Science.gov

Sample records for matera cgs vlbi

  1. JPSS CGS Evolution

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system. As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. It also replaces the ground processing component of both Polar-orbiting Operational Environmental Satellites, as well as components of the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and solar-geophysical observations of the earth, atmosphere and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), which consists of a Command, Control and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S is currently flying the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The CGS also employs its ground stations at Svalbard, Norway and McMurdo Station, Antarctica, along with a global fiber communications network, to provide data acquisition and routing for multiple additional missions. These include POES, DMSP, NASA

  2. CGS4: A Breakthrough Instrument

    NASA Astrophysics Data System (ADS)

    Puxley, Phil

    CGS4 was the fourth in a series of Cooled Grating Spectrometers built for the United Kingdom Infrared Telescope (UKIRT). This paper reviews the impact of CGS4 on the scientific productivity of UKIRT, examines the origins of this success and concludes with a few personal science highlights.

  3. International VLBI Service for Geodesy and Astrometry 2004 Annual Report

    NASA Technical Reports Server (NTRS)

    Behrend, Dirk (Editor); Baver, Karen D. (Editor)

    2005-01-01

    Contents include the following: Combination Studies using the Cont02 Campaign. Coordinating Center report. Analysis coordinator report. Network coordinator report. IVS Technology coordinator report. Algonquin Radio observatory. Fortaleza Station report for 2004. Gilmore Creek Geophysical Observatory. Goddard Geophysical and Astronomical observatory. Hartebeesthoek Radio Astronomy Observatory (HartRAO). Hbart, Mt Pleasant, station report for 2004. Kashima 34m Radio Telescope. Kashima and Koganei 11-m VLBI Stations. Kokee Park Geophysical Observatory. Matera GGS VLBI Station. The Medicina Station status report. Report of the Mizusawa 10m Telescope. Noto Station Activity. NYAL Ny-Alesund 20 metre Antenna. German Antarctic receiving Station (GARS) O'higgins. The IVS network station Onsala space Observatory. Sheshan VLBI Station report for 2004. 10 Years of Geodetic Experiments at the Simeiz VLBI Station. Svetloe RAdio Astronomical Observatory. JARE Syowa Station 11-m Antenna, Antarctica. Geodetic Observatory TIGO in Concepcion. Tsukuba 32-m VLBI Station. Nanshan VLBI Station Report. Westford Antenna. Fundamental-station Wettzell 20m Radiotelescope. Observatorio Astroonomico Nacional Yebes. Yellowknife Observatory. The Bonn Geodetic VLBI Operation Center. CORE Operation Center Report. U.S. Naval Observatory Operation Center. The Bonn Astro/Geo Mark IV Correlator.

  4. Matera Laser Ranging Observatory (MLRO): An overview

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Decker, Winfield M.; Crooks, Henry A.; Bianco, Giuseppe

    1993-01-01

    The Agenzia Spaziale Italiana (ASI) is currently under negotiation with the Bendix Field Engineering Corporation (BFEC) of the Allied Signal Aerospace Company (ASAC) to build a state-of-the-art laser ranging observatory for the Centro di Geodesia Spaziale, in Matera, Italy. The contract calls for the delivery of a system based on a 1.5 meter afocal Cassegrain astronomical quality telescope with multiple ports to support a variety of experiments for the future, with primary emphasis on laser ranging. Three focal planes, viz. Cassegrain, Coude, and Nasmyth will be available for these experiments. The open telescope system will be protected from dust and turbulence using a specialized dome which will be part of the building facilities to be provided by ASI. The fixed observatory facility will be partitioned into four areas for locating the following: laser, transmit/receive optics, telescope/dome enclosure, and the operations console. The optical tables and mount rest on a common concrete pad for added mechanical stability. Provisions will be in place for minimizing the effects of EMI, for obtaining maximum cleanliness for high power laser and transmit optics, and for providing an ergonomic environment fitting to a state-of-the-art multipurpose laboratory. The system is currently designed to be highly modular and adaptable for scaling or changes in technology. It is conceived to be a highly automated system with superior performance specifications to any currently operational system. Provisions are also made to adapt and accommodate changes that are of significance during the course of design and integration.

  5. Supernova VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, N.

    2009-08-01

    We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.

  6. Matera CITTÀ Narrata Project: AN Integrated Guide for Mobile Systems

    NASA Astrophysics Data System (ADS)

    Pietroni, E.; Borghini, S.; Carlani, R.; Rufa, C.

    2011-09-01

    Matera città Narrata is a project coordinated by CNR ITABC and financed by the Agency of Tourist Promotion of Basilicata region, aimed to the creation of a digital platform able to support the public before and during the visit of Matera (World Heritage since 1993), providing cultural contents by multiple communicative formats and access possibilities. The main components of the project are: 1) the web site, accessible in remote and adapted also from smartphone, 2) cultural contents and applications for mobile devices (old style mobile phone, smartphone, iPad) with different operative systems. Every user can reach cultural contents in a simple way, choosing the communicative format he prefers and supported by the technology he owns. The access is totally free for public. In this paper we'll describe, more in detail, the application developed for iPad.

  7. Tsukuba VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Kurihara, Shinobu; Nozawa, Kentaro

    2013-01-01

    The K5/VSSP software correlator (Figure 1), located in Tsukuba, Japan, is operated by the Geospatial Information Authority of Japan (GSI). It is fully dedicated to processing the geodetic VLBI sessions of the International VLBI Service for Geodesy and Astrometry. All of the weekend IVS Intensives (INT2) and the Japanese domestic VLBI observations organized by GSI were processed at the Tsukuba VLBI Correlator.

  8. GSFC VLBI Analysis Center

    NASA Technical Reports Server (NTRS)

    Gordon, David; Ma, Chopo; MacMillan, Dan; Gipson, John; Bolotin, Sergei; Le Bail, Karine; Baver, Karen

    2013-01-01

    This report presents the activities of the GSFC VLBI Analysis Center during 2012. The GSFC VLBI Analysis Center analyzes all IVS sessions, makes regular IVS submissions of data and analysis products, and performs research and software development aimed at improving the VLBI technique.

  9. CGS Task Force on Minorities in Graduate Education.

    ERIC Educational Resources Information Center

    Turner, John B.; And Others

    Ten recommendations for increasing minority participation in graduate education are offered by the Council of Graduate Schools (CGS) Task Force on Minorities in Graduate Education. The recommendations are submitted for approval and implementation by the Board of CGS. The recommendations include the following: CGS should begin a Minority Dean in…

  10. JPSS CGS Tools For Rapid Algorithm Updates

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Grant, K. D.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, JPSS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the ground processing component of both POES and the Defense Meteorological Satellite Program (DMSP) replacement known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS). Both are developed by Raytheon Intelligence and Information Systems (IIS). The Interface Data Processing Segment will process NPOESS Preparatory Project, Joint Polar Satellite System and Defense Weather Satellite System satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. Under NPOESS, Northrop Grumman Aerospace Systems Algorithms and Data Products (A&DP) organization was responsible for the algorithms that produce the EDRs, including their quality aspects. For JPSS, that responsibility has transferred to NOAA's Center for Satellite Applications & Research (STAR). As the Calibration and Validation (Cal/Val) activities move forward following both the NPP launch and subsequent JPSS and DWSS launches, rapid algorithm updates may be required. Raytheon and

  11. e-VLBI Applications of Chinese VLBI Network

    NASA Astrophysics Data System (ADS)

    Weimin, Z.; Zhong, C.; Li, T.

    2012-12-01

    The Chinese VLBI Network (CVN) adopts the strategy of "one network, two purposes" for deep-space exploration and scientific applications. To achieve the new e-VLBI capabilities, we have upgraded the stations and the data processing center of the Chinese VLBI Network (CVN). The Chinese Next Generation Internet (CNGI) project also will give support to e-VLBI applications.

  12. GSFC VLBI Analysis center

    NASA Technical Reports Server (NTRS)

    Gordon, David; Ma, Chopo; MacMillan, Dan; Petrov, Leonid; Baver, Karen

    2005-01-01

    This report presents the activities of the GSFC VLBI Analysis Center during 2004. The GSFC Analysis Center analyzes all IVS sessions, makes regular IVS submissions of data and analysis products, and performs research and software development activities aimed at improving the VLBI technique.

  13. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  14. Haystack Observatory VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Titus, Mike; Cappallo, Roger; Corey, Brian; Dudevoir, Kevin; Niell, Arthur; Whitney, Alan

    2013-01-01

    This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.

  15. VLBI2010: An Overview

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill

    2010-01-01

    The first concrete actions toward a next generation system for geodetic VLBI began in 2003 when the IVS initiated Working Group 3 to investigate requirements for a new system. The working group set out ambitious performance goals and sketched out initial recommendations for the system. Starting in 2006, developments continued under the leadership of the VLBI2010 Committee (V2C) in two main areas: Monte Carlo simulators were developed to evaluate proposed system changes according to their impact on IVS final products, and a proof-of-concept effort sponsored by NASA was initiated to develop next generation systems and verify the concepts behind VLBI2010. In 2009, the V2C produced a progress report that summarized the conclusions of the Monte Carlo work and outlined recommendations for the next generation system in terms of systems, analysis, operations, and network configuration. At the time of writing: two complete VLBI2010 signal paths have been completed and data is being produced; a number of VLBI2010 antenna projects are under way; and a VLBI2010 Project Executive Group (V2PEG) has been initiated to provide strategic leadership.

  16. VLBI Technology Development at SHAO

    NASA Technical Reports Server (NTRS)

    Zhang, Xiuzhong; Shu, Fengchun; Xiang, Ying; Zhu, Renjie; Xu, Zhijun; Chen, Zhong; Zheng, Weimin; Luo, Jintao; Wu, Yajun

    2010-01-01

    VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper.

  17. Giga-bit/sec VLBI and e-VLBI

    NASA Astrophysics Data System (ADS)

    Whitney, A. R.; Lapsley, D. E.; Doeleman, S. S.

    2003-12-01

    Recent advances in hard-disk technology have enabled new generation disk-based VLBI recording systems capable of 1Gb/s data rates. These systems (Mark V) replace older magnetic tape systems at a small fraction of the cost, and use off-the-shelf disk components whose capacity is expected to grow dramatically in the future. In addition, these same platforms are compatible with transmitting VLBI data over high-speed networks (dubbed 'e-VLBI'), which allows for very fast turnaround of VLBI results. The sensitivity enhancements due to high bandwidth systems can significantly broaden the scientific scope of VLBI observations. We explain the basics of this new VLBI technology, show results from technical experiments that use Mark5 systems and e-VLBI, and examine the future prospects for these technologies.

  18. VLBI Correlators in Kashima

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Takefuji, Kazuhiro

    2013-01-01

    Kashima Space Technology Center (KSTC) is making use of two kinds of software correlators, the multi-channel K5/VSSP software correlator and the fast wide-band correlator 'GICO3,' for geodetic and R&D VLBI experiments. Overview of the activity and future plans are described in this paper.

  19. The European VLBI network

    NASA Technical Reports Server (NTRS)

    Schilizzi, R. T.

    1980-01-01

    The capabilities of the European very long baseline interferometry (VLBI) network are summarized. The range of baseline parameters, sensitivities, and recording and other equipment available are included. Plans for upgrading the recording facilities and the use of geostationary satellites for signal transfer and clock synchronization are discussed.

  20. VLBI2010 Feed Comparison

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill

    2013-01-01

    VLBI2010 requires a feed that simultaneously has high efficiency over the full 2.2-14 GHz frequency range. The simultaneity requirement implies that the feed must operate at high efficiency over the full frequency range without the need to adjust its focal position to account for frequency dependent phase centre variations. Two feeds meet this specification: The Eleven Feed developed at Chalmers University. (For more information, contact Miroslav Pantaleev, miroslav.pantaleev@chalmers.se. The Eleven Feed, integrated with LNA's in a cryogenic receiver, is available as a product from Omnisys Instruments, info@omnisys.se). The Quadruple Ridged Flared Horn (QRFH) developed at the California Institute of Technology. (For more information please contact Ahmed Akgiray, aakgiray@ieee.org or Sander Weinreb, sweinreb@caltech.edu) Although not VLBI2010 compliant, two triband S/X/Ka feeds are also being developed for the commissioning of VLBI2010 antennas, for S/X observations during the VLBI2010 transition period, and to support X/Ka CRF observations. The two feeds are: The Twin Telescopes Wettzell (TTW) triband feed developed by Mirad Microwave. (For more information please contact Gerhard Kronschnabl, Gerhard.Kronschnabl@bkg.bund.de) The RAEGE (Spain) triband feed developed at Yebes Observatory. (For more information please contact Jose Antonio Lopez Perez, ja.lopezperez@oan.es)

  1. Analysis of Regional Deformations In Asia and North America Using Vlbi

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Ma, C.; Luk, P. H.; Shum, C. K.

    Based on the NASA VLBI global solutions glb1123 (Ma, 1999) and glb2001(Ma, 2001), the vertical deformation rates (VDR) of the Kashima and Kashima34 VLBI stations in Japan were re-analysed using the rates of baseline length change from Kashima to 27 global VLBI stations, and from Kashima34 to 12 stations. The velocity vectors of the global VLBI stations were referenced to different ITRFs, i.e., ITRF96, ITRF97 and ITRF2000 for solution sensitivity studies. Using the Eulerian vectors (Sil- laed et al., 1998, Zhang et al., 1999) and based on NNR-NUVEL-1A, the correspond- ing horizontal deformation rates (HDR) of these two stations were also computed and analyzed. The VDR of Kashima34 relative to Kashima is estimated to be -4.2 +/- 0.7 mm/year, and the corresponding HDR of these two stations is 0.9 +/- 0.7 mm/year with AZ at 351.9 +/- 34.2 degrees. To validate the estimated relative deformation rates obtained above, baseline rates of the Kashima and Kashima34 stations relative to 9 common global VLBI stations, and baseline rates relative to 10 stations (9 stations plus Mojave12) have been determined to show that the similar conclusions have been reached. The 9 stations are DSS45 (Tidbinbilla, Australia), Hobert26 (Tasmania, Aus- tralia), Fairbanks (Gilmore Creek, Alaska, USA), Westford (USA), Hartebeesthoek (South Africa), Kauai (Hawaii, USA), Matera (Italy), Seshan25 (Shanghai, China), and Wettzell (Germany); and the additional station used is Mojave12 (USA). We have obtained the averaged relative VDR and HDR between the two stations separated by 300 m as -3.8 +/- 0.8 mm/year, 1.4 +/- 0.8 mm/year with AZ at 336.2 +/- 28.6 de- grees. In addition, the deformation rate of Shanghai, San Francisco, Yuma, Mojave12 and SC-VLBA station regional baselines are analyzed using a similar method and re- sults discussed. In conclusion, the rates of VLBI baseline lengths can be used to accu- rately determine the regional to fine-scale baseline deformations using existing VLBI

  2. Tracking of Mars Express and Venus Express spacecraft with VLBI radio telescopes

    NASA Astrophysics Data System (ADS)

    Molera Calvés, G.; Pogrebenko, S. V.; Wagner, J.; Cimò, G.; Gurvits, L.; Duev, D.

    2010-12-01

    The ESA Mars Express and Venus Express spacecraft (S/C) have been observed for the last two years with the European VLBI radio telescopes of Metsähovi (FI), Wettzell (GE), Yebes (SP), Medicina, Matera, Noto (IT), Puschino (RU) and Onsala (SW). The campaign is in the framework of the assessment study and preparation of the European VLBI Network to the upcoming ESA and other deep space missions. It also offers new opportunities for applications of radio astronomy techniques to planetary science, geophysics and geodesy. Observations are carried out either in single- or multi-dish modes when S/C is locked to the ESA’s ESTRACK ground stations (Cebreros or New Nortia) observing the two way link. Data are recorded locally at the stations using standard VLBI equipment and transferred to the Metsähovi for processing. Further on, the data are transferred from Metsähovi to Joint Institute for VLBI in Europe for further post-analysis. High dynamic range of the S/C signal detections allowed us to determine the apparent topocentric frequency of the S/C carrier line and accompanying ranging tones down to milli-Hz spectral accuracy and to extract the phase of the S/C signal carrier line. With multi-station observations, the respective phases can be calibrated on the per-baseline basis using VLBI phase referencing technique and observations of background quasars close to S/C in their celestial position using far-field VLBI delay model for quasars and near-field model for S/C. The post-analysis of the S/C tracking data enables us to study several parameters of the S/C signals. Of these, the phase fluctuations of the signal can be used for characterization of the interplanetary plasma density fluctuations along the signal propagation line at different spatial and temporal scales and different solar elongations. These fluctuations are well represented by a near-Kolmogorov spectrum. Multi-station observations can distinguish the contributions of propagation effects in the plasma

  3. Tsukuba 32-m VLBI Station

    NASA Technical Reports Server (NTRS)

    Kawabata, Ryoji; Kurihara, Shinobu; Fukuzaki, Yoshihiro; Kuroda, Jiro; Tanabe, Tadashi; Mukai, Yasuko; Nishikawa, Takashi

    2013-01-01

    The Tsukuba 32-m VLBI station is operated by the Geospatial Information Authority of Japan. This report summarizes activities of the Tsukuba 32-m VLBI station in 2012. More than 200 sessions were observed with the Tsukuba 32-m and other GSI antennas in accordance with the IVS Master Schedule of 2012. We have started installing the observing facilities that will be fully compliant with VLBI2010 for the first time in Japan.

  4. VLBI Data Longevity

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    The current cache of S/X-band geodetic/astrometric VLBI data accumulated since 1979 is approx.4.2 million observations and is increasing by approx.300,000 observations per year. The long time interval and access to all such VLBI data for re-analysis have contributed to their usefulness for the terrestrial and celestial reference frames, Earth orientation parameters, tidal and nontidal loading, and troposphere. While data access and integrity have been maintained through the Mark III data base system as storage devices and media have evolved, past transitions have been major projects. A new format and retention concept to ensure eternal archiving and access should make use of self-documentation, generalized media, network connectivity and multiple redundancy. Similarly permanent organizations or sequences of organizations are also necessary.

  5. Simulations of space VLBI

    NASA Technical Reports Server (NTRS)

    Murphy, D. W.; Wilkinson, P. N.

    1991-01-01

    The paper concentrates on the results from space VLBI simulations undertaken during the past four years, beginning with a study of the imaging potential of the proposed medium-term mission QUASAT, and continuing with the Japanese VSOP and Soviet Radioastron missions. The purpose of the study is to determine what quality of images can be expected from space VLBI, given realistic data errors and spacecraft orbits yielding incomplete UV coverage. Much of the paper is devoted to the problem of spurious symmetrization, and a method of overcoming this problem by using a set of UV-constraints is presented. Constraints limiting the imaging ability of the VSOP and Radioastron projects are discussed, and it is concluded that the application of constraints in either sky- or UV-plane will make it possible to overcome spurious symmetrization.

  6. Simulations of space VLBI

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Wilkinson, P. N.

    The paper concentrates on the results from space VLBI simulations undertaken during the past four years, beginning with a study of the imaging potential of the proposed medium-term mission QUASAT, and continuing with the Japanese VSOP and Soviet Radioastron missions. The purpose of the study is to determine what quality of images can be expected from space VLBI, given realistic data errors and spacecraft orbits yielding incomplete UV coverage. Much of the paper is devoted to the problem of spurious symmetrization, and a method of overcoming this problem by using a set of UV-constraints is presented. Constraints limiting the imaging ability of the VSOP and Radioastron projects are discussed, and it is concluded that the application of constraints in either sky- or UV-plane will make it possible to overcome spurious symmetrization.

  7. The Southern Hemisphere VLBI experiment

    SciTech Connect

    Preston, R.A.; Meier, D.L.; Louie, A.P.; Morabito, D.D.; Skjerve, L.; Slade, M.A.; Niell, A.E.; Wehrle, A.E.; Jauncey, D.L.; Tzioumis, A.K.; Haystack Observatory, Westford, MA; California Univ., Los Angeles; CSIRO, Div. of Radiophysics, Epping; Sydney Univ.; Manchester Victoria Univ., Jodrell Bank )

    1989-07-01

    Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.

  8. VLBI2010 Demonstrator Project

    NASA Astrophysics Data System (ADS)

    Niell, A.

    2008-12-01

    The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. Knowing that spatial and temporal fluctuations in the atmosphere delay are a major component of the error in position determination, the VLBI2010 committee has carried out a large number of simulations to arrive at design goals for the antenna system. These goals are fast slewing antennas and high delay precision per observation. With existing and anticipated data recording capabilities, these translate to an antenna diameter of 12 m or larger and a per-observation delay precision of approximately 4 psec. The major innovation for the VLBI2010 concept that allows the use of relatively small antennas to achieve these goals is the proposal to observe in four frequency bands, instead of the two currently used, in order to gain the higher precision of phase delays compared to the group delay. The other advance that enables the use of small antennas is the significant increase in data acquisition rates that has been made possible by the development of disk-based recorders and digital back ends. To evaluate this concept, a prototype of the feed-to-recorder system has been implemented by the Broadband Development Team* on two antennas, the 5 m MV-3 antenna at Goddard Space Flight Center near Washington, D.C., and the 18 m Westford antenna at Haystack Observatory near Boston. The system includes a broadband feed and low noise amplifiers covering the range approximately 2 GHz to 13 GHz, all cooled to 20K; a newly developed phase calibration generator; a flexible local oscillator (LO) that allows selection of any band in the range of the feed/LNAs; Digital Back End; and a disk-based recorder capable of a sustained rate of 2 gigabits per second (gbps). Four sets of the LO/DBE/recorder chain are used at each antenna to give a total record rate of 8 gbps. The systems have been successfully used in the band 8.5 to 9 GHz with one set of the recorder chain

  9. eVLBI at Wettzell

    NASA Astrophysics Data System (ADS)

    Dassing, Reiner; Kronschnabl, Gerhard

    Wettzell's radiotelescope is connected to 34 Mbps INTERNET connection. Since April, 2005, Wettzell is performing eVLBI observations for INT2 on a regular basis. The data is transfered to Tsukuba, and one day after the observations, the results of the correlation is produced. A gain of about 7 days is possible due to eVLBI.

  10. Methods and Tools for Product Quality Maintenance in JPSS CGS

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Smit, P.; Grant, K. D.; Jamilkowski, M. L.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.

  11. IVS Working Group 4: VLBI Data Structures

    NASA Technical Reports Server (NTRS)

    Gipson, John

    2010-01-01

    In 2007 the IVS Directing Board established IVS Working Group 4 on VLBI Data Structures. This note discusses the current VLBI data format, goals for a new format, the history and formation of the Working Group, and a timeline for the development of a new VLBI data format.

  12. Korea Geodetic VLBI Station, Sejong

    NASA Technical Reports Server (NTRS)

    Donghyun, Baek; Sangoh, Yi; Hongjong, Oh; Sangchul, Han

    2013-01-01

    The Sejong VLBI station officially joined the IVS as a new Network Station in 2012. This report summarizes the activities of the Sejong station during 2012. The following are the activities at the station: 1) VLBI test observations were carried out with the Tsukuba 34-m antenna of the GSI in Japan. As a result, the Sejong antenna needs to improve its efficiency, which is currently in progress, 2) A survey to connect the VLBI reference point to GNSS and ground marks was conducted, and 3) To see the indirect effects of RFI (Radio Frequency Interference) at this place, we checked the omni-direction (AZ 0? to 360?, EL fixed at 7?) for RFI influence.

  13. HALCA's Onboard VLBI Observing System

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideyuki; Wajima, Kiyoaki; Hirabayashi, Hisashi; Murata, Yasuhiro; Kawaguchi, Noriyuki; Kameno, Seiji; Shibata, Katsunori M.; Fujisawa, Kenta; Inoue, Makoto; Hirosawa, Haruto

    2000-12-01

    The first space VLBI satellite, HALCA, was launched on 1997 February 12. We report the characteristics of HALCA as an orbiting VLBI station with 8-m deployment antenna. It is required the high system gain, low system noise, and high stability of phase transfer. And the stabilities of system gain and system noise are needed for imaging of VLBI. HALCA achieved the requirement as a VLBI stations and has made almost 3 times longer baselines than ground global VLBI networks. It means observations with 3 times higher angular resolution have been carried out. We have measured aperture efficiencies of the deployment antenna, system noise temperatures, stability of onboard local oscillators, and stability of phase link. HALCA's onboard radio astronomy system has 1.60-1.73 GHz, 4.7-5.0 GHz, and 21.9-22.3 GHz receivers and two-channel high-rate samplers. Typical values of system noise temperature in orbit are 70 K and 90 K at 1.6 and 5 GHz respectively. At 22 GHz, the apparent system noise temperature is 400 K; however, this is mostly due to attenuation between the main antenna and the 22 GHz low noise amplifier. A reference tone signal is transmitted from a ground tracking station which is locked on a ground hydrogen maser oscillator. The internal phase stability of local oscillators is around 5deg r.m.s. at 5 GHz. The total gain of the receiving system and the bit distribution of the high-rate samplers have also been checked. With the exception of the 22 GHz attenuation, the in-orbit performance of the VLBI observing system matches the ground-test results very well.

  14. VLBI2010 PROOF-OF-CONCEPT GEODETIC VLBI SYSTEM

    NASA Astrophysics Data System (ADS)

    Beaudoin, C.; Niell, A. E.

    2009-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) plays an important role in establishing the Terrestrial Reference Frame, measuring the Earth-orientation parameters (EOP), and understanding the properties of the Inner Core, among other geophysical phenomena. To enhance the science obtained from geodetic VLBI, NASA is funding the development of a new broadband geodetic VLBI microwave (2-12 GHz) system by the MIT Haystack Observatory, in cooperation with personnel from HTSI, NVI, and GSFC. This broadband system is intended to replace the operational S/X-band system currently deployed in the global geodetic VLBI network. The broadband capability of the new feed and receiver and the sustained data recording rate (up to 4 Gbps per band) supported by the digital back-end and Mark5C recorder will a) allow the use of relatively small (~12m) but fast slewing antennas to reduce the error due to atmosphere delay fluctuations and b) provide flexibility in frequency coverage to reduce sensitivity to external radio frequency interference, an increasing problem. A demonstration system has been implemented by installing the proof-of-concept feed, receiver, and data acquisition system on the single baseline composed of the 18m antenna in Westford MA and the 5m MV3 antenna at the Goddard Space Flight Center in Greenbelt MD. In our contribution we will describe the new geodetic VLBI system and discuss recent results. Future challenges and advances that will be needed in both hardware and software to achieve the required precision of the geodetic observables will also be presented.

  15. VLBI data, acquisition, environmental effects

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.

    1995-01-01

    During this quadrennium, very long baseline interferometry (VLBI) data acquisition and system development has focused on improving the accuracy of the system sufficiently to allow the determination of reliable estimates of height variations. Associated with this aim has been improvements in the determinations of horizontal velocity fields, monitoring water vapor delay using interferometric methods, and improvements to Earth rotation measurements. The primary aims of the improvements to height measurement accuracy have been to directly measure the contemporary magnitudes of post glacial rebound, and to determine a height reference system for measuring global sea level rise. High frequency Earth rotation studies have been carried out to better define the transformation parameters from an inertial coordinate system to an Earth fixed one, and to better understand the coupling between the components of the atmosphere-ocean-solid Earth system. Two major VLBI campaigns were carried out in support of these studies: (1) Epoch-92 in July 1992 and (2) Cont-94 in January 1994. Each of these campaigns lasted approximately two weeks and involved multiple VLBI networks operating simultaneously in addition to other space geodetic systems operating during these periods. Two major compilations of the VLBI results (and results from other space geodetic systems) have been published during this quadrennium.

  16. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Use of Space Link Extension (SLE) Protocol

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Cordier, G. R.; Johnson, L. M.; Tillery, C. J.

    2014-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite -- Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic, climatological & solar-geophysical data. The JPSS Common Ground System (CGS), consisting of Command, Control & Communications (C3) and Interface Data Processing (IDP) segments, is developed by Raytheon. CGS now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into Environmental Data Records for NOAA & DoD weather centers, and expanding to support JPSS-1 in 2017. CGS Block 2.0 (B2.0) is the recent CDR-approved design to support both the current S-NPP and upcoming JPSS-1 missions. In B2.0, many important improvements were made to evolve CGS C3. One of those improvements is the addition of SLE services. The CCSDS SLE Protocol standard facilitates and significantly improves GS-to-Data Center communications. The CGS SLE architecture provides data reliability and resource scheduling and is scalable to support added missions. The JPSS CGS is a mature, tested solution for supporting operational weather forecasting for civil, military, and international partners as well as climate research. It features a flexible design that handles order-of-magnitude increases in data over legacy satellite ground systems and meets demanding science accuracy needs. The JPSS CGS is expandable to support additional ground station service providers with or without the deployment of additional JPSS ground hardware by using standard SLE Transfer Service protocol and offers opportunities to reduce costs and improve information Integration across missions. The Raytheon-built JPSS CGS provides the full common ground capability, from design and development through operations & sustainment. These features lay the foundation for the CGS future

  17. Managed and Supported Missions in the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Replacing the p.m. orbit & ground system (GS) of POES satellites, JPSS sensors will collect weather, ocean & climate data. JPSS's Common Ground System (CGS), made up of C3 & IDP parts and developed by Raytheon, now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers data between ground facilities, processes them into Environmental Data Records for NOAA's weather centers and evolves to support JPSS-1 in 2017. CGS processed S-NPP data creates many TBs/day across >2 dozen environmental data products (EDPs), doubling after JPSS launch. But CGS goes beyond this by providing data routing to other missions: GCOM-W1, Coriolis/Windsat, EOS, NSF's McMurdo Station, Defense Meteorological Satellite Program, and POES & MetOp satellites. Each system orbits 14 times/day, downlinking data 1-2 times/orbit at up to 100s of MBs/sec, to support the creation of 10s of TBs of data/day across 100s of EDPs. CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across the missions. CGS gives a vital flexible-expandable-virtualized modern GS architecture. Using 5 global ground stations to receive S-NPP & JPSS-1 data, CGS links with high-bandwidth commercial fiber to rapidly move data to the IDP for EDP creation & delivery and leverages these networks to provide added support to more missions. CGS data latency will be < 80 minutes. JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate research. It features a flexible design handling order-of-magnitude increases in data over legacy systems and meets tough science accuracy needs. The Raytheon-built CGS gives the full GS capability, from design & development through operations & sustainment, facilitating future evolution to support more missions.

