annihilation flux due to centrally destroyed cusps, and we present a new theory for the formation of close binary nuclei-the 'stalled binary' model. We focus on one particularly interesting binary nucleus system, the dwarf spheroidal galaxy VCC 128 which is dark matter dominated at all radii. We show that its nuclei would rapidly coalesce within a few million years if it has a central dark matter cusp slope steeper than r {sup -1}. However, if its initial dark matter cusp is slightly shallower than a logslope of -0.75 at {approx}0.1% of the virial radius, then the sinking nuclei naturally create a core equal to their observed separation and stall. This is close to the logslope measured in a recent billion particle cold dark matter halo simulation.

  11. The X-ray halos of the most MASSIVE galaxies in the Universe

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Ma, Chung-Pei; McConnell, Nicholas J.; Blakeslee, John; Bogdan, Akos; Thomas, Jens

    2016-01-01

    Despite decades of research, the assembly history and evolution of the most massive elliptical galaxies in the Universe remains mysterious. The physical properties (gas temperatures, halo masses, stellar kinematics etc.) of local elliptical galaxies are now being probed in depth by studies such as Atlas3D. However, due to their limited volume, these studies still do not include the most massive galaxies. Here I will present our investigation of the X-ray and optical properties of a complete sample of M > 1011 M⊙ sources within the MASSIVE Galaxy Survey (Ma et al. 2014), extending the previous Atlas3D analyses by an order of magnitude in K-band luminosity. We harness the exquisite spatial resolution and sensitivity of the Chandra X-ray observatory, combined with integral field optical spectroscopy, to provide the most complete and unbiased picture, to date, for the effect of large and small scale environment on the evolution of elliptical galaxies.

  12. SUPERDENSE MASSIVE GALAXIES IN THE ESO DISTANT CLUSTER SURVEY (EDisCS)

    SciTech Connect

    Valentinuzzi, T.; D'onofrio, M.; Vulcani, B.; Poggianti, B. M.; Fritz, J.; Moretti, A.; Saglia, R. P.; Aragon-Salamanca, A.; Simard, L.; Sanchez-Blazquez, P.; Cava, A.; Couch, W. J.

    2010-09-20

    We find a significant number of massive and compact galaxies in clusters from the ESO Distant Clusters Survey (EDisCS) at 0.4 < z < 1. They have similar stellar masses, ages, sizes, and axial ratios to local z {approx} 0.04 compact galaxies in WIde field Nearby Galaxy clusters Survey (WINGS) clusters, and to z = 1.4-2 massive and passive galaxies found in the general field. If non-brightest cluster galaxies of all densities, morphologies, and spectral types are considered, the median size of EDisCS galaxies is only a factor 1.18 smaller than in WINGS. We show that for morphologically selected samples, the morphological evolution taking place in a significant fraction of galaxies during the last Gyr may introduce an apparent, spurious evolution of size with redshift, which is actually due to intrinsic differences in the selected samples. We conclude that the median mass-size relation of cluster galaxies does not evolve significantly from z {approx} 0.7 to z {approx} 0.04. In contrast, the masses and sizes of BCGs and galaxies with M {sub *}>4 x 10{sup 11} M {sub sun} have significantly increased by a factor of 2 and 4, respectively, confirming the results of a number of recent works on the subject. Our findings show that progenitor bias effects play an important role in the size-growth paradigm of massive and passive galaxies.

  13. The formation of the massive galaxies in the SSA22 z = 3.1 protocluster

    SciTech Connect

    Kubo, M.; Uchimoto, Y. K.; Yamada, T.; Ichikawa, T.; Akiyama, M.; Kajisawa, M.; Matsuda, Y.; Hayashino, T.; Konishi, M.; Nishimura, T.; Omata, K.; Suzuki, R.; Tanaka, I.; Yoshikawa, T.; Alexander, D. M.; Fazio, G. G.; Huang, J.-S.; Lehmer, B. D.

    2013-12-01

    We study the properties of K-band-selected galaxies (K {sub AB} < 24) in the z = 3.09 SSA22 protocluster field. 430 galaxies at 2.6 < z {sub phot} < 3.6 are selected as potential protocluster members in a 112 arcmin{sup 2} area based on their photometric redshifts. We find that ≈20% of the massive galaxies with stellar masses >10{sup 11} M {sub ☉} at z {sub phot} ∼ 3.1 have colors consistent with those of quiescent galaxies with ages >0.5 Gyr. This fraction increases to ≈50% after correcting for unrelated foreground/background objects. We also find that 30% of the massive galaxies are heavily reddened, dusty, star-forming galaxies. Few such quiescent galaxies at similar redshifts are seen in typical survey fields. An excess surface density of 24 μm sources at z {sub phot} ∼ 3.1 is also observed, implying the presence of dusty star-formation activity in the protocluster. Cross-correlation with the X-ray data indicates that the fraction of K-band-selected protocluster galaxies hosting active galactic nuclei (AGNs) is also high compared with the field. The sky distribution of the quiescent galaxies, the 24 μm sources, and the X-ray AGNs show clustering around a density peak of z = 3.1 Lyα emitters. A significant fraction of the massive galaxies have already become quiescent, while dusty star-formation is still active in the SSA22 protocluster. These findings indicate that we are witnessing the formation epoch of massive early-type galaxies in the centers of the predecessors to present-day rich galaxy clusters.

  14. The fate of high redshift massive compact galaxies in dense environments

    SciTech Connect

    Kaufmann, Tobias; Mayer, Lucio; Carollo, Marcella; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  15. Dual Stellar Halos in the Standard Elliptical Galaxy M105 and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon

    2015-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. Old red giant stars in the halo of M105 are easily resolved in the HST images so that it is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. We present photometry of the resolved stars in its inner region at R~4 arcmin, obtained from F606W and F814W images in the Hubble Space Telescope archive. Then we combine this with photometry of the remote outer region at R~12 arcmin studied before. Deep color-magnitude diagrams of the resolved stars in the inner region show a prominent red giant branch (RGB) with a large color range, while those for the outer region show better a narrow blue RGB. We derive the metallicity of the RGB stars using the isochrones. The metallicity distribution function of the RGB stars shows the existence of two distinct subpopulations: a dominant metal-rich population and a much weaker metal-poor population. The peak metallicity of the metal-rich population changes little as galactocentric distance increases, while the fraction of the metal-poor population increases. The radial number density profile of the metal-poor RGB stars is flatter in the outer region than that of the metal-rich RGB stars. These provide strong evidence that there are two distinct stellar halos in this galaxy, blue (metal-poor) and red (metal-rich) halos, which is consistent with the results based on the study of the globular cluster systems in bright early-type galaxies (Park \\& Lee 2013,ApJ,773, 27). We discuss the implications of these results with regard to the formation of massive early-type galaxies in the dual halo mode formation scenario as well as in the two-phase formation scenario based on similuations.

  16. INSIGHTS ON THE FORMATION, EVOLUTION, AND ACTIVITY OF MASSIVE GALAXIES FROM ULTRACOMPACT AND DISKY GALAXIES AT z = 2-3

    SciTech Connect

    Weinzirl, Tim; Jogee, Shardha; Conselice, Christopher J.; Gruetzbauch, Ruth; Buitrago, Fernando; Papovich, Casey; Chary, Ranga-Ram; Bluck, Asa; Mobasher, Bahram; Lucas, Ray A.; Dickinson, Mark; Bauer, Amanda E.

    2011-12-10

    We present our results on the structure and activity of massive galaxies at z = 1-3 using one of the largest (166 with M{sub *} {>=} 5 Multiplication-Sign 10{sup 10} M{sub Sun }) and most diverse samples of massive galaxies derived from the GOODS-NICMOS survey: (1) Sersic fits to deep NIC3 F160W images indicate that the rest-frame optical structures of massive galaxies are very different at z = 2-3 compared to z {approx} 0. Approximately 40% of massive galaxies are ultracompact (r{sub e} {<=} 2 kpc), compared to less than 1% at z {approx} 0. Furthermore, most ({approx}65%) systems at z = 2-3 have a low Sersic index n {<=} 2, compared to {approx}13% at z {approx} 0. We present evidence that the n {<=} 2 systems at z = 2-3 likely contain prominent disks, unlike most massive z {approx} 0 systems. (2) There is a correlation between structure and star formation rates (SFRs). The majority ({approx}85%) of non-active galactic nucleus (AGN) massive galaxies at z = 2-3, with SFR high enough to yield a 5{sigma} (30 {mu}Jy) 24 {mu}m Spitzer detection, have low n {<=} 2. Such n {<=} 2 systems host the highest SFR. (3) The frequency of AGNs is {approx}40% at z = 2-3. Most ({approx}65%) AGN hosts have disky (n {<=} 2) morphologies. Ultracompact galaxies appear quiescent in terms of both AGN activity and star formation. (4) Large stellar surface densities imply massive galaxies at z = 2-3 formed via rapid, highly dissipative events at z > 2. The large fraction of n {<=} 2 disky systems suggests cold mode accretion complements gas-rich major mergers at z > 2. In order for massive galaxies at z = 2-3 to evolve into present-day massive E/S0s, they need to significantly increase (n, r{sub e} ). Dry minor and major mergers may play an important role in this process.

  17. NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT z = 3.09

    SciTech Connect

    Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi

    2015-01-20

    We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K {sub AB} < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z {sub spec} < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 ≤ z {sub spec} ≤ 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J – K {sub AB} > 1.4), hyper extremely red objects (J – K {sub AB} > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ∼2-5 × 10{sup 14} M {sub ☉}, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J – K {sub AB} ≥ 2.4) protocluster galaxies are massive galaxies with M {sub star} ∼ 10{sup 11} M {sub ☉} showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ∼ 2-3 in the general field.

  18. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  19. NIR Spectroscopic Observation of Massive Galaxies in the Protocluster at z = 3.09

    NASA Astrophysics Data System (ADS)

    Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi

    2015-01-01

    We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K AB < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z spec < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 <= z spec <= 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J - K AB > 1.4), hyper extremely red objects (J - K AB > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ~2-5 × 1014 M ⊙, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J - K AB >= 2.4) protocluster galaxies are massive galaxies with M star ~ 1011 M ⊙ showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ~ 2-3 in the general field.

  20. A massive protocluster of galaxies at a redshift of z ≈ 5.3.

    PubMed

    Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G

    2011-02-10

    Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters. PMID:21228776

  1. The intriguing properties of local compact massive galaxies: What are they?

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, A.; Vazdekis, A.; Trujillo, I.; Sánchez-Blázquez, P.; Ricciardelli, E.; de la Rosa, I. G.

    2013-07-01

    Studying the properties of the few compact massive galaxies that exist in the local Universe (Trujillo et al. 2009) might provide a closer look to the nature of their high redshift (z >= 1.0) massive counterparts. By this means we have characterized their main kinematics, structural properties, stellar populations and star formation histories with a set of new high quality spectroscopic and imaging data (Ferré-Mateu et al. 2012 and Trujillo et al. 2012). These galaxies seem to be truly unique, as they do not follow the characteristic kinematics, stellar surface mass density profiles and stellar population patterns of present-day massive ellipticals or spirals of similar mass. They are, instead, more alike their high-z analogs. Summarizing, local compact massive galaxies are rare, unique and the perfect laboratory to study their high redshift counterparts.

  2. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-01

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum. PMID:19661911

  3. Dark matter and the assembly history of massive galaxies and clusters

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.

    In Part I of this thesis we study the distribution of dark matter and baryons in a sample of seven massive, relaxed galaxy clusters by combining multiple observational tools. Our aim is to make comprehensive mass profile measurements and compare these to the form of the universal density profile derived in numerical cold dark matter (CDM) simulations. By joining weak and strong gravitational lensing observations with resolved stellar kinematic data within the central brightest cluster galaxy (BCG), we constrain the density profile over the wide dynamic range of 3-3000 kpc in radius for the first time. We first compare lensing- and X-ray-derived mass measures to constrain the line-of-sight geometry of the clusters in our sample. We then show that the logarithmic slope of the total density profile -- comprising both stars and dark matter -- agrees closely with numerical simulations containing only dark matter down to radii of ˜ 7 kpc, despite the significant contribution of stellar material on such small scales. Our unique stellar kinematic data allow us to constrain two-component models of the stellar and dark matter distributions in the cluster cores. We find a mean logarithmic slope for the dark matter density of beta = 0.50 +/- 0.10 (random) +0.14, -0.13 (systematic) at small radii, where rho DM ˜ r-beta. This is significantly shallower than a canonical CDM cusp having beta = 1. Alternatively, a cored dark matter profile with log rcore / kpc = 1.14 +/- 0.13 (random) +0.14,-0.22 (systematic) provides an equally good description. The mean mass-to-light ratio of the stars in the BCGs, derived from lensing and dynamics, is found to be consistent with estimates from stellar population synthesis modeling provided that a Salpeter initial mass function (IMF), or one with a similarly high mass-to-light ratio, is adopted. We find some evidence for a correlation between the inner dark matter profile and the size or luminosity of the BCG, which suggests a connection

  4. ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE

    SciTech Connect

    Taylor, Edward N.; Franx, Marijn; Brinchmann, Jarle; Glazebrook, Karl; Van der Wel, Arjen; Van Dokkum, Pieter G

    2010-09-01

    We set out to test the claim that the recently identified population of compact, massive, and quiescent galaxies at z {approx} 2.3 must undergo significant size evolution to match the properties of galaxies found in the local universe. Using data from the Sloan Digital Sky Survey (SDSS; Data Release 7), we have conducted a search for local red sequence galaxies with sizes and masses comparable to those found at z {approx} 2.3. The SDSS spectroscopic target selection algorithm excludes high surface brightness objects; we show that this makes incompleteness a concern for such massive, compact galaxies, particularly for low redshifts (z {approx}< 0.05). We have identified 63 M{sub *}>10{sup 10.7} M{sub sun} ({approx}5 x 10{sup 10} M{sub sun}) red sequence galaxies at 0.066 < z{sub spec} < 0.12 which are smaller than the median size-mass relation by a factor of 2 or more. Consistent with expectations from the virial theorem, the median offset from the mass-velocity dispersion relation for these galaxies is 0.12 dex. We do not, however, find any galaxies with sizes and masses comparable to those observed at z {approx} 2.3, implying a decrease in the comoving number density of these galaxies, at fixed size and mass, by a factor of {approx}>5000. This result cannot be explained by incompleteness: in the 0.066 < z < 0.12 interval, we estimate that the SDSS spectroscopic sample should typically be {approx}>75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as {approx}20%. In order to confirm that the absence of such compact massive galaxies in SDSS is not produced by spectroscopic selection effects, we have also looked for such galaxies in the basic SDSS photometric catalog, using photometric redshifts. While we do find signs of a slight bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider

  5. Collisional excitation of [C II], [O I] and CO in massive galaxies

    NASA Astrophysics Data System (ADS)

    Canning, R. E. A.; Ferland, G. J.; Fabian, A. C.; Johnstone, R. M.; van Hoof, P. A. M.; Porter, R. L.; Werner, N.; Williams, R. J. R.

    2016-01-01

    Many massive galaxies at the centres of relaxed galaxy clusters and groups have vast reservoirs of warm (˜10 000 K) and cold (≲100 K) gas. In many such low-redshift systems this gas is lifted into the hot interstellar medium in filamentary structures, which are long lived and are typically not forming stars. Two important questions are how far do these reservoirs cool and if cold gas is abundant what is the cause of the low star formation efficiency? Heating and excitation of the filaments from collisions and mixing of hot particles in the surrounding X-ray gas describes well the optical and near infrared line ratios observed in the filaments. In this paper we examine the theoretical properties of dense, cold clouds emitting in the far infrared and sub-millimetre through the bright lines of [C II] λ157 μm , [O I] λ63 μm and CO, exposed to such energetic ionizing particles. We find that optical depth effects and thermal pressure support alone cannot account for the line ratios; however, a very modest additional pressure support can fit the observed [O I] λ63 μm/[C II] λ157 μm line ratios by decreasing the density of the gas. This may also help stabilize the filaments against collapse leading to the low rates of star formation. We make predictions for the line ratios expected from cold gas under these conditions and present diagnostic diagrams for comparison with further observations. We provide our code as an Appendix.

  6. GHOSTS | Bulges, Halos, and the Resolved Stellar Outskirts of Massive Disk Galaxies

    NASA Astrophysics Data System (ADS)

    de Jong, R. S.; Radburn-Smith, D. J.; Sick, J. N.

    2008-10-01

    In hierarchical galaxy formation the stellar halos of galaxies are formed by the accretion of minor satellites and therefore contain valuable information about the (early) assembly process of galaxies. Our GHOSTS survey measures the stellar envelope properties of 14 nearby disk galaxies by imaging their resolved stellar populations with HST/ACS and WFPC2. Most of the massive galaxies in the sample (V_{rot}>200 km s^{-1}) have very extended stellar envelopes with μ(r) ˜ r^{-2.5} power law profiles in the outer regions. For these massive galaxies there is some evidence that the stellar surface density of the profiles correlates with Hubble type and bulge-to-disk ratio, begging the question whether these envelopes are more related to bulges than to a Milky Way-type stellar halo. Smaller galaxies (V_{rot}˜100 km s^{-1}) have much smaller stellar envelopes, but depending on geometry, they could still be more luminous than expected from satellite remnants in hierarchical galaxy formation models. Alternatively, they could be created by disk heating through the bombardment of small dark matter sub-halos. We find that galaxies show varying amounts of halo substructure.

