Science.gov

Sample records for material model modelling

  1. Materials modelling in London

    NASA Astrophysics Data System (ADS)

    Ciudad, David

    2016-04-01

    Angelos Michaelides, Professor in Theoretical Chemistry at University College London (UCL) and co-director of the Thomas Young Centre (TYC), explains to Nature Materials the challenges in materials modelling and the objectives of the TYC.

  2. Sandia Material Model Driver

    Energy Science and Technology Software Center (ESTSC)

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  3. Modeling Granular Materials

    NASA Astrophysics Data System (ADS)

    Brackbill, J. U.

    2000-11-01

    Granular materials are often cited as examples of systems with complex and unusual properties. Much of this complexity is captured by computational models in which the actual material properties of individual grains are idealized and simplified. Because material properties can be important under extreme conditions, we consider assemblies of grains with more realistic properties. Our model grains may deform, their resulting stresses are computed from elastic / plastic constitutive models, and their interactions with each other include Coulomb friction and bonding. Our model equations are solved using a particle-in-cell (PIC) method, which combines a Lagrangian representation of the materials with an adaptive grid [1]. Our contact model between grains is linear in the number of grains, and we model assemblies with statistically significant numbers of grains. With our model, we have studied the response of dense granular material to shear, with especial attention to the probability density function governing the volume distribution of stress for mono- and poly-disperse samples, circular and polygonal grains, and various values of microscopic friction coefficients, yield stresses, and packing fractions [2]. Remarkably, PDF's are similar in form for all cases simulated, and similar to those observed in experiments with granular materials under both compression and shear. Namely, the simulations yield an exponential probability of large stresses above the mean, and there is a finite chance that a few grains in a large assembly are subjected to extreme stresses at any given time, even at low strain rates. For energetic materials, such as explosives, this is a signficant finding. We have also studied the relationship between distributions of boundary tractions and volume distributions of stress. The ratio of normal and tangential components of traction on the boundary defines a bulk frictional response, which we find increases with the inter-granular friction coefficient

  4. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  5. Global nuclear material control model

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.A.

    1996-05-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material.

  6. DREDGED MATERIAL DISPOSAL MANAGEMENT MODELS

    EPA Science Inventory

    US Army Corps of Engineers public web site with computer models, available for download, used in evaluating various aspects of dredging and dredged material disposal. (landfill and water Quality models are also available at this site.) The site includes the following dredged mate...

  7. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  8. Materials Analysis and Modeling of Underfill Materials.

    SciTech Connect

    Wyatt, Nicholas B; Chambers, Robert S.

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  9. Micromechanical modeling of advanced materials

    SciTech Connect

    Silling, S.A.; Taylor, P.A.; Wise, J.L.; Furnish, M.D.

    1994-04-01

    Funded as a laboratory-directed research and development (LDRD) project, the work reported here focuses on the development of a computational methodology to determine the dynamic response of heterogeneous solids on the basis of their composition and microstructural morphology. Using the solid dynamics wavecode CTH, material response is simulated on a scale sufficiently fine to explicitly represent the material`s microstructure. Conducting {open_quotes}numerical experiments{close_quotes} on this scale, the authors explore the influence that the microstructure exerts on the material`s overall response. These results are used in the development of constitutive models that take into account the effects of microstructure without explicit representation of its features. Applying this methodology to a glass-reinforced plastic (GRP) composite, the authors examined the influence of various aspects of the composite`s microstructure on its response in a loading regime typical of impact and penetration. As a prerequisite to the microscale modeling effort, they conducted extensive materials testing on the constituents, S-2 glass and epoxy resin (UF-3283), obtaining the first Hugoniot and spall data for these materials. The results of this work are used in the development of constitutive models for GRP materials in transient-dynamics computer wavecodes.

  10. Catastrophic models of materials destruction

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Taipova, B. G.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.; Fursa, T. V.

    2016-02-01

    The effect of concentration and type of fillers on mechanical properties of composite material based on polyimide were studied. Polyethylene terephthalate (PET, polyester), polycarbonate (PCAR) and montmorillonite (MM) were used as the fillers. The samples were prepared by mechanically blending the polyimide-based lacquer solutions with different concentrations of the second component. The concentration of filler and its class, especially their internal structure and technology of synthesis determine features of physical and mechanical properties of obtained materials. Models of catastrophic failure of material satisfactorily describe the main features depending on tension ct from deformation e.

  11. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.

    1985-01-01

    The objective is to develop a unified constitutive model for finite element structural analysis of turbine engine hot-section components. This effort constitutes a different approach for non-linear finite-element computer codes which have heretofore been based on classical inelastic methods. The unified constitutive theory to be developed will avoid the simplifying assumptions of classical theory and should more accurately represent the behavior of superalloy materials under cyclic loading conditions and high temperature environments. During the first two years of the program, extensive experimental correlations were made with two representative unified models. The experiments were both uniaxial and biaxial at temperatures up to 1093 C (2000 F). In addition, the unified models were adopted to the MARC finite element code and used for stress analysis of notched bar and turbine blade geometries.

  12. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.

    1986-01-01

    The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.

  13. Modeling of Laser Material Interactions

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara

    2009-03-01

    Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.

  14. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    SciTech Connect

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  15. EPR-based material modelling of soils

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  16. Material modeling and structural analysis with the microplane constitutive model

    NASA Astrophysics Data System (ADS)

    Brocca, Michele

    The microplane model is a versatile and powerful approach to constitutive modeling in which the stress-strain relations are defined in terms of vectors rather than tensors on planes of all possible orientations. Such planes are called the microplanes and are representative of the microstructure of the material. The microplane model with kinematic constraint has been successfully employed in the past in the modeling of concrete, soils, ice, rocks, fiber composites and other quasibrittle materials. The microplane model provides a powerful and efficient numerical and theoretical framework for the development and implementation of constitutive models for any kind of material. The dissertation presents a review of the background from which the microplane model stems, highlighting differences and similarities with other approaches. The basic structure of the microplane model is then presented, together with its extension to finite strain deformation. To show the effectiveness of the microplane model approach, some examples are given demonstrating applications of microplane models in structural analysis with the finite element method. Some new constitutive models are also introduced for materials characterized by very different properties and microstructures, showing that the approach is indeed very versatile and provides a robust basis for the study of a broad range of problems. New models are introduced for metal plasticity, shape memory alloys and cellular materials. The new models are compared quantitatively with the existing models and experimental data. In particular, the newly introduced microplane models for metal plasticity are compared with the classical J2-flow theory for incremental plasticity. An existing microplane model for concrete is employed in finite element analysis of the 'tube-squash' test, in which concrete undergoes very large deviatoric deformation, and of the size effect in compressive failure of concrete columns. The microplane model for shape

  17. Modeling of laser interactions with composite materials

    DOE PAGESBeta

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  18. Material model library for explicit numerical codes

    SciTech Connect

    Hofmann, R.; Dial, B.W.

    1982-08-01

    A material model logic structure has been developed which is useful for most explicit finite-difference and explicit finite-element Lagrange computer codes. This structure has been implemented and tested in the STEALTH codes to provide an example for researchers who wish to implement it in generically similar codes. In parallel with these models, material parameter libraries have been created for the implemented models for materials which are often needed in DoD applications.