  18. The Goddard VLBI SINEX Files

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Petrov, Leonid

    2002-01-01

    The Goddard VLBI group generates SINEX files for individual 24-hr sessions and multiyear TRF solutions. Each 24-hr file includes the reduced normal matrix for the station positions, EOP, and EOP rates. A global Terrestrial Reference Frame (TRF) SINEX file has the reduced normal matrix for station positions and velocities but no EOP parameters. Both types of normal matrix are free from any datum constraints and are designed for combination solutions that will later apply the necessary datum constraints. The SINEX files also contain blocks that provide the constraints and covariance of well-defined 24-hr or global TRF solutions. These blocks are not yet part of the SINEX 2.0 specification. For the TRF solutions the Goddard VLBI group also generates the corresponding EOP time series. SINEX files and EOP time series are distributed through the IVS. The algorithms for generating the various blocks and the proper use of such SINEX files will be discussed.

  19. Multiagency VLBI Correlator Facility opens

    NASA Astrophysics Data System (ADS)

    Carter, William E.

    A new $1.2 million facility to process geodetic Very Long Baseline Interferometry (VLBI) observational data was dedicated August 25, 1986, at the U.S. Naval Observatory headquarters, Washington, D.C., by representatives of the National Oceanic and Atmospheric Administration (NOAA), the Naval Research Laboratory (NRL), the U.S. Naval Observatory (USNO), and the National Aeronautics and Space Administration (NASA). The new facility will provide timely correlation of the data tapes produced by the POLARIS (Polar (Motion) Analysis by Radio Interferometric Surveying) earth orientation monitoring network. The new facility will also be used to process VLBI data collected by the NASA Crustal Dynamics Project (CDP) and by NRL and USNO programs in astrometry and basic research.

  20. The celestial reference frame defined by VLBI

    NASA Technical Reports Server (NTRS)

    Ma, C.; Shaffer, D. B.

    1988-01-01

    VLBI currently produces the most accurate positions of celestial objects. From 1979 to 1987, 114 extragalactic radio sources have been observed with dual-frequency Mark III VLBI as part of the NASA Crustal Dynamics Project and the NGS POLARIS/IRIS program. The formal statistical errors of conventional celestial coordinates are as small as 0.3 milliarcseconds. The fundamental quantity measured by VLBI is the arc length between radio sources. Thus, it is suggested that VLBI be used to establish a coordinate reference frame based solely on radio positions, and that this system not necessarily be coupled to right ascension and declination.

  1. JPL VLBI Analysis Center Report for 2012

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris

    2013-01-01

    This report describes the activities of the JPL VLBI Analysis Center for the year 2012. The highlight of the year was the successful MSL rover Mars landing, which was supported by VLBI-based navigation using our combined spacecraft, celestial reference frame, terrestrial reference frame, earth orientation, and planetary ephemeris VLBI systems. We also supported several other missions with VLBI navigation measurements. A combined NASA-ESA network was demonstrated with first Ka-band fringes to ESA's Malargue, Argentina 35 m. We achieved first fringes with our new digital back end and Mark 5C recorders.

  2. Early VLBI in the USSR

    NASA Astrophysics Data System (ADS)

    Matveenko, L. I.

    2007-06-01

    This article gives story of interferometer with independent elements (Very Long Baseline Interferometer) in Russia. At the end of February 1962 the author discussed with G.Ya. Gus'kov, DSN Station, Evpatorija a new type of radio interferometer and proposed an experiment between two DSN stations. In September 1962 he reported the new method and proposed a VLBI experiment at seminar of Radio Astronomical Laboratory, Pushino, and then at a seminar of Astronomical Institute GAISH which recommended to take out a Patent. In December GAISH sent documents to the Patent Bureau. In summer 1963 the author discussed with B. Lovell in Evpatorija the VLBI method of and we signed memorandum an Ev-JB experiment at ěc{\\lambda}bda=32 cm. In December 1963 the Patent Bureau permitted publication, and the paper was sent to Radiofizika. Really VLBI in the USSR began with the proposal of M. Cohen and K. Kellermann, February 1968, to do an experiment between 22-m antenna Pushino and 43-m Green Bank.

  3. VLBI observations of geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Shu, Fengchun; Zhang, Xiuzhong; Zheng, Weimin

    The principle of determining spacecraft angular position with differential VLBI (Very Long Baseline Interferometry) technique is described. The first domestic differential VLBI observations of geosynchronous satellites were performed with participations of Shanghai, Urumqi and Kunming stations. Three strong quasars within angular separation of 15° from target satellites were selected as reference radio sources. The main purpose of such observations is to obtain interferometric fringes of the satellites, and to estimate accuracy of differential VLBI observations. A 2-station FX type correlator at SHAO (Shanghai Astronomical Observatory) was used to do cross-correlations of radio signals in MK3A-C tape format. Strong fringes of the satellites were detected to all stations. The precision of time delay and rate was derived from the correlator output. Based on system errors analysis, we estimated that ΔDOR (Delta Differential One-way Ranging) error was about 41 cm, and ΔDOD (Delta Differential One-way Doppler) error was about 0.148mm/s, which corresponded, respectively, to the position error of 8m and the velocity error of 2.8mm/s for the geosynchronous satellite on the plane of sky.

  4. The African VLBI network project

    NASA Astrophysics Data System (ADS)

    Loots, Anita

    2015-01-01

    The AVN is one of the most significant vehicles through which capacity development in Africa for SKA participation will be realized. It is a forerunner to the long baseline Phase 2 component of the mid-frequency SKA. Besides the 26m HartRAO telescope in South Africa, Ghana is expected to be the first to establish a VLBI-capable telescope through conversion of a redundant 32m telecommunications system near Accra. The most widely used receivers in the EVN are L-band and C-band (5 GHz). L-band is divided into a low band around the hydrogen (HI) line frequency of 1420 MHz, and a high band covering the hydroxyl line frequencies of 1612-1720 MHz. The high band is much more commonly used for VLBI as it provides more bandwidth. For the AVN, the methanol maser line at 6668 MHz is a key target for the initial receiver and the related 12178MHz methanol maser line also seen in star-forming regions a potential future Ku-band receiver. In the potential future band around 22GHz(K-band), water masers in star-forming regions and meg-maser galaxies at 22.235 GHz are targets, as are other radio continuum sources such as AGNs. The AVN system will include 5GHz and 6.668GHz receiver systems with recommendation to partner countries that the first upgrade should be L-band receivers. The original satellite telecommunications feed horns cover 3.8 - 6.4 GHz and should work at 5 GHz and operation at 6.668 GHz for the methanol maser is yet to be verified. The first light science will be conducted in the 6.7 GHz methanol maser band. Telescopes developed for the AVN will initially join other global networks for VLBI. When at least four VLBI-capable telescopes are operational on the continent, it will be possible to initiate stand-alone AVN VLBI. Each country where an AVN telescope becomes operational will have its own single-dish observing program. Capacity building to run an observatory includes the establishment of competent core essential observatory staff in partner countries who can train

  5. Spectral irradiance calibration in the infrared - V. The role of UKIRT and the CGS3 spectrometer

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; Davies, John K.

    1995-10-01

    We describe, illustrate, and quantify the performance achieved by the combination of CGS3 and UKIRT, with emphasis on the role already played by CGS3 in the field of spectrally continuous, absolute, infrared radiance calibration. The focus of the paper is on the reliability and reproducibility of the spectral shapes obtained by CGS3. We offer an electronically available data base of calibration spectra taken with UKIRT and CGS3 of a variety of infrared-bright cool K and M giants. These highlight the influence of the SiO fundamental absorption on the stellar spectra as effective temperature is varied. The calibration archive has an absolute pedigree traceable directly to Cohen et al.

  6. VLBI clock synchronization. [for atomic clock rate

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.; Rogers, A. E. E.; Hinteregger, H. F.; Knight, C. A.; Whitney, A. R.; Clark, T. A.

    1977-01-01

    The potential accuracy of VLBI (very long baseline interferometry) for clock epoch and rate comparisons was demonstrated by results from long- and short-baseline experiments. It was found that atomic clocks at widely separated sites (several thousand kilometers apart) can be synchronized to within several nanoseconds from a few minutes of VLBI observations and to within one nanosecond from several hours of observations.

  7. SAI VLBI Analysis Center Report 2012

    NASA Technical Reports Server (NTRS)

    Zharov, Vladimir

    2013-01-01

    This report presents an overview of the SAI VLBI Analysis Center activities during 2012 and the plans for 2013. The SAI AC analyzes all IVS sessions for computations of the Earth orientation parameters (EOP) and time series of the ICRF source positions and performs research and software development aimed at improving the VLBI technique.

  8. VLBI-SLR Combination Solution Using GEODYN

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.; Lemoine, F. G.; Chinn, D. S.; Pavlis, E. C.; Rowlands, D. D.

    2009-12-01

    The traditional procedure followed by the IERS for generating an ITRF is to perform a combination at the technique level. Each geodetic technique provides a solution that itself is a combination of the solutions produced by the technique analysis centers. Alternatively, we would like to generate a multi-technique solution using the same software and using the same a priori models. We seek to produce such a solution combining all of the geodetic techniques at the normal equation level using GEODYN but here, as a first step, consider only the SLR-VLBI combination. The data from each 24-hour VLBI session is initially processed to generate VLBI observation and solution parametrization files for input to GEODYN. Extensive tests have been performed to ensure that the VLBI theoretical delay as calculated by the VLBI Calc/Solve software is the same (to 1 ps) as that calculated by GEODYN. Initially, we ran test solutions with GEODYN using only VLBI data to verify that VLBI solution results produced with GEODYN agree with results using Calc/Solve. Then we combine the VLBI normal equations in GEODYN with weekly SLR normal equations for the period 2004-2008 Lageos1/2 to estimate station positions and Earth orientation parameters. To connect the techniques, we apply the ground ties used by the IERS. Here we report on the results of the combination.

  9. Pulsar distance measurements with VLBI

    NASA Astrophysics Data System (ADS)

    Deller, Adam

    A reliable estimate of the distance to a pulsar underpins the interpretation of observational results across all wavebands. While there are many model-dependent methods available, most prominently the combination of the pulsar dispersion measure and a Galactic electron density distribution model, the underlying models must be anchored by a collection of accurate, model-independent measurements. By far the largest number of reliable and model-independent pulsar distance measurements have been obtained via a determination of annual geometric parallax with Very Long Baseline Interferometry (VLBI) observations. With high sensitivity and a good control of systematic effects via careful calibration, the milli-arcsecond level native resolution means that relative positional accuracies of a few 10s of micro-arcseconds are achievable. This precision means that in principle a parallax distance is feasible for the majority of the known radio pulsar population; however, actually observing every feasible pulsar would cost a prohibitive amount of telescope time. Here, I will first describe several recent VLBI astrometry results where the provided distance has been crucial in furthering the understanding of the system. Second, I will describe the recently completed "PSRPI" program, which measured over 50 pulsar parallaxes using the Very Long Baseline Array - by far the largest pulsar parallax program to date. Third, I will describe the recently commenced "MSPSRPI" extension to the PSRPI program, which targets exclusively millisecond pulsars and aims to greatly improve the tie between the solar system barycentric frame and the International Celestial Reference Frame. Finally, I will briefly discuss the impact of developments in VLBI instrumentation, including the forthcoming Square Kilometre Array.

  10. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Multimission Support

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2014-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic, climatological & solar-geophysical data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into Environmental Data Records for NOAA & DoD weather centers, and expanding to support JPSS-1 in 2017.CGS now does data processing (DP) for S-NPP, creating many TBs/day across >2 dozen environmental data products (EDPs). This doubles after JPSS-1 launch. But CGS goes well beyond this by providing data routing support to other global missions.Those other missions are: GCOM-W1, Coriolis/Windsat, EOS, NSF's McMurdo Station, Defense Meteorological Satellite Program (DMSP), and POES & MetOp satellites. Each system orbits 14 times/day, downlinking data 1-2 times/orbit at up to 100s of MBs/sec, to support the creation of 10s of TBs of data/day across 100s of EDPs.CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across the missions. Raytheon has a unique ability to provide complex, highly-secure, multi-mission GSs. A flexible, expandable and virtualized modern GS architecture is vital -- CGS offers the solution.CGS supports 5 global ground stations receiving S-NPP & JPSS-1 mission data. These, linked with high-bandwidth commercial fiber, quickly transport data to the IDP for EDP creation & delivery. CGS data latency will be < 80 minutes. CGS leverages the fiber network to provide added support to many other missions.The JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate

  11. Use of the VLBI delay observable for orbit determination of Earth-orbiting VLBI satellites

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1992-01-01

    Very long-baseline interferometry (VLBI) observations using a radio telescope in Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are scheduled for launch in 1995; the primary scientific goals of these missions will be astrophysical in nature. This article addresses the use of space VLBI delay data for the additional purpose of improving the orbit determination of the Earth-orbiting spacecraft. In an idealized case of quasi-simultaneous observations of three radio sources in orthogonal directions, analytical expressions are found for the instantaneous spacecraft position and its error. The typical position error is at least as large as the distance corresponding to the delay measurement accuracy but can be much greater for some geometries. A number of practical considerations, such as system noise and imperfect calibrations, set bounds on the orbit-determination accuracy realistically achievable using space VLBI delay data. These effects limit the spacecraft position accuracy to at least 35 cm (and probably 3 m or more) for the first generation of dedicated space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide global VLBI astrometry as accurate as ground-only VLBI. Recommended charges in future space VLBI missions are unlikely to make space VLBI competitive with ground-only VLBI in global astrometric measurements.

  12. The "Quasar" Network Observations in e-VLBI Mode Within the Russian Domestic VLBI Programs

    NASA Technical Reports Server (NTRS)

    Finkelstein, Andrey; Ipatov, Alexander; Kaidanovsky, Michael; Bezrukov, Ilia; Mikhailov, Andrey; Salnikov, Alexander; Surkis, Igor; Skurikhina, Elena

    2010-01-01

    The purpose of the Russian VLBI "Quasar" Network is to carry out astrometrical and geodynamical investigations. Since 2006 purely domestic observational programs with data processing at the IAA correlator have been carried out. To maintain these geodynamical programs e-VLBI technology is being developed and tested. This paper describes the IAA activity of developing a real-time VLBI system using high-speed digital communication links.

  13. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  14. The RAEGE VLBI2010 radiotelescopes

    NASA Astrophysics Data System (ADS)

    Sust, Eberhard; López Fernández, José Antonio

    2012-09-01

    The goal of the RAEGE (Red Atlantica Estaciones Geodinamicas Espaciales) project is the establishment of a Spanish-Portuguese network of geodynamical and spatial geodesy stations by the installation and operation of four fundamental geodetic / astronomical stations provided with radio telescopes located at - Yebes, close to Madrid / Spain - Tenerife, Canary Islands / Spain - Santa Maria, Azores Islands / Portugal. VLBI 2010 radiotelescopes are belonging to a new generation of radiotelescopes suitable for high precision geodetical earth observation and measurements, that shall allow to built up a high precision global reference system. The design of the radiotelescopes has been finished by MT Mechatronics in summer 2011 and currently three radiotelescopes are being manufactured. The first one is scheduled for installation in summer 2012 at Yebes Observatory close to Madrid.

  15. I-VLBI of molecular masers

    NASA Astrophysics Data System (ADS)

    Moscadelli, L.; Porceddu, I.

    Intense maser emissions of several molecular species (OH, CH3OH, H2O, SiO) are widely observed toward both star-formation regions and late-type stars. VLBI observations of molecular masers offer an unique opportunity to study the kinematics of the circumstellar gas in both the earliest and latest evolution phases of a star. The forthcoming Sardinia Radio Telescope (SRT) together with the other two Italian antennae of Medicina and Noto, will in the near future constitute a three-element VLBI array of sufficiently high sensitivity and angular resolution to allow one to map the strongest maser lines of CH3OH (at 6.7 GHz), H2O (at 22.2 GHz) and SiO (at 43 GHz). The Italian VLBI network (I-VLBI) can be competitive in the observation of molecular masers provided that time flexibility and frequency agility will be granted.

  16. Kashima and Koganei 11-m VLBI Stations

    NASA Technical Reports Server (NTRS)

    Sekido, Mamoru; Ichikawa, Ryuichi

    2013-01-01

    Two 11-m VLBI antennas at Kashima and Koganei are continuously operated and maintained by the National Institute of Information and Communications Technology (NICT). This report summarizes the status of these antennas, the staff, and the activities in 2012.

  17. Simeiz VLBI Station - Geodetic and Astrophysical Study

    NASA Technical Reports Server (NTRS)

    Volvach, A. E.

    2013-01-01

    This report gives an overview about the geodetic VLBI activities at the Simeiz station. It also summarizes the seasonal and long-term variability of the Black Sea level near Yalta, Odessa, Ochakov, and Katsively.

  18. Earth Rotation Parameters from DSN VLBI: 1994

    NASA Technical Reports Server (NTRS)

    Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.

    1994-01-01

    In this report, Earth Rotation Parameter (ERP) estimates ahve been obtained from an analysis of Deep Space Network (DSN) VLBI data that directly aligns its celestial and terrestrial reference frames with those of the International Earth Rotation Service (IERS).

  19. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  20. VLBI survey at 2. 29 GHz

    SciTech Connect

    Preston, R.A.; Morabito, D.D.; Williams, J.G.; Faulkner, J.; Jauncey, D.L.

    1985-09-01

    VLBI observations at 2.29 GHz with fringe spacings of about 3 milliarcsec have been performed on 1398 radio sources spread over the entire sky. 917 sources were detected, including 93 percent of the identified BL Lacertae objects, 86 percent of the quasars, and 36 percent of the galaxies. The resulting catalog of compact radio sources is useful for various astrophysical studies and in the formation of VLBI celestial reference frames. 252 references.

  1. e-VLBI Development at Haystack Observatory

    NASA Astrophysics Data System (ADS)

    Whitney, Alan

    Haystack Observatory continues an aggressive program of e-VLBI development, particularly with respect to the use of public (shared) high-speed networds for data transfer. Much of 2002 was spent preparing for a Gbps e-VLBI demonstration experiment using antennas at Westford, MA and Greenbelt, MD; this experiment was succcesully conducted using both near-real-time and real-time data transfers to the Mark 4 correlator at Haystack Observatory, though correlation was not done in real time. In early 2003 a dedicated e-VLBI Gigabit-Ethernet wavelength was establisted between Haystack Observatory and MIT Lincoln Laboratory, giving Haystack easy access to the high-speed Abilene network in the U.S. Also in October 2002, preliminary e-VLBI experiments were conducted between Westford, MA and Kashima, Japan; this set of experiments is continuing with increasing data-rate transfers. These experiments use the Mark 5 system at Westford and the K5 system at Kashima; data is transferred in both directions and correlated at both sites. Preparations are now underway to begin e-VLBI transfers from Wettzell, Germany and Kokee Park, Kauaii for routine daily observation of UT1. Haystack Observatory has recently been awarded a 3-year grant the the National Science Foundation for the development of new IP protocols specifically tailored for e-VLBI and similar applications.

  2. Thermographic mapping of a complex vernacular settlement: the case study of Casalnuovo District within the Sassi of Matera (Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, Tiziana; Balestra, Alessandro; Cardinale, Nicola

    2015-04-01

    Never as in the Sassi of Matera (Italy), the parties have a volumetric material identity and a special construction condition for which, first of all, you need to know the whole to which they give life, and then the individual components and their connections. The distribution of these building artifacts in symbiotic connection with the connective calcareous texture that hosts them, resulted in a spontaneously harmonious figurative balance that characterizes the constructive expedients employed and the distributive and morphological solutions. This is the reason why the Sassi, and the overlooking Park of Rupestrian Churches of Matera Murgia have been entered in 1993 in the UNESCO World Heritage List. Our research focuses on a largely abandoned area within the Casalnuovo District, situated in the extreme south of the city, probably the place of the future Demoethnoanthropological Museum. It is known today that the particular shape of the area is made up of settlements mainly in cave; during the time architectures above ground, in a very limited number, filled almost completely the limited building space. Here there are the most archaic types and forms of building and wine cellars within the Sassi, essentially derive from the natural cave only slightly structured by man. The exterior construction complete the elementary cave and it is called lamione. The complexity of a built space like this one determines the need for a non-traditional approach, so you have to combine last generation tools and canonical ones for survey and energy diagnosis within a dialectic between memory, tradition and innovation, in order to identify solutions for an environment friendly recover of a cultural heritage such this one. Since the evaluation of the historical buildings conservation state using destructive techniques should be avoided to prevent the integrity of the cultural heritage, the development of non-destructive and non-contact techniques is very important. For this reason, an

  3. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Block 3.0 Communications Strategies

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Ottinger, K.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The JPSS program is the follow-on for both space and ground systems to the Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. In a highly successful international partnership between NOAA and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the CGS currently provides data routing from McMurdo Station in Antarctica to the EUMETSAT processing center in Darmstadt, Germany. Continuing and building upon that partnership, NOAA and EUMETSAT are collaborating on the development of a new path forward for the 2020's. One approach being explored is a concept of operations where each organization shares satellite downlink resources with the other. This paper will describe that approach, as well as modeling results that demonstrate its feasibility and expected performance.

  4. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Architecture Overview and Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Johnson, B. R.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions. Originally designed to support S-NPP and JPSS, the CGS has demonstrated its scalability and flexibility to incorporate all of these other important missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture will be upgraded to Block 2.0 in 2015 to satisfy several key objectives, including: "operationalizing" S-NPP, which had originally been intended as a risk reduction mission; leveraging lessons learned to date in multi-mission support; taking advantage of newer, more reliable and efficient technologies; and satisfying new requirements and constraints due to the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This

  5. US Space VLBI Proposed Outreach Web Site

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The study of how VLBI might be pursued in space began in the late 1970's, when it was realized that the size of the earth was a serious limitation to the study of compact radio sources. By going to space, achieving angular resolution at radio wavelengths that could not be obtained with VLBI systems that were limited by the size of the earth, important tests could not be made of quasar models. The technology appeared to be within reach, and an early space VLBI concept, QUASAT, emerged as a joint project, involving both US and European scientists. In 1984, a workshop was held in Gross Enzerdorf, Austria, under joint sponsorship of NASA and the European Space Agency (ESA). The principal conclusion of the workshop was that a VLBI station in space, telemetering its data to ground data stations, working in connection with ground-based radio telescopes, would give the opportunity to achieve angular resolution of a few tens of micro-arc-seconds, and could develop high-quality radio maps of many classes of radio sources. The ground telemetry stations would also function as the source of a stable local oscillator for the spacecraft, which needs a highly stable frequency reference. The Deep Space Network of NASA could play a vital role in both the frequency-locking system and data acquisition. One outcome of the Gross Enzerdorf workshop was the convening, by COSPAR, of an ad hoc Committee on Space VLBI, to review and recommend procedures by which international collaboration on VLBI in space might be coordinated and promoted. In October 1985, the committee met in Budapest and recommended that the Inter-Agency Consultative Group (IACG) would be an appropriate body to coordinate VLBI activities in space. At the same time ESA convened a committee to explore the technical aspects of coordinating ground and space VLBI activities. At this stage both NASA and ESA were supporting preliminary studies of the QUASAT mission, with effective coordination between the two groups. The Soviet

  6. DSN Network e-VLBI Calibration of Earth Orientation

    NASA Technical Reports Server (NTRS)

    Zhang, Liwei Dennis; Steppe, A.; Lanyi, G.; Jacobs, C.

    2006-01-01

    This viewgraph presentation reviews the calibration of the Earth's orientation by using the Deep Space Network (DSN) e Very Large Base Integration (VLBI). The topics include: 1) Background: TEMPO; 2) Background: UT1 Knowledge Error; 3) e-VLBI: WVSR TEMPO Overview; 4) e-VLBI: WVSR TEMPO Turnaround; 5) e-VLBI: WVSR TEMPO R&D Tests; and 6) WVSR TEMPO Test Conclusion.

  7. International VLBI Service for Geodesy and Astrometry 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Baver, Karen D. (Editor); Behrend, Dirk (Editor); Armstrong, Kyla L. (Editor)

    2015-01-01

    IVS is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components. The goals are: 1. To provide a service to support geodetic, geophysical and astrometric research and operational activities. 2. To promote research and development activities in all aspects of the geodetic and astrometric VLBI technique. 3. To interact with the community of users of VLBI products and to integrate VLBI into a global Earth observing system.

  8. Shuttle VLBI experiment. Technical working group summary report

    NASA Technical Reports Server (NTRS)

    Morgan, S. H. (Editor); Roberts, D. H. (Editor)

    1982-01-01

    The gain in interferometric resolution of extragalactic sources at radio frequencies which can be achieved by placing a very long baseline interferometry (VLBI) antenna in space is quantitatively described and a VLBI demonstration experiment using a large deployable antenna, which if realized could be a very acceptable first venture for VLBI in space is discussed. A tutorial on VLBI, a summary of the technology available for the experiment, and a preliminary mission scenario are included.

  9. The Integrated Survey for Excavated Architectures: the Complex of Casalnuovo District Within the World Heritage Site "sassi" (matera, Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, T.; Valva, R.; Lucarelli, M.

    2015-02-01

    Never as within the complex of Sassi (Matera, South of Italy), the parties have a volumetric material identity and a special construction condition for which, first of all, you need to know the whole to which they give life, and then the individual components and their connections. In the course of time, in the Lucan city, there were stable and favorable conditions that allowed the development of an architectural language, of juxtaposition of the materials, interpenetration of space and conformation of the volumes, which generated an exceptional urban phenomenon. The distribution of these building artifacts in symbiotic connection with the connective calcareous texture that hosts them , resulted in a spontaneously harmonious figurative balance that characterizes the constructive expedients employed and the distributive and morphological solutions. This is the reason why the Sassi, and the overlooking Park of Rupestrian Churches of Matera Murgia, have been entered in 1993 in the UNESCO World Heritage List. The complexity of a built space, such as this one, determines the need for a non-traditional approach, so you have to combine last generation tools and canonical ones for survey, drawing and representation, within a dialectic between memory and design, tradition and innovation. For this reason, an appropriate cognitive apparatus has been set up for the entire technical process, making use of different non-destructive and non-contact techniques: digital photogrammetry, total station, laser scanner and thermography, in order to obtain a three-dimensional computer model, useful for the diagnosis and the preservation of the integrity of cultural heritage.

  10. Design of VLBI Array in South America

    NASA Astrophysics Data System (ADS)

    Carrara, E. A.; Abraham, Z.

    1990-11-01

    RESUMEN. Estudiamos la localizaci6n 6ptima de estaciones de \\ ras' en territorlo brasileno. Con una red VLBI de estaciones reales y ficti- cias simulamos observaciones. Se usan los datos generados de estps ex- perimentos para obtener Ia distribuci6n de brillo de radiofuentes fic- ticias por medlo de tecaicas de mapeo bIbrido. Se concluye que l mejor localizaci6n de estacionee'VLBI futuras, tomando en cuenta las estacio- nes de EUA y de Europa, se encuentra en el Norte-Noreste de razll. El analisis de los datos se hizo con los programas de CALTECH, los cuales estan instalados en una computadora VAX del Departamento de Astronomla del Instituto Astron6mico y Geoflsico de la Universidad de Sa"'o Paulo. ABSTRACT: In this work we study the optimum localization for future VLBI stations in the Brazilian territory. With a VLBI network of real and fictitious stations we make simulations of observations. The data generated in these experiments are used to obtain brightness distribution of a fictitious radio source by the hybrid mapping techniques. We conclude that the best localization of a future VLBI station taking into account the addition of US and European Stations, is roughly in North-Northeast sites in Brazil. The analysis of the data is made with the software of CALTECH, which is installed in the VAX computer of the Astronomy Department of Instituto e Geofisico - USP. Key `{` : INSTRUMENTS - INTERFEROMETRY

  11. Tropospheric Delay Raytracing Applied in VLBI Analysis

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.; Eriksson, D.; Gipson, J. M.

    2013-12-01

    Tropospheric delay modeling error continues to be one of the largest sources of error in VLBI analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from ECMWF data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption does not reflect reality, we have determined the raytrace delay along the signal path through the troposphere for each VLBI quasar observation. We determined the troposphere refractivity fields from the pressure, temperature, specific humidity and geopotential height fields of the NASA GSFC GEOS-5 numerical weather model. We discuss results from analysis of the CONT11 R&D and the weekly operational R1+R4 experiment sessions. When applied in VLBI analysis, baseline length repeatabilities were better for 66-72% of baselines with raytraced delays than with VMF1 mapping functions. Vertical repeatabilities were better for 65% of sites.

  12. Global and regional kinematics with VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    1994-01-01

    Since a VLBI station cannot operate in isolation and since simultaneous operation of the entire VLBI network is impractical, it is necessary to design observing programs with periodic observing sessions using networks of 3-7 stations that, when treated together, will have the necessary interstation data and network overlaps to determine the desired rates of change. Thus, there has been a mix of global, intercontinental, transcontinental, and regional networks to make measurements ranging from plate motions to deformation over a few hundred km. Over time, even networks focusing on regional deformation using mobile VLBI included large stations removed by several thousand km to increase sensitivity, determine EOP more accurately, and provide better ties to the terrestrial reference frame (TRF). Analysis products have also evolved, beginning with baseline components, and then to full three-dimensional site velocities in a global TRF.

  13. Correlation and Imaging of Space VLBI Observations

    NASA Astrophysics Data System (ADS)

    Romney, J. D.

    1995-05-01

    Space VLBI observations challenge conventional VLBI data-analysis systems and techniques in several areas. The correlator must obtain and evaluate an ephemeris for an orbiting ``station'' which is not fixed on the surface of the earth. The geometric delay, and its derivatives, for this element can exceed those for terrestrial stations by an order of magnitude. Imperfect knowledge of the orbit requires that the output data flow be sufficient to preserve unusually wide windows in residual delay and fringe rate. And, at least for the current generation of Space VLBI missions, the spacecraft have no on-board precision frequency standard; the phase-transfer process from a frequency standard on the ground is accompanied by errors which must be corrected in the correlator. Imaging of observations involving an orbiting element must contend with gaps in the (u,v) plane coverage for many cases of the orbit and source geometry. Projected baselines to the orbiting element change significantly more rapidly than terrestrial baselines during perigee passage of the spacecraft. Self-calibration techniques are complicated by the facts that all measurements in many regions of the (u,v) plane involve baselines to the single orbiting antenna, and that their residual delay and fringe rate may be subject to short-term variations. Since the current generation of Space VLBI missions have relatively small antennas, observations of weaker sources will be limited to sparse arrays comprising only the largest available radio telescopes on the ground, and interpretation of the results may require sophisticated image model-fitting software. NRAO's participation in the VSOP and Radioastron missions includes programs to modify the VLBA correlator and the AIPS imaging system to meet these requirements. Also included is a user-support program, to provide expert assistance in data analysis to Space VLBI observers, at a level similar to the support NRAO currently provides for ground-based VLBI

  14. The recent progress of Chinese VLBI Network

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin

    2015-08-01

    At present, Chinese VLBI Network (CVN) consists of 5 antennas (Seshan 25m, Urumqi 25m, Kunming 30m, Miyun 50m and Tianma 65m) and one data processing center in Shanghai Observatory, Chinese academy of sciences. It is a synthetic aperture radio telescope with the equivalent diameter up to 3000 Km. Through e-VLBI (electronic VLBI) technology, CVN is connected by the commuication network. It is a multi-purpose scientific research platform radio for geodesy, astronomy, as well as deep space exploration. In Geodesy, CVN is the component of the Crustal Movement Observation Network of China. Since the year of 2006, more than 20 geodetic domestic observations have been carried out. A set of phase-referencing observations of pulsars with CVN has carried out and got preliminary results. CVN also joined the Chinese lunar exploration Project from 2007 and supported 4 Chang’E series lunar probe missions. In Chang’E-3 mission, using the in-beam VLBI observations, the relative position accuracy of Rover and Lander is up to 1 meter.In recent years, we have updated the facilities of CVN from antenna, receivers, VLBI terminals to correlator. Participation of Tianma 65m antennas increases its performance. In 2012, Shanghai correlator was accepted as the IVS correlator. After upgrade, Shanghai correlator will try to provide the data process service for IVS community from 2015. To drive the construction of the planned VGOS (VLBI2010 Global Observing System) station, at least two VOGS 13m antenna will join CVN in the near future. Construction of the first VOGS antenna in Shanghai hopes to begin this year.The new VLBI correlator and digital terminal are under development. From participation in VGOS, we plan to study the earth rotation especially of high frequency and corresponding geophysical signals, to link China’s regional reference frame to ITRF, and etc. CVN is willing to join the research corporation with IVS, EVN, VLBA and AOV (Asia- Oceania VLBI Group for Geodesy and

  15. International VLBI Service for Geodesy and Astrometry

    NASA Technical Reports Server (NTRS)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2001-01-01

    This volume of reports is the 2000 Annual Report of the International Very Long Base Interferometry (VLBI) Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2000 Annual Report documents the work of these IVS components over the period March 1, 1999, through December 31, 2000. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2000.

  16. International VLBI Service for Geodesy and Astronomy

    NASA Technical Reports Server (NTRS)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2004-01-01

    This volume of reports is the 2003 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2003 Annual Report documents the work of the IVS components for the calendar year 2003, our fifih year of existence. The reports describe changes, activities, and progress of the IVS. Many thanks to all IVS components who contributed to this Annual Report. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2OO3

  17. K-3 and K-4 VLBI data acquisition terminals

    NASA Astrophysics Data System (ADS)

    Kiuchi, Hitoshi; Hama, Shin'ichi; Amagai, Jun; Abe, Yuko; Sugimoto, Yuji; Kawaguchi, Noriyuki

    1991-11-01

    A new data acquisition K-4 system which represents the next generation VLBI system was developed in Japan by the Communications Research Laboratory. The K-4 system is a compact VLBI terminal based on a rotary-head cassette recorder, one-fourth the weight and one-fifth the size of the Mark-III and K-3 systems. Using input and output interface units the K-4 system can be made fully compatible with the Mark-III and the K-3 VLBI systems. It is concluded that both the K-4 and the K-3 VLBI systems are suitable for VLBI experiments.

  18. Space VLBI telecommunication characteristics, protection criteria, and frequency sharing

    NASA Technical Reports Server (NTRS)

    Gutierrez-Luaces, B. O.; Bishop, D. F.

    1994-01-01

    A brief description of the technical characteristics of space VLBI is made, emphasizing the VLBI cross-correlation process. The signal-to-noise ratio of the cross-correlation process should be maintained as large as possible for the duration of the observation. Protection of this process from unwanted interference is a primary objective. The telecommunication radio links required in a space VLBI system are identified and characterized. Maximum bandwidths are suggested, as well as the minimum carrier frequencies required for the telemetering and the phase-transfer radio links. Planned space VLBI system models-Radioastron (Russia), VLBI Space Observatory Project (VSOP) (Japan), and the DSN orbiting VLBI subnet. (United States)--are taken as a baseline to determine the interference criteria. It is concluded that existing interference criteria for near-Earth research satellites are suitable for the protection of the space VLBI systems planned.

  19. Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.

    1978-01-01

    The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.

  20. Orbit determination of Tance-1 satellite using VLBI data

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Hu, X. G.; Huang, C.; Jiang, D. R.

    2006-01-01

    On 30 December, 2003, China successfully launched the first satellite Tance-1 of Chinese Geospace Double Star Exploration Program, i.e. "Double Star Program (DSP)", on an improved Long March 2C launch vehicle. The Tance-1 satellite is operating at an orbit around the earth with a 550km perigee, 78000km apogee and 28.5 degree inclination.VLBI technique can track Tance-1 satellite or even far satellites such as lunar vehicles. To validate the VLBI technique in the on-going Chinese lunar exploration mission, Shanghai Astronomical Observatory (SHAO) organized to track the Tance-1 satellite with Chinese three VLBI stations: Shanghai, Kunming and Urumchi Orbit Determination (OD) of the Tance-1 satellite with about two days VLBI dada, and the capability of OD with VLBI data are studied. The results show that the VLBI-based orbit solutions improve the fit level over the initial orbit. The VLBI-delay-based orbit solution shows that the RMS of residuals of VLBI delay data is about 5.5m, and about 2.0cm/s for the withheld VLBI delay rate data. The VLBI-delay-rate-based orbit solution shows that the RMS of residuals of VLBI delay rate data is about 1.3cm/s, and about 29m for the withheld VLBI delay data. In the situation of orbit determination with VLBI delay and delay rate data with data sigma 5.5m and 1.3cm/s respectively, the RMS of residuals are 5.5,m and 2.0cm/s respectively. The simulation data assess the performance of the solutions. Considering the dynamic model errors of the Tance-1 satellite, the accuracy of the position is about km magnitude, and the accuracy of the velocity is about cm/s magnitude. The simulation work also show the dramatic accuracy improvement of OD with VLBI and USB combined.

  1. Inhibition of cholesterol ester transfer protein CGS 25159 and changes in lipoproteins in hamsters.

    PubMed

    Kothari, H V; Poirier, K J; Lee, W H; Satoh, Y

    1997-01-01

    As a result of screening, several isoflavans were identified to be antagonists of cholesterol ester transfer protein (CETP) activity. The present study evaluates CGS 25159, a synthetic isoflavan, as a putative inhibitor of CETP activity of human and hamster plasma. Determined by [3]CE transfer from HDL to VLDL + LDL fraction or by fluorescent-CE transfer assay, CGS 25159 inhibited CETP in both human plasma bottom fraction (d = 1.21 g/ml) and in plasma from Golden Syrian Hamsters with an IC50 < 10 microM. The compound also inhibited (IC 50 approximately equal to 15 microM) the reciprocal transfer of triglycerides in the incubated whole plasma from normal and hyperlipidemic hamsters. When orally administered to normolipidemic hamsters, CGS 25159 (10 mg/kg, 4 days) reduced plasma transfer activity by 35-60%. Treatment with CGS 25159 (10 and 30 mg/kg, p.o.) resulted in dose dependent and time dependent changes in CETP activity. After two weeks of treatment at 10 mg/kg, the changes in VLDL + LDL cholesterol, total triglycerides and HDL cholesterol were -22 +/- 4.6*, -23 +/- 7.5 and +10 +/- 2.8%, respectively. The corresponding changes at 30 mg/kg were -28 +/- 5.5*, -38 +/- 6.8* and +29 +/-4.4.*%, (*, P, 0.05; mean +/- S.E.M., n = 6). A single spin gradient density ultracentrifugation of plasma lipoproteins and treated animals showed an increase in HDL cholesterol and a redistribution to larger HDL particles. These data support the contention that pharmacological down regulation of CETP activity could result in favorable changes in lipoprotein profile. PMID:9051198

  2. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  3. The Mark 5C VLBI Data System

    NASA Technical Reports Server (NTRS)

    Whitney, Alan; Ruszczyk, Chester; Romney, Jon; Owens, Ken

    2010-01-01

    The Mark 5C disk-based VLBI data system is being developed as the third-generation Mark 5 disk-based system, increasing the sustained data-recording rate capability to 4 Gbps. It is built on the same basic platform as the Mark 5A, Mark 5B and Mark 5B+ systems and will use the same 8-disk modules as earlier Mark 5 systems, although two 8-disk modules will be necessary to support the 4 Gbps rate. Unlike its earlier brethren, which use proprietary data interfaces, the Mark 5C will accept data from a standard 10 Gigabit Ethernet connection and be compatible with the emerging VLBI Data Interchange Format (VDIF) standard. Data sources for the Mark 5C system will be based on new digital backends now being developed, specifically the RDBE in the U.S. and the dBBC in Europe, as well as others. The Mark 5C system is being planned for use with the VLBI2010 system and will also be used by NRAO as part of the VLBA sensitivity upgrade program; it will also be available to the global VLBI community from Conduant. Mark 5C system specification and development is supported by Haystack Observatory, NRAO, and Conduant Corporation. Prototype Mark 5C systems are expected in early 2010.

  4. The Mark 5C VLBI Data System

    NASA Astrophysics Data System (ADS)

    Whitney, Alan; Ruszczyk, Chet; Romney, Jon; Owens, Kenneth

    2010-12-01

    The Mark 5C disk-based VLBI data system is being developed as the third-generation Mark 5 disk-based system, increasing the sustained data-recording rate capability to 4 Gbps. It is built on the same basic platform as the Mark 5A, Mark 5B and Mark 5B+ systems and will use the same 8-disk modules as earlier Mark 5 systems, although two 8-disk modules will be necessary to support the 4 Gbps rate. Unlike its earlier brethren, which use proprietary data interfaces, the Mark 5C will accept data from a standard 10 Gigabit Ethernet connection and be compatible with the emerging VLBI Data Interchange Format (VDIF) standard. Data sources for the Mark 5C system will be based on new digital backends now being developed, specifically the RDBE in the U.S. and the dBBC in Europe, as well as others. The Mark 5C system is being planned for use with the VLBI2010 system and will also be used by NRAO as part of the VLBA sensitivity upgrade program; it will also be available to the global VLBI community from Conduant. Mark 5C system specification and development is supported by Haystack Observatory, NRAO, and Conduant Corporation. Prototype Mark 5C systems are expected in early 2010.

  5. The New Generation Russian VLBI Network

    NASA Technical Reports Server (NTRS)

    Finkelstein, Andrey; Ipatov, Alexander; Smolentsev, Sergey; Mardyshkin, Vyacheslav; Fedotov, Leonid; Surkis, Igor; Ivanov, Dmitrij; Gayazov, Iskander

    2010-01-01

    This paper deals with a new project of the Russian VLBI Network dedicated for Universal Time determinations in quasi on-line mode. The basic principles of the network design and location of antennas are explained. Variants of constructing receiving devices, digital data acquisition system, and phase calibration system are specially considered. The frequency ranges and expected values of noise temperature are given.

  6. The BKG/IGGB VLBI Analysis Center

    NASA Technical Reports Server (NTRS)

    Thorandt, Volkmar; Nothnagel, Axel; Engelhardt, Gerald; Ullrich, Dieter; Artz, Thomas; Leek, Judith

    2013-01-01

    In 2012, the activities of the BKG/IGGB VLBI Analysis Center, as in previous years, consisted of routine computations of Earth orientation parameter (EOP) time series and of a number of research topics in geodetic VLBI. The VLBI group at BKG continued its regular submissions of time series of tropospheric parameters and the generation of daily SINEX (Solution INdependent EXchange format) files. Quarterly updated solutions have been computed to produce terrestrial reference frame (TRF) and celestial reference frame (CRF) realizations. Routine computations of the UT1-UTC Intensive observations include all sessions of the Kokee-Wettzell and Tsukuba-Wettzell baselines and the networks Kokee-Svetloe-Wettzell and Ny-degAlesund-Tsukuba-Wettzell. The VLBI group at BKG developed a procedure to get the most probable station positions of Tsukuba after the earthquake on March 11, 2011 for the epochs of the Intensive sessions. The analysis of the Intensive sessions with station Tsukuba could be resumed in February 2012. At IGGB, the emphasis has been placed on individual research topics.

  7. Earth Rotation Parameters from DSN VLBI: 1996

    NASA Technical Reports Server (NTRS)

    Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.

    1996-01-01

    A despcription of the DSN VLBI data set and of most aspects of the data analysis can be found in the IERS Technical Note 17, pp. R-19 to R-32 (see also IERS Technical Note 19, pp. R-21 to R-27). The main changes in this year's analysis form last year's are simply due to including another year's data.

  8. Sheshan VLBI Station Report for 2012

    NASA Technical Reports Server (NTRS)

    Xia, Bo; Shen, Zhiqiang; Hong, Xiaoyu; Fan, Qingyuan

    2013-01-01

    This report summarizes the observing activities at the Sheshan station (SESHAN25) in 2012. It includes international VLBI observations for astrometry, geodesy, and astrophysics and domestic observations for satellite tracking. We also report on updates and on development of the facilities at the station.

  9. VLBI2010: The Astro-Geo Connection

    NASA Technical Reports Server (NTRS)

    Porcas, Richard

    2010-01-01

    VLBI2010 holds out promise for greatly increased precision in measuring geodetic and Earth rotation parameters. As a by-product there will be a wealth of interesting new astronomical data. At the same time, astronomical knowledge may be needed to disentangle the astronomical and geodetic contributions to the measured delays and phases. This presentation explores this astro-geo link.

  10. Ultra-rapid EOP determination with VLBI

    NASA Astrophysics Data System (ADS)

    Haas, Rüdiger; Kurihara, Shinobu; Nozawa, Kentaro; Hobiger, Thomas; Lovell, Jim; McCallum, Jamie; Quick, Jonathan

    2013-04-01

    In 2007 the Geospatial information Authority of Japan (GSI) and the Onsala Space Observatory (OSO) started a project aiming at determining the earth rotation angle, usually expressed as dUT1, in near real-time. In the beginning of this project dedicated one hour long one-baseline experiments were observed periodically using the VLBI stations Onsala (Sweden) and Tsukuba (Japan). The strategy is that the observed VLBI-data are sent in real-time via the international optical fibre backbone to the VLBI-correlator at Tsukuba where the data are correlated and analyzed in near-real time, producing ultra-rapid dUT1 results. An offline version of this strategy has been adopted in 2009 for the regular VLBI intensive series INT-2 involving Wettzell (Germany) and Tsukuba. Since March 2010 the INT-2 is using real-time e-transfer, too, and since June 2010 also automated analysis. Starting in 2009 the ultra-rapid approach was applied to regular 24 hour long VLBI-sessions that involve Tsukuba and Onsala, so that ultra-rapid dUT1 results can be produced already during ongoing VLBI-sessions. This strategy was successfully operated during the 15 days long CONT11 campaign. In 2011 the ultra-rapid strategy was extended to involve a network of VLBI-stations, so that not only dUT1 but also the polar motion components can be determined in near real-time. Initially, in November 2011 a dedicated three-station session was observed involving Onsala, Tsukuba and Hobart (Tasmania, Australia). In 2012 several regular 24 hour long IVS-sessions that involved Onsala, Tsukuba and HartRAO (South Africa) were operated with the ultra-rapid strategy, and in several cases also Hobart was added as a fourth station. For this project we use the new analysis software c5++ developed by the National Institute of Information and Communications Technology (NICT). In this presentation we give an overview of the UREOP-project, describe the recent developments, and discuss the obtained results.

  11. Probing the Solar Corona with VLBI

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Sun, Jing; Heinkelmann, Robert; Schuh, Harald; Böhm, Johannes

    2013-04-01

    Radio observations close to the Sun are sensitive to the dispersive effects of the Sun corona. This has been used to determine (among other parameters) the electron density in the corona during solar conjunctions with spacecrafts. Although geodetic Very Long Baseline Interferometry (VLBI) observations close to the Sun have already been performed before 2002 (but suspended afterwards) they have not yet been used for calculations of corona electron densities. Almost 10 years later the International VLBI Service for Geodesy and Astrometry (IVS) decided to schedule twelve 24 hours VLBI sessions in 2011 and 2012 including observations closer than 15 degrees to the heliocenter. Both the recent and the earlier sessions are analysed in order to determine electron densities of the Sun corona. Based on the ionospheric delay corrections derived from two-frequency VLBI measurements, other dispersive effects like instrumental biases and, most important of all, the Earth's ionosphere effects are estimated and then eliminated. The residual delays are used to successfully determine power-law parameters of the electron density of the Sun corona for several of these sessions. In some cases, scheduled observations close to the Sun had failed, making it impossible to derive meaningful results from them. Both, the successful and the lost observations were analysed including external information like Sunspot numbers and flare occurrences. The estimated electron densities were compared to previous models of the Sun corona derived by radio measurements to spacecrafts during solar conjunctions. Our investigations show that it is possible to use geodetic VLBI sessions with observations close to the Sun to determine electron densities of the corona. The success depends on the geometry, i.e. the source position with respect to the Sun, and on the schedule, which can be optimized for such investigations. Unpredictable disturbances at the Sun's surface, such as flares, play also a role. So far

  12. Italian guidelines for energy performance of cultural heritage and historical buildings: the case study of the Sassi of Matera.

    NASA Astrophysics Data System (ADS)

    Negro, Elisabetta; Cardinale, Tiziana; Cardinale, Nicola

    2016-04-01

    The Sassi of Matera are a unique example in the world of rock settlement, developed from natural caves carved into the rock and then molded into increasingly complex structures inside two large natural amphitheatres: the Sasso Caveoso and the Sasso Barisano. Thanks also to this aspects Matera is an UNESCO world heritage site and was elected European Capital of Culture in 2019. Our research focuses on the compatibility of the energy efficiency measures applied in of Sassi buildings with the recent MiBACT (Italian Ministry of Cultural Heritage) guidelines on "Energy efficiency improvements in the cultural heritage" and AiCARR (Italian Association of Air Conditioning) guidelines on "Energy efficiency of historical building". One of the essential measures highlighted by Mibact guidelines is ensure the Indoor Environmental Quality improvement of the historical architecture in order to preserve their identity and cultural heritage. These paper aims to analyze energy and environmental performance of different buildings typology and monuments present in the Sassi site. The energy performance and microclimate measures conducted on different type of building by non-destructive measurements and laboratory tests in situ are useful to verify and quantify the thermal characteristics of the envelopes of the Mediterranean tradition and also to demonstrate their capacity to ensure internal comfort conditions. The calcarenite walls of vernacular building of Sassi show the excellent energy behavior of these constructions. But these material often present high moisture content which negatively influence the room microclimate in particular in presence of mural frescos and rocky churches. However these structures, once restored and in a condition of normal use, give indoor comfort within the limits of thermo-hygrometrics standards established by indices as the predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD). Another interesting consideration stated from our

  13. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  14. An Overview and Parametric Evaluation of the CGS ShakeMap Automated System in CISN

    NASA Astrophysics Data System (ADS)

    Hagos, L. Z.; Haddadi, H. R.; Shakal, A. F.

    2014-12-01

    In the recent years, ShakeMap has been extensively used in California for earthquake rapid response. Serving as a backup to the Northern and Southern seismic regions of the California Integrated Seismic Network (CISN), the California Geological Survey (CGS) is running a ShakeMap system configured such that it effectively produces ShakeMaps for earthquakes occurring in both regions. In achieving this goal, CGS has worked to improve the robustness of its ShakeMap system and the quality of its products. Peak ground motion amplitude data are exchanged between the CISN data centers to provide robust generation of ShakeMap. Most exchanged ground motion packets come associated with an earthquake by the authoritative network. However, for ground motion packets that come unassociated, CGS employs an event association scheme to associate them with the corresponding earthquake. The generated ShakeMap products are published to the CGS server which can also be accessed through the CISN website. The backup function is designed to publish ShakeMap products to the USGS NEIC server without collision with the regional networks, only acting in cases where the authoritative region encounters a system failure. Depending on the size, location and significance of the earthquake, review of ShakeMap products by a seismologist may involve changes to ShakeMap parameters from the default. We present an overview of the CGS ShakeMap system and highlight some of the parameters a seismologist may adjust including parameters related to basin effects, directivity effects when finite fault models are available, site corrections, etc. We also analyze the sensitivity and dependence of the ShakeMap intensity and ground motion maps on the number of observed data included in the computation. In light of the available strong motion amplitude data, we attempt to address the question of what constitutes an adequate quality ShakeMap in the tradeoff between rapidity and completeness. We also present a brief

  15. Assessing the Impact of Global GNSS-VLBI Hybrid Observations

    NASA Astrophysics Data System (ADS)

    Kwak, Younghee; Boehm, Johannes; Hobiger, Thomas; Plank, Lucia

    2015-04-01

    GNSS-VLBI hybrid observations refer to an approach where GNSS signals are received by GNSS antennas and correlated with VLBI correlators. The VLBI-like GNSS single differences (two stations to one satellite) are then analyzed together with standard VLBI observations. In this work, we use GNSS observations during CONT11, a continuous VLBI campaign over 15 days in September 2011. During CONT11, GNSS and VLBI are connected to the identical clocks at seven sites, which mean clock parameters can be regarded as site common parameters. We construct GNSS single differences between the ranges from two stations to a satellite, using post-processed range measurements from a precise point positioning (PPP) GPS solution with the C5++ software. Combining VLBI and VLBI-like GNSS delays during CONT11, we estimate station coordinates, Earth orientation parameters, and site common parameters, i.e. zenith wet delays and clock parameters with the Vienna VLBI Software (VieVS). We compare combined solutions with single technique solutions and assess the impact of GNSS-VLBI hybrid observations with respect to those parameters.

  16. VLBI tracking of GNSS satellites: recent achievements

    NASA Astrophysics Data System (ADS)

    Liu, Li; Heinkelmann, Robert; Tornatore, Vincenza; Li, Jinling; Mora-Diaz, Julian; Nilsson, Tobias; Karbon, Maria; Raposo-Pulido, Virginia; Soja, Benedikt; Xu, Minghui; Lu, Cuixian; Schuh, Harald

    2014-05-01

    While the ITRF (International Terrestrial Reference Frame) is realized by the combination of the various space geodetic techniques, VLBI (Very Long Baseline Interferometry) is the only technique for determining the ICRF (International Celestial Reference Frame) through its observations of extragalactic radio sources. Therefore, small inconsistencies between the two important frames do exist. According to recent comparisons of parameters derived by GNSS (Global Navigation Satellite Systems) and VLBI (e.g. troposphere delays, gradients, UT1-UTC), evidences of discrepancies obtained by the vast amounts of data become obvious. Terrestrial local ties can provide a way to interlink the otherwise independent technique-specific reference frames but only to some degree. It is evident that errors in the determination of the terrestrial ties, e.g. due to the errors when transforming the locally surveyed coordinates into global Cartesian three dimensional coordinates, introduce significant errors in the combined analysis of space geodetic techniques. A new concept for linking the space geodetic techniques might be to introduce celestial ties, e.g. realized by technique co-location on board of satellites. A small satellite carrying a variety of space geodetic techniques is under investigation at GFZ. Such a satellite would provide a new observing platform with its own additional unknowns, such as the orbit or atmospheric drag parameters. A link of the two techniques VLBI and GNSS might be achieved in a more direct way as well: by VLBI tracking of GNSS satellites. Several tests of this type of observation were already successfully carried out. This new kind of hybrid VLBI-GNSS observation would comprise a new direct inter-technique tie without the involvement of surveying methods and would enable improving the consistency of the two space geodetic techniques VLBI and GNSS, in particular of their celestial frames. Recently the radio telescopes Wettzell and Onsala have

  17. General relativistic delays in current and future VLBI

    NASA Astrophysics Data System (ADS)

    Soja, B.; Plank, L.; Schuh, H.

    2012-12-01

    The effect of gravitational time delay due to general relativity is clearly visible in VLBI measurements. While the Sun and the Earth cause gravitational delays up to some nanoseconds respectively picoseconds in geodetic VLBI observables, standard delay models also recommend the inclusion of Jupiter, the Earth's Moon and some of the other planets on the modeling side. Using the IERS Conventions model, we have calculated the gravitational time delay of standard VLBI observation constellations of the past years. The influences due to the Sun, the Earth, the Moon, Jupiter, Saturn and Venus were large enough to justify their consideration in routine VLBI data analysis (based on the accuracy of the upcoming VLBI2010 system). For VLBI data before 2002, the higher order term of the Sun should also be taken into account. Additionally, the relation between the gravitational delay of the Earth and the estimated tropospheric parameters (e.g. zenith wet delays) was investigated.

  18. VLBI height corrections due to gravitational deformation of antenna structures

    NASA Astrophysics Data System (ADS)

    Sarti, P.; Negusini, M.; Abbondanza, C.; Petrov, L.

    2009-12-01

    From an analysis of regional European VLBI data we evaluate the impact of a VLBI signal path correction model developed to account for gravitational deformations of the antenna structures. The model was derived from a combination of terrestrial surveying methods applied to telescopes at Medicina and Noto in Italy. We find that the model corrections shift the derived height components of these VLBI telescopes' reference points downward by 14.5 and 12.2 mm, respectively. No other parameter estimates nor other station positions are affected. Such systematic height errors are much larger than the formal VLBI random errors and imply the possibility of significant VLBI frame scale distortions, of major concern for the International Terrestrial Reference Frame (ITRF) and its applications. This demonstrates the urgent need to investigate gravitational deformations in other VLBI telescopes and eventually correct them in routine data analysis.

  19. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    SciTech Connect

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won; Jung, Won-Kyo; Na, Sung Hun; Jung, In Duk; Park, Yeong-Min; Choi, Il-Whan; Park, Won Sun

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  20. Design Aspects of the VLBI2010 System - Progress Report of the IVS VLBI2010 Committee

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill; Niell, Arthur; Behrend, Dirk; Corey, Brian; Boehm, Johannes; Chralot, Patrick; Collioud, Arnaud; Gipson, John; Haas, Ruediger; Hobiger, Thomas; Koyama, Yasuhiro; MacMillan, Dan; Malkin, Zinvoy; Nilsson, Tobias; Pany, Andrea; Tuccari, Gino; Whitney, Alan; Wresnik, Joerg

    2009-01-01

    This report summarizes the progress made in developing the next generation VLBI system, dubbed the VLBI2010 system. The VLBI2010 Committee of the International VLBI Service for Geodesy and Astrometry (IVS) worked on the design aspects of the new system. The report covers Monte Carlo simulations showing the impact of the new operating modes on the final products. A section on system considerations describes the implications for the VLBI2010 system parameters by considering the new modes and system-related issues such as sensitivity, antenna slew rate, delay measurement error. RF1, frequency requirements, antenna deformation, and source structure corrections_ This is followed by a description of all major subsystems and recommendations for the network, station. and antenna. Then aspects of the feed, polarization processing. calibration, digital back end, and correlator subsystems are covered. A section is dedicated to the NASA. proof-of-concept demonstration. Finally, sections tm operational considerations, on risks and fallback options, and on the next steps complete the report.

  1. A new model of Tidal EOP variations from VLBI data spanning 30 years

    NASA Astrophysics Data System (ADS)

    Gipson, John M.; Ray, Richard D.

    2009-04-01

    We report on a new solution for tidal EOP variations derived from VLBI data. This solution uses approximately 6.5 million VLBI delay measurements spanning almost 30 years, and is the most precise VLBI solution to date. We compare this solution to earlier VLBI solutions, solutions from other techniques, and theoretical predictions. We give theoretical and empirical estimates of the error of the estimates. We also compare the predictions from the VLBI tidal solution with hourly VLBI and GPS measurements of EOP.

  2. Vienna VLBI Software - Current release and plans for the future

    NASA Astrophysics Data System (ADS)

    Madzak, M.; Böhm, J.; Böhm, S.; Krásná, H.; Nilsson, T.; Plank, L.; Tierno Ros, C.; Schuh, H.; Soja, B.; Sun, J.; Teke, K.

    2013-08-01

    The Vienna VLBI Software (VieVS) is a geodetic Very Long Baseline Interferometry (VLBI) data analysis software which has been developed at the Vienna University of Technology since 2008. This paper gives an overview about its capabilities, including scheduling and simulation of VLBI observations. The latest release, version 2.1 includes a a graphical user interface. A few results and planned future developments are presented as well.

  3. SAND: Automated VLBI imaging and analyzing pipeline

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    2016-05-01

    The Search And Non-Destroy (SAND) is a VLBI data reduction pipeline composed of a set of Python programs based on the AIPS interface provided by ObitTalk. It is designed for the massive data reduction of multi-epoch VLBI monitoring research. It can automatically investigate calibrated visibility data, search all the radio emissions above a given noise floor and do the model fitting either on the CLEANed image or directly on the uv data. It then digests the model-fitting results, intelligently identifies the multi-epoch jet component correspondence, and recognizes the linear or non-linear proper motion patterns. The outputs including CLEANed image catalogue with polarization maps, animation cube, proper motion fitting and core light curves. For uncalibrated data, a user can easily add inline modules to do the calibration and self-calibration in a batch for a specific array.

  4. Recent developments in supernova research with VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, Norbert; Bietenholz, Michael F.

    2014-01-01

    Very long baseline interferometry (VLBI) observations during the last 30 years have resolved many supernovae and provided detailed measurements of the expansion velocity and deceleration. Such measurements are useful for estimating the radial density profiles of both the ejecta and the circumstellar medium left over from the progenitor. VLBI measurements are also the most direct way of confirming the relativistic expansion velocities thought to occur in supernovae associated with gamma-ray bursts. Well-resolved images of a few supernovae have been obtained, and the interaction of the ejecta as it expands into the circumstellar medium could be monitored in detail. We discuss recent results, for SN 1979C, SN 1986J, and SN 1993J, and note that updated movies of the latter two of the supernovae from soon after the explosion to the present are available from the first author's personal website.

  5. Monitoring of Earth Rotation by VLBI

    NASA Technical Reports Server (NTRS)

    Ma., Chopo; Macmillan, D. S.

    2000-01-01

    Monitoring Earth rotation with Very Long Baseline Interferometry (VLBI) has unique potential because of direct access to the Celestial Reference System (CRF and Terrestrial Reference System (TRF) and the feasibility of re-analyzing the entire data set. While formal precision of better than 0.045 mas for pole and 0.002 ms for UT 1 has been seen in the best 24-hr data, the accuracy of the Earth Orientation Parameter (EOP) time series as a whole is subject to logistical, operational, analytical and conceptual constraints. The current issues related to the VLBI data set and the CORE program for greater time resolution such as analysis consistency, network jitter and reference frame stability will be discussed.

  6. Spacecraft Doppler tracking with a VLBI antenna

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.

    1990-01-01

    Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.

  7. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Overview and Architectural Tenets

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence and Information Systems (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS architecture will receive a technology refresh in 2015 to satisfy several key

  8. Nascent peptide-mediated translation elongation arrest of Arabidopsis thaliana CGS1 mRNA occurs autonomously.

    PubMed

    Onouchi, Hitoshi; Haraguchi, Yuhi; Nakamoto, Mari; Kawasaki, Daisuke; Nagami-Yamashita, Yoko; Murota, Katsunori; Kezuka-Hosomi, Azusa; Chiba, Yukako; Naito, Satoshi

    2008-04-01

    The Arabidopsis thaliana CGS1 gene encodes cystathionine gamma-synthase, the first committed enzyme of methionine biosynthesis in higher plants. Expression of CGS1 is feedback-regulated at the step of mRNA degradation in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, termed the MTO1 region, encoded within the first exon of CGS1 itself acts in cis in the regulation. In vitro analyses using wheat germ extract (WGE) revealed that AdoMet induces temporal translation arrest of CGS1 mRNA prior to mRNA degradation. This translational pausing occurs immediately downstream of the MTO1 region and is mediated by the nascent MTO1 peptide. In order to elucidate further the nature of this unique regulatory mechanism, we have examined whether a non-plant system also contains the post-transcriptional regulation activity. Despite the fact that mammals do not carry cystathionine gamma-synthase, AdoMet was able to induce the MTO1 sequence-dependent translation elongation arrest in rabbit reticulocyte lysate (RRL) in a similar manner to that observed in WGE. This result suggests that MTO1 peptide-mediated translation arrest does not require a plant-specific factor and rather most probably occurs via a direct interaction between the nascent MTO1 peptide and the ribosome that has translated it. In contrast, decay intermediates of CGS1 mRNA normally observed upon induction of CGS1 mRNA decay in plant systems were not detected in RRL, raising the possibility that CGS1 mRNA degradation involves a plant-specific mechanism. PMID:18285355

  9. The Mark 5 VLBI Data System

    NASA Astrophysics Data System (ADS)

    Whitney, A. R.

    2007-07-01

    The Mark 5 VLBI data system is a disk-based data-recording and playback system for high-data-rate VLBI observations, and has been adopted worldwide for VLBI observations. Approximately 150 Mark 5A systems, capable of recording/playback at 1024 Mbps, are now deployed around the world, directly replacing the Mark 4/VLBA tape-based systems which were prevalent for over 25 years. The Mark 5A system records to an 8-disk removable module which is normally transported to a central correlator facility for processing. The Mark 5B VLBI data system is designed to support the VSI-H international specification and is now being deployed. It is based on the same physical platform and uses the same disk-modules as the Mark 5A; it also supports the same maximum data rate of 1024 Mbps. Data formatting and timetagging is done internally within the Mark 5B, eliminating the need for external formatters. Backwards playback compatibility with Mark 5A is accomplished by an upgrade to the Mark 5A. An upgrade of the Mark 5B system, dubbed Mark 5B+, is now also available and capable of sustained recording at 2 Gbps. The Mark 5C system, currently in development, accepts sampled data through a standard 10 Gigabit Ethernet OSI Layer 2 interface and will support sustained recording up to 4 Gbps. The Mark 5C will support a recording mode which is backwards compatible with the Mark 5B system for playback; Mark 5C is expected to be available in early 2008.

  10. Multiband VLBI Observations of CTA102

    NASA Technical Reports Server (NTRS)

    Rantakyro, F. T.; Baath, L. B.; Dallacasa, D.; Jones, D. L.; Wehrle, A. E.

    1995-01-01

    The source CTA102, known to exhibit low frequency variability, has been observed at six epochs (three at lambda 32 cm, two at lambda 18 cm, and one at lambda l.3 cm) with intercontinental VLBI arrays. On the basis of the changes observed in the structure, we believe that the flux density variations at these wavelengths are due to intrinsic processes and not due to interstellar scintillation. This source exhibits behaviour suggestive of being expanding with a very high apparent transverse velocity.

  11. A comparison between Lageos laser ranging and VLBI determined baselines

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.; Ryan, J. W.

    1984-01-01

    Two independent measurement techniques, Lageos satellite laser ranging (SLR), and very long baseline interferometry (VLBI) are compared in the measurement of distances (or baselines) between several locations in the continental U.S. The results of this analysis is summarized where both the SLR and VLBI baseline lengths and their differences (SLR minus VLBI) are presented. A comparison of the 22 baselines shows a mean difference of 1.0 + or - 1.1 cm with a scatter about zero of 5.2 cm. No apparent systematic scale difference between the networks is evident. A map of the baselines is included and indicates their differences, SLR minus VLBI, in centimeters.

  12. IVS Working Group 4: VLBI Data Structures

    NASA Astrophysics Data System (ADS)

    Gipson, J.

    2012-12-01

    I present an overview of the "openDB format" for storing, archiving, and processing VLBI data. In this scheme, most VLBI data is stored in NetCDF files. NetCDF has the advantage that there are interfaces to most common computer languages including Fortran, Fortran-90, C, C++, Perl, etc, and the most common operating systems including Linux, Windows, and Mac. The data files for a particular session are organized by special ASCII "wrapper" files which contain pointers to the data files. This allows great flexibility in the processing and analysis of VLBI data. For example it allows you to easily change subsets of the data used in the analysis such as troposphere modeling, ionospheric calibration, editing, and ambiguity resolution. It also allows for extending the types of data used, e.g., source maps. I present a roadmap to transition to this new format. The new format can already be used by VieVS and by the global mode of solve. There are plans in work for other software packages to be able to use the new format.

  13. Utilization of Mobile VLBI for Geodetic Measurements

    NASA Technical Reports Server (NTRS)

    Davidson, J. M.; Trask, D. W.

    1985-01-01

    Three mobile very long base interferometry (VLBI) systems were fabricated for the NASA Crustal Dynamics Project. These systems include the 9-meter-diameter MV-3 telescope. Since 1980, mobile systems operated in conjunction with several fixed base stations in the western United States as part of a geodetic survey program to determine relative motions and regional strain fields near the tectonic plate boundaries in California and Alaska. A description is given of the three mobile systems and the environment in which they must function. The inherent accuracy of mobile VLBI measurements is assessed, based on a consideration of major sources of error. Some recent results are presented which serve to illustrate various aspects of the error model and are of geodetic interest as they span the broad region surrounding the surface trace of the San Andreas Fault. These results indicate that baseline measurements utilizing the current mobile VLBI systems attained an accuracy of 2 cm or better in the horizontal plane. It is likely that crustal motions will be detected within the next few years, provided they are presently occurring at the geological rates.

  14. Utilization of mobile VLBI for geodetic measurements

    NASA Technical Reports Server (NTRS)

    Davidson, J. M.; Trask, D. W.

    1985-01-01

    Three mobile very long base interferometry (VLBI) systems were fabricated for the NASA Crustal Dynamics Project. These systems include the 9-meter-diameter MV-3 telescope. Since 1980, mobile systems operated in conjunction with several fixed base stations in the western United States as part of a geodetic survey program to determine relative motions and regional strain fields near the tectonic plate boundaries in California and Alaska. A description is given of the three mobile systems and the environment in which they must function. The inherent accuracy of mobile VLBI measurements is assessed, based on a consideration of major sources of error. Some recent results are presented which serve to illustrate various aspects of the error model and are of geodetic interest as they span the broad region surrounding the surface trace of the San Andreas Fault. These results indicate that baseline measurements utilizing the current mobile VLBI systems attained an accuracy of 2 cm or better in the horizontal plane. It is likely that crustal motions will be detected within the next few years, provided they are presently occurring at the geological rates.

  15. The East-Asian VLBI Network

    NASA Astrophysics Data System (ADS)

    Wajima, K.; Hagiwara, Y.; An, T.; Baan, W. A.; Fujisawa, K.; Hao, L.; Jiang, W.; Jung, T.; Kawaguchi, N.; Kim, J.; Kobayashi, H.; Oh, S.-J.; Roh, D.-G.; Wang, M. Wu, Y.; Xia, B.; Zhang, M.

    2016-02-01

    The East-Asian VLBI Network (EAVN) is the international VLBI facility in East Asia and is conducted in collaboration with China, Japan, and Korea. The EAVN consists of VLBI arrays operated in each East Asian country, containing 21 radio telescopes and three correlators. The EAVN will be mainly operated at 6.7 (C-band), 8 (X-band), 22 (K-band), and 43 GHz (Q-band), although the EAVN has an ability to conduct observations at 1.6 - 129 GHz. We have conducted fringe test observations eight times to date at 8 and 22 GHz and fringes have been successfully detected at both frequencies. We have also conducted science commissioning observations of 6.7 GHz methanol masers in massive star-forming regions. The EAVN will be operational from the second half of 2017, providing complementary results with the FAST on AGNs, massive star-forming regions, and evolved stars with high angular resolution at cm- to mm-wavelengths.

  16. VLBI2020: From Reality to Vision

    NASA Technical Reports Server (NTRS)

    Titov, Oleg

    2010-01-01

    The individual apparent motions of distant radio sources are believed to be caused by the effect of intrinsic structure variations of the active galactic nuclei (AGN). However, some cosmological models of the expanded Universe predict that systematic astrometric proper motions of distant quasars do not vanish as the radial distance from the observer to the quasar grows. These systematic effects can even increase with the distance, making it possible to measure them with high-precision astrometric techniques like VLBI. The Galactocentric acceleration of the Solar System barycenter may cause a secular aberration drift with a magnitude of 4 uas/yr. The Solar System motion relative to the cosmic microwave background produces an additional dipole effect, proportional to red shift. We analyzed geodetic VLBI data spanning from 1979 until 2009 to estimate the vector spherical harmonics in the expansion of the vector field of the proper motion of 687 radio sources. The dipole and quadrupole vector spherical harmonics were estimated with an accuracy of 1-5 as/yr. We have shown that over the next decade the geodetic VLBI may approach the level of accuracy on which the cosmological models of the Universe could be tested. Hence, it is important to organize a dedicated observational program to increase the number of measured proper motions to 3000.

  17. On the frame tie between VLBI and GNSS established by VLBI observations to satellites

    NASA Astrophysics Data System (ADS)

    Plank, Lucia; Boehm, Johannes; Schuh, Harald

    2014-05-01

    Very Long Baseline Interferometry (VLBI) and Global Navigation Satellite Systems (GNSS) are two of four space geodetic techniques contributing to the International Terrestrial Reference Frame (ITRF). For observing natural radiation of extragalactic radio sources with large radio telescopes on the one hand, and receiving artificial radio signals emitted by satellites with compact GNSS antennas on the other hand, both systems use different hardware. If we want to generate combined products in terms of station coordinates or Earth Orientation Parameters, the systems have to be referenced to each other carefully. Today, the determination of this so-called frame tie is the limiting factor for the establishment of precise reference frames. Plus, for a consistent multi-technique combination in the sense of GGOS, new strategies and ways of observation need to be identified. In this presentation, we discuss the derivation of the frame tie between VLBI and GNSS by using VLBI observations to satellites of the GNSS. Therefore, such observations are simulated and analysed in the standard VLBI method, solving for station coordinates. In the analysis, common troposphere delays and common clocks are determined at the stations. The accuracy of the frame tie is finally assessed by comparison of station coordinates of the observing sites in the quasar and the satellite frame. Monte Carlo simulations allow us to give estimates of the expected accuracies of the products, namely the station coordinates and the frame ties in terms of Helmert parameters. Our results are generated using different ways of including VLBI-GNSS observations in routine 24h VLBI experiments as well as changing analysis strategies.

  18. US Coast Guard GPS Information Center (GPSIC) and its function within the Civil GPS Service (CGS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In 1987, the U.S. Department of Defense (DOD) formally requested that the U.S. Department of Transportation (DOT) take responsibility for providing an office that would respond to nonmilitary user needs for GPS information, data, and assistance. DOT accepted this responsibility and in February 1989, named the Coast Guard as their lead agency for the project. Since that time, the U.S. Coast Guard has worked with the U.S. Space Command to develop requirements and implement a plan for providing the requested interface with the civil GPS community. The Civil GPS Service (CGS) consists of four main elements: GPS Information Center (GPSIC) - provides GPS status information to civilian users of the system: Civil GPS Service Interface Committee (CGSIC) - established to identify civil GPS user technical information needs in support of the CGS program; Differential GPS (DGPS) - Coast Guard Research and Development Project; and PPS Program Office (PPSPO) - (Under development) will administer the program allowing qualified civil users to have access to the PPS signal. Details about the services these organizations provide are described.

  19. On the space monitoring of the Sassi and Murgia Park (Matera UNESCO site) using LANDSAT time series

    NASA Astrophysics Data System (ADS)

    Lanorte, Antonio; Nole, Gabriele; Manzi, Teresa; Lasaponara, Rosa

    2015-04-01

    This paper is focused on the preliminary results obtained in the framework of the Great relevance project " Smart management of cultural heritage sites in Italy and Argentina: Earth Observation and pilot projects funded by the Ministero degli Affari Esteri e della Cooperazione Internazionale --MAE, 17/04/2014, Prot. nr. 0090692, 2014-2016. A temporal series (1999-2011) of the LANDSAT TM data was used to carried out investigation in the Murgia Park enclosed in the Matera UNESCO site . The PCA was adopted to enhance regions of localized change in multi-temporal data sets (Lasaponara 2006). Both naturally vegetated areas (forest, shrub-land, herbaceous cover) and agricultural lands have been investigated in order to extract the most prominent natural and/or man induced alterations affecting soil and vegetation cover. Results from PCA were compared with independent data sets and field survey to evaluate the reliability of the obtained maps of the ongoing land degradation phenomenon. Such analyses can provide valuable information for an operational monitoring of the status of vegetation which is an indicator of the degree of stress namely any disturbance that adversely influences plants in response to natural hazards and/or anthropogenic activities. Our findings suggest that the Landsat TM time series can provide valuable information for environmental management policies involving biodiversity preservation and rational exploitation of natural and agricultural resources. Acknowledgement This research was performed within the framework of the Great relevance project " Smart management of cultural heritage sites in Italy and Argentina: Earth Observation and pilot projects funded by the Ministero degli Affari Esteri e della Cooperazione Internazionale --MAE, 17/04/2014, Prot. nr. 0090692, 2014-2016

  20. Estimability of geodetic parameters from space VLBI observables

    NASA Technical Reports Server (NTRS)

    Adam, Jozsef

    1990-01-01

    The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.

  1. Applications of VLBI technique for lunar and Mars exploration

    NASA Astrophysics Data System (ADS)

    Kikuchi, F.; Iwata, T.; Kawano, N.; Sasaki, S.; Liu, Q.

    2009-04-01

    VLBI (very long baseline interferometry) technique is anticipated to be applied for precise positioning of an orbiter or a lander in lunar and planetary explorations. VLBI measures a difference in an arrival time of a signal transmitted from a radio source to two ground stations. The differential VLBI (DVLBI) measurement consists of the differenced delay between two radio sources (orbiter-orbiter or orbiter-quasar). The differential delays give plane-of-sky position differences of two radio sources in contrast to conventional 2-way Doppler measurements that give line-of-sight position information. The combination of VLBI with Doppler can be used for gravity field estimation of the Moon and planets, and for determining their rotations through the precise positioning of orbiters or landers. This presentation shows the recent results of the VLBI mission of Japanese lunar exploring program KAGUYA (SELENE) and the application of VLBI technique for next lunar and Mars landing missions. In KAGUYA, VRAD (the differential VLBI RADio sources) mission is carried out to improve the accuracy of the lunar gravity field. Two VLBI radio sources are loaded on two sub-satellites called Rstar and Vstar. These on-board radio sources transmit four carrier wave signals and same beam VLBI observations of the two sub-satellites are demonstrated. Same beam VLBI contributes a great deal to cancel out the tropospheric and ionospheric delays which are major error sources of VLBI and to determine the absolute value of the cycle ambiguity by using the multi frequency VLBI method. As a result, the differential phase delay of the X-band signal is estimated within an error of below one pico-second (Kikuchi et al., 2009). This accuracy is more than one order of magnitude smaller than recent VLBI results. The preliminary results for the orbit determination of the sub-satellites show a decrease of the orbit error from a few hundred of meters to around 10 meters when the differential phase delay data

  2. The First Experiment with VLBI-GPS Hybrid System

    NASA Technical Reports Server (NTRS)

    Kwak, Younghee; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun; Takiguchi, Hiroshi; Sekido, Mamoru; Ichikawa, Ryuichi; Sasao, Tetsuo; Cho, Jungho; Kim, Tuhwan

    2010-01-01

    In this paper, we introduce our GPS-VLBI hybrid system and show the results of the first experiment which is now under way. In this hybrid system, GPS signals are captured by a normal GPS antenna, down-converted to IF signals, and then sampled by the VLBI sampler VSSP32 developed by NICT. The sampled GPS data are recorded and correlated in the same way as VLBI observation data. The correlator outputs are the group delay and the delay rate. Since the whole system uses the same frequency standard, many sources of systematic errors are common between the VLBI system and the GPS system. In this hybrid system, the GPS antenna can be regarded as an additional VLBI antenna having multiple beams towards GPS satellites. Therefore, we expect that this approach will provide enough data to improve zenith delay estimates and geodetic results.

  3. DSN Beowulf Cluster-Based VLBI Correlator

    NASA Technical Reports Server (NTRS)

    Rogstad, Stephen P.; Jongeling, Andre P.; Finley, Susan G.; White, Leslie A.; Lanyi, Gabor E.; Clark, John E.; Goodhart, Charles E.

    2009-01-01

    The NASA Deep Space Network (DSN) requires a broadband VLBI (very long baseline interferometry) correlator to process data routinely taken as part of the VLBI source Catalogue Maintenance and Enhancement task (CAT M&E) and the Time and Earth Motion Precision Observations task (TEMPO). The data provided by these measurements are a crucial ingredient in the formation of precision deep-space navigation models. In addition, a VLBI correlator is needed to provide support for other VLBI related activities for both internal and external customers. The JPL VLBI Correlator (JVC) was designed, developed, and delivered to the DSN as a successor to the legacy Block II Correlator. The JVC is a full-capability VLBI correlator that uses software processes running on multiple computers to cross-correlate two-antenna broadband noise data. Components of this new system (see Figure 1) consist of Linux PCs integrated into a Beowulf Cluster, an existing Mark5 data storage system, a RAID array, an existing software correlator package (SoftC) originally developed for Delta DOR Navigation processing, and various custom- developed software processes and scripts. Parallel processing on the JVC is achieved by assigning slave nodes of the Beowulf cluster to process separate scans in parallel until all scans have been processed. Due to the single stream sequential playback of the Mark5 data, some ramp-up time is required before all nodes can have access to required scan data. Core functions of each processing step are accomplished using optimized C programs. The coordination and execution of these programs across the cluster is accomplished using Pearl scripts, PostgreSQL commands, and a handful of miscellaneous system utilities. Mark5 data modules are loaded on Mark5 Data systems playback units, one per station. Data processing is started when the operator scans the Mark5 systems and runs a script that reads various configuration files and then creates an experiment-dependent status database

  4. VLBI TRF determination via Kalman filtering

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Karbon, Maria; Nilsson, Tobias; Glaser, Susanne; Balidakis, Kyriakos; Heinkelmann, Robert; Schuh, Harald

    2015-04-01

    The determination of station positions is one of the primary tasks for space geodetic techniques. Station coordinate offsets are usually determined with respect to a linear coordinate model after removing elastic displacements caused by mass redistributions within the Earth's system. In operational VLBI analysis, the coordinate offsets are estimated in a least-squares adjustment as a constant over the duration of a 24-hour VLBI experiment. Terrestrial reference frames (TRF) are usually derived by adjusting the normal equations that contain the 24-hour constant offsets in order to estimate a linear model, possibly including breaks, for the station positions. We have created a VLBI TRF solution without the assumption of negligible subdaily motion and of linear behavior on longer time scales by applying a Kalman filter. As a preparation for the upcoming VLBI Global Observing System (VGOS), which aims for continuous observations that are available in real-time, a Kalman filter has been implemented into the VLBI software VieVS@GFZ. In addition to the real-time capability, the filter offers the possibility of stochastically modeling the parameters of interest. For station coordinates, changes in a subdaily time frame occur, for instance, from un- or mismodeled geophysical effects. The models for tidal and non-tidal ocean, atmosphere, and hydrology loading are known to have deficiencies and inconsistencies which propagate into the estimated station coordinates. The stochastic model of the Kalman filter can be adapted to take these subdaily effects into account. Comparing the resulting station coordinate time series with daily values from a least squares fit, we have investigated to what extent and in which regions the loading models currently have deficiencies. Due to the high correlation between station height and tropospheric delays, it is possible that errors in one group of parameters are partly absorbed by the other group. To detect problems with correlations and to

  5. VLBI measurement of the secular aberration drift

    NASA Astrophysics Data System (ADS)

    Titov, O.; Lambert, S. B.; Gontier, A.-M.

    2011-05-01

    Aims: While analyzing decades of very long baseline interferometry (VLBI) data, we detected the secular aberration drift of the extragalatic radio source proper motions caused by the rotation of the Solar System barycenter around the Galactic center. Our results agree with the predicted estimate to be 4-6 micro arcseconds per year (μas/yr) towards α = 266° and δ = -29°. In addition, we tried to detect the quadrupole systematics of the velocity field. Methods: The analysis method consisted of three steps. First, we analyzed geodetic and astrometric VLBI data to produce radio source coordinate time series. Second, we fitted proper motions of 555 sources with long observational histories over the period 1990-2010 to their respective coordinate time series. Finally, we fitted vector spherical harmonic components of degrees 1 and 2 to the proper motion field. Results: Within the error bars, the magnitude and the direction of the dipole component agree with predictions. The dipole vector has an amplitude of 6.4 ± 1.5 μas/yr and is directed towards equatorial coordinates α = 263° and δ = -20°. The quadrupole component has not been detected. The primordial gravitational wave density, integrated over a range of frequencies less than 10-9 Hz, has a limit of 0.0042h-2 where h is the normalized Hubble constant is H0/(100 km s-1). We dedicate this work to the memory of Anne-Marie Gontier, our colleague and personal friend, and a widely recognized specialist of VLBI. She passed away shortly after this paper was submitted.Proper motion data is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/529/A91

  6. Precise time transfer using MKIII VLBI technology

    NASA Technical Reports Server (NTRS)

    Johnston, K. J.; Buisson, J. A.; Lister, M. J.; Oaks, O. J.; Spencer, J. H.; Waltman, W. B.; Elgered, G.; Lundqvist, G.; Rogers, A. E. E.; Clark, T. A.

    1984-01-01

    It is well known that Very Long Baseline Interferometry (VLBI) is capable of precise time synchronization at subnanosecond levels. This paper deals with a demonstration of clock synchronization using the MKIII VBLI system. The results are compared with clock synchronization by traveling cesium clocks and GPS. The comparison agrees within the errors of the portable clocks (+ 5 ns) and GPS(+ or - 30 ns) systems. The MKIII technology appears to be capable of clock synchronization at subnanosecond levels and appears to be very good benchmark system against which future time synchronization systems can be evaluated.

  7. Geodetic Results from Mark 4 VLBI

    NASA Technical Reports Server (NTRS)

    MacMillan, Daniel; Petrov, Leonid; Ma, Chopo

    2002-01-01

    We present geodetic results of a series of 30 VLBI experiments recorded in Mark 4 mode at rates of 128 and 256 Mbps. The formal uncertainties of UT1, polar motion, and nutation offsets derived from these experiments are better than the corresponding uncertainties from NEOS-A experiments by a factor of 1.3-2. Baseline length repeatability for the series of 32 experiments over a period of one year is about 0.9 ppb. For comparison, NEOS-A length repeatability is about 1.4 ppb. We will discuss optimal use of Mark 4 in the design of future observing networks.

  8. VLBI2010: Networks and Observing Strategies

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill; Corey, Brian; Himwich, Ed; Ma, Chopo; Malkin, Zinovy; Niell, Arthur; Shaffer, David; Vandenberg, Nancy

    2004-01-01

    The Observing Strategies Sub-group of IVS's Working Group 3 has been tasked with producing a vision for the following aspects of geodetic VLBI: antenna-network structure and observing strategies; source strength/structure/distribution; frequency bands, RFI; and field system and scheduling. These are high level considerations that have far reaching impact since they significantly influence performance potential and also constrain requirements for a number of other \\VG3 sub-groups. The paper will present the status of the sub-group's work on these topics.

  9. VLBI Digital-Backend Intercomparison Test Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan; Beaudoin, Christopher; Cappallo, Roger; Niell, Arthur; Petrachenko, Bill; Ruszczyk, Chester A.; Titus, Mike

    2013-01-01

    Issues related to digital-backend (DBE) systems can be difficult to evaluate in either local tests or actual VLBI experiments. The 2nd DBE intercomparison workshop at Haystack Observatory on 25-26 October 2012 provided a forum to explicitly address validation and interoperability issues among independent global developers of DBE equipment. This special report discusses the workshop. It identifies DBE systems that were tested at the workshop, describes the test objectives and procedures, and reports and discusses the results of the testing.

  10. JPSS CGS C3S McMurdo Multimission Communications System

    NASA Astrophysics Data System (ADS)

    Higgins, C.; Urbano, J.; Jamilkowski, M. L.

    2011-12-01

    NOAA's next-generation civilian environmental satellite system, the Joint Polar Satellite System (JPSS) developed by NASA, will supply the afternoon orbit & ground system of the restructured NPOESS program. JPSS will replace NOAA's current POES system and ground processing part of both POES & DoD's Defense Weather Satellite System (DWSS). JPSS sensors will collect meteorological, oceanographic, climatological & solar-geophysical data. The command & data distribution part of the JPSS Common Ground System (CGS) is the Command, Control & Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems. C3S manages the overall JPSS & DWSS missions from control & status of the space & ground assets to ensuring timely delivery of high-quality data to the Interface Data Processing Segment (IDPS). Key to C3S' data delivery system are 15 globally-distributed ground receptors developed by Raytheon Company which will collect up to 5 times the environmental data about 4 times faster than current polar-orbiting weather satellites. Then these data will be rapidly forwarded to weather centrals via the global fiber optic network for processing/production of data records for use in environmental prediction models. McMurdo Station, Antarctica is a major receptor site due to its high latitude. With the NSF, C3S completed the upgrade & expansion of their existing off-continent satellite communications (SATCOM) link with 60 Mbps of bandwidth outbound and 20 Mbps inbound to missions using McMurdo. C3S completed the 1st big milestone in 2008 increasjng bandwidth of 3 Mbps to/from Antarctica to 10 Mbps both ways. Raytheon's C3S also upgraded network infrastructure at McMurdo Station & Belrose Earth Station, Australia SATCOM sites. This provides routing support for several missions, plus expansion capabilities to support future missions at McMurdo. The upgrade completed in Dec 2010 to prepare for use of McMurdo Station to support new downlink capabilities, called the

  11. 11th European VLBI Network Symposium & Users Meeting

    NASA Astrophysics Data System (ADS)

    The Laboratoire d'Astrophysique de Bordeaux (LAB) at the University of Bordeaux (France), on behalf of the European VLBI Consortium, hosted the 11th European VLBI Network (EVN) Symposium and EVN Users Meeting on October 9-12, 2012. The Symposium was held at the "Chambre de Commerce et d'Industrie de Bordeaux", located in the "Palais de la Bourse", in the center of Bordeaux. The conference highlighted the latest scientific results and technical developments from VLBI, space VLBI and e-VLBI. All fields of astrophysics were concerned - stellar, galactic and extragalactic - as well as astrometry and planetary science. Presentations addressing synergy between (e-)VLBI and other new or planned radio facilities (ALMA, LOFAR, e-MERLIN,...) or instruments at other wavelengths (Fermi, CTA, Gaia,...) were also an integral part of the program. The scientific program was organized in 11 sessions including 71 oral presentations, with an additional 43 posters available for viewing during the entire length of the conference. An EVN Users Meeting was also held during one of the evening to foster interaction between the EVN users and the EVN organization. The symposium was attended by a total of 122 delegates originating from 47 institutes world-wide, sharing new VLBI science and innovations while also building links with other communities. The research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 283393 (RadioNet3).

  12. Reinforced Concrete Condition Assessment in Architectural Heritage. The Lion Chambers (Glasgow, UK) and the Theatre E. Duni (Matera, Italy)

    NASA Astrophysics Data System (ADS)

    Guida, A.; Dimitrijevic, B.; Pagliuca, A.

    2012-04-01

    The research objective is to provide new qualitative information on the strength of reinforced concrete structures of two prominent examples of modern architecture by using innovative, non-invasive testing techniques. The first one is Lion Chambers in Glasgow (Scotland, United Kingdom) designed by the architects Salmon, Son and Gillespie and completed in 1907. It was the second example of the use of François Hennebique's reinforced concrete system in a building in Glasgow and one of the earliest in Britain. The second example is Duni Theatre in Matera (Southern Italy), designed by the architect Ettore Stella and completed in 1949. The tests on the internal reinforced concrete columns were undertaken by using "SonReb" (SONic + REBound) method that enables assessing the concrete resistance by combining the speed of ultrasound waves and the index of surface bounce through a scleorometric test. In fact, the sclerometer index only gives information regarding the surface layer of the building's structure. In fact, due to the effects of the natural ageing, catalysed by the presence of humidity, surface layers of concrete are affected over time by carbonatation, which increases surface rigidity, providing as a result a greatly "altered" rebound index (much greater than one would have under normal conditions). On the other hand, the ultrasound speed, on the contrary to resistance, is inversely proportional to the age of the concrete (this seems to be due to the cracks that occur and reduce the speed). The hardening process continues over time with a consequent increase in resistance, which diminishes with the passage of time. The paper provides the results of the tests run on the structure of the Lion Chambers and the Duni Theatre. The tests carried out are the basis of a diagnostic project that is possible to implement and monitor to guarantee a deeper knowledge, with the goal of attaining a level of thorough understanding aimed at the preservation of "Modern Architecture

  13. VLBI real-time analysis by Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Karbon, M.; Nilsson, T.; Soja, B.; Heinkelmann, R.; Raposo-Pulido, V.; Schuh, H.

    2013-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques providing the full set of Earth Orientation Parameter (EOP) and is unique for observing long term Universal Time (UT1) and precession/nutation. Accurate and continuous EOP obtained in near real-time are essential for satellite based navigation and positioning and for enabling the precise tracking of interplanetary spacecrafts. To meet this necessity the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts to reduce the time span between the VLBI observations and the availability of the final results. Currently the timeliness is about two weeks, but the goal is to reduce it to less than one day with the future VGOS (VLBI2010 Global Observing System) network. The FWF project VLBI-ART contributes to this new generation VLBI system by considerably accelerating the VLBI analysis procedure through the implementation of an elaborate Kalman filter. This true real-time Kalman filter will be embedded in the Vienna VLBI Software (VieVS) as a completely automated tool with no need of human interaction. This filter also allows the prediction and combination of EOP from various space geodetic techniques by implementing stochastic models to statistically account for unpredictable changes in EOP. Additionally, atmospheric angular momenta calculated from numerical weather prediction models are introduced to support the short-term EOP prediction. To optimize the performance of the new software various investigations with real as well as simulated data are foreseen. The results are compared to the ones obtained by conventional VLBI parameter estimation methods (e.g. least squares method) and to corresponding parameter series from other techniques, such as from the Global Navigation Satellite Systems (GNSS).

  14. Realtime and High Accuracy VLBI in Chinese Lunar Exploration Project

    NASA Astrophysics Data System (ADS)

    Weimin, Zheng

    The Chinese VLBI (Very Long Baseline Interferometry) Network - CVN consists of five radio telescopes and one data processing center. CVN is a powerful tracking and navigation tool in the Chinese lunar exploration projects. To meet the quick response of the CE lunar probes navigation requirements, station observation data must be sent to the VLBI center and processed in the real time mode. CVN has demonstrated its ability in the CE -1 and CE-2 missions. In December 2013, the CE-3 lander was successfully sent to the lunar surface and the Yutu rover was released. The new VLBI center and Tianma antenna came into use. During the mission, the lander carried the special Differential Oneway Range (DOR) beacon instead of the normal continuous spectrum VLBI signals. To get the high-precision result, CVN used the delta-DOR technique to track the lander with very extreme accuracy. VLBI delay residuals after orbit determination was nearly 0.5ns. The accuracy of landing position is better than 100 meters. The e-VLBI technique made the observable turnover time as short as 20~40 seconds. The same beam VLBI was used to determine the relative position between the lander and rover with meter accuracy. In the subsequent lunar missions, the new deep stations will join CVN and extend the baseline length. After the soft landing and sampling, the lander will be launched from the lunar surface and finish rendezvous and docking with the orbiter. The VLBI synthesis mapping method and the same beam VLBI can get the accurate lander location and support the rendezvous and docking procedure.

  15. Progress in the application of VLBI to interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Border, J. S.; Donivan, F. F.; Finley, S. G.; Moultrie, B.; Newhall, X. X.; Skjerve, L. J.; Yunck, T. P.; Bletzacker, F. R.; Smith, C. B.

    1983-01-01

    In comparison with conventional range and Doppler, VLBI data from a spacecraft and an angularly nearby extragalactic radio source have the potential of providing significant improvements in deep space navigation performance. Observations of the Voyager spacecraft at Saturn, the Pioneer orbiter at Venus, and clusters of natural radio sources are being used to validate these new navigation data types. This paper briefly describes a few of the navigation applications of VLBI, and gives estimates of the measurement accuracies that can be achieved. Recent results are presented which show current VLBI system accuracy at or near the expected level.

  16. The AuScope VLBI Array

    NASA Astrophysics Data System (ADS)

    Lovell, J.; McCallum, J.; Shabala, S.; Dickey, J.; Watson, C.; Titov, O.

    2012-12-01

    The AuScope VLBI array, consisting of three new 12-meter radio telescopes in Australia dedicated to geodesy, has recently commenced operations. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, Satellite Laser Ranging facilities. This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the southern hemisphere, and subsequently, improve the International Terrestrial Reference Frame through the improved ability to detect and mitigate systematic error. Improvements to both the ICRF and ITRF, as well as the simultaneous densification of the GNSS network across Australia will enable the improved measurement of intraplate deformation across the Australian tectonic plate.

  17. Estimation of EOP From VLBI: Direct Approach

    NASA Technical Reports Server (NTRS)

    Petrov, L.

    2000-01-01

    The currently adopted strategy of Earth Orientation Parameters (EOP) estimation from Very Long Baseline Interferometry (VLBI) is to estimate six parameters: Universal Time 1 (UT1), UT1 rate, pole positions, and nutation offsets for each 24-hour session independently. Then the resulting time series of raw EOP are filtered and a regression analysis is performed to obtain nutation coefficients, polhode of the pole, and other physical parameters. Thus, the latter parameters are obtained indirectly in two stages. An alternative approach of direct estimation of the final EOP is presented. Pole coordinates and UT1 are considered as a sum of three components: the low-period component that is modeled by a cubic spline, the harmonic component that includes forced nutation, precession and sub-daily variations of EOP, and the stochastic component that is modeled by a linear spline with segment length 1-2 hours. All parameters are obtained in a single LSQ solution using all available data.

  18. VLBI2010 Receiver Back End Comparison

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill

    2013-01-01

    VLBI2010 requires a receiver back-end to convert analog RF signals from the receiver front end into channelized digital data streams to be recorded or transmitted electronically. The back end functions are typically performed in two steps: conversion of analog RF inputs into IF bands (see Table 2), and conversion of IF bands into channelized digital data streams (see Tables 1a, 1b and 1c). The latter IF systems are now completely digital and generically referred to as digital back ends (DBEs). In Table 2 two RF conversion systems are compared, and in Tables 1a, 1b, and 1c nine DBE systems are compared. Since DBE designs are advancing rapidly, the data in these tables are only guaranteed to be current near the update date of this document.

  19. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  20. ostglacial rebound from VLBI Geodesy: On Establishing Vertical Reference

    NASA Technical Reports Server (NTRS)

    Argus, Donald .

    1996-01-01

    I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan, 1995] and predictions from postglacial rebound predictions [Peltier, 1995].

  1. JPL VLBI Analysis Center IVS Annual Report for 2004

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris

    2005-01-01

    This report describes the activities of the JPL VLBI analysis center for the year 2004. We continue to be celestial reference frame, terrestrial reference frame, earth orientation, and spacecraft navigation work using the VLBI technique. There are several areas of our work that are undergoing active development. In 2004 we demonstrated 1 mm level troposphere calibration on an intercontinental baseline. We detected our first X/Ka (8.4/32 GHz) VLBI fringes. We began to deploy Mark 5 recorders and to interface the Mark 5 units to our software correlator. We also have actively participated in the international VLBI community through our involvement in six papers at the February IVS meeting and by collaborating on a number of projects such as densifying the S/X celestial frame creating celestial frames at K (24 GHz) and Q-bands ($# GHz)>

  2. VSOP Space VLBI and Geodetic VLBI Investigations of Southern Hemisphere Radio Sources

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Reynolds, J. E.; Tzioumis, A. K.; Jauncey, David L.; Lovell, J. E. J.; Dodson, R.; Costa, M. E.; McCulloch, P. M.; Edwards, P. G.; Hirabayashi, H.; Murphy, D. W.; Preston, R. A.; Piner, B. G.; Nicolson, G. D.; Quick, J. F. H.; Kobayashi, H.; Shibata, K. M.

    2002-08-01

    We present images from VLBI Space Observatory Programme (VSOP) observations of 14 compact extragalactic southern hemisphere radio sources, including a description of the observations, the data reduction techniques, and the parameters of the resulting images and model fits. These images provide the highest resolution information to date for many of these objects. Comparisons are made between VSOP and previous ground-based VLBI results, including images from data extracted from the geodetic VLBI archive at the United States Naval Observatory. From the VSOP data, we find that the two radio galaxies observed have lower peak brightness temperatures than the 12 quasars. Also, these data show (1) no evidence for obvious differences between the brightness temperature distributions of gamma-ray-loud and gamma-ray-quiet radio-loud active galactic nuclei and (2) no evidence for obvious correlations between brightness temperature and spectral index, radio polarization, flux density, or month timescale modulation index. These results are consistent with previous work by Lister, Tingay, & Preston, who found that the only observable significantly correlated with VSOP-derived brightness temperature is intraday variability, which is strongly correlated with many relativistic beaming indicators. For one source, PKS 1127-145, we undertake a detailed investigation of the milliarcsecond-scale component positions as a function of time, taking data from the literature and the current work, to estimate proper motions. As a result, we suggest that two components previously reported as stationary, C1 and C2, have apparent transverse speeds of (9.1+/-3.8) and (5.3+/-2.3) h-1c, respectively. We also make the first investigation of the apparent motion in the nearest GHz-peaked spectrum radio galaxy, PKS 1718-649, finding an upper limit on the apparent separation speed of 0.08c. Comparison of geodetic VLBI and VSOP data show no significant detection of component motion in PKS 0208-512, (2

  3. Millimetron and Earth-Space VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.

    2014-01-01

    The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.

  4. VLBI: A Fascinating Technique for Geodesy and Astrometry

    NASA Technical Reports Server (NTRS)

    Schuh, H.; Behrend, Dirk

    2012-01-01

    Since the 1970s Very Long Baseline Interferometry (VLBI) has proven to be a primary space-geodetic technique by determining precise coordinates on the Earth, by monitoring the variable Earth rotation and orientation with highest precision, and by deriving many other parameters of the Earth system. VLBI provides an important linkage to astronomy through, for instance, the determination of very precise coordinates of extragalactic radio sources. Additionally, it contributes to determining parameters of relativistic and cosmological models. After a short review of the history of geodetic VLBI and a summary of recent results, this paper describes future perspectives of this fascinating technique. The International VLBI Service for Geodesy and Astrometry (IVS), as a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), is well on its way to fully defining a next generation VLBI system, called VLBI2010. The goals of the new system are to achieve on scales up to the size of the Earth an accuracy of 1 mm in position and of 0.1 mm/year in velocity. Continuous observations shall be carried out 24 h per day 7 days per week in the future with initial results to be delivered within 24 h after taking the data. Special sessions, e.g. for monitoring the Earth rotation parameters, will provide the results in near real-time. These goals require a completely new technical and conceptual design of VLBI measurements. Based on extensive simulation studies, strategies have been developed by the IVS to significantly improve its product accuracy through the use of a network of small (approx 12 m) fast-slewing antennas. A new method for generating high precision delay measurements as well as improved methods for handling biases related to radio source structure, system electronics, and deformations of the antenna structures has been developed. Furthermore, as of January 2012, the construction of ten new VLBI2010 sites has been funded, with

  5. e-VLBI detection of SN2007gr

    NASA Astrophysics Data System (ADS)

    Paragi, Z.; Kouveliotou, C.; Garrett, M. A.; Ramirez-Ruiz, E.; van Langevelde, H. J.; Szomoru, A.; Argo, M.

    2007-09-01

    We observed the Type Ibc SN2007gr on 6-7 September for 12 hours (21:00-09:00 UTC) at 4.97 GHz with the the European VLBI Network (EVN) using the e- VLBI technique. Participating telescopes were Darnhall, Jodrell Bank (MkII), Medicina, Onsala, Torun and Westerbork (phased array of 14 telescopes). The aggregate bitrate was 256 Mbps, except for Darnhall which contributed with an effective data rate of 128 Mbps due to analog bandwidth restrictions.

  6. Simulation of Local Tie Accuracy on VLBI Antennas

    NASA Technical Reports Server (NTRS)

    Kallio, Ulla; Poutanen, Markku

    2010-01-01

    We introduce a new mathematical model to compute the centering parameters of a VLBI antenna. These include the coordinates of the reference point, axis offset, orientation, and non-perpendicularity of the axes. Using the model we simulated how precisely parameters can be computed in different cases. Based on the simulation we can give some recommendations and practices to control the accuracy and reliability of the local ties at the VLBI sites.

  7. Comparison of VLBI and SLR geocentric site coordinates

    NASA Technical Reports Server (NTRS)

    Ray, J. R.; Ma, C.; Ryan, J. W.; Clark, T. A.; Eanes, R. J.

    1991-01-01

    Results are reported from a systematic comparison of the geocentric coordinates determined for 18 pairs of VLBI and satellite laser ranging (SLR) sites. The data and results are presented in tables and briefly characterized. The rms differences in the X, Y, and Z coordinates are found, after a 7-parameter frame adjustment, to be 15, 22, and 22 mm, respectively. The potential usefulness of a combined VLBI-SLR reference frame for spacecraft tracking and similar applications is indicated.

  8. 22 GHz VLBI Survey: Status Report and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moellenbrock, G.; Fujisawa, K.; Preston, R.; Gurvits, L.; Dewey, R.; Hirabayashi, H.; Inoue, M.; Jauncey, D.; Migenes, V.; Roberts, D.; Schilizzi, R.; Tingay, S.; Zensus, A.

    1994-01-01

    A ground-based VLBI survey to measure the visibilities and correlated flux densities in continuum at 22 GHz of more than 140 extragalactic radio sources has been conducted with baselines up to approximately 11 000 km. The project has been designed to help in preparation of target lists for VSOP and Radioastron Space VLBI missions as well as providing observational data for statistical study of structural properties at 22 GHz on sub-milliarcsecond scales for this large sample of extragalactic sources.

  9. Simulation of Systematic Errors in Phase-Referenced VLBI Astrometry

    NASA Astrophysics Data System (ADS)

    Pradel, N.; Charlot, P.; Lestrade, J.-F.

    2005-12-01

    The astrometric accuracy in the relative coordinates of two angularly-close radio sources observed with the phase-referencing VLBI technique is limited by systematic errors. These include geometric errors and atmospheric errors. Based on simulation with the SPRINT software, we evaluate the impact of these errors in the estimated relative source coordinates for standard VLBA observations. Such evaluations are useful to estimate the actual accuracy of phase-referenced VLBI astrometry.

  10. The influence of indoor microclimate on thermal comfort and conservation of artworks: the case study of the cathedral of Matera (South Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, Tiziana; Rospi, Gianluca; Cardinale, Nicola; Paterino, Lucia; Persia, Ivan

    2014-05-01

    The Matera Cathedral was built in Apulian-Romanesque style in the thirteenth century on the highest spur of the "Civita" that divides "Sassi" district in two parts. The constructive material is the calcareous stone of the Vaglia, extracted from quarries in the area of Matera. The interior is Baroque and presents several artworks, including: mortars covered with a golden patina, a wooden ceiling, painted canvas and painting frescoes, three minor altars and a major altar of precious white marble, a nativity scene made of local painted limestone. The research had to evaluate the indoor microclimate during and after the restoration works, that also concern the installation of floor heating system to heat the indoor environments. Specifically, we have analyzed the thermal comfort and the effect that the artwork and construction materials inside the Cathedral of Matera have undergone. This evaluation was carried out in two different phases: in the first one we have investigated the state of the art (history of the site, constructive typology and artworks); in the second one we have done a systematic diagnosis and an instrumental one. The analysis were carried out in a qualitative and quantitative way and have allowed us to test indoor microclimatic parameters (air temperature, relative humidity and indoor air velocity), surface temperatures of the envelope and also Fanger's comfort indices (PMV and PPD) according to the UNI EN ISO 7730. The thermal mapping of the wall surface and of the artworks, carried out through thermal imaging camera, and the instrumental measurement campaigns were made both before restoration and after installation of the heating system; in addition measurements were taken with system on and off. The analysis thus made possible to verify that the thermo-hygrometric parameters found, as a result of the recovery operations, meet the limits indicated by the regulations and international studies. In this way, we can affirm that the indoor environment

  11. Study of correlation between overlay and displacement measured by Coherent Gradient Sensing (CGS) interferometry

    NASA Astrophysics Data System (ADS)

    Mileham, Jeffrey; Tanaka, Yasushi; Anberg, Doug; Owen, David M.; Lee, Byoung-Ho; Bouche, Eric

    2016-03-01

    Within the semiconductor lithographic process, alignment control is one of the most critical considerations. In order to realize high device performance, semiconductor technology is approaching the 10 nm design rule, which requires progressively smaller overlay budgets. Simultaneously, structures are expanding in the 3rd dimension, thereby increasing the potential for inter-layer distortion. For these reasons, device patterning is becoming increasingly difficult as the portion of the overlay budget attributed to process-induced variation increases. After lithography, overlay gives valuable feedback to the lithography tool; however overlay measurements typically have limited density, especially at the wafer edge, due to throughput considerations. Moreover, since overlay is measured after lithography, it can only react to, but not predict the process-induced overlay. This study is a joint investigation in a high-volume manufacturing environment of the portion of overlay associated with displacement induced by a single process across many chambers. Displacement measurements are measured by Coherent Gradient Sensing (CGS) interferometry, which generates high-density displacement maps (>3 million points on a 300 mm wafer) such that the stresses induced die-by-die and process-by-process can be tracked in detail. The results indicate the relationship between displacement and overlay shows the ability to forecast overlay values before the lithographic process. Details of the correlation including overlay/displacement range, and lot-to-lot displacement variability are considered.

  12. Paradoxical effect of an aromatase inhibitor, CGS 20267, on aromatase activity in guinea pig brain.

    PubMed

    Choate, J V; Resko, J A

    1996-07-01

    To determine the effect of in vivo treatment of guinea pigs with a non-steroidal aromatase inhibitor (CGS 20267; letrozole), we treated subjects with subcutaneous Silastic implants containing crystalline letrozole. We studied four treatment groups: intact, intact letrozole-treated, castrate and castrate letrozole-treated. After treatment for 1 week, brain tissues (preoptic area, septum, medial basal hypothalamus, amygdala and parietal cortex) were removed, and microsomal aromatase activity (AA) was determined by an in vitro 3H2O assay using 1beta-3H-androstenedione as substrate. Kinetic experiments were performed to determine the competitive nature of letrozole and an approximate Ki was calculated. Letrozole appears to be a reversible, competitive inhibitor of aromatase activity with an apparent Ki of 1.2 nM. Aromatase activity in intact letrozole-treated animals was elevated compared to untreated controls in all brain areas tested (P< 0.05). Letrozole also stimulated AA in the brains of letrozole-treated castrated guinea pigs compared to untreated castrated animals (P< 0.05). These data indicate that letrozole administered in vivo causes an increase in AA. Possible mechanisms include an autoregulatory mechanism which is interrupted by enzyme inhibition, or an effect of the inhibitor on turnover rates of P450 aromatase. PMID:8903425

  13. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    NASA Technical Reports Server (NTRS)

    Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

    2010-01-01

    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

  14. Study on Capacity and Operation Method of PEFC μCGS for Apartment Using Measured Electricity and Hot Water Loads

    NASA Astrophysics Data System (ADS)

    Inui, Yoshitaka; Muto, Toshihide; Maeda, Tetsuhiko

    The introduction of PEFC (polymer electrolyte fuel cell) μCGS (micro cogeneration system) into apartment is expected from the viewpoint of the energy saving effect in the home section. To introduce this system, the optimization of the equipment capacity of the fuel cell and the examination of its control method are indispensable. In this paper, therefore, the authors suppose a PEFC μCGS and examine its operation method based on the measured results of the electricity and hot water loads of an apartment in Fukuoka. At first, using the measured load patterns, the authors numerically determine the optimum operation schedule that maximizes the energy saving rate for various values of PEFC capacity and reveal the PEFC capacity suitable for the μCGS in both cases of each house installation and central installation. The relation between the seasonal change and the operation pattern of the PEFC in the case of central installation is also investigated. Next, the authors assume the central installation of the PEFC with the above suitable capacity, and propose a practically applicable prediction control method. The energy saving rate of the proposed control method is only a little lower than that of the optimum operation, indicating that the proposed control method has sufficiently high performance.

  15. VGOS - the VLBI Global Observing System of the IVS

    NASA Astrophysics Data System (ADS)

    Haas, Rüdiger; Nothnagel, Axel; Petrachenko, Bill

    2015-08-01

    The International VLBI Service for Geodesy and Astrometry (IVS) is a service under the International Astronomical Union (IAU) and the International Association of Geodesy (IAG). The IVS objectives include providing the scientific community with a celestial reference frame (CRF), Earth orientation parameters (EOP), and with a terrestrial reference frame (TRF). The VLBI system currently operational was developed and constructed in the late 1960s and has served the science community with excellent results for several decades. However, today this system suffers from a number of technical shortcomings that restrict further accuracy improvements. Thus, during the last several years, the IVS has been developing a design for the next generation VLBI system, commonly known as the VLBI2010 design, with the goal to improve the accuracy of VLBI results by at least one order of magnitude. This design aims at, e.g., allowing continuous measurements of EOP, achieving 1 mm accuracy for station positions and 0.1 mm/a for station velocities, and improving the contribution to the CRF. This VLBI system will be realized in the next few years as the VLBI Global Observing System (VGOS) and replace the legacy system eventually. The key elements of VGOS are small (up to 13 m), fast-slewing (12 deg/s in azimuth, 6 deg/s in elevation) telescopes, equipped with broadband receivers that cover 2-14 GHz continuously, providing data acquisition at rates of 8 Gbps and above. A number of new VGOS telescopes have been constructed already and there are several more approved VGOS projects. Some of these VGOS projects even include twin telescopes. This presentation will explain the current status of VGOS and its future path of development

  16. Tropospheric delay determination by Kalman filtering VLBI data

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Zus, Florian; Dick, Galina; Deng, Zhiguo; Wickert, Jens; Heinkelmann, Robert; Schuh, Harald

    2015-09-01

    The troposphere is one of the most important error sources for space geodetic techniques relying on radio signals. Since it is not possible to model the wet part of the tropospheric delay with sufficient accuracy, it needs to be estimated from the observational data. In the analysis of very long baseline interferometry (VLBI) data, the parameter estimation is routinely performed using a least squares adjustment. In this paper, we investigate the application of a Kalman filter for parameter estimation, specifically focusing on the tropospheric delays. The main advantages of a Kalman filter are its real-time capability and stochastic approach. We focused on the latter and derived stochastic models for VLBI zenith wet delays, taking into account temporal and location-based differences. Compared to a static noise model, the quality of station coordinates, also estimated in the Kalman filter, increased as a result. In terms of baseline length and station coordinate repeatabilities, this improvement amounted to 2.3 %. Additionally, we compared the Kalman filter and least squares results for VLBI with zenith wet delays derived from GPS (Global Positioning System), water vapor radiometers, and ray tracing in numerical weather models. The agreement of the Kalman filter VLBI solution with respect to water vapor radiometer data was larger than that of the least squares solution by 6-15 %. Our investigations are based on selected VLBI data (CONT campaigns) that are closest to how future VLBI infrastructure is designed to operate. With the aim for continuous and near real-time parameter estimation and the promising results which we have achieved in this study, we expect Kalman filtering to grow in importance in VLBI analysis.

  17. VLBI and GPS-based Time-Transfer Using CONT08 Data

    NASA Technical Reports Server (NTRS)

    Rieck, Carsten; Haas, Ruediger; Jaldehag, Kenneth; Jahansson, Jan

    2010-01-01

    One important prerequisite for geodetic Very Long Baseline Interferometry (VLBI) is the use of frequency standards with excellent short term stability. This makes VLBI stations, which are often co-located with Global Navigation Satellite System (GNSS) receiving stations, interesting for studies of time- and frequency-transfer techniques. We present an assessment of VLBI time-transfer based on the data of the two week long consecutive IVS CONT08 VLBI campaign by using GPS Carrier Phase (GPSCP). CONT08 was a 15 day long campaign in August 2008 that involved eleven VLBI stations on five continents. For CONT08 we estimated the worst case VLBI frequency link stability between the stations of Onsala and Wettzell to 1e-15 at one day. Comparisons with GPSCP confirm the VLBI results. We also identify time-transfer related challenges of the VLBI technique as used today.

  18. ( sup 3 H)CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain

    SciTech Connect

    Jarvis, M.F.; Schulz, R.; Hutchison, A.J.; Do, U.H.; Sills, M.A.; Williams, M. )

    1989-12-01

    In the present study, the binding of a highly A2-selective agonist radioligand, (3H)CGS 21680 (2-(p-(2-carboxyethyl)-phenethylamino)-5'-N-ethylcarboxamido adenosine) is described. (3H)CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that (3H)CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. (3H)CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM (3H)CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of (3H)CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine.

  19. Geodetic measurements with a mobile VLBI system

    NASA Technical Reports Server (NTRS)

    Niell, A. E.; Claflin, E. S.; Lockhart, T. G.; Macdoran, P. F.; Morabito, D. D.; Ong, K. M.; Resch, G. M.

    1980-01-01

    The Project ARIES 9 meter transportable antenna was used as one element of very long baseline interferometer (VLBI) to begin monitoring locations of six sites in California relative to large diameter fixed antennas at the NASA Deep Space Network, Goldstone, California, and at the Caltech Owens Valley Radio Observatory, Big Pine, California. An accuracy of about 6 cm in the horizontal components was demonstrated by comparison with measurements of the National Geodetic Survey. The root of mean square scatter of the lengths of the baselines between any pair of antennas was about 3 cm except for the Goldstone-JPL (Pasadena) baseline. In the period August 1974 to August 1977 the length of this baseline increased by 15 + or - 5 cm as JPL moved westward relative to Goldstone at the rate of 6 + or - 2 cm/year. The baseline lengths were unaffected by the uncertainties of UT1, polar motion, and tropospheric water vapor, which are the limitations to present three dimensional vector accuracies.

  20. The AuScope geodetic VLBI array

    NASA Astrophysics Data System (ADS)

    Lovell, J. E. J.; McCallum, J. N.; Reid, P. B.; McCulloch, P. M.; Baynes, B. E.; Dickey, J. M.; Shabala, S. S.; Watson, C. S.; Titov, O.; Ruddick, R.; Twilley, R.; Reynolds, C.; Tingay, S. J.; Shield, P.; Adada, R.; Ellingsen, S. P.; Morgan, J. S.; Bignall, H. E.

    2013-06-01

    The AuScope geodetic Very Long Baseline Interferometry array consists of three new 12-m radio telescopes and a correlation facility in Australia. The telescopes at Hobart (Tasmania), Katherine (Northern Territory) and Yarragadee (Western Australia) are co-located with other space geodetic techniques including Global Navigation Satellite Systems (GNSS) and gravity infrastructure, and in the case of Yarragadee, satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) facilities. The correlation facility is based in Perth (Western Australia). This new facility will make significant contributions to improving the densification of the International Celestial Reference Frame in the Southern Hemisphere, and subsequently enhance the International Terrestrial Reference Frame through the ability to detect and mitigate systematic error. This, combined with the simultaneous densification of the GNSS network across Australia, will enable the improved measurement of intraplate deformation across the Australian tectonic plate. In this paper, we present a description of this new infrastructure and present some initial results, including telescope performance measurements and positions of the telescopes in the International Terrestrial Reference Frame. We show that this array is already capable of achieving centimetre precision over typical long-baselines and that network and reference source systematic effects must be further improved to reach the ambitious goals of VLBI2010.

  1. Earth Rotation Parameters From DSN VLBI: 1995

    NASA Technical Reports Server (NTRS)

    Steppe, J.; Oliveau, S.; Sovers, O.

    1995-01-01

    A description of the DSN VLBI data set and of last year's analysis can be found in last year's report. Other than including another year's data, the main changes in this year's analysis from last year's are in the use of meteorological data for determining tropospheric parameters and in the weighting of the data to account for the uncertainty in the observables caused by tropospheric effects and source structure. A priori dry zenith tropospheric delays were determined from barometric pressure measurements at the DSN sites, corrected for height differences between the pressure sensor and the antennas. A priori wet zenith tropospheric delays were derived from tables of monthly average wet zenith delays for each station, which are based on historical radiosonde data. The Lanyi function was used for mapping zenith tropospheric delays to observed elevations. the temperature at the top of the boundary layer, a parameter in the Lanyi function, was taken to be the 24-hour average of the surface temperature at the station. Adjustments to the wet troposphere zenith delays were estimated every two to three hours.

  2. First Phase Development of Korea-Japan Joint VLBI Correlator and Its Current Progress

    NASA Technical Reports Server (NTRS)

    Oh, Se-Jin; Roh, Duk-Gyoo; Yeom, Jae-Hwan; Kobayashi, Hideyuki; Kawaguchi, Noriyuki

    2010-01-01

    The first phase of the Korea-Japan Joint VLBI Correlator (KJJVC) development has been completed and installed to correlate the observed data from KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry) in October 2009. KJJVC is able to process 16 stations, a maximum of 8 Gbps/station, and 8,192 output channels for VLBI data. The system configuration, the experimental results, and future plans are introduced in this paper.

  3. ASI/CGS products and services in support of GNSS-meteorology

    NASA Astrophysics Data System (ADS)

    Pacione, Rosa; Pace, Brigida; Bianco, Giuseppe

    2013-04-01

    For more than a decade, ASI/CGS has supported ground-based GNSS meteorology in Europe participating in various projects such as MAGIC, COST-716, TOUGH, E-GVAP (phase I and II) and providing Zenith Tropospheric path Delays (ZTD) derived from a European network of GNSS stations covering mainly the central Mediterranean area. Working in close cooperation with the meteorological community, GNSS data are analyzed in order to provide ZTD with different latencies ranging from post-processing, useful for climate studies, to near-real time, for hourly assimilation into Numerical Weather Prediction (NWP) model. However advancements in NWP models (such as the Met Office UKV 1.5km model) with rapid update cycles require observations with improved timeliness and with greater spatial and temporal resolution than is currently available. To fulfil this requirement a sub-hourly PPP processing has been set-up, and is under evaluation, thanks to the availability of the IGS RT orbit and clock corrections. Moreover ZTD estimates are the input data for developing new and enhanced products: ZTD residuals fields and Integrated Water Vapour (IWV) maps. The former will be helpful in augmenting empirical tropospheric models for positioning applications. The latter are useful for nowcasting and severe weather monitoring since they let to follow IWV time evolution. We present an overview of the developed products and services; the new directions in support of NWP applications and the nowcasting and forecasting of severe weather events that emerge within E-GVAP phase III and the EU COST Action "Advanced Global Navigation Satellite Systems tropospheric products for monitoring Severe Weather Events and Climate" (GNSS4SWEC). Acknowledgements. This work has been carried out under ASI contract I-014-10-0.

  4. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  5. Correlated flux densities from VLBI observations with the DSN

    NASA Technical Reports Server (NTRS)

    Coker, R. F.

    1992-01-01

    Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made.

  6. 32 GHz VLBI Monitoring of SgrA*

    NASA Astrophysics Data System (ADS)

    Horiuchi, S.; Jacobs, Christopher S.; Phillips, C.; Sotuela, I.; García-Mirí, C.

    2012-11-01

    The compact radio source Sagittarius A* is associated with the super massive black hole at the centre of the Galaxy and has been studied with VLBI observations at different frequencies such as 8, 22, 43, and 86 GHz, and more recently in the sub-millimeter regime. To understand the origin of SgrA*'s rapid variability, broad frequency coverage in such observations is crucial. NASA Deep Space Network has established a unique 32 GHz VLBI array to develop a celestial reference frame of radio loud quasars at 32 GHz using VLBI baselines from Canberra in Australia, Goldstone in California USA, and Madrid in Spain. We have detected 482 sources over the Declination range of 90 > Dec. > -45 and catalogued them with high positional accuracy. Using LBA stations in Australia that can also observe at 32 GHz (ATCA and Mopra) and using an ESA station in Argentina (Malargue) we are on the verge of exploring the sky coverage also toward the South Pole. Now, several antennas worldwide are planning or considering adding 32 GHz VLBI capability. Thus, there is now an opportunity to create a worldwide 32 GHz network for high resolution imaging and astrometry. This new frequency coverage with VLBI will be able to enhance the global campaign to monitor SgrA* in mid-2013 around the time when a cloud is making its closest approach to the central black hole where AGN activities are expected to be triggered.

  7. Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate nodule-forming legumes and overproduce an altered EPS.

    PubMed

    Crespo-Rivas, Juan C; Margaret, Isabel; Hidalgo, Angeles; Buendía-Clavería, Ana M; Ollero, Francisco J; López-Baena, Francisco J; del Socorro Murdoch, Piedad; Rodríguez-Carvajal, Miguel A; Soria-Díaz, M Eugenia; Reguera, María; Lloret, Javier; Sumpton, David P; Mosely, Jackie A; Thomas-Oates, Jane E; van Brussel, Anton A N; Gil-Serrano, Antonio; Vinardell, Jose M; Ruiz-Sainz, Jose E

    2009-05-01

    Sinorhizobium fredii HH103 produces cyclic beta glucans (CG) composed of 18 to 24 glucose residues without or with 1-phosphoglycerol as the only substituent. The S. fredii HH103-Rifr cgs gene (formerly known as ndvB) was sequenced and mutated with the lacZ-gentamicin resistance cassette. Mutant SVQ562 did not produce CG, was immobile, and grew more slowly in the hypoosmotic GYM medium, but its survival in distilled water was equal to that of HH103-Rifr. Lipopolysaccharides and K-antigen polysaccharides produced by SVQ562 were not apparently altered. SVQ562 overproduced exopolysaccharides (EPS) and its exoA gene was transcribed at higher levels than in HH103-Rifr. In GYM medium, the EPS produced by SVQ562 was of higher molecular weight and carried higher levels of substituents than that produced by HH103-Rifr. The expression of the SVQ562 cgsColon, two colonslacZ fusion was influenced by the pH and the osmolarity of the growth medium. The S. fredii cgs mutants SVQ561 (carrying cgs::Omega) and SVQ562 only formed pseudonodules on Glycine max (determinate nodules) and on Glycyrrhiza uralensis (indeterminate nodules). Although nodulation factors were detected in SVQ561 cultures, none of the cgs mutants induced any macroscopic response in Vigna unguiculata roots. Thus, the nodulation process induced by S. fredii cgs mutants is aborted at earlier stages in V. unguiculata than in Glycine max. PMID:19348575

  8. The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing

    NASA Astrophysics Data System (ADS)

    Carlson, B. R.; Dewdney, P. E.; Burgess, T. A.; Casorso, R. V.; Petrachenko, W. T.; Cannon, W. H.

    1999-08-01

    A unique lag-based VLBI correlator system has been developed for the purpose of supporting S2-based space VLBI observations in both the Japanese-led VSOP mission and the Canadian Geodetic VLBI program. The system architecture has been designed so that replication of a small number of modules can be used to construct systems with a wide range of sizes. Optimized for a large correlator, the design is ``station based'' in the sense that as many hardware and software functions as possible are performed before data are replicated and transmitted for baseline (station pair) processing. As well as delay compensation and generation of phase rotation coefficients, station-based functions include autocorrelation, tone extraction, pulsar gating, signal-statistics accumulation, and digital filtering. Doppler-shift correction (fringe stopping) is performed on a baseline basis at each correlator lag so that there are no smearing effects (lag-dependent loss of coherence) or frequency shifts that must otherwise be corrected after correlation. This is a key element that simplifies the baseline processing architecture when high accelerations associated with an orbiting antenna must be considered. Flexible, efficient distribution of data from station-based hardware to baseline-based hardware is accomplished by serializing the wide data paths to 1 Gbit s^-1 signals and using high-speed switches to route the signals to their final destinations where they are deserialized before cross-correlation. This greatly reduces the size, wiring complexity, and cost of the system. The interval between updates of the delay models, integration times, and other important events is typically 10 ms but can be as short as 1 ms. Within this period, delay and fringe model generation is performed using linear hardware synthesizers. The correlator also contains a number of unique signal processing functions that extend its capability beyond a basic VLBI correlator: flexible Local Oscillator frequency

  9. Centimeter repeatability of the VLBI estimates of European baselines

    NASA Technical Reports Server (NTRS)

    Rius, Antonio; Zarraoa, Nestor; Sardon, Esther; Ma, Chopo

    1992-01-01

    In the last three years, the European Geodetic Very Long Baseline Interferometry (VLBI) Network has grown to a total of six fixed antennas placed in Germany, Italy, Spain and Sweden, all equipped with the standard geodetic VLBI instrumentation and data recording systems. During this period of time, several experiments have been carried out using this interferometer providing data of very high quality due to the excellent sensitivity and performance of the European stations. The purpose of this paper is to study the consistency of the VLBI geodetic results on the European baselines with respect to the different degrees of freedom in the analysis procedure. Used to complete this study were both real and simulated data sets, two different software packages (OCCAM 3.0 and CALC 7.4/SOLVE), and a variety of data analysis strategies.

  10. The Impact of Radio Frequency Interference (RFI) on VLBI2010

    NASA Technical Reports Server (NTRS)

    Petrachenko, William

    2010-01-01

    A significant motivation for the development of a next generation system for geodetic VLBI was to address growing problems related to RFI. In this regard, the broadband 2-14 GHz frequency range proposed for VLBI2010 has advantages and disadvantages. It has the advantage of flexible allocation of band frequencies and hence the ability to avoid areas of the spectrum where RFI is worst. However, the receiver is at the same time vulnerable to saturation from RFI anywhere in the full 2-14 GHz range. The impacts of RFI on the VLBI2010 analog signal path, the sampler, and the digital signal processing are discussed. In addition, a number of specific RFI examples in the 2-14 GHz range are presented.

  11. VLBI Radar of the 2012 DA14 Asteroid

    NASA Astrophysics Data System (ADS)

    Nechaeva, M. B.; Dugin, N. A.; Antipenko, A. A.; Bezrukov, D. A.; Bezrukov, V. V.; Voytyuk, V. V.; Dement'ev, A. F.; Jekabsons, N.; Klapers, M.; Konovalenko, A. A.; Kulishenko, V. F.; Nabatov, A. S.; Nesteruk, V. N.; Putillo, D.; Reznichenko, A. M.; Salerno, E.; Snegirev, S. D.; Tikhomirov, Yu. V.; Khutornoy, R. V.; Skirmante, K.; Shmeld, I.; Chagunin, A. K.

    2015-03-01

    An experiment on VLBI radar of the 2012 DA14 asteroid was carried out on February 15-16, 2011 at the time of its closest approach to the Earth. The research teams of Kharkov (Institute of Radio Astronomy of the National Academy of Sciences of Ukraine), Evpatoria (National Space Facilities Control and Test Center), Nizhny Novgorod (Radiophysical Research Institute), Bologna (Istituto di Radioastronomia (INAF)), and Ventspils (Ventspils International Radioastronomy Center) took part in the experiment. The asteroid was irradiated by the RT-70 planetary radar (Evpatoria) at a frequency of 5 GHz. The reflected signal was received using two 32-m radio telescopes in Medicina (Italy) and Irbene (Latvia) in radiointerferometric mode. The Doppler frequency shifts in bi-static radar mode and interference frequency in VLBI mode were measured. Accuracy of the VLBI radar method for determining the radial and angular velocities of the asteroid were estimated.

  12. Observing atmospheric tides in Earth rotation parameters with VLBI

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Böhm, Johannes; Schindelegger, Michael

    2015-04-01

    In this study, we assess the contribution of diurnal (S1) and semi-diurnal (S2) atmospheric tides to variations in Earth rotation by analyzing Very Long Baseline Interferometry (VLBI) observations. Particular emphasis is placed on the dependency of S1 and S2 estimates on varying settings in the a priori delay model. We use hourly Earth rotation parameters (ERP) of polar motion and UT1 as determined with the Vienna VLBI Software (VieVS) from 25 years of VLBI observations and we adjust diurnal and semi-diurnal amplitudes to the hourly ERP estimates after disregarding the effect of high-frequency ocean tides. Prograde and retrograde polar motion coefficients are obtained for several solutions differing in processing strategies (with/without thermal deformation, time span of observations, choice of a priori ERP model and celestial pole offsets) and we compare the corresponding harmonics with those derived from atmospheric and non-tidal oceanic angular momentum estimates.

  13. Parallel algorithm of VLBI software correlator under multiprocessor environment

    NASA Astrophysics Data System (ADS)

    Zheng, Weimin; Zhang, Dong

    2007-11-01

    The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.

  14. The Automatic Calibration of Korean VLBI Network Data

    NASA Astrophysics Data System (ADS)

    Hodgson, Jeffrey A.; Lee, Sang-Sung; Zhao, Guang-Yao; Algaba, Juan-Carlos; Yun, Youngjoo; Jung, Taehyun; Byun, Do-Young

    2016-08-01

    The calibration of Very Long Baseline Interferometry (VLBI) data has long been a time consuming process. The Korean VLBI Network (KVN) is a simple array consisting of three identical antennas. Because four frequencies are observed simultaneously, phase solutions can be transferred from lower frequencies to higher frequencies in order to improve phase coherence and hence sensitivity at higher frequencies. Due to the homogeneous nature of the array, the KVN is also well suited for automatic calibration. In this paper we describe the automatic calibration of single-polarisation KVN data using the KVN Pipeline and comparing the results against VLBI data that has been manually reduced. We find that the pipelined data using phase transfer produces better results than a manually reduced dataset not using the phase transfer. Additionally we compared the pipeline results with a manually reduced phase-transferred dataset and found the results to be identical.

  15. Development of a New VLBI Data Analysis Software

    NASA Technical Reports Server (NTRS)

    Bolotin, Sergei; Gipson, John M.; MacMillan, Daniel S.

    2010-01-01

    We present an overview of a new VLBI analysis software under development at NASA GSFC. The new software will replace CALC/SOLVE and many related utility programs. It will have the capabilities of the current system as well as incorporate new models and data analysis techniques. In this paper we give a conceptual overview of the new software. We formulate the main goals of the software. The software should be flexible and modular to implement models and estimation techniques that currently exist or will appear in future. On the other hand it should be reliable and possess production quality for processing standard VLBI sessions. Also, it needs to be capable of processing observations from a fully deployed network of VLBI2010 stations in a reasonable time. We describe the software development process and outline the software architecture.

  16. Phase correction of VLBI with water vapour radiometry

    NASA Astrophysics Data System (ADS)

    Roy, Alan; Rottmann, H.; Teuber, U.; Keller, R.

    We demonstrate phase correction of 3-mm VLBI observations using the scanning 18-GHz to 26GHz water vapour radiometer (WVR) at Effelsberg and we demonstrate an absolute accuracy of 15-mm in zenith path delay by comparing with GPS and radiosondes. This accuracy should provide significant improvement in astrometric phase-referencing observations. It is not good enough for geodetic VLBI to replace the tropospheric delay estimation but could be used to remove short-term path-length fluctuations and so improve the geodetic observables. We discuss lessons learned and opportunities for further improvement.

  17. International VLBI Service for Geodesy and Astrometry 2007 Annual Report

    NASA Technical Reports Server (NTRS)

    Behrend, D. (Editor); Baver, K. D. (Editor)

    2008-01-01

    This volume of reports is the 2007 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2007 Annual Report documents the work of these IVS components over the period January 1, 2007 through December 31, 2007. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2007.

  18. International VLBI Service for Geodesy and Astrometry 2008 Annual Report

    NASA Technical Reports Server (NTRS)

    Behrend, Dirk; Baver, Karen D.

    2009-01-01

    This volume of reports is the 2008 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2008 Annual Report documents the work of these IVS components over the period January 1, 2008 through December 31, 2008. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2008.

  19. e-VLBI observations of SS 433 in outburst

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Trushkin, S.; Soleri, P.; Fender, R.; Garrett, M.; Spencer, R.; Rushton, A.; Burgess, P.; Kunert-Bajraszewska, M.; Pazderski, E.; Borkowski, K.; Hammargren, R.; Lindqvist, M.; Maccaferri, G.

    2008-11-01

    We have observed the X-ray binary SS 433 on November 6, 2008 between 13:48-18:35 UT at 5 GHz with the European VLBI Network (EVN) using the e-VLBI technique. The radio telescopes participating in the experiment were: Medicina, Onsala 25m, Torun, Jodrell Bank MkII and Cambridge. The X-ray binary SS 433 is in outburst. Trushkin & Nizhelskij (ATel #1819) reported a major flare already active during the RATAN-600 observations in the 1-22 GHz band on 2008 October 28.

  20. e-VLBI observations of Cyg X-3

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Fender, R.; Spencer, R.; Garrett, M.; Rushton, A.

    2008-04-01

    We observed the X-ray binary Cyg X-3 on April 9th, 2008 for 9.5 hours, between 03:30-13:00 UT, at 5 GHz with the European VLBI Network (EVN) in e-VLBI mode (the data from the radio telescopes are sent over optical fibers in real-time to the correlator for processing). The radio telescopes participating in the experiment were: Cambridge, Medicina, Jodrell Bank MkII, Onsala (25 m), Torun and Westerbork (phased array).

  1. International VLBI Service for Geodesy and Astrometry 2011 Annual Report

    NASA Technical Reports Server (NTRS)

    Baver, Karen D. (Editor); Behrend, Dirk

    2012-01-01

    This volume of reports is the 2011 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2011 Annual Report documents the work of these IVS components over the period January 1, 2011 through December 31, 2011. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2011.

  2. DSN co-observing operations to support space VLBI missions

    NASA Technical Reports Server (NTRS)

    Altunin, Valery I.; Kuiper, Thomas B.; Wolken, Pamela R.

    1994-01-01

    Reliable radio astronomy support of space very long baseline interferometry (VLBI) missions by ground radio telescopes is mandatory in order to achieve a high scientific return from the missions. The 70 m DSN antennas along with other ground radio telescopes will perform as the ground segment of the earth-space interferometer. Improvements of radio astronomy VLBI operations at the DSN to achieve higher reliability, efficiency, flexibility, and lower operations costs is a major goal in preparing for radio astronomy support of SVLBI. To help realize this goal, a remote control and monitoring mode for radio astronomy operations at the DSN has been developed.

  3. High Frequency VLBI Studies of Sagittarius A* and NRAO 530

    NASA Astrophysics Data System (ADS)

    Lu, Ru-Sen

    2010-10-01

    Compact radio sources (Kellermann & Pauliny-Toth 1981) are widely accepted to be associated with supermassive black holes at the centers of active galaxies. Very long baseline interferometry (VLBI) observations at short millimeter wavelengths offer the unique advantage to look "deeper" into the central core regions. In this thesis we study two com pact radio sources (Sagittarius A* and NRAO 530) with high frequency VLBI techniques. As a starting point, we give in Chapter 1 a general introduction to observational properties of Active galactic nuclei (AGNs) and a theoretical basis. In Chapter 2, the compact radio source at the center of the Milky Way, Sagittarius A*, is reviewed. In Chapter 3, the technical basis of VLBI is outlined and then the difficulties of VLBI (and therefore the ways to improve) at short millimeter wavelengths are discussed. Due to its proximity, Sagittarius A* has the largest apparent event horizon of any black hole candidate and therefore it provides a unique opportunity for testing the SMBH paradigm. However, direct imaging of the nucleus is only accessible at short millimeter wavelengths due to the scatter broadening. In Chapter 4, we present results of an inter-day VLBI monitoring of Sagittarius A* at wavelengths of 13, 7, and 3 mm during a global observing campaign in 2007. We measure the flux density and source structure and study their variability on daily time scales. In addition to the VLBI monitoring of the Galactic Center, we present in Chapter 5 results of multi-epoch multi-frequency VLBI observations of the blazar nrao 530. NRAO 530 is an optically violent variable (OVV) source and was observed as a VLBI calibrator in our observations of Sagittarius A*. We investigate the spectral properties of jet components, their frequency-dependent position shifts, and variability of flux density and structure on daily time scales. Analysis of archival data over the last ten years allows us to study the detailed jet kinematics. Finally, a

  4. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Performance for Suomi NPP

    NASA Astrophysics Data System (ADS)

    Idol, J.; Grant, K. D.; Waas, W.; Austin, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will contribute the afternoon orbit component and ground processing system of the restructured National Polar-orbiting Operational Environmental Satellite System (NPOESS). As such, the Joint Polar Satellite System replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by the National Oceanic and Atmospheric Administration and the ground processing component of both Polar-orbiting Operational Environmental Satellites and the Defense Meteorological Satellite Program (DMSP) replacement, previously known as the Defense Weather Satellite System (DWSS), managed by the Department of Defense (DoD). The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and an Interface Data Processing Segment (IDPS). Both segments are developed by Raytheon Intelligence and Information Systems (IIS). The C3S currently flies the Suomi National Polar Partnership (Suomi NPP) satellite and transfers mission data from Suomi NPP and between the ground facilities. The IDPS processes Suomi NPP satellite data to provide Environmental Data Records (EDRs) to NOAA and DoD processing centers operated by the United States government. When the JPSS-1 satellite is launched in early 2017, the responsibilities of the C3S and the IDPS will be expanded to support both Suomi NPP and JPSS-1. The Suomi NPP launched on October 28, 2011. Launch was followed by a phase of sensor activation, and full volume data traffic is now flowing from the

  5. VLBI Observations of the Free Core Nutations

    NASA Astrophysics Data System (ADS)

    Smylie, D. E.

    2012-12-01

    At core scale lengths with periods from a few hours to days, the Coriolis acceleration dominates the Lorentz force density and core modes can be considered as purely mechanical. One of the most interesting core modes is the spin-over mode, which reflects the ability of the outer core to rotate about an axis different from that of either the inner core or the shell. It has a nearly diurnal period. In the Earth frame of reference, this mode produces the nearly diurnal retrograde wobble. In the space frame of reference it is accompanied by the free core nutations. When the flattening of the boundaries of the fluid outer core and the figure-figure gravitational coupling are taken into account, as well as the deformability of the boundaries, both a retrograde free core nutation and a prograde free core nutation are found. The retrograde free core nutation was first predicted by Poincare (1910) for a completly fluid, incompressible core bounded by a rigid shell. In a variational calculation of wobble-nutation modes in realistic Earth models, Jiang (1993) found the classical retrograde free core nutation (RFCN) but discovered a prograde free core nutation (PFCN) as well. VLBI residuals in longitude and obliquity compared to the 1980 IAU nutation series, and their standard errors, were downloaded from the Goddard Space Flight Center website, for the period August 3, 1979 to March 6, 2003, giving 3343 points over a span of 8617 days. In an overlapping segment analysis, the discrete Fourier transform (DFT) for each segment was found for the corresponding series of unequally spaced nutation residuals by singular value decomposition (SVD), with the number of singular values eliminated determined by the satisfaction of Parseval's theorem. Both the RFCN and the PFCN resonances were found in the resulting power spectrum. The nutation resonances were found to be in free decay, the half-life of the PFCN at 2620 days and that of the RFCN at 2229 days, with Ekman boundary layer

  6. Differences Between VLBI2010 and S/X Hardware

    NASA Technical Reports Server (NTRS)

    Corey, Brian

    2010-01-01

    While the overall architecture is similar for the station hardware in current S/X systems and in the VLBI2010 systems under development, various functions are implemented differently. Some of these differences, and the reasons behind them, are described here.

  7. Warkworth 12-m VLBI Station: WARK12M

    NASA Technical Reports Server (NTRS)

    Weston, Stuart; Takiguchi, Hiroshi; Natusch, Tim; Woodburn, Lewis; Gulyaev, Sergei

    2013-01-01

    The Warkworth 12-m radio telescope is operated by the Institute for Radio Astronomy and Space Research (IRASR) at AUT University, Auckland, New Zealand. Here we review the characteristics of the 12-m VLBI station and report on a number of activities and technical developments in 2012.

  8. About the Compatibility of DORIS and VLBI Observations

    NASA Technical Reports Server (NTRS)

    Il'in, Gennady; Smolentsev, Sergey; Sergeev, Roman

    2010-01-01

    We investigated the compatibility of the DORIS and VLBI observations at Badary Observatory. The DORIS beacon stands at 100-m distance from the main radio telescope dish and transmits signals on two frequencies: 2036.25 MHz and 401.25 MHz. The latter frequency is modulated to send messages containing an ID number, timing information, data from the meteorological sensors, and engineering data (e.g., power). Both frequencies affect the S/X band radio telescope receivers. The parameters of the DORIS signals were measured at the outputs of the S/X band intermediate frequency amplifier. It was found that: (1) The level of RFI, produced by the DORIS beacon, practically corresponds to the level of the system (antenna plus receiver) noise signal and does not overload the S/X band receivers. (2) The DORIS 401.25 MHz signal is out of the frequency bands recorded during standard VLBI sessions. As a result, RFI from DORIS does not affect VLBI observations. This conclusion was confirmed after data correlations of actual VLBI observations that were conducted with the DORIS beacon turned on/off.

  9. Mobile VLBI and GPS measurement of vertical crustal motion

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Davidson, J. M.; Gardner, E. C.

    1985-01-01

    Mobile Very Long Base Interferometry (VLBI) and Global Positioning System (GPS) geodetic measurements have many error sources in common. Calibration of the effects of water vapor on signal transmission through the atmosphere, however, remains the primary limitation to the accuracy of vertical crustal motion measurements made by either technique. The two primary methods of water vapor calibration currently in use for mobile VLBI baseline measurements were evaluated: radiometric measurements of the sky brightness near the 22 GHz emission line of free water molecules and surface meteorological measurements used as input to an atmospheric model. Based upon a limited set of 9 baselines, it is shown that calibrating VLBI data with water vapor radiometer measurements provides a significantly better fit to the theoretical decay model than calibrating the same data with surface meteorological measurements. The effect of estimating a systematic error in the surface meteorological calibration is shown to improve the consistency of the vertical baseline components obtained by the two calibration methods. A detailed error model for the vertical baseline components obtained indicates current mobile VLBI technology should allow accuracies of order 3 cm with WVR calibration and 10 cm when surface meteorological calibration is used.

  10. Space Science Applications of Near-field VLBI

    NASA Astrophysics Data System (ADS)

    Cimo, G.; Molera Calves, G.; Bocanegra Bahamon, T.

    2013-09-01

    The core of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) is the accurate estimation of the state-vector of a spacecraft using Very Long Baseline Interferometry (VLBI) tracking. We will describe a number of implementations of the PRIDE technique presenting past and current experiments, and discussing the involvement of PRIDE in future ESA's missions.

  11. U.S. Naval Observatory VLBI Analysis Center

    NASA Technical Reports Server (NTRS)

    Boboltz, David A.; Fey, Alan L.; Geiger, Nicole; Dieck, Chris; Hall, David M.

    2013-01-01

    This report summarizes the activities of the VLBI Analysis Center at the United States Naval Observatory for the 2012 calendar year. Over the course of the year, Analysis Center personnel continued analysis and timely submission of IVS-R4 databases for distribution to the IVS. During the 2012 calendar year, the USNO VLBI Analysis Center produced two VLBI global solutions designated as usn2012a and usn2012b. Earth orientation parameters (EOP) based on this solution and updated by the latest diurnal (IVS-R1 and IVS-R4) experiments were routinely submitted to the IVS. Sinex files based upon the bi-weekly 24-hour experiments were also submitted to the IVS. During the 2012 calendar year, Analysis Center personnel continued a program to use the Very Long Baseline Array (VLBA) operated by the NRAO for the purpose of measuring UT1-UTC. Routine daily 1-hour duration Intensive observations were initiated using the VLBA antennas at Pie Town, NM and Mauna Kea, HI. High-speed network connections to these two antennas are now routinely used for electronic transfer of VLBI data over the Internet to a USNO point of presence. A total of 270 VLBA Intensive experiments were observed and electronically transferred to and processed at USNO in 2012.

  12. Applying Kalman filtering to investigate tropospheric effects in VLBI

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald

    2014-05-01

    Very Long Baseline Interferometry (VLBI) currently provides results, e.g., estimates of the tropospheric delays, with a delay of more than two weeks. In the future, with the coming VLBI2010 Global Observing System (VGOS) and increased usage of electronic data transfer, it is planned that the time between observations and results is decreased. This may, for instance, allow the integration of VLBI-derived tropospheric delays into numerical weather prediction models. Therefore, future VLBI analysis software packages need to be able to process the observational data autonomously in near real-time. For this purpose, we have extended the Vienna VLBI Software (VieVS) by a Kalman filter module. This presentation describes the filter and discusses its application for tropospheric studies. Instead of estimating zenith wet delays as piece-wise linear functions in a least-squares adjustment, the Kalman filter allows for more sophisticated stochastic modeling. We start with a random walk process to model the time-dependent behavior of the zenith wet delays. Other possible approaches include the stochastic model described by turbulence theory, e.g. the model by Treuhaft and Lanyi (1987). Different variance-covariance matrices of the prediction error, depending on the time of the year and the geographic latitude, have been tested. In winter and closer to the poles, lower variances and covariances are appropriate. The horizontal variations in tropospheric delays have been investigated by comparing three different strategies: assumption of a horizontally stratified troposphere, using north and south gradients modeled, e.g., as Gauss-Markov processes, and applying a turbulence model assuming correlations between observations in different azimuths. By conducting Monte-Carlo simulations of current standard VLBI networks and of future VGOS networks, the different tropospheric modeling strategies are investigated. For this purpose, we use the simulator module of VieVS which takes into

  13. VLBI real-time analysis by Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Karbon, Maria; Soja, Benedikt; Nilson, Tobias; Heinkelmann, Robert; Liu, Li; Lu, Ciuxian; Xu, Minghui; Raposo-Pulido, Virginia; Mora-Diaz, Julian; Schuh, Harald

    2014-05-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques. It provides the full set of Earth Orientation Parameter (EOP) and is unique for observing long term Universal Time (UT1) and precession/nutation. Currently the VLBI products are delivered with a delay of about two weeks from the moment of the observation. However, the need for near-real time estimates of the parameters is increasing, e.g. for satellite based navigation and positioning or for enabling precise tracking of interplanetary spacecraft. The goal is thus to reduce the time span between observation and the final result to less than one day. This can be archived by replacing the classical least squares method with an adaptive Kalman filter. We have developed a Kalman filter for VLBI data analysis. This method has the advantage that it is simultaneously possible to estimate stationary parameters, e.g. station positions, and to model the highly variable stochastic behavior of non-stationary parameters like clocks or atmospheric parameters. The filter is able to perform without any human interaction, making it a completely autonomous tool. In this work we describe the filter and discuss its application for EOP determination and prediction. We discuss the implementation of the stochastic models to statistically account for unpredictable changes in EOP. Furthermore, additional data like results from other techniques can be included to improve the performance. For example, atmospheric angular momentum calculated from numerical weather models can be introduced to supplement the short-term prediction of UT1 and polar motion. This Kalman filter will be extended and embedded in the newly developed Vienna VLBI Software (VieVS) as a completely autonomous tool enabling the VLBI analysis in near real-time and providing all the parameters of interest with the highest possible accuracy.

  14. Very-long-baseline radio interferometry (VLBI) observations of gamma-ray blazars: results from millimeter-VLBI observations.

    PubMed Central

    Krichbaum, T P; Britzen, S; Standke, K J; Witzel, A; Schalinski, C J; Zensus, J A

    1995-01-01

    VLBI observations of the extremely gamma-bright blazar PKS 0528+134 at 8, 22, 43, and 86 GHz reveal a strongly bent one-sided-core jet structure with at least three moving and two apparently stationary jet components. At the highest observing frequencies the brightest and most compact jet component (the VLBI core) is unresolved with an upper limit to its size of approximately 50 microarcsec corresponding to approximately 0.2 parsec [H0 = 100 km.s-1.Mpc-1 (megaparsec-1), q0 = 0.5, where H0 is Hubble constant and q0 is the deceleration parameter]. Two 86-GHz VLBI observations performed in 1993.3 and 1994.0 reveal a new jet component emerging with superluminal speed from the core. Linear back-extrapolation of its motion yields strong evidence that the ejection of this component is related to an outburst in the millimeter regime and a preceding intense flare of the gamma-flux density observed in early 1993. This and the radio/optical "light curves" and VLBI data for two other sources (S5 0836+710 and 3C 454.3) suggest that the observed gamma-radiation might be Doppler-boosted and perhaps is closely related to the physical processes acting near the "base" of the highly relativistic jets observed in quasars. PMID:11607602

  15. Very-long-baseline radio interferometry (VLBI) observations of gamma-ray blazars: results from millimeter-VLBI observations.

    PubMed

    Krichbaum, T P; Britzen, S; Standke, K J; Witzel, A; Schalinski, C J; Zensus, J A

    1995-12-01

    VLBI observations of the extremely gamma-bright blazar PKS 0528+134 at 8, 22, 43, and 86 GHz reveal a strongly bent one-sided-core jet structure with at least three moving and two apparently stationary jet components. At the highest observing frequencies the brightest and most compact jet component (the VLBI core) is unresolved with an upper limit to its size of approximately 50 microarcsec corresponding to approximately 0.2 parsec [H0 = 100 km.s-1.Mpc-1 (megaparsec-1), q0 = 0.5, where H0 is Hubble constant and q0 is the deceleration parameter]. Two 86-GHz VLBI observations performed in 1993.3 and 1994.0 reveal a new jet component emerging with superluminal speed from the core. Linear back-extrapolation of its motion yields strong evidence that the ejection of this component is related to an outburst in the millimeter regime and a preceding intense flare of the gamma-flux density observed in early 1993. This and the radio/optical "light curves" and VLBI data for two other sources (S5 0836+710 and 3C 454.3) suggest that the observed gamma-radiation might be Doppler-boosted and perhaps is closely related to the physical processes acting near the "base" of the highly relativistic jets observed in quasars. PMID:11607602

  16. Tropospheric delays derived from Kalman-filtered VLBI observations

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Balidakis, Kyriakos; Lu, Cuixian; Anderson, James; Glaser, Susanne; Liu, Li; Mora-Diaz, Julian A.; Raposo-Pulido, Virginia; Xu, Minghui; Heinkelmann, Robert; Schuh, Harald

    2015-04-01

    One of the most important error sources in the products of space geodetic techniques is the troposphere. Currently, it is not possible to model the rapid variations in the path delay caused by water vapor with sufficient accuracy, thus it is necessary to estimate these delays in the data analysis. Very long baseline interferometry (VLBI) is well suited to determine wet delays with high accuracy and precision. Compared to GNSS, the analysis does not need to deal with effects related to code biases, multipath, satellite orbit mismodeling, or antenna phase center variations that are inherent in GNSS processing. VLBI data are usually analyzed by estimating geodetic parameters in a least squares adjustment. However, once the VLBI Global Observing System (VGOS) will have become operational, algorithms providing real-time capability, for instance a Kalman filter, should be preferable for data analysis. Even today, certain advantages of such a filter, for example, allowing stochastic modeling of geodetic parameters, warrant its application. The estimation of tropospheric wet delays, in particular, greatly benefits from the stochastic approach of the filter. In this work we have investigated the benefits of applying a Kalman filter in the VLBI data analysis for the determination of tropospheric parameters. The VLBI datasets considered are the CONT campaigns, which demonstrate state-of-the-art capabilities of the VLBI system. They are unique in following a continuous observation schedule over 15 days and in having data recorded at higher bandwidth than usual. The large amount of observations leads to a very high quality of geodetic products. CONT campaigns are held every three years; we have analyzed all CONT campaigns between 2002 and 2014 for this study. In our implementation of a Kalman filter in the VLBI software VieVS@GFZ, the zenith wet delays (ZWD) are modeled as random walk processes. We have compared the resulting time series to corresponding ones obtained from

  17. Orbit determination of satellite "Tance 1" with VLBI data

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Hu, Xiao-gong; Huang, Cheng; Jiang, Dong-ro; Zheng, Wei-min; Zhang, Xiu-zhong

    The satellite "Tance 1" of the "Double-Star Program" is the first truly scientific experimentation satellite of China. Its orbit is the farthest so far launched in China, with a geocentric apogee reaching 78 thousand kilometers. The tracking of "Tance 1" and of more distant space targets, such as the lunar exploration craft, can be realized with the VLBI technique of radio astronomy. In order to test and verify the role which the VLBI technique plays in the lunar exploration program of China, Shanghai Astronomical Observatory organized the only 3 tracking stations in China (located at Shanghai, Urumqi and Kunming), to carry out test tracking of "Tance 1," and used the time delay data obtained to determine the orbit of "Tance 1" over a two-day period, so providing a preliminary assessment of the possibility of VLBI orbit determination. The fitting error of the orbit so obtained is about 5.5 m in the time delay and about 2 cm/s in the delay rate (this for checking only), much better than is provided by the preliminary orbit (used merely for ensuring tracking) in which the corresponding figures are around 2 km and 15 cm/s. Further, if the orbit is determined by using both the time delay and time delay rate data (with weights according to their internal accuracies), then the residuals are 5.5 m in the time delay and 2 cm/s in the delay rate. For an appreciation of the true accuracy of the VLBI orbit determination, we used simulation data (of the observed two-day VLBI data) and found the results depended greatly on the error in the dynamic model of the satellite which, however, is difficult to assess, while the formal residuals are of the order of 1 kin in the delay and of cm/s in the delay rate. The simulation computation also indicates that a joint determination using both VLBI and USB data will have an improved accuracy.

  18. NTT's ultra-high-speed networking experiment: a real-time VLBI project

    NASA Astrophysics Data System (ADS)

    Uose, Hisao; Irie, Kazunari; Iwamura, Sotetsu

    2002-11-01

    Since 1995 Nippon Telegraph and Telephone Corporation (NTT) has been conducting experiments on real-time VLBI (very long baseline interferometry) using a large scale network testbed having the maximum speed of 2.4Gb/s. With the real-time data transmission using high-speed communications network, the bottleneck resulted from the limited data rates with the conventional magnetic tape based VLBI system can be removed. Two applications of VLBI, geodesy and radio astronomy, are being pursued with our trial and extensive research items regarding the real-time VLBI technology are being conducted. So far, through the experiments using the developed real-time VLBI system, great improvement in observation performance has been achieved. Now we are concentrated in developing an economical VLBI data transfer system using advanced IP (Internet Protocol) technologies to achieve greater connectivity to other research organizations.

  19. Positioning Reduction of Deep Space Probes Based on VLBI Tracking

    NASA Astrophysics Data System (ADS)

    Qiao, S. B.

    2011-11-01

    In the background of the Chinese Lunar Exploration Project and the Yinghuo Project, through theoretical analysis, algorithm study, software development, data simulation, real data processing and so on, the positioning reductions of the European lunar satellite Smart-1 and Mars Express (MEX) satellite, as well as the Chinese Chang'e-1 (CE-1) and Chang'e-2 (CE-2) satellites are accomplished by using VLBI and USB tracking data in this dissertation. The progress is made in various aspects including the development of theoretical model, the construction of observation equation, the analysis of the condition of normal equation, the selection and determination of the constraint, the analysis of data simulation, the detection of outliers in observations, the maintenance of the stability of the solution of parameters, the development of the practical software system, the processing of the real tracking data and so on. The details of the research progress in this dissertation are written as follows: (1) The algorithm is analyzed concerning the positioning reduction of the deep spacecraft based on VLBI tracking data. Through data simulation, it is analyzed for the effects of the bias in predicted orbit, the white noises and systematic errors in VLBI delays, and USB ranges on the positioning reduction of spacecraft. Results show that it is preferable to suppress the dispersion of positioning data points by applying the constraint of geocentric distance of spacecraft when there are only VLBI tracking data. The positioning solution is a biased estimate via observations of three VLBI stations. For the case of four tracking stations, the uncertainty of the constraint should be in accordance with the bias in the predicted orbit. White noises in delays and ranges mainly result in dispersion of the sequence of positioning data points. If there is the systematic error of observations, the systematic offset of the positioning results is caused, and there are trend jumps in the shape of

  20. Very Long Baseline Interferometry (VLBI) earth physics. [application to radio astronomy and interferometric earth surveys

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1972-01-01

    The characteristics of the Michelson/Pease stellar interferometer are discussed. An analog of the interferometer using radio waves is described. The use of a conventional hard-wired interferometer with very long base line interferometry (VLBI) is analyzed. Mathematical models are developed to analyze the VLBI techniques. A summary of VLBI geodetic experiments is tabulated. The concept and application of the astronomical radio interferometric earth surveys (ARIES) are reported. A schematic diagram of ARIES implementation is provided.

  1. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    NASA Astrophysics Data System (ADS)

    Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.

    2013-02-01

    The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the

  2. Crustal dynamics project data analysis fixed station VLBI geodetic results

    NASA Technical Reports Server (NTRS)

    Ryan, J. W.; Ma, C.

    1985-01-01

    The Goddard VLBI group reports the results of analyzing the fixed observatory VLBI data available to the Crustal Dynamics Project through the end of 1984. All POLARIS/IRIS full-day data are included. The mobile site at Platteville, Colorado is also included since its occupation bears on the study of plate stability. Data from 1980 through 1984 were used to obtain the catalog of site and radio source positions labeled S284C. Using this catalog two types of one-day solutions were made: (1) to estimate site and baseline motions; and (2) to estimate Earth rotation parameters. A priori Earth rotation parameters were interpolated to the epoch of each observation from BIH Circular D.

  3. Implementation and Testing of VLBI Software Correlation at the USNO

    NASA Technical Reports Server (NTRS)

    Fey, Alan; Ojha, Roopesh; Boboltz, Dave; Geiger, Nicole; Kingham, Kerry; Hall, David; Gaume, Ralph; Johnston, Ken

    2010-01-01

    The Washington Correlator (WACO) at the U.S. Naval Observatory (USNO) is a dedicated VLBI processor based on dedicated hardware of ASIC design. The WACO is currently over 10 years old and is nearing the end of its expected lifetime. Plans for implementation and testing of software correlation at the USNO are currently being considered. The VLBI correlation process is, by its very nature, well suited to a parallelized computing environment. Commercial off-the-shelf computer hardware has advanced in processing power to the point where software correlation is now both economically and technologically feasible. The advantages of software correlation are manifold but include flexibility, scalability, and easy adaptability to changing environments and requirements. We discuss our experience with and plans for use of software correlation at USNO with emphasis on the use of the DiFX software correlator.

  4. International VLBI Service for Geodesy and Astrometry: 1999 Annual Report

    NASA Technical Reports Server (NTRS)

    Vandenberg, Nancy R. (Editor)

    1999-01-01

    This volume of reports is the 1999 Annual Report of the International VLBI Service for Geodesy and Astrometry -IVS. The individual reports were contributed by VLBI groups in the international geodetic community who constitute the components of IVS. The 1999 Annual Report documents the work of the IVS components for the year ending March 1, 1999, the official inauguration date of IVS. As the newest of the space technique services, IVS decided to publish this Annual Report as a reference to our organization and its components. The entire contents of this Annual Report also appear on the IVS website at: http://ivscc.gsfc.nasa.gov/pub/arl999. The IVS 1999 Annual Report will be a valuable reference for information about IVS and its components. This Annual Report will serve as a baseline from which we can measure the anticipated progress of IVS in coming years.

  5. International VLBI Service for Geodesy and Astrometry 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Baver, Karen D.; Behrend, Dirk; Armstrong, Kyla L.

    2014-01-01

    This volume of reports is the 2013 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2013 Annual Report documents the work of the IVS components for the calendar year 2013, our fifteenth year of existence. The reports describe changes, activities, and progress of the IVS. Many thanks to all IVS components who contributed to this Annual Report. With the exception of the first section and the last section, the contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2013.

  6. International VLBI Service for Geodesy and Astrometry 2012 Annual Report

    NASA Technical Reports Server (NTRS)

    Baver, Karen D.; Behrend, Dirk; Armstrong, Kyla L.

    2013-01-01

    This volume of reports is the 2012 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2012 Annual Report documents the work of the IVS components for the calendar year 2012, our fourteenth year of existence. The reports describe changes, activities, and progress ofthe IVS. Many thanks to all IVS components who contributed to this Annual Report. With the exception of the first section and parts of the last section (described below), the contents of this Annual Report also appear on the IVS Web site athttp:ivscc.gsfc.nasa.gov/publications/ar2012

  7. Using geodetic VLBI to test Standard-Model Extension

    NASA Astrophysics Data System (ADS)

    Hees, Aurélien; Lambert, Sébastien; Le Poncin-Lafitte, Christophe

    2016-04-01

    The modeling of the relativistic delay in geodetic techniques is primordial to get accurate geodetic products. And geodetic techniques can also be used to measure the relativistic delay and get constraints on parameters describing the relativity theory. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In terms of light deflexion by a massive body like the Sun, one can expect a dependence in the elongation angle different from GR. In this communication, we use geodetic VLBI observations of quasars made in the frame of the permanent geodetic VLBI monitoring program to constrain the first SME coefficient. Our results do not show any deviation from GR and they improve current constraints on both GR and SME parameters.

  8. Spacecraft VLBI and Doppler tracking of Venus Express

    NASA Astrophysics Data System (ADS)

    Molera Calves, G.; Cimo, G.; Duev, D. A.; Bocanegra-Bahamón, T.; Pogrebenko, S. V.; Gurvits, L. I.

    2012-09-01

    High-accurate Doppler tracking combined with Very Long Baseline Interferometry (VLBI) phasereferencing techniques are used for determination of the state vectors of planetary and deep space spacecraft missions. Ultra-precise estimates of the position and velocity of spacecraft can address to a wide range of research fields. The group has demonstrated successful detections on planetary flybys, landing of probes, drag acceleration measurements, and characterization of the interplanetary plasma.

  9. Creation of a global geodetic network using Mark III VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Clark, Thomas A.; Ryan, James W.

    1986-01-01

    The positions of 15 permanent VLBI stations have been determined using Mark III with one-sigma uncertainties of less than 5 cm except for three stations in the Pacific. 46070 delay/delay rate observations acquired by the Crustal Dynamics Project and Polaris/IRIS from 1980-84 were included in a least squares solution to estimate the station positions, 44 radio source positions, and earth orientation parameters.

  10. Determination of the inner planet frame tie using VLBI data

    NASA Technical Reports Server (NTRS)

    Mcelrath, Timothy P.; Bhat, Ramachandra S.

    1988-01-01

    The problem of connecting the independent reference frames formed by the planetary ephemeris and the radio source catalog is one of growing importance to spacecraft navigation. Using quasar-relative VLBI delay data collected by the Deep Space Network, and Soviet coherent data from the Venus flyby of the Soviet Vega 1 and 2 spacecraft, a self-consistent estimate of the frame tie offset has been found, along with its uncertainty.

  11. Radio-planetary from tie from Phobos-2 VLBI data

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.

    1994-01-01

    In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).

  12. Scheduling of VLBI satellite observations for an improved ITRF

    NASA Astrophysics Data System (ADS)

    Hellerschmied, Andreas; Böhm, Johannes; Neidhardt, Alexander; Haas, Rüdiger; Kodet, Jan; Plank, Lucia

    2015-04-01

    Observations of Earth orbiting satellites with the Very Long Baseline Interferometry (VLBI) technique provide a variety of new possibilities and promote the integration of different geodetic techniques, which is one of the main purposes of GGOS, the Global Geodetic Observing System of the IAG. Promising applications can be found e.g. in the field of inter-technique frame ties, having the potential to improve future realizations of the International Terrestrial Reference Frame (ITRF). Although several test observations to GNSS satellites have been carried out in recent years, this approach is still far away from being applied operationally. Difficulties already start at the observation planning level, with the standard VLBI scheduling software not being prepared to include satellites as observation targets in the required control files. The newly developed satellite scheduling module of the Vienna VLBI Software (VieVS) for the planning of satellite observations with VLBI antennas offers a solution to this. It allows the user to prepare schedules for selected satellites, which are simultaneously visible from a chosen station network. The generated schedule files in the current VEX format provide the possibility to carry out actual satellite observations with standard geodetic antennas, e.g. of the IVS network. The antennas can be controlled directly with the issued schedule files by commanding sequences of discrete celestial positions, without the requirement of modifications in the antenna control intended for satellite tracking. In January 2014 several successful test observations to GLONASS satellites were carried out on the baseline Onsala-Wettzell based on schedules generated with VieVS. Correlations of the recorded data showed that the observations - and therefore the scheduling with VieVS - were successful. The next step is to update the new software for the possibility to combine observations to satellites and to quasars in one schedule. The development of

  13. Real-time VLBI system using ATM network

    NASA Astrophysics Data System (ADS)

    Kiuchi, H.; Imae, M.; Kondo, T.; Sekido, M.; Hama, S.; Hoshino, T.; Uose, H.; Yamamoto, T.

    2000-05-01

    The Communications Research Laboratory (CRL), Tokyo, Japan, and the Telecommunication Network Laboratory Group, Nippon Telegraph and Telephone Corp., Tokyo, Japan, have developed a highly precise, very long baseline interferometry (VLBI) system using a high speed asynchronous transfer mode (ATM) network. The observed data is transmitted through a 2.488-Gbps ATM network [STM-16/OC-48] instead of being recorded onto magnetic tape. The system was specially designed for the Key Stone Project (KSP), a project begun in 1994 to measure crustal deformation in the Tokyo metropolitan area. Cross-correlation processing and data observations are carried out simultaneously by one operator. It takes about one hour to analyze the data after the observations and correlations are completed. In regular geodetic VLBI experiments run every other day for 24 h, a horizontal position uncertainty of about 2 mm and a vertical position uncertainty of about 10 mm were achieved. The system was designed to enable automated operation throughout the entire process. The results obtained are available to the public via the Internet at http:ksp.crl.go.jp. This system is a significant advance in VLBI and should provide more precise information about crustal deformation in the Tokyo metropolitan area.

  14. Expected Improvements in VLBI Measurements of the Earth's Orientation

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    Measurements of the Earth s orientation since the 1970s using space geodetic techniques have provided a continually expanding and improving data set for studies of the Earth s structure and the distribution of mass and angular momentum. The accuracy of current one-day measurements is better than 100 microarcsec for the motion of the pole with respect to the celestial and terrestrial reference frames and better than 3 microsec for the rotation around the pole. VLBI uniquely provides the three Earth orientation parameters (nutation and UTI) that relate the Earth to the extragalactic celestial reference frame. The accuracy and resolution of the VLBI Earth orientation time series can be expected to improve substantially in the near future because of refinements in the realization of the celestial reference frame, improved modeling of the troposphere and non-linear station motions, larger observing networks, optimized scheduling, deployment of disk-based Mark V recorders, full use of Mark IV capabilities, and e-VLBI. More radical future technical developments will be discussed.

  15. Identifying High Frequency Peakers using the Korean VLBI Network

    NASA Astrophysics Data System (ADS)

    Jeong, Y.; Sohn, B. W.; Chung, A.; Park, S.; Park, P.

    2016-02-01

    High Frequency Peakers (HFPs) are known to be promising targets to study the AGN properties at their very early evolutionary stage. To date, HFP classification has been usually relied on the spectral shape with the relatively sparse or short time range monitoring. However, HFP samples are often contaminated by blazars which are compact and highly variable, and hence may behave in similar ways to HFPs. In this work, we challenge to identify genuine young AGNs by long-term monitoring of HFP candidates at high radio frequencies. We performed single-dish monitoring of 19 candidates in 18 epochs over 2.5 years at 22 and 43 GHz simultaneously, using the Korean VLBI Network (KVN). Also, using the KVN and VERA array (KaVA), we carried out 22 and 43 GHz VLBI observations of seven candidates from our sample, and investigated their parsec-scale (milli-arcsecond scale) morphology. We discuss the results of the source classification from our long-term single dish monitoring observation and the preliminary results of follow-up VLBI observation.

  16. Reference frame-induced errors in VLBI Earth rotation determinations

    NASA Astrophysics Data System (ADS)

    Heinkelmann, Robert; Karbon, Maria; Liu, Li; Lu, Cuixian; Mora-Diaz, Julian A.; Nilsson, Tobias J.; Raposo-Pulido, Virginia; Soja, Benedikt; Xu, Minghui; Schuh, Harald

    2014-05-01

    Earth Rotation is defined as the transformation between the Geocentric Celestial Reference System (GCRS) and the International Terrestrial Reference System (ITRS). It is a three-dimensional rotation which is described by the precession/nutation Q, the Earth rotation R, and the polar motion W matrices (IERS Coventions 2010): xGCRS = QRWxITRS. The actual determination of Earth Rotation by Very Long Baseline Interferometry (VLBI) is based on the reference frames involved in the VLBI analysis. VLBI is the only space-geodetic technique used for the realization of the International Celestial Reference System (ICRS), which is the geocentric celestial reference system (GCRS) practically realized to evaluate the above equation. Since the Earth Orientation Parameters (EOP) are obtained as 'session-wise parameters', they can suffer from any inconsistencies between session-wise TRF and CRF realizations. In this paper we assess the session-wise TRF and CRF differences by determining the respective transformation parameters of the adjusted terrestrial and celestial positions on a session basis to the catalogue coordinates, given by the International Terrestrial Reference Frame 2008 (ITRF2008) and the Second International Celestial Reference Frame (ICRF2).

  17. Navigation of the space VLBI mission-HALCA

    NASA Technical Reports Server (NTRS)

    You, Tung Han; Ellis, Jordan; Mottinger, Neil

    1998-01-01

    In February 1997, the Japanese Space Agency ISAS launched the first space VLBI satellite, HALCA, with an 8 meter diameter wire mesh antenna and radio astronomy receivers capable of observing at 1.6, 4.8, and 22 Ghz. In a 560 by 21000 km orbit with a 6 hour period and 31 degree inclination, it observes celestial radio sources in conjunction with a world wide network of ground radio telescopes as part of an international collaborative effort which includes facilities in Japan, the U.S., Canada, Australia, and Europe. JPL is providing tracking and navigation support using a dedicated subnet of 11 meter antennas as well as co-observations using the DSN 70 meter antennas. This paper describes the spacecraft dynamics model and orbit determination strategies developed to meet the stringent trajectory accuracy requirements for generating predictions for the transfer of a stable uplink frequency to the spacecraft and for determining reconstructed orbits for delivery to the NRAO VLBI correlator and the international VLBI science community.

  18. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  19. Search for exoplanets and brown dwarfs with VLBI.

    NASA Astrophysics Data System (ADS)

    Katarzyński, K.; Gawroński, M.; Goździewski, K.

    2016-06-01

    The main aim of this work is to estimate possible radio GHz emission of extrasolar planets and brown dwarfs and to check if such radiation can be detected by Very Large Baseline Interferometers (VLBI). In the estimation we assume that the emission may originate in processes similar to those observed in the Jupiter system. The frequency of the radio emission that is produced in this system depends mostly on the magnetic field strength. Jupiter's magnetic field (˜9 G on average) allows for radiation from kHz frequencies up to 40 MHz. This is is well below the frequency range of VLBI. However, it was demonstrated that the magnetic field strength in massive and young object may be up to two orders of magnitude higher than for Jupiter, which is especially relevant for planets around short-lived A type stars. This should extend the range of the emission up to GHz frequencies. We calculated expected flux densities of radio emission for a variety of hypothetical young planetary systems. We analysed two different emission scenarios, and found that the radiation induced by moons (process similar to Jupiter-Io interactions) appears to be less efficient than the emission generated by a stellar wind on a planetary magnetosphere. We also estimated hypothetical emission of planets and brown dwarfs located around relatively young and massive main sequence A-type stars. Our results show that the emission produced by stellar winds could be detected by currently operating VLBI networks.

  20. Application of VLBI and satellite laser ranging to geodynamics

    NASA Technical Reports Server (NTRS)

    Coates, R. J.

    1983-01-01

    The NASA Crustal Dynamics Project has developed very-long baseline interferometer (VLBI) systems and satellite laser ranging (SLR) systems for geodynamics measurements. In VLBI, a radio noise signal from a distant quasar is received by two or more radio antennas and coherently recorded. These recordings are cross-correlated to determine the relative signal delays between stations which are used to derive the vector baselines between the stations. The SLR systems accurately determine the range to a retroreflector satellite as a function of time with short laser pulses. These range measurements from several stations to the same satellite are used in orbit analysis programs to determine the position of the stations and the vector baselines between the stations. Measurements with these systems have achieved precisions of a few centimeters in length for distances of several thousand km. These systems are now operating in a global network for measuring the relative motion of the N. American, Pacific, S. American, Nazca, Eurasian and Australian tectonic plates. Highly mobile VLBI and SLR systems are being operated at many sites in the active earthquake areas in western N. America in order to determine the crustal deformation and strain accumulation.

  1. Search for exoplanets and brown dwarfs with VLBI

    NASA Astrophysics Data System (ADS)

    Katarzyński, K.; Gawroński, M.; Goździewski, K.

    2016-09-01

    The main aim of this work is to estimate possible radio GHz emission of extrasolar planets and brown dwarfs and to check if such radiation can be detected by Very Large Baseline Interferometers (VLBI). In the estimation we assume that the emission may originate in processes similar to those observed in the Jupiter system. The frequency of the radio emission that is produced in this system depends mostly on the magnetic field strength. Jupiter's magnetic field (˜9 G on average) allows for radiation from kHz frequencies up to 40 MHz. This is well below the frequency range of VLBI. However, it was demonstrated that the magnetic field strength in massive and young object may be up to two orders of magnitude higher than for Jupiter, which is especially relevant for planets around short-lived A type stars. This should extend the range of the emission up to GHz frequencies. We calculated expected flux densities of radio emission for a variety of hypothetical young planetary systems. We analysed two different emission scenarios, and found that the radiation induced by moons (process similar to Jupiter-Io interactions) appears to be less efficient than the emission generated by a stellar wind on a planetary magnetosphere. We also estimated hypothetical emission of planets and brown dwarfs located around relatively young and massive main-sequence A-type stars. Our results show that the emission produced by stellar winds could be detected by currently operating VLBI networks.

  2. First Results with the Next Generation Geodetic VLBI System

    NASA Astrophysics Data System (ADS)

    Niell, A. E.

    2012-12-01

    The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. The broadband signal chain, which is essential for obtaining the required delay accuracy from a network of relatively small antennas, has been implemented on the 12 meter antenna at Goddard Space Flight Center, Maryland, USA, and on the 18 meter Westford antenna at Haystack Observatory, Massachusetts, USA. The first geodetic-style observing session has been completed. Data were recorded from four 512 MHz bands spanning the range 3.2 to 9.9 GHz at a total rate of 8 Gigabits/second. The signal chain was composed of commercially available broadband feeds, low noise amplifiers, digital back ends, and recorders. The six hour session demonstrated that the broadband hardware performs as expected, achieving delay precisions of a few picoseconds. The position uncertainties for the 12m antenna of ~9mm in vertical and 2mm in horizontal, obtained in a preliminary analysis from only 100 30-second observations, are probably dominated by incomplete modeling of the atmosphere. A potentially serious conflict of the broadband VLBI frequency coverage with the SLR aircraft-avoidance radars, which transmit at 9.4 GHz, and with the DORIS transmission near 2 GHz has become apparent during the implementation and testing of the VLBI2010 system. Mitigation efforts are being studied, but for this initial geodetic session, 20 percent of scheduled observations had to be dropped to avoid potential damage from the SLR radar.

  3. Planning of an Experiment for VLBI Tracking of GNSS Satellites

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza; Hass, Ruediger; Molera, Guifre; Pogrebenko, Sergei

    2010-01-01

    As a preparation for future possible orbit determination of global navigation satellite system (GNSS) satellites by VLBI observations an initial three-station experiment was planned and performed in January 2009. The goal was to get first experience and to verify the feasibility of using the method for accurate satellite tracking. GNSS orbits related to a satellite constellation can be expressed in the Terrestrial Reference Frame. A comparison with orbit results that might be obtained by VLBI can give valuable information on how the GNSS reference frame and the VLBI reference frame are linked. We present GNSS transmitter specifications and experimental results of the observations of some GLONASS satellites together with evaluations for the expected signal strengths at telescopes. The satellite flux densities detected on the Earth s surface are very high. The narrow bandwidth of the GNSS signal partly compensates for potential problems at the receiving stations, and signal attenuation is necessary. Attempts to correlate recorded data have been performed with different software.

  4. Review of Space VLBI RadioAstron studies of AGN

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid; Kovalev, Yuri

    2016-07-01

    Space VLBI offers an unrivalled resolution in studies of the AGN phenomena. Since 2011, the Russia-led SVLBI mission RadioAstron conducts observations at 92, 18, 6 and 1.3 cm with baselines an order of magnitude longer than the Earth diameter, therefore offering an order of magnitude "sharper" view at the brightest radio sources than achieved with Earth-based VLBI systems. In our presentation we will review the current status of the RadioAstron's scientific programme. Over the first 4.5 years of the in-orbit operations, the mission achieved successful VLBI detections of extragalactic continuum radio sources at all four observing bands. To date, detections on SVLBI baselines have been obtained for more than 150 AGN's at projected baselines up to 350 000 km (about 28 Earth diameters, ED). The highest resolution achieved is 14 microarcscends from 1.3 cm observations. RadioAstron is an international project; it conducts observations with up to 30 Earth-based radio telescopes located on different continents. We will review results of total intensity and polarisation imaging with extreme angular resolution of blazars and nearby active galaxies. We will also discuss typical and maximum brightness temperatures of blazar cores from the AGN Survey obtained with RadioAstron. Physical implications for the AGN jets formation, magnetic field and emission mechanism will be discussed on the basis of the results obtained to date.

  5. VLBI analysis with c5++ - status quo and outlook

    NASA Astrophysics Data System (ADS)

    Hobiger, T.; Sekido, M.; Otsubo, T.; Gotoh, T.; Kubooka, T.; Takiguchi, H.; Takeuchi, H.

    2011-07-01

    Otsubo et al. (2002) have developed an analysis software package based on Java named CONCERTO4 which enabled the user to consistently process SLR, GPS and other satellite tracking data. Driven by the need to update the software and replace the existing Java code, VLBI was added as an additional module to this analysis package and renamed c5++. The software provides state-of-the-art modules for a variety of geodetic, mathematical and geophysical tasks that can be combined to a stand-alone VLBI application. Although many of these modules can be used for any of the space geodetic techniques, a couple of technique specific solutions (like relativity, antenna deformation, etc.) had to be coded exclusively for VLBI. We are going to discuss details of the software and its development and we are going to summarize how the automated analysis procedure of the real-time UT1 experiments has been realized with c5++. Other fields of applications for this software will be shown as well. We conclude our presentation with an outlook on future applications (including time and frequency transfer and space-craft navigation) as well as discuss the next steps towards a software package which allows combination of space geodetic techniques on the observation level.

  6. Joint Tracking of Chang'E-1 with VLBI and USB

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogong

    Chinese lunar exploration mission Chang'E-I made use of a Chinese Unified S-Band (USB) system and a network of four Very Long Baseline Interferometry (VLBI) antennas to meet the orbit determination/predication requirements of spacecraft tracking and scientific data analysis, which for the first time handled telemetry and control for a spacecraft at a distance of about 380,000 km. Chang'E-1 provided a perfect chance to quantify the contributions of VLBI to orbit determination/predication, and to test and evaluate the performance of the USB-VLBI joint system. We investigate in this paper the quality of the data and analyze the precision of orbit determination with different data arcs and data combinations during the 2-week journey from Earth to Chang'E-1's lunar mission orbit, using GEODYN II orbit determination software. The residuals of VLBI delay is about 3 ns (RMS, root-mean-squares), the residuals of VLBI delay-rate is about 0.6 ps/s, the residuals of ranging is about 1 2 m and Doppler is about 1 cm/s. Three flight phases are invistigated, namely 3 phasing orbits near Earth, the translunar trajectory and the lunar catputed orbits. We found including of VLBI data substantially improved orbit precision for short data arcs, therefore VLBI played an important role in assessing spacecraft manuvore performance. Given the differential nature of VLBI observables and their errors mostly from BBC's nonlinear phase-frequency responses, it appears for longer data arcs the VLBI contribution is relatively minor. We conclude that for Chang'E-I, the inclusion of VLBI data improved substantially the performance of orbit determination and prediction, even though the VLBI data acquisition and correlation imposes a major burden on data processing.

  7. Topical application of the adenosine A2A receptor agonist CGS-21680 prevents phorbol-induced epidermal hyperplasia and inflammation in mice.

    PubMed

    Arasa, Jorge; Martos, Patricio; Terencio, María Carmen; Valcuende-Cavero, Francisca; Montesinos, María Carmen

    2014-08-01

    The nucleoside adenosine is a known regulator of immunity and inflammation that mediates, at least in part, the anti-inflammatory effect of methotrexate, an immunosuppressive agent widely used to treat autoimmune inflammatory diseases. Adenosine A2A receptors play a key role in the inhibition of the inflammatory process besides promoting wound healing. Therefore, we aimed to determine the topical effect of a selective agonist, CGS-21680, on a murine model of skin hyperplasia with a marked inflammatory component. Pretreatment with either CGS-21680 (5 μg per site) or the reference agent dexamethasone (200 μg/site) prevented the epidermal hyperplasia and inflammatory response induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA, 2 nmol/site) for three consecutive days. The histological analysis showed that both CGS-21680 and dexamethasone produced a marked reduction of inflammatory cell infiltrate, which correlated with diminished myeloperoxidase (MPO) activity in skin homogenates. Both treatments reduced the levels of the chemotactic mediators LTB4 and CXCL-1, and the inflammatory cytokine TNF-α, through the suppression of NFκB phosphorylation. The immunohistochemical analysis of the hyperproliferative markers cytokeratin 6 (CK6) and Ki67 revealed that while both agents inhibit the number of proliferating cells in the epidermis, CGS-21680 treatment promoted dermal fibroblasts proliferation. Consistently, increased collagen deposition in dermis was observed in tissue sections from agonist-treated mice. Our results showed that CGS 21680 efficiently prevents phorbol-induced epidermal hyperplasia and inflammation in mice without the deleterious atrophic effect of topical corticosteroids. PMID:24889129

  8. Error estimation for delta VLBI angle and angle rate measurements over baselines between a ground station and a geosynchronous orbiter

    NASA Technical Reports Server (NTRS)

    Wu, S. C.

    1982-01-01

    Baselines between a ground station and a geosynchronous orbiter provide high resolution Delta VLBI data which is beyond the capability of ground-based interferometry. The effects of possible error sources on such Delta VLBI data for the determination of spacecraft angle and angle rate are investigated. For comparison, the effects on spacecraft-only VLBI are also studied.

  9. Simulation of Twin Telescopes at Onsala and Wettzell for the VLBI Global Observing System

    NASA Astrophysics Data System (ADS)

    Schönberger, Caroline; Gnilsen, Paul; Böhm, Johannes; Haas, Rüdiger

    2015-04-01

    The VLBI2010 committee of the International VLBI Service for Geodesy and Astrometry (IVS) developed a concept to achieve an improvement of the accuracy of geodetic Very Long Baseline Interferometry (VLBI) to 1 mm for station positions and 0.1 mm/yr for station velocities. This so-called VLBI2010 concept includes broadband observations with fast slewing telescopes and proposes twin telescopes to improve the handling of atmospheric turbulence that has been identified as a limiting factor for geodetic VLBI. There are several VLBI sites that have projects to install a Twin Telescope. The Wettzell Twin Telescope in Germany has already been constructed, and Twin Telescopes will be installed in the coming years at Onsala (Sweden), Ny-Ålesund (Spitsbergen, Norway) and Kazan (Russia). In this study, the Vienna VLBI Software (VieVS) is used to schedule and simulate a global VLBI network following the example of the CONT11 campaign, with and without the Twin Telescopes in Onsala and Wettzell. Different scheduling approaches (e.g., source-based scheduling, Twin Telescope observing in multidirectional mode, Twin Telescopes in continuous mode) were compared by evaluating the numbers of observations and scans as well as baseline length repeatabilities, station positions, Earth orientation parameters, atmospheric parameters and clock estimates. Comparison of the results show an improvement in estimated parameters with Twin Telescopes, especially with the Onsala Twin Telescope in a continuous observing mode and a strategy with four sources observed simultaneously.

  10. CVN harddisk system and software correlator in e-VLBI experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-Min; Zhang, Xiu-Zhong; Shu, Feng-Chun

    2005-09-01

    This paper presents some e-VLBI progress of CVN (Chinese VLBI Network). Presently CVN consists of two fixed stations located in Shanghai Sheshan and Urumqi Nanshan, one mobile station in Yunnan Kunming, and one 2-station hardware correlator (Shanghai correlator) in Shanghai Astronomical Observatory (SHAO). In 2003, a PC-based VLBI data recording and playback unit named CVN harddisk system was developed at SHAO and several systems were installed in CVN. Several e-VLBI experiments have been performed with this system since 2003. Now the Shanghai correlator is able to process the data from harddisks or tapes. Based on the CVN harddisk system, a prototype software correlator was developed and used in the station fringe checkout, the fringe search of the satellite signal and data processing. The first domestic 3-station delay, delay rate closure test of the satellite VLBI observation and the first domestic satellite orbit determination test using VLBI were successfully accomplished based on the results of the software correlator. Besides, the software correlator acts as the fringe guider of the Shanghai correlator. To satisfy the requirements of the Chinese lunar exploration project, CVN will be upgraded to a realtime VLBI network, including 4 stations and two new realtime correlators (hardware and software). e-VLBI will be applied to the lunar satellite navigation, as well as other geodetic and astronomical observations in the future.

  11. Application of some integrated non-invasive sensing techniqes for conservation and restoration of the Underground Church and frescoes of S. Maria della Palomba's Sanctuary, Matera (Italy)

    NASA Astrophysics Data System (ADS)

    Lembo, Filiberto; Marino, Francesco P.; Ambrosecchia, Nicola

    2010-05-01

    Santa Maria della Palomba's Sanctuary was built in XV century on a pre-existing medioeval crypt, in a splendid landscape situation, on the front looking south of the ravine on which stands Matera, integrating in a wonderful way underground and sub divo building; in fairly following time one important cycle of frescoes renewed decoration of underground church. In the long run, felt the building into decay, structures and frescoes were flooded and damaged; so that from 1980 were executed important restoration works, realizing ventilation canals under the floor of hypogeic church, in which were incorporated heating pipes, joined to solar thermic panels, wanting to determine the thermo-hygrometric optimum conditions for conservation. Almost thirty years after, willing restorate the frescoes, it was necessary to caracterize completely and objectively physical existing conditions. So was used an integrated mix of some non-invasive sensing techniques: - internal and external high resolution Sanctuary's measurement, using laser scanner 3D, in WebGIS ambient, so as to specify, in particular, whether dimensional data of non accessible parts (thickness of rock-bank, morphology and way of lying down of fracture lines), whether consistence state of frescoes; - thermo-hygrometrical sensing of surfaces, using infrared thermography, during a time of two weeks, in correspondence of many storm, so that to establish the relation between eventual atmospherical conditions variations and changes in conditions of surfaces; - continuous sensing of condition of surfaces, by means of thermo-hygrometrical and temperature sounds; - continuous sensing of operating temperature, by means of a globothermometer; all these tools were linked in a net with a data logger, and informations were transmitted using Web to computer in the office of the Society responsible for the procedure. Remote sensing integrated system proved high liability, allowing many important functions : - to georefer all data

  12. Comparison of VLBI, TV and traveling clock techniques for time transfer

    NASA Technical Reports Server (NTRS)

    Spencer, J. H.; Waltman, E. B.; Johnston, K. J.; Santini, N. J.; Klepczynski, W. J.; Matsakis, D. N.; Angerhofer, P. E.; Kaplan, G. M.

    1982-01-01

    A three part experiment was conducted to develop and compare time transfer techniques. The experiment consisted of (1) a very long baseline interferometer (VLBI), (2) a high precision portable clock time transfer system between the two sites, and (3) a television time transfer. A comparison of the VLBI and traveling clock shows each technique can perform satisfactorily at the five nsec level. There was a systematic offset of 59 nsec between the two methods, which we attributed to a difference in epochs between VLBI formatter and station clock. The VLBI method had an internal random error of one nsec at the three sigma level for a two day period. Thus, the Mark II system performed well, and VLBI shows promise of being an accurate method of time transfer. The TV system, which had technical problems during the experiment, transferred time with a random error of about 50 nsec.

  13. The Comparison of VLBI Data Analysis Using Software Globl and Globk

    NASA Astrophysics Data System (ADS)

    Guangli, W.; Xiaoya, W.; Jinling, L.; Wenyao, Z.

    The comparison of different geodetic data analysis software is one of the quite of- ten mentioned topics. In this paper we try to find out the difference between software GLOBL and GLOBK when use them to process the same set of VLBI data. GLOBL is a software developed by VLBI team, geodesy branch, GSFC/NASA to process geode- tic VLBI data using algorithm of arc-parameter-elimination, while GLOBK using al- gorithm of kalman filtering is mainly used in GPS data analysis, and it is also used in VLBI data analysis. Our work focus on whether there are significant difference when use the two softwares to analyze the same VLBI data set and investigate the reasons caused the difference.

  14. The State and Development Direction of the Geodetic VLBI Station in Korea

    NASA Technical Reports Server (NTRS)

    Ju, Hyunhee; Kim, Myungho; Kim, Suchul; Park, Jinsik; Kondo, Tetsuro; Kim, Tuhwan; Oh, Hongjong; Yi, Sangoh

    2010-01-01

    A permanent geodetic VLBI station with a 22-m diameter antenna will be newly constructed in Korea by the National Geographic Information Institute (NGII) under the project Korea VLBI system for Geodesy (KVG) that aims at maintaining the Korean geodetic datum accurately on the International Terrestrial Reference Frame (ITRF). KVG can receive 2, 8, 22, and 43 GHz bands simultaneously in order to conduct geodetic and astronomical VLBI observations with Korea astronomical VLBI stations along with geodetic observations with IVS stations. This simultaneous four-band receiving capability is a unique feature of the KVG system. The KVG has started officially in October 2008. A new geodetic VLBI station will be constructed at Sejong city (about 120 km south of Seoul and about 20 km north-northwest of Daejeon) and construction of all systems will be completed in 2011.

  15. Development of a New VLBI Sampler Unit Dedicated to e-VLBI for Near Real-Time Monitoring of Earth Rotation

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Koyama, Y.; Takeuchi, H.; Kimura, M.

    2005-12-01

    National Institute of Information and Communications Technology (NICT) has developed three models of VLBI samplers, ADS1000, ADS2000 and K5/VSSP, dedicated to near real-time VLBI observation (e-VLBI) through a high-speed network connection for monitoring earth orientation parameters. Among these three models, the K5/VSSP, which is designed to be a PCI bus board mountable on a general purpose PC, has broadened the base for VLBI users, i.e., any PC equipped with the K5/VSSP PCI-bus board can be a VLBI recorder, and the data transfer through the Internet is easily realized. With the advent of K5/VSSP the development of software correlator also greatly progressed. Recently we have developed a new VLBI sampler named K5/VSSP32 as a successor to the K5/VSSP. Maximum sampling frequency is increased up to 32MHz. When the number of quantization bit is limited to one, the sampling frequency of 64MHz is possible. Moreover USB 2.0 (Universal Serial Bus specification revision 2.0) is adopted as an interface to connect the sampler with a host PC. It is hence possible to use note book PCs for VLBI observations if it is desired. Specifications are summarized in Table 1. We will report the results of some test observations using K5/VSSP32 at the meeting. Table1. Specifications of VLBI samplers \\begin{tabular}{ccccc} \\hline model & ADS1000 & ADS2000 & K5/VSSP & K5/VSSP32 \\hline # of CH & 1 & 16 & 4 & 4 per unit & & & & Max & & & & sampling & 1024MHz & 64MHz & 16MHz & 32MHz frequency & & & & # of & 1,2 & 2 & 1,2,4,8 & 1,2,4,8 AD bits & & & & Max data rate & 2048Mbps & 2048Mbps & 64Mbps & 256Mbps per unit & & & & Output & VSI-H & VSI-H & PCI-bus & USB 2.0 \\hline

  16. International VLBI Service for Geodesy and Astrometry 2000 Annual Report

    NASA Technical Reports Server (NTRS)

    Vandenberg, N. R. (Editor); Baver, K. D. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    This volume of reports is the 2000 Annual Report of the International Very Long Base Interferometry (VLBI) Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2000 Annual Report documents the work of the IVS components for the period March 1, 1999 (the official inauguration date of IVS) through December 31, 2000. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2000. This book and the web site are organized as follows: (1) The first section contains general information about IVS, a map showing the location of the components, information about the Directing Board members, and the report of the IVS Chair; (2) The second section of Special Reports contains a status report of the IVS Working Group on GPS phase center mapping, a reproduction of the resolution making IVS a Service of the International Astronomical Union (IAU), and a reprint of the VLBI Standard Interface (VSI); (3) The next seven sections hold the component reports from the Coordinators, Network Stations, Operation Centers, Correlators, Data Centers, Analysis Centers, and Technology Development Centers; and (4) The last section includes reference information about IVS: the Terms of Reference, the lists of Member and Affiliated organizations, the IVS Associate Member list, a complete list of IVS components, the list of institutions contributing to this report, and a list of acronyms. The 2000 Annual Report demonstrates the vitality of the IVS and the outstanding progress we have made during our first 22 months.

  17. Realization of the International Celestial Reference Frame from VLBI Astrometry

    NASA Astrophysics Data System (ADS)

    Ma, C.

    1997-12-01

    The International Celestial Reference Frame (ICRF) has now been realized with compact extragalactic objects whose radio-frequency positions are measured at the submilliarcsecond level by VLBI (Very Long Baseline Interferometry). The ICRF replaces the FK5 as the defining realization of the celestial reference system as of 1 Jan 1998 according the resolution adopted by the IAU General Assembly in Kyoto. The ICRF catalog includes 212 defining sources, 294 candidate sources, and 102 other sources, the sum uniformly populating the celestial sphere. The majority are quasars with compact cores and many have optical counterparts. Because of the nature of the VLBI observations (precise angular measurements over a large portion of the sky in a 24-hr interval) and the absence of measurable real transverse motion of the objects, the ICRF can be constructed rigidly and with great precision using data of considerable temporal and geographic extent. The positions and uncertainties, typically <0.5 mas, represent the distillation of 1.6 million dual-frequency Mark III VLBI delay and delay rate observations acquired between August 1979 and July 1995 from various geodetic and astrometric observing programs using radio observatories on every continent. Following IAU resolutions, individual ICRF positions will evolve as more observations and improved models become available, but the orientation (axes) of the ICRF will be maintained by a statistical no-net-rotation condition between the catalog positions of successive realizations. Celestial positions are no longer referred to a system associated with the equator or the ecliptic. Further information about the ICRF can be found in Technical Note 23 of the International Earth Rotation Service.

  18. A higher density VLBI catalog for navigating Magellan and Galileo

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Sovers, O. J.; Jacobs, C. S.

    1990-01-01

    The density of radio sources near the ecliptic in the astrometric JPL Very Long Baseline Interferometry (VLBI) catalog has been increased by over 50 percent since 1985. This density increase has been driven by the need for more sources for the VLBI navigation of the Magellan and Galileo spacecraft, but the sources also will be usable for Mars Observer and other future missions. Since the last catalog, including observations made through 1985, was published in 1988, a total of 21 radio sources has been added that fulfill the following criteria: (1) they lie within 10 deg of the ecliptic plane; (2) their correlated flux densities are above 0.2 Jy on at least one of the Deep Space Network intercontinental baselines at both 2.3 and 8.4 GHz; and (3) the source positions are known to better than 5 milliarcseconds (25 nanoradians). The density of such sources in the catalog has been increased from 15.6 per steradian to 25.2 per steradian. Ten more sources have been added that fulfill the last two criteria given above and lie between 10 deg and 20 deg from the ecliptic plane. Analysis shows that there may be approx. 70 more sources with correlated flux densities above 0.2Jy that are within approx. 20 deg of the ecliptic. However, VLBI navigation observations of the new and prospective sources with the 250-kHz bandwidth of the current operational system will require the use of two 70-m antennas in most cases. Including both old and new sources, if two 34-m antennas are used, there will be usable navigation sources within 10 deg of a spacecraft in only 30 percent of the ecliptic, and sources within 20 deg of a spacecraft over 70 percent of the ecliptic.

  19. The Adenosine A2A Receptor Agonist, CGS-21680, Blocks Excessive Rearing, Acquisition of Wheel Running, and Increases Nucleus Accumbens CREB Phosphorylation in Chronically Food-Restricted Rats

    PubMed Central

    de Vaca, Soledad Cabeza; Kannan, Pavitra; Pan, Yan; Jiang, Nancy; Sun, Yanjie; Carr, Kenneth D.

    2007-01-01

    Adenosine A2A receptors are preferentially expressed in rat striatum, where they are concentrated in dendritic spines of striatopallidal medium spiny neurons and exist in a heteromeric complex with D2 dopamine (DA) receptors. Behavioral and biochemical studies indicate an antagonistic relationship between A2A and D2 receptors. Previous studies have demonstrated that food-restricted (FR) rats display behavioral and striatal cellular hypersensitivity to D1 and D2 DA receptor stimulation. These alterations may underlie adaptive, as well as maladaptive, behaviors characteristic of the FR rat. The present study examined whether FR rats are hypersensitive to the A2A receptor agonist, CGS-21680. In Experiment 1, spontaneous horizontal motor activity did not differ between FR and ad libitum fed (AL) rats, while vertical activity was greater in the former. Intracerebroventricular (i.c.v.) administration of CGS-21680 (0.25 and 1.0 nmol) decreased both types of motor activity in FR rats, and returned vertical activity levels to those observed in AL rats. In Experiment 2, FR rats given access to a running wheel for a brief period outside of the home cage rapidly acquired wheel running while AL rats did not. Pretreatment with CGS-21680 (1.0 nmol) blocked the acquisition of wheel running. When administered to FR subjects that had previously acquired wheel running, CGS-21680 suppressed the behavior. In Experiment 3, CGS-21680 (1.0 nmol) activated both ERK 1/2 and CREB in caudate-putamen with no difference between feeding groups. However, in nucleus accumbens (NAc), CGS-21680 failed to activate ERK 1/2 and selectively activated CREB in FR rats. These results indicate that FR subjects are hypersensitive to several effects of an adenosine A2A agonist, and suggest the involvement of an upregulated A2A receptor-linked signaling pathway in NAc. Medications targeting the A2A receptor may have utility in the treatment of maladaptive behaviors associated with FR, including substance abuse

  20. Theory of post-block 2 VLBI observable extraction

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen T.

    1992-01-01

    The algorithms used in the post-Block II fringe-fitting software called 'Fit' are described. The steps needed to derive the very long baseline interferometry (VLBI) charged-particle corrected group delay, phase delay rate, and phase delay (the latter without resolving cycle ambiguities) are presented beginning with the set of complex fringe phasors as a function of observation frequency and time. The set of complex phasors is obtained from the JPL/CIT Block II correlator. The output of Fit is the set of charged-particle corrected observables (along with ancillary information) in a form amenable to the software program 'Modest.'

  1. Future Evolution of NASA's SLR and VLBI Networks

    NASA Technical Reports Server (NTRS)

    Bosworth, John M.; Carter, D.; Wildes, W.; Smith, David E. (Technical Monitor)

    2001-01-01

    Over the first half of this decade the NASA Space Geodesy Program is planning a major transformation of its existing (Satellite Laser Ranging) SLR network of stations and also further evolutionary changes to its network of (Very Long Base Interferometry) VLBI stations. These network changes will be made to meet the ever more demanding requirements of the earth and space science programs that these networks support while seeking through automation and electronic data communications to increase efficiency and decrease cost of operations and maintenance. The major aspects of the NASA plan will be outlined and the benefits to the scientific community will be addressed.

  2. Ground-based VLBI observations of orbiters and landers.

    NASA Astrophysics Data System (ADS)

    Cimo, G.; Duev, D.; Molera Calves, G.; Bocanegra Bohamon, T.; Pogrebenko, S.; Gurvits, L.

    2015-10-01

    Phase referencing near-field VLBI observations and radial Doppler measurements of spacecraft provide ultra-precise estimates of spacecraft state vectors. These measurements can be used for a variety of scientific applications, both fundamental and applied, including planetary science, improvement of ephemerides, ultra-precise celestial mechanics of planetary systems, gravimetry, spacecraft orbit determination, and fundamental physics. Precise determination of the lateral position of spacecraft on the celestial sphere is the main deliverable of the Planetary Radio Interferometry and Doppler Experiment (PRIDE). This technique is complementary to radio science experiments and addresses those areas of spacecraft mission science objectives that require accurate estimation of spacecraft state vector.

  3. Low-frequency VLBI in space and interstellar refraction

    SciTech Connect

    Dennison, B.; Booth, R.S.

    1986-08-01

    The proposed orbiting Quasat antenna, equipped with a low-frequency capability (e.g. 327 MHz), would be uniquely suited for studying refractive focusing (slow scintillation) in the interstellar medium, which is suspected of being responsible for at least some apparent low-frequency variability of extragalactic sources. The authors consider in some detail various technical considerations, including the decorrelating effects of the ionosphere and interplanetary medium, and conclude that low-frequency VLBI observations involving Quasat and Earth-based antennas would be feasible, particularly if sources are observed when they are in the anti-solar hemisphere.

  4. Doppler measurements of an interplanetary satellite with a VLBI antenna

    NASA Astrophysics Data System (ADS)

    Gomoretto, G.; Iess, L.; Bertotti, Bruno; Grueff, G.; Brenkle, I. B.; Horton, A.

    In preparation for the Ulysses Gravitational Wave Experiment a Doppler detector has been constructed for the Bologna VLBI antenna and tested in a differential mode with the spacecraft Voyager 2 at 25 AU. In this mode the signal was sent from the Deep Space Network station in Canberra and received at Madrid and Bologna. The correlation between the received signals allows a discrimination between local and common noise sources. The successful test was performed in August, 1988 showed that special communication procedure will have to be implemented to allow a smooth and reliable operation during the real experiment.

  5. AuScope VLBI Project and Hobart 26-m Antenna

    NASA Technical Reports Server (NTRS)

    Lovell, Jim; Dickey, John; Reid, Brett; McCallum, Jamie; Shabala, Stas; Watson, Christopher; Ellingsen, Simon; Memin, Anthony

    2013-01-01

    This is a report on the activities carried out at the three AuScope VLBI observatories and the Hobart 26-m antenna. In 2012 the three AuScope 12-m antennas at Hobart (Hb), Katherine (Ke), and Yarragadee (Yg) completed their first full year of operations as an array. The Hobart 26-m antenna (Ho) continued to make a contribution to IVS, providing overlap with the Hb time series. In total the AuScope antennas and the Hobart 26 m observed for 146 antenna days in 2012. In this report we also briefly highlight our research activities during 2012 and our plans for 2013.

  6. Application of Kalman filtering in VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Nilsson, Tobias; Soja, Benedikt; Karbon, Maria; Heinkelmann, Robert; Schuh, Harald

    2015-08-01

    In this paper, we demonstrate the advantage of applying a Kalman filter for the parameter estimation in very-long-baseline interferometry (VLBI) data analysis. We present the implementation of a Kalman filter in the VLBI software VieVS@GFZ. The performance is then investigated by looking at the accuracy obtained for various parameters, like baseline lengths, Earth Orientation Parameters, radio source coordinates, and tropospheric delays. The results are compared to those obtained when the classical least squares method (LSM) is applied for the parameter estimation, where clocks and zenith wet delays are estimated with 30-min intervals and gradients with 120-min intervals. We show that the accuracy generally is better for the Kalman filter solution, for example, the baseline length repeatabilities are on average about 10 % better compared to the LSM solution. We also discuss the possibilities to use the Kalman filter to estimate sub-diurnal station position variations and show that the variations caused by solid Earth tides can be retrieved with an accuracy of about 2 cm.

  7. An assessment of the multi-baseline Intensive VLBI sessions

    NASA Astrophysics Data System (ADS)

    Nilsson, Tobias; Karbon, Maria; Soja, Benedikt; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald

    2014-05-01

    The IVS Intensive sessions are one-hour VLBI sessions performed almost every day with the purpose of determining UT1-UTC. These sessions are mostly observed with just two stations on a long East-West baseline. However, one or two sessions per week are observed with three stations, and occasionally even four stations are used. In this work we investigate how much and in what respect the inclusion of more than two stations in an Intensive session affects the accuracy of the resulting UT1-UTC. This is done by comparing the accuracy of UT1-UTC obtained by the Intensive sessions observed by three and four stations with the accuracy obtained from the single-baseline ones. We test different analysis strategies for the multi-baseline Intensives, like estimating also polar motion. We also evaluate the multi-baseline Intensives through Monte-Carlo simulations. Different scheduling strategies are investigated in order to find the optimum one for obtaining the most accurate UT1-UTC estimates. Furthermore, we test different network geometries in the simulations to find out the optimum geographical distribution of the observing stations. Finally, we look into the future and investigate what accuracy can be achieved with Intensives observed with networks featuring fast slewing VLBI2010 telescopes.

  8. The VLBI time delay function for synchronous orbits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1972-01-01

    The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.

  9. Amplitude Correction Factors of Korean VLBI Network Observations

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Sung; Byun, Do-Young; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan

    2015-10-01

    We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3, NRAO~512, OJ 287, BL Lac, 3C 279, 1633+382, and 1510-089, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We find that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  10. Improved VLBI measurement of the solar system acceleration

    NASA Astrophysics Data System (ADS)

    Titov, O.; Lambert, S.

    2013-11-01

    Aims: We propose new estimates of the secular aberration drift, which is mainly caused by the rotation of the solar system about the Galactic center, based on up-to-date VLBI observations and improved method of outlier elimination. Methods: We fitted degree-2 vector spherical harmonics to the extragalactic radio source proper motion field derived from geodetic VLBI observations during 1979-2013. We paid particular attention to the outlier elimination procedure that removes outliers from (i) radio source coordinate time series and (ii) the proper motion sample. Results: We obtain more accurate values of the Solar system acceleration than in our previous paper. The acceleration vector is oriented towards the Galactic center within ~7°. The component perpendicular to the Galactic plane is statistically insignificant. We show that an insufficient cleaning of the data set can lead to strong variations in the dipole amplitude and orientation, and hence to statistically biased results. Proper motion data used for the DR solution is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A95