  7. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  8. ULTRA-DEEP SUB-KILOPARSEC VIEW OF NEARBY MASSIVE COMPACT GALAXIES

    SciTech Connect

    Trujillo, Ignacio; Ferre-Mateu, Anna

    2012-05-20

    Using Gemini North telescope ultra-deep and high-resolution (sub-kiloparsec) K-band adaptive optics imaging of a sample of four nearby (z {approx} 0.15) massive ({approx}10{sup 11} M{sub Sun }) compact (R < 1.5 kpc) galaxies, we have explored the structural properties of these rare objects with unprecedented detail. Our surface brightness profiles expand over 12 mag in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities {approx}10{sup 6} M{sub Sun} kpc{sup -2} at radial distances of {approx}15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, visually resembling S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around (2-3) Multiplication-Sign 10{sup 10} M{sub Sun} stellar mass from their inner (R < 1.7 kpc) region toward their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size, and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.

  9. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    SciTech Connect

    Trujillo, Ignacio; Vazdekis, Alexandre; Balcells, Marc; Sánchez-Blázquez, Patricia

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  10. The highest resolution view of massive distant galaxies

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Ridgway, Susan; Sajina, Anna; Jarvis, Matt; Gates, Elinor; Farrah, Duncan; Afonso, Jose

    2013-08-01

    High resolution imaging of distant galaxies at near-infrared (rest-frame optical) wavelengths is essential if we are to understand how galaxies form, but HST is limited in resolution by the diffraction limit of its relatively small mirror. We have used the deep, wide-field SERVS/VIDEO near infrared surveys to pick out good guide star asterisms suitable for correction of the 1.5' GSAOI field using the GEMS MCAO system. With deep images in these fields, combined with photo-zs and other information from our unique multi-wavelength dataset we will be able to perform investigations of the morphologies of high redshift galaxies in samples selected in the near-infrared (tracing stellar mass at high-z) with unprecedented 0.08" resolution. In particular we will address the questions of the morphologies of z>3 galaxies, the size evolution of early type galaxies and the nature of the hosts of Herschel sources.

  11. Ongoing assembly of massive galaxies by major merging in large groups and clusters from the SDSS

    NASA Astrophysics Data System (ADS)

    McIntosh, Daniel H.; Guo, Yicheng; Hertzberg, Jen; Katz, Neal; Mo, H. J.; van den Bosch, Frank C.; Yang, Xiaohu

    2008-08-01

    We investigate the incidence of major mergers creating massive (Mstar > 1011Msolar) galaxies in present-day (z <= 0.12) groups and clusters. Using a volume-limited sample of 845 groups with dark matter halo masses above 2.5 × 1013Msolar, we isolate 221 galaxy pairs with <=1.5r-band magnitude differences, <=30 kpc projected separations and combined masses above 1011Msolar. We fit the r-band images of each pair as the line-of-sight projection of symmetric models and identify 38 mergers by the presence of residual asymmetric structure associated with both progenitors, such as non-concentric isophotes, broad and diffuse tidal tails and dynamical friction wakes. In other words, at the resolution and sensitivity of the Sloan Digital Sky Survey (SDSS), 16 per cent of massive major pairs in dense environments have mutual tidal interaction signatures; relying on automated searches of major pairs from the SDSS spectroscopic galaxy sample will result in missing 70 per cent of these mergers owing to spectroscopic incompleteness in high-density regions. We find that 90 per cent of these mergers are between two nearly equal-mass progenitors with red-sequence colours and centrally concentrated morphologies, in agreement with numerical simulations that predict that an important mechanism for the formation of massive elliptical galaxies is the dissipationless (gas-poor or so-called dry) major merging of spheroid-dominated galaxies. We identify seven additional massive mergers with disturbed morphologies and semiresolved double nuclei; thus, 1.5 +/- 0.2 per cent of Mstar >= 5 × 1010Msolar galaxies in large groups are involved in the major merger assembly of massive galaxies. Mergers at the centres of these groups are more common than between two satellites, but both types are morphologically indistinguishable and we tentatively conclude that the latter are likely located at the dynamical centres of large subhaloes that have recently been accreted by their host halo. Based on

  12. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  13. Using the Millennium II simulation to test CDM predictions for the structure of massive galaxies

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew P.; Kauffmann, Guinevere; Wang, Jing; White, Simon D. M.

    2013-07-01

    We have combined the semi-analytic galaxy formation model of Guo et al. (2011) with a novel particle-tagging technique to predict galaxy surface brightness profiles in a representative sample of ~1900 massive dark matter haloes (1012-1014 M⊙) from the Millennium II ΛCDM N body simulation. We focus on the outer regions of galaxies and stars accreted in mergers. Our simulations cover scales from the stellar haloes of Milky Way-like galaxies to the `cD envelopes' of groups and clusters, and resolve low surface brightness substructure such as the tidal streams of dwarf galaxies. We find that the spatial distribution of stars in low surface brightness regions is tightly correlated with DM halo mass and that collisionless merging during the hierarchical assembly of galaxies largely determines the structure of spheroidal stellar components. Our ΛCDM model agrees well with the available data.

  14. The Stripe 82 Massive Galaxy Project - II. Stellar mass completeness of spectroscopic galaxy samples from the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; Bundy, Kevin; Saito, Shun; Tinker, Jeremy; Maraston, Claudia; Tojeiro, Rita; Huang, Song; Brownstein, Joel R.; Schneider, Donald P.; Thomas, Daniel

    2016-04-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected spectra for over one million galaxies at 0.15 < z < 0.7 over a volume of 15.3 Gpc3 (9376 deg2) - providing us an opportunity to study the most massive galaxy populations with vanishing sample variance. However, BOSS samples are selected via complex colour cuts that are optimized for cosmology studies, not galaxy science. In this paper, we supplement BOSS samples with photometric redshifts from the Stripe 82 Massive Galaxy Catalog and measure the total galaxy stellar mass function (SMF) at z ˜ 0.3 and z ˜ 0.55. With the total SMF in hand, we characterize the stellar mass completeness of BOSS samples. The high-redshift CMASS (constant mass) sample is significantly impacted by mass incompleteness and is 80 per cent complete at log 10(M*/M⊙) > 11.6 only in the narrow redshift range z = [0.51, 0.61]. The low-redshift LOWZ sample is 80 per cent complete at log 10(M*/M⊙) > 11.6 for z = [0.15, 0.43]. To construct mass complete samples at lower masses, spectroscopic samples need to be significantly supplemented by photometric redshifts. This work will enable future studies to better utilize the BOSS samples for galaxy-formation science.

  15. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation.

    PubMed

    Khurana, Saheba; Thachuk, Mark

    2016-03-14

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation. PMID:26979675

  16. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Khurana, Saheba; Thachuk, Mark

    2016-03-01

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation.

  17. The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z approximately 3.

    PubMed

    Wilman, R J; Gerssen, J; Bower, R G; Morris, S L; Bacon, R; de Zeeuw, P T; Davies, R L

    2005-07-14

    High-velocity galactic outflows, driven by intense bursts of star formation and black hole accretion, are processes invoked by current theories of galaxy formation to terminate star formation in the most massive galaxies and to deposit heavy elements in the intergalactic medium. From existing observational evidence (for high-redshift galaxies) it is unclear whether such outflows are localized to regions of intense star formation just a few kiloparsecs in extent, or whether they instead have a significant impact on the entire galaxy and its surroundings. Here we present two-dimensional spectroscopy of a star-forming galaxy at redshift z = 3.09 (seen 11.5 gigayears ago, when the Universe was 20 per cent of its current age): its spatially extended Lyalpha line emission appears to be absorbed by H i in a foreground screen covering the entire galaxy, with a lateral extent of at least 100 kpc and remarkable velocity coherence. This screen was ejected from the galaxy during a starburst several 10(8) years earlier and has subsequently swept up gas from the surrounding intergalactic medium and cooled. This demonstrates the galaxy-wide impact of high-redshift superwinds. PMID:16015322

  18. A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709

    SciTech Connect

    Reines, Amy E.; Condon, James J.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M {sub BH} ∼ 10{sup 5-7} M {sub ☉}). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M {sub *} ∼ 2.5 × 10{sup 9} M {sub ☉} and M {sub *} ∼ 1.1 × 10{sup 9} M {sub ☉} for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ∼10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  19. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids. PMID:21217688

  20. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  1. The IMF-SFH connection in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Ferreras, Ignacio

    2015-08-01

    The recent discovery of a systematic variation of the stellar initial mass function with galaxy mass in early-type galaxies (ETGs) has opened up a new dimension in the analysis of the star formation histories of ETGs via chemical enrichment modelling. In this talk I will present recent results that apply the findings of bottom-heavy mass functions in massive ETGs, to reveal a substantially different mode of star formation in these systems. Such a scenario, based on a phenomenological models of chemical enrichment, implies a drastic variation of the fragmentation properties of molecular clouds during the early and intense burst of star formation that produces the cores of massive ETGs.

  2. THE STRUCTURE OF MASSIVE QUIESCENT GALAXIES AT Z {approx} 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan Lulu; Chen Yang; Pan Zhizheng; Lv Xuanyi; Li Jinrong; Lin Lin; Kong Xu; Fang Guanwen

    2013-07-10

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 {<=} z {<=} 4.0 in the CANDELS-COSMOS field. We construct an H{sub F160W}-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z {approx} 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of these z {approx} 3 galaxies can be modeled by assuming their formation at z{sub form} {approx} 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by r{sub e} {proportional_to}(1 + z){sup -1.0}. Low Sersic index and axis ratio, with median values n {approx}1.5 and b/a {approx} 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.

  3. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang. PMID:23598341

  4. The MASSIVE Survey. II. Stellar Population Trends Out to Large Radius in Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Janish, Ryan; Ma, Chung-Pei; McConnell, Nicholas J.; Blakeslee, John P.; Thomas, Jens; Murphy, Jeremy D.

    2015-07-01

    We examine stellar population gradients in ˜100 massive early-type galaxies spanning 180\\lt {σ }*\\lt 370 km s-1 and MK of -22.5 to -26.5 mag, observed as part of the MASSIVE survey. Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7 m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (˜ 2.5 {R}{e}). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift), stellar age and [α/Fe] increase with increasing {σ }* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 {R}{e}, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for {σ }*, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius, internal properties matter more than environment in determining star formation history.

  5. Gravitational Heating Helps Make Massive Galaxies Red and Dead

    NASA Astrophysics Data System (ADS)

    Johansson, Peter H.; Naab, Thorsten; Ostriker, Jeremiah P.

    2009-05-01

    We study the thermal formation history of four simulated galaxies that were shown by Naab et al. to reproduce a number of observed properties of elliptical galaxies. The temperature of the gas in the galaxies is steadily increasing with decreasing redshift, although much of the gas has a cooling time shorter than the Hubble time. The gas is being heated and kept hot by gravitational heating processes through the release of potential energy from infalling stellar clumps. The energy is dissipated in supersonic collisions of infalling gas lumps with the ambient gas and through the dynamical capturing of satellite systems causing gravitational wakes that transfer energy to the surrounding gas. Furthermore, dynamical friction from the infalling clumps pushes out dark matter (DM), lowering the central DM density by up to a factor of 2 from z = 3 to z = 0. In galaxies in which the late formation history (z lsim 2) is dominated by minor merging and accretion, the energy released (E ~ 5 × 1059 erg) from gravitational feedback is sufficient to form red and dead elliptical galaxies by z ~ 1 even in the absence of supernova and AGN feedback.

  6. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  7. Sizes of Young Massive Clusters in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ryon, Jenna E.; Gallagher, John S.; LEGUS Team

    2016-01-01

    Out to distances of a few tens of Mpc, the surface brightness profiles of star clusters can be resolved with HST imaging. At these distances, a typical spiral galaxy will span a few HST imaging fields, so hundreds of star clusters can be readily observed in one pointing. The apparent uniformity in star cluster size across a huge range of mass, age, environment, and metallicity has been noted by many studies and remains unexplained. We measure the half-light radii of YMC populations in nearby galaxies using the galfit software package in an attempt to address this issue. Our analysis reliably shows most YMCs are similar in size with half-light radii of 2-5 pc. In this talk, I will present our results on the shape of the cluster size distribution and its dependence on cluster age, mass, and galaxy environment for YMCs in M83 and NGC 628.

  8. Cold streams in early massive hot haloes as the main mode of galaxy formation.

    PubMed

    Dekel, A; Birnboim, Y; Engel, G; Freundlich, J; Goerdt, T; Mumcuoglu, M; Neistein, E; Pichon, C; Teyssier, R; Zinger, E

    2009-01-22

    Massive galaxies in the young Universe, ten billion years ago, formed stars at surprising intensities. Although this is commonly attributed to violent mergers, the properties of many of these galaxies are incompatible with such events, showing gas-rich, clumpy, extended rotating disks not dominated by spheroids. Cosmological simulations and clustering theory are used to explore how these galaxies acquired their gas. Here we report that they are 'stream-fed galaxies', formed from steady, narrow, cold gas streams that penetrate the shock-heated media of massive dark matter haloes. A comparison with the observed abundance of star-forming galaxies implies that most of the input gas must rapidly convert to stars. One-third of the stream mass is in gas clumps leading to mergers of mass ratio greater than 1:10, and the rest is in smoother flows. With a merger duty cycle of 0.1, three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. The rarer, submillimetre galaxies that form stars even more intensely are largely merger-induced starbursts. Unlike destructive mergers, the streams are likely to keep the rotating disk configuration intact, although turbulent and broken into giant star-forming clumps that merge into a central spheroid. This stream-driven scenario for the formation of discs and spheroids is an alternative to the merger picture. PMID:19158792

  9. Global and radial variations in the efficiency of massive star formation among galaxies

    NASA Technical Reports Server (NTRS)

    Allen, Lori E.; Young, Judith S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well.

  10. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  11. The use of inexact ODE solver in waveform relaxation methods on a massively parallel computer

    SciTech Connect

    Luk, W.S.; Wing, O.

    1995-12-01

    This paper presents the use of inexact ordinary differential equation (ODE) solver in waveform relaxation methods for solving initial value problems: Since the conventional ODE solvers are inherently sequential, the inexact ODE solver is used by taking time points from only previous waveform iteration for time integration. As a result, this method is truly massively parallel, as the equation is completely unfolded both in system and in time. Convergence analysis shows that the spectral radius of the iteration equation resulting from the {open_quotes}inexact{close_quotes} solver is the same as that from the standard method, and hence the new method is robust. The parallel implementation issues on the DECmpp 12000/Sx computer will also be discussed. Numerical results illustrate that though the number of iterations in the inexact method is increased over the exact method, as expected, the computation time is much reduced because of the large-scale parallelism.

  12. The many assembly histories of massive void galaxies as revealed by integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A.; Penny, Samantha J.; Brown, Michael J. I.

    2016-06-01

    We present the first detailed integral field spectroscopy study of nine central void galaxies with M⋆ > 1010 M⊙ using the Wide Field Spectrograph to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Hα-derived star formation rates (<1 M⊙ yr-1). Two of our nine galaxies host active galactic nuclei, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph galaxy survey. We find that despite environmental differences, galaxies of mass M⋆ > 1010 M⊙ have similarly low star formation rates (<3 M⊙ yr-1). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.

  13. Charting the evolution of the ages and metallicities of massive galaxies since z = 0.7

    SciTech Connect

    Gallazzi, Anna; Zibetti, Stefano; Bell, Eric F.; Brinchmann, Jarle; Kelson, Daniel D.

    2014-06-10

    Detailed studies of the stellar populations of intermediate-redshift galaxies can shed light onto the processes responsible for the growth of the massive galaxy population in the last 8 billion years. We here take a step toward this goal by means of deep, multiobject rest-frame optical spectroscopy, performed with the Inamori Magellan Areal Camera and Spectrograph on the Magellan telescope, of a sample of ∼70 galaxies in the Extended Chandra Deep Field South survey with redshift 0.65 ≤ z ≤ 0.75, apparent R > 22.7 mag{sub Vega}, and stellar mass >10{sup 10} M {sub ☉}. We measure velocity dispersion and stellar absorption features for individual sources. We interpret them by means of a large Monte Carlo library of star formation histories, following the Bayesian approach adopted for previous low redshift studies, and derive constraints on the stellar mass, mean stellar age, and stellar metallicity of these galaxies. We characterize for the first time the relations between stellar age and stellar mass and between stellar metallicity and stellar mass at z ∼ 0.7 for the galaxy population as a whole and for quiescent and star-forming galaxies separately. These relations of increasing age and metallicity with galaxy mass for the galaxy population as a whole have a similar shape as the z ∼ 0.1 analog derived for Sloan Digital Sky Survey galaxies but are shifted by –0.28 dex in age and by –0.13 dex in metallicity, at odds with simple passive evolution. Considering z = 0.7 quiescent galaxies alone, we find that no additional star formation and chemical enrichment are required for them to evolve into the present-day quiescent population. However, other observations require the quiescent population to grow from z = 0.7 to the present day. This growth could be supplied by the quenching of a fraction of z = 0.7 M {sub *} > 10{sup 11} M {sub ☉} star-forming galaxies with metallicities already comparable to those of quiescent galaxies, thus leading to the

  14. EXPECTED NUMBER OF MASSIVE GALAXY RELICS IN THE PRESENT DAY UNIVERSE

    SciTech Connect

    Quilis, Vicent; Trujillo, Ignacio

    2013-08-10

    The number of present day massive galaxies that have survived untouched since their formation at high-z is an important observational constraint to the hierarchical galaxy formation models. Using three different semianalytical models based on the Millenium simulation, we quantify the expected fraction and number densities of the massive galaxies that form at z > 2 and have evolved in stellar mass less than 10% and 30%. We find that only a small fraction of the massive galaxies that already formed at z {approx} 2 have remained almost unaltered since their formation (<2% with {Delta}M{sub *}/M{sub *} < 0.1 and <8% with {Delta}M{sub *}/M{sub *} < 0.3). These fractions correspond to the following number densities of massive relics in the present day universe: {approx}1.2 Multiplication-Sign 10{sup -6} Mpc{sup -3} for {Delta}M{sub *}/M{sub *} < 0.1 and {approx}5.7 Multiplication-Sign 10{sup -6} Mpc{sup -3} for {Delta}M{sub *}/M{sub *} < 0.3. The observed number of relic candidates found in the nearby universe is rather uncertain today (with uncertainties up to a factor of {approx}100), preventing us from establishing firm conclusions about the ability of current theoretical expectations to predict such an important number.

  15. A multi-wavelength survey of AGN in massive clusters: AGN distribution and host galaxy properties

    NASA Astrophysics Data System (ADS)

    Klesman, Alison J.; Sarajedini, Vicki L.

    2014-07-01

    We investigate the effect of environment on the presence and fuelling of active galactic nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi-wavelength surveys covering regions centred on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. X-ray-selected AGN candidates appear to be more centrally concentrated than normal galaxies in the inner 20 per cent of the virial radius, while becoming less centrally concentrated in the outer regions. Mid-IR-selected AGN are less centrally concentrated overall. Optical variables have a similar distribution to normal galaxies in the inner regions, then become somewhat less centrally concentrated farther from the cluster centre. The host galaxies of AGN reveal a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the `green valley' between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star formation in the hosts. Among normal galaxies, we find that galaxy colours become generally bluer with increasing cluster radius, as is expected. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts, which may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy

  16. MOIRCS DEEP SURVEY. III. ACTIVE GALACTIC NUCLEI IN MASSIVE GALAXIES AT z = 2-4

    SciTech Connect

    Yamada, T.; Kajisawa, M.; Akiyama, M.; Ichikawa, T.; Tokoku, C.; Yoshikawa, T.; Konishi, M.; Nishimura, T.; Omata, K.; Suzuki, R.; Tanaka, I.; Uchimoto, Y. K.

    2009-07-10

    We investigate the X-ray properties of the K-band-selected galaxies at redshift 2 < z < 4 by using our deep near-infrared images obtained in the Multi-Object Infrared Camera and Spectrograph Deep Survey project and the published Chandra X-ray source catalog. Sixty-one X-ray sources with the 2-10 keV luminosity L{sub X} = 10{sup 42}-10{sup 44} erg s{sup -1} are identified with the K-selected galaxies and we found that they are exclusively (90%) associated with the massive objects with a stellar mass larger than 10{sup 10.5} M{sub sun}. Our results are consistent with the idea that the M {sub BH}/M{sub str} ratio of the galaxies at z = 2-4 is similar to the present-day value. On the other hand, the active galactic nucleus (AGN) detection rate among the very massive galaxies with a stellar mass larger than 10{sup 11} M{sub sun} is high, 33% (26/78). They are active objects in the sense that the black hole mass accretion rate is {approx}1%-50% of the Eddington limit if they indeed have similar M {sub BH}/M {sub str} ratio with those observed in the local universe. The active duration in the AGN duty cycle of the high-redshift massive galaxies seems large.

  17. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z < 2.5-3 since they evolve only in luminosity. On the contrary, in the hierarchical scenario massive spheroids are built up through subsequent mergers reaching their final masses at z < 1.5 [3,5]. As a consequence, massive systems are very rare at z > 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z < 1.5, concurrent with the merging event(s) of their formation. These opposed predicted properties of early-types at z > 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  18. The GHOSTS survey - II. The diversity of halo colour and metallicity profiles of massive disc galaxies

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Bailin, Jeremy; de Jong, Roelof S.; Holwerda, Benne; Streich, David; Silverstein, Grace

    2016-04-01

    We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar outskirts out to projected distances of ˜50-70 kpc from their galactic centre along the minor axis. The 50 per cent completeness levels of the colour-magnitude diagrams are typically at 2 mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar haloes out to ˜50 kpc and two out to ˜70 kpc. We determined the halo colour distribution and colour profile for each galaxy using the median colours of stars in the RGB. Within each galaxy, we find variations in the median colours as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other have no significant colour or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo colour/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent in the assembling history of galaxies.

  19. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    PubMed

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. PMID:25977547

  20. A dwarf galaxy's transformation and a massive galaxy's edge: detailed modeling of the extended stream in NGC1097

    NASA Astrophysics Data System (ADS)

    Cristiano Amorisco, Nicola; Martinez-Delgado, David

    2015-08-01

    Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies

  1. Stellar kinematics of X-ray bright massive elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Moiseev, A.; Sil'chenko, O.; Zhuravleva, I.

    2014-07-01

    We discuss a simple and fast method for estimating masses of early-type galaxies from optical data and compare the results with X-ray derived masses. The optical method relies only on the most basic observables such as the surface brightness I(R) and the line-of-sight velocity dispersion σp(R) profiles and provides an anisotropy-independent estimate of the galaxy circular speed Vc. The mass-anisotropy degeneracy is effectively overcome by evaluating Vc at a characteristic radius Rsweet defined from local properties of observed profiles. The sweet radius Rsweet is expected to lie close to R2, where I(R) ∝ R-2, and not far from the effective radius Reff. We apply the method to a sample of five X-ray bright elliptical galaxies observed with the 6 m telescope BTA-6 in Russia. We then compare the optical Vc estimate with the X-ray derived value, and discuss possible constraints on the non-thermal pressure in the hot gas and configuration of stellar orbits. We find that the average ratio of the optical Vc estimate to the X-ray one is equal to ≈0.98 with 11 per cent scatter, i.e. there is no evidence for the large non-thermal pressure contribution in the gas at ˜Rsweet. From analysis of the Lick indices Hβ, Mgb, Fe5270 and Fe5335, we calculate the mass of the stellar component within the sweet radius. We conclude that a typical dark matter fraction inside Rsweet in the sample galaxies is ˜60 per cent for the Salpeter initial mass function (IMF) and ˜75 per cent for the Kroupa IMF.

  2. Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W < -21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.

  3. JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS

    SciTech Connect

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.

  4. An extremely young massive clump forming by gravitational collapse in a primordial galaxy

    NASA Astrophysics Data System (ADS)

    Zanella, A.; Daddi, E.; Le Floc'h, E.; Bournaud, F.; Gobat, R.; Valentino, F.; Strazzullo, V.; Cibinel, A.; Onodera, M.; Perret, V.; Renaud, F.; Vignali, C.

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ~ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

  5. An extremely young massive clump forming by gravitational collapse in a primordial galaxy.

    PubMed

    Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies. PMID:25951282

  6. Rapid growth of black holes in massive star-forming galaxies.

    PubMed

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-01

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase. PMID:15815623

  7. The Evolutionary History of Lyman Break Galaxies Between Redshift 4 and 6: Observing Successive Generations of Massive Galaxies in Formation

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Ellis, Richard S.; Bunker, Andrew; Bundy, Kevin; Targett, Tom; Benson, Andrew; Lacy, Mark

    2009-06-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z sime 4 and z sime 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ≈ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z gsim 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z sime 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 lsim z lsim 6. Given this rapid increase of UV luminous massive galaxies, we explore the possibility that a significant fraction of massive (1011 M sun) z sime 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 lsim z lsim 6 down to z sime 2, we find that z gsim 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs

  8. MASSIVE NEUTRINOS PROMOTE THE SIZE GROWTH OF EARLY-TYPE GALAXIES

    SciTech Connect

    Song, Hyunmi; Lee, Jounghun E-mail: jounghun@astro.snu.ac.kr

    2013-05-10

    The effect of massive neutrinos on the evolution of early-type galaxies in size and stellar mass is explored by tracing the merging history of galaxy progenitors with the help of robust semi-analytic prescriptions. We show that as the presence of massive neutrinos plays a role in enhancing the mean merger rate per halo as well as the merger-driven increment in halo mass, the high-z progenitors of a massive descendant galactic halo evolve more rapidly in mass-normalized size for a {Lambda}MDM ({Lambda} cold dark matter + massive neutrinos) model than for the {Lambda}CDM ({Lambda} cold dark matter) case. We provide a physical reason for why the halo mass growth rate and the merger rate are higher in a {Lambda}MDM cosmology and conclude that if the presence and the role of massive neutrinos are properly taken into account, then it may explain the anomalous compactness of the high-z massive ETGs compared with local giant ellipticals with similar stellar masses.

  9. Chaos and collective relaxation in galaxies and charged-particle beams

    SciTech Connect

    Bohn, Courtlandt; Kandrup, Henry E.; Kishek, Rami A.; O'Shea, Patrick G.; Reiser, Martin; Sideris, Ioannis V.; /Florida U. /Northern Illinois U.

    2003-01-01

    Both galaxies and charged particle beams can exhibit collective relaxation on surprisingly short time scales. This can be attributed to the effects of chaos, often triggered by resonances caused by time-dependences in the bulk potential, which act almost identically for attractive gravitational and repulsive electrostatic forces. These similarities suggest that many physical processes at work in galaxies, albeit not subject to direct controlled experiments, can be tested indirectly using facilities such as the University of Maryland Electron Ring (UMER) currently nearing completion.

  10. The Spiderweb Galaxy: A Forming Massive Cluster Galaxy at z ~ 2

    NASA Astrophysics Data System (ADS)

    Miley, George K.; Overzier, Roderik A.; Zirm, Andrew W.; Ford, Holland C.; Kurk, Jaron; Pentericci, Laura; Blakeslee, John P.; Franx, Marijn; Illingworth, Garth D.; Postman, Marc; Rosati, Piero; Röttgering, Huub J. A.; Venemans, Bram P.; Helder, Eveline

    2006-10-01

    We present a deep image of the radio galaxy MRC 1138-262 taken with the Hubble Space Telescope (HST) at a redshift of z=2.2. The galaxy is known to have properties of a cD galaxy progenitor and be surrounded by a 3 Mpc-sized structure, identified with a protocluster. The morphology shown on the new deep HST ACS image is reminiscent of a spider's web. More than 10 individual clumpy features are observed, apparently star-forming satellite galaxies in the process of merging with the progenitor of a dominant cluster galaxy 11 Gyr ago. There is an extended emission component, implying that star formation was occurring over a 50×40 kpc region at a rate of more than 100 Msolar yr-1. A striking feature of the newly named ``Spiderweb galaxy'' is the presence of several faint linear galaxies within the merging structure. The dense environments and fast galaxy motions at the centers of protoclusters may stimulate the formation of these structures, which dominate the faint resolved galaxy populations in the Hubble Ultra Deep Field. The new image provides a unique testbed for simulations of forming dominant cluster galaxies.

  11. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-04-20

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M{sub K} < -24 early-type galaxies, the distribution of radio powers at fixed absolute magnitude spans four orders of magnitude and the median radio power is proportional to K-band luminosity to the power 2.78 {+-} 0.16. The measured flux densities of M{sub K} < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  12. ASSEMBLY OF MASSIVE GALAXIES IN A HIGH-z PROTOCLUSTER

    SciTech Connect

    Uchimoto, Yuka K.; Yamada, Toru; Kubo, Mariko; Ichikawa, Takashi; Akiyama, Masayuki; Kajisawa, Masaru; Matsuda, Yuichi; Hayashino, Tomoki; Konishi, Masahiro; Nishimura, Tetsuo; Omata, Koji; Tanaka, Ichi; Suzuki, Ryuji; Tokoku, Chihiro; Yoshikawa, Tomohiro

    2012-05-10

    We present the results of wide-field deep JHK imaging of the SSA22 field using the MOIRCS instrument equipped with the Subaru telescope. The observed field is 112 arcmin{sup 2} in area, which covers the z = 3.1 protocluster characterized by the overdensities of Ly{alpha} emitters (LAEs) and Ly{alpha} blobs (LABs). The 5{sigma} limiting magnitude is K{sub AB} = 24.3. We extract the potential protocluster members from the K-selected sample by using the multi-band photometric-redshift selection as well as the simple color cut for distant red galaxies (DRGs; J - K{sub AB} > 1.4). The surface number density of DRGs in our observed fields shows clear excess compared with those in the blank fields, and the location of the densest area whose projected overdensity is twice the average coincides with the large-scale density peak of LAEs. We also found that K-band counterparts with z{sub phot} {approx_equal} 3.1 are detected for 75% (15/20) of the LABs within their Ly{alpha} halo, and the 40% (8/20) of LABs have multiple components, which gives a direct evidence of the hierarchical multiple merging in galaxy formation. The stellar mass of LABs correlates with their luminosity, isophotal area, and the Ly{alpha} velocity widths, implying that the physical scale and the dynamical motion of Ly{alpha} emission are closely related to their previous star formation activities. Highly dust-obscured galaxies such as hyper extremely red objects (J - K{sub AB} > 2.1) and plausible K-band counterparts of submillimeter sources are also populated in the high-density region.

  13. SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Ramkumar, Balasubramanian; Wuyts, Stijn; Zibetti, Stefano; Holden, Bradford

    2013-01-10

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg{sup 2} to study the structural evolution of massive early-type galaxies since z {approx} 2. Mass-selected samples, complete down to log(M/M {sub Sun }) {approx} 10.7 such that 'typical' (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the {approx}400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z {approx}< 2, the most massive early-type galaxies (log(M/M {sub Sun }) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M {sub Sun }) {approx} 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  14. Shape Evolution of Massive Early-type Galaxies: Confirmation of Increased Disk Prevalence at z > 1

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford

    2013-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg2 to study the structural evolution of massive early-type galaxies since z ~ 2. Mass-selected samples, complete down to log(M/M ⊙) ~ 10.7 such that "typical" (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z <~ 2, the most massive early-type galaxies (log(M/M ⊙) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M ⊙) ~ 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  15. The progenitors of the most massive galaxy clusters at 1 < z < 3

    NASA Astrophysics Data System (ADS)

    Hatch, Nina; Brodwin, Mark; Cooke, Elizabeth; Galametz, Audrey; Gonzalez, Anthony; Muldrew, Stuart; Noirot, Gael; Smith, Daniel; Stern, Daniel; Vernet, Joel; Wylezalek, Dominika

    2016-08-01

    This project will locate and characterize the progenitors of the most massive galaxy clusters in our Universe at z ~ 2. These rare, massive objects are cosmological probes that test the validity of Lambda-CDM, and open a window into the early formation of the oldest and most massive galaxies in the most extreme overdensities in the Universe. Searching across 10,000 square degrees of the SDSS BOSS survey we have located 27 spectroscopically confirmed groups of radio-loud quasars at 1.3 < z < 3.2. Radio-loud quasars are preferentially located in high-redshift clusters and protoclusters (Wylezalek et al. 2013; Hatch et al. 2014), but the association of several radio-loud quasars implies the presence of an agglomeration of several >10^13 solar mass dark matter haloes that will eventually combine to form some of the most massive clusters in the Universe (Orsi et al. 2016; see Fig. 1). In this proposal we request 119.1 hours to observe all 27 radio-loud quasar groups in order to identify the associated galaxy overdensities that makes up the collapsing clusters.

  16. Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Strazzullo, V.; Rosati, P.; Pannella, M.; Gobat, R.; Santos, J. S.; Nonino, M.; Demarco, R.; Lidman, C.; Tanaka, M.; Mullis, C. R.; Nuñez, C.; Rettura, A.; Jee, M. J.; Böhringer, H.; Bender, R.; Bouwens, R. J.; Dawson, K.; Fassbender, R.; Franx, M.; Perlmutter, S.; Postman, M.

    2010-12-01

    We present a multi-wavelength study of galaxy populations in the core of the massive, X-ray luminous cluster XMMU J2235 at z=1.39, based on high quality VLT and HST photometry at optical and near-infrared wavelengths. We derive luminosity functions in the z, H, and Ks bands, approximately corresponding to restframe U, R and z band. These show a faint-end slope consistent with being flat, and a characteristic magnitude M^* close to passive evolution predictions of M^* of local massive clusters, with a formation redshift z>2. The color-magnitude and color-mass diagrams show evidence of a tight red sequence (intrinsic scatter ⪉0.08) of massive galaxies already in place, with overall old stellar populations and generally early-type morphology. Beside the red colors, these massive (>6 × 1010 M⊙) galaxies typically show early-type spectral features, and rest-frame far-UV emission consistent with very low star formation rates (SFR < 0.2 M⊙ yr-1). Star forming spectroscopic members, with SFR of up to ~100 M⊙/yr, are all located at clustercentric distances ⪆250 kpc, with the central cluster region already appearing effectively quenched. Most part of the cluster galaxies more massive than 6 × 1010 M⊙ within the studied area do not appear to host significant levels of star formation. The high-mass end of the galaxy populations in the core of this cluster appears to be in a very advanced evolutionary stage, not only in terms of formation of the stellar populations, but also of the assembly of the stellar mass. The high-mass end of the galaxy stellar mass function is essentially already in place. The stellar mass fraction estimated within r500 (~1%, Kroupa IMF) is already similar to that of local massive clusters. On the other hand, surface brightness distribution modeling of the massive red sequence galaxies may suggest that their size is often smaller than expected based on the local stellar mass vs. size relation. An evolution of the stellar mass vs. size

  17. Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Schleicher, D. R. G.; Bykov, A. M.