  19. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.

    1984-01-01

    A state-of-the-art review of applicable constitutive models with selection of two for detailed comparison with a wide range of experimental tests was conducted. The experimental matrix contained uniaxial and biaxial tensile, creep, stress relaxation, and cyclic fatigue tests at temperatures to 1093 C and strain rates from .0000001 to .001/sec. Some nonisothermal cycles will also be run. The constitutive models will be incorporated into the MARC finite element structural analysis program with a demonstration computation made for advanced turbine blade configuration. In the code development work, particular emphasis is being placed on developing efficient integration algorithms for the highly nonlinear and stiff constitutive equations. Another area of emphasis is the appropriate and efficient methodology for determing constitutive constants from a minimum extent of experimental data.

  20. Modeling of materials supply, demand and prices

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The societal, economic, and policy tradeoffs associated with materials processing and utilization, are discussed. The materials system provides the materials engineer with the system analysis required for formulate sound materials processing, utilization, and resource development policies and strategies. Materials system simulation and modeling research program including assessments of materials substitution dynamics, public policy implications, and materials process economics was expanded. This effort includes several collaborative programs with materials engineers, economists, and policy analysts. The technical and socioeconomic issues of materials recycling, input-output analysis, and technological change and productivity are examined. The major thrust areas in materials systems research are outlined.

  1. A constitutive mechanical model for energetic materials

    SciTech Connect

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-06-01

    Cookoff modeling of energetic materials has traditionally addressed reactive heat flow with the goal of defining the onset of runaway combustion behavior. Current modeling efforts are now aimed toward predicting the violence of the event. Combined thermal, chemical, and mechanical response must be modeled, since confinement results in pressure buildup which can breach confinement or enhance gas-phase combustion rates leading to runaway combustion behavior. Thermally induced stresses can also cause gaps which inhibit heat flow. These mechanical effects must also be included in cookoff modeling. A new reactive elastic-plastic constitutive model for micromechanical response has been developed which represents a stress-strain relation for reacting materials such as explosives, propellants, pyrotechnics, or burning foams. This micromechanical model is based on bubble mechanics. A local force balance, with mass continuity constraints, forms the basis of the constitutive model requiring input of temperature and reacted fraction. This constitutive material model has been incorporated into a quasistatic mechanics code, SANTOS. To provide temperature and reacted gas fraction, the thermal-chemical solver, XCHEM, has been coupled to SANTOS. This paper summarizes the development of the micromechanical model with material property estimates for conventional energetic materials. This study shows that large pressures can arise from small reacted fractions which implies that cookoff modeling must consider the strong interaction between thermochemistry and mechanics.

  2. Geochemistry Model Validation Report: Material Degradation and Release Model

    SciTech Connect

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  3. Modelling Shock Waves in Composite Materials

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade; Campbell, J. C.; Bourne, N.; Matic, Ognjen; Djordjevic, Nenad

    2007-12-01

    Composite materials have been of significant interest due to widespread application of anisotropic materials in aerospace and civil engineering problems. For example, composite materials are one of the important types of materials in the construction of modern aircraft due to their mechanical properties. The strain rate dependent mechanical behaviour of composite materials is important for applications involving impact and dynamic loading. Therefore, we are interested in understanding the composite material mechanical properties and behaviour for loading rates between quasistatic and 1×108 s-1. This paper investigates modelling of shock wave propagation in orthotropic materials in general and a specific type of CFC composite material. The determination of the equation of state and its coupling with the rest of the constitutive model for these materials is presented and discussed along with validation from three dimensional impact tests.

  4. Modeling of shear localization in materials

    SciTech Connect

    Lesuer, D.; LeBlanc, M.; Riddle, B.; Jorgensen, B.

    1998-02-11

    The deformation response of a Ti alloy, Ti-6Al-4V, has been studied during shear localization. The study has involved well-controlled laboratory tests involving a double-notch shear sample. The results have been used to provide a comparison between experiment and the predicted response using DYNA2D and two material models (the Johnson-Cook model and an isotropic elastic-plastic-hydrodynamic model). The work will serve as the basis for the development of a new material model which represents the different deformation mechanisms active during shear localization.

  5. Improvements to constitutive material model for fabrics

    NASA Astrophysics Data System (ADS)

    Morea, Mihai I.

    2011-12-01

    The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.

  6. Structural Modelling of Two Dimensional Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avishek

    The continuous random network (CRN) model of network glasses is widely accepted as a model for materials such as vitreous silica and amorphous silicon. Although it has been more than eighty years since the proposal of the CRN, there has not been conclusive experimental evidence of the structure of glasses and amorphous materials. This has now changed with the advent of two-dimensional amorphous materials. Now, not only the distribution of rings but the actual atomic ring structure can be imaged in real space, allowing for greater charicterization of these types of networks. This dissertation reports the first work done on the modelling of amorphous graphene and vitreous silica bilayers. Models of amorphous graphene have been created using a Monte Carlo bond-switching method and MD method. Vitreous silica bilayers have been constructed using models of amorphous graphene and the ring statistics of silica bilayers has been studied.

  7. Modeling of fatigue for cellular materials

    SciTech Connect

    Huang, J.S.; Lin, J.Y.

    1998-12-31

    Dimensional arguments are used to analyze the fatigue of cellular materials. A modeling describing the fatigue of foams with or without macrocrack is derived and compared to the existing experimental data of cementitious foams and phenolic foams; agreement is good.

  8. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (ESTSC)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  9. ASPH modeling of Material Damage and Failure

    SciTech Connect

    Owen, J M

    2010-04-30

    We describe our new methodology for Adaptive Smoothed Particle Hydrodynamics (ASPH) and its application to problems in modeling material failure. We find that ASPH is often crucial for properly modeling such experiments, since in most cases the strain placed on materials is non-isotropic (such as a stretching rod), and without the directional adaptability of ASPH numerical failure due to SPH nodes losing contact in the straining direction can compete with or exceed the physical process of failure.

  10. Material characterization and modeling with shear ography

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Callahan, Virginia

    1993-01-01

    Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.

  11. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  12. Ceramic materials testing and modeling

    SciTech Connect

    Wilfinger, K. R., LLNL

    1998-04-30

    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  13. Materials and techniques for model construction

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The problems confronting the designer of models for cryogenic wind tunnel models are discussed with particular reference to the difficulties in obtaining appropriate data on the mechanical and physical properties of candidate materials and their fabrication technologies. The relationship between strength and toughness of alloys is discussed in the context of maximizing both and avoiding the problem of dimensional and microstructural instability. All major classes of materials used in model construction are considered in some detail and in the Appendix selected numerical data is given for the most relevant materials. The stepped-specimen program to investigate stress-induced dimensional changes in alloys is discussed in detail together with interpretation of the initial results. The methods used to bond model components are considered with particular reference to the selection of filler alloys and temperature cycles to avoid microstructural degradation and loss of mechanical properties.

  14. Multiscale Materials Modeling in an Industrial Environment.

    PubMed

    Weiß, Horst; Deglmann, Peter; In 't Veld, Pieter J; Cetinkaya, Murat; Schreiner, Eduard

    2016-06-01

    In this review, we sketch the materials modeling process in industry. We show that predictive and fast modeling is a prerequisite for successful participation in research and development processes in the chemical industry. Stable and highly automated workflows suitable for handling complex systems are a must. In particular, we review approaches to build and parameterize soft matter systems. By satisfying these prerequisites, efficiency for the development of new materials can be significantly improved, as exemplified here for formulation polymer development. This is in fact in line with recent Materials Genome Initiative efforts sponsored by the US government. Valuable contributions to product development are possible today by combining existing modeling techniques in an intelligent fashion, provided modeling and experiment work hand in hand. PMID:26927661

  15. Modeling ready biodegradability of fragrance materials.

    PubMed

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. PMID:25663647

  16. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ram; Van Brutzel, Laurent; Tikare, Veena; Bartel, Timothy; Besmann, Theodore M; Stan, Marius; Van Uffelen, Paul

    2010-01-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios and small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  17. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  18. Modeling segregation of bidisperse granular materials: Model development

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Schlick, Conor; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2013-11-01

    Predicting segregation of size bidisperse granular materials is a challenging problem. In this talk, we present a theoretical model that captures the interplay between advection, segregation, and diffusion. The fluxes associated with these three driving factors depend on the underlying kinematics, whose characteristics play key roles in determining final particle segregation configurations. Unlike previous models of segregation, our model uses parameters based on kinematic measures instead of arbitrarily adjustable fitting parameters. This permits the theoretical prediction of species concentration within the entire flowing layer as particles segregate in the depth direction while they flow downhill. The model achieves quantitative agreement with both experimental and DEM simulation results when applied to quasi-two-dimensional bounded heaps, and can be readily adapted to other flow geometries. Y.F. was funded by The Dow Chemical Company. C.P.S. was supported by NSF Grant CMMI-1000469.

  19. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  20. The Model 9977 Radioactive Material Packaging Primer

    SciTech Connect

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, the package must maintain its radioactive material as subcritical

  1. Modeling shocks in periodic lattice materials

    NASA Astrophysics Data System (ADS)

    Messner, Mark; Barham, Matthew; Barton, Nathan

    2015-06-01

    Periodic lattice materials have an excellent density-to-stiffness ratio, with the elastic stiffness of stretch dominated lattices scaling linearly with relative density. Recent developments in additive manufacturing techniques enable the use of lattice materials in situations where the response of the material to shock loading may become significant. Current continuum models do not describe the response of such lattice materials subject to shocks. This presentation details the development of continuum models suitable for representing shock propagation in periodic lattice materials, particularly focusing on the transition between elastic and plastic response. In the elastic regime, the material retains its periodic structure and equivalent continuum models of infinite, periodic truss structures accurately reproduce characteristics of stretch-dominated lattices. At higher velocities, the material tends to lose its initial lattice structure and begins to resemble a foam or a solid with dispersed voids. Capturing the transition between these regimes can be computationally challenging. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.

    2015-01-01

    We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.

  3. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.

    1986-01-01

    The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined

  4. Modeling heat transfer within porous multiconstituent materials

    NASA Astrophysics Data System (ADS)

    Niezgoda, Mathieu; Rochais, Denis; Enguehard, Franck; Rousseau, Benoit; Echegut, Patrick

    2012-06-01

    The purpose of our work has been to determine the effective thermal properties of materials considered heterogeneous at the microscale but which are regarded as homogenous in the macroscale environment in which they are used. We have developed a calculation code that renders it possible to simulate thermal experiments over complex multiconstituent materials from their numerical microstructural morphology obtained by volume segmentation through tomography. This modeling relies on the transient solving of the coupled conductive and radiative heat transfer in these voxelized structures.

  5. Multidimensional DDT modeling of energetic materials

    SciTech Connect

    Baer, M.R.; Hertel, E.S.; Bell, R.L.

    1995-07-01

    To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibrium mixture theory has been developed and incorporated into the shock physics code, CTH. The foundation for this multiphase model is based on a continuum mixture formulation given by Baer and Nunziato. This multiphase mixture model provides a thermodynamic and mathematically-consistent description of the self-accelerated combustion processes associated with deflagration-to-detonation and delayed detonation behavior which are key modeling issues in safety assessment of energetic systems. An operator-splitting method is used in the implementation of this model, whereby phase diffusion effects are incorporated using a high resolution transport method. Internal state variables, forming the basis for phase interaction quantities, are resolved during the Lagrangian step requiring the use of a stiff matrix-free solver. Benchmark calculations are presented which simulate low-velocity piston impact on a propellant porous bed and experimentally-measured wave features are well replicated with this model. This mixture model introduces micromechanical models for the initiation and growth of reactive multicomponent flow that are key features to describe shock initiation and self-accelerated deflagration-to-detonation combustion behavior. To complement one-dimensional simulation, two-dimensional numerical calculations are presented which indicate wave curvature effects due to the loss of wall confinement. This study is pertinent for safety analysis of weapon systems.

  6. Integrated finite element model of composite materials

    NASA Astrophysics Data System (ADS)

    Teply, Jan L.; Herbein, William C.

    1989-05-01

    Two problems traditionally addressed in the area of micromechanics of composite materials can be briefly summarized as follows: (1) for a macroscopically uniform volume of composite material, which is subjected to macroscopically uniform boundary tractions, displacements or heat influx, find overall thermomechanical properties in terms of the thermomechanical properties of the individual constituents; and (2) for the same material volume and boundary conditions as above, find the local stress, strain, and temperature fields in the constituents and on the interfaces. Two different types of micromechanical models are usually applied to the solutions of these two types of problems. For linear elastic materials, the micromechanical models to solve problem (1) offer simple solutions of overall thermomechanical properties either in terms of bound which are derived from periodic or random microstructures, or in terms of single estimates, which are derived from a solution of an isolated inclusion. The finite element variational approaches are applied to integrate the solutions of problems (1) and (2) into one model. The application of displacement and equilibrium variational approaches to the calculation of overall elastic-plastic properties, are extended to the solution of the second problem. The integrated model is then applied to calculate the overall properties and local stress and strain fields of boron-aluminum composites subjected to transverse tension, in-plane shear and bending.

  7. Mathematical and physical modelling of materials processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mathematical and physical modeling of turbulence phenomena in metals processing, electromagnetically driven flows in materials processing, gas-solid reactions, rapid solidification processes, the electroslag casting process, the role of cathodic depolarizers in the corrosion of aluminum in sea water, and predicting viscoelastic flows are described.

  8. Material model for physically based rendering

    NASA Astrophysics Data System (ADS)

    Robart, Mathieu; Paulin, Mathias; Caubet, Rene

    1999-09-01

    In computer graphics, a complete knowledge of the interactions between light and a material is essential to obtain photorealistic pictures. Physical measurements allow us to obtain data on the material response, but are limited to industrial surfaces and depend on measure conditions. Analytic models do exist, but they are often inadequate for common use: the empiric ones are too simple to be realistic, and the physically-based ones are often to complex or too specialized to be generally useful. Therefore, we have developed a multiresolution virtual material model, that not only describes the surface of a material, but also its internal structure thanks to distribution functions of microelements, arranged in layers. Each microelement possesses its own response to an incident light, from an elementary reflection to a complex response provided by its inner structure, taking into account geometry, energy, polarization, . . ., of each light ray. This model is virtually illuminated, in order to compute its response to an incident radiance. This directional response is stored in a compressed data structure using spherical wavelets, and is destined to be used in a rendering model such as directional radiosity.

  9. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.; Chan, K. S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1985-01-01

    This report presents the results of the second year of work on a problem which is part of the NASA HOST Program. Its goals are: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are that of Bodner-Partom and Walker. For model evaluation purposes, a large constitutive data base is generated for a B1900 + Hf alloy by performing uniaxial tensile, creep, cyclic, stress relation, and thermomechanical fatigue (TMF) tests as well as biaxial (tension/torsion) tests under proportional and nonproportional loading over a wide range of strain rates and temperatures. Systematic approaches for evaluating material constants from a small subset of the data base are developed. Correlations of the uniaxial and biaxial tests data with the theories of Bodner-Partom and Walker are performed to establish the accuracy, range of applicability, and integability of the models. Both models are implemented in the MARC finite element computer code and used for TMF analyses. Benchmark notch round experiments are conducted and the results compared with finite-element analyses using the MARC code and the Walker model.

  10. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  11. Viscoelastic models for explosive binder materials

    SciTech Connect

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T.; Foster, J.C. Jr.

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  12. A Hysteresis Model for Piezoceramic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida

    1999-01-01

    This paper addresses the modeling of nonlinear constitutive relations and hysteresis inherent to piezoceramic materials at moderate to high drive levels. Such models are, necessary to realize the, full potential of the materials in high performance control applications, and a necessary prerequisite is the development of techniques which permit control implementation. The approach employed here is based on the qualification of reversible and irreversible domain wall motion in response to applied electric fields. A comparison with experimental data illustrates that because the resulting ODE model is physics-based, it can be employed for both characterization and prediction of polarization levels throughout the range of actuator operation. Finally, the ODE formulation is amenable to inversion which facilitates the development of an inverse compensator for linear control design.

  13. Viscoelastic Models for Explosive Binder Materials

    NASA Astrophysics Data System (ADS)

    Bardenhagen, S. G.; Harstad, E. N.; Maudlin, P. J.; Gray, G. T.; Foster, J. C., Jr.

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can be idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  14. Viscoelastic models for explosive binder materials

    NASA Astrophysics Data System (ADS)

    Bardenhagen, S. G.; Harstad, E. N.; Maudlin, P. J.; Gray, G. T.; Foster, J. C.

    1998-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can be idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  15. Parameter Estimation for Viscoplastic Material Modeling

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.

    1997-01-01

    A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.

  16. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  17. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  18. Molecular models and simulations of layered materials.

    SciTech Connect

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-11-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites.

  19. Viscoelastic models for polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Bardenhagen, S. G.; Harstad, E. N.; Foster, J. C.; Maudlin, P. J.

    1996-05-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can be idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. A Taylor Cylinder impact test, and uniaxial stress tension and compression tests at various strain rates, have been performed on the polyurethane. Evident from time resolved Taylor Cylinder profiles, the material undergoes very large strains (>100%) and yet recovers its initial configuration. A viscoelastic constitutive law is proposed for the polyurethane and was implemented in the finite element, explicit, continuum mechanics code EPIC. The Taylor Cylinder impact experiment was simulated and the results compared with experiment. Modeling improvements are discussed.

  20. Stochastic multiscale modeling of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Wen, Bin

    provides a new outlook to multi-scale materials modeling accounting for microstructure and process uncertainties. Predictive materials modeling will accelerate the development of new materials and processes for critical applications in industry.

  1. Computational modeling of composite material fires.

    SciTech Connect

    Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

    2010-10-01

    Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary

  2. Coarse-Grain Modeling of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Brennan, John

    2015-06-01

    Mechanical and thermal loading of energetic materials can incite responses over a wide range of spatial and temporal scales due to inherent nano- and microscale features. Many energy transfer processes within these materials are atomistically governed, yet the material response is manifested at the micro- and mesoscale. The existing state-of-the-art computational methods include continuum level approaches that rely on idealized field-based formulations that are empirically based. Our goal is to bridge the spatial and temporal modeling regimes while ensuring multiscale consistency. However, significant technical challenges exist, including that the multiscale methods linking the atomistic and microscales for molecular crystals are immature or nonexistent. To begin addressing these challenges, we have implemented a bottom-up approach for deriving microscale coarse-grain models directly from quantum mechanics-derived atomistic models. In this talk, a suite of computational tools is described for particle-based microscale simulations of the nonequilibrium response of energetic solids. Our approach builds upon recent advances both in generating coarse-grain models under high strains and in developing a variant of dissipative particle dynamics that includes chemical reactions.

  3. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  4. Anisotropic Cloth Modeling for Material Fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  5. Modeling Bamboo as a Functionally Graded Material

    SciTech Connect

    Silva, Emilio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.

    2008-02-15

    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  6. Materials Database Development for Ballistic Impact Modeling

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael

    2007-01-01

    A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.

  7. Estimating proportions of materials using mixture models

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.; Basu, R.

    1983-01-01

    An approach to proportion estimation based on the notion of a mixture model, appropriate parametric forms for a mixture model that appears to fit observed remotely sensed data, methods for estimating the parameters in these models, methods for labelling proportion determination from the mixture model, and methods which use the mixture model estimates as auxiliary variable values in some proportion estimation schemes are addressed.

  8. Fire and materials modeling for transportation systems

    SciTech Connect

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  9. Modeling spherical explosions with aluminized energetic materials

    NASA Astrophysics Data System (ADS)

    Massoni, J.; Saurel, R.; Lefrançois, A.; Baudin, G.

    2006-11-01

    This paper deals with the numerical solution and validation of a reactive flow model dedicated to the study of spherical explosions with an aluminized energetic material. Situations related to air blast as well as underwater explosions are examined. Such situations involve multiscale phenomena associated with the detonation reaction zone, the aluminium reaction zone, the shock propagation distance and the bubble oscillation period. A detonation tracking method is developed in order to avoid the detonation structure computation. An ALE formulation is combined to the detonation tracking method in order to solve the material interface between detonation products and the environment as well as shock propagation. The model and the algorithm are then validated over a wide range of spherical explosions involving several types of explosives, both in air and liquid water environment. Large-scale experiments have been done in order to determine the blast wave effects with explosive compositions of variable aluminium content. In all situations the agreement between computed and experimental results is very good.

  10. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1984-01-01

    The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.

  11. Numerical modeling of flowing soft materials

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Benzi, Roberto; Bernaschi, Massimo; Perlekar, Prasad; Sbragaglia, Mauro; Succi, Sauro

    2012-11-01

    The structural properties of soft-flowing and non-ergodic materials, such as emulsions, foams and gels shares similarities with the three basic states of matter (solid, liquid and gas). The macroscopic properties are characterized by non-standard features such as non-Newtonian rheology, long-time relaxation, caging effects, enhanced viscosity, structural arrest, hysteresis, dynamic disorder, aging and related phenomena. Large scale non-homogeneities can develop, even under simple shear conditions, by means of the formation of macroscopic bands of widely different viscosities (``shear banding'' phenomena). We employ a numerical model based on the Lattice Boltzmann method to perform numerical simulations of soft-matter under flowing conditions. Results of 3d simulations are presented and compared to previous 2d investigations.

  12. Constitutive modeling of inelastic anisotropic material response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.

    1984-01-01

    A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.

  13. Quantum Mechanics Based Multiscale Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2013-03-01

    We present two quantum mechanics based multiscale approaches that can simulate extended defects in metals accurately and efficiently. The first approach (QCDFT) can treat multimillion atoms effectively via density functional theory (DFT). The method is an extension of the original quasicontinuum approach with DFT as its sole energetic formulation. The second method (QM/MM) has to do with quantum mechanics/molecular mechanics coupling based on the constrained density functional theory, which provides an exact framework for a self-consistent quantum mechanical embedding. Several important materials problems will be addressed using the multiscale modeling approaches, including hydrogen-assisted cracking in Al, magnetism-controlled dislocation properties in Fe and Si pipe diffusion along Al dislocation core. We acknowledge the support from the Office of Navel Research and the Army Research Office.

  14. Radioactive materials in biosolids : dose modeling.

    SciTech Connect

    Wolbarst, A. B.; Chiu, W. A; Yu, C.; Aiello, K.; Bachmaier, J. T.; Bastian, R. K.; Cheng, J. -J.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhartt, T.; Ott, W. R.; Rubin, A.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Environmental Science Division; U.S. EPA; Middlesex County Utilities Authority; U.S. DOE; U.S. NRC; NE Ohio Regional Sewer District

    2006-01-01

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible transport of radioactivity from sludge into the local environment and the subsequent exposure of humans. A stochastic environmental pathway model was applied separately to seven hypothetical, generic sludge-release scenarios, leading to the creation of seven tables of Dose-to-Source Ratios (DSR), which can be used in translating from specific activity in sludge into dose to an individual. These DSR values were then combined with the results of an ISCORS survey of sludge and ash at more than 300 publicly owned treatment works, to explore the potential for radiation exposure of sludge workers and members of the public. This paper provides a brief overview of the pathway modeling methodology employed in the exposure and dose assessments and discusses technical aspects of the results obtained.

  15. Initial investigation of cryogenic wind tunnel model filler materials

    NASA Technical Reports Server (NTRS)

    Rush, H. F.; Firth, G. C.

    1985-01-01

    Various filler materials are being investigated for applicability to cryogenic wind tunnel models. The filler materials will be used to fill surface grooves, holes and flaws. The severe test environment of cryogenic models precludes usage of filler materials used on conventional wind tunnel models. Coefficients of thermal expansion, finishing characteristics, adhesion and stability of several candidate filler materials were examined. Promising filler materials are identified.

  16. Modeling ultrashort-pulse laser ablation of dielectric materials

    SciTech Connect

    Christensen, B. H.; Balling, P.

    2009-04-15

    An approach to modeling ablation thresholds and depths in dielectric materials is proposed. The model is based on the multiple-rate-equation description suggested by Rethfeld [Phys. Rev. Lett. 92, 187401 (2004)]. This model has been extended to include a description of the propagation of the light into the dielectric sample. The generic model is based on only a few experimental quantities that characterize the native material. A Drude model describing the evolution of the dielectric constant owing to an excitation of the electrons in the material is applied. The model is compared to experimental ablation data for different dielectric materials from the literature.

  17. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  18. Minimum risk route model for hazardous materials

    SciTech Connect

    Ashtakala, B.; Eno, L.A.

    1996-09-01

    The objective of this study is to determine the minimum risk route for transporting a specific hazardous material (HM) between a point of origin and a point of destination (O-D pair) in the study area which minimizes risk to population and environment. The southern part of Quebec is chosen as the study area and major cities are identified as points of origin and destination on the highway network. Three classes of HM, namely chlorine gas, liquefied petroleum gas (LPG), and sulfuric acid, are chosen. A minimum risk route model has been developed to determine minimum risk routes between an O-D pair by using population or environment risk units as link impedances. The risk units for each link are computed by taking into consideration the probability of an accident and its consequences on that link. The results show that between the same O-D pair, the minimum risk routes are different for various HM. The concept of risk dissipation from origin to destination on the minimum risk route has been developed and dissipation curves are included.

  19. Initial Investigation of Cryogenic Wind Tunnel Model Filler Materials

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1985-01-01

    Filler materials are used for surface flaws, instrumentation grooves, and fastener holes in wind tunnel models. More stringent surface quality requirements and the more demanding test environment encountered by cryogenic wind tunnels eliminate filler materials such as polyester resins, plaster, and waxes used on conventional wind tunnel models. To provide a material data base for cryogenic models, various filler materials are investigated. Surface quality requirements and test temperature extremes require matching of coefficients of thermal expansion or interfacing materials. Microstrain versus temperature curves are generated for several candidate filler materials for comparison with cryogenically acceptable materials. Matches have been achieved for aluminum alloys and austenitic steels. Simulated model surfaces are filled with candidate filler materials to determine finishing characteristics, adhesion and stability when subjected to cryogenic cycling. Filler material systems are identified which meet requirements for usage with aluminum model components.

  20. Model of plasticity of amorphous materials

    NASA Astrophysics Data System (ADS)

    Marchenko, V. I.; Misbah, Chaouqi

    2011-08-01

    Starting from a classical Kröener-Rieder kinematic picture for plasticity, we derive a set of dynamical equations describing plastic flow in a Lagrangian formulation. Our derivation is a natural and straightforward extension of simple fluids, elastic, and viscous solids theories. These equations contain the Maxwell model as a special limit. This paper is inspired by the particularly important work of Langer and coworkers. We shall show that our equations bear some resemblance with the shear-transformation zones model developed by Langer and coworkers. We shall point out some important differences. We discuss some results of plasticity, which can be described by the present model. We exploit the model equations for the simple examples: straining of a slab and a rod. We find that necking manifests always itself (not as a result of instability), except if the very special constant-velocity stretching process is imposed.

  1. Exploring the interdependencies between parameters in a material model.

    SciTech Connect

    Silling, Stewart Andrew; Fermen-Coker, Muge

    2014-01-01

    A method is investigated to reduce the number of numerical parameters in a material model for a solid. The basis of the method is to detect interdependencies between parameters within a class of materials of interest. The method is demonstrated for a set of material property data for iron and steel using the Johnson-Cook plasticity model.

  2. A Material Model for FE-Simulation of UD Composites

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian

    2016-04-01

    Composite materials are being increasingly used for industrial applications. CFRP is particularly suitable for lightweight construction due to its high specific stiffness and strength properties. Simulation methods are needed during the development process in order to reduce the effort for prototypes and testing. This is particularly important for CFRP, as the material is costly. For accurate simulations, a realistic material model is needed. In this paper, a material model for the simulation of UD-composites including non-linear material behaviour and damage is developed and implemented in Abaqus. The material model is validated by comparison with test results on a range of test specimens.

  3. Magnetic properties modeling of soft magnetic composite materials using two-dimensional vector hybrid hysteresis model

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Liu, Fugui; Li, Yongjian; Zhao, Zhigang; Zhang, Changgeng; Yang, Qingxin

    2014-05-01

    A 2-D vector hybrid hysteresis model for a soft magnetic composite (SMC) material is established, which is combined with classical Preisach model and Stoner-Wohlfarth (S-W) model. The rotational magnetic properties of SMC materials were studied using the vector model, and the computed results were compared with the experimental measurement. It is shown that the vector hybrid model can effectively simulate the rotational magnetic properties under low magnetization fields.

  4. Thinking Skills: Meanings, Models, and Materials.

    ERIC Educational Resources Information Center

    Presseisen, Barbara Z.

    In order for educators to plan for thinking skills in the curriculum, what is meant by thinking must first be determined. Drawing from current research, this report provides working definitions of thinking skills and practical models to explain the working relationships among different levels and different kinds of thought processes. These…

  5. Modeling and characterization of recompressed damaged materials

    SciTech Connect

    Becker, R; Cazamias, J U; Kalantar, D H; LeBlanc, M M; Springer, H K

    2004-02-11

    Experiments have been performed to explore conditions under which spall damage is recompressed with the ultimate goal of developing a predictive model. Spall is introduced through traditional gas gun techniques or with laser ablation. Recompression techniques producing a uniaxial stress state, such as a Hopkinson bar, do not create sufficient confinement to close the porosity. Higher stress triaxialities achieved through a gas gun or laser recompression can close the spall. Characterization of the recompressed samples by optical metallography and electron microscopy reveal a narrow, highly deformed process zone. At the higher pressures achieved in the gas gun, little evidence of spall remains other than differentially etched features in the optical micrographs. With the very high strain rates achieved with laser techniques there is jetting from voids and other signs of turbulent metal flow. Simulations of spall and recompression on micromechanical models containing a single void suggest that it might be possible to represent the recompression using models similar to those employed for void growth. Calculations using multiple, randomly distributed voids are needed to determine if such models will yield the proper behavior for more realistic microstructures.

  6. Strength and failure models for epoxy mortar polymer concrete materials

    SciTech Connect

    Salami, M.R.; Zhao, S.

    1995-06-01

    Since the polymer concrete materials are used in construction, there is a need for developing a fundamental failure and constitutive model for predicting material behavior. The present research is undertaken as an initial step toward developing a fundamental failure and constitutive model for polymer concrete materials, as well as providing benchmark data on the strength and failure characteristics of material specimens for future work. The failure model will be developed based on introducing a failure function. This model will predict the changes in constitutive properties and resistance values in aggressive environments.

  7. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  8. Process modeling for carbon-phenolic nozzle materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.

    1989-01-01

    A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.

  9. Creep characterization of gels and nonlinear viscoelastic material model

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyotaka; Fujikawa, Masaki; Makabe, Chobin; Tanaka, Kou

    2016-07-01

    In this paper, we examine gel creep behavior and develop a material model for useful and simple numerical simulation of this behavior. This study has three stages and aims: (1) gel creep behavior is examined; (2) the material model is determined and the material constants are identified; and (3) the versatility of the material model and the constants are evaluated. The creep behavior is found to be independent of the initial stress level in the present experiment. Thus, the viscoelastic model proposed by Simo is selected, and its material constants are identified using the results of creep tests. Moreover, from the results of numerical calculations and experiments, it is found that the chosen material model has good reproducibility, predictive performance and high versatility.

  10. Shock Propagation Modeling in Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Haill, Thomas

    2013-06-01

    Shock compression of foams is an intriguing research area that challenges our abilities to model experiments using computer simulations that span 9 orders of magnitude in spatial scales from the atomistic scale through the mesoscale and up to the continuum levels. Experiments test shock compression of dense polymers, polymer foams, and high-Z doped foams. Random distributions of polymer fibers, variations in pore size, and non-uniformities in the bulk properties of the foam (such as mean density) lead to spread in the experimental data. Adding dopants to foams introduces new complexities and the effect of the distribution and sizes of dopant particles must be characterized and understood. Therefore we turn to computer simulation to illumine the intricacies of the experiments that cannot be directly measured. This paper overviews of our range of methods to model pure and platinum-doped poly-methyl-pentene (PMP) foams. At the nanometer scale, hydrodynamic simulations compare favorably to classical molecular dynamics (MD) simulations of porous foams, verifying models of foam vaporization under strong shock conditions. Inhomogeneous mesoscale and homogenized continuum simulations present contrasting pictures of shocked foams. Mesoscale simulations at the micron scale have diffuse shock widths that depend upon the pore size, and post-shock vorticity results in fluctuations about the mean post-shock state and lower mean pressures and temperatures. Homogenized simulations, in the limit of zero pore size, have narrow shock widths, steady post-shock states, and higher mean pressures and temperature that compare favorably with 1D analysis of experiments. We reconcile the contrasting mesoscale and continuum views using theoretical turbulent corrections to the Hugoniot jump condition to show a consistent picture of shocked foams over 9 orders of spatial scale. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  11. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1993-01-01

    The main goals of the research under this grant consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular, for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: (1) development of a spectral code for moving boundary problems; and (2) diffusivity measurements on concentrated and supersaturated TGS solutions. Progress made during this seventh half-year period is reported.

  12. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1993-01-01

    The main goals of the research consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and diffusivity measurements on concentrated and supersaturated TGS solutions. During this eighth half-year period, good progress was made on these tasks.

  13. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1992-01-01

    The development is examined of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). The tasks include development of a spectral code for moving boundary problems, kinematic viscosity measurements on liquid MCT at temperatures close to the melting point, and diffusivity measurements on concentrated and supersaturated TGS solutions. A detailed description is given of the work performed for these tasks, together with a summary of the resulting publications and presentations.

  14. Selection of Instructional Materials. A Model Policy and Rules.

    ERIC Educational Resources Information Center

    Bartlett, Larry D.; And Others

    This model prepared by the State of Iowa Department of Public Instruction is intended to provide assistance to schools in developing their own policy and procedures for the selection of library media and text materials. A brief model statement of policy is followed by a model statement of rules which includes (1) responsibility for selection of…

  15. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    SciTech Connect

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

  16. Contaminant leaching model for dredged material disposal facilities

    SciTech Connect

    Schroeder, P.R.; Aziz, N.M.

    1999-09-01

    This paper describes the hydrologic evaluation of leachate production and quality model, a screening-level tool to simulate contaminant leaching from a confined disposal facility (CDF) for dredged material. The model combines hydraulics, hydrology, and equilibrium partitioning, using site-specific design specifications, weather data, and equilibrium partitioning coefficients from the literature or from sequential batch or column leach tests of dredged material. The hydraulics and hydrology are modeled using Version 3 of the hydrologic evaluation of landfill performance model. The equilibrium partitioning model includes provisions for estuarine sediments that have variable distribution coefficients resulting from saltwater washout. Model output includes contaminant concentrations in the CDF profile, contaminant concentration and mass releases through the bottom of the CDF, and contaminant concentrations and masses captured by leachate collection systems. The purpose of the model is to provide sound information for evaluating the potential leachate impacts on ground water at dredged material CDFs and the effectiveness of leachate control measures.

  17. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  18. Material parameter computation for multi-layered vocal fold models

    PubMed Central

    Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A.; Döllinger, Michael

    2011-01-01

    Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one’s livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations. PMID:21476672

  19. Compendium of Material Composition Data for Radiation Transport Modeling

    SciTech Connect

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-10-31

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  20. Micromechanical modeling of heterogeneous energetic materials

    SciTech Connect

    Baer, M.R.; Kipp, M.E.; Swol, F. van

    1998-09-01

    In this work, the mesoscale processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete HMX crystals. High resolution three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states having wavelengths of the order of several particle diameters. Localization of energy produces hot-spots due to shock focusing and plastic work near grain boundaries as material flows to interstitial regions. These numerical experiments demonstrate that hot-spots are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and reaction of shocked heterogeneous materials involves states distinctly different than single jump state descriptions.

  1. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    SciTech Connect

    Schembri, Philip E.; Lewis, Matthew W.

    2014-02-27

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  2. EPR-based material modelling of soils considering volume changes

    NASA Astrophysics Data System (ADS)

    Faramarzi, Asaad; Javadi, Akbar A.; Alani, Amir M.

    2012-11-01

    In this paper an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR), taking into account its volumetric behaviour. EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial test are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well known conventional material models. In particular, the capability of the developed EPR models in predicting volume change behaviour of soils is illustrated. It is also shown that the developed EPR-based material models can be incorporated in finite element (FE) analysis. Two geotechnical examples are presented to verify the developed EPR-based FE model (EPR-FEM). The results of the EPR-FEM are compared with those of a standard FEM where conventional constitutive models are used to describe the material behaviour. The results show that EPR-FEM can be successfully employed to analyse geotechnical engineering problems. The advantages of the proposed EPR models are highlighted.

  3. Research on infrared imaging illumination model based on materials

    NASA Astrophysics Data System (ADS)

    Hu, Hai-he; Feng, Chao-yin; Guo, Chang-geng; Zheng, Hai-jing; Han, Qiang; Hu, Hai-yan

    2013-09-01

    In order to effectively simulate infrared features of the scene and infrared high light phenomenon, Based on the visual light illumination model, according to the optical property of all material types in the scene, the infrared imaging illumination models are proposed to fulfill different materials: to the smooth material with specular characteristic, adopting the infrared imaging illumination model based on Blinn-Phone reflection model and introducing the self emission; to the ordinary material which is similar to black body without highlight feature, ignoring the computation of its high light reflection feature, calculating simply the material's self emission and its reflection to the surrounding as its infrared imaging illumination model, the radiation energy under zero range of visibility can be obtained according to the above two models. The OpenGl rendering technology is used to construct infrared scene simulation system which can also simulate infrared electro-optical imaging system, then gets the synthetic infrared images from any angle of view of the 3D scenes. To validate the infrared imaging illumination model, two typical 3D scenes are made, and their infrared images are calculated to compare and contrast with the real collected infrared images obtained by a long wave infrared band imaging camera. There are two major points in the paper according to the experiment results: firstly, the infrared imaging illumination models are capable of producing infrared images which are very similar to those received by thermal infrared camera; secondly, the infrared imaging illumination models can simulate the infrared specular feature of relative materials and common infrared features of general materials, which shows the validation of the infrared imaging illumination models. Quantitative analysis shows that the simulation images are similar to the collected images in the aspects of main features, but their histogram distribution does not match very well, the

  4. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1994-01-01

    The main goals of the research under this grant consist of the development of mathematical tools and measurement techniques for transport properties necessary for high fidelity modelling of crystal growth from the melt and solution. Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and development of an expedient diffusivity measurement technique for concentrated and supersaturated solutions. We have focused on developing a code to solve for interface shape, heat and species transport during directional solidification. The work involved the computation of heat, mass and momentum transfer during Bridgman-Stockbarger solidification of compound semiconductors. Domain decomposition techniques and preconditioning methods were used in conjunction with Chebyshev spectral methods to accelerate convergence while retaining the high-order spectral accuracy. During the report period we have further improved our experimental setup. These improvements include: temperature control of the measurement cell to 0.1 C between 10 and 60 C; enclosure of the optical measurement path outside the ZYGO interferometer in a metal housing that is temperature controlled to the same temperature setting as the measurement cell; simultaneous dispensing and partial removal of the lower concentration (lighter) solution above the higher concentration (heavier) solution through independently motor-driven syringes; three-fold increase in data resolution by orientation of the interferometer with respect to diffusion direction; and increase of the optical path length in the solution cell to 12 mm.

  5. Modeling the dynamic crush of impact mitigating materials

    SciTech Connect

    Logan, R.W.; McMichael, L.D.

    1995-05-12

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  6. Modelling cohesive, frictional and viscoplastic materials

    NASA Astrophysics Data System (ADS)

    Alehossein, Habib; Qin, Zongyi

    2016-06-01

    Most materials in mining and civil engineering construction are not only viscoplastic, but also cohesive frictional. Fresh concrete, fly ash and mining slurries are all granular-frictional-visco-plastic fluids, although solid concrete is normally considered as a cohesive frictional material. Presented here is both a formulation of the pipe and disc flow rates as a function of pressure and pressure gradient and the CFD application to fresh concrete flow in L-Box tests.

  7. Interatomic Potential Models for Ionic Materials

    NASA Astrophysics Data System (ADS)

    Gale, Julian D.

    Ionic materials are present in many key technological applications of the modern era, from solid state batteries and fuel cells, nuclear waste immobiliza tion, through to industrial heterogeneous catalysis, such as that found in automotive exhaust systems. With the boundless possibilities for their utilization, it is natural that there has been a long history of computer simulation of their structure and properties in order to understand the materials science of these systems at the atomic level.

  8. On the sensitivity analysis of porous material models

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel

    2012-11-01

    Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.

  9. User-Defined Material Model for Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)

    2006-01-01

    An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.

  10. Developing Interactive Instructional Materials: A Model.

    ERIC Educational Resources Information Center

    Henderson, Craig; And Others

    Many colleges and departments at Tennessee Technological University, as well as most other major universities, are progressing toward more interactive instructional materials. The benefits of implementing instructional technology are numerous and diverse. However, because of increasingly austere budgets, a focused and cost-effective approach to…

  11. RADIOACTIVE MATERIALS IN BIOSOLIDS: DOSE MODELING

    EPA Science Inventory

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tra...

  12. On predicting and modeling material failure under impact loading

    SciTech Connect

    Lewis, M.W.

    1998-09-01

    A method for predicting and modeling material failure in solids subjected to impact loading is outlined. The method uses classical void growth models of Gurson and Tvergaard in a material point method (MPM). Because of material softening, material stability is lost. At this point, the character of the governing partial differential equations changes, and localization occurs. This localization results in mesh dependence for many problems of interest. For many problems, predicting the occurrence of material failure and its extent is necessary. To enable this modeling, it is proposed that a discontinuity be introduced into the displacement field. By including a dissipation-based force-displacement relationship, the mesh dependence of energy dissipation can be avoided. Additionally, the material point method provides a means of allowing large deformations without mesh distortion or introduction of error through remapping.

  13. A generalized methodology to characterize composite materials for pyrolysis models

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  14. Extended Jiles-Atherton model for modelling the magnetic characteristics of isotropic materials

    NASA Astrophysics Data System (ADS)

    Szewczyk, Roman; Bieńkowski, Adam; Salach, Jacek

    This paper presents the idea of the extension of the Jiles-Atherton model applied for modelling of the magnetic characteristics of Mn-Zn, as well as Ni-Zn ferrites. The presented extension of the model takes into account changes of the parameter k during the magnetisation process, what is physically judged. The extended Jiles-Atherton model gives novel possibility of modelling the hysteresis loops of isotropic materials. For one set of the extended model parameters, a good agreement between experimental data and modelled hysteresis loops is observed, for different values of maximal magnetising field. As a result, the extended Jiles-Atherton model presented in the paper may be applied for both technical applications and fundamental research, focused on understanding the physical aspects of the magnetisation process of anisotropic soft magnetic materials.

  15. The sphere-in-contact model of carbon materials.

    PubMed

    Zeinalipour-Yazdi, Constantinos D; Pullman, David P; Catlow, C Richard A

    2016-01-01

    A sphere-in-contact model is presented that is used to build physical models of carbon materials such as graphite, graphene, carbon nanotubes and fullerene. Unlike other molecular models, these models have correct scale and proportions because the carbon atoms are represented by their atomic radius, in contrast to the more commonly used space-fill models, where carbon atoms are represented by their van der Waals radii. Based on a survey taken among 65 undergraduate chemistry students and 28 PhD/postdoctoral students with a background in molecular modeling, we found misconceptions arising from incorrect visualization of the size and location of the electron density located in carbon materials. Based on analysis of the survey and on a conceptual basis we show that the sphere-in-contact model provides an improved molecular representation of the electron density of carbon materials compared to other molecular models commonly used in science textbooks (i.e., wire-frame, ball-and-stick, space-fill). We therefore suggest that its use in chemistry textbooks along with the ball-and-stick model would significantly enhance the visualization of molecular structures according to their electron density. Graphical Abstract A sphere-in-contact model of C60-fullerene. PMID:26791534

  16. Diffusion in Condensed Matter: Methods, Materials, Models

    NASA Astrophysics Data System (ADS)

    Heitjans, Paul; Kärger, Jög

    This comprehensive, handbook-style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. It is understood and presented as a phenomenon of crucial relevance for a large variety of processes and materials. In this book, all aspects of the theoretical fundamentals, experimental techniques, highlights of current developments and results for solids, liquids and interfaces are presented.

  17. Modeling of sorption characteristics of backfill materials

    SciTech Connect

    Chitra, S.; Sasidhar, P.; Lal, K.B.; Ahmed, J.

    1998-06-01

    Sorption data analysis was carried out using the Freundlich, Langmuir, and Modified Freundlich isotherms for the uptake of sodium and potassium in an initial concentration range of 10--100 mg/L on backfill materials, viz., bentonite, vermiculite, and soil samples. The soil samples were collected from a shallow land disposal facility at Kalpakkam. The Freundlich isotherm equation is validated as a preferred general mathematical tool for representing the sorption of K{sup +} by all the selected backfill materials. The Modified Freundlich isotherm equation is validated as a preferred mathematical tool for representing the sorption of Na{sup +} by the soil samples. Since a negative sorption was observed for the uptake of Na{sup +} by commercial clay minerals (vermiculite and bentonite clay in the laboratory experiments), sorption analysis could not be carried out using the above-mentioned isotherm equations. Hill plots of the sorption data suggest that in the region of low saturation (10--40 mg/L), sorption of K{sup +} by vermiculite is impeded by interaction among sorption sites. In the region of higher saturation (60--100 mg/L), sorption of K{sup +} by all three backfill materials is enhanced by interaction among sorption sites. The Hill plot of the sorption data for Na{sup +} by soil suggests that irrespective of Na{sup +} concentration, sorption of Na{sup +} at one exchange size enhances sorption at other exchange sites.

  18. Designing and modeling doubly porous polymeric materials

    NASA Astrophysics Data System (ADS)

    Ly, H.-B.; Le Droumaguet, B.; Monchiet, V.; Grande, D.

    2015-07-01

    Doubly porous organic materials based on poly(2-hydroxyethyl methacrylate) are synthetized through the use of two distinct types of porogen templates, namely a macroporogen and a nanoporogen. Two complementary strategies are implemented by using either sodium chloride particles or fused poly(methyl methacrylate) beads as macroporogens, in conjunction with ethanol as a porogenic solvent. The porogen removal respectively allows for the generation of either non-interconnected or interconnected macropores with an average diameter of about 100-200 μm and nanopores with sizes lying within the 100 nm order of magnitude, as evidenced by mercury intrusion porosimetry and scanning electron microscopy. Nitrogen sorption measurements evidence the formation of materials with rather high specific surface areas, i.e. higher than 140 m2.g-1. This paper also addresses the development of numerical tools for computing the permeability of such doubly porous materials. Due to the coexistence of well separated scales between nanopores and macropores, a consecutive double homogenization approach is proposed. A nanoscopic scale and a mesoscopic scale are introduced, and the flow is evaluated by means of the Finite Element Method to determine the macroscopic permeability. At the nanoscopic scale, the flow is described by the Stokes equations with an adherence condition at the solid surface. At the mesoscopic scale, the flow obeys the Stokes equations in the macropores and the Darcy equation in the permeable polymer in order to account for the presence of the nanopores.

  19. Material point method modeling in oil and gas reservoirs

    DOEpatents

    Vanderheyden, William Brian; Zhang, Duan

    2016-06-28

    A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.

  20. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    SciTech Connect

    Du, Qiang

    2014-11-12

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next

  1. A Model Framework for Science and Other Course Materials Construction.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    A model is presented to provide guidance for Coast Guard writers, curriculum developers, course coordinators, and instructors who intend to update, or draft course materials. Detailed instructions are provided for developing instructor's guides and student's guides. (CS)

  2. Probabilistic constitutive relationships for cyclic material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, L.; Chamis, C. C.

    1988-01-01

    A methodology is developed that provides a probabilistic treatment for the lifetime of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs.

  3. A bespoke single-band Hubbard model material

    NASA Astrophysics Data System (ADS)

    Griffin, S. M.; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.

    2016-02-01

    The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the "standard model" of condensed-matter physics. The model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form, multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model to determine the relevance of the model in the description of real materials. After identifying an appropriate crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping, and we propose specific materials for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which the single-band Hubbard model on a triangular lattice exhibits exotic d -wave superconductivity.

  4. A Model Framework for Course Materials Construction (Second Edition).

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Designed for use by Coast Guard course writers, curriculum developers, course coordinators, and instructors as a decision-support system, this publication presents a model that translates the Intraservices Procedures for Instructional Systems Development curriculum design model into materials usable by classroom teachers and students. Although…

  5. A Model Framework for Course Materials Construction. Third Edition.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    A model framework for course materials construction is presented as an aid to Coast Guard course writers and coordinators, curriculum developers, and instructors who must modify a course or draft a new one. The model assumes that the instructor or other designated person has: (1) completed a task analysis which identifies the competencies, skills…

  6. Learning to Apply Models of Materials While Explaining Their Properties

    ERIC Educational Resources Information Center

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  7. Stochastic Modeling of Radioactive Material Releases

    SciTech Connect

    Andrus, Jason; Pope, Chad

    2015-09-01

    Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculates the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was

  8. Crashworthiness analysis using advanced material models in DYNA3D

    SciTech Connect

    Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.

    1993-10-22

    As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.

  9. Measurement and modeling of terahertz spectral signatