Sample records for massive x-ray binary

  1. A Search for Quiet Massive X-ray Binaries

    NASA Astrophysics Data System (ADS)

    McSwain, M. V.; Boyajian, T. S.; Grundstrom, E.; Gies, D. R.

    2005-12-01

    Wind accretion models of the X-ray luminosity in massive X-ray binaries (MXRBs) predict a class of "quiet" MXRBs in which the stellar wind is too weak to power a strong X-ray source. The first two candidates systems, HD 14633 and HD 15137, were recently detected. These O star + neutron star systems were ejected from the open cluster NGC 654, but although they both show evidence of a past supernova within the binary system, neither is a known X-ray emitter. These systems provide a new opportunity to examine the ejection mechanisms responsible for the OB runaway stars, and they can also provide key information about the evolution of spun-up, rejuvenated massive stars. We present here preliminary results from a search for other such quiet MXRBs. MVM is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.

  2. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R.

    2017-08-01

    The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.

  3. High-mass X-ray binary populations. 1: Galactic modeling

    NASA Technical Reports Server (NTRS)

    Dalton, William W.; Sarazin, Craig L.

    1995-01-01

    Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.

  4. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Shenar, T.

    The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only atmore » the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.« less

  5. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Roedig, C.; Reynolds, M. T.; Dotti, M.

    2012-02-01

    In the decade of the dawn of gravitational wave astronomy, the concept of multimessenger astronomy, combining gravitational wave signals to conventional electromagnetic observation, has attracted the attention of the astrophysical community. So far, most of the effort has been focused on ground- and space-based laser interferometer sources, with little attention devoted to the ongoing and upcoming pulsar timing arrays (PTAs). We argue in this paper that PTA sources, being very massive (>108 M⊙) cosmologically nearby (z < 1) black hole binaries (MBHBs), are particularly appealing multimessenger carriers. According to current models for massive black hole formation and evolution, the planned Square Kilometre Array will observe thousands of such massive systems, being able to individually resolve and locate in the sky several of them (maybe up to a hundred). MBHBs form in galaxy mergers, which are usually accompanied by strong inflows of gas in the centre of the merger remnant. By employing a standard model for the evolution of MBHBs in circumbinary discs, with the aid of dedicated numerical simulations, we characterize the gas-binary interplay, identifying possible electromagnetic signatures of the PTA sources. We concentrate our investigation on two particularly promising scenarios in the high-energy domain, namely the detection of X-ray periodic variability and double broad Kα iron lines. Up to several hundreds of periodic X-ray sources with a flux >10-13 erg s-1 cm-2 will be in the reach of upcoming X-ray observatories; in the most optimistic case, a few of them may be already being observed by the MAXI detector placed on the International Space Station. Double relativistic Kα lines may be observable in a handful of low-redshift (z < 0.3) sources by proposed deep X-ray probes, such as Athena. The exact figures depend on the details of the adopted MBHB population and on the properties of the circumbinary discs, but the existence of a sizeable population of

  6. Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    NASA Astrophysics Data System (ADS)

    Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.

    2006-04-01

    Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.

  7. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  8. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  9. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Shao, Y.

    2017-07-01

    -donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by

  10. Probing the X-ray Emission from the Massive Star Cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-09-01

    We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.

  11. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; hide

    2015-01-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.

  12. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  13. A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. I. OVERVIEW OF THE X-RAY SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corcoran, M. F.; Hamaguchi, K.; Nichols, J. S.

    2015-08-20

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, andmore » wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.« less

  14. Supergiant X-Ray Binaries Observed by Suzaku

    NASA Technical Reports Server (NTRS)

    Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.

    2011-01-01

    Suzaku observations are presented for the high-mass X-ray binaries IGR 116207-5129 and IGR 117391-3021. For IGR 116207-5129, we provide the first X-ray broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 1.6 x 10(exp 23)/sq cm), and we constrain the cutoff energy for the first time (E(sub cut) = 19 keV). A prolonged (> 30 ks) attenuation of the X-ray flux was observed which we tentatively attribute to an eclipse of the probable neutron star by its massive companion, in a binary system with an orbital period between 4 and 9 days, and inclination angles> 50 degrees. For IGRJ17391-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10keV band are only a factor of 5 times that of the pre-flare emission. These micro flares are accompanied by an increase in NH which suggests the accretion of obscuring clumps of wind. We now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well. We close with an overview of our upcoming program in which Suzaku will provide the first ever observation of an SFXT (IGRJ16479-4514) during a binary orbit enabling us to probe the accretion wind at every phase.

  15. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. II. X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Nazé, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.

    2015-08-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  16. Evidence for a massive stellar black hole in x ray Nova Muscae

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1992-01-01

    We present evidence that the X-ray Nova Muscae system contains a massive, greater than 10 M solarmass, black hole. A recently measured photometric binary mass function gives the black hole mass for this system as a function of orbital inclination angle. From the spectral redshift and width of the positron annihilation gamma-ray line observed by GRANAT/SIGMA, we find the accretion disk inclination angle to be 22 deg plus or minus 18 deg. Assuming the accretion disk lies in the orbital plane of the system, the black hole mass is found to have a lower limit of 14 M solar mass although statistics are poor. This is supported by spectral modeling of combined optical/UV/x-ray/gamma-ray data and by a new Nova Muscae distance limit we derive of greater than 3 kpc. The large mass for this black hole and the high binary mass ratio it implies (greater than 20) raise a serious challenge to theoretical models of the formation and evolution of massive binaries. The gamma-ray line technique introduced here can give tight constraints on orbital parameters when high-sensitivity line measurements are made by such missions as GRO.

  17. The Connection Between X-ray Binaries and Star Clusters in the Antennae

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, R.; Prestwich, A.

    2011-05-01

    High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.

  18. X-ray Binaries in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Cowley, Anne P.

    1993-05-01

    For more than two decades astronomers have been aware that the most X-ray luminous stellar sources (L_x > 10(35) erg s(-1) ) are interacting binaries where one component is a neutron star or black hole. While other types of single and multiple stars are known X-ray sources, none compare in X-ray luminosity with the ``classical" X-ray binaries. In these systems X-ray emission results from accretion of material from a non-degenerate companion onto the compact star through several alternate mechanisms including Roche lobe overflow, stellar winds, or periastron effects in non-circular orbits. It has been recognized for many years that X-ray binaries divide into two broad groups, characterized primarily by the mass of the non-degenerate star: 1) massive X-ray binaries (MXRB), in which the optical primary is a bright, early-type star, and 2) low-mass X-ray binaries (LMXB), where a lower main-sequence or subgiant star is the mass donor. A broad variety of observational characteristics further subdivide these classes. In the Galaxy these two groups appear to be spatially and kinematically associated with the disk and the halo populations, respectively. A few dozen MXRB are known in the Galaxy. A great deal of information about their physical properties has been learned from observational study. Their optical primaries can be investigated by conventional techniques. Furthermore, most MXRB contain X-ray pulsars, allowing accurate determination of their orbital parameters. From these data masses have been determined for the neutron stars, all of which are ~ 1.4 Msun, within measurement errors. By contrast, the LMXB have been much more difficult to study. Although there are ~ 150 LMXB in the Galaxy, most are distant and faint, requiring use of large telescopes for their study. Their optical light is almost always dominated by an accretion disk, rather than the mass-losing star, making interpretation of their spectral and photometric properties difficult. Their often uncertain

  19. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  20. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  1. A search for X-ray binary stars in their quiescent phase

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1980-01-01

    Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.

  2. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  3. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  4. Stellar winds in binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  5. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  6. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  7. A Search For X-Ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes; Salter, Demerese M.; Garmire, Gordon P.

    2016-12-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ˜2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.

  8. A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged samplemore » of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.« less

  9. Using HMXBs to Probe Massive Binary Evolution

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen

    2017-09-01

    We propose using deep archival Chandra data of M33 to characterize the distribution of physical parameters for the high-mass X-ray binary (HMXB) population from X-ray spectra, X-ray lightcurves, and identified optical counterparts coupled with ground-based spectroscopy. Our analysis will provide the largest clean sample of HMXBs in M33, including hardness, short- and long-term variability, luminosity, and ages. These measurements will be compared across M33 and to HMXB studies in other nearby galaxies to test correlations between HMXB population and host properties such as metallicity and star formation rate. Furthermore, our measurements will yield empirical constraints on prescriptions for models of the formation and evolution of massive stars in binaries.

  10. X-rays from the colliding wind binary WR 146

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.

    2017-12-01

    The X-ray emission from the massive Wolf-Rayet binary (WR 146 ) is analysed in the framework of the colliding stellar wind (CSW) picture. The theoretical CSW model spectra match well the shape of the observed X-ray spectrum of WR 146, but they overestimate considerably the observed X-ray flux (emission measure). This is valid in the case of both complete temperature equalization and partial electron heating at the shock fronts (different electron and ion temperatures), but there are indications for a better correspondence between model predictions and observations for the latter. To reconcile the model predictions and observations, the mass-loss rate of WR 146 must be reduced by a factor of 8-10 compared to the currently accepted value for this object (the latter already takes clumping into account). No excess X-ray absorption is derived from the CSW modelling.

  11. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  12. Recurrent X-ray Emission Variations of Eta Carinae and the Binary Hypothesis

    NASA Technical Reports Server (NTRS)

    Ishibashi, K.; Corcoran, M. F.; Davidson, K.; Swank, J. H.; Petre, R.; Drake, S. A.; Damineki, A.; White, S.

    1998-01-01

    Recent studies suggest that, the super-massive star eta Carinae may have a massive stellar companion (Damineli, Conti, and Lopes 1997), although the dense ejecta surrounding the star make this claim hard to test using conventional methods. Settling this question is critical for determining the current evolutionary state and future evolution of the star. We address this problem by an unconventional method: If eta Carinae is a binary, X-ray emission should be produced in shock waves generated by wind-wind collisions in the region between eta Carinae and its companion. Detailed X-ray monitoring of eta Carinae for more that) 2 years shows that the observed emission generally resembles colliding-wind X-ray emission, but with some significant discrepancies. Furthermore, periodic X-ray "flaring" may provide an additional clue to determine the presence of a companion star and for atmospheric pulsation in eta Carinae.

  13. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  14. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  15. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  16. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  17. Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia M.; Bulik, Tomasz; Gómez-Morán, Ada Nebot

    2018-06-01

    Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims: We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods: We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results: Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC 4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions: The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies.

  18. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  19. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  20. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2011-09-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  1. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2010-10-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  2. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  3. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-04-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 hr) and eclipse fraction (22% ± 0.1%) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35M⊙). By combining the X-ray lightcurve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18, and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  4. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-07-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  5. The iron complex in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.

    2013-05-01

    An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.

  6. IDENTIFICATION OF A POPULATION OF X-RAY-EMITTING MASSIVE STARS IN THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Gemma E.; Gaensler, B. M.; Kaplan, David L.

    2011-02-01

    We present X-ray, infrared, optical, and radio observations of four previously unidentified Galactic plane X-ray sources: AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. Detection of each source with the Chandra X-ray Observatory has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications: Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919), and OIf{sup +} (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Femore » XXV emission lines in their X-ray spectra at {approx}6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary (CWB) system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a CWB interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and CWBs in the Milky Way.« less

  7. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  8. The Massive Star-Forming Regions Omnibus X-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Bouwman, Jeroen; Povich, Matthew S.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2014-07-01

    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.

  9. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  10. Formation Timescales for High-Mass X-ray Binaries in M33

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen; Williams, Benjamin F.; Hillis, Tristan; Gilbert, Karoline M.; Dolphin, Andrew E.; Eracleous, Michael; Binder, Breanna

    2018-06-01

    We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival HST and Chandra imaging to find blue stars associated with X-ray positions. We use the HST photometric data to model the color-magnitude diagrams in the vicinity of each candidate HMXB to measure a resolved recent star formation history (SFH), and thus a formation timescale, or age for the source. Taken together, the SFHs for all candidate HMXBs in M33 yield an age distribution that suggests preferred formation timescales for HMXBs in M33 of < 5 Myr and ˜ 40 Myr after the initial star formation episode. The population at 40 Myr is seen in other Local Group galaxies, and can be attributed to a peak in formation efficiency of HMXBs with neutron stars as compact objects and B star secondary companions. This timescale is preferred as neutron stars should form in abundance from ˜ 8 M⊙ core-collapse progenitors on these timescales, and B stars are shown observationally to be most actively losing mass around this time. The young population at < 5 Myr has not be observed in other Local Group HMXB population studies, but may be attributed to a population of very massive progenitors forming black holes very early on. We discuss these results in the context of massive binary evolution, and the implications for compact object binaries and gravitational wave sources.

  11. The optical counterpart to the Be/X-ray binary SAX J2239.3+6116

    NASA Astrophysics Data System (ADS)

    Reig, P.; Blay, P.; Blinov, D.

    2017-02-01

    Context. Be/X-ray binaries represent the main group of high-mass X-ray binaries. The determination of the astrophysical parameters of the counterparts of these high-energy sources is important for the study of X-ray binary populations in our Galaxy. X-ray observations suggest that SAX J2239.3+6116 is a Be/X-ray binary. However, little is known about the astrophysical parameters of its massive companion. Aims: The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. Methods: We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 Å spectroscopy. The 4000-5000 Å spectra allowed us to determine the spectral type and projected rotational velocity of the optical companion; the 6000-7000 Å spectra, together with the photometric magnitudes, were used to derive the colour excess E(B-V), estimate the distance, and to study the variability of the Hα line. Results: The optical counterpart to SAX J2239.3+6116 is a V = 14.8 B0Ve star located at a distance of 4.9 kpc. The interstellar reddening in the direction of the source is E(B-V) = 1.70 ± 0.03 mag. The monitoring of the Hα line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. We measured intrinsic optical polarization for the first time. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. Conclusions: We attribute the long-term decrease in the intensity of the Hα line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of the system.

  12. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  13. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  14. What Can Simbol-X Do for Gamma-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  15. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    NASA Astrophysics Data System (ADS)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  16. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will

  17. A deep survey of the X-ray binary populations in the SMC

    NASA Astrophysics Data System (ADS)

    Zezas, A.; Antoniou, V.

    2017-10-01

    The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.

  18. SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.

    2013-04-01

    We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant ofmore » a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.« less

  19. Non-thermal Processes in Colliding-wind Massive Binaries: the Contribution of Simbol-X to a Multiwavelength Investigation

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël; Blomme, Ronny; Micela, Giusi; Pittard, Julian M.; Rauw, Gregor; Romero, Gustavo E.; Sana, Hugues; Stevens, Ian R.

    2009-05-01

    Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.

  20. Contact binary stars. I - An X-ray survey

    NASA Technical Reports Server (NTRS)

    Cruddace, R. G.; Dupree, A. K.

    1984-01-01

    X-ray emission from a contact binary star was first detected by the HEAO 1 satellite in 1977. Spectroscopic observations of 44i Boo and VW Cep by IUE established the presence of high-temperature chromospheric and transition region emission lines in the spectra of these stars. The HEAO 1 and IUE results implied that the processes causing X-ray emission from VW Cep might be similar to those energizing the solar corona, and that X-ray emission might be a common occurrence among contact binary stars. A series of observations of these stars was, therefore, conducted with the aid of the HEAO 2 (Einstein) Observatory. The present investigation is concerned with the results of these observations, giving attention to their implications with respect to the nature of contact binary stars. The results are compared with similar HEAO 2 studies of coronal X-ray sources in the local region of the Galaxy, in the Hyades, and other rapidly rotating systems.

  1. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  2. Longterm lightcurves of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Clarkson, William

    The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE

  3. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  4. Optical/Infrared properties of Be stars in X-ray Binary systems

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2018-04-01

    Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.

  5. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray

  6. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.

    PubMed

    Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J

    2018-04-04

    The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  7. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy

    NASA Astrophysics Data System (ADS)

    Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.

    2018-04-01

    The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  8. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  9. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  10. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less

  11. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  12. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  13. The Mysterious sdO X-ray Binary BD+37°442

    NASA Astrophysics Data System (ADS)

    Heber, U.; Geier, S.; Irrgang, A.; Schneider, D.; Barbu-Barna, I.; Mereghetti, S.; La Palombara, N.

    2014-04-01

    Pulsed X-ray emission in the luminous, helium-rich sdO BD +37°442 has recently been discovered (La Palombara et al. 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD +37°442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD +37°442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of less than ten days. Hence, we embarked on radial velocity monitoring in order to derive the binary parameters of the BD+37°442 system and obtained 41 spectra spread out over several month in 2012. Unlike for HD 49798, no radial velocity variations were found and, hence, there is no dynamical evidence for the existence of a compact companion yet. The origin of the pulsed X-ray emission remains as a mystery.

  14. Tidal tearing of circumstellar disks in Be/X-ray and gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Okazaki, Atsuo T.

    2017-11-01

    About one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (L X~1036-37 erg s-1) and occasional giant X-ray outbursts (L X > 1037 erg s-1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (P orb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1) As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism. 2) At some point, the disk is tidally torn off near the base and starts precession. 3) Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1). 4) The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.

  15. Physics of Accretion in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Vrtilek, Saeqa D.

    2004-01-01

    This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of {\\it simultaneous} X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these Observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.

  16. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. III. Analysis of Optical Photometric (MOST) and Spectroscopic (Ground-based) Variations

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert; Richardson, Noel D.; Moffat, Anthony F. J.; Corcoran, Michael; Shenar, Tomer; Benvenuto, Omar; Fuller, Jim; Nazé, Yaël; Hoffman, Jennifer L.; Miroshnichenko, Anatoly; Maíz Apellániz, Jesús; Evans, Nancy; Eversberg, Thomas; Gayley, Ken; Gull, Ted; Hamaguchi, Kenji; Hamann, Wolf-Rainer; Henrichs, Huib; Hole, Tabetha; Ignace, Richard; Iping, Rosina; Lauer, Jennifer; Leutenegger, Maurice; Lomax, Jamie; Nichols, Joy; Oskinova, Lida; Owocki, Stan; Pollock, Andy; Russell, Christopher M. P.; Waldron, Wayne; Buil, Christian; Garrel, Thierry; Graham, Keith; Heathcote, Bernard; Lemoult, Thierry; Li, Dong; Mauclaire, Benjamin; Potter, Mike; Ribeiro, Jose; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2015-08-01

    We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system δ Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P\\gt 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.

  17. The Massive Star-forming Regions Omnibus X-ray Catalog, Second Installment

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Anderson, Gemma E.; Feigelson, Eric D.; Naylor, Tim; Povich, Matthew S.

    2018-04-01

    We present the second installment of the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC2), a compilation of X-ray point sources detected in Chandra/ACIS observations of 16 Galactic MSFRs and surrounding fields. MOXC2 includes 13 ACIS mosaics, three containing a pair of unrelated MSFRs at different distances, with a total catalog of 18,396 point sources. The MSFRs sampled range over distances of 1.3 kpc to 6 kpc and populations varying from single massive protostars to the most massive Young Massive Cluster known in the Galaxy. By carefully detecting and removing X-ray point sources down to the faintest statistically significant limit, we facilitate the study of the remaining unresolved X-ray emission. Through comparison with mid-infrared images that trace photon-dominated regions and ionization fronts, we see that the unresolved X-ray emission is due primarily to hot plasmas threading these MSFRs, the result of feedback from the winds and supernovae of massive stars. The 16 MSFRs studied in MOXC2 more than double the MOXC1 sample, broadening the parameter space of ACIS MSFR explorations and expanding Chandra's substantial contribution to contemporary star formation science.

  18. ASCA measurements of the grain-scattered X-ray halos of eclipsing massive X-ray binaries: Vela X-1 and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Woo, Jonathan W.; Clark, George W.; Day, Charles S. R.; Nagase, Fumiaki; Takeshima, Toshiaki

    1994-01-01

    We have measured the decaying dust-scattered X-ray halo of Cen X-3 during its binary eclipse with the ASCA solid-state imaging spectrometer (SIS). The surface brightness profile (SBP) of the image in the low-energy band (0.5-3 keV) lies substantially above the point-spread function (PSF) of the X-ray telescope, while the SBP in the high-energy band (5-10 keV) exhibits no significant deviation. By contrast, the SBPs of Vela X-1 during its eclipse are consistent with the PSF in both the low- and high-energy bands -- strong evidence that a dust halo is indeed present in Cen X-3. Accordingly, we modeled the SBP of Cen X-3 taken from six consecutive time segments under the principal assumptions that the dust is distributed uniformly along a segment of the line of sight, the grains have a power-law size distribution, and the low-energy source flux was the same function of orbital phase before as during our observation. The best-fit set of parameters included a grain density value of 1.3 g/cu cm, substanially less than the density of 'astronomical silicate.' This result supports the idea that interstellar grains are 'fluffy' aggregates of smaller solid particles. We attribute the failure to detect a halo of Vela X-1 during its eclipse phase to extended strong circumsource absorption that probably occurred before the eclipse and allowed the halo to decay away before the observation began.

  19. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  20. Millisecond Oscillations in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    van der Klis, M.

    The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations, and kilohertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin and orbital motion close around the neutron star, and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and some possibly related phenomena in black-hole candidates, and describe the attempts to use these observations to perform measurements of fundamental physical interest in these systems.

  1. The Physics of Accretion in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Vrtilek, S.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of simultaneous X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.

  2. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  3. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.

    2018-04-01

    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.

  4. Binary supersoft X-ray sources and the supernova Ia progenitor problem

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas John

    In this thesis I present a study of several binary supersoft X-ray sources in order to assess their properties and to determine whether they may be supernova Ia (SN Ia) progenitors. The first chapter is an introduction to the problem and the sources of interest. In the second and third chapters I present an X-ray spectroscopic study of the recurrent nova RS Ophiuchi (RS Oph) during and after its 2006 outburst, carried out with Chandra and XMM-Newton. I discuss the physical origins of the X-ray emission at each stage of the outburst and place the first direct constraints on the mass of the white dwarf, which is very close to the Chandrasekhar limit. I also show that the surface composition of the white dwarf during the supersoft phase is consistent with nuclear processed material, indicating that RS Oph retains mass after each outburst and is likely growing in mass with time, and is therefore a potential SN Ia progenitor. I discuss the lack of accretion signatures in the quiescent emission from RS Oph, which are at odds with the high frequency of nova outbursts, and explore the possibility that an alternative accretion model may account for the quiescent X-ray properties in the system. Finally, in the fourth chapter, I examine the supersoft X-ray source (SSS) population in the nearby galaxy M31 at X-ray, ultraviolet (UV) and optical wavelengths. I explore the long-term behavior of these objects, and find that a much smaller fraction are persistent or recurrent X-ray sources than in the Magellanic Clouds. I carry out a search for counterparts of the SSS using the Galactic Evolution Explorer (GALEX) satellite and the WIYN 3.5m telescope, and find that the majority of sources do not have any UV counterparts. For those that do, I find that the UV sources have properties consistent with young, massive stars in M31. I find indications that some SSS may be in high mass binaries. If these sources are nuclear burning white dwarfs, then they may be the progenitors of the SNe

  5. Low-mass X-ray binaries and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lasota, J. P.; Frank, J.; King, A. R.

    1992-01-01

    More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.

  6. Iron K lines from low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; White, N. E.

    1989-01-01

    Models are presented for the 6-7 keV iron line emission from low-mass X-ray binaries. A simplified model for an accretion disk corona is used to examine the dependence of the observable line properties, line width and mean energy, on the radial distance of the emission region from the X-ray source, and on the fraction of the X-rays from the source which reach the disk surface. The effects of blending of multiple line components and of Comptonization of the line profile are included in numerical calculations of the emitted profile shape. The results of these calculations, when compared with the line properties observed from several low-mass X-ray binaries, suggest that the broadening is dominated either by rotation or by Compton scattering through a greater optical depth than is expected from an accretion disk corona.

  7. 1FGL J1417.7-4407: A Likely Gamma-Ray Bright Binary with A Massive Neutron Star and A Giant Secondary

    NASA Technical Reports Server (NTRS)

    Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.

  8. Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.

  9. Discovery of very high energy gamma rays associated with an x-ray binary.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Bussons Gordo, J; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J-M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2005-07-29

    X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.

  10. Theory of magnetic cataclysmic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.

    1988-01-01

    The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.

  11. The 155-day X-ray cycle of the very massive Wolf-Rayet star Melnick 34 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Pollock, A. M. T.; Crowther, P. A.; Tehrani, K.; Broos, Patrick S.; Townsley, Leisa K.

    2018-03-01

    The Wolf-Rayet star Mk 34 was observed more than 50 times as part of the deep T-ReX Chandra ACIS-I X-ray imaging survey of the Tarantula Nebula in the Large Magellanic Cloud conducted between 2014 May and 2016 January. Its brightness showed one bright maximum and repeated faint minima which help define an X-ray recurrence time of 155.1 ± 0.1 d that is probably the orbital period of an eccentric binary system. The maximum immediately precedes the minimum in the folded X-ray light curve as confirmed by new Swift XRT observations. Notwithstanding its extreme median luminosity of 1.2 × 1035 erg s-1, which makes it over an order of magnitude brighter than comparable stars in the Milky Way, Mk 34 is almost certainly a colliding-wind binary system. Its spectrum shows phase-related changes of luminosity and absorption that are probably related to the orbital dynamics of two of the most massive stars known.