    2015-05-01

    The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 1015 M⊙ at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 105-108 M⊙ at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on intermediate cluster scales the self-similar model is in good agreement with the observations, deviations from such self-similarity are apparent in the core regions, where numerical simulations do not reproduce the current observational results. The latter indicates that the interaction of different feedback processes may not be correctly accounted for in current simulations. Both in the most massive clusters of galaxies as well as during the formation of the first objects in the Universe, turbulent structures and shock waves appear to be common, suggesting them to be ubiquitous in the non-linear regime.

  18. The Hierarchical Build-Up of Massive Galaxies And the Intracluster Light Since z=1

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.; Kravtsov, Andrey V.; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI

    2007-03-19

    We use a set of simulation-based models for the dissipationless evolution of galaxies since z = 1 to constrain the fate of accreted satellites embedded in dark matter subhalos. These models assign stellar mass to dark matter halos at z = 1 by relating the observed galaxy stellar mass function (GSMF) to the halo+subhalo mass function monotonically. The evolution of the stellar mass content is then followed using halo merger trees extracted from N-body simulations. Our models are differentiated only in the fate assigned to satellite galaxies once subhalos, within which satellites are embedded, disrupt. These models are confronted with the observed evolution in the massive end of the GSMF, the z {approx} 0 brightest cluster galaxy (BCG)-cluster mass relation, and the combined BCG and intracluster light (ICL) luminosity distribution--all observables expected to evolve approximately dissipationlessly since z = 1. The combined observational constraints favor a model in which the vast majority ({approx}> 80%) of satellite stars from disrupted subhalos go into the ICL (operationally defined here as light below a surface brightness cut of {mu}{sub i} {approx} 23mag arcsec{sup -2}). Conversely, models that leave behind a significant population of satellite galaxies once the subhalo has disrupted are strongly disfavored, as are models that put a significant fraction of satellite stars into the BCG. Our results show that observations of the ICL provide useful and unique constraints on models of galaxy merging and the dissipationless evolution of galaxies in groups and clusters.

  19. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys. PMID:25162527

  20. Morphological Classification of High-redshift Massive Galaxies in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Zhong-yang, Ma; Xu, Kong

    2016-04-01

    Utilizing the multi-band photometric data of the COSMOS (Cosmic Evolution Survey)/UltraVISTA (Ultra-deep Visible and Infrared Survey Telescope for Astronomy) field and the high-resolution HST WFC3 (Hubble Space Telescope Wide Field Camera 3) near-infrared images in the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) field, we have selected 362 galaxies with the redshifts of 1≤ z ≤3 and the stellar masses of M* ≥ 1010.5M⊙, and made the classification study on the morphologies of these massive galaxies. The results from the UVJ ((U-V) vs (V-J)) two-color diagram classification, visual classification, non-model based classification (Gini coefficient G and moment index M20), and model based classification (Sérsic index n) are in good agreement with each other. Compared with the star-forming galaxies (SFGs), the quiescent galaxies (QGs) defined by the UVJ two-color diagram exhibit the compact elliptical structures, and generally have larger n and G, but smaller M20 and galaxy's effective radius re. The evolution of galaxy size with the redshift is obvious for various QG and SFG samples defined by the different classification systems (two-color diagram classification system, model and non-model based classification systems), and this evolutionary tendency is stronger for QGs in comparison with SFGs, independent to the selection of galaxy classification methods.

  1. Constraints on the merging channel of massive galaxies since z ˜ 1

    NASA Astrophysics Data System (ADS)

    Ferreras, I.; Trujillo, I.; Mármol-Queraltó, E.; Pérez-González, P. G.; Cava, A.; Barro, G.; Cenarro, J.; Hernán-Caballero, A.; Cardiel, N.; Rodríguez-Zaurín, J.; Cebrián, M.

    2014-10-01

    We probe the merging channel of massive galaxies over the z = 0.3-1.3 redshift window by studying close pairs in a sample of 238 galaxies with stellar mass ≳1011 M⊙, from the SHARDS (Survey for High-z Absorption Red and Dead Sources) survey. SHARDS provides medium-band photometry equivalent to low-resolution optical spectra (R ˜ 50), allowing us to obtain extremely accurate photometric redshifts (median |Δz|/(1 + z) ˜ 0.55 per cent) and to improve the constraints on the age distribution of the stellar populations. Our data set is volume limited, probing merger progenitors with mass ratios 1:100 (μ ≡ Msat/Mcen = 0.01) out to z = 1.3. A strong correlation is found between the age difference of host and companion galaxy and stellar mass ratio, from negligible age differences in major mergers to age differences ˜4 Gyr for 1:100 minor mergers. However, this correlation is simply a reflection of the mass-age trend in the general population. The dominant contributor to the growth of massive galaxies corresponds to mass ratios μ ≳ 0.3, followed by a decrease in the fractional mass growth rate linearly proportional to log μ, at least down to μ ˜ 0.01, suggesting a decreasing role of mergers involving low-mass companions, especially if dynamical friction time-scales are taken into account. A simple model results in an upper limit for the average mass growth rate of massive galaxies of (ΔM/M)/Δt ˜ 0.08 ± 0.02 Gyr-1, over the z ≲ 1 range, with an ˜70 per cent fractional contribution from (major) mergers with μ ≳ 0.3. The majority of the stellar mass contributed by mergers does not introduce significantly younger populations, in agreement with the small radial age gradients observed in present-day early-type galaxies.

  2. Which processes shape stellar population gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2016-08-01

    We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to better constrain still uncertain models for energetic processes in simulations.

  3. The internal structure and external feeding of the most massive protoclusters in the Galaxy

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam

    2015-08-01

    The most massive star clusters forming today go through a phase during which massive, luminous stars coexist with their birth molecular cloud. These clusters collect their mass from a surrounding region much larger than the final cluster size, and therefore their final mass is not set until their parent cloud is completely destroyed. The conditions at these early stages are crucial for determining the initial mass function and cluster structure. I will discuss a comparitive study of two of the most active cluster-forming regions in the Galaxy today, W51 and Sgr B2. In W51, two separate clusters of massive stars have formed within ~5 pc of each other, and both clusters are still accreting from their parent cloud. We observe the kinematics of the mostmassive stars in the central clusters and compare the luminosity and dynamically derived masses. In W51, the clusters are presently failing to disrupt their parent clouds, but supernovae will probably eventually remove the gas. In Sgr B2, the massive clusters are driving powerful bubbles, but the gas remains hot and molecular. Some of these bubbles may be driven by supernovae, making Sgr B2 the only region in our Galaxy where supernova feedback fails to halt star formation. The failure of different feedback mechanisms has important implications for the timescale of star formation, setting a lower limit that is in tension with the short single-burst models that fit more evolved young massive clusters.

  4. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    SciTech Connect

    Straatman, Caroline M. S.; Labbé, Ivo; Spitler, Lee R.; Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G.; Altieri, Bruno; Dickinson, Mark; Inami, Hanae; Van Dokkum, Pieter; Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan; and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  5. A z = 1.82 ANALOG OF LOCAL ULTRA-MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Onodera, M.; Daddi, E.; Gobat, R.; Arimoto, N.; Yamada, Y.; Renzini, A.; Mancini, C.; McCracken, H. J.; Capak, P.; Carollo, M.; Lilly, S.; Cimatti, A.; Giavalisco, M.; Ilbert, O.; Kong, X.; Motohara, K.; Ohta, K.; Sanders, D. B.; Scoville, N.

    2010-05-20

    We present observations of a very massive galaxy at z = 1.82 that show that its morphology, size, velocity dispersion, and stellar population properties are fully consistent with those expected for passively evolving progenitors of today's giant ellipticals. These findings are based on a deep optical rest-frame spectrum obtained with the Multi-Object InfraRed Camera and Spectrograph on the Subaru Telescope of a high-z passive galaxy candidate (pBzK) from the COSMOS field, for which we accurately measure its redshift of z = 1.8230 and obtain an upper limit on its velocity dispersion {sigma}{sub *} < 326 km s{sup -1}. By detailed stellar population modeling of both the galaxy broadband spectral energy distribution and the rest-frame optical spectrum, we derive a star formation-weighted age and formation redshift of t {sub sf} {approx_equal} 1-2 Gyr and z {sub form} {approx_equal} 2.5-4, and a stellar mass of M {sub *} {approx_equal} (3-4) x 10{sup 11} M {sub sun}. This is in agreement with a virial mass limit of M {sub vir} < 7 x 10{sup 11} M {sub sun}, derived from the measured {sigma}{sub *} value and stellar half-light radius, as well as with the dynamical mass limit based on the Jeans equations. In contrast to previously reported super-dense passive galaxies at z {approx} 2, the present galaxy at z = 1.82 appears to have both size and velocity dispersion similar to early-type galaxies in the local universe with similar stellar mass. This suggests that z {approx} 2 massive and passive galaxies may exhibit a wide range of properties, then possibly following quite different evolutionary histories from z {approx} 2 to z = 0.

  6. The Ages, Metallicities, and Element Abundance Ratios of Massive Quenched Galaxies at z = -1.6

    NASA Astrophysics Data System (ADS)

    Onodera, M.; Carollo, C. M.; Renzini, A.; Cappellari, M.; Mancini, C.; Arimoto, N.; Daddi, E.; Gobat, R.; Strazzullo, V.; Tacchella, S.; Yamada, Y.

    2015-08-01

    We investigate the stellar population properties of a sample of 24 massive quenched galaxies at 1.25< zspec< 2.09 identified in the COSMOS field with our Subaru/Multi-object Infrared Camera and Spectrograph near-IR spectroscopic observations. Tracing the stellar population properties as close to their major formation epoch as possible, we try to put constraints on the star formation history, post-quenching evolution, and possible progenitor star-forming populations for such massive quenched galaxies. By using a set of Lick absorption line indices on a rest-frame optical composite spectrum, the average age, metallicity [Z/H], and α-to-iron element abundance ratio [α/Fe] are derived as {log}({age}/{Gyr})={0.04}-0.08+0.10, [{{Z}}/{{H}}]={0.24}-0.14+0.20, and [α /{Fe}]={0.31}-0.12+0.12, respectively. If our sample of quenched galaxies at < z> =1.6 is evolved passively to z = 0, their stellar population properties will align in excellent agreement with local counterparts at similar stellar velocity dispersions, which qualifies them as progenitors of local massive early-type galaxies. Redshift evolution of stellar population ages in quenched galaxies combined with low redshift measurements from the literature suggests a formation redshift of {z}{{f}}∼ 2.3, around which the bulk of stars in these galaxies have been formed. The measured [α/Fe] value indicates a star formation timescale of ≲ 1 Gyr, which can be translated into a specific star formation rate of ≃ 1 {{Gyr}}-1 prior to quenching. Based on these findings, we discuss identifying possible progenitor star-forming galaxies at z≃ 2.3. We identify normal star-forming galaxies, i.e., those on the star-forming main sequence, followed by a rapid quenching event, as likely precursors of the quenched galaxies at < z> =1.6 presented here. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan. (Proposal IDs: S09A-043, S10A-058, and S11A-075.)

  7. Modeling the evolution of galaxies and massive black holes across cosmic time

    NASA Astrophysics Data System (ADS)

    Angles-Alcazar, Daniel

    I use cosmological hydrodynamic simulations to investigate different aspects of the evolution of galaxies and massive black holes across cosmic time. First, I present high resolution "zoom-in" simulations including various prescriptions for galactic outflows designed to explore the impact of star-formation driven winds on the morphological, dynamical, and structural properties of individual galaxies from early times down to z = 2. Simulations without winds produce massive, compact galaxies with low gas fractions, super-solar metallicities, high bulge fractions, and much of the star formation concentrated within the inner kpc. I show that strong winds are required to suppress early star formation, maintain high gas fractions, redistribute star-forming gas and metals over larger scales, and increase the velocity dispersion of simulated galaxies, more in agreement with the large, extended, turbulent disks typical of high-redshift star-forming galaxies. Next, I combine cosmological simulations with analytic models of black hole growth to investigate the physical mechanisms driving the observed connection between massive black holes and their host galaxies. I describe a plausible model consistent with available observations in which black hole growth is limited by galaxy-scale torques. In this torque-limited growth scenario, black holes and host galaxies evolve on average toward the observed scaling relations, regardless of the initial conditions, and with no need for mass averaging through mergers or additional self-regulation processes. Outflows from the accretion disk play a key role by providing significant mass loss, but there is no need for strong interaction with the inflowing gas in order to regulate black holes in a non-linear feedback loop. I discuss some of the main implications of this scenario in the context of current observations, including the distribution and evolution of Eddington ratios, the connection between major galaxy mergers, star formation, and

  8. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  9. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  10. Galactic evolution. II - Disk galaxies with massive halos

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thuan, T. X.

    1975-01-01

    Models of galactic evolution are computed in which matter shed by dying halo stars accumulates in a smaller, more rapidly rotating disk. The models are simpler and more successful than one-zone (pure disk) models in that (1) the observed absence of low-metal-abundance low-mass dwarfs is expected, not anomalous and (2) the relative birthrate function (or IMF) need not be a strongly variable function of time in agreement with recent interpretations of observed stellar populations and neutral hydrogen in our own and other galaxies. Even a simple 'Salpeter' IMF for both disk and halo will produce an acceptable model. The model with a halo 'Salpeter' IMF, roughly one-quarter of the mass in the secondary disk, and approximately half the metals produced in the halo seems most compatible with observations of the metal abundance in low-mass stars, the deuterium abundance, halo planetary nebulae, and light from Population II stars, as well as with arguments on the stability of the disk.

  11. Gravitational waves and stalled satellites from massive galaxy mergers at z ≤ 1

    SciTech Connect

    McWilliams, Sean T.; Pretorius, Frans; Ostriker, Jeremiah P.

    2014-07-10

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ≤ 1) implied by this model, and find that this population has a signal-to-noise ratio 2 × to 5 × larger than previous estimates for pulsar timing arrays, with a (2σ, 3σ) lower limit within this model of h{sub c}(f = 1 yr{sup –1}) = (1.1 × 10{sup –15}, 6.8 × 10{sup –16}). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ∼2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  12. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    SciTech Connect

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel E-mail: sari@phys.huji.ac.i

    2009-09-20

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in {approx}<10 dynamical times, or {approx}<0.5 Gyr. The cosmological streams replenish the draining disk and prolong the clumpy phase to several Gigayears in a steady state, with comparable masses in disk, bulge, and dark matter within the disk radius. The clumps form stars in dense subclumps following the overall accretion rate, {approx}100 M{sub sun} yr{sup -1}, and each clump converts into stars in {approx}0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z {approx} 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z {approx} 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  13. Understanding the SEDS of Massive Stars and Radiative Feedback from Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan A.; Oey, M. S.; Pellegrini, E. W.; Veilleux, S.; McDonald, M.; Martin, C. L.

    2013-01-01

    Massive stars strongly influence the properties of their interstellar and intergalactic environments through radiative feedback. The resulting HII regions are used as diagnostics for many galaxy properties, and the radiation from massive stars is thought to be a source for reionization in the early universe. Yet, there are still unanswered questions about the shape of the massive star spectral energy distribution and how far the radiation propagates in a galaxy. We use the emission-line spectra of a sample of single-star HII regions, in conjunction with photoionization simulations, to evaluate the predictions of widely used stellar atmosphere models. The model atmospheres generate simulated HII region spectra that agree well with the observations, except at the highest energy transitions, provided that the nebular density distributions are inhomogeneous. WM-basic atmospheres are better at reproducing the observed nebular spectrum, while TLUSTY atmospheres more closely match the observed rate of ionizing photons. Based on the results of our detailed CLOUDY simulations, we create a new spectral type to stellar effective temperature calibration. We also investigate the galactic parameters that control the propagation of ionizing radiation out of a galaxy by searching for extended, photoionized emission in a sample of nearby, dwarf starburst galaxies. Using narrowband emission-line images taken with the Maryland-Magellan Tunable Filter, we create ionization parameter maps of the starbursts. In NGC 5253, we detect an optically thin ionization cone extending from the central starburst, which is suggestive of the escape of ionizing radiation. The narrow morphology of the cone supports the scenario that an orientation bias contributes to the challenge of detecting Lyman continuum in starbursts and Lyman Break Galaxies.

  14. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  15. A two-parameter matching scheme for massive galaxies and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Ostriker, Jeremiah P.

    2015-10-01

    Halo abundance matching has been used to construct a one-parameter mapping between galaxies and dark matter haloes by assuming that halo mass and galaxy luminosity (or stellar mass) are monotonically related. While this approach has been reasonably successful, it is known that galaxies must be described by at least two parameters, as can be seen from the two-parameter Fundamental Plane on which massive early-type galaxies lie. In this paper, we derive a connection between initial dark matter density perturbations in the early Universe and present-day virialized dark matter haloes by assuming simple spherical collapse combined with conservation of mass and energy. We find that z = 0 halo concentration, or alternatively the inner slope of the halo density profile α, is monotonically and positively correlated with the collapse redshift of the halo. This is qualitatively similar to the findings of some previous works based on numerical simulations, with which we compare our results. We then describe how the halo mass and concentration (or inner slope α) can be used as two halo parameters in combination with two parameters of early-type galaxies to create an improved abundance matching scheme. In a forthcoming paper, we will show an application of this scheme to galaxies on the Fundamental Plane.

  16. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Fiacconi, Davide; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-09-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far, theoretical models and simulations, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts, have been unable to directly predict the SMBH merger timescale from ab-initio galaxy formation theory. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave (GW) searches. Here, we present the first multi-scale ΛCDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at z∼ 3, all the way to the final coalescence driven by GW emission. The two SMBHs, with masses ∼ {10}8 {M}ȯ , settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only ∼10 Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.

  17. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  18. Mass Assembly of galaxies from the MASSIV survey and the MIRAGE simulation sample.

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    The MIRAGE (Merging & isolated high-redshift AMR galaxies, Perret et al. 2014) sample has been built in order to understand the contribution of the merger processes to the mass assembly in the MASSIV (Mass Assembly Survey with SINFONI in VVDS, Contini et al. 2012) sample. It consists of a sample of idealized simulations based on the RAMSES code; the initial conditions were designed to reproduce the physical properties of the most gas-rich young galaxies. It is composed of simulations of mergers exploring the initial parameters of mass and orientation of the disks with a spatial resolution reaching 7 parsecs. We carry out a comparative study of the MASSIV kinematical data to a set of more than 4000 pseudo-observations at z=1.7 built from simulations of the MIRAGE sample to determine the ability to detect galaxy merger signatures under the observational conditions of the SINFONI instrument. The MIRAGE simulations show (i) an absence of star formation bursts in mergers of fragmented and turbulent disks, suggesting a saturation mechanism; (ii) that the gas rich clump merging mechanism is able to control the bulge mass growth, to erode the central profile of the dark matter halo and to drive massive gas outflows into the disk plane; (iii) irrespectively of the orbital configuration and of the mass ratio between the disks a new disk of gas is reconstructed quickly after the merger.

  19. Mass assembly of galaxies from the MASSIV survey and the MIRAGE simulation sample

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    The MIRAGE (Merging & isolated high-redshift AMR galaxies, Perret et al. 2014) sample has been built in order to understand the contribution of the merger processes to the mass assembly in the MASSIV (Mass Assembly Survey with SINFONI in VVDS, Contini et al. 2012) sample. It consists of a sample of idealized simulations based on the RAMSES code; the initial conditions were designed to reproduce the physical properties of the most gas-rich young galaxies. It is composed of simulations of mergers exploring the initial parameters of mass and orientation of the disks with a spatial resolution reaching 7 parsecs. We carry out a comparative study of the MASSIV kinematical data to a set of more than 4000 pseudo-observations at z=1.7 built from simulations of the MIRAGE sample to determine the ability to detect galaxy merger signatures under the observational conditions of the SINFONI instrument. The MIRAGE simulations show (i) an absence of star formation bursts in mergers of fragmented and turbulent disks, suggesting a saturation mechanism; (ii) that the gas rich clump merging mechanism is able to control the bulge mass growth, to erode the central profile of the dark matter halo and to drive massive gas outflows into the disk plane; (iii) irrespectively of the orbital configuration and of the mass ratio between the disks a new disk of gas is reconstructed quickly after the merger.

  20. Byurakan-IRAS galaxies as massive galaxies with nuclear and starburst activity

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Harutyunyan, Gohar S.

    2013-07-01

    Byurakan-IRAS Galaxies (BIG) (Mickaelian 1995) are the result of optical identifications of IRAS PSC sources at high-galactic latitudes using the First Byurakan Survey (FBS) low-dispersion spectra (Markarian et al. 1989). Among the 1577 targets, 1178 galaxies have been identified. Most are dusty spiral galaxies and there is a number of ULIRGs among these objects. Our spectroscopic observations, carried out with three telescopes (Byurakan Astrophysical Observatory 2.6m, Russian Special Astrophysical Observatory 6m and Observatoire de Haute Provence 1.93m; Mickaelian & Sargsyan 2010), for 172 galaxies, as well as the SDSS DR8 spectra for 83 galaxies make up the list of 255 spectroscopically studied BIG objects. The classification regarding activity type for narrow-line emission galaxies has been carried out using the diagnostic diagrams by Veilleux & Osterbrock (1987). All possible physical characteristics have been measured and/or calculated, including radial velocities and distances, angular and physical sizes, absolute magnitudes and luminosities (both optical and IR). IR luminosities and star-formation rates have been calculated from the IR fluxes (Duc et al. 1997).

  1. Tracing of the chemical evolution of the massive elliptical galaxy NGC 3377 using a merger scenario

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T.

    2015-05-01

    Mergers are thought to play a significant role in the formation of galaxies in clusters. The chemical evolution of the halo of the massive elliptical galaxy NGC 3377, a member of the Leo cluster, is considered in the framework of such a merger scenario. An open chemical evolution model is set up to calculate the metallicity distributions of pre-merging fragments. The model assumes that pristine gas was accreted onto the fragments during their whole evolution before their merger. The metallicity distribution resulting from the overlay of a variable number of fragments is then compared to observational data for NGC 3377. It was found that the observed metallicity distribution function of this elliptical galaxy is reproduced by merging at least five fragments from two different groups, namely low-and high-metallicity fragments.

  2. Enhanced Star Formation of Less Massive Galaxies in a Protocluster at z = 2.5

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Kodama, Tadayuki; Tanaka, Ichi; Shimakawa, Rhythm; Koyama, Yusei; Tadaki, Ken-ichi; Suzuki, Tomoko L.; Yamamoto, Moegi

    2016-08-01

    We investigate a correlation between star formation rate (SFR) and stellar mass for Hα emission-line galaxies (HAEs) in one of the richest protoclusters ever known at z ˜ 2.5, the USS 1558-003 protocluster. This study is based on a 9.7 hr narrowband imaging data with MOIRCS on the Subaru telescope. We are able to construct a sample in combination with additional H-band data taken with WFC3 on the Hubble Space Telescope, of 100 HAEs reaching the dust-corrected SFRs down to 3 M ⊙ yr‑1 and the stellar masses down to 108.0 M ⊙. We find that while the star-forming galaxies with ≳109.3 M ⊙ are located on the universal SFR-mass main sequence (MS) irrespective of the environment, less massive star-forming galaxies with ≲109.3 M ⊙ show a significant upward scatter from the MS in this protocluster. This suggests that some less massive galaxies are in a starburst phase, although we do not know yet if this is due to environmental effects.

  3. Properties of Molecular Gas in Massive Low Surface Brightness Galaxies, Including New 12CO Observations of Three Malin 1 ``Cousins''

    NASA Astrophysics Data System (ADS)

    O'Neil, K.; Schinnerer, E.

    2004-11-01

    To date, the only low surface brightness (LSB) galaxies that have been detected in CO are the massive LSB (MLSB) galaxies. In 2003, O'Neil, Schinnerer, & Hofner hypothesized that it is the prominent bulge component in MLSB galaxies, not present in less massive LSB galaxies, that gives rise to the detectable quantities of CO gas. To test this hypothesis, we have used the IRAM 30 m telescope to obtain three new, deep CO J(1-0) and J(2-1) observations of MLSB galaxies. Two of the three galaxies observed were detected in CO-one in the J(1-0) line and the other in both the J(1-0) and J(2-1) lines-bringing the total number of MLSB galaxies with CO detections to five, out of a total of nine MLSB galaxies observed at CO to date. The third object had no detection to 2 mK at CO J(1-0). Comparing all MLSB galaxy CO results with surveys of high surface brightness galaxies, we find that the MLSB galaxies' MH2 and MH2/MHI values fall within the ranges typically found for high surface brightness objects, albeit at the low end of the distribution, with the two MLSB galaxies detected at CO in this survey having the highest MH2/MHI values yet measured for any LSB system, by factors of 2-3.

  4. What are the Progenitors of Compace, Massive, Quiescent Galaxies at z (equals) 2.3? The Population of Massive Galaxies at z (greater than) 3 From NMBS AND CANDELS

    NASA Technical Reports Server (NTRS)

    Stefanon, Mauro; Marchesini, Danilo; Rudnick, Gregory H.; Brammer, Gabriel B.; Tease, Katherine Whitaker

    2013-01-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z 2, implying that the SFRs for all of these galaxies must be much lower by z 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening 1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z 3 that are compact (Re < 1.4 kpc) and have stellar mass M* > 1010.6M; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z 2 that are consistent with the observed number density. Better agreement with the observed number density of CMQGs at z 2 is obtained if merging is included in the analysis and better still if

  5. Is the Size Evolution of Massive Galaxies Accelerated in Cluster Environments?

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2013-10-01

    At z 1.6 the main progenitors of present-day massive clusters are undergoing rapid collapse, and have the highest rates of galaxy merging and assembly. Recent observational studies have hinted at accelerated galaxy evolution in dense environments at this epoch, including increased merger rates and rapid growth in galaxy size relative to the field. We propose WFC3 G102 spectroscopy and F125W {Broad J} imaging of a sample of four massive spectroscopically-confirmed clusters at z = 1.6. Our primary scientific goal is to leverage the CANDELS Wide Legacy dataset to carry out a head-to-head comparison of the sizes of cluster members relative to the field {as a function of stellar mass and Sersic index}, and quantify the role of environment in the observed rapid evolution in galaxy sizes since z = 2. These clusters are four of the highest significance overdensities in the 50 square degree SWIRE fields, and will evolve over time to have present-day masses similar to Coma. They were detected using IRAC [3.6]-[4.5] color, which identifies galaxy overdensities regardless of optically red or blue color. A heroic ground-based spectroscopic campaign has resulted in 44 spectroscopically-confirmed members. However this sample is heavily biased toward star-forming {SF} galaxies, and WFC3 spectroscopy is essential to definitively determine cluster membership for 200 members, without bias with respect to quiescent or SF type. The F125W {rest-frame V-band} imaging is necessary to measure the sizes and morphologies of cluster members. 17-passband broadband imaging spanning UV, optical, near-IR, Spitzer IR and Herschel far-IR is already in hand.

  6. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  7. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  8. Chemical Pollution and Evolution of Massive Starbursts: Cleaning up the Environment in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Kobulnicky, C.

    1996-12-01

    I present the results of a research program seeking to characterize the impact of massive star-clusters on the chemical and dynamical evolution of metal-poor, irregular and blue compact galaxies. The evolution of high mass stars is thought to contribute the bulk of heavy element enrichment in the interstellar medium, especially alpha -process elements like O, Si, etc. Yet, in actively star-forming galaxies, localized chemical inhomogeneities are seldom observed. Spatially-resolved optical and ultraviolet spectroscopy from the Hubble Space Telescope and ground-based observatories is used to search for chemical enrichment in the vicinity of young star clusters in nearby galaxies. VLA aperture synthesis maps are used to examine the neutral hydrogen content, dynamics, and local environment of the sample galaxies. Despite the spread in evolutionary state of the starbursts determined by the EW of Balmer emission lines and the radio continuum spectral index, few instances of localized enrichment are found. In light of these data, the ``instantaneous enrichment'' scenario for extragalactic HII regions appears less probable than one which operates on long timescales and global spatial scales. The results are consistent with the idea that starburst driven winds expel freshly synthesized metals in a hot 10(6) K phase into the halos of galaxies where they cool, condense into globules, and mix homogeneously with the rest of the galaxy on long (dynamical) timescales. The C/O and N/O ratios of the galaxies are used as new tools for measuring the recent star formation history. Implications for chemical evolution of galaxies both locally and cosmologically are developed.

  9. Spectroscopy of Galaxies in Massive Clusters: Galaxy Properties and Dynamical Cluster Mass Calibration

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher W.; Ashby, M. L. N.; Anderson, K.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Clocchiatti, A.; Crawford, T. M.; de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Foley, R.; Gladders, M. D.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Keisler, R.; Marrone, D. P.; Mohr, J. J.; Montroy, T.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B.; Shaw, L.; Song, J.; Stalder, B.; Stanford, S. A.; Stark, A. A.; Story, K.; Vanderlinde, K.; Williamson, R.

    2011-08-01

    We propose to acquire GMOS spectroscopy of 85 clusters of galaxies selected via the Sunyaev-Zel'dovich (SZ) effect from the South Pole Telescope (SPT) microwave background survey. This will bring our total to 100 SPT clusters with velocity dispersions. The SPT survey is delivering a uniformly-selected high-mass cluster sample that is essentially volume-complete beyond z>0.3. We will target a subset (0.3 < z < 0.8) of the SPT cluster catalog, extracted from 2500 deg^2. This data set will establish competitive, independent constraints on cosmological parameters, including the nature of the dark energy. Achieving this goal requires a precise understanding of the relationship between the cluster's SZ signature and the cluster mass, and this mass normalization is currently the largest systematic error in SPT's cosmological constraints. One promising method of determining galaxy cluster masses is to probe the dark matter potential with galaxy velocities. Using data from a large cluster sample will average over random projection effects, and will enable the calibration of the SZ-mass scaling relation, in conjunction with X-ray and lensing data on a smaller sample. The cluster galaxy spectroscopy we obtain will also equip the community to address a wide range of questions in galaxy evolution and cluster astrophysics.

  10. A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES AT z > 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES

    SciTech Connect

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Bezanson, Rachel; Kriek, Mariska; Brammer, Gabriel; Franx, Marijn; Labbe, Ivo

    2012-02-01

    We study the growth of the red sequence through the number density and structural evolution of a sample of young and old quiescent galaxies at 0 < z < 2. The galaxies are selected from the NEWFIRM Medium-Band Survey in the Cosmic Evolution Survey field. We find a large population of massive young recently quenched ({sup p}ost-starburst{sup )} galaxies at z > 1 that are almost non-existent at z < 1; their number density is 5 Multiplication-Sign 10{sup -5} Mpc{sup -3} at z = 2, whereas it is a factor of 10 less at z = 0.5. The observed number densities of young and old quiescent galaxies at z > 1 are consistent with a simple model in which all old quiescent galaxies were once identified as post-starburst galaxies. We find that the overall population of quiescent galaxies have smaller sizes and slightly more elongated shapes at higher redshift, in agreement with other recent studies. Interestingly, the most recently quenched galaxies at 1 < z < 2 are not larger, and possibly even smaller, than older galaxies at those redshifts. This result is inconsistent with the idea that the evolution of the average size of quiescent galaxies is largely driven by continuous transformations of larger, star-forming galaxies: in that case, the youngest quiescent galaxies would also be the largest. Instead, mergers or other mechanisms appear to be required to explain the size growth of quiescent galaxies from z = 2 to the present.

  11. Ophiuchus: An optical view of a very massive cluster of galaxies hidden behind the Milky Way ⋆

    NASA Astrophysics Data System (ADS)

    Durret, F.; Wakamatsu, K.; Nagayama, T.; Adami, C.; Biviano, A.

    2015-11-01

    Context. The Ophiuchus cluster, at a redshift z = 0.0296, is known from X-rays to be one of the most massive nearby clusters, but its optical properties have not been investigated in detail because of its very low Galactic latitude. Aims: We discuss the optical properties of the galaxies in the Ophiuchus cluster, in particular, with the aim of understanding its dynamical properties better. Methods: We have obtained deep optical imaging in several bands with various telescopes, and applied a sophisticated method to model and subtract the contributions of stars to measure galaxy magnitudes as accurately as possible. The colour-magnitude relations obtained show that there are hardly any blue galaxies in Ophiuchus (at least brighter than r' ≤ 19.5), and this is confirmed by the fact that we only detect two galaxies in Hα. We also obtained a number of spectra with ESO-FORS2, which we combined with previously available redshifts. Altogether, we have 152 galaxies with spectroscopic redshifts in the 0.02 ≤ z ≤ 0.04 range, and 89 galaxies with both a redshift within the cluster redshift range and a measured r' band magnitude (limited to the Megacam 1 × 1 deg2 field). Results: A complete dynamical analysis based on the galaxy redshifts available shows that the overall cluster is relaxed and has a mass of 1.1 × 1015 M⊙. The Sernal-Gerbal method detects a main structure and a much smaller substructure, which are not separated in projection. Conclusions: From its dynamical properties derived from optical data, the Ophiuchus cluster seems overall to be a relaxed structure, or at most a minor merger, though in X-rays the central region (radius ~ 150 kpc) may show evidence for merging effects. Based on observations obtained with MegaPrime/MegaCam (program 10AF02), a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the

  12. The bulge-disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M.; Buitrago, F.; Bowler, R. A. A.; Targett, T. A.; Bell, E. F.; McIntosh, D. H.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hartley, W.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.

    2014-10-01

    We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1 < z < 3. Our analysis is based on a bulge-disc decomposition of 396 galaxies with M* > 1011 M⊙ uncovered from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) Wide Field Camera 3 (WFC3)/IR imaging within the Cosmological Evolution Survey (COSMOS) and UKIRT Infrared Deep Sky Survey (UKIDSS) UDS survey fields. We find that, by modelling the H160 image of each galaxy with a combination of a de Vaucouleurs bulge (Sérsic index n = 4) and an exponential disc (n = 1), we can then lock all derived morphological parameters for the bulge and disc components, and successfully reproduce the shorter-wavelength J125, i814, v606 HST images simply by floating the magnitudes of the two components. This then yields sub-divided four-band HST photometry for the bulge and disc components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information, we are able to properly determine the masses and star formation rates for the bulge and disc components, and find that: (i) from z = 3 to 1 the galaxies move from disc dominated to increasingly bulge dominated, but very few galaxies are pure bulges/ellipticals by z = 1; (ii) while most passive galaxies are bulge dominated, and most star-forming galaxies disc dominated, 18 ± 5 per cent of passive galaxies are disc dominated, and 11 ± 3 per cent of star-forming galaxies are bulge dominated, a result which needs to be explained by any model purporting to connect star formation quenching with morphological transformations; (iii) there exists a small but significant population of pure passive discs, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a ≃ 0.7); (iv) flatter/larger discs re-emerge at the highest star formation rates, consistent with

  13. Towards a census of supercompact massive galaxies in the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Roy, N.; Radovich, M.; Cavuoti, S.; Brescia, M.; Longo, G.; Getman, F.; Capaccioli, M.; Grado, A.; Kuijken, K. H.; de Jong, J. T. A.; McFarland, J. P.; Puddu, E.

    2016-04-01

    The abundance of compact, massive, early-type galaxies (ETGs) provides important constraints to galaxy formation scenarios. Thanks to the area covered, depth, excellent spatial resolution and seeing, the ESO Public optical Kilo Degree Survey (KiDS), carried out with the VLT Survey Telescope, offers a unique opportunity to conduct a complete census of the most compact galaxies in the Universe. This paper presents a first census of such systems from the first 156 deg2 of KiDS. Our analysis relies on g-, r- and i-band effective radii (Re), derived by fitting galaxy images with point spread function (PSF)-convolved Sérsic models, high-quality photometric redshifts, zphot, estimated from machine learning techniques, and stellar masses, M⋆, calculated from KiDS aperture photometry. After massiveness ({M_{⋆}}≳ 8 × 10^{10} M_{⊙}) and compactness ({R_e}≲ 1.5 kpc in g, r and i bands) criteria are applied, a visual inspection of the candidates plus near-infrared photometry from VIKING-DR1 are used to refine our sample. The final catalogue, to be spectroscopically confirmed, consists of 92 systems in the redshift range z ˜ 0.2-0.7. This sample, which we expect to increase by a factor of 10 over the total survey area, represents the first attempt to select massive supercompact ETGs (MSCGs) in KiDS. We investigate the impact of redshift systematics in the selection, finding that this seems to be a major source of contamination in our sample. A preliminary analysis shows that MSCGs exhibit negative internal colour gradients, consistent with a passive evolution of these systems. We find that the number density of MSCGs is only mildly consistent with predictions from simulations at z > 0.2, while no such system is found at z < 0.2.

  14. Massive galaxies at 1-6 from the Spitzer-SERVS plus VISTA-VIDEO surveys

    NASA Astrophysics Data System (ADS)

    Sajina, Anna; Capozzi, Diego; Lacy, Mark; Maraston, Claudia; Pforr, Janine; Messias, Hugo; Farrah, Duncan; Gonzales-Solares, Eduardo; Jarvis, Matt; Marchesini, Danilo; Marchetti, Lucia; Mauduit, Jean-Claude; Vaccari, Mattia

    2014-06-01

    We exploit the uniqueness of the Spitzer Representative Volume Survey (SERVS), which provides Spitzer IRAC 3.6 and 4.5um imaging down to A 23 for a total area of 18 sq.deg., to probe massive galaxies out to 6 within a representative cosmic volume. We focus on the 1.5 sq.deg. area inside the XMM-LSS field, where we combine SERVS with VISTA-VIDEO ZYJHK_S data (down to A 24 at H and K_S). We select extremely red galaxies as either those with H-m3.6>1.6 (HIEROs) and/or K_S-m4.5>1.6 (KIEROs), and calculate their photometric redshifts and stellar population properties using different stellar population models and fitting codes. We find that (H/K)IEROs have a redshift distribution that covers 1-6; are massive (median log(Mstar/Msun)=10.8); and dusty (median E(B-V)=0.4). They have significant star-formation rates (typically 10-100Msun/yr) based on both our stellar population fitting and the fact that ~50% have MIPS24\\um and/or SPIRE250um detections. A comparison with recent stellar mass function estimates, suggests that (H/K)IERO samples contain a large fraction of the Mstar>10^11Msun galaxies at 2-5. Our study also reveals five z>5 candidates, all with Mstar>10^11Msun. Our results suggest that, over the full area of overlap between SERVS and VIDEO, we will find >10,000 (H/K)IEROs, including a few tens of z>5 massive galaxies, allowing an exceptional probe into the build-up of the stellar mass in the universe.

  15. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    NASA Astrophysics Data System (ADS)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  16. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers. PMID:22895340

  17. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Egami, E.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-van, D.; Mantz, A.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Miller, E. D.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Rawle, T. D.; Reichardt, C. L.; Rest, A.; Rex, M.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Simcoe, R.; Song, J.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; Šuhada, R.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2012-08-01

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous `cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these `cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s-1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  18. Luminosity function of [O II] emission-line galaxies in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Di Matteo, Tiziana; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu; Khandai, Nishikanta

    2015-11-01

    We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s-1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s-1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from -3 to -2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)-1 at z ≤ 2 while the faint end evolves as ˜3(z + 1)-1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1.

  19. Massive spheroids in formation: A spectroscopic study of (sub)mm galaxies

    NASA Astrophysics Data System (ADS)

    Lutz, Dieter; Baker, Andrew; Dannerbauer, Helmut; Genzel, Reinhard; Klein, Randolf; Lehnert, Matthew; Sternberg, Amiel; Sturm, Eckhard; Tacconi, Linda

    2004-09-01

    During the last few years, submm and mm surveys and follow-up thereof have revolutionized our view of the high redshift universe by showing that a substantial fraction of star formation and AGN activity at high redshift occurs in luminous dusty galaxies. These objects likely represent a key step in the formation of massive galaxies and pose a crucial challenge for our understanding of galaxy formation and of the co-evolution of spheroids and central black holes. Given their dusty nature, extinction-insensitive tools of rest frame mid-infrared spectroscopy are uniquely suited to provide a deeper understanding of starburst and AGN activity and of the physical conditions in these galaxies. We have pioneered these techniques using data from the Infrared Space Observatory and applied them to local ultraluminous infrared galaxies. Deep Spitzer-IRS spectroscopy now makes it possible for the first time to detect PAH emission features, AGN continua, and signatures of absorption in faint but important high redshift targets. We propose to obtain high quality rest-frame ~5.5-9.5micron low-resolution IRS spectra of a moderate size sample spanning the full range of properties of the submm and mm population in an unbiased way, by selection from blank field and cluster lens surveys only. Our targets include the brightest high z submm and mm sources with interferometric identification and range from optically well-detected galaxies to very faint sources with K_Vega>22.5. These data will allow us to (i) determine or confirm redshifts, (ii) determine the relative importance of star formation and AGN and search for trends of the starburst/AGN energy production ratio within the population, (iii) search for indicators giving further clues to the prevailing physical conditions, like signatures of extreme obscuration. Quality of spectra and an unbiased sample are decisive in using the power of mid-infrared spectroscopy to answer these questions on the pivotal (sub)mm galaxy population.

  20. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE PAGESBeta

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excessmore » in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  1. CLUMPY GALAXIES IN GOODS AND GEMS: MASSIVE ANALOGS OF LOCAL DWARF IRREGULARS

    SciTech Connect

    Elmegreen, Debra Meloy; Marcus, Max T.; Yau, Andrew; Elmegreen, Bruce G.; Shahinyan, Karlen; Petersen, Michael E-mail: mamarcus@vassar.edu E-mail: bge@watson.ibm.com E-mail: mpetersen@students.colgate.edu

    2009-08-10

    Clumpy galaxies in the Galaxy Evolution from Morphology and SEDs and Great Observatories Origins Deep Survey fields are examined for clues to their evolution into modern spirals. The magnitudes of the clumps and the surface brightnesses of the interclump regions are measured and fitted to models of stellar age and mass. There is an evolutionary trend from clump clusters with no evident interclump emission to clump clusters with faint red disks, to spiral galaxies of the flocculent or grand design types. Along this sequence, the interclump surface density increases and the mass surface density contrast between the clumps and the interclump regions decreases, suggesting a gradual dispersal of clumps to form disks. Also along this sequence, the bulge-to-clump mass ratios and age ratios increase, suggesting a gradual formation of bulges. All of these morphological types occur in the same redshift range, indicating that the clump cluster morphology is not the result of bandshifting. This redshift range also includes clear examples of interacting galaxies with tidal tails and other characteristic features, indicating that clump clusters, which do not have these features, are not generally interacting. Comparisons to local galaxies with the same rest wavelength and spatial resolution show that clump clusters are unlike local flocculent and spiral galaxies primarily because of the high clump/interclump contrasts in the clump clusters. They bear a striking resemblance to local dwarf irregulars, however. This resemblance is consistent with a model in which the clumpy morphology comes from gravitational instabilities in gas with a high turbulent speed compared to the rotation speed and a high mass fraction compared to the stars. The morphology does not depend on galaxy mass as much as it depends on evolutionary stage: clump clusters are 100 times more massive than local dwarfs. The apparent lack of star formation in damped Lyman alpha absorbers may result from fast turbulence.

  2. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  3. The MassiveBlack-II simulation: the evolution of haloes and galaxies to z ˜ 0

    NASA Astrophysics Data System (ADS)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao-Sheng

    2015-06-01

    We investigate the properties of haloes, galaxies and black holes to z = 0 in the high-resolution hydrodynamical simulation MassiveBlack-II (MBII) which evolves a Λ cold dark matter cosmology in a comoving volume Vbox = (100 Mpc h-1)3. MBII is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the MBII data set and publicly release our galaxy catalogues. We find that baryons affect strongly the halo mass function (MF), with 20-33 per cent change in the halo abundance below the knee of the MF (Mhalo < 1013.2 M⊙ h-1 at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations. We study the halo occupation distribution and clustering of galaxies, in particular the evolution and scale dependence of stochasticity and bias finding reasonable agreement with observational data. The shape of the cosmic spectral energy distribution of galaxies in MBII is consistent with observations, but lower in amplitude. The Galaxy stellar mass function (GSMF) function is broadly consistent with observations at z ≥ 2. At z < 2, the population of passive low-mass (M* < 109 M⊙) galaxies in MBII makes the GSMF too steep compared to observations whereas at the high-mass end (M* > 1011 M⊙) galaxies hosting bright AGNs make significant contributions to the GSMF. The quasar bolometric luminosity function is also largely consistent with observations. We note however that more efficient AGN feedback is necessary for the largest, rarest objects/clusters at low redshifts.

  4. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P.

    2015-06-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of M_stel= 8.8 × 10^{10}-6.0 × 10^{11} M_{⊙}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 haloes with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter haloes and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed MBH-σ relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of 2 compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ˜10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with σ = 200 km s- 1, the X-ray luminosity is reduced from 1042 erg s- 1 to 1040 erg s- 1. It also efficiently suppresses late-time star formation, reducing the specific star formation rate from 10-10.5 yr- 1 to 10-14 yr- 1 on average and resulting in quiescent galaxies since z = 2, whereas the thermal feedback model shows higher late-time in situ star formation rates than observed.

  5. Probing dust-obscured star formation in the most massive gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Greiner, Jochen; Michałowski, Michał J.; Klose, Sylvio; Hunt, Leslie K.; Gentile, Gianfranco; Kamphuis, Peter; Herrero-Illana, Rubén; Wieringa, Mark; Krühler, Thomas; Schady, Patricia; Elliott, Jonathan; Graham, John F.; Ibar, Eduardo; Knust, Fabian; Nicuesa Guelbenzu, Ana; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra

    2016-08-01

    Context. As a result of their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow the pinpointing of star formation in galaxies independent of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate star formation history over cosmic time. Aims: About half of the optical afterglows of long-duration GRBs are missed owing to dust extinction and are primarily located in the most massive GRB hosts. It is important to investigate the amount of obscured star formation in these GRB host galaxies to understand this bias. Methods: Radio emission of galaxies correlates with star formation, but does not suffer extinction as do the optical star formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-based and optical-based star formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Results: Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any radio emission related to star formation in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We detect radio emission from the position of GRB 020819B, but argue that it is in large part, if not completely, due to afterglow contamination. Conclusions: Half of our sample has radio-derived SFR limits, which are only a factor 2-3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust. Based on observations collected with ATCA under ID C2718, and at VLA under ID 13B-017.

  6. Properties of galaxies around AGNs with the most massive supermassive black holes revealed by clustering analysis

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2016-04-01

    We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0, which was performed to investigate the properties of galaxies associated with the AGNs and reveal the nature of the fueling mechanism of supermassive black holes (SMBHs). We used 8059 AGNs/quasi-stellar objects (QSOs) for which virial masses of individual SMBHs were measured, and divided them into four mass groups.Cross-correlation analysis was performed to reconfirm our previous result that cross-correlation length increases with SMBH mass MBH; we obtained consistent results. A linear bias of AGN for each mass group was measured as 1.47 for MBH = 107.5-108.2 M⊙ and 3.08 for MBH = 109-1010 M⊙. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color Dopt-IR was estimated from a spectral energy distribution (SED) constructed from a catalog derived by merging the Sloan Digital Sky Survey (SDSS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) catalogs. The distributions of color and luminosity were derived by a subtraction method, which does not require redshift information of galaxies. The main results of this work are as follows. (1) A linear bias increases by a factor of two from the lower-mass group to the highest-mass group. (2) The environment around AGNs with the most massive SMBHs (MBH > 109 M⊙) is dominated by red sequence galaxies. (3) Marginal indication of decline in luminosity function at dimmer side of MIR > -19.5 is found for galaxies around AGNs with MBH = 108.2-109 M⊙ and nearest redshift group (z = 0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where a large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be one of the plausible mechanisms to fuel the SMBHs above ˜ 109 M⊙.

  7. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  8. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  9. A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OF BzK-SELECTED MASSIVE STAR-FORMING GALAXIES

    SciTech Connect

    Onodera, Masato; Daddi, Emanuele; Renzini, Alvio; Kong Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-05-20

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, H{alpha} emission was detected in 14 objects, and for 11 of them the [N II] {lambda}6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas H{alpha} and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from H{alpha} with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to {approx}2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation ({approx_equal}100 Myr) and large

  10. The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45

    SciTech Connect

    Stanford, S A; Romer, A K; Sabirli, K; Davidson, M; Hilton, M; Viana, P P; Collins, C A; Kay, S T; Liddle, A R; Mann, R G; Miller, C J; Nichol, R C; West, M J; Conselice, C J; Spinrad, H; Stern, D; Bundy, K

    2006-05-24

    We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at z = 1.45, which was found in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy shows that 6 galaxies within a {approx}60 arcsec diameter region lie at z = 1.45 {+-} 0.01. Model fits to the X-ray spectra of the extended emission yield kT = 7.4{sub -1.8}{sup +2.7} keV (90% confidence); if there is an undetected central X-ray point source then kT = 6.5{sub -1.8}{sup +2.6} keV. The bolometric X-ray luminosity is L{sub x} = 4.4{sub -0.6}{sup +0.8} x 10{sup 44} ergs s{sup -1} over a 2 Mpc radial region. The measured T{sub x}, which is the highest for any known cluster at z > 1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS J2215.9-1738 is the highest currently known for a spectroscopically-confirmed cluster of galaxies.

  11. Formation of Massive Population III Galaxies through Photoionization Feedback: A Possible Explanation for CR7

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2016-04-01

    We explore the formation of massive high-redshift Population III (Pop III) galaxies through photoionization feedback. We consider dark matter halos formed from progenitors that have undergone no star formation as a result of early reionization and photoevaporation caused by a nearby galaxy. Once such a halo reaches ≈109~M⊙, corresponding to the Jeans mass of the photoheated intergalactic medium (IGM) at z ≈ 7, pristine gas is able to collapse into the halo, potentially producing a massive Pop III starburst. We suggest that this scenario may explain the recent observation of strong He II 1640 Å line emission in CR7, which is consistent with ˜107~M⊙ of young Pop III stars. Such a large mass of Pop III stars is unlikely without the photoionization feedback scenario, because star formation is expected to inject metals into halos above the atomic cooling threshold (˜108~M⊙ at z ≈ 7). We use merger trees to analytically estimate the abundance of observable Pop III galaxies formed through this channel, and find a number density of ≈10-7~Mpc-3 at z = 6.6 (the redshift of CR7). This is approximately a factor of ten lower than the density of Lyα emitters as bright as CR7.

  12. Formation of massive Population III galaxies through photoionization feedback: a possible explanation for CR 7

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2016-07-01

    We explore the formation of massive high-redshift Population III (Pop III) galaxies through photoionization feedback. We consider dark matter haloes formed from progenitors that have undergone no star formation as a result of early reionization and photoevaporation caused by a nearby galaxy. Once such a halo reaches ≈109 M⊙, corresponding to the Jeans mass of the photoheated intergalactic medium at z ≈ 7, pristine gas is able to collapse into the halo, potentially producing a massive Pop III starburst. We suggest that this scenario may explain the recent observation of strong He II 1640 Å line emission in CR 7, which is consistent with ˜107 M⊙ of young Pop III stars. Such a large mass of Pop III stars is unlikely without the photoionization feedback scenario, because star formation is expected to inject metals into haloes above the atomic cooling threshold (˜108 M⊙ at z ≈ 7). We use merger trees to analytically estimate the abundance of observable Pop III galaxies formed through this channel, and find a number density of ≈10-7 Mpc-3 at z = 6.6 (the redshift of CR 7). This is approximately a factor of 10 lower than the density of Ly α emitters as bright as CR 7.

  13. Gas Content and Star Formation Efficiency of Massive Main Sequence Galaxies at z~3-4

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Groves, Brent; Karim, Alexander; Sargent, Mark T.; Oesch, Pascal; Le Fevre, Olivier; Tasca, Lidia; Magnelli, Benjamin; Cassata, Paolo; Smolcic, Vernesa

    2016-01-01

    Recent observations have shown that the neutral gas content and star formation efficiency of massive (with log(stellar masses) > 10), normal star forming galaxies, i.e. they reside on the main sequence of star forming galaxies, are steadily decreasing from the peak of star formation activity (at redshifts of z~2) till today. This decrease is coincident with the observed decline in the cosmic star formation rate density over this time range. However, only few observations have probed the evolution of the gas content and star formation efficiency beyond this peak epoch when the cosmic star formation rate density has been increasing, i.e. at redshifts of z~3-4.We will present new ALMA rest-frame 250um continuum detections of 45 massive, normal star forming galaxies in this critical redshift interval selected in the COSMOS deep field. Using the sub-mm continnum as proxy for the cold neutral gas content, we find gas mass fractions and depletions similar to those reported during the peak epoch of star formation. We will discuss our findings in the context of results from lower redshift observations and model expectations.

  14. OT1_eegami_4: SPIRE Snapshot Survey of Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Egami, E.

    2010-07-01

    For deep imaging longward of 100 um, confusion noise sets the fundamental sensitivity limits achievable with Herschel, and these limits cannot be improved by integrating longer. To penetrate through this confusion limit and detect faint high-redshift galaxies, gravitational lensing by massive galaxy clusters offers a very powerful and yet cheap solution. For this reason, we are currently conducting a PACS/SPIRE imaging survey of ~40 massive lensing clusters as one of the Herschel Key Programs, "The Herschel Lensing Survey" (PI: Egami, 292.3 hrs). Although this program is producing many exciting results as reported in our 5 Herschel special-issue papers, one thing is becoming clear: it is extremely difficult to find lensed galaxies that are bright enough (> 200 mJy in SPIRE bands) to perform spectroscopy with PACS/SPIRE. This disappointment, however, was quickly overcome by the serendipitous discovery of an exceptionally bright (~500 mJy@350 um) z=2.3 galaxy lensed by a massive cluster at z=0.325. This discovery suggests that if we survey a large enough cluster sample, we will find similarly bright lensed sources that make all kinds of exciting follow-up observations possible. Here, we propose to conduct such a survey by taking advantage of the Millennium Cluster Sample constructed from the ROSAT All-Sky Survey with many years of extensive follow-ups. More specifically, we will conduct a SPIRE snapshot survey of 279 X-ray-selected clusters. SPIRE's great sensitivity and observing efficiency means that we can complete this program in only 27 hours while achieving a nearly confusion-limited sensitivity of 10 mJy (1 sigma). Such a depth will allow all kinds of secondary science projects as well. Although SPIRE wide-area surveys like H-ATLAS will also discover many bright lensed galaxies, these sources are mostly lensed by galaxies and not clusters, which makes our approach an economic alternative to investigate a different type of lensed systems.

  15. Galaxy shapes and Intrinsic Alignments in the MassiveBlack-II SImulation

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; DiMatteo, Tiziana; Feng, Yu; Khandai, Nishikanta

    2014-06-01

    The intrinsic alignment of galaxy shapes with the large-scale density field is a contaminant to weak lensing measurements, as well as being an interesting signature of galaxy formation and evolution (albeit one that is difficult to predict theoretically). Here we investigate the shapes and relative orientations of the stars and dark matter of halos and subhalos (central and satellite) extracted from the MassiveBlack-II simulation, a state-of-the-art high resolution hydrodynamical cosmological simulation which includes stellar and AGN feedback in a volume of (100h-1Mpc)3. We consider redshift evolution from z = 1 to 0.06 and mass evolution within the range of subhalo masses, 1010 - 6.0 × 1014.0h-1M⊙. The shapes of the dark matter distributions are generally more round than the shapes defined by stellar matter. We find that the shapes of stellar and dark matter are more round for less massive subhalos and at lower redshifts. By directly measuring the relative orientation of the stellar matter and dark matter of subgroups, we find that, on average, the misalignment between the two components is larger for less massive subhalos. The mean misalignment angle varies from ˜ 30°-10° for M ˜ 1010 - 1014 h-1M⊙ and shows a weak dependence on redshift. We also compare the misalignment angles in central and satellite subhalos at fixed subhalo mass, and find that centrals are more misaligned than satellites.

  16. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    DOE PAGESBeta

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; et al

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy clusters with median redshift z≃0.42 selected from the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian≃0.9 (low-z background) and zmedian≃1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit NFW models simultaneously to all observedmore » magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We also use our best-fit η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. Our work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.« less

  17. Detection of Enhancement in Number Densities of Background Galaxies due to Magnification by Massive Galaxy Clusters

    SciTech Connect

    Chiu, I.

    2015-10-06

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy clusters with median redshift z≃0.42 selected from the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian≃0.9 (low-z background) and zmedian≃1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit NFW models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83±0.24(stat)±0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We also use our best-fit η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. Our work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.

  18. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; Desai, S.; Gangkofner, C.; Gonzalez, A. H.; Gupta, N.; Hennig, C.; Hoekstra, H.; von der Linden, A.; Liu, J.; McDonald, M.; Reichardt, C. L.; Saro, A.; Schrabback, T.; Strazzullo, V.; Stubbs, C. W.; Zenteno, A.

    2016-04-01

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z ≃ 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian ≃ 0.9 (low-z background) and zmedian ≃ 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.

  19. PHOTOMETRIC PROPERTIES AND LUMINOSITY FUNCTION OF NEARBY MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect

    He, Y. Q.; Xia, X. Y.; Hao, C. N.; Jing, Y. P.; Mao, S.; Li, Cheng

    2013-08-10

    We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (M{sub r} < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (M{sub r} < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec{sup -2} and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r{sub 50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M{sub *} {approx} 5 Multiplication-Sign 10{sup 11} M{sub Sun} and M{sub *} {approx} 10{sup 12} M{sub Sun} are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.

  20. Jellyfish: the origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    McPartland, Conor; Ebeling, Harald; Roediger, Elke; Blumenthal, Kelly

    2016-01-01

    We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3-0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen `jellyfish' galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is ≲500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional `jellyfish" galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift.

  1. Photometric Properties and Luminosity Function of Nearby Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    He, Y. Q.; Xia, X. Y.; Hao, C. N.; Jing, Y. P.; Mao, S.; Li, Cheng

    2013-08-01

    We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (Mr < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (Mr < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec-2 and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r 50) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M * ~ 5 × 1011 M ⊙ and M * ~ 1012 M ⊙ are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.

  2. Torque-limited Growth of Massive Black Holes in Galaxies across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Özel, Feryal; Davé, Romeel; Katz, Neal; Kollmeier, Juna A.; Oppenheimer, Benjamin D.

    2015-02-01

    We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier results to show that torque-limited growth yields black holes and host galaxies evolving on average along the M BH-M bulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios gsim 1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a nonlinear feedback loop. Torque-limited growth yields a close-to-linear < \\dot{M}_BH > \\propto star formation rate (SFR) relation for the black hole accretion rate averaged over galaxy evolution timescales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved timescales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as λMSvprop(1 + z)1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.

  3. THE FUNDAMENTAL PLANE OF MASSIVE QUIESCENT GALAXIES OUT TO z ∼ 2

    SciTech Connect

    Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska; Bezanson, Rachel; Van Dokkum, Pieter G.

    2014-10-01

    The Fundamental Plane (FP) of early-type galaxies, relating the effective radius, velocity dispersion, and surface brightness, has long been recognized as a unique tool for analyzing galaxy structure and evolution. With the discovery of distant quiescent galaxies and the introduction of high sensitivity near-infrared spectrographs, it is now possible to explore the FP out to z ∼ 2. In this Letter we study the evolution of the FP out to z ∼ 2 using kinematic measurements of massive quiescent galaxies (M {sub *} > 10{sup 11} M {sub ☉}). We find preliminary evidence for the existence of an FP out to z ∼ 2. The scatter of the FP, however, increases from z ∼ 0 to z ∼ 2, even when taking into account the larger measurement uncertainties at higher redshifts. We find a strong evolution of the zero point from z ∼ 2 to z ∼ 0: Δlog{sub 10} M/L{sub g} ∝(– 0.49 ± 0.03)z. In order to assess whether our spectroscopic sample is representative of the early-type galaxy population at all redshifts, we compare their rest-frame g – z colors with those from a larger mass complete sample of quiescent galaxies. At z > 1 we find that the spectroscopic sample is bluer. We use the color offsets to estimate a mass-to-light ratio (M/L) correction. The implied FP zero point evolution after correction is significantly smaller: Δlog{sub 10} M/L{sub g} ∝(– 0.39 ± 0.02)z. This is consistent with an apparent formation redshift of z{sub form}=6.62{sub −1.44}{sup +3.19} for the underlying population, ignoring the effects of progenitor bias. A more complete spectroscopic sample is required at z ∼ 2 to properly measure the M/L evolution from the FP evolution.

  4. [C II] LINE EMISSION IN MASSIVE STAR-FORMING GALAXIES AT z = 4.7

    SciTech Connect

    Wagg, J.; Aravena, M.; Martin, S.; Wiklind, T.; Peck, A.; Barkats, D.; Cortes, J. R.; Hills, R.; Hodge, J.; Impellizzeri, C. M V.; Rawlings, M. G.; Carilli, C. L.; Espada, D.; Iono, D.; Riechers, D.; Walter, F.; Wootten, A.; Leroy, A.; Maiolino, R.; McMahon, R. G.; and others

    2012-06-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] 157.7 {mu}m fine structure line and thermal dust continuum emission from a pair of gas-rich galaxies at z = 4.7, BR1202-0725. This system consists of a luminous quasar host galaxy and a bright submillimeter galaxy (SMG), while a fainter star-forming galaxy is also spatially coincident within a 4'' (25 kpc) region. All three galaxies are detected in the submillimeter continuum, indicating FIR luminosities in excess of 10{sup 13} L{sub Sun} for the two most luminous objects. The SMG and the quasar host galaxy are both detected in [C II] line emission with luminosities L{sub [CII]} = (10.0 {+-} 1.5) Multiplication-Sign 10{sup 9} L{sub Sun} and L{sub [CII]} = (6.5 {+-} 1.0) Multiplication-Sign 10{sup 9} L{sub Sun }, respectively. We estimate a luminosity ratio L{sub [CII]}/L{sub FIR} = (8.3 {+-} 1.2) Multiplication-Sign 10{sup -4} for the starburst SMG to the north and L{sub [CII]}/L{sub FIR} = (2.5 {+-} 0.4) Multiplication-Sign 10{sup -4} for the quasar host galaxy, in agreement with previous high-redshift studies that suggest lower [C II]-to-FIR luminosity ratios in quasars than in starburst galaxies. The third fainter object with a flux density S{sub 340GHz} = 1.9 {+-} 0.3 mJy is coincident with a Ly{alpha} emitter and is detected in HST ACS F775W and F814W images but has no clear counterpart in the H band. Even if this third companion does not lie at a redshift similar to BR1202-0725, the quasar and the SMG represent an overdensity of massive, infrared luminous star-forming galaxies within 1.3 Gyr of the big bang.

  5. RHAPSODY-G simulations II - Baryonic growth and metal enrichment in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Hahn, Oliver; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2016-04-01

    We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙/h) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of AGN feedback at the sub-grid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low and high resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of two lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple "regulator" model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

  6. Detailed abundance analysis of the brightest star in Segue 2, the least massive galaxy

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Kirby, Evan N.

    2014-05-01

    We present the first high-resolution spectroscopic observations of one red giant star in the ultra-faint dwarf galaxy Segue 2, which has the lowest total mass (including dark matter) estimated for any known galaxy. These observations were made using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Magellan II Telescope at Las Campanas Observatory. We perform a standard abundance analysis of this star, SDSS J021933.13+200830.2, and present abundances of 21 species of 18 elements as well as upper limits for 25 additional species. We derive [Fe/H] = -2.9, in excellent agreement with previous estimates from medium-resolution spectroscopy. Our main result is that this star bears the chemical signatures commonly found in field stars of similar metallicity. The heavy elements produced by neutron-capture reactions are present, but they are deficient at levels characteristic of stars in other ultra-faint dwarf galaxies and a few luminous dwarf galaxies. The otherwise normal abundance patterns suggest that the gas from which this star formed was enriched by metals from multiple Type II supernovae reflecting a relatively well-sampled IMF. This adds to the growing body of evidence indicating that Segue 2 may have been substantially more massive in the past.

  7. An X-ray Study of the Nearby Massive Early-Type Galaxy NGC 4472

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph; Forman, W. R.; Jones, C.; Nulsen, P. E. J.; Hardcastle, M. J.; Evans, D. A.; Raychaudhury, S.; Sivakoff, G.; Sarazin, C.; Murray, S. S.

    2009-09-01

    We present results from a deep archival XMM-Newton observation of the nearby massive early-type galaxy NGC 4472. This galaxy is in the early stages of merging with the Virgo cluster (1.35 Mpc from M87), and is the most optically luminous galaxy in the local Universe. Our earlier Chandra observations (Biller et al. 2004) showed a complex morphology in the X-ray emitting gas including cavities associated with twin radio lobes, a surface brightness discontinuity presumable due to an interaction with the Virgo cluster gas, and a filamentary arm similar to structures seen in M87. The deep XMM-Newton observation clearly demonstrates the existence of a ram pressure stripped tail anti-coincident to M87 and a surface brightness discontinuity, presumably the contact discontinuity between two moving fluids, between the core of NGC 4472 and the Virgo cluster gas. A temperature map of the NGC 4472 gas shows complex temperature variations in the core, perhaps indicative of non-azimuthally symmetric gas motions induced by the merger. Such motions have been predicted in various hydrodynamic simulations of galaxy/cluster mergers (Heinz et al. 2003). We also detect four filaments of cold gas in the temperature map extending roughly 25 kpc from the nucleus, one of which is coincident with the feature seen in the short Chandra observation. We discuss the implications of these results in terms of our understanding of group/cluster merger dynamics.

  8. Powerful quasar outflow in a massive disc galaxy at z ˜ 5

    NASA Astrophysics Data System (ADS)

    Curtis, Michael; Sijacki, Debora

    2016-03-01

    There is growing observational evidence of high-redshift quasars launching energetic, fast outflows, but the effects that these have on their host galaxies is poorly understood. We employ the moving-mesh code AREPO to study the feedback from a quasar that has grown to ˜109 M⊙ by z ˜ 5 and the impact that this has on its host galaxy. Our simulations use a super-Lagrangian refinement technique to increase the accuracy with which the interface of the quasar-driven wind and the surrounding gas is resolved. We find that the feedback injected in these simulations is less efficient at removing gas from the galaxy than in an identical simulation with no super-Lagrangian refinement. This leads to the growth of a massive, rotationally supported, star-forming disc, co-existing with a powerful quasar-driven outflow. The properties of our host galaxy, including the kinematical structure of the gaseous disc and of the outflow, are in good agreement with current observations. Upcoming ALMA and JWST observations will be an excellent test of our model and will provide further clues as to the variance in properties of high-redshift quasar hosts.

  9. RHAPSODY-G simulations - II. Baryonic growth and metal enrichment in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Hahn, Oliver; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2016-07-01

    We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙ h-1) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of active galactic nucleus (AGN) feedback at the subgrid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low- and high-resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of 2 lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple `regulator' model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however, this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

  10. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  11. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    PubMed

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. PMID:26160942

  12. The Fate of a Red Nugget: In Situ Star Formation of Satellites around a Massive Compact Galaxy

    NASA Astrophysics Data System (ADS)

    Morishita, Takahiro; Ichikawa, Takashi

    2016-01-01

    To study the accretion phase for local massive galaxies, we search accreting satellites around a massive compact galaxy ({M}*˜ 3.9× {10}10{M}⊙ ), spectroscopically confirmed ({z}{{spec}}=1.9213) in the eXtreme Deep Field, which has been originally reported in Szomoru et al. We detect 1369 satellite candidates within the projected virial radius ({r}{{vir}}˜ 300 kpc) of the compact galaxy in the all-combined Advanced Camera for Surveys image, with a 5σ -limiting magnitude of {m}{{ACS}}˜ 30.6 ABmag, which corresponds to ˜ 1.6× {10}7{M}⊙ at the redshift. The photometric redshift measured with 12 multi-band images confirms 34 satellites out of the candidates. Most of the satellites are found to have rest-frame colors consistent with star-forming galaxies. We investigate the relation between stellar mass and star formation rate (the star formation main sequence), and find a steeper slope at the low-mass end (\\lt {10}8{M}⊙ ), while more massive satellites are consistently on the sequence reported in previous studies. Within the uncertainties of star formation and photometric redshift, we conjecture possible scenarios for the compact galaxy which evolves to a local massive galaxy by way of significant size and mass growth. While the merging of the existing total stellar mass in the satellites is not enough to explain the mass growth predicted by observations and simulations, the contribution by in situ star formation in the satellites could compensate for the deficit. Provided that most satellites keep the observed in situ star formation and then quench before they accrete by, e.g., environmental quenching, the compact galaxy would become a massive early-type galaxy consistent with the local size-mass relation.

  13. The mass and angular momentum distribution of simulated massive early-type galaxies to large radii

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Gerhard, Ortwin; Naab, Thorsten; Oser, Ludwig; Martinez-Valpuesta, Inma; Hilz, Michael; Churazov, Eugene; Lyskova, Natalya

    2014-03-01

    We study the dark and luminous mass distributions, circular velocity curves (CVCs), line-of-sight kinematics and angular momenta for a sample of 42 cosmological zoom simulations of galaxies with stellar masses from 2.0 × 1010 to 3.4 × 1011 M⊙ h-1. Using a temporal smoothing technique, we are able to reach large radii. We find the following. The dark matter halo density profiles outside a few kpc follow simple power-law models, with flat dark matter CVCs for lower mass systems, and rising CVCs for high-mass haloes. The projected stellar density distributions at large radii can be fitted by Sérsic functions with n ≳ 10, larger than for typical early-type galaxies (ETGs). The massive systems have nearly flat total (luminous plus dark matter) CVCs at large radii, while the less massive systems have mildly decreasing CVCs. The slope of the circular velocity at large radii correlates with circular velocity itself. The dark matter fractions within the projected stellar half-mass radius Re are in the range 15-30 per cent and increase to 40-65 per cent at 5Re. Larger and more massive galaxies have higher dark matter fractions. The fractions and trends with mass and size are in agreement with observational estimates, even though the stellar-to-total mass ratio is ˜2-3 times higher than estimated for ETGs. The short axes of simulated galaxies and their host dark matter haloes are well aligned and their short-to-long axis ratios are correlated. The stellar root mean square velocity vrms(R) profiles are slowly declining, in agreement with planetary nebulae observations in the outer haloes of most ETGs. The line-of-sight velocity fields {bar{v}} show that rotation properties at small and large radii are correlated. Most radial profiles for the cumulative specific angular momentum parameter λ(R) are nearly

  14. TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2

    SciTech Connect

    Bezanson, Rachel; Van Dokkum, Pieter G.; Leja, Joel; Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska

    2013-12-20

    The fundamental plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy formation mechanisms. The evolution of the zero point of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the ''mass FP'' for massive, quiescent galaxies since z ∼ 2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z ∼ 3, we find that quiescent galaxies lie on the mass FP out to z ∼ 2. In contrast with ∼1.4 dex evolution in the luminosity FP, average residuals from the z ∼ 0 mass FP are less than ∼0.15 dex since z ∼ 2. Assuming the Hyde and Bernardi mass FP slope, we find that this minimal offset scales as (1 + z){sup –0.095} {sup ±} {sup 0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z ∼ 2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.

  15. The chemical enrichment by massive stars in Wolf-Rayet galaxies.

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Peimbert, M.

    1995-08-01

    We present stellar population models for starbursts in a sample of eleven Wolf-Rayet galaxies. Taking into account the observational data available, we try to reconstruct the number of Wolf-Rayet stars observed and estimate the number of type II supernovae that have exploded in the ionizing cluster. Using the stellar yields of the most recent stellar evolutionary models for massive stars, we derive the expected chemical enrichment in helium, oxygen and nitrogen produced by the burst on the surrounding ionized gas. The results of this modelling indicate that since the helium and nitrogen production accounts for a fraction of the total content of the H II regions in these elements - implying the occurrence of previous star formation events in the history of the parent galaxies -, the oxygen appears strongly overproduced in most of the objects. This fact and the correlation between the supernova rates derived for the bursts and their corresponding oxygen overproduction as well as the large volume filling factors expected for the hot gas that fills the supernova remnants, suggest the action of differential mass loss from the H II regions that could lead to galactic winds. We find that the chemical evolution of WR galaxies in the Y vs. N/H diagram appears to run parallel to the fit of the observational data for "normal" H II galaxies obtained by Pagel et al. (1992). Moreover, the pollution by the present-day population of Wolf-Rayet stars is unable to explain the apparently abnormal position of some Wolf-Rayet galaxies on that diagram. We find that the effect of temperature fluctuations in the determination of the electron temperature of the ionized gas probably due to the presence of shocks could be an alternative explanation for this problem.

  16. How a Massive Photon Retards the Universal Expansion Until Galaxies Form

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2011-04-01

    Michael Faraday understood magnetism from the patterns of iron filings near bar magnets. He deduced the rule that field lines are in tension. Maxwell's stress tensor adds an additional feature, an isotropic pressure B2/8π . Both Maxwell and Faraday believed that electromagnetic fields are scale-invariant. Expressed in the language of particle physics, they believed that m⊙ = 0. A massive photon adds a scale λo inversely proportional to its mass: λo = h/m⊙ c. For scales larger than λo, the vector potential A dominates the magnetic field B. Lines of A are in negative tension; A supports a negative pressure. Here we will show how this negative pressure retards the expansion of the universe. After the formation of galaxies, matter becomes too hot to handle and the universe coasts. We will also discuss the role of the massive photon in binding clusters of galaxies such as the Coma cluster. 1)G.V. Chibisov, Sov. Phys. Usp 19, 624 (1976).

  17. Dual Stellar Halos in the Standard Elliptical Galaxy M105 and Formation of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-05-01

    M105 is a standard elliptical galaxy, located in the Leo I Group. We present photometry of the resolved stars in its inner region at R ≈ 4‧ ≈ 4R eff, obtained from F606W and F814W images in the Hubble Space Telescope archive. We combine this with photometry of the outer region at R ≈ 12‧ ≈ 12R eff from archival imaging data. Color–magnitude diagrams of the resolved stars in the inner region show a prominent red giant branch (RGB) with a large color range, while those for the outer region show better a narrow blue RGB. The metallicity distribution function (MDF) of the RGB stars shows the existence of two distinct subpopulations: a dominant metal-rich population (with a peak at [M/H] ≈ 0.0) and a much weaker metal-poor population (with a peak at [M/H] ≈ ‑1.1). The radial number density profiles of the metal-rich and metal-poor RGB stars are fit well by a Sérsic law with n = 2.75 ± 0.10 and n = 6.89 ± 0.94, and by a single power law (σ ∝ R ‑3.8 and σ ∝ R ‑2.6), respectively. The MDFs of the inner and outer regions can be described well by accretion gas models of chemical evolution with two components. These provide strong evidence that there are two distinct stellar halos in this galaxy, blue metal-poor and red metal-rich halos, consistent with the results based on globular cluster systems in bright early-type galaxies (ETGs). We discuss the implications of these results with regard to the formation of massive ETGs in the dual halo mode formation scenario.

  18. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    SciTech Connect

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D. E-mail: franx@strw.leidenuniv.n E-mail: forster@mpe.mpg.d E-mail: swuyts@cfa.harvard.ed

    2009-11-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M{sub *} > 5 x 10{sup 10} M {sub sun}) galaxies at 1.5 < z < 2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed rest-frame UV-NIR spectral energy distributions, and independent MIPS 24 mum observations, 65% of the galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from two-dimensional surface brightness profile fits to high-resolution (FWHM{sub PSF} approx 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z approx 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 +- 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z approx 3-4, in contrast to star-forming galaxies at z approx 2 which are extended and dominated by distributed star formation.

  19. On the Limits of Measuring the Bulge and Disk Properties of Local and High-redshift Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh; Ho, Luis C.; Peng, Chien Y.

    2016-06-01

    A considerable fraction of the massive quiescent galaxies at z ≈ 2, which are known to be much more compact than galaxies of comparable mass today, appear to have a disk. How well can we measure the bulge and disk properties of these systems? We simulate two-component model galaxies in order to systematically quantify the effects of non-homology in structures and the methods employed. We employ empirical scaling relations to produce realistic-looking local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the most complete set of simulations to date for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T. We confirm that the size of these massive, compact galaxies can be measured robustly using a single Sérsic fit. We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≳ 0.2. The disk component, by contrast, can be measured with little difficulty.

  20. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    SciTech Connect

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.

  1. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  2. Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Tweed, Dylan; Primack, Joel

    2015-03-01

    We address the formation of massive stellar spheroids between redshifts z = 4 and 1 using a suite of adaptive mesh refinement hydrocosmological simulations. The spheroids form as bulges, and the spheroid mass growth is partly driven by violent disc instability (VDI) and partly by mergers. A kinematic decomposition to disc and spheroid yields that the mass fraction in the spheroid is between 50 and 90 per cent and is roughly constant in time, consistent with a cosmological steady state of VDI discs that are continuously fed from the cosmic web. The density profile of the spheroid is typically `classical', with a Sérsic index n = 4.5 ± 1, independent of whether it grew by mergers or VDI and independent of the feedback strength. The disc is characterized by n = 1.5 ± 0.5, and the whole galaxy by n = 3 ± 1. The high-redshift spheroids are compact due to the dissipative inflow of gas and the high universal density. The stellar surface density within the effective radius of each galaxy as it evolves remains roughly constant in time after its first growth. For galaxies of a fixed stellar mass, the surface density is higher at higher redshifts.

  3. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  4. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    SciTech Connect

    Teng, Stacy H.; Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J.; Oh, Kyuseok; Cardamone, Carolin N.; Keel, William C.; Simmons, Brooke D.; Treister, Ezequiel

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  5. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS

    SciTech Connect

    Greene, Jenny E.; Murphy, Jeremy D.; Graves, Genevieve J.; Gunn, James E.; Raskutti, Sudhir; Comerford, Julia M.; Gebhardt, Karl

    2013-10-20

    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions σ{sub *} ∼> 150 km s{sup –1}. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2R{sub e} is old (∼10 Gyr), relatively metal-poor ([Fe/H] ≈ –0.5), and α-enhanced ([Mg/Fe] ≈ 0.3). The stars were made rapidly at z ≈ 1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to average Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z ≈ 1.5-2)

  6. An ultra-compact dwarf around the Sombrero galaxy (M104): the nearest massive UCD

    NASA Astrophysics Data System (ADS)

    Hau, George K. T.; Spitler, Lee R.; Forbes, Duncan A.; Proctor, Robert N.; Strader, Jay; Mendel, J. Trevor; Brodie, Jean P.; Harris, William E.

    2009-03-01

    We report the discovery of an ultra-compact dwarf (UCD) associated with the Sombrero galaxy (M104). This is the closest massive UCD known and the first spectroscopically verified massive UCD which is located in a low-density environment. The object, we name SUCD1, was identified in Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) imaging and confirmed to be associated with the Sombrero galaxy by its recession velocity obtained from Keck spectra. The light profile is well fitted by a Wilson model. We measure a half-light size of 14.7 +/- 1.4 pc, an absolute magnitude of MV = -12.3 mag (MK = -15.1 mag) and an internal velocity dispersion of 25.0 +/- 5.6 km s-1. Such values are typical of UCDs. From Lick spectral indices we measure a luminosity-weighted central age of 12.6 +/- 0.9 Gyr, [Fe/H] of -0.08 +/- 0.08 dex and [α/Fe] of 0.06 +/- 0.07 dex. The lack of colour gradients suggests these values are representative of the entire UCD. The derived stellar and virial masses are the same, within errors, at ~3.3 × 107Msolar. Thus, we find no strong evidence for dark matter or the need to invoke a non-standard initial mass function. We also report arguably the first X-ray detection of a bona fide UCD, which we attribute to the presence of low-mass X-ray binaries. The X-ray luminosity of LX = 0.56 × 1038 ergs-1 is consistent with the values observed for globular clusters (GCs) of the same metallicity. Overall, we find SUCD1 has properties similar to other known UCDs and massive GCs.

  7. Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana; Feng, Yu; Khandai, Nishikanta

    2014-06-01

    The intrinsic alignment of galaxy shapes with the large-scale density field is a contaminant to weak lensing measurements, as well as being an interesting signature of galaxy formation and evolution (albeit one that is difficult to predict theoretically). Here we investigate the shapes and relative orientations of the stars and dark matter of haloes and subhaloes (central and satellite) extracted from the MassiveBlack-II simulation, a state-of-the-art high-resolution hydrodynamical cosmological simulation which includes stellar and active galactic nucleus feedback in a volume of (100 h-1 Mpc)3. We consider redshift evolution from z = 1 to 0.06 and mass evolution within the range of subhalo masses, 1010-6.0 × 1014.0 h-1 M⊙. The shapes of the dark matter distributions are generally more round than the shapes defined by stellar matter. The projected root-mean-square ellipticity per component for stellar matter is measured to be erms = 0.28 at z = 0.3 for Msubhalo > 1012.0 h-1 M⊙, which compares favourably with observational measurements. We find that the shapes of stellar and dark matter are more round for less massive subhaloes and at lower redshifts. By directly measuring the relative orientation of the stellar matter and dark matter of subgroups, we find that, on average, the misalignment between the two components is larger for less massive subhaloes. The mean misalignment angle varies from ˜30° to 10° for M ˜ 1010-1014 h-1 M⊙ and shows a weak dependence on redshift. We also compare the misalignment angles in central and satellite subhaloes at fixed subhalo mass, and find that centrals are more misaligned than satellites. We present fitting formulae for the shapes of dark and stellar matter in subhaloes and also the probability distributions of misalignment angles.

  8. The Carnegie-Irvine Galaxy Survey. IV. A Method to Determine the Average Mass Ratio of Mergers That Built Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Huang, Song; Ho, Luis C.; Peng, Chien Y.; Li, Zhao-Yu; Barth, Aaron J.

    2016-04-01

    Many recent observations and numerical simulations suggest that nearby massive, early-type galaxies (ETGs) were formed through a “two-phase” process. In the proposed second phase, the extended stellar envelope was accumulated through many dry mergers. However, details of the past merger history of present-day ellipticals, such as the typical merger mass ratio, are difficult to constrain observationally. Within the context and assumptions of the two-phase formation scenario, we propose a straightforward method, using photometric data alone, to estimate the average mass ratio of mergers that contributed to the build-up of massive elliptical galaxies. We study a sample of nearby massive elliptical galaxies selected from the Carnegie-Irvine Galaxy Survey, using two-dimensional analysis to decompose their light distribution into an inner, denser component plus an extended, outer envelope, each having a different optical color. The combination of these two substructures accurately recovers the negative color gradient exhibited by the galaxy as whole. The color difference between the two components (< {{Δ }}(B{--}V)> ≃ 0.10 mag; < {{Δ }}(B{--}R)> ≃ 0.14 mag), based on the slope of the M*–color relation for nearby ETGs, can be translated into an estimate of the average mass ratio of the mergers. The rough estimate, 1:5 to 1:10, is consistent with the expectation of the two-phase formation scenario, suggesting that minor mergers were largely responsible for building up the outer stellar envelopes of present-day massive ellipticals. With the help of accurate photometry, large sample sizes and more choices of colors promised by ongoing and future surveys, the approach proposed here can provide more insights into the growth of massive galaxies during the last few Gyr.

  9. SPIDER - VII. Revealing the stellar population content of massive early-type galaxies out to 8Re

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Ferreras, I.; de Carvalho, R. R.; Bruzual, G.; Charlot, S.; Pasquali, A.; Merlin, E.

    2012-11-01

    Radial trends of stellar populations in galaxies provide a valuable tool to understand the mechanisms of galaxy growth. In this paper, we present the first comprehensive analysis of optical-optical and optical-NIR colours, as a function of galaxy mass, out to the halo region (8Re) of early-type galaxies (ETGs). We select a sample of 674 massive ETGs (M★ ≳ 3 × 1010 M⊙) from the Sloan Digital Sky Survey (SDSS)-based SPIDER survey. By comparing with a large range of population synthesis models, we derive robust constraints on the radial trends in age and metallicity. Metallicity is unambiguously found to decrease outwards, with a measurable steepening of the slope in the outer regions (Re < R < 8Re). The gradients in stellar age are found to be more sensitive to the models used, but in general, the outer regions of ETGs feature older populations compared to the cores. This trend is strongest for the most massive galaxies in our sample (M★ ≳ 1011 M⊙). Furthermore, when segregating with respect to large-scale environment, the age gradient is more significant in ETGs residing in higher density regions. These results shed light on the processes leading from the formation of the central core to the growth of the stellar envelope of massive galaxies. The fact that the populations in the outer regions are older and more metal-poor than in the core suggests a process whereby the envelope of massive galaxies is made up of accreted small satellites (i.e. minor mergers) whose stars were born during the first stages of galaxy formation.

  10. The MASSIVE Survey. IV. The X-ray Halos of the Most Massive Early-type Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Ma, Chung-Pei; Veale, Melanie; Bogdan, Akos; Nyland, Kristina; Blakeslee, John P.; McConnell, Nicholas J.; Thomas, Jens

    2016-08-01

    Studies of the physical properties of local elliptical galaxies are shedding new light on galaxy formation. Here we present the hot-gas properties of 33 early-type systems within the MASSIVE galaxy survey that have archival Chandra X-ray observations, and we use these data to derive X-ray luminosities ({L}{{X,gas}}) and plasma temperatures ({T}{{gas}}) for the diffuse gas components. We combine this with the {{ATLAS}}{{3D}} survey to investigate the X-ray–optical properties of a statistically significant sample of early-type galaxies across a wide range of environments. When X-ray measurements are performed consistently in apertures set by the galaxy stellar content, we deduce that all early types (independent of galaxy mass, environment, and rotational support) follow a universal scaling law such that {L}{{X,gas}}\\propto {T}{{gas}}˜ 4.5. We further demonstrate that the scatter in {L}{{X,gas}} around both K-band luminosity (L K ) and the galaxy stellar velocity dispersion ({σ }e) is primarily driven by {T}{{gas}}, with no clear trends with halo mass, radio power, or angular momentum of the stars. It is not trivial to tie the gas origin directly to either stellar mass or galaxy potential. Indeed, our data require a steeper relation between {L}{{X,gas}},{L}K, and {σ }e than predicted by standard mass-loss models. Finally, we find that {T}{{gas}} is set by the galaxy potential inside the optical effective radius. We conclude that within the innermost 10–30 kpc region, early types maintain pressure-supported hot gas, with a minimum {T}{{gas}} set by the virial temperature, but the majority show evidence for additional heating.