  12. High-Mass X-ray Binaries in hard X- rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.

  13. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >10{sup 35} erg s{sup −1}, providingmore » sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.« less

  14. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    This grant was for the study of Luminous Supersoft X-Ray Sources (SSSs). During the first year a number of projects were completed and new projects were started. The projects include: 1) Time variability of SSSs 2) SSSs in M31; 3) Binary evolution scenarios; and 4) Acquiring new data.

  15. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    NASA Technical Reports Server (NTRS)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  16. Hard X-Ray Lightcurves of High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Laycock, S.; Coe, M. J.; Harmon, B. A.; Finger, M.; Wilson-Hodge, C.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Using the 7.2 years of continuous data now available from the Burst And Transient Source Experiment (BATSE) aboard CGRO, we have measured orbital periods and produced folded lightcurves for 8 High Mass X-ray Binaries (HMXB). Given the length of the datasets, our determinations are based on many more binary orbits than previous investigations. Thus our source detections have high statistical significance and we are able to follow long-term trends in X-ray output. In particular we focus on two systems: A0538-668 and EXO2030+375 both HMXBs exhibiting Type I outbursts. Recent work on A0538-668 (Alcock et al 1999) reported a 16.65d optical variability due to the orbital period, but only seen during minima of a longer-term variability at 421d. We searched for this signal in the BATSE dataset using an ephemeris derived from Alcock et al ( 1999) & Skinner ( 1982). We found no evidence for such modulation and place an upper limit of 3.0 x 10(exp -3) photon/sq cm.s in the 20-70 keV BATSE energy band , based upon statistical modelling of the signal. EXO2030+375 has exhibited an X-ray active epoch, followed by a quiescent period lasting 2.5yr and since April 1996 has exhibited renewed activity. Previous observations (Reig et a 1998) using RXTE ASM data indicate secondary outbursts occur at apastron passage during the current epoch, but not in the former. We present a lightcurve for the earlier epoch showing convincing evidence for such apastron outbursts. We find apastron outbursts in 3 sources, all having orbital periods greater than 41d. No such signal is conclusively detected in the more rapidly orbiting systems studied.

  17. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  18. Accretion states in X-ray binaries and their connection to GeV emission

    NASA Astrophysics Data System (ADS)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  19. A Physical Parameterization of the Evolution of X-ray Binary Emission

    NASA Astrophysics Data System (ADS)

    Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael

    2018-01-01

    The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.

  20. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  1. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  2. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  3. X-Ray Emission from Massive Stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Nazé, Y.; Wright, N. J.; Drake, J. J.; Guarcello, M. G.; Prinja, R. K.; Peck, L. W.; Albacete Colombo, J. F.; Herrero, A.; Kobulnicky, H. A.; Sciortino, S.; Vink, J. S.

    2015-11-01

    We report on the analysis of the Chandra-ACIS data of O, B, and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars, and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is investigated. The O-stars in Cyg OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: {log}\\\\frac{{L}{{X}}}{{L}{bol}}=-7.2+/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between LX and Lbol. Out of the three WR stars in Cyg OB2, probably only WR 144 is itself responsible for the observed level of X-ray emission, at a very low {log}\\\\frac{{L}{{X}}}{{L}{bol}}=-8.8+/- 0.2. The X-ray emission of the other two WR-stars (WR 145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.

  4. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  5. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  6. X-ray observations of the colliding wind binary WR 25

    NASA Astrophysics Data System (ADS)

    Arora, Bharti; Pandey, Jeewan Chandra

    2018-04-01

    Using the archival data obtained from Chandra and Suzaku spanning over '8 years, we present an analysis of a WN6h+O4f Wolf-Rayet binary, WR 25. The X-ray light curves folded over a period of '208 d in the 0.3 - 10.0 keV energy band showed phase-locked variability where the count rates were found to be maximum near the periastron passage. The X-ray spectra of WR 25 were well explained by a two-temperature plasma model with temperatures of 0.64 ± 0.01 and 2.96 ± 0.05 keV and are consistent with previous results. The orbital phase dependent local hydrogen column density was found to be maximum just after the periastron passage, when the WN type star is in front of the O star. The hard (2.0 - 10.0 keV) X-ray luminosity was linearly dependent on the inverse of binary separation which confirms that WR 25 is a colliding wind binary.

  7. A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M.; McKay, T.

    2005-05-01

    Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.

  8. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass

  9. HESS J1844-030: A New Gamma-Ray Binary?

    NASA Astrophysics Data System (ADS)

    McCall, Hannah; Errando, Manel

    2018-01-01

    Gamma-ray binaries are comprised of a massive, main-sequence star orbiting a neutron star or black hole that generates bright gamma-ray emission. Only six of these systems have been discovered. Here we report on a candidate stellar-binary system associated with the unidentified gamma-ray source HESS J1844-030, whose detection was revealed in the H.E.S.S. galactic plane survey. Analysis of 60 ks of archival Chandra data and over 100 ks of XMM-Newton data reveal a spatially associated X-ray counterpart to this TeV-emitting source (E>1012 eV), CXO J1845-031. The X-ray spectra derived from these exposures yields column density absorption in the range nH = (0.4 - 0.7) x 1022 cm-2, which is below the total galactic value for that part of the sky, indicating that the source is galactic. The flux from CXO J1845-031 increases with a factor of up to 2.5 in a 60 day timescale, providing solid evidence for flux variability at a confidence level exceeding 7 standard deviations. The point-like nature of the source, the flux variability of the nearby X-ray counterpart, and the low column density absorption are all indicative of a binary system. Once confirmed, HESS J1844-030 would represent only the seventh known gamma-ray binary, providing valuable data to advance our understanding of the physics of pulsars and stellar winds and testing high-energy astrophysical processes at timescales not present in other classes of objects.

  10. X-Ray Binaries and Star Clusters in the Antennae: Optical Cluster Counterparts

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea; Whitmore, Bradley C.

    2012-10-01

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2σ positional uncertainty of ≈0farcs8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, Hα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident XRBs (64%) are hosted by star clusters with ages of ≈6 Myr or less. All of the very young host clusters are fairly massive and have M >~ 3 × 104 M ⊙, with many having masses M ≈ 105 M ⊙. Five of the XRBs are hosted by young clusters with ages τ ≈ 10-100 Myr, while three are hosted by intermediate-age clusters with τ ≈ 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.

  11. Quasiperiodic Oscillations in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    van der Klis, M.; Murdin, P.

    2000-11-01

    The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...

  12. Effects of radiation pressure on the equipotential surfaces in X-ray binaries

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.

  13. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  14. A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2015-04-01

    The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.

  15. The super-orbital modulation of supergiant high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Lobel, A.; Hamann, W.-R.

    2017-10-01

    The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries.

  16. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  17. Identification of high-mass X-ray binaries selected from XMM-Newton observations of the LMC★

    NASA Astrophysics Data System (ADS)

    van Jaarsveld, N.; Buckley, D. A. H.; McBride, V. A.; Haberl, F.; Vasilopoulos, G.; Maitra, C.; Udalski, A.; Miszalski, B.

    2018-04-01

    The Large Magellanic Cloud (LMC) currently hosts around 23 high-mass X-ray binaries (HMXBs) of which most are Be/X-ray binaries. The LMC XMM-Newton survey provided follow-up observations of previously known X-ray sources that were likely HMXBs, as well as identifying new HMXB candidates. In total, 19 candidate HMXBs were selected based on their X-ray hardness ratios. In this paper we present red and blue optical spectroscopy, obtained with Southern African Large Telescope and the South African Astronomical Observatory 1.9-m telescope, plus a timing analysis of the long-term optical light curves from OGLE to confirm the nature of these candidates. We find that nine of the candidates are new Be/X-ray binaries, substantially increasing the LMC Be/X-ray binary population. Furthermore, we present the optical properties of these new systems, both individually and as a group of all the BeXBs identified by the XMM-Newton survey of the LMC.

  18. HST spectrum and timing of the ultracompact X-ray binary candidate 47 Tuc X9

    NASA Astrophysics Data System (ADS)

    Tudor, V.; Miller-Jones, J. C. A.; Knigge, C.; Maccarone, T. J.; Tauris, T. M.; Bahramian, A.; Chomiuk, L.; Heinke, C. O.; Sivakoff, G. R.; Strader, J.; Plotkin, R. M.; Soria, R.; Albrow, M. D.; Anderson, G. E.; van den Berg, M.; Bernardini, F.; Bogdanov, S.; Britt, C. T.; Russell, D. M.; Zurek, D. R.

    2018-05-01

    To confirm the nature of the donor star in the ultracompact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3000-10 000 Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the H α and He II λ4686 emission line equivalent widths - EWH α ≲ 14 Å and -EW_{He {II}} ≲ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L_2-10 keV ≈ 10^{33}-10^{34} erg s-1 is typically - EWH α ˜ 50 Å). This supports our previous suggestion, by Bahramian et al., of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V- and I-band data to search for periodicities. In the optical bands, we recover the 7-d superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet, we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole/ He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.

  19. Massive, wide binaries as tracers of massive star formation

    NASA Astrophysics Data System (ADS)

    Griffiths, Daniel W.; Goodwin, Simon P.; Caballero-Nieves, Saida M.

    2018-05-01

    Massive stars can be found in wide (hundreds to thousands au) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially, and probably only one will survive if more than one is present initially. Therefore, any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74), which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass initial mass function (IMF) for its total mass suggests that however massive stars form, they `randomly sample' the IMF (as the massive stars did not `know' about each other).

  20. X1908+075: An X-Ray Binary with a 4.4 Day Period

    NASA Astrophysics Data System (ADS)

    Wen, Linqing; Remillard, Ronald A.; Bradt, Hale V.

    2000-04-01

    X1908+075 is an optically unidentified and highly absorbed X-ray source that appeared in early surveys such as Uhuru, OSO 7, Ariel 5, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range 2-12 mcrab at 2-10 keV, and the position was localized to ~0.5d. We use the Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor (ASM) to confirm our expectation that a particular Einstein/IPC detection (1E 1908.4+0730) provides the correct position for X1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~8 mcrab (1.5-12 keV) over a 3 yr interval beginning in 1996 February. Furthermore, we detect a period of 4.400+/-0.001 days with a false-alarm probability less than 10-7. The folded light curve is roughly sinusoidal, with an amplitude that is 26% of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X1908+075 is an X-ray binary with a high-mass companion star.

  1. X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in

    2011-08-20

    We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less

  2. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  3. Binary model of Circinus X-1. I - Eccentricity from combined X-ray and radio observations

    NASA Technical Reports Server (NTRS)

    Murdin, P.; Jauncey, D. L.; Lerche, I.; Nicolson, G. D.; Kaluzienski, L. J.; Holt, S. S.; Haynes, R. F.

    1980-01-01

    A binary star model is used to account for the 16.59-d flaring behavior of the X-ray emission from Circinus X-1. The orbital eccentricity of 0.8 + or - 0.1 is derived from the X-ray light curve by assuming that the sharp X-ray cut-off every 16.59-d is a result of bound-free absorption in the primary star's stellar wind. The shape of the light curve has changed over the last eight years, and this is interpreted as due to orbital precession of the binary system. Simultaneous radio and X-ray observations of the flare from Circinus X-1 on February 1-5, 1978 are reported. These are accounted for within the framework of the model. The radio observations at 5 GHz are used independently to derive a high value of the orbital eccentricity (e = 0.7).

  4. PROBING ELECTRON-CAPTURE SUPERNOVAE: X-RAY BINARIES IN STARBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Sepinsky, J. F.; Kalogera, V.

    We develop population models of high-mass X-ray binaries (HMXBs) formed after bursts of star formation and we investigate the effect of electron-capture supernovae (ECS) of massive ONeMg white dwarfs and the hypothesis that ECS events are associated with typically low supernova kicks imparted to the nascent neutron stars. We identify an interesting ECS bump in the time evolution of HMXB numbers; this bump is caused by significantly increased production of wind-fed HMXBs 20-60 Myr post-starburst. The amplitude and age extent of the ECS bump depend on the strength of ECS kicks and the mass range of ECS progenitors. We alsomore » find that ECS-HMXBs form through a specific evolutionary channel that is expected to lead to binaries with Be donors in wide orbits. These characteristics, along with their sensitivity to ECS properties, provide us with an intriguing opportunity to probe ECS physics and progenitors through studies of starbursts of different ages. Specifically, the case of the Small Magellanic Cloud, with a significant observed population of Be-HMXBs and starburst activity 30-60 Myr ago, arises as a promising laboratory for understanding the role of ECS in neutron star formation.« less

  5. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; hide

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  6. A luminous gamma-ray binary in the large magellanic cloud

    DOE PAGES

    Corbet, R. H. D.; Chomiuk, L.; Coe, M. J.; ...

    2016-09-27

    Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Previously, only a handful of such systems have been discovered, all within our Galaxy. We report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the Fermi Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third Fermi LAT catalog. This is the first such system to be found outside the Milky Way. Furthermore, the system has an orbital period ofmore » 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0–673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in anti-phase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.« less

  7. An x-ray study of massive star forming regions with CHANDRA

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2007-08-01

    Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts

  8. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  9. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    NASA Astrophysics Data System (ADS)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  10. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2015-08-01

    We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  11. Recognition of binary x-ray systems utilizing the doppler effect

    NASA Technical Reports Server (NTRS)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  12. Fast transient X-rays from flare stars and RS CVn binaries

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1987-12-01

    The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.

  13. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  14. Optical spectroscopy of the Be/X-ray binary V850 Centauri/GX 304-1 during faint X-ray periodical activity

    NASA Astrophysics Data System (ADS)

    Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.

    2017-07-01

    Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (I ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.

  15. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  16. A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; Van Den Berg, Maureen

    2017-01-01

    We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.

  17. An X-ray excited wind in Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Day, C. S. R.; Stevens, Ian R.

    1993-01-01

    We propose a new interpretation of the behavior of the notable X-ray binary source Centaurus X-3. Based on both theoretical and observational arguments (using EXOSAT data), we suggest that an X-ray excited wind emanating from the O star is present in this system. Further, we suggest that this wind is responsible for the mass transfer in the system rather than Roche-lobe overflow or a normal radiatively driven stellar wind. We show that the ionization conditions in Cen X-3 are too extreme to permit a normal radiatively driven wind to emanate from portions of the stellar surface facing toward the neutron star. In addition, the flux of X-rays from the neutron star is strong enough to drive a thermal wind from the O star with sufficient mass-flux to power the X-ray source. We find that this model can reasonably account for the long duration of the eclipse transitions and other observed features of Cen X-3. If confirmed, this will be the first example of an X-ray excited wind in a massive binary. We also discuss the relationship between the excited wind in Cen X-3 to the situation in eclipsing millisecond pulsars, where an excited wind is also believed to be present.

  18. X-RAY BINARIES AND STAR CLUSTERS IN THE ANTENNAE: OPTICAL CLUSTER COUNTERPARTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangelov, Blagoy; Chandar, Rupali; Prestwich, Andrea

    2012-10-20

    We compare the locations of 82 X-ray binaries (XRBs) detected in the merging Antennae galaxies by Zezas et al., based on observations taken with the Chandra X-Ray Observatory, with a catalog of optically selected star clusters presented by Whitmore et al., based on observations taken with the Hubble Space Telescope. Within the 2{sigma} positional uncertainty of Almost-Equal-To 0.''8, we find 22 XRBs are coincident with star clusters, where only two to three chance coincidences are expected. The ages of the clusters were estimated by comparing their UBVI, H{alpha} colors with predictions from stellar evolutionary models. We find that 14 ofmore » the 22 coincident XRBs (64%) are hosted by star clusters with ages of Almost-Equal-To 6 Myr or less. All of the very young host clusters are fairly massive and have M {approx}> 3 Multiplication-Sign 10{sup 4} M {sub Sun }, with many having masses M Almost-Equal-To 10{sup 5} M {sub Sun }. Five of the XRBs are hosted by young clusters with ages {tau} Almost-Equal-To 10-100 Myr, while three are hosted by intermediate-age clusters with {tau} Almost-Equal-To 100-300 Myr. Based on the results from recent N-body simulations, which suggest that black holes are far more likely to be retained within their parent clusters than neutron stars, we suggest that our sample consists primarily of black hole binaries with different ages.« less

  19. A Comparison Between Spectral Properties of ULXs and Luminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Colbert, E. J. M.; Roberts, T. P.

    2004-05-01

    What is special about the 1039 erg s-1 limit that is used to define the ULX class? We investigate this question by analyzing Chandra X-ray spectra of 71 X-ray bright point sources from nearby galaxies. Fifty-one of these sources are ULXs (LX(0.3-8.0 keV) ≥ 1039 erg s-1), and 20 sources (our comparison sample) are less-luminous X-ray binaries with LX(0.3-8.0 keV) = 1038-39 erg s-1. Our sample objects were selected from the Chandra archive to have ≥1000 counts and thus represent the highest quality spectra in the Chandra archives for extragalactic X-ray binaries and ULXs. We fit the spectra with one-component models (e.g., cold absorption with power-law, or cold absorption with multi-colored disk blackbody) and two-component models (e.g. absorption with both a power-law and a multi colored disk blackbody). A crude measure of the spectral states of the sources are determined observationally by calibrating the strength of the disk (blackbody) and coronal (power-law) components. These results are then use to determine if spectral properties of the ULXs are statistically distinct from those of the comparison objects, which are assumed to be ``normal'' black-hole X-ray binaries.

  20. Sigma observations of the low mass X-ray binaries of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.

    1995-01-01

    The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.

  1. IGR J17329-2731: The birth of a symbiotic X-ray binary

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.

    2018-05-01

    We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

  2. The atmospheric structures of the companion stars of eclipsing binary x ray sources

    NASA Technical Reports Server (NTRS)

    Clark, George W.

    1992-01-01

    This investigation was aimed at determining structural features of the atmospheres of the massive early-type companion stars of eclipse x-ray pulsars by measurement of the attenuation of the x-ray spectrum during eclipse transitions and in deep eclipse. Several extended visits were made to ISAS in Japan by G. Clark and his graduate student, Jonathan Woo to coordinate the Ginga observations and preliminary data reduction, and to work with the Japanese host scientist, Fumiaki Nagase, in the interpretation of the data. At MIT extensive developments were made in software systems for data interpretation. In particular, a Monte Carlo code was developed for a 3-D simulation of the propagation of x-rays from the neutron star through the ionized atmosphere of the companion. With this code it was possible to determine the spectrum of Compton-scattered x-rays in deep eclipse and to subtract that component from the observed spectra, thereby isolating the software component that is attributable in large measure to x-rays that have been scattered by interstellar grains. This research has culminated in the submission of paper to the Astrophysical Journal on the determination of properties of the atmosphere of QV Nor, the BOI companion of 4U 1538-52, and the properties of interstellar dust grains along the line of sight from the source. The latter results were an unanticipated byproduct of the investigation. Data from Ginga observations of the Magellanic binaries SMC X-1 and LMC X-4 are currently under investigation as the PhD thesis project of Jonathan Woo who anticipated completion in the spring of 1993.

  3. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    NASA Astrophysics Data System (ADS)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  4. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2})more » to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.« less

  5. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  6. General Relativistic Effects and QPOs in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Markovic, D.; Lamb, F. K.

    We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of weakly damped global gravitomagnetic (Lense-Thirring) warping modes of the inner (viscous) accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is about 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 ~ 0.2. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce QPOs with the coherence observed in low-mass X-ray binaries.

  7. Interactions of X-ray Binaries with Their Surrounding Material

    NASA Astrophysics Data System (ADS)

    Servillat, Mathieu; Chaty, S.; Coleiro, A.; Tang, S.; Grindlay, J. E.; Los, E.

    2013-04-01

    We can observe the interactions of high mass X-ray binaries with their surrounding material in two complementary ways: variability over long time scales, and direct infrared observation of dust/gas. This gives unprecedented clues on the formation and evolution of those systems. Using Herschel infrared observations of high mass X-ray binaries and of ultra-luminous X-ray sources, we aim to detect and characterize the surrounding material. In the case of ultra-luminous X-ray sources, due to the enormous amount of energy radiated, strong interactions with their environment are expected, particularly if the emission is not beamed and if they host an intermediate mass black hole. This provides a unique test for the existence of such objects. The Digital Access to a Sky Century at Harvard (DASCH) is a project to digitize and analyze the scientific data contained in the 530 000 Harvard College Observatory plates taken between the 1880s and 1990s, which is a unique resource for studying temporal variations in the universe on 10-100 yr timescales. The Be star SAO 49275 shows significant slow variability of 1 magnitude on time scales 10-50 years. This variability seems connected to the formation and disappearance of the decretion disk of the Be star, maybe triggered by the presence of a compact object companion, possibly a white dwarf.

  8. X-Ray Emission from an Asymmetric Blast Wave and a Massive White Dwarf in the Gamma Ray Emitting Nova V407 CYG

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura

    2012-01-01

    Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.

  9. Ginga observations of dipping low mass X ray binaries

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Mukai, Koji; Williams, O. Rees; Jones, Mark H.; Parmar, Arvind N.; Corbet, Robin H. D.

    1989-01-01

    Ginga observations of several low mass X ray binaries displaying pronounced dips of variable depth and duration in their X ray light curves are analyzed. The periodic occultation of the central X ray source by azimuthal accretion disk structure is considered. A series of spectra selected by intensity from the dip data from XB1916-053, are presented. The effects of a rapidly changing column density upon the spectral fitting results are modeled. EXO0748-676 was observed in March 1989 for three days. The source was found to be in a bright state with a 1 to 20 keV flux of 8.8 x 10 (exp -10) erg/sqcms. The data include two eclipses, observed with high time resolution.

  10. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Pravdo, S. H.; Saba, J. R.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 has been observed. The source pulse period was 528.93 + or - 0.10 s. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 + or - 3 deg and the 4-hour transition to and from eclipse suggest an early-type giant or supergiant primary star.

  11. Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu, E-mail: jfzhang@xtu.edu.cn, E-mail: fyxiang@xtu.edu.cn, E-mail: lujf@xmu.edu.cn

    2017-02-10

    We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magneticmore » field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ -ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ -ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ -ray bands.« less

  12. X-ray binary formation in low-metallicity blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Prestwich, A.

    2014-07-01

    X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.

  13. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  14. Stellar wind measurements for Colliding Wind Binaries using X-ray observations

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2017-11-01

    We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.

  15. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  16. Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.; hide

    2009-01-01

    We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.

  17. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.

  18. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.

  19. X-ray Binaries in the Central Region of M31

    NASA Astrophysics Data System (ADS)

    Trudolyubov, Sergey P.; Priedhorsky, W. C.; Cordova, F. A.

    2006-09-01

    We present the results of the systematic survey of X-ray sources in the central region of M31 using the data of XMM-Newton observations. The spectral properties and variability of 124 bright X-ray sources were studied in detail. We found that more than 80% of sources observed in two or more observations show significant variability on the time scales of days to years. At least 50% of the sources in our sample are spectrally variable. The fraction of variable sources in our survey is much higher than previously reported from Chandra survey of M31, and is remarkably close to the fraction of variable sources found in M31 globular cluster X-ray source population. We present spectral distribution of M31 X-ray sources, based on the spectral fitting with a power law model. The distribution of spectral photon index has two main peaks at 1.8 and 2.3, and shows clear evolution with source luminosity. Based on the similarity of the properties of M31 X-ray sources and their Galactic counterparts, we expect most of X-ray sources in our sample to be accreting binary systems with neutron star and black hole primaries. Combining the results of X-ray analysis (X-ray spectra, hardness-luminosity diagrams and variability) with available data at other wavelengths, we explore the possibility of distinguishing between bright neutron star and black hole binary systems, and identify 7% and 25% of sources in our sample as a probable black hole and neutron star candidates. Finally, we compare the M31 X-ray source population to the source populations of normal galaxies of different morphological type. Support for this work was provided through NASA Grant NAG5-12390. Part of this work was done during a summer workshop ``Revealing Black Holes'' at the Aspen Center for Physics, S. T. is grateful to the Center for their hospitality.

  20. The infrared counterpart of the eclipsing X-ray binary HO253 + 193

    NASA Technical Reports Server (NTRS)

    Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph

    1992-01-01

    We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.

  1. GBM Observations of Be X-Ray Binary Outbursts

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  2. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes, V. A.; Hofner, P.; Anderson, C.

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-raymore » sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.« less

  3. General Relativistic Effects and QPOs in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Markovic, D.; Lamb, F.

    1999-05-01

    We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) with frequencies 20--300 Hz observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of global gravitomagnetic (Lense-Thirring) warping modes of the inner accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 0.2. The highest-frequency warping modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values 2--50. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce oscillations with the coherence observed in X-ray binaries.

  4. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  5. FORMATION AND EVOLUTION OF GALACTIC INTERMEDIATE/LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    2015-08-10

    We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries (I/LMXBs) by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs and present their distribution in the initial donor mass versus initial orbital period diagram. We then follow the evolution of the I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We find that the birthrate of the I/LMXB population is in the range of 9 × 10{sup −6}–3.4 × 10{sup −5} yr{sup −1}, compatiblemore » with that of BMSPs that are thought to descend from I/LMXBs. We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries with orbital periods ≲1 day and donor masses ≲0.3M{sub ⊙}. The resultant BMSPs have orbital periods ranging from less than 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates (∼10{sup −10} M{sub ⊙} yr{sup −1}) of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ∼0.1–10 days is severely underestimated. These discrepancies imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss.« less

  6. EVOLUTION OF INTERMEDIATE-MASS X-RAY BINARIES DRIVEN BY THE MAGNETIC BRAKING OF AP/BP STARS. I. ULTRACOMPACT X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen-Cong; Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn

    2016-10-20

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced bymore » the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.« less

  7. Dark jets in the soft X-ray state of black hole binaries?

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.

    2017-04-01

    X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.

  8. The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.; hide

    2001-01-01

    Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  9. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  10. Searches for millisecond pulsations in low-mass X-ray binaries, 2

    NASA Technical Reports Server (NTRS)

    Vaughan, B. A.; Van Der Klis, M.; Wood, K. S.; Norris, J. P.; Hertz, P.; Michelson, P. F.; Paradijs, J. Van; Lewin, W. H. G.; Mitsuda, K.; Penninx, W.

    1994-01-01

    Coherent millisecond X-ray pulsations are expected from low-mass X-ray binaries (LMXBs), but remain undetected. Using the single-parameter Quadratic Coherence Recovery Technique (QCRT) to correct for unknown binary orbit motion, we have performed Fourier transform searches for coherent oscillations in all long, continuous segments of data obtained at 1 ms time resolution during Ginga observations of LMXB. We have searched the six known Z sources (GX 5-1, Cyg X-2, Sco X-1, GX 17+2, GX 340+0, and GX 349+2), seven of the 14 known atoll sources (GX 3+1. GX 9+1, GX 9+9, 1728-33. 1820-30, 1636-53 and 1608-52), the 'peculiar' source Cir X-1, and the high-mass binary Cyg X-3. We find no evidence for coherent pulsations in any of these sources, with 99% confidence limits on the pulsed fraction between 0.3% and 5.0% at frequencies below the Nyquist frequency of 512 Hz. A key assumption made in determining upper limits in previous searches is shown to be incorrect. We provide a recipe for correctly setting upper limits and detection thresholds. Finally we discuss and apply two strategies to improve sensitivity by utilizing multiple, independent, continuous segments of data with comparable count rates.

  11. Outflows in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Diaz Trigo, M.

    2017-10-01

    Accretion onto neutron stars and black holes powers the most luminous phenomena in the Universe. Associated to it is the existence of outflows, in the form of uncollimated winds or highly collimated relativistic jets. The origin of outflows and their feedback to the environment is one of the most debated topics in astrophysics today. In this talk I will review the current understanding of accretion disc winds in X-ray binaries, their launching mechanism and their relation to specific accretion states. I will also discuss the potential interplay between the appearance/disappearance of such winds and relativistic jets and the insight gained with ongoing multi-wavelength observational programmes focused on the variability of such phenomena.

  12. Searching for Exoplanets around X-Ray Binaries with Accreting White Dwarfs, Neutron Stars, and Black Holes

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Di Stefano, Rosanne

    2018-05-01

    We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.

  13. Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-01-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  14. A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen

    2017-03-01

    We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.

  15. Circinus X-1: a Laboratory for Studying the Accretion Phenomenon in Compact Binary X-Ray Sources. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Robinson-Saba, J. L.

    1983-01-01

    Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.

  16. Einstein X-ray observations of M101

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Romaine, S.

    1990-01-01

    The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.

  17. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  18. Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system.

    PubMed

    Valsecchi, Francesca; Glebbeek, Evert; Farr, Will M; Fragos, Tassos; Willems, Bart; Orosz, Jerome A; Liu, Jifeng; Kalogera, Vassiliki

    2010-11-04

    The X-ray source M33 X-7 in the nearby galaxy Messier 33 is among the most massive X-ray binary stellar systems known, hosting a rapidly spinning, 15.65M(⊙) black hole orbiting an underluminous, 70M(⊙) main-sequence companion in a slightly eccentric 3.45-day orbit (M(⊙), solar mass). Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-ray luminosity, the star's underluminosity, the black hole's spin and the orbital eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report simulations of evolutionary tracks which reveal that if M33 X-7 started as a primary body of 85M(⊙)-99M(⊙) and a secondary body of 28M(⊙)-32M(⊙), in a 2.8-3.1-d orbit, its observed properties can be consistently explained. In this model, the main-sequence primary transfers part of its envelope to the secondary and loses the rest in a wind; it ends its life as a ∼16M(⊙) helium star with an iron-nickel core that collapses to a black hole (with or without an accompanying supernova). The release of binding energy, and possibly collapse asymmetries, 'kick' the nascent black hole into an eccentric orbit. Wind accretion explains the X-ray luminosity, and the black-hole spin can be natal.

  19. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    NASA Astrophysics Data System (ADS)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  20. Formation of Thorne-Żytkow objects in close binaries

    NASA Astrophysics Data System (ADS)

    Hutilukejiang, Bumareyamu; Zhu, Chunhua; Wang, Zhaojun; Lü, Guoliang

    2018-04-01

    Thorne-Żytkow objects (TŻOs), originally proposed by Thorne and Żytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of TŻOs in close binary stars. The Galactic birth rate of TŻOs is about 1.5× 10^{-4} yr^{-1}. Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of TŻOs via the above different progenitors are 1.7× 10^{-5}, 1.2× 10^{-4}, 0.7× 10^{-5}, 0.6× 10^{-5} yr^{-1}, respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.

  1. A numerical investigation of wind accretion in persistent supergiant X-ray binaries - I. Structure of the flow at the orbital scale

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2017-05-01

    Classical supergiant X-ray binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035-1037 erg s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds that participate to the accretion process. Thanks to the parametrization we retained the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier that drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent supergiant X-ray binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).

  2. Formation of black hole x-ray binaries in globular clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl; Rasio, Frederic

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes within globular clusters. We show that it is possible to form mass-transferring binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in globular clusters spanning a large range in present-day properties. We show that the presence of mass-transferring black hole systems has little correlation with the total number of black holes within the cluster at any time. In addition to mass-transferring binaries retained within their host clusters at late times, we also examine the black hole and neutron star binaries that are ejected from their host clusters. These ejected systems may contribute to the low-mass x-ray binary population in the galactic field.

  3. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  4. Cyclotron Line and Wind studies of Galactic High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir

    High mass X-ray binaries are rotating neutron stars with very strong magnetic fields that channel accreting matter from their companion star onto the magnetic poles with subsequent collimated X-ray emission. The stars are fed either by a strong stellar wind of the optical companion or by an accretion disk, where material follows the magnetic field lines, emitting X-rays throughout this process either in the accretion column or directly from the neutron star surface. The fast rotation and the narrow collimation of the X-ray emission creates an observed pulsation, forming the concept of a pulsar. Some of the key questions of these thesis are the emission processes above the magnetic pole, including the influence of the magnetic field, the formation of the X-ray beam, and the structure of the stellar wind. An important process is the effect of the teraGauss magnetic field. Cyclotron resonance scattering creates spectral features similar to broad absorption lines (CRSFs or cyclotron lines) that are directly related to the magnetic field. The discovery of cyclotron lines ˜ 35 years ago allows for the only direct method to measure the magnetic field strength in neutron star systems. Variations in the line parameters throughout the pulse phase, and a dependence in the observed luminosity can also aid in the understanding of these processes. In this thesis I present the results of phase averaged and phase resolved analysis of the three high mass X-ray binaries CenX-3, 1A 1118--61, and GX301--2. The data used for this work were obtained with NASA's Rossi X-ray Timing Explorer and the Japanese Suzaku mission. Both satellites are ideal to cover the broad energy band, where CRSFs occur and are necessary for understanding the continuum as a whole. In the process of investigating the 3 sources, I discovered a CRSF at ˜ 55 keV in the transient binary 1A 1118--61, which indicates one of the strongest magnetic fields known in these objects. I used the variations of the CRSF in GX

  5. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  6. Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

    NASA Astrophysics Data System (ADS)

    Alfonso-Garzón, J.; Fabregat, J.; Reig, P.; Kajava, J. J. E.; Sánchez-Fernández, C.; Townsend, L. J.; Mas-Hesse, J. M.; Crawford, S. M.; Kretschmar, P.; Coe, M. J.

    2017-11-01

    Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. Aims: We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. Methods: We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data. Results: Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002-2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998-1999 and 2002-2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc. Conclusions: We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density

  7. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a

  8. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    NASA Technical Reports Server (NTRS)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  9. X-raying a galactic gravitational lense

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2016-09-01

    It can be very difficult to detect compact objects that are not accreting in binary systems. Therefore we know very little about such objects and likely would not notice them even if they are very nearby. Two most obvious examples are very old isolated neutron stars (those that may be beyond the death line and hence are lacking pulsed radio or gamma-ray emission) and isolated stellar-mass black holes (none have been identified so far). OGLE3-ULENSPAR-05 is one of the few massive objects identified in microlensing searches for dark massive objects by the OGLE collaboration. We propose to detect the source or set stringent limit on its X-ray luminosity.

  10. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  11. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    NASA Technical Reports Server (NTRS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  12. Two component X-ray emission from RS CVn binaries

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; White, N. E.; Holt, S. S.; Becker, R. H.

    1980-01-01

    A summary of results from the solid state spectrometer on the Einstein Observatory for 7 RS CVn binaries is presented. The spectra of all require two emission components, evidenced by line emission characteristic of plasma at 4 to 8 x 10 to the 6th power and bremsstrahlung characteristic of 20 to 100 x 10 to the 6th power K. The data are interpreted in terms of magnetic coronal loops similar to those seen on the Sun, although with different characteristic parameters. The emission regions could be defined by separate magnetic structures. For pressure less than approximately 10 dynes/sq cm the low temperature plasma would be confined within the stellar radii, while the high temperature plasma would, for the synchronous close binaries, fill the binary orbits. However, for loop pressures exceeding 100 dynes/sq cm, the high temperature components would also be confined to within the stellar radii, in loops covering only small fractions of the stellar surfaces. While the radio properties and the occurrence of X-ray flares suggest the larger emission regions, the observations of time variations leave the ambiguity unresolved.

  13. LoCuSS: The infall of X-ray groups onto massive clusters

    NASA Astrophysics Data System (ADS)

    Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.

    2018-03-01

    Galaxy clusters are expected to form hierarchically in a ΛCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters ( ˜ 1015 M⊙) at z ˜ 0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2 × 1013 - 7 × 1014 M⊙, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ˜25 × higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2 × 1014 M⊙, or 19 ± 5% of the mass within the primary cluster itself. We estimate that ˜1015 M⊙ clusters increase their masses by 16 ± 4% between z = 0.223 and the present day due to the accretion of groups with M200 ≥ 1013.2 M⊙. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound within halos. The mass function of the infalling X-ray groups appears significantly top heavy with respect to that of "field" X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter halos being biased tracers of the underlying large-scale density distribution.

  14. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    NASA Astrophysics Data System (ADS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  15. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    NASA Technical Reports Server (NTRS)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  16. INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, themore » humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.« less

  17. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2016-02-01

    We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  18. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    NASA Astrophysics Data System (ADS)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-07-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy cannot be fully accounted for by the mass or bolometric correction gap, or by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  19. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    NASA Astrophysics Data System (ADS)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-05-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  20. Probing massive stars around gamma-ray burst progenitors

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Smoot, George F.

    2015-10-01

    Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.

  1. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE PAGES

    Grinberg, V.; Hell, N.; El Mellah, I.; ...

    2017-12-15

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  2. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, V.; Hell, N.; El Mellah, I.

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  3. Extended hard-X-ray emission in the inner few parsecs of the Galaxy.

    PubMed

    Perez, Kerstin; Hailey, Charles J; Bauer, Franz E; Krivonos, Roman A; Mori, Kaya; Baganoff, Frederick K; Barrière, Nicolas M; Boggs, Steven E; Christensen, Finn E; Craig, William W; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hong, Jaesub; Madsen, Kristin K; Nynka, Melania; Stern, Daniel; Tomsick, John A; Wik, Daniel R; Zhang, Shuo; Zhang, William W; Zoglauer, Andreas

    2015-04-30

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

  4. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  5. Research on the Orbital Period of Massive Binaries

    NASA Astrophysics Data System (ADS)

    Zhao, E.; Qain, S.

    2011-12-01

    Massive binary is the kind of binary, whose spectral type is earlier than B5. Research on massive binary plays an important role in the mass and angular momentum transfer or loss between the components, and the evolution of binary. Some massive binaries are observed and analyzed, including O-type binary LY Aur, B-type contact binary RZ Pyx and B-type semi-detached binary AI Cru. It is found that all of their periods have a long-term increasing, which indicates that the system is undergoing a Case A slow mass transfer stage on the nuclear time-scale of the secondary. Moreover, analysis show a cyclic change of orbital period, which can be explained by the light-travel effect time of the third body.

  6. MS 1603.6 + 2600, an unusual X-ray selected binary system at high Galactic latitude

    NASA Technical Reports Server (NTRS)

    Morris, Simon L.; Liebert, James; Stocke, John T.; Gioia, Isabella M.; Schild, Rudy E.

    1990-01-01

    The discovery of an eclipsing binary system at Galactic latitude 47 deg, found as a serendipitous X-ray source in the Einstein Extended Medium Sensitivity Survey, is described. The object has X-ray flux 1.1 x 10 to the -12th ergs/sq cm s (0.3-3.5 keV) and mean magnitude R = 19.4. An orbital period of 111 minutes is found. The problem discussed is whether the system has a white dwarf or neutron star primary, in the end preferring the neutron star primary model. If the system has either optical or X-ray luminosities typical of low mass X-ray binaries (LMXB), it must be at a very large distance (30-80 kpc). Blueshifted He I absorption is seen, indicating cool outflowing material, similar to that seen in the LMXB AC 211 in the globular cluster M15.

  7. Discovery of X-ray pulsations in the Be/X-ray binary IGR J06074+2205

    NASA Astrophysics Data System (ADS)

    Reig, P.; Zezas, A.

    2018-05-01

    Context. IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries (BeXBs). In BeXBs, accretion onto the neutron star occurs via the transfer of material from the Be star's circumstellar disk. Thus, in the absence of the disk, no X-ray should be detected. Aims: The main goal of this work is to study the quiescent X-ray emission of IGR J06074+2205 during a disk-loss episode. Methods: We obtained light curves at different energy bands and a spectrum covering the energy range 0.4-12 keV. We used Fourier analysis to study the aperiodic variability and epoch folding methods to study the periodic variability. Model fitting to the energy spectrum allowed us to identify the possible physical processes that generated the X-rays. Results: We show that at the time of the XMM-Newton observation, the decretion disk around the Be star had vanished. Still, accretion appears as the source of energy that powers the high-energy radiation in IGR J06074+2205. We report the discovery of X-ray pulsations with a pulse period of 373.2 s and a pulse fraction of 50%. The 0.4-12 keV spectrum is well described by an absorbed power law and blackbody components with the best fitting parameters: NH = (6.2 ± 0.5) × 1021 cm-2, kTbb = 1.16 ± 0.03 keV, and Γ = 1.5 ± 0.1. The absorbed X-ray luminosity is LX = 1.4 × 1034 erg s-1 assuming a distance of 4.5 kpc. Conclusions: The detection of X-ray pulsations confirms the nature of IGR J06074+2205 as a BeXB. We discuss various scenarios to explain the quiescent X-ray emission of this pulsar. We rule out cooling of the neutron star surface and magnetospheric emission and conclude that accretion is the most likely scenario. The origin of the accreted material remains an open question.

  8. Evidence for Quasi-Periodic X-ray Dips from an ULX: Implications for the Binary Motion and the Orbital Inclination

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2012-01-01

    We report results from long-term X-ray (0.3-8.0 keY) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Our primary results are: (1) the discovery of quasi-periodic dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy-dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days the amplitude of which decreases during the second half of the light curve and (3) energy spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data, possibly due to a change in the ionization state of the circumbinary material. We interpret the X-ray modulations in the context of binary motion in analogy to that seen in high-inclination low-mass X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days in contrast to the 115.5 day quasi-sinusoidal period previously reported. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk (similar to the phenomenon of dipping LMXBs), this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination approx > 60 deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  9. Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs

    NASA Astrophysics Data System (ADS)

    Fu, Hai

    2016-09-01

    Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.

  10. LoCuSS: The infall of X-ray groups on to massive clusters

    NASA Astrophysics Data System (ADS)

    Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.

    2018-07-01

    Galaxy clusters are expected to form hierarchically in a Λ cold dark matter (ΛCDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters ( ˜ 1015 M⊙) at z ˜ 0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2 × 1013-7 × 1014 M⊙, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ˜25× higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2 × 1014 M⊙, or 19 ± 5 per cent of the mass within the primary cluster itself. We estimate that ˜1015 M⊙ clusters increase their masses by 16 ± 4 per cent between z = 0.223 and the present day due to the accretion of groups with M200 ≥ 1013.2 M⊙. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound within haloes. The mass function of the infalling X-ray groups appears significantly top heavy with respect to that of `field' X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter haloes being biased tracers of the underlying large-scale density distribution.

  11. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  12. Clumpy wind accretion in Supergiant X-ray Binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  13. A Deep Pulse Search in 11 Low Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Patruno, A.; Wette, K.; Messenger, C.

    2018-06-01

    We present a systematic coherent X-ray pulsation search in 11 low mass X-ray binaries (LMXBs). We select a relatively broad variety of LMXBs, including persistent and transient sources, spanning orbital periods between 0.3 and 17 hr. We use about 3.6 Ms of data collected by the Rossi X-Ray Timing Explorer and XMM-Newton and apply a semi-coherent search strategy to look for weak and persistent pulses in a wide spin frequency range. We find no evidence for X-ray pulsations in these systems and consequently set upper limits on the pulsed sinusoidal semi-amplitude below 1.6% for ten outbursting/persistent LMXBs and 6% for a quiescent system; the upper limits are further refined, by searching a narrower parameter space around the outliers, down to 0.14%–0.78% and 2.9%, respectively. These results suggest that weak pulsations might not form in (most) non pulsating LMXBs.

  14. Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fritze, Hannah; Wright, Simon; Kilgard, Roy

    2018-01-01

    X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.

  15. The X-Ray Globular Cluster Population in NGC 1399

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Loewenstein, Michael; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.

  16. First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.

    2007-01-01

    After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.

  17. Using 3D dynamic models to reproduce X-ray properties of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The two massive stars contained in these systems have powerful radiatively driven stellar winds, and the conversion of their kinetic energy to heat (up to 108 K) at the wind-wind collision region generates hard thermal X-rays (up to 10 keV). Rich data sets exist of several multi-year-period systems, as well as key observations of shorter period systems, and detailed models are required to disentangle the phase-locked emission and absorption processes in these systems. To interpret these X-ray light curves and spectra, this dissertation models the wind-wind interaction of CWBs using 3D smoothed particle hydrodynamics (SPH), and solves the 3D formal solution of radiative transfer to synthesize the model X-ray properties, allowing direct comparison with the colliding-wind X-ray spectra observed by, e.g., RXTE and XMM. The multi-year-period, highly eccentric CWBs we examine are eta Carinae and WR140. For the commonly inferred primary mass loss rate of ˜10 -3 Msun/yr, eta Carinae's 3D model reproduces quite well the 2-10 keV RXTE light curve, hardness ratio, and dynamic spectra in absolute units. This agreement includes the ˜3 month X-ray minimum associated with the 1998.0 and 2003.5 periastron passages, which we find to occur as the primary wind encroaches into the secondary wind's acceleration region. This modeling provides further evidence that the observer is mainly viewing the system through the secondary's shock cone, and suggests that periastron occurs ~1 month after the onset of the X-ray minimum. The model RXTE observables of WR140 match the data well in absolute units, although the decrease in model X-rays around periastron is less than observed. There is very good agreement between the observed XMM spectrum taken on the rise before periastron and the model. We also model two short-period CWBs, HD150136, which has a wind-star collision, and delta Orionis A, the closest eclipsing

  18. Characterizing the X-ray Emission in Small Magellanic Cloud Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Man, Nicole; Auchettl, Katie; Lopez, Laura

    2018-01-01

    The Small Magellanic Cloud is a close, metal-poor galaxy with active star formation, and it has a diverse population of 24 supernova remnants (SNRs) that have been identified at several wavelengths. Past work has characterized the X-ray emission in these sources separately and aimed to constrain their explosive origins from observations with Chandra and XMM-Newton. Three SNRs have possible evidence for Type Ia explosions based on strong Fe-L emission in their X-ray spectra, although the environments and intermediate-mass element abundances are more consistent with those of core-collapse SNe. In this poster, we analyze the archival Chandra and XMM-Newton observations of the SMC SNR sample, and we model the sources' X-ray spectra in a systematic way to derive the plasma properties and to constrain the nature of the explosions. In one SNR, we note the presence of an X-ray binary near the source's geometric center, suggesting the compact object was produced in the SN explosion. As one of only three SNRs known in the Local Group to host a binary system, this source is worthy of follow-up investigations to probe explosions of massive stars in binary systems.

  19. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    NASA Technical Reports Server (NTRS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  20. X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Naze, Y.; Rauw, G.

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P{sub A} = 21 days) and B (O8 III+o9 v, P{sub B} = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT {approx_equal} 0.2, 0.7, and 2 keV, respectively,more » and a circumstellar absorption of {approx_equal}0.2 x 10{sup 22} cm{sup -2}. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of {approx_equal}7 x 10{sup -13} erg s{sup -1} cm{sup -2}, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.« less

  1. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  2. Uncovering the identities of compact objects in high-mass X-ray binaries and gamma-ray binaries by astrometric measurements

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M. S.; Yano, T.; Gouda, N.

    2018-03-01

    We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.

  3. NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra

    2018-01-01

    Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.

  4. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  5. Studies of neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W. J.

    Neutron stars represent the endpoint in stellar evolution for stars with initial masses between ~3 and 8 solar masses. They are the densest non- singularities in the universe, cramming more than a solar mass of matter into a sphere with a radius of about 10 km. Such a large mass-to-radius ratio implies deep potential wells, so that when mass transfer is taking place ~10% of the rest-mass is liberated as gravitational binding energy, resulting in prodigious amounts of X-ray emission that contains valuable information on the physical characteristics in accreting binary systems. Much of my research in this dissertation focuses on the spectroscopic and timing properties of the canonical thermonuclear bursting source GS 1826-238. By measuring the relationship between the X-ray flux (which is assumed to trace the accretion rate onto the stellar surface) and the time intervals between subsequent bursts, I find that although the intervals usually decreased proportionately as the persistent flux increased, a few measurements of the flux-recurrence time relationship were significant outliers. Accompanying spectral and timing changes strongly suggest that the accretion disk extends down to smaller radial distances from the source during these atypical episodes. This result is important for understanding the nature of accretion flows around neutron stars because it indicates that accretion disks probably evaporate at some distance from the neutron star surface at lower accretion rates. I also contribute to our understanding of two newly discovered and heavily- absorbed pulsars (neutron stars with strong magnetic fields) by determining the orbital parameters of the systems through pulse timing analysis. Orbital phase- resolved spectroscopy of one source revealed evidence for an "accretion wake" trailing the pulsar through its orbit, showing that X-rays emanating from the surface can ionize the stellar wind in its vicinity. Finally, I develop an innovative application of dust

  6. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  7. Very high energy gamma-ray binary stars.

    PubMed

    Lamb, R C; Weekes, T C

    1987-12-11

    One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.

  8. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  9. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    PubMed

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  10. A Chandra ACIS Study of 30 Doradus. II. X-Ray Point Sources in the Massive Star Cluster R136 and Beyond

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Feigelson, Eric D.; Garmire, Gordon P.; Getman, Konstantin V.

    2006-04-01

    We have studied the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud using high spatial resolution X-ray images and spatially resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Here we describe the X-ray sources in a 17'×17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. The cluster R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources previously reported. Over 2 orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value LX/Lbol~=10-7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed.

  11. PRS J0045-7319: A massive SMC binary

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    1994-04-01

    The existence of X-ray binary systems shows that neutron stars are found in orbit around massive stars. Before these systems enter the mass accretion phase, one would expect the neutron star might be detectable as a radio pulsar. The discovery of PSR B1259-63 by Johnston et al. (1992, Astrophys. J. Lett, 387, L37), which is in orbit around the Be star SS2883, provided the first evidence for such systems. PSR J0045-7319 was discovered in a systematic search of the Magellanic Clouds for radio pulsars by McConnell et al. (1991, Mon. Not. R. Astron. Soc., 249, 645). Its dispersion measure of 105 pc/cu cm assures its association with the Small Magellanic Cloud making it the only known pulsar in the SMC. The discovery of regular Doppler shifts of the pulse period of PSR J0045-7319 implies that the pulsar is in a highly eccentric 51-day binary orbit, making it the most luminous binary pulsar known (Kaspi et al., 1993, submitted to Astrophys. J.). The observed Keplerian orbital parameters show that the companion mass is greater the 4 solar mass. Optical observations of the field reveal a 16th magnitude, 11 solar mass, B1 main-sequence star, which we conclude is the pulsar's companion. The timing observations imply that this pulsar has not been spun up by accretion from the companion. This suggests that, like the PSR B1259-63 binary system, the PSR J0045-7319 system is a progenitor of an X-ray binary system. At periastron the pulsar approaches to within six stellar radii of the companion.

  12. Evolution of the X-ray luminosity in young HII galaxies

    NASA Astrophysics Data System (ADS)

    Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.

    2009-10-01

    In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.

  13. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  14. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  15. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of themore » same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.« less

  16. Finding a 24 Day Orbital Period for the X-Ray Binary 1A 1118-616

    NASA Technical Reports Server (NTRS)

    Staubert, R.; Pottschmidt, K.; Doroshenko, V.; Wilms, J.; Suchy, S.; Rothschild, R.; Santangelo, A.

    2010-01-01

    We report the first determination of the binary period and the orbital ephemeris of the Be X-ray binary containing the pulsar IA 1118-616 (35 years after the discovery of the source). The orbital period is found to be P(sub orb) = 24.0+/-0.4 days. The source was observed by RXTE during its last big X-ray outburst in January 2009, peaking at MJD 54845.4. This outburst was sampled by taking short observations every few days, covering an elapsed time comparable to the orbital period. Using the phase connection technique, pulse arrival time delays could be measured and an orbital solution determined. The data are consistent with a circular orbit, the time of 90 degrees longitude was found to be T,/2 = MJD 54845.37(10), coincident with the peak X-ray flux.

  17. A Study of Low-mass X-Ray Binaries in the Low-luminosity Regime

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Dhuga, K. S.; Göğüş, E.

    2018-02-01

    A recent study of a small sample of X-ray binaries (XRBs) suggests a significant softening of spectra of neutron star (NS) binaries as compared to black hole (BH) binaries in the luminosity range 1034–1037 erg s‑1. This softening is quantified as an anticorrelation between the spectral index and the 0.5–10 keV X-ray luminosity. We extend the study to significantly lower luminosities (i.e., ∼a few × 1030 erg s‑1) for a larger sample of XRBs. We find evidence for a significant anticorrelation between the spectral index and the luminosity for a group of NS binaries in the luminosity range 1032–1033 erg s‑1. Our analysis suggests a steep slope for the correlation i.e., ‑2.12 ± 0.63. In contrast, BH binaries do not exhibit the same behavior. We examine the possible dichotomy between NS and BH binaries in terms of a Comptonization model that assumes a feedback mechanism between an optically thin hot corona and an optically thick cool source of soft photons. We gauge the NS–BH dichotomy by comparing the extracted corona temperatures, Compton-y parameters, and the Comptonization amplification factors: the mean temperature of the NS group is found to be significantly lower than the equivalent temperature for the BH group. The extracted Compton-y parameters and the amplification factors follow the theoretically predicted relation with the spectral index.

  18. Multiwavength Observations of the Black Hole X-Ray Binary A0620-00 in Quiescence

    NASA Astrophysics Data System (ADS)

    Dinçer, Tolga; Bailyn, Charles D.; Miller-Jones, James C. A.; Buxton, Michelle; MacDonald, Rachel K. D.

    2018-01-01

    We present results from simultaneous multiwavelength X-ray, radio, and optical/near-infrared observations of the quiescent black hole X-ray binary A0620-00 performed in 2013 December. We find that the Chandra flux has brightened by a factor of 2 since 2005, and by a factor of 7 since 2000. The spectrum has not changed significantly over this time, being consistent with a power law of {{Γ }}=2.07+/- 0.13 and a hydrogen column of {N}H=(3.0+/- 0.5)× {10}21 {{cm}}-2. Very Large Array observations of A0620-00 at three frequencies, over the interval of 5.25–22.0 GHz, have provided us with the first broadband radio spectrum of a quiescent stellar mass black hole system at X-ray luminosities as low as 10‑8 times the Eddington luminosity. Compared to previous observations, the source has moved to lower radio and higher X-ray luminosity, shifting it perpendicular to the standard track of the radio/X-ray correlation for X-ray binaries. The radio spectrum is inverted with a spectral index α =0.74+/- 0.19 ({S}ν \\propto {ν }α ). This suggests that the peak of the spectral energy distribution is likely to be between 1012 and 1014 Hz, and that the near-IR and optical flux contain significant contributions from the star, the accretion flow, and from the outflow. Decomposing these components may be difficult, but holds the promise of revealing the interplay between accretion and jet in low luminosity systems.

  19. Massively parallel X-ray holography

    NASA Astrophysics Data System (ADS)

    Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-09-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

  20. The massive binary CPD - 41° 7742. II. Optical light curve and X-ray observations

    NASA Astrophysics Data System (ADS)

    Sana, H.; Antokhina, E.; Royer, P.; Manfroid, J.; Gosset, E.; Rauw, G.; Vreux, J.-M.

    2005-10-01

    In the first paper of this series, we presented a detailed high-resolution spectroscopic study of CPD - 41° 7742, deriving for the first time an orbital solution for both components of the system. In this second paper, we focus on the analysis of the optical light curve and on recent XMM-Newton X-ray observations. In the optical, the system presents two eclipses, yielding an inclination i˜77°. Combining the constraints from the photometry with the results of our previous work, we derive the absolute parameters of the system. We confirm that the two components of CPD - 41° 7742 are main sequence stars (O9 V + B1-1.5 V) with masses (M_1˜18 M⊙ and M_2˜10 M⊙) and respective radii (R_1˜7.5 R⊙ and R_2˜5.4 R⊙) close to the typical values expected for such stars. We also report an unprecedented set of X-ray observations that almost uniformly cover the 2.44-day orbital cycle. The X-ray emission from CPD - 41° 7742 is well described by a two-temperature thermal plasma model with energies close to 0.6 and 1.0 keV, thus slightly harder than typical early-type emission. The X-ray light curve shows clear signs of variability. The emission level is higher when the primary is in front of the secondary. During the high emission state, the system shows a drop of its X-ray emission that almost exactly matches the optical eclipse. We interpret the main features of the X-ray light curve as the signature of a wind-photosphere interaction, in which the overwhelming primary O9 star wind crashes into the secondary surface. Alternatively the light curve could result from a wind-wind interaction zone located near the secondary star surface. As a support to our interpretation, we provide a phenomenological geometric model that qualitatively reproduces the observed modulations of the X-ray emission.

  1. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  2. The nature of donors in ultraluminous X-ray binaries powered by neutron stars

    NASA Astrophysics Data System (ADS)

    Karino, Shigeyuki

    2018-03-01

    This study examines the properties of the donor stars of three recently discovered ultraluminous X-ray sources (ULXs) powered by rotating neutron stars. In order to do this, a theoretical relationship was constructed between the X-ray luminosity (LX) and the orbital period (Porb) suitable for ULXs with neutron stars. Using this new LX-Porb relationship, we attempted to determine the currently unknown nature of donor stars in ULXs associated with neutron stars. In particular, from a comparison between the observed properties and the stellar evolution tracks, we suggest that the donor star in the NGC5907 ULX-1 system is a moderately massive star of 6-12 M⊙, just departing from the main sequence phase. The results of our models for the other two ULX systems (M82 X-2 and NGC7793 P-13) are consistent with those in previous studies. Although there are only a few samples, observed ULX systems with neutron stars seem to involve relatively massive donors.

  3. CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.

    Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ ofmore » the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.« less

  4. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  5. A POSSIBLE SIGNATURE OF LENSE-THIRRING PRECESSION IN DIPPING AND ECLIPSING NEUTRON-STAR LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Jeroen, E-mail: jeroen@space.mit.edu

    2012-12-01

    Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-starmore » systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.« less

  6. X-ray-binary spectra in the lamp post model

    NASA Astrophysics Data System (ADS)

    Vincent, F. H.; Różańska, A.; Zdziarski, A. A.; Madej, J.

    2016-05-01

    Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole rotation axis and emitting X-rays. The observed spectrum is made of three major components: the direct spectrum traveling from the lamp directly to the observer; the thermal bump at the equilibrium temperature of the accretion disk heated by the lamp; and the reflected spectrum essentially made of the Compton hump and the iron-line complex. Aims: We aim to accurately compute the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. We are particularly interested in investigating the possibility to use the iron-line complex as a probe to constrain the black hole spin. Methods: We computed in full general relativity the illumination of a thin accretion disk by a fixed X-ray lamp along the rotation axis. We used the ATM21 radiative transfer code to compute the local, energy-dependent spectrum emitted along the disk as a function of radius, emission angle and black hole spin. We then ray traced this local spectrum to determine the final reprocessed spectrum as received by a distant observer. We consider two extreme values of the black hole spin (a = 0 and a = 0.98) and discuss the dependence of the local and ray-traced spectra on the emission angle and black hole spin. Results: We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission is fully taken into account. The disk flux, together with the X-ray flux from the lamp, determines the temperature and ionization structure of the atmosphere. High black hole spin implies high temperature in the inner disk regions, therefore, the emitted thermal disk spectrum fully covers the iron-line complex. As a

  7. Swift/BAT Detects Increase in Hard X-ray Emission from the Ultra-compact X-ray Binary 4U 1543-624

    NASA Astrophysics Data System (ADS)

    Ludlam, Renee; Miller, Jon M.; Miller-Jones, James; Reynolds, Mark

    2017-08-01

    The Swift/BAT detected an increase in hard X-ray emission (15-50 keV) coming from the ultra-compact X-ray binary 4U 1543-624 around 2017 August 9. The MAXI daily monitoring also shows a gradual increase in 2.0-20.0 keV X-ray intensity as of 2017 August 19. Swift/XRT ToO monitoring of the source was triggered and shows an increase in unabsorbed flux to 1.06E-9 ergs/cm2/s in the 0.3-10.0 keV energy band as of 2017 August 26. ATCA performed ToO observations for approximately 4 hours in the 5.5 GHz and 9.0 GHz bands while the antennas were in the 1.5A array configuration from 11:25-16:09 UTC on 2017 August 23. The source was not detected in either band.

  8. Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro

    2015-04-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.

  9. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  10. Colliding Stellar Winds Structure and X-ray Emission

    NASA Astrophysics Data System (ADS)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  11. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  12. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    NASA Technical Reports Server (NTRS)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  13. IGR J19294+1816: a new Be-X-ray binary revealed through infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodes-Roca, J. J.; Bernabeu, G.; Magazzù, A.; Torrejón, J. M.; Solano, E.

    2018-05-01

    The aim of this work is to characterize the counterpart to the INTErnational Gamma-Ray Astrophysics Laboratory high-mass X-ray binary candidate IGR J19294+1816 so as to establish its true nature. We obtained H-band spectra of the selected counterpart acquired with the Near Infrared Camera and Spectrograph instrument mounted on the Telescopio Nazionale Galileo 3.5-m telescope which represents the first infrared spectrum ever taken of this source. We complement the spectral analysis with infrared photometry from UKIDSS, 2MASS, WISE, and NEOWISE data bases. We classify the mass donor as a Be star. Subsequently, we compute its distance by properly taking into account the contamination produced by the circumstellar envelope. The findings indicate that IGR J19294+1816 is a transient source with a B1Ve donor at a distance of d = 11 ± 1 kpc, and luminosities of the order of 1036-37 erg s-1, displaying the typical behaviour of a Be-X-ray binary.

  14. An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures

    NASA Astrophysics Data System (ADS)

    Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.

    2018-05-01

    A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).

  15. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  16. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    NASA Technical Reports Server (NTRS)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  17. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, trackedmore » and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.« less

  18. WATCHDOG: A Comprehensive All-sky Database of Galactic Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  19. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  20. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  1. First Detection of the Hatchett-McCray Effect in the High-Mass X-ray Binary

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Kaper, L.; Hammerschiag-Hensberge, G.; Hutchings, J. B.

    2004-01-01

    The orbital modulation of stellar wind UV resonance line profiles as a result of ionization of the wind by the X-ray source has been observed in the high-mass X-ray binary 4U1700-37/HD 153919 for the first time. Far-UV observations (905-1180 Angstrom, resolution 0.05 Angstroms) were made at the four quadrature points of the binary orbit with the Far Ultraviolet Spectroscopic Explorer (FUSE) in 2003 April and August. The O6.5 laf primary eclipses the X-ray source (neutron star or black hole) with a 3.41-day period. Orbital modulation of the UV resonance lines, resulting from X-ray photoionization of the dense stellar wind, the so-called Hatchett-McCray (HM) effect, was predicted for 4U1700-37/HD153919 (Hatchett 8 McCray 1977, ApJ, 211, 522) but was not seen in N V 1240, Si IV 1400, or C IV 1550 in IUE and HST spectra. The FUSE spectra show that the P V 1118-1128 and S IV 1063-1073 P-Cygni lines appear to vary as expected for the HM effect, weakest at phase 0.5 (X-ray source conjunction) and strongest at phase 0.0 (X-ray source eclipse). The phase modulation of the O VI 1032-1037 lines, however, is opposite to P V and S IV, implying that O VI may be a byproduct of the wind's ionization by the X-ray source. Such variations were not observed in N V, Si IV, and C IV because of their high optical depth. Due to their lower cosmic abundance, the P V and S IV wind lines are unsaturated, making them excellent tracers of the ionization conditions in the O star's wind.

  2. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  3. Low-mass X-ray binaries from black hole retaining globular clusters

    NASA Astrophysics Data System (ADS)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  4. ON THE WEAK-WIND PROBLEM IN MASSIVE STARS: X-RAY SPECTRA REVEAL A MASSIVE HOT WIND IN {mu} COLUMBAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huenemoerder, David P.; Oskinova, Lidia M.; Todt, Helge

    2012-09-10

    {mu} Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the {sup w}eak-wind problem{sup -}identified frommore » cool wind UV/optical spectra-is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are 'weak-wind' stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.« less

  5. The mass of the compact object in the X-ray binary her X-1/HZ her

    NASA Astrophysics Data System (ADS)

    Abubekerov, M. K.; Antokhina, E. A.; Cherepashchuk, A. M.; Shimanskii, V. V.

    2008-05-01

    We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M ⊙ and m v = 2.5 M ⊙. These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M ⊙ and m v = 1.87 ± 0.13 M ⊙. These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.

  6. High energy neutrino absorption and its effects on stars in close X-ray binaries

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stecker, F. W.

    1986-01-01

    The physics and astrophysics of high energy neutrino production and interactions in close X-ray binary systems are studied. These studies were stimulated by recent observations of ultrahigh energy gamma-rays and possibly other ultrahigh energy particles coming from the directions of Cygnus X-3 and other binary systems and possessing the periodicity characteristics of these systems. Systems in which a compact object, such as a neutron star, is a strong source of high energy particles which, in turn, produce photons, neutronos and other secondary particles by interactions in the atmosphere of the companion star were considered. The highest energy neutrinos are absorbed deep in the companion and the associated energy deposition may be large enough to effect its structure or lead to its ultimate disruption. This neutrino heating was evaluated, starting with a detailed numerical calculation of the hadronic cascade induced in the atmosphere of the companion star. For some theoretical models, the resulting energy deposition from neutrino absorption may be so great as to disrupt the companion star over an astronomically small timescale of the order of 10,000 years. Even if the energy deposition is smaller, it may still be high enough to alter the system substantially, perhaps leading to quenching of high energy signals from the source. Given the cosmic ray luminosities required to produce the observed gamma rays from cygnus X-3 and LMX X-4, such a situation may occur in these sources.

  7. A Chandra X-Ray Study of NGC 1068 IL the Luminous X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert 2 galaxy NGC 1068, imaged with a approx. 50 ks Chandra observation. We find a total of 84 compact sources on the S3 chip, of which 66 are located within the 25.0 B-mag/arcsec isophote of the galactic disk of NGC 1068. Spectra have been obtained for the 21 sources with at least 50 counts and modeled with both multicolor disk blackbody and power-law models. The power-law model provides the better description of the spectrum for 18 of these sources. For fainter sources, the spectral index has been estimated from the hardness ratio. Five sources have 0.4 - 8 keV intrinsic luminosities greater than 10(exp 39)ergs/ s, assuming that their emission is isotropic and that they are associated with NGC 1068. We refer to these sources as intermediate-luminosity X-ray objects (ISOs). If these five sources are X-ray binaries accreting with luminosities that are both sub-Eddington and isotropic, then the implied source masses are approx greater than 7 solar mass, and so they are inferred to be black holes. Most of the spectrally modeled sources have spectral shapes similar to Galactic black hole candidates. However, the brightest compact source in NGC 1068 has a spectrum that is much harder than that found in Galactic black hole candidates and other ISOs. The brightest source also shows large amplitude variability on both short-term and long-term timescales, with the count rate possibly decreasing by a factor of 2 in approx. 2 ks during our Chundra observation, and the source flux decreasing by a factor of 5 between our observation and the grating observations taken just over 9 months later. The ratio of the number of sources with luminosities greater than 2.1 x 10(exp 38) ergs/s in the 0.4 - 8 keV band to the rate of massive (greater than 5 solar mass) star formation is the same, to within a factor of 2, for NGC 1068, the Antennae, NGC 5194 (the main galaxy in M51), and the Circinus galaxy. This suggests

  8. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  9. The 4U 0115+63: Another energetic gamma ray binary pulsar

    NASA Technical Reports Server (NTRS)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  10. An interpretation of the narrow positron annihilation feature from X-ray nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1993-01-01

    The physical mechanism responsible for the narrow redshifted positron annihilation gamma-ray line from the X-ray nova Muscae 1991 is studied. The orbital inclination angle of the system is estimated and its black hole mass is constrained under the assumptions that the annihilation line centroid redshift is purely gravitational and that the line width is due to the combined effect of temperature broadening and disk rotation. The large black hole mass lower limit of 8 solar and the high binary mass ratio it implies raise a serious challenge to theoretical models of the formation and evolution of massive binaries.

  11. Late-time X-ray signatures of compact binary mergers: potential counterparts of gravitational wave events

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2017-09-01

    Merging compact binaries (NS-NS or NS-BH) offer the best prospects for detection of EM signals accompanying gravitational wave (GW) events. They may be seen as bright short-GRBs (SGRBs), but this is likely to be rare due to beaming. Alternatively, more isotropic near-IR emission is predicted to result from the 'kilonova' produced by radioactive decay of neutron star ejecta. However, recent XMM observations have shown unexplained excess X-ray emission several days post-burst in two low-z SGRBs. This may indicate ongoing engine activity which both enhances the nIR emission, and crucially provides a potential new isotropic X-ray signature of compact binary mergers. We propose a detailed study of a further z<0.35 SGRB, to explore this phenomenon and inform future searches for GW counterparts.

  12. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  13. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  14. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  15. Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Chen, Linhan; Conlon, Joseph P.

    2018-06-01

    If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.

  16. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron

    DOE PAGES

    Ho, Wynn C. G.; Ng, C. -Y.; Lyne, Andrew G.; ...

    2016-09-22

    The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here in this paper, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45–50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swiftmore » observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over time-scales as short as 1–2 months. In conclusion, multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.« less

  17. Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A; Basu-Zych, A.

    2013-01-01

    We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection efficiency and central donor concentration approx.. = 0.1, and a 50% uniform - 50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the L(sub X) - star formation rate and L(sub X) - stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution both of XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.

  18. On the rarity of X-ray binaries with Wolf-Rayet donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binarymore » evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.« less

  19. Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During the five-year period, our study of "Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries" has been focused on the following aspects: observations, data analysis, Monte-Carlo simulations, numerical calculations, and theoretical modeling. Most of the results of our study have been published in refereed journals and conference presentations.

  20. An X-ray view of HD 166734, a massive supergiant system

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Gosset, Eric; Mahy, Laurent; Parkin, Elliot Ross

    2017-11-01

    The X-ray emission of the O+O binary HD 166734 was monitored using Swift and XMM-Newton observatories, leading to the discovery of phase-locked variations. The presence of an f line in the He-like triplets further supports a wind-wind collision as the main source of the X-rays in HD 166734. While temperature and absorption do not vary significantly along the orbit, the X-ray emission strength varies by one order of magnitude, with a long minimum state (Δ(φ) 0.1) occurring after a steep decrease. The flux at minimum is compatible with the intrinsic emission of the O-stars in the system, suggesting a possible disappearance of colliding wind emission. While this minimum cannot be explained by eclipse or occultation effects, a shock collapse may occur at periastron in view of the wind properties. Afterwards, the recovery is long, with an X-ray flux proportional to the separation d (in hard band) or to d2 (in soft band). This is incompatible with an adiabatic nature for the collision (which would instead lead to FX ∝ 1 /d), but could be reconciled with a radiative character of the collision, though predicted temperatures are lower and more variable than in observations. An increase in flux around φ 0.65 and the global asymmetry of the light curve remain unexplained, however. Based on observations collected with Swift and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  1. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  2. NICER and MAXI Observations of Two Large X-ray Flares from RS CVn Binaries

    NASA Astrophysics Data System (ADS)

    Drake, Stephen A.; Hamaguchi, Kenji; Corcoran, Michael Francis; Iwakiri, Wataru; Sasaki, Ryo; Kawai, Hiroki; Tsuboi, Yohko; Enoto, Teruaki; NICER Science Team

    2018-01-01

    NICER has observed two giant X-ray flares on the active binary systems, GT Mus and UX Ari, in response to their detections by the MAXI all-sky X-ray monitor onboard the ISS, with a delay of about a day in each case. The large effective area of the NICER X-ray optics means that high signal-to-noise spectra with more than 200,000 counts were obtained in relatively short exposures totaling less than an hour in each set of observations.MAXI detected a transient of 5.5 x 10^-10 erg/s/cm2 at the position of the active RS CVn binary GT Mus (G5/8 III + ?) early on 2017 July 19. NICER started its observations about 1 day later, and intermittently monitored the decay for the next 2.5 days, accumulating about 1,600 seconds exposure. The NICER light curve shows a smooth, gradual flux decline by a factor of two for the first 2 days, followed by an apparent flattening in the last half day. The dominant plasma temperature remained at ~40 million K during this period, suggesting an ongoing continuous heating during the decay phase.NICER also followed up another MAXI-detected flare in October 2017, this one from the nearby active system, UX Ari. NICER's X-ray spectrum shows clear neon and oxygen lines, while the emissionfrom iron ions is not as prominent as it is in most flares, implying an abundance of only ~10% solar which is significantly lower than previous inferred coronal Fe abundances for this star, although this result is dependent on the NICER gain correction.

  3. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  4. Compact X-ray Binary Re-creation in Core Collapse: NGC 6397

    NASA Astrophysics Data System (ADS)

    Grindlay, J. E.; Bogdanov, S.; van den Berg, M.; Heinke, C.

    2005-12-01

    We report new Chandra observations of the core collapsed globular cluster NGC 6397. In comparison with our original Chandra observations (Grindlay et al 2001, ApJ, 563, L53), we now detect some 30 sources (vs. 20) in the cluster. A new CV is confirmed, though new HST/ACS optical observations (see Cohn et al this meeting) show that one of the original CV candidates is a background AGN). The 9 CVs (optically identified) yet only one MSP and one qLMXB suggest either a factor of 7 reduction in NSs/WDs vs. what we find in 47Tuc (see Grindlay 2005, Proc. Cefalu Conf. on Interacting Binaries) or that CVs are produced in the core collapse. The possible second MSP with main sequence companion, source U18 (see Grindlay et al 2001) is similar in its X-ray and optical properties to MSP-W in 47Tuc, which must have swapped its binary companion. Together with the one confirmed (radio) MSP in NGC 6397, with an evolved main sequence secondary, the process of enhanced partner swapping in the high stellar density of core collapse is implicated. At the same time, main sequence - main sequence binaries (active binaries) are depleted in the cluster core, presumably by "binary burning" in core collapse. These binary re-creation and destruction mechanisms in core collapse have profound implications for binary evolution and mergers in globulars that have undergone core collapse.

  5. Constraining the inclination of the Low-Mass X-ray Binary Cen X-4

    NASA Astrophysics Data System (ADS)

    Hammerstein, Erica K.; Cackett, Edward M.; Reynolds, Mark T.; Miller, Jon M.

    2018-05-01

    We present the results of ellipsoidal light curve modeling of the low mass X-ray binary Cen X-4 in order to constrain the inclination of the system and mass of the neutron star. Near-IR photometric monitoring was performed in May 2008 over a period of three nights at Magellan using PANIC. We obtain J, H and K lightcurves of Cen X-4 using differential photometry. An ellipsoidal modeling code was used to fit the phase folded light curves. The lightcurve fit which makes the least assumptions about the properties of the binary system yields an inclination of 34.9^{+4.9}_{-3.6} degrees (1σ), which is consistent with previous determinations of the system's inclination but with improved statistical uncertainties. When combined with the mass function and mass ratio, this inclination yields a neutron star mass of 1.51^{+0.40}_{-0.55} M⊙. This model allows accretion disk parameters to be free in the fitting process. Fits that do not allow for an accretion disk component in the near-IR flux gives a systematically lower inclination between approximately 33 and 34 degrees, leading to a higher mass neutron star between approximately 1.7 M⊙ and 1.8 M⊙. We discuss the implications of other assumptions made during the modeling process as well as numerous free parameters and their effects on the resulting inclination.

  6. A Chandra Study of the Stellar X-Ray Emissivity of Globular Clusters in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-jie; Li, Zhiyuan

    2018-03-01

    The X-ray emissivity (i.e., luminosity per unit stellar mass) of globular clusters (GCs) is an important indicator of their dynamical evolution history. Based on deep archival Chandra observations, we report a stacking analysis of 44 GCs with 0.5–8 keV luminosities L X ≲ 1035 erg s‑1 in the M31 bulge, which are supposed to be dominated by cataclysmic variables (CVs) and coronally active binaries (ABs). We obtain a significant detection at the 5σ level in 0.5–8 keV band. The average X-ray luminosity per GC and the average X-ray emissivity are determined to be 5.3 ± 1.6 × 1033 erg s‑1 and 13.2 ± 4.3 × 1027 erg s‑1 {M}ȯ -1, respectively. Both of these values are consistent with those of Milky Way GCs. Moreover, the measured emissivity of M31 GCs is also consistent with that of the Milky Way field stars. Massive GCs have X-ray luminosities that are marginally higher than those of less massive ones. Massive GCs also show a lower emissivity (5.0+/- 2.5× {10}27 {erg} {{{s}}}-1 {M}ȯ -1) than less massive ones (26.5+/- 14.3× {10}27 {erg} {{{s}}}-1 {M}ȯ -1), which is consistent with the scenario that the (progenitors of) CVs and ABs were more efficiently destroyed via stellar encounters in the more massive GCs. No dependence of the X-ray emissivity on GC color or on the projected galactocentric distance of GCs is found.

  7. Dynamical Models for High-Energy Emission from Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley %FAA(University of Delaware)

    Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the

  8. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, F. D.; Charles, P. A.; Foster, D. L.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  9. CXOGBS J173620.2-293338: A candidate symbiotic X-ray binary associated with a bulge carbon star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynes, Robert I.; Britt, C. T.; Johnson, C. B.

    2014-01-01

    The Galactic Bulge Survey (GBS) is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatory's ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries (SyXBs) in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a verymore » red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties are overall consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any GBS source with a carbon star to be ≲ 10{sup –3}, suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9 × 10{sup 32} erg s{sup –1}. Its characteristics are consistent with a low luminosity SyXB, or possibly a low accretion rate white dwarf symbiotic.« less

  10. Quasars in miniature: new insights into particle acceleration from X-ray binaries

    NASA Astrophysics Data System (ADS)

    Markoff, Sera

    2013-04-01

    A variety of astronomical objects routinely accelerate particles to high energy, with the maximum possible energy per particle typically limited by the size of the system and magnetic field strength. For that reason, much attention has focused on the massive jets of relativistic plasma ejected from supermassive black holes in Active Galactic Nuclei (AGN), which are at least theoretically capable of producing particles (cosmic rays) up to a whopping 10{20 }eV. However neither how these jets are formed or function, nor how exactly they accelerate particles, is well understood. While we do not expect the mechanisms for particle acceleration in stellar remnant black holes within X-ray binaries (XRBs) to be particularly different than in other sources, XRBs do offer some unique insights. Primarily, jets very similar to those in AGN come and go on timescales of weeks to months, while often monitored simultaneously across the entire electromagnetic spectrum. Through such observations we have been able to probe the processes by which jets not only build up dynamically, but also at what point the jets begin to accelerate particles, providing hints about the necessary conditions and efficiencies. Because the physics of accretion-driven processes such as jets seems to scale predictably with black hole mass, we can also potentially apply what we are learning in these smaller systems to the same phenomena AGN, giving us a new handle on several longstanding questions. I will review our current understanding of particle acceleration in XRBs, as well as the increasing body of evidence suggesting that XRBs indeed seem to represent scaled-down (and thus handily faster evolving) versions of the much more powerful AGN. I will also touch on how accelerated particles from XRBs may contribute significantly to the low-energy Galactic cosmic ray distribution, with local impact on gas chemistry and star formation.

  11. X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.

    2018-02-01

    PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.

  12. The Reverberation Lag in the Low-mass X-ray Binary H1743-322

    NASA Astrophysics Data System (ADS)

    De Marco, Barbara; Ponti, Gabriele

    2016-07-01

    The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.

  13. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    NASA Astrophysics Data System (ADS)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  14. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grise, F.; Kaaret, P.; Pakull, M. W.

    2011-06-10

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligiblemore » optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.« less

  15. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  16. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of

  17. A TRANSIENT SUB-EDDINGTON BLACK HOLE X-RAY BINARY CANDIDATE IN THE DUST LANES OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.

    2012-04-20

    We report the discovery of a bright X-ray transient CXOU J132527.6-430023 in the nearby early-type galaxy NGC 5128. The source was first detected over the course of five Chandra observations in 2007, reaching an unabsorbed outburst luminosity of (1-2) Multiplication-Sign 10{sup 38} erg s{sup -1} in the 0.5-7.0 keV band before returning to quiescence. Such luminosities are possible for both stellar-mass black hole and neutron star (NS) X-ray binary transients. Here, we attempt to characterize the nature of the compact object. No counterpart has been detected in the optical or radio sky, but the proximity of the source to themore » dust lanes allows for the possibility of an obscured companion. The brightness of the source after a >100-fold increase in X-ray flux makes it either the first confirmed transient non-ultraluminous X-ray black hole system in outburst to be subject to detailed spectral modeling outside the Local Group, or a bright (>10{sup 38} erg s{sup -1}) transient NS X-ray binary, which are very rare. Such a large increase in flux would appear to lend weight to the view that this is a black hole transient. X-ray spectral fitting of an absorbed power law yielded unphysical photon indices, while the parameters of the best-fit absorbed disk blackbody model are typical of an accreting {approx}10 M{sub Sun} black hole in the thermally dominant state.« less

  18. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  19. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  20. INVERSE COMPTON SCATTERING MODEL FOR X-RAY EMISSION OF THE GAMMA-RAY BINARY LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, M. S.; Takahara, F.

    2012-12-20

    We propose a model for the gamma-ray binary LS 5039 in which the X-ray emission is due to the inverse Compton (IC) process instead of the synchrotron radiation. Although the synchrotron model has been discussed in previous studies, it requires a strong magnetic field which leads to a severe suppression of the TeV gamma-ray flux in conflict with H.E.S.S. observations. In this paper, we calculate the IC emission by low energy electrons ({gamma}{sub e} {approx}< 10{sup 3}) in the Thomson regime. We find that IC emission of the low energy electrons can explain the X-ray flux and spectrum observed withmore » Suzaku if the minimum Lorentz factor of injected electrons {gamma}{sub min} is around 10{sup 3}. In addition, we show that the Suzaku light curve is well reproduced if {gamma}{sub min} varies in proportion to the Fermi flux when the distribution function of injected electrons at higher energies is fixed. We conclude that the emission from LS 5039 is well explained by the model with the IC emission from electrons whose injection properties are dependent on the orbital phase. Since the X-ray flux is primarily determined by the total number of cooling electrons, this conclusion is rather robust, although some mismatches between the model and observations at the GeV band remain in the present formulation.« less

  1. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1

    NASA Astrophysics Data System (ADS)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.

    2017-10-01

    Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  2. STUDIES OF THE ORIGIN OF HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS OF MASS-ACCRETING BLACK HOLES IN X-RAY BINARIES WITH NEXT-GENERATION X-RAY TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric, E-mail: b.beheshtipour@wustl.edu

    Observations with RXTE ( Rossi X-ray Timing Explorer ) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodicmore » oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT ( Large Observatory for X-ray Timing ) and polarization signatures with space-borne X-ray polarimeters such as IXPE ( Imaging X-ray Polarimetry Explorer ), PolSTAR ( Polarization Spectroscopic Telescope Array ), PRAXyS ( Polarimetry of Relativistic X-ray Sources ), or XIPE ( X-ray Imaging Polarimetry Explorer ). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT -type mission.« less

  3. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  4. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  5. ROSAT x ray survey observations of active chromospheric binary systems and other selected sources

    NASA Technical Reports Server (NTRS)

    Ramsey, Lawrence W.

    1993-01-01

    The connection between processes that produce optical chromospheric activity indicators and those that produce x-rays in RS CVn binary systems by taking advantage of the ROSAT All-Sky Survey (RASS) results and our unique ground-based data set was investigated. In RS CVn systems, excess emission in the Ca 2 resonance (K & H) and infrared triplet (IRT) lines and in the Balmer lines of hydrogen is generally cited as evidence for chromospheric activity, which is usually modeled as scaled up solar-type activity. X-ray emission in RS CVn systems is believed to arise from coronal loop structures. Results from spectra data obtained from RASS observations are discussed and presented.

  6. X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-02-01

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5-7keV ≈ 5 × 1039 to 1 × 1042 ergs-1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ˜7 × 104 to 1 × 106 M ⊙), we find inferred Eddington fractions ranging from ˜0.1% to 50%, I.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (I.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.

  7. Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A.; Basu-Zych, A. R.

    2013-09-01

    We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey. For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of the oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or that XRB modeling requires calibration on larger observational samples. Given these limitations, we find that the best models are consistent with a product of common envelope ejection efficiency and central donor concentration ~= 0.1, and a 50% uniform-50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor, and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the LX -star formation rate and LX -stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution of both XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.

  8. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  9. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  10. Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Bolton, C.; Murdin, P.

    2000-11-01

    Cygnus X-1 is one of the strongest x-ray sources. It is the first celestial object for which we had reasonably convincing evidence that it is a BLACK HOLE. Its x-ray properties include an ultra-soft spectrum, compared to massive x-ray binaries containing a neutron star, rapid (˜1 s) flickering, and high/low flux states with different spectral characteristics. In 1971, a RADIO SOURCE appeared at...

  11. Eclipse timings of the low-mass X-ray binary EXO 0748-676: Statistical arguments against orbital period changes

    NASA Technical Reports Server (NTRS)

    Hertz, Paul; Wood, Kent S.; Cominsky, Lynn

    1995-01-01

    EXO 0748-676, an eclipsing low-mass X-ray binary, is one of only about four or five low-mass X-ray binaries for which orbital period evolution has been reported. We observed a single eclipse egress with ROSAT . The time of this egress is consistent with the apparent increase in P(sub orb) previously reported on the basis of EXOSAT and Ginga observations. Standard analysis, in which O-C (observed minus calculated) timing residuals are examined for deviations from a constant period, implicitly assume that the only uncertainty in each residual is measurement error and that these errors are independent. We argue that the variable eclipse durations and profiles observed in EXO 0748-676 imply that there is an additional source of uncertainty in timing measurements, that this uncertainty is intrinsic to the binary system, and that it is correlated from observation to observation with a variance which increases as a function of the number of binary cycles between observations. This intrinsic variability gives rise to spurious trends in O-C residuals which are misinterpreted as changes in the orbital period. We describe several statistics tests which can be used to test for the presence of intrinsic variability. We apply those statistical tests which are suitable to the EXO 0748-676 observations. The apparent changes in the orbital period of EXO 0748-676 can be completely accounted for by intrinsic variability with an rms variability of approximately 0.35 s per orbital cycle. The variability appears to be correlated from cycle-to-cycle on timescales of less than 1 yr. We suggest that the intrinsic variability is related to slow changes in either the source's X-ray luminosity or the structure of the companion star's atmosphere. We note that several other X-ray binaries and cataclysmic variables have previously reported orbital period changes which may also be due to intrinsic variability rather than orbital period evolution.

  12. X-Ray Binaries in Local Analogs to the First Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew G.

    2017-02-01

    The focus of this dissertation is to investigate the effect of metallicity on high-mass X-ray binary (HMXB) formation and evolution as a means to understand the evolution of the early Universe (z > 6). Understanding the population and X-ray output of HMXBs are vital to modelling the heating and ionization morphology of the intergalactic medium during the epoch of reionization. Current X-ray instruments are unable to directly detect very high redshift HMXBs, making it impossible to constrain population sizes in this way. Instead certain local galaxies may be used as analogs to infer the properties of galaxies in the early Universe. These local analogs should have properties consistent with those expected for the first galaxies, such as low-metallicity, compact morphology, and intense recent star formation. I present an X-ray population study of 25 blue compact dwarf galaxies (BCD), using multiwavelength data and Bayesian analysis techniques. We find a significant enhancement of the HMXB population in low-metallicity environments and suggest the same may be true in the early Universe. I continue the investigation of HMXB populations in a sample of 10 moderate metallicity (Z ≥ 0.3, Z solar masses), local star-forming galaxies known as Lyman Break Analogs (LBAs). I find evidence of a LX-SFR-metallicity plane in the combined sample of BCDs, LBAs, and regular star-forming galaxies. Then I study a third type of local analog to early Universe galaxies, the Green Pea galaxies. These are a subclass of luminous compact galaxies (LCGs) which show strong [OIII]lambda5007A emission indicative of extreme, recent star-formation. This pilot study was carried out to look, for the first time in X-rays, at this recently established class of galaxies and use them to test the LX-SFR-metallicity plane. Determining the spectral properties of bright HMXBs in low-metallicity environments also has important implications for models of X-ray heating leading up to the Epoch of Reionization. I

  13. COMMON PATTERNS IN THE EVOLUTION BETWEEN THE LUMINOUS NEUTRON STAR LOW-MASS X-RAY BINARY SUBCLASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridriksson, Joel K.; Homan, Jeroen; Remillard, Ronald A., E-mail: J.K.Fridriksson@uva.nl

    2015-08-10

    The X-ray transient XTE J1701–462 was the first source observed to evolve through all known subclasses of low-magnetic-field neutron star low-mass X-ray binaries (NS-LMXBs), as a result of large changes in its mass accretion rate. To investigate to what extent similar evolution is seen in other NS-LMXBs we have performed a detailed study of the color–color and hardness–intensity diagrams (CDs and HIDs) of Cyg X-2, Cir X-1, and GX 13+1—three luminous X-ray binaries, containing weakly magnetized neutron stars, known to exhibit strong secular changes in their CD/HID tracks. Using the full set of Rossi X-ray Timing Explorer Proportional Counter Arraymore » data collected for the sources over the 16 year duration of the mission, we show that Cyg X-2 and Cir X-1 display CD/HID evolution with close similarities to XTE J1701–462. Although GX 13+1 shows behavior that is in some ways unique, it also exhibits similarities to XTE J1701–462, and we conclude that its overall CD/HID properties strongly indicate that it should be classified as a Z source, rather than as an atoll source. We conjecture that the secular evolution of Cyg X-2, Cir X-1, and GX 13+1—illustrated by sequences of CD/HID tracks we construct—arises from changes in the mass accretion rate. Our results strengthen previous suggestions that within single sources Cyg-like Z source behavior takes place at higher luminosities and mass accretion rates than Sco-like Z behavior, and lend support to the notion that the mass accretion rate is the primary physical parameter distinguishing the various NS-LMXB subclasses.« less

  14. The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek

    2014-07-01

    If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  15. Massive binaries in R136 using Hubble

    NASA Astrophysics Data System (ADS)

    Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus

    2014-09-01

    We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.

  16. Optical Studies of 15 Hard X-Ray Selected Cataclysmic Binaries

    NASA Astrophysics Data System (ADS)

    Halpern, Jules P.; Thorstensen, John R.; Cho, Patricia; Collver, Gabriel; Motsoaledi, Mokhine; Breytenbach, Hannes; Buckley, David A. H.; Woudt, Patrick A.

    2018-06-01

    We conducted time-resolved optical spectroscopy and/or time-series photometry of 15 cataclysmic binaries that were discovered in hard X-ray surveys by the Swift Burst Alert Telescope and the International Gamma-Ray Astrophysics Laboratory, with the goal of measuring their orbital periods and searching for spin periods. Four of the objects in this study are new optical identifications: Swift J0535.2+2830, Swift J2006.4+3645, IGR J21095+4322, and Swift J2116.5+5336. Coherent pulsations are detected from three objects for the first time, Swift J0535.2+2830 (1523 s), 2PBC J1911.4+1412 (747 s), and 1SWXRT J230642.7+550817 (464 s), indicating that they are intermediate polars (IPs). We find two new eclipsing systems in time-series photometry: 2PBC J0658.0‑1746, a polar with a period of 2.38 hr, and Swift J2116.5+5336, a disk system that has an eclipse period of 6.56 hr. Exact or approximate spectroscopic orbital periods are found for six additional targets. Of note is the long 4.637-day orbit for Swift J0623.9‑0939, which is revealed by the radial velocities of the photospheric absorption lines of the secondary star. We also discover a 12.76 hr orbital period for RX J2015.6+3711, which confirms that the previously detected 2.00 hr X-ray period from this star is the spin period of an IP, as inferred by Coti Zelati et al. These results support the conclusion that hard X-ray selection favors magnetic CVs, with IPs outnumbering polars.

  17. Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.

    2003-03-01

    We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.

  18. Gamma-ray bursts as the death throes of massive binary stars

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh; Paczynski, Bohdan; Piran, Tsvi

    1992-01-01

    We propose that gamma-ray bursts are created in the mergers of double neutron star binaries and black hole neutron star binaries at cosmological distances. Two different processes provide the electromagnetic energy for the bursts: neutrino-antineutrino annihilation into electron-position pairs during the merger, and magnetic flares generated by the Parker instability in a postmerger differentially rotating disk. In both cases, an optically thick fireball of size less than or approximately equal to 100 km is initially created, which expands ultrarelativistically to large radii before radiating. The scenario is only qualitative at this time, but it eliminates many previous objections to the cosmological merger model. The strongest bursts should be found close to, but not at the centers of, galaxies at redshifts of order 0.1, and should be accompanied by bursts of gravitational radiation from the spiraling-in binary which could be detected by LIGO.

  19. Modeling and Observations of Massive Binaries with the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.

    2017-02-01

    We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.

  20. Identifying Bright X-Ray Beasts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 Ap

  1. X-Ray Wind Tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2010-07-01

    IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.

  2. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  3. The formation and gravitational-wave detection of massive stellar black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less

  4. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  5. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE PAGES

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  6. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  7. Phase-Resolved Spectroscopy of the Low-Mass X-ray Binary V801 Ara

    NASA Astrophysics Data System (ADS)

    Brauer, Kaley; Vrtilek, Saeqa Dil; Peris, Charith; McCollough, Michael

    2018-06-01

    We present phase-resolved optical spectra of the low mass X-ray binary system V801 Ara. The spectra, obtained in 2014 with IMACS on the Magellan/Baade telescope at Las Campanas Observatory, cover the full binary orbit of 3.8 hours. They contain strong emission features allowing us to map the emission of Hα, Hβ, He II λ4686, and the Bowen blend at λ4640. The radial velocity curves of the Bowen blend shows significantly stronger modulation at the orbital period than Hα as expected for the former originating on the secondary with the latter consistent with emission dominated by the disk. Our tomograms of Hα and Hβ are the most detailed studies of these lines for V801 to date and they clearly detect the accretion disk. The Hβ emission extends to higher velocities than Hα, suggesting emission from closer to the neutron star and differentiating temperature variance in the accretion disk for the first time. The center of the accretion disk appears offset from the center-of-mass of the neutron star as has been seen in several other X-ray binaries. This is often interpreted to imply disk eccentricity. Our tomograms do not show strong evidence for a hot spot at the point where the accretion stream hits the disk. This could imply a reduced accretion rate or could be due to the spot being drowned out by bright accretion flow around it. There is enhanced emission further along the disk, however, which implies gas stream interaction downstream of the hot spot.

  8. X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldassare, Vivienne F.; Gallo, Elena; Reines, Amy E.

    2017-02-10

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies ( z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad H α emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad H α and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L {sub 0.5–7keV} ≈ 5 × 10{sup 39}more » to 1 × 10{sup 42} ergs{sup −1}. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 10{sup 4} to 1 × 10{sup 6} M {sub ⊙}), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α {sub OX} values an average of 0.36 lower than expected based on the relation between α {sub OX} and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.« less

  9. Classification of X-ray sources in the direction of M31

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  10. An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.

    2002-01-01

    We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.

  11. POLARIZATION MODULATION FROM LENSE–THIRRING PRECESSION IN X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, Adam; Maccarone, Thomas J.; Poutanen, Juri

    2015-07-01

    It has long been recognized that quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting black hole and neutron star binaries have the potential to be powerful diagnostics of strong field gravity. However, this potential cannot be fulfilled without a working theoretical model, which has remained elusive. Perhaps, the most promising model associates the QPO with Lense–Thirring precession of the inner accretion flow, with the changes in viewing angle and Doppler boosting modulating the flux over the course of a precession cycle. Here, we consider the polarization signature of a precessing inner accretion flow. We use simple assumptions about themore » Comptonization process generating the emitted spectrum and take all relativistic effects into account, parallel transporting polarization vectors toward the observer along null geodesics in the Kerr metric. We find that both the degree of linear polarization and the polarization angle should be modulated on the QPO frequency. We calculate the predicted absolute rms variability amplitude of the polarization degree and angle for a specific model geometry. We find that it should be possible to detect these modulations for a reasonable fraction of parameter space with a future X-ray polarimeter such as NASA’s Polarization Spectroscopic Telescope Array (the satellite incarnation of the balloon experiment X-Calibur)« less

  12. The 2014 X-Ray Minimum of Eta Carinae as Seen by Swift

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Liburd, J.; Morris, D.; Russell, C. M. P.; Hamaguchi, K.; Gull, T. R.; Madura, T. I.; Teodoro, M.; Moffat, A. F. J.; Richardson, N. D.

    2017-01-01

    We report on Swift X-ray Telescope observations of Eta Carinae ( Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimumperiastron passage. These observations show that Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer (RXTE), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the central constant emission component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P X equals 2023.7 +/- 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii lambda 4686 emission. The middle of the Deep Minimum interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii 4686 line variations.

  13. The 2014 X-Ray Minimum of η Carinae as Seen by Swift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corcoran, M. F.; Hamaguchi, K.; Liburd, J.

    We report on Swift X-ray Telescope observations of Eta Carinae ( η Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimum/periastron passage. These observations show that η Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer ( RXTE ), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days aftermore » the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the “central constant emission” component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P {sub X} = 2023.7 ± 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii 4686 emission. The middle of the “Deep Minimum” interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii λ 4686 line variations.« less

  14. X-ray Source Populations in Old Open Clusters - Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti

    2014-11-01

    We are carrying out an X-ray survey of old open clusters (OCs) with the Chandra X-ray Observatory. Single old stars emit very faint X-rays, making X-rays produced by mass transfer in CVs, or by rapid rotation of the stars in tidally-locked, detached binaries detectable, without contamination from single stars. By comparing properties of interacting binaries in different environments, we aim to study binary evolution, and how dynamical encounters with other cluster members affect it. Collinder (Cr) 261 is an old OC(~7Gyr), with one of the richest populations inferred, of close binary populations and blue stragglers of all OCs. We will present the first results, detailing the X-ray population of Cr 261, in conjugation with other OCs, and in comparison with populations in globular clusters.

  15. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that themore » abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.« less

  16. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby

  17. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  18. Evidence from Quasi-Periodic Oscillations for a Millisecond Pulsar in the Low Mass X-Ray Binary 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.

  19. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    NASA Technical Reports Server (NTRS)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  20. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  1. X-Rays Found From a Lightweight Brown Dwarf

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Using NASA's Chandra X-ray Observatory, scientists have detected X-rays from a low mass brown dwarf in a multiple star system, which is as young as 12 million years old. This discovery is an important piece in an increasingly complex picture of how brown dwarfs - and perhaps the very massive planets around other stars - evolve. Chandra's observations of the brown dwarf, known as TWA 5B, clearly resolve it from a pair of Sun-like stars known as TWA 5A. The system is about 180 light years from the Sun and a member of a group of about a dozen young stars in the southern constellation Hydra. The brown dwarf orbits the binary stars at a distance about 2.75 times that of Pluto's orbit around the Sun. This is first time that a brown dwarf this close to its parent star(s) has been resolved in X-rays. "Our Chandra data show that the X-rays originate from the brown dwarf's coronal plasma which is some 3 million degrees Celsius," said Yohko Tsuboi of Chuo University in Tokyo and lead author of the April 10th issue of Astrophysical Journal Letters paper describing these results. "The brown dwarf is sufficiently far from the primary stars that the reflection of X-rays is unimportant, so the X-rays must come the brown dwarf itself." TWA 5B is estimated to be only between 15 and 40 times the mass of Jupiter, making it one of the least massive brown dwarfs known. Its mass is rather near the currently accepted boundary (about 12 Jupiter masses) between planets and brown dwarfs. Therefore, these results may also have implications for very massive planets, including those that have been discovered as extrasolar planets in recent years. Brown Dwarf size comparison schematic Brown Dwarf size comparison schematic "This brown dwarf is as bright as the Sun today in X-ray light, while it is fifty times less massive than the Sun," said Tsuboi. "This observation, thus, raises the possibility that even massive planets might emit X-rays by themselves during their youth!" This research on TWA 5

  2. Rossi X-Ray Timing Explorer Observations of the First Transient Z Source XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neutron Star X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil

    2007-02-01

    We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.

  3. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, B.; Ponti, G.; Nandra, K.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less

  4. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, MAXI and Suzaku

    NASA Astrophysics Data System (ADS)

    Coley, Joel B.; Corbet, R.; Mukai, K.; Pottschmidt, K.

    2013-01-01

    Optical and X-ray observations of 4U 1210-64 (1ES 1210-646) suggest that the source is a High Mass X-ray Binary (HMXB) probably powered by the Be mechanism. Data acquired by the RXTE All Sky Monitor (ASM), the ISS Monitor of All-sky X-ray Image (MAXI) and Suzaku provide a detailed temporal and spectral description of this poorly understood source. Long-term data produced by ASM and MAXI indicate that the source shows two distinct high and low states. A 6.7-day orbital period of the system was found in folded light curves produced by both ASM and MAXI. A two day Suzaku observation in Dec. 2010 took place during a transition from the minimum to the maximum of the folded light curve. The two day Suzaku observation reveals large variations in flux indicative of strong orbit to orbit variability. Flares in the Suzaku light curve can reach nearly 1.4 times the mean count rate. From a spectral analysis of the Suzaku data, emission lines in the Fe K alpha region were detected at 6.4 keV, 6.7 keV and 6.97 keV interpreted as FeI, FeXXV and FeXXVI. In addition, emission lines were observed at approximately 1.0 and 2.6 keV, corresponding to NeX and SXVI respectively. Thermal bremsstrahlung or power law models both modified by interstellar and partially covering absorption provide a good fit to the continuum data. This source is intriguing for these reasons: i) No pulse period was observed; ii) 6.7 day orbital period is much less than typical orbital periods seen in Be/X-ray Binaries; iii) The optical companion is a B5V--an unusual spectral class for an HMXB; iv) There are extended high and low X-ray states.

  5. Precision X-ray Timing of RX J0806.3+1527 with CHANDRA: Evidence for Gravitational Radiation from an Ultracompact Binary

    NASA Technical Reports Server (NTRS)

    Strohymayer, Tod E.

    2004-01-01

    RX J0806.3+1527 is a candidate double degenerate binary with possibly the shortest known orbital period. The source shows an approximately equal to 100% X-ray intensity modulation at the putative orbital frequency of 3.11 mHz (321.5 s). If the system is a detached, ultracompact binary gravitational radiation should drive spin-up with a magnitude of nu(sup dot) approximately 10(exp -16) Hz per second. Efforts to constrain the X-ray frequency evolution to date have met with mixed success, principally due to the sparseness of earlier observations. Here we describe the results of the first phase coherent X-ray monitoring campaign on RX J0806.3+1527 with Chandra. We obtained a total of 70 ksec of exposure in 6 epochs logarithmically spaced over 320 days. With these data we conclusively show that the X-ray frequency is increasing at a rate of 3.77 plus or minus 0.8 x 10(exp -16) Hz per second. Using the ephemeris derived from the new data we are able to phase up all the earlier Chandra and ROSAT data and show they are consistent with a constant nu(sup dot) = 3.63 plus or minus 0.06 x 10(exp -16) Hz per second over the past decade. This value appears consistent with that recently derived by Israel et al. largely from monitoring of the optical modulation, and is in rough agreement with the solutions reported initially by Hakala et al., based on ground-based optical observations. The large and stable nu(sup dot) over a decade is consistent with gravitational radiation losses driving the evolution. An intermediate polar (IP) scenario where the observed X-ray period is the spin period of an accreting white dwarf appears less tenable because the observed nu(sup dot) requires an m(sup dot) approximately equal to 4 x 10 (exp -8) solar mass yr(sup -l), that is much larger than that inferred from the observed X-ray luminosity (although this depends on the uncertain distance and bolometric corrections), and it is difficult to drive such a high m(sup dot) in a binary system with

  6. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  7. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  8. Where are Low Mass X-ray Binaries Formed?

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Maccarone, T. J.; Zepf, S. E.

    2004-08-01

    Chandra images of nearby galaxies reveal large numbers of low mass X-ray binaries (LMXBs). As in the Galaxy, a significant fraction of these are associated with globular clusters. We exploit the LMXB-globular cluster link in order to probe both the physical properties of globular clusters that promote the formation of LMXBs within clusters with specific characteristics, and to study whether the non-cluster field LMXB population was originally formed in clusters and then released into the field. The large population of globular clusters around nearby galaxies and the range of properties such as age, metallicity and host galaxy environment spanned by these objects enables us to identify and probe the link between these characteristics and the formation of LMXBs. We present the results of our study of a large sample of elliptical and S0 galaxies which reveals among other things that bright LMXBs definitively prefer metal-rich cluster hosts and that this relationship is unlikely to be driven by age effects. The ancestry of the non-cluster field LMXBs is a matter of some debate with suggestions that they they might have formed in the field, or created in globular clusters and then subsequently released into the field either by being ejected from clusters by dynamical processes or as remnants of dynamically destroyed clusters. Each of these scenarios has a specific spatial signature that can be tested by our combined optical and X-ray study. Furthermore, these scenarios predict additional statistical variations that may be driven by the specific host galaxy environment. We present a detailed analysis of our sample galaxies and comment on the probability that the field sources were actually formed in clusters.

  9. Chandra Detection of Intracluster X-Ray sources in Virgo

    NASA Astrophysics Data System (ADS)

    Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze

    2017-09-01

    We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.

  10. X-Ray Probes of Cosmic Star-Formation History

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    In a previous paper we point out that the X-ray luminosity L(sub x) of a galaxy is driven by the evolution of its X-ray binary population and that the profile of L(sub x) with redshift can both serve as a diagnostic probe of the Star Formation Rate (SFR) profile and constrain evolutionary models for X-ray binaries. We update our previous work using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on L(sub x)-evolution are beginning to probe the SFR profile of bright spirals and the early results are consistent with predictions based on current SFR models. Using these new SFR profiles the resolution of the "birthrate problem" of lowmass X-ray binaries (LMXBs) and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We also discuss the possible impact of the variations in the SFR profile of individual galaxies.

  11. ON THE RARITY OF X-RAY BINARIES WITH NAKED HELIUM DONORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    The paucity of known high-mass X-ray binaries (HMXBs) with naked He donor stars (hereafter He star) in the Galaxy has been noted over the years as a surprising fact, given the significant number of Galactic HMXBs containing H-rich donors, which are expected to be their progenitors. This contrast has further sharpened in light of recent observations uncovering a preponderance of HMXBs hosting loosely bound Be donors orbiting neutron stars (NSs), which would be expected to naturally evolve into He-HMXBs through dynamical mass transfer onto the NS and a common-envelope (CE) phase. Hence, reconciling the large population of Be-HMXBs with themore » observation of only one He-HMXB can help constrain the dynamics of CE physics. Here, we use detailed stellar structure and evolution models and show that binary mergers of HMXBs during CE events must be common in order to resolve the tension between these observed populations. We find that, quantitatively, this scenario remains consistent with the typically adopted energy parameterization of CE evolution, yielding expected populations which are not at odds with current observations. However, future observations which better constrain the underlying population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE ejection.« less

  12. Understanding the X-ray Flaring from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Moffat, A.F.J.; Corcoran, Michael F.

    2009-01-01

    We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.

  13. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  14. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  15. Gamma-rays from the binary system containing PSR J2032+4127 during its periastron passage

    NASA Astrophysics Data System (ADS)

    Bednarek, Włodek; Banasiński, Piotr; Sitarek, Julian

    2018-01-01

    The energetic pulsar, PSR J2032+4127, has recently been discovered in the direction of the unidentified HEGRA TeV γ-ray source (TeV J2032+4130). It is proposed that this pulsar forms a binary system with the Be type star, MT91 213, expected to reach periastron late in 2017. We performed detailed calculations of the γ-ray emission produced close to the binary system’s periastron passage by applying a simple geometrical model. Electrons accelerated at the collision region of pulsar and stellar winds initiate anisotropic inverse Compton {e}+/- pair cascades by scattering soft radiation from the massive companion. The γ-ray spectra, from such a comptonization process, are compared with the measurements of the extended TeV γ-ray emission from the HEGRA TeV γ-ray source. We discuss conditions within the binary system, at the periastron passage of the pulsar, for which the γ-ray emission from the binary can overcome the extended, steady TeV γ-ray emission from the HEGRA TeV γ-ray source.

  16. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  17. X-RAY OUTBURSTS OF ESO 243-49 HLX-1: COMPARISON WITH GALACTIC LOW-MASS X-RAY BINARY TRANSIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhen; Zhang, Wenda; Yu, Wenfei

    2015-09-20

    We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time, and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens themore » similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicates that the occurrence of the hard-to-soft state transition of HLX-1 is similar to those of Galactic LMXBTs during outbursts. We found that HLX-1 does not follow the correlations between total radiated energy and peak luminosity, and between total radiated energy and e-folding rise/decay timescales we had previously identified in Galactic LMXBTs. HLX-1 would follow those correlations if the distance were several hundreds of kiloparsecs. However, invoking a much closer distance for HLX-1 is not a viable solution to this problem, as it introduces other, more serious inconsistencies with the observations.« less

  18. X-ray illumination of globular cluster puzzles. [globular cluster X ray sources as clues to Milky Way Galaxy age and evolution

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Grindlay, J. E.

    1982-01-01

    Globular clusters are thought to be among the oldest objects in the Galaxy, and provide, in this connection, important clues for determining the age and process of formation of the Galaxy. The present investigation is concerned with puzzles relating to the X-ray emission of globular clusters, taking into account questions regarding the location of X-ray emitting clusters (XEGC) unusually near the galactic plane and/or galactic center. An adopted model is discussed for the nature, formation, and lifetime of X-ray sources in globular clusters. An analysis of the available data is conducted in connection with a search for correlations between binary formation time scales, central relaxation times, galactic locations, and X-ray emission. The positive correlation found between distance from galactic center and two-body binary formation time for globular clusters, explanations for this correlation, and the hypothesis that X-ray sources in globular clusters require binary star systems provide a possible explanation of the considered puzzles.

  19. Evidence Of A Black Hole In The X-ray Binary System Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Lombardi, C.; Virgilli, E.; Titarchuk, L.; Frontera, F.; Farinelli, R.

    2011-09-01

    Recently a close correlation between the photon index of the power law component and either the frequency of Quasi Periodic Oscillations (QPOs) or the flow of accretion disk has been found in the X-ray data concerning Black Holes (BH) in binary systems. The shape of this relationship, characterized by a saturation index when the system achieves high spectral brightness, finds a natural explanation in the processes of thermal and bulk Comptonization which are unique characteristic of the presence of a BH. For the whole set of observation we adopted a model consisting of the spectral component of BMC (Bulk Motion Comptonization model) that takes into account the direct emission of black body and the Comptonization process.

  20. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  1. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  2. The Discovery of a Second Luminous Low Mass X-Ray Binary System in the Globular Cluster M15

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Angelini, Lorella

    2001-01-01

    Using the Chandra X-ray Observatory we have discovered a second bright X-ray source in the globular cluster M15 that is 2.7" to the west of AC211, the previously known low mass X-ray binary (LMXB) in this system. Prior to the 0.5" imaging capability of Chandra this second source could not have been resolved from AC211. The luminosity and spectrum of this new source, which we call M15-X2, are consistent with it also being a LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The new source, M15-X2, is coincident with a 18th U magnitude very blue star. The discovery of a second LMXB in M15 clears up a long standing puzzle where the X-ray and optical properties of AC211 appear consistent with the central source being hidden behind an accretion disk corona, and yet also showed a luminous X-ray burst suggesting the neutron star is directly visible. This discovery suggests instead that the X-ray burst did not come from AC211, but rather from the newly discovered X-ray source. We discuss the implications of this discovery for X-ray observations of globular clusters in nearby galaxies.

  3. HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, Akos; Forman, William R.; Vogelsberger, Mark

    2013-08-01

    Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two 'normal' massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to {approx}60 kpc-well beyond their optical radii. The hot gas has a best-fit temperature of kT {approx} 0.6 keV and an abundance of {approx}0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-staticmore » gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r{sub 200} region (r{sub 200} is the virial radius) is {approx}6 Multiplication-Sign 10{sup 40} erg s{sup -1} for both galaxies. The baryon mass fractions of NGC 1961 and NGC 6753 are f{sub b,NGC1961} {approx} 0.11 and f{sub b,NGC6753} {approx} 0.09, which values fall short of the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code AREPO and the smoothed particle hydrodynamics code GADGET. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the AREPO code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by AREPO within {approx}0.5r{sub 200}. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.« less

  4. 7 years of MAXI: monitoring X-ray transients

    NASA Astrophysics Data System (ADS)

    Serino, M.; Shidatsu, M.; Iwakiri, W.; Mihara, T.

    2017-03-01

    This workshop was held to celebrate the successful 7 years of observation with Monitor of All-sky X-ray Image (MAXI), a Japanese astrophysics payload on the International Space Station. Since the launch in 2009, MAXI has been monitoring the variable X-ray sky, and has discovered 17 new X-ray sources. Often with a help of multi-wavelength follow-up observations, one of them has been identified with the nuclear ignition of a massive nova, 6 with black-hole binaries, and 5 with those involving neutron stars. Nevertheless, 4 of them remain unidentified, and are considered to form a potentially new class of short soft transients. MAXI is also leading the time-domain astronomy, with its capability to issue alerts which triggers prompt follow-up observations in the optical and other wavelengths. So far, MAXI has detected about a hundred gamma-ray bursts, and performing unbiased watch for stellar flares. In addition, long-term X-ray variations of about a hundred of sources are continuously tracked with MAXI. This has enabled a variety of new astrophysics that cannot be achieved by snapshot observations. The recent detections of the gravitation wave events have significantly increased the importance of MAXI as a currently operating all-sky monitor, and as a member of multi-messenger astronomy which covers electromagnetic waves, neutrinos, and gravitational waves. In this symposium, the MAXI results obtained during the 7 years are reviewed, with a session assigned to those from Hitomi. The symposium also covers new prospects in the time-domain astronomy, to be developed with future X-ray missions/instruments.

  5. A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Audley, Michael Damian

    1998-01-01

    This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was

  6. X Persei - correlation between H-alpha and X-ray variability

    NASA Astrophysics Data System (ADS)

    Zamanov, R.; Stoyanov, K. A.; Petrov, N.; Nikolov, Y.; Marchev, D.; Wolter, U.

    2018-03-01

    We performed H-alpha spectroscopic observations of the Be/X-ray binary X Per, optical counterpart of the slow X-ray pulsar 4U 0352+30, using the 2.0m telescope of the Rozhen National Astronomical Observatory, Bulgaria and the 1.2m TIGRE telescope located in Mexico.

  7. Colliding winds from early-type stars in binary systems

    NASA Technical Reports Server (NTRS)

    Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.

    1992-01-01

    The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

  8. A multiwavelength investigation of the massive eclipsing binary Cygnus OB2 #5

    NASA Astrophysics Data System (ADS)

    Linder, N.; Rauw, G.; Manfroid, J.; Damerdji, Y.; De Becker, M.; Eenens, P.; Royer, P.; Vreux, J.-M.

    2009-02-01

    Context: The properties of the early-type binary Cyg OB2 #5 have been debated for many years and spectroscopic and photometric investigations yielded conflicting results. Aims: We have attempted to constrain the physical properties of the binary by collecting new optical and X-ray observations. Methods: The optical light curves obtained with narrow-band continuum and line-bearing filters are analysed and compared. Optical spectra are used to map the location of the He ii λ 4686 and Hα line-emission regions in velocity space. New XMM-Newton as well as archive X-ray spectra are analysed to search for variability and constrain the properties of the hot plasma in this system. Results: We find that the orbital period of the system slowly changes though we are unable to discriminate between several possible explanations of this trend. The best fit solution of the continuum light curve reveals a contact configuration with the secondary star being significantly brighter and hotter on its leading side facing the primary. The mean temperature of the secondary star turns out to be only slightly lower than that of the primary, whilst the bolometric luminosity ratio is found to be 3.1. The solution of the light curve yields a distance of 925 ± 25 pc much lower than the usually assumed distance of the Cyg OB2 association. Whilst we confirm the existence of episodes of higher X-ray fluxes, the data reveal no phase-locked modulation with the 6.6 day period of the eclipsing binary nor any clear relation between the X-ray flux and the 6.7 yr radio cycle. Conclusions: The bright region of the secondary star is probably heated by energy transfer in a common envelope in this contact binary system as well as by the collision with the primary's wind. The existence of a common photosphere probably also explains the odd mass-luminosity relation of the stars in this system. Most of the X-ray, non-thermal radio, and possibly γ-ray emission of Cyg OB2 #5 is likely to arise from the

  9. Periodic self-lensing from accreting massive black hole binaries

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  10. CHANDRA AND SWIFT X-RAY OBSERVATIONS OF THE X-RAY PULSAR SMC X-2 DURING THE OUTBURST OF 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. L.; Hu, C.-P; Lin, L. C. C.

    2016-09-10

    We report the Chandra /HRC-S and Swift /XRT observations for the 2015 outburst of the high-mass X-ray binary pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra /HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift /XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipsesmore » or an ionized high-density shadow wind near the companion’s surface. Finally, we propose that an outflow driven by the radiation pressure from day ∼10 played an important role in the X-ray/optical evolution of the outburst.« less

  11. Using 3D Dynamic Models to Reproduce X-ray Properties of Colliding Wind Binaries

    NASA Astrophysics Data System (ADS)

    Russell, C. M. P.; Okazaki, A. T.; Owocki, S. P.; Corcoran, M. F.; Madura, T. I.; Leyder, J.-C.; Hamaguchi, K.

    2013-06-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, such as RXTE, XMM, and Chandra. To interpret these X-ray light curves and spectra, we model the wind-wind interaction using 3D smoothed particle hydrodynamics (SPH), which incorporates radiative cooling and uses an anti-gravity approach to accelerate the winds according a β-law, and then solve the 3D formal solution of radiative transfer to synthesize the model X-ray properties. The results for the multi-year-period, highly eccentric CWBs η Carinae and WR140 match well the 2-10 keV RXTE light curve, hardness ratio, and dynamic spectra. This includes η Car's ˜3-month-long X-ray minimum associated with the 1998.0 and 2003.5 periastron passages, which we find to occur as the primary wind encroaches into the secondary wind's acceleration region, and thus quenches the high temperature gas between the stars. Furthermore, the η Car modeling suggests the commonly inferred primary mass loss rate of ˜10^-3 Mo/yr, provides further evidence that the observer is mainly viewing the system through the secondary's shock cone, and suggests that periastron occurs ˜1 month after the onset of the X-ray minimum. For WR140, the decrease in model X-rays around periastron is less than observed, but there is very good agreement with the observed XMM spectrum taken on the rise before periastron. We also model the short-period (2.67 day) CWB HD150136, which harbors the nearest O3 star. The imbalance of the wind strengths suggests a ``wind-star'' collision as the primary wind reaches the secondary star's surface, even when accounting for radiative braking, thus producing high-temperature, X-ray-emitting gas in a shock cone flowing around the surface of the secondary star. This model qualitatively reproduces the dip in X-ray emission associated with superior conjunction observed by Chandra, as well

  12. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) ×more » 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.« less

  13. RXJ0440.9+4431: a Persistent Be-x-ray Binary in Outburst

    NASA Technical Reports Server (NTRS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2013-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL).We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity and the dynamical properties of the system. We have determined the orbital period from the long-term Swift/BAT light curve, but our determinations of the spin-period are not precise enough to constrain any orbital solution. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of approx 2 × 10(exp 36) erg/ s. The luminosity dependency of the size of the black body emission region is found to be r(sub BB) varies as L(sub x) (exp 0.39 +/- 0.02). This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the structure of the Neutron star magnetic field is more complicated than a simple dipole close to the surface.

  14. Evidence for a Constant Initial Mass Function in Early-type Galaxies Based on Their X-Ray Binary Populations

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF. Based in part on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The scientific results reported in this article are based in part on data obtained from the Chandra Data Archive and observations made by the

  15. A First Estimate of the X-Ray Binary Frequency as a Function of Star Cluster Mass in a Single Galactic System

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2008-05-01

    We use the previously identified 15 infrared star cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, η, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to Ks luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of η and find it varies by less than a factor of 4. We find a mean value of η for these different distributions of η = 1.7 × 10-8 M-1⊙ with ση = 1.2 × 10-8 M-1⊙. Performing a χ2 test, we demonstrate η could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in η are factors of a few, we believe this is the first estimate made of this quantity to "order of magnitude" accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.

  16. In-depth study of long-term variability in the X-ray emission of the Be/X-ray binary system AX J0049.4-7323

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Romano, P.; Malacaria, C.; Ji, L.; Bozzo, E.; Santangelo, A.

    2018-06-01

    AX J0049.4-7323 is a Be/X-ray binary in the Small Magellanic Cloud hosting a 750 s pulsar which has been observed over the last 17 years by several X-ray telescopes. Despite numerous observations, little is known about its X-ray behaviour. Therefore, we coherently analysed archival Swift, Chandra, XMM-Newton, RXTE, and INTEGRAL data, and we compared them with already published ASCA data, to study its X-ray long-term spectral and flux variability. AX J0049.4-7323 shows a high X-ray variability, spanning more than three orders of magnitudes, from L ≈ 1.6 × 1037 erg s-1 (0.3-8 keV, d = 62 kpc) down to L ≈ 8 × 1033 erg s-1. RXTE, Chandra, Swift, and ASCA observed, in addition to the expected enhancement of X-ray luminosity at periastron, flux variations by a factor of 270 with peak luminosities of ≈2.1 × 1036 erg s-1 far from periastron. These properties are difficult to reconcile with the typical long-term variability of Be/XRBs, traditionally interpreted in terms of type I and type II outbursts. The study of AX J0049.4-7323 is complemented with a spectral analysis of Swift, Chandra, and XMM-Newton data which showed a softening trend when the emission becomes fainter, and an analysis of optical/UV data collected by the UVOT telescope on board Swift. In addition, we measured a secular spin-up rate of Ṗ = (-3.00 ± 0.12) × 10-3 s day-1, which suggests that the pulsar has not yet achieved its equilibrium period. Assuming spherical accretion, we estimated an upper limit for the magnetic field strength of the pulsar of ≈3 × 1012 G.

  17. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  18. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in

  19. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  20. X-Ray source populations in old open clusters: Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy

    2014-09-01

    We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.

  1. The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Pinto, C.; Patruno, A.; Wette, K.; Messenger, C.; Hernández Santisteban, J. V.; Wijnands, R.; Miller, J. M.; Altamirano, D.; Paerels, F.; Chakrabarty, D.; Fabian, A. C.

    2018-04-01

    We present a comprehensive X-ray study of the neutron star low-mass X-ray binary IGR J17062-6143, which has been accreting at low luminosities since its discovery in 2006. Analysing NuSTAR, XMM-Newton, and Swift observations, we investigate the very faint nature of this source through three approaches: modelling the relativistic reflection spectrum to constrain the accretion geometry, performing high-resolution X-ray spectroscopy to search for an outflow, and searching for the recently reported millisecond X-ray pulsations. We find a strongly truncated accretion disc at 77^{+22}_{-18} gravitational radii (˜164 km) assuming a high inclination, although a low inclination and a disc extending to the neutron star cannot be excluded. The high-resolution spectroscopy reveals evidence for oxygen-rich circumbinary material, possibly resulting from a blueshifted, collisionally ionized outflow. Finally, we do not detect any pulsations. We discuss these results in the broader context of possible explanations for the persistent faint nature of weakly accreting neutron stars. The results are consistent with both an ultra-compact binary orbit and a magnetically truncated accretion flow, although both cannot be unambiguously inferred. We also discuss the nature of the donor star and conclude that it is likely a CO or O-Ne-Mg white dwarf, consistent with recent multiwavelength modelling.

  2. Much NICER Monitoring of the X-ray Spectrum of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven

    2018-01-01

    Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.

  3. Mapping and Modeling the Extended Winds of the Massive Interacting Binary, Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Ted

    2010-01-01

    The combination HST/STIS high spatial and moderate spectral resolutions have revealed the massive interacting wind structure of Eta Carinae by forbidden lines of singly and doubly ionized elements. Throughout the 5.54-year period, lines of Fe++, Ne++, Ar++, S++ and N+ reveal the interacting wind structures, near critical electron densities of 10(exp 5) to 3 x 10(exp 7)cu cm, photoionized by the hot secondary, Eta Car B, Lines of Fe+ and Ni+ trace the denser (>10(exp 7)cu cm. less-ionized (< 8 eV) primary wind of Eta Car A as it wraps around the interacting binary stars. For 5 years of the 5.54 year period, the FUV radiation from Eta Car B escapes the orbital region, ionizing the boundaries of the expanding wind structures. But for three to six months, Eta Car B plunges into the primary wind approaching to within 1 to 2 AU, leading to cutoff of FUV and X-ray fluxes. The interacting wind structure, resolved out to 0.8", drops io ionization and then rebuilds as Eta Car B emerges from the primary wind envelope. Solid Particle Hydrodynamical(SPH) models have been developed extending out to 2000 AU and adapted to include FUV radiation effects of the winds. In turn, synthetic spectroimages of selected forbidden lines have been constructed and compared to the spectroimages recorded by the HST/STIS throughout 1998.0 to 2004.3, extending across the 1998 and 2003.5 minima. By this method, we show that the orbital axis of the binary system must bc within 15 degrees of the Homunculus axis of symmetry and that periastron occurs with Eta Car B passing on the far side of Eta Car B. This result ties the current binary orbit with the bipolar ejection with intervening skirt and leads to implications that the binary system influenced the mass ejection of the l840s and the lesser ejection of the 1890s.

  4. Galactic Starburst NGC 3603 from X-Rays to Radio

    NASA Technical Reports Server (NTRS)

    Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.; hide

    2002-01-01

    NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.

  5. EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.

    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in itsmore » X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.« less

  6. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  7. RE 1016-053 - A pre-cataclysmic binary, and the first extreme ultraviolet and X-ray detections of a DAO white dwarf

    NASA Technical Reports Server (NTRS)

    Tweedy, R. W.; Holberg, J. B.; Barstow, M. A.; Bergeron, P.; Grauer, A. D.; Liebert, James; Fleming, T. A.

    1993-01-01

    Photometric observations and analysis of the optical, UV, EUV, and X-ray spectra are presented for the EUV/X-ray source RE 1016-53. Multiwavelength observations of RE 1016-53 point out that it is a precataclysmic binary. Optical spectra exhibit the steep blue continuum and Balmer absorption typical of a hot white dwarf, but there are bright, narrow emission lines of H I, He I, and Ca II superimposed on this. The white dwarf component, with T (eff) = 55,800 +/- 1000 K and log g = 7.81 +/- 0.007, dominates the spectrum from the optical to the EUV/X-ray. An He II 4686 A absorption line suggests that the white dwarf is a hydrogen-helium (DAO) hybrid star. Four of the five precataclysmic binaries with white dwarfs with T(eff) greater than 40,000 K appear to be DAOs. A mass of 0.57 +/- 0.003 solar mass has been derived.

  8. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  9. Discovery of a Be/X-Ray Binary Consistent with the Location of GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen; Weisskopf, Martin; Finger, Mark H.; Coe, M. J.; Greiner, Jochen; Reig, Pablo; Papamastorakis, Giannis

    2005-01-01

    GRO J2058+42 is a 195 s transient X-ray pulsar discovered in 1995 with BATSE. In 1996, RXTE located GRO J2058+42 to a 90% confidence error circle with a 4 radius. On 2004 February 20, the region including the error circle was observed with Chandra ACIS-I. No X-ray sources were detected within the error circle; however, two faint sources were detected in the ACIS-I field of view. We obtained optical observations of the brightest object, CXOU J205847.5+414637, which had about 64 X-ray counts and was just 013 outside the error circle. The optical spectrum contains a strong Ha line and corresponds to an inhued object in the Two Micron All Sky Survey catalog, indicating a Be/X-ray binary system. Pulsations were not detected in the Chandra observations, but similar flux variations and distance estimates suggest that CXOU J205847.5+414637 and GRO J2058+42 are the same object. We present results from the Chandra observation, optical observations, new and previously unreported RXTE observations, and a reanalysis of a ROSAT observation.

  10. Discovery of Nearly Coherent Oscillations with a Frequency of approximately 567 Hz During Type I X-ray Bursts of the X-ray Transient and Eclipsing Binary X1658-298

    NASA Technical Reports Server (NTRS)

    Wijnands, Rudy; Strohmayer, Tod; Franco, Lucia M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We report the discovery of nearly coherent oscillations with a frequency of approximately 567 Hz during type I X-ray bursts from the X-ray transient and eclipsing binary X1658-298. If these oscillations are directly related to the neutron star rotation, then the spin period of the neutron star in X1658-298 is approximately 1.8 ms. The oscillations can be present during the rise or decay phase of the bursts. Oscillations during the decay phase of the bursts show an increase in frequency of approximately 0.5-1 Hz. However, in one particular burst the oscillations reappear at the end of the decay phase at about 571.5 Hz. This represents an increase in oscillation frequency of about 5 Hz, which is the largest frequency change seen so far in a burst oscillation. It is unclear if such a large change can be accommodated by present models used to explain the frequency evolution of the oscillations. The oscillations at 571.5 Hz are unusually soft compared to the oscillations found at 567 Hz. We also observed several bursts during which the oscillations are detected at much lower significance or not at all. Most of these bursts happen during periods of X-ray dipping behavior, suggesting that the X-ray dipping might decrease the amplitude of the oscillations (although several complications exist with this simple picture). We discuss our discovery in the framework of the neutron star spin interpretation.

  11. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2017-12-09

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  12. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  13. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  14. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  15. Phase lags of quasi-periodic oscillations across source states in the low-mass X-ray binary 4U 1636-53

    NASA Astrophysics Data System (ADS)

    de Avellar, Marcio G. B.

    2017-06-01

    The majority of attempts to explain the origin and phenomenology of the quasi-periodic oscillations (QPOs) detected in low-mass X-ray binaries invoke dynamical models, and it was just in recent years that renewed attention has been given on how radiative processes occurring in these extreme environments gives rise to the variability features observed in the X-ray light curves of these systems. The study of the dependence of the phase lags upon the energy and frequency of the QPOs is a step towards this end. The methodology we developed here allowed us to study for the first time these dependencies for all QPOs detected in the range of 1 to 1300 Hz in the low-mass X-ray binary 4U 1636-53 as the source changes its state during its cycle in the colour-colour diagram. Our results suggest that within the context of models of up-scattering Comptonization, the phase lags dependencies upon frequency and energy can be used to extract size scales and physical conditions of the medium that produces the lags.

  16. X-Ray and UV Orbital Phase Dependence in LMC X-3

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, P. T.; Smale, A. P.

    2001-01-01

    The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigated X-ray and ultraviolet variability in the system as a function of the 1.7 d binary orbit using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) in 1998 December. An abrupt 14 % flux decrease lasting nearly an entire orbit was followed by a return to previous flux levels. This behavior occurred twice at nearly the same binary phase, but is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7 % is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X-3 during a high flux state in 1996 December show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer (HSP) on the Hubble Space Telescope (HST) shows a phase dependent variability consistent with that observed in the visible, ascribed to the ellipsoidal variation of the visible star. The X-ray spectrum of LMC X-3 is acceptably represented by a phenomenological disk black-body plus a power law. Changes in the spectrum of LMX X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are closely correlated with the disk geometry spectral model parameter.

  17. X-ray and Optical Explorations of Spiders

    NASA Astrophysics Data System (ADS)

    Roberts, M.; Al Noori, H.; Torres, R.; Russell, D.; Mclaughlin, M.; Gentile, P.

    2017-10-01

    Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion which is having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton data obtained from several of these systems, along with new optical photometry.

  18. Searches for millisecond pulsations in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.

    1991-01-01

    High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.

  19. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}⊙ pre-SN star in a close binary with a 12 {M}⊙ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  20. Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.

    2017-10-01

    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.

  1. More surprises from the violent gamma-ray binary LS 2883 /B1259-63.

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.

    2018-01-01

    We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.

  2. The signature of supernova ejecta in the X-ray afterglow of the gamma-ray burst 011211.

    PubMed

    Reeves, J N; Watson, D; Osborne, J P; Pounds, K A; O'Brien, P T; Short, A D T; Turner, M J L; Watson, M G; Mason, K O; Ehle, M; Schartel, N

    2002-04-04

    Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.

  3. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Berger, E.; Fong, W.; Guidorzi, C.; Alexander, K. D.; Metzger, B. D.; Blanchard, P. K.; Cowperthwaite, P. S.; Chornock, R.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Annis, J.; Brown, D. A.; Chen, H.; Doctor, Z.; Frieman, J. A.; Holz, D. E.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory (CXO) at t≈ 2.3 days post-merger reveal no significant emission, with {L}x≲ 3.2× {10}38 {erg} {{{s}}}-1 (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching {L}x≈ 9× {10}38 {erg} {{{s}}}-1 at ≈ 15.1 days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy {E}k˜ {10}49-50 {erg}, viewed off-axis with {θ }{obs}˜ 20^\\circ {--}40^\\circ . Our models favor a circumbinary density n˜ {10}-4{--}{10}-2 {{cm}}-3, depending on the value of the microphysical parameter {ɛ }B={10}-4{--}{10}-2. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳ 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on {θ }{obs} are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.

  4. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    DOE PAGES

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less

  5. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  6. X-Ray Probes of Cosmic Star Formation History

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; White, Nicholas E.

    2001-01-01

    We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.

  7. Population of persistent high-mass X-ray binaries in the Milky Way

    NASA Astrophysics Data System (ADS)

    Lutovinov, A. A.; Revnivtsev, M. G.; Tsygankov, S. S.; Krivonos, R. A.

    2013-05-01

    We present results of the study of persistent high-mass X-ray binaries (HMXBs) in the Milky Way, obtained from the deep INTEGRAL Galactic plane survey. This survey provides us a new insight into the population of HMXBs because almost half of the whole sample consists of sources discovered with INTEGRAL. It is demonstrated for the first time that the majority of persistent HMXBs have supergiant companions and their luminosity function steepens somewhere around ˜2 × 1036 erg s-1. We show that the spatial density distribution of HMXBs correlates well with the star formation rate distribution in the Galaxy. The vertical distribution of HMXBs has a scale-height h ≃ 85 pc, that is somewhat larger than the distribution of young stars in the Galaxy. We propose a simple toy model, which adequately describes general properties of HMXBs in which neutron stars accrete a matter from the wind of its companion (wind-fed NS-HMXBs population). Using the elaborated model we argue that a flaring activity of the so-called supergiant fast X-ray transients, the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion.

  8. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    NASA Astrophysics Data System (ADS)

    Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.

    2017-09-01

    We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio (<13 μJy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence (LX = 1034-35 erg s-1) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with β > 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX < 1035 erg s-1 than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.

  9. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  10. CAN THE SUBSONIC ACCRETION MODEL EXPLAIN THE SPIN PERIOD DISTRIBUTION OF WIND-FED X-RAY PULSARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 10{sup 36} erg s{sup −1}), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 kmmore » s{sup −1}). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 10{sup 36} erg s{sup −1} is about 1:10.« less

  11. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  12. Wind collisions in three massive stars of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Cazorla, Constantin; Nazé, Yaël; Rauw, Gregor

    2014-01-01

    Aims: We wish to study the origin of the X-ray emission of three massive stars in the Cyg OB2 association: Cyg OB2 #5, Cyg OB2 #8A, and Cyg OB2 #12. Methods: To this aim, dedicated X-ray observations from XMM-Newton and Swift are used, as well as archival ROSAT and Suzaku data. Results: Our results on Cyg OB2 #8A improve the phase coverage of the orbit and confirm previous studies: the signature of a wind-wind collision is conspicuous. In addition, signatures of a wind-wind collision are also detected in Cyg OB2 #5, but the X-ray emission appears to be associated with the collision between the inner binary and the tertiary component orbiting it with a 6.7 yr period, without a putative collision inside the binary. The X-ray properties strongly constrain the orbital parameters, notably allowing us to discard some proposed orbital solutions. To improve the knowledge of the orbit, we revisit the light curves and radial velocity of the inner binary, looking for reflex motion induced by the third star. Finally, the X-ray emission of Cyg OB2 #12 is also analyzed. It shows a marked decrease in recent years, compatible with either a wind-wind collision in a wide binary or the aftermath of a recent eruption. Based on observations collected at the Observatoire de Haute Provence (OHP) as well as with Swift and XMM-Newton.Tables 1-3 and 5 are available in electronic form at http://www.aanda.org

  13. The Low-Mass X-Ray Binary X1832-330 in the Globular Cluster NGC 6652: A Serendipitous ASCA Observation

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan P.

    1999-01-01

    The Low Mass X-ray Binary (LMXB) X1832-330 in NGC 6652 is one of about 10 bright X-ray sources to have been discovered in Globular Clusters. We report on a serendipitous ASCA observation of this Globular Cluster LMXB, during which a Type I burst was detected and the persistent, non-burst emission of the source was at its brightest level recorded to date. No orbital modulation was detected, which argues against a high inclination for the X1832-330 system. The spectrum of the persistent emission can be fit with a power law plus a partial covering absorber, although other models are not ruled out. Our time-resolved spectral analysis through the burst shows, for the first time, clear evidence for spectral cooling from kT = 2.4 +/- 0.6 keV to kT = 1.0 +/- 0.1 keV during the decay. The measured peak flux during the burst is approximately 10% of the Eddington luminosity for a 1.4 Solar Mass neutron star. These are characteristic of a Type I burst, in the context of the relatively low quiescent luminosity of X1832-330.

  14. Coupling hydrodynamics with comoving frame radiative transfer. II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.

    2018-02-01

    Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.

  15. Hydrodynamic simulations of stellar wind disruption by a compact X-ray source

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.

    1990-01-01

    This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.

  16. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  17. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  18. The reflection spectrum of the low-mass X-ray binary 4U 1636-53

    NASA Astrophysics Data System (ADS)

    Wang, Yanan; Méndez, Mariano; Sanna, Andrea; Altamirano, Diego; Belloni, T. M.

    2017-06-01

    We present 3-79 keV NuSTAR observations of the neutron star low-mass X-ray binary 4U 1636-53 in the soft, transitional and hard state. The spectra display a broad emission line at 5-10 keV. We applied several models to fit this line: A Gaussian line, a relativistically broadened emission line model, kyrline, and two models including relativistically smeared and ionized reflection off the accretion disc with different coronal heights, relxill and relxilllp. All models fit the spectra well; however, the kyrline and relxill models yield an inclination of the accretion disc of ˜88° with respect to the line of sight, which is at odds with the fact that this source shows no dips or eclipses. The relxilllp model, on the other hand, gives a reasonable inclination of ˜56°. We discuss our results for these models in this source and the possible primary source of the hard X-rays.

  19. A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Gandhi, P.; Altamirano, D.; Uttley, P.; Tomsick, J. A.; Charles, P. A.; Fürst, F.; Rahoui, F.; Walton, D. J.

    2016-05-01

    We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kTin = 0.252 ± 0.003 keV scattered into a steep power-law with photon index Γ =6.39^{+0.08}_{-0.02} and an additional hard power-law tail (Γ = 1.79 ± 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ˜10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M⊙), we find the unabsorbed luminosity (0.1-100 keV) to be ≈0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R_{in}=28.0^{+0.7}_{-0.4} R_g or ˜12Rg, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination I = 55°.

  20. The Discovery of a Second Luminous Low Mass X-ray Binary in the Globular Cluster M15

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Angelini, Lorella

    2001-01-01

    We report an observation by the Chandra X-ray Observatory of 4U2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U2127+119 is in fact two bright sources, separated by 2.7". One source is associated with AC21 1, the previously identified optical counterpart to 4U2127+119, a low mass X-ray binary (LMXB). The second source, M15-X2, is coincident with a 19th U magnitude blue star that is 3.3" from the cluster core. The Chandra count rate of M15-X2 is 2.5 times higher than that of AC211. Prior to the 0.5" imaging capability of Chandra the presence of two so closely separated bright sources would not have been resolved, The optical counterpart, X-ray luminosity and spectrum of M15-X2 are consistent with it also being an LMXB system. This is the first time that two LMXBS have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long standing puzzle where the properties of AC211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U2127+119 into two sources suggests that the X-ray bursts did not come from AC211, but rather from M15X2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in GCs as well as X-ray observations of globular clusters in nearby galaxies.

  1. The Discovery of a Second Luminous Low-Mass X-Ray Binary in the Globular Cluster M15

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Angelini, Lorella

    2001-01-01

    We report an observation by the Chandra X-Ray Observatory of 4U 2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U 2127+119 is in fact two bright sources, separated by 2.7 arcsec. One source is associated with AC 211, the previously identified optical counterpart to 4U 2127+119, a low-mass X-ray binary (LMXB). The second source, M15 X-2, is coincident with a 19th U magnitude blue star that is 3.3 arcsec from the cluster core. The Chandra count rate of M15 X-2 is 2.5 times higher than that of AC 211. Prior to the 0.5 arcsec imaging capability of Chandra, the presence of two so closely separated bright sources would not have been resolved. The optical counterpart, X-ray luminosity, and spectrum of M15 X-2 are consistent with it also being an LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long-standing puzzle where the properties of AC 211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U 2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U 2127+119 into two sources suggests that the X-ray bursts did not come from AC 211 but rather from M15 X-2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in globular clusters as well as X-ray observations of globular clusters in nearby galaxies.

  2. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.; hide

    2011-01-01

    X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  3. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Baring, M. G.; Barthelmy, S.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Haba, Y.; hide

    2012-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 - 80 keY X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  4. Physical Identification of Binary System of Gliclazide-Hydrophilic Polymers Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Rachmawati, H.; Yatinasari, Faizatun, Syarie, S. A.

    2008-03-01

    The formation of binary system in pharmaceutical solid state is aimed to improve the physicochemical characteristics of active compound, such as its solubility. To identify the physical change of the binary system including crystallinity or particle morphology, there are many methods can be applied. In present report, we study the physical interaction of the binary system of gliclazide and hydrophilic polymers. In this binary system, gliclazide was either dispersed or mixed with polyvinyl pirrolidone (PVP K30) or polyethylene glycol (PEG 6000). The dispersion system of gliclazide in the polymeric carriers was prepared by solvation-evaporation method, using dichloromethane/methylene chloride as an organic solvent. The physical characterization of both dispersed and mixed of gliclazide was studied using X-ray diffraction at interval 6-50 °/2θ. As a comparison, the same procedure was performed for pure gliclazide. To confirm the diffractogram of this binary system, Fourier Transform Infrared (FT-IR) spectroscopy was carried out as well. Both diffarctogram and FT-IR spectra revealed that there was no new compound formed in the solid dispersion system of gliclazide:PEG 6000 and gliclazide:PVP K30. In contrast, the solubility as well as the dissolution rate of gliclazide in the presence of both hydrophilic polymers was increased as compared to pure gliclazide. We conclude therefore that solvatation followed by evaporation of gliclazide in the presence of either PEG 6000 or PVP K30 did not alter its crystalline characteristic. The improved of gliclazide solubility in the binary system might due to other mechanism such as increased in the wettability and the hydrophylicity effect of the polymers.

  5. TIME-FREQUENCY ANALYSIS OF THE SUPERORBITAL MODULATION OF THE X-RAY BINARY SMC X-1 USING THE HILBERT-HUANG TRANSFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang

    2011-10-20

    The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both themore » time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.« less

  6. Supermassive Black Holes in Late-type Spiral Galaxies: Constraining High Mass X-ray Binary Contamination

    NASA Astrophysics Data System (ADS)

    Dittenber, Benjamin; Hodges-Kluck, Edmund J.; Gallo, Elena

    2018-06-01

    Supermassive black holes (SMBHs) are known to commonly reside in the centers of large galaxies, but it is unclear whether they reside in smaller galaxies (M_* < M_sun x 10^10). X-rays are the most efficient way to detect low-level accretion, and provide the best measurement of the occupation fraction. X-ray binaries can be nearly as bright as SMBHs that have sub-Eddington accretion rates. High-mass XRBs (HMXBs) are especially problematic because they can get brighter than low-mass XRBs. However, previous estimates of HMXB contamination (based on the optical continuum to get the fraction of HMXBs expected in the nucleus) may be too high. A better approach is to use FUV or H-alpha, which directly trace ongoing star formation. We did this in a sample of 30 late-type galaxies with Chandra data. We calculate the total Expected X-ray Luminosity from XRBs (L_x) for each sample galaxy using existing relationships between X-ray luminosity and SFR. We estimate the fraction of the stellar formation in the nucleus by measuring the fraction of nuclear UV or H-alpha light there (total SFR is from the far infrared). Our Galex data is scaled with a sample of 6 Swift UVOT galaxies to measure with the same aperture size that previous works have used in the B-band. We found that the mean L_x,c for Swift scaled FUV ratios is ~2.025 x 10^36 and the mean L_x,c for H-alpha ratios is 7.693 x 10^35. These luminosities are 1.9 and 5 times smaller than B-band measured luminosities respectively. These results suggest that HMXBs do not contribute as much contamination in these galaxies as previously thought. Therefore, with a lower contamination, estimates of the occupation fraction from late-type galaxies are more reliable.

  7. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  8. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Fieldmore » Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.« less

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-01-01

    NGC 3603 is a bustling region of star birth in the Carina spiral arm of the Milky Way galaxy, about 20,000 light-years from Earth. For the first time, this Chandra image resolves the multitude of individual x-ray sources in this star-forming region. (The intensity of the x-rays observed by Chandra are depicted by the various colors in this image. Green represents lower intensity sources, while purple and red indicate increasing x-ray intensity.) Specifically, the Chandra image reveals dozens of extremely massive stars born in a burst of star formation about 2 million years ago. This region's activities may be indicative of what is happening in other distant "starburst" galaxies (bright galaxies flush with new stars). In the case of NGC 3603, scientists now believe that these x-rays are emitted from massive stars and stellar winds, since the stars are too young to have produced supernovae or have evolved into neutron stars. The Chandra observations of NGC 3603 may provide new clues about x-ray emission in starburst galaxies as well as star formation itself. (Photo credit: NASA/GSFC/M. Corcoran et al)

  10. Ginga observations of the dipping low-mass X-ray binaries XB 1916-053 and EXO 1748-676

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Mukai, Koji; Williams, O. R.; Jones, Mark H.; Corbet, Robin H. D.

    1992-01-01

    Ginga observations of XB 1916-053 and EXO 0748-676, low-mass X-ray binaries with pronounced dips of variable depth and duration in their X-ray light curves, are reported. Periodicity studies of XB-1916-053 show results consistent with those from previous Ginga observations, specifically, that the derived X-ray period is shorter than the optical period by about 1 percent. This problem is discussed, and a more refined model for the system is described. Three bursts were detected during the observation of XB 1916-053, the second of which occurred during a dip. Spectral analysis suggests that the second burst caused an almost instantaneous ionization of the absorbing medium in the line of sight. This material then returned to its equilibrium state on the same time scale as the burst decay. Loose limits are placed upon the possible clumpiness of the material responsible for the accretion disk structure in XB 1916-053 and EXO 0748-676.

  11. SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, R.; Garcia, M. R.; Murray, S. S.

    2015-03-01

    The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less

  12. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    DOE PAGES

    Margutti, Raffaella; Berger, E.; Fong, W.; ...

    2017-10-16

    Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margutti, Raffaella; Berger, E.; Fong, W.

    Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less

  14. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    NASA Astrophysics Data System (ADS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2014-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL). We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s-1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  15. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE PAGES

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    2017-09-01

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  16. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  17. Coordinated X-ray and optical observations of Scorpius X-1

    NASA Technical Reports Server (NTRS)

    Augusteijn, T.; Karatasos, K.; Papadakis, M.; Paterakis, G.; Kikuchi, S.; Brosch, N.; Leibowitz, E.; Hertz, P.; Mitsuda, K.; Dotani, T.

    1992-01-01

    We present the results of coordinated, partly simultaneous, optical and X-ray (Ginga) observations of the low-mass X-ray binary Sco X-1. We find that the division between the optically bright and faint state, at a blue magnitude B = 12.8, corresponds to the change from the normal to the flaring branch in the X-ray color-color diagram as proposed by Priedhorsky et al. (1986). From archival Walraven data we find that in both optical states the orbital light curve is approximately sinusoidal, and have a similar amplitudes.

  18. X-ray Timing Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2008-01-01

    We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\

  19. X-ray sources in dwarf galaxies in the Virgo cluster and the nearby field

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Marina; Phillipps, S.; Young, A. J.

    2016-08-01

    The extent to which dwarf galaxies represent essentially scaled down versions of giant galaxies is an important question with regards the formation and evolution of the galaxy population as a whole. Here, we address the specific question of whether dwarf galaxies behave like smaller versions of giants in terms of their X-ray properties. We discuss two samples of around 100 objects each, dwarfs in the Virgo cluster and dwarfs in a large Northern hemisphere area. We find nine dwarfs in each sample with Chandra detections. For the Virgo sample, these are in dwarf elliptical (or dwarf lenticular) galaxies and we assume that these are (mostly) low-mass X-ray binaries (LMXB) [some may be nuclear sources]. We find a detection rate entirely consistent with scaling down from massive ellipticals, viz. about one bright (I.e. LX > 1038 erg s-1) LMXB per 5 × 109 M⊙ of stars. For the field sample, we find one (known) Seyfert nucleus, in a galaxy which appears to be the lowest mass dwarf with a confirmed X-ray emitting nucleus. The other detections are in star-forming dwarf irregular or blue compact dwarf galaxies and are presumably high-mass X-ray binaries (HMXB). This time, we find a very similar detection rate to that in large late-type galaxies if we scale down by star formation rate, roughly one HMXB for a rate of 0.3 M⊙ per year. Nevertheless, there does seem to be one clear difference, in that the dwarf late-type galaxies with X-ray sources appear strongly biased to very low metallicity systems.

  20. Galaxies in the X-Ray Band

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2008-01-01

    This talk will provide a brief review of progress an X-ray emission from normal (non-AGN) galaxy populations, including important constraints on the evolution of accreting binary populations over important cosmological timescales. We will also look to the future, anticipating constraints from near-term imaging hard X-ray missions such as NuSTAR, Simbol-X and NeXT and then the longer-term prospects for studying galaxies with the Generation-X mission,

  1. Galaxies in the X-ray Band

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2008-01-01

    This talk will provide a brief review of progress on X-ray emission from normal (non-AGN) galaxy populations, including important constraints on the evolution of accreting binary populations over important cosmological timescales. We will also look to the future, anticipating constraints from near-term imaging hard X-ray missions such as NuSTAR, Simbol-X and NeXT and then the longer-term prospects for studying galaxies with the Generation-X mission.

  2. ROSAT observations of the luminous X-ray sources in M51

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Elmegreen, D.; Elmegreen, B.; Forman, W.; Jones, C.; Flanagan, K.

    1995-01-01

    Our analysis of a 24 ks ROSAT Position Sensitive Proprtional Counter (PSPC) image of the interacting galaxies NGC 5194 (M51) and NGC 5195 shows that X-ray emission is distributed across the whole of NGC 5194. In addition to the diffuse emission and a bright nuclear region, eight individual sources were detected with 0.2-2.2 keV luminosities from 5 to 29 x 10(exp 38) ergs/s, more than 10 times higher than typical bright Galactic X-ray sources. The energy distribution of the luminous sources can be characterized by bremsstrahlung spectra with temperatures around 1 keV and low-energy absorption exceeding that expected from our Galaxy. Two sources lie in an inner spiral arm, while five lie along the outer edges of the outer spiral arms. Four sources (R1, R2, R4, R6) lie in or near regions of recent star formation as indicated by H II regions or CO emission from molecular clouds. However, for three of the X-ray sources which fall on the outer edge of the spiral arms (R3, R7, and R8), there is little or no associated CO or H alpha emission. We discuss the origin of the luminous X-ray sources as possibly arising from either massive black holes in binary star systems, supernova remnants, or hot gas associated with star forming regions.

  3. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  4. BINARY BLACK HOLES, GAS SLOSHING, AND COLD FRONTS IN THE X-RAY HALO HOSTING 4C+37.11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade-Santos, Felipe; Bogdán, Ákos; Forman, William R.

    We analyzed deep Chandra ACIS-I exposures of the cluster-scale X-ray halo surrounding the radio source 4C+37.11. This remarkable system hosts the closest resolved pair of super-massive black holes and an exceptionally luminous elliptical galaxy, the likely product of a series of past mergers. We characterize the halo with r {sub 500} ∼ 0.95 Mpc, M {sub 500} = 2.5 ± 0.2 × 10{sup 14} M {sub ⊙}, kT = 4.6 ± 0.2 keV, and a gas mass of M {sub g,500} = 2.2 ± 0.1 × 10{sup 13} M {sub ⊙}. The gas mass fraction within r {sub 500} ismore » f {sub g} = 0.09 ± 0.01. The entropy profile shows large non-gravitational heating in the central regions. We see several surface brightness jumps, associated with substantial temperature and density changes but approximate pressure equilibrium, implying that these are sloshing structures driven by a recent merger. A residual intensity image shows a core spiral structure closely matching that seen in the Perseus cluster, although at z = 0.055 the spiral pattern is less distinct. We infer that the most recent merger occurred 1–2 Gyr ago and that the event that brought the two observed super-massive black holes to the system core is even older. Under this interpretation, the black hole binary pair has, unusually, remained at a parsec-scale separation for more than 2 Gyr.« less

  5. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  6. Jets in black-hole and neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  7. Superorbital Period in the high mass X-ray binary 2S 0114+650

    NASA Astrophysics Data System (ADS)

    Farrell, S.; Sood, R.; O'Neill, P.

    2004-05-01

    We report the identification of a superorbital period in the high mass X-ray binary 2S 0114+650. RXTE ASM observations of this object from 1996 Jan 5 to 2003 May 26 show the presence of a modulation at a period of 30.7 +/- 0.2 days. This period is detected using a Lomb-Scargle periodogram, and has a false-alarm probability of 5E-12. Epoch folding of the data gives an ephemeris of JD 2450079.4 (+/- 0.7) +30.7 (+/- 0.2)N, where N is the cycle number, with phase zero defined as the modulation minimum, and a full amplitude of 60 +/- 20%.

  8. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto

    2011-09-01

    We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less

  9. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  10. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 revealmore » a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.« less

  11. Lense-Thirring Precession of Accretion Disks and Quasi-Periodic Oscillations in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Markovic, D.; Lamb, F. K.

    2003-05-01

    It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the 20-300 Hz quasi-periodic X-ray brightness oscillations (QPOs) observed in some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored warping modes of geometrically thin disks in the presence of gravitomagnetic and radiation torques. We have found a family of overdamped, low-frequency gravitomagnetic (LFGM) modes all of which have precession frequencies lower than a certain critical frequency ωcrit, which is 1 Hz for a compact object of solar mass. A radiation warping torque can cause a few of the lowest-frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies ≳10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The highest-frequency HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values as large as 50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.

  12. X-ray observations of black widow pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability.more » The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.« less

  13. Probabilistic HR Diagrams: A New Infrared and X-ray Chronometer for Very Young, Massive Stellar Clusters and Associations

    NASA Astrophysics Data System (ADS)

    Maldonado, Jessica; Povich, Matthew S.

    2016-01-01

    We present a novel method for constraining the duration of star formation in very young, massive star-forming regions. Constraints on stellar population ages are derived from probabilistic HR diagrams (pHRDs) generated by fitting stellar model spectra to the infrared (IR) spectral energy distributions (SEDs) of Herbig Ae/Be stars and their less-evolved, pre-main sequence progenitors. Stellar samples for the pHRDs are selected based on the detection of X-ray emission associated with the IR source, and the lack of detectible IR excess emission at wavelengths ≤4.5 µm. The SED model fits were used to create two-dimensional probability distributions of the stellar parameters, specifically bolometric luminosity versus temperature and mass versus evolutionary age. We present first results from the pHRD analysis of the relatively evolved Carina Nebula and the unevolved M17 SWex infrared dark cloud, which reveal the expected, strikingly different star formation durations between these two regions. In the future, we will apply this method to analyze available X-ray and IR data from the MYStIX project on other Galactic massive star forming regions within 3 kpc of the Sun.

  14. Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.

    2016-01-01

    We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.

  15. A Circumbinary Disk Model for the Rapid Orbital Shrinkage in Black Hole Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Tian; Li, Xiang-Dong

    2018-05-01

    Several black hole low-mass X-ray binaries (BHLMXBs) show very fast orbital shrinkage, which is difficult to understand in the standard picture of the LMXB evolution. Based on the possible detection of a circumbinary (CB) disk in A0620-00 and XTE J1118+480, we investigate the influence of the interaction between a CB disk and the inner binary and calculate the evolution of the binary using the Modules for Experiments in Stellar Astrophysics. We consider two cases for the CB disk formation in which it is fed by mass loss during single outburst or successive outbursts in the LMXB. We show that when taking reasonable values of the initial mass and the dissipating time of the disk, it is possible to explain the fast orbital shrinkage in the BHLMXBs without invoking a high-mass transfer rate.

  16. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  17. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future

  18. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  19. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  20. Massive Black Hole Binary Mergers and their Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto

    2017-01-01

    Gravitational Waves (GW) from stellar-mass BH binaries have recently been observed by LIGO, but GW from their supermassive counterparts have remained elusive. Recent upper limits from Pulsar Timing Arrays (PTA) have excluded significant portions of the predicted parameter space. Most previous studies, however, have assumed that most or all Massive Black Hole (MBH) Binaries merge effectively and quickly. I will present results derived—for the first time—from cosmological, hydrodynamic simulations with self-consistently coevolved populations of MBH particles. We perform post-processing simulations of the MBH merger process, using realistic galactic environments, including models of dynamical friction, stellar scattering, gas drag from a circumbinary disk, and GW emission—with no assumptions of merger fractions or timescales. We find that despite only the most massive systems merging effectively (and still on gigayear timescales), the GW Background is only just below current detection limits with PTA. Our models suggest that PTA should make detections within the next decade, and will provide information about MBH binary populations, environments, and even eccentricities. I’ll also briefly discuss prospects for observations of dual-AGN, and the possible importance of MBH triples in the merger process.

  1. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  2. A black hole-white dwarf compact binary model for long gamma-ray bursts without supernova association

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-03-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the Universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614, and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  3. An extended galactic population of low-luminosity x-ray sources (CVs?) and the diffuse x-ray background

    NASA Technical Reports Server (NTRS)

    Maoz, Eyal; Grindlay, Jonathan E.

    1995-01-01

    possible nature of these soures, including their being subdwarfs, low mass x-ray binaries (LMXBs), massive black holes, and old neutron stars. We argue that the inferred X-ray and optical luminosities of these sources, the slope of their energy spectrum, and the derived local number density and spatial distribution are all consistent with their being intrinsically faint cataclysmic variables with low accretion rates. We suggest a few possibilities for the origin of such population, including an origin from disrupted globular clusters or dark clusters. We make predictions and suggest tests that could either confirm or rule out our proposal in the near future.

  4. A study of coronal X-ray emission from short-period Algol binaries

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Drake, S. A.; White, N. E.

    1995-01-01

    A study of X-ray emission from five short-period Algol-type binaries based on observations with Advanced Satellite for Cosmology and Astrophysics (ASCA) and ROSAT is presented. We have observed RZ Cas with both satellites, and beta Per, U Cep, delta Lib, and TW Dra with ROSAT. Significant intensity variations are seen in the X-ray emission from RZ Cas, U Cep, TW Dra, and delta Lib. These variations seem unrelated to the eclipsing behavior of these systems and are probably due to either rotational modulation of compact active regions on the surfaces of the chromospherically active secondary components or to flaring activity in the systems. The spectra of all but one of the systems require the presence of at least two discrete plasma components with different temperatures (0.6 - 0.7 keV, and approximately 2 keV) and the abundances of the medium-Z elements 20% - 50% of the solar photospheric values. The high resolving power and signal-to-noise ratio of the ASCA spectra allow us to individually constrain the coronal abundances of O, Ne, Mg, Si, S, and Fe in RZ Cas. We demonstrate that, if we use the elemental abundances and temperatures obtained from the analysis of their ASCA spectra as (fixed) inputs, to fit the ROSAT PSPC spectra well requires the presence of a third component (kT approximately 0.2 - 0.3 keV) in RZ Cas and beta Per. A continuous emission measure model of the power-law type (EM(T) variesas (T/T(sub max)(sup alpha)) generally gives a poor fit to the ASCA and ROSAT data on most sources. Circumstellar or circumbinary absorbing matter seems to be present in some of these systems, as indicated by the variable total column density needed to fit their X-ray spectra.

  5. Chandra X-Ray Observatory Image NGC 3603

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NGC 3603 is a bustling region of star birth in the Carina spiral arm of the Milky Way galaxy, about 20,000 light-years from Earth. For the first time, this Chandra image resolves the multitude of individual x-ray sources in this star-forming region. (The intensity of the x-rays observed by Chandra are depicted by the various colors in this image. Green represents lower intensity sources, while purple and red indicate increasing x-ray intensity.) Specifically, the Chandra image reveals dozens of extremely massive stars born in a burst of star formation about 2 million years ago. This region's activities may be indicative of what is happening in other distant 'starburst' galaxies (bright galaxies flush with new stars). In the case of NGC 3603, scientists now believe that these x-rays are emitted from massive stars and stellar winds, since the stars are too young to have produced supernovae or have evolved into neutron stars. The Chandra observations of NGC 3603 may provide new clues about x-ray emission in starburst galaxies as well as star formation itself. (Photo credit: NASA/GSFC/M. Corcoran et al)

  6. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  7. A ROSAT Survey of Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  8. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  9. Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi

    2007-07-12

    The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less

  10. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    NASA Astrophysics Data System (ADS)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.; Bult, P. M.; Cackett, E. M.; Chakrabarty, D.; Dauser, T.; Enoto, T.; Fabian, A. C.; García, J. A.; Gendreau, K. C.; Guillot, S.; Homan, J.; Jaisawal, G. K.; Keek, L.; La Marr, B.; Malacaria, C.; Markwardt, C. B.; Steiner, J. F.; Strohmayer, T. E.

    2018-05-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of {1.4}-0.1+0.2 R ISCO and Fe K is at {1.03}-0.03+0.13 R ISCO (errors quoted at 90%). This corresponds to a position of {17.3}-1.2+2.5 km and {12.7}-0.4+1.6 km for a canonical NS mass ({M}NS}=1.4 {M}ȯ ) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance.

  11. X-Ray Emissions from Accreting White Dwarfs: A Review

    NASA Technical Reports Server (NTRS)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  12. Massive close binaries with early-type components

    NASA Astrophysics Data System (ADS)

    Polushina, T. S.

    A brief review of the study of massive close binaries system with the hot components carried out in Kourovka astronomical observatory is presented including such systems as CC Cas, SZ Cam, UU Cas, V368 Cas, BH Cen, SV Cen, LY Aur, V701 Sco. An attempt to explain the results of observations by the presence of circumstellar matter has been made. Some estimates of the circumstellar matter parameters are obtained.

  13. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  14. Truncation of the Accretion Disk at One-third of the Eddington Limit in the Neutron Star Low-mass X-Ray Binary Aquila X-1

    NASA Astrophysics Data System (ADS)

    Ludlam, R. M.; Miller, J. M.; Degenaar, N.; Sanna, A.; Cackett, E. M.; Altamirano, D.; King, A. L.

    2017-10-01

    We perform a reflection study on a new observation of the neutron star (NS) low-mass X-ray binary Aquila X-1 taken with NuSTAR during the 2016 August outburst and compare with the 2014 July outburst. The source was captured at ˜32% L Edd, which is over four times more luminous than the previous observation during the 2014 outburst. Both observations exhibit a broadened Fe line profile. Through reflection modeling, we determine that the inner disk is truncated {R}{in,2016}={11}-1+2 {R}g (where R g = GM/c 2) and {R}{in,2014}=14+/- 2 {R}g (errors quoted at the 90% confidence level). Fiducial NS parameters (M NS = 1.4 M ⊙, R NS = 10 km) give a stellar radius of R NS = 4.85 R g ; our measurements rule out a disk extending to that radius at more than the 6σ level of confidence. We are able to place an upper limit on the magnetic field strength of B ≤ 3.0-4.5 × 109 G at the magnetic poles, assuming that the disk is truncated at the magnetospheric radius in each case. This is consistent with previous estimates of the magnetic field strength for Aquila X-1. However, if the magnetosphere is not responsible for truncating the disk prior to the NS surface, we estimate a boundary layer with a maximum extent of {R}{BL,2016}˜ 10 {R}g and {R}{BL,2014}˜ 6 {R}g. Additionally, we compare the magnetic field strength inferred from the Fe line profile of Aquila X-1 and other NS low-mass X-ray binaries to known accreting millisecond X-ray pulsars.

  15. X-Ray Timing Analysis of Cyg X-3 Using AstroSat/LAXPC: Detection of Milli-hertz Quasi-periodic Oscillations during the Flaring Hard X-Ray State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahari, Mayukh; Misra, Ranjeev; Antia, H M

    We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from the Large Area X-ray proportional Counter on board AstroSat . Consecutive light curves observed over a period of one year show the binary orbital period of 17253.56 ± 0.19 s. Another low-amplitude, slow periodicity of the order of 35.8 ± 1.4 days is observed, which may be due to the orbital precession as suggested earlier by Molteni et al. During the rising binary phase, power density spectra from different observations during the flaring hard X-ray state show quasi-periodic oscillations (QPOs)more » at ∼5–8 mHz, ∼12–14 mHz, and ∼18–24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2 σ significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.« less

  16. News on the X-ray emission from hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  17. Observation of X-ray eclipses from LMC X-4

    NASA Technical Reports Server (NTRS)

    Li, F.; Rappaport, S.; Epstein, A.

    1978-01-01

    Observations made with the Rotation Modulation Collimator system (RMC) have revealed that X-ray source X-4 in the Large Magellanic Cloud (LMC X-4) is most likely part of a binary system. An analysis of the star's coordinates is presented, with attention given to orbital period and flux intensity variations. Stellar mass and orbital inclination angle are estimated for both X-4 and its companion star.

  18. Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3

    NASA Astrophysics Data System (ADS)

    Boyd, P. T.; Smale, A. P.

    2001-05-01

    The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.

  19. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  20. From Uhuru at CfA to SAS-3 at MIT: Looking for X-Ray Binaries in all the Right Places

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.

    2013-01-01

    My career in X-ray astronomy started almost accidentally, when in 1975 I was hired fresh out of college as a “data aide” for the Uhuru satellite, in Riccardo Giacconi’s group at the Harvard-Smithsonian Center for Astrophysics. Working first for Mel Ulmer, and later for Bill Forman and Christine Jones, I learned the fundamentals of data analysis, and helped produce the Fourth Uhuru catalog of X-ray sources (Forman et al. 1978), as well as studying transient X-ray sources (Cominsky et al. 1978). Christine was the first woman scientist I had ever met, and with her encouragement, I applied to graduate school to continue on in X-ray astronomy. Lured down the street to MIT by the chance to work on SAS-3, I eagerly learned how to operate the satellite from a control room in the Center for Space Research. The SAS-3 group was led by Prof. George Clark, and it was my good luck that he was around during the holiday break in January 1978 when everyone else in the group was at an AAS meeting in Hawaii. A source I recognized from my Uhuru work, 4U0115+63, had reappeared, and I knew that it was likely to be a pulsar. With the help of George and Project Scientist Bill Mayer, I managed to send the commands to stop SAS-3 and point at the source. The 3.6 second pulsations were so strong that they could be seen in the raw data! This discovery made the New York Times, as 4U0115+63 was the first transient x-ray source shown to be in a binary system (Cominsky et al. 1978, Rappaport et al. 1978). Another personal SAS-3 highlight included working on Prof. Walter Lewin’s “World-wide Burst Watch” - coordinated multi-wavelength observations of x-ray burst sources which led to the discoveries of slightly delayed but coincident optical bursts (Grindlay et al. 1978, McClintock et al. 1979). Although live operations of SAS-3 ended when it re-entered on April 9, 1979, many years of additional data analysis remained. And later, as a continuation of work I began in my Ph.D. Thesis on X-ray

  1. Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.

    2017-10-01

    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.

  2. Evidence of the presence of a Be circumstelar disk in the Be/X-ray binaries KS 1947+ 300 and Cep X-4

    NASA Astrophysics Data System (ADS)

    Ozbey-Arabaci, M.; Camero-Arranz, A.; Fabregat, J.; Ozcan, H. Bilal; Peris, V.

    2014-06-01

    We report on photometric and spectroscopic optical observations of the Be/X-ray binaries KS 1947+300 and Cep X-4, obtained with the TUG Faint Object Spectrograph and Camera (TFOSC) mounted on the focal plane of the 1.5-m Russian-Turkish Telescope (RTT150) at T & Uuml;B & #304TAK National Observatory (Antalya, Turkey) between 2014 June 18-20 (MJD 56826.933-56828.067), and with the spectrograph located at the 51-cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2014 June 3 (MJD 56811.097). ...

  3. Eta Carinae's Thermal X-Ray Tail Measured with XMM-Newton and NuStar

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher; Moffat, Anthony F. J.; Madura, Thomas

    2016-01-01

    The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp-2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.

  4. Rapid timing studies of black hole binaries in Optical and X-rays: correlated and non-linear variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, P.; Dhillon, V. S.; Durant, M.

    2010-07-15

    In a fast multi-wavelength timing study of black hole X-ray binaries (BHBs), we have discovered correlated optical and X-ray variability in the low/hard state of two sources: GX 339-4 and SWIFT J1753.5-0127. After XTE J1118+480, these are the only BHBs currently known to show rapid (sub-second) aperiodic optical flickering. Our simultaneous VLT/Ultracam and RXTE data reveal intriguing patterns with characteristic peaks, dips and lags down to very short timescales. Simple linear reprocessing models can be ruled out as the origin of the rapid, aperiodic optical power in both sources. A magnetic energy release model with fast interactions between the disk,more » jet and corona can explain the complex correlation patterns. We also show that in both the optical and X-ray light curves, the absolute source variability r.m.s. amplitude linearly increases with flux, and that the flares have a log-normal distribution. The implication is that variability at both wavelengths is not due to local fluctuations alone, but rather arises as a result of coupling of perturbations over a wide range of radii and timescales. These 'optical and X-ray rms-flux relations' thus provide new constraints to connect the outer and inner parts of the accretion flow, and the jet.« less

  5. Very hard states in neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Altamirano, D.; Patruno, A.; Gusinskaia, N. V.; Hessels, J. W. T.

    2017-07-01

    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) at a luminosity between ˜1036 and 1037 erg s-1. When fitting the Swift X-ray spectra (0.5-10 keV) in those states with an absorbed power-law model, we found photon indices of Γ ˜ 1, significantly lower than the Γ = 1.5-2.0 typically seen when such systems are in their so called hard state. For individual sources, very hard spectra were already previously identified, but here we show for the first time that likely our sources were in a distinct spectral state (I.e. different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (I.e. up-scattering of soft photons due to hot electrons), then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Γ as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. Our sample of sources follows the same track as the other neutron star systems in Wijnands et al., confirming their general results. However, we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.

  6. Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou

    2010-04-01

    The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.

  7. A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu

    2017-07-01

    With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.

  8. The Swift Supergiant Fast X-ray Transient Project

    NASA Astrophysics Data System (ADS)

    Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.

    2017-10-01

    We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.

  9. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  10. Environments of High Luminosity X-Ray Sources in the Antennae Galaxies

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.

    2003-12-01

    We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts <1.0 ″ from X-ray sources, and an additional 6 ``possible" IR counterparts between 1.0 ″ and 1.5 ″ from X-ray sources. Based on detailed study of the surface density of IR sources near the X-ray sources, we expect only ˜ 2 of the ``strong" counterparts and ˜ 3 of the ``possible" counterparts to be chance superpositions of unrelated objects. Comparing the IR counterparts to our photometric study of ˜ 250 IR clusters in the Antennae, we find that IR counterparts to X-ray sources are Δ MK ˜ 1.2 mag more luminous than average non-X-ray clusters (>99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER

  11. Connecting optical and X-ray tracers of galaxy cluster relaxation

    NASA Astrophysics Data System (ADS)

    Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie

    2018-04-01

    Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.

  12. X-rays from the eclipsing pulsar 1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  13. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  14. X-Ray Spectroscopy of the Low-Mass X-Ray Binaries 2S 0918-549 and 4U 1543-624: Evidence for Neon-rich Degenerate Donors

    NASA Astrophysics Data System (ADS)

    Juett, Adrienne M.; Chakrabarty, Deepto

    2003-12-01

    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer on board the Chandra X-Ray Observatory and the Reflection Grating Spectrometer on board XMM-Newton. Previous low-resolution spectra of both sources showed a broad, linelike feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra and XMM spectra. The Chandra spectra are each well fitted by an absorbed-power-law+blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fitted by an absorbed-power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.

  15. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  16. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole andmore » neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.« less

  17. Massive Binary Black Holes in the Cosmic Landscape

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view

  18. The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribó, M.; Paredes, J. M.; Marcote, B.

    2017-02-01

    MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra /VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identifymore » the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10{sup −15} erg cm{sup −2} s{sup −1} in the 0.5–8 keV energy range and a luminosity of L {sub X} ≃ 3 × 10{sup 30} erg s{sup −1} at a 2.6 kpc distance. For a 5 M{sub ⊙} BH this translates into ≃5 × 10{sup −9} L {sub Edd}. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μ Jy beam{sup −1}. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.« less

  19. On the Spatially Resolved Star Formation History in M51. II. X-Ray Binary Population Evolution

    NASA Astrophysics Data System (ADS)

    Lehmer, B. D.; Eufrasio, R. T.; Markwardt, L.; Zezas, A.; Basu-Zych, A.; Fragos, T.; Hornschemeier, A. E.; Ptak, A.; Tzanavaris, P.; Yukita, M.

    2017-12-01

    We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star formation event. We first utilize detailed stellar population synthesis modeling of far-UV-to-far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star formation histories (SFHs) on subgalactic (≈400 pc) scales. Next, we use the ≈850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star formation rate (SFR) per stellar mass ({M}\\star ) and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age Our best-fit model indicates that the XRB XLF per unit stellar mass declines in normalization, by ˜3-3.5 dex, and steepens in slope from ≈10 Myr to ≈10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how XRB XLFs evolve with age.

  20. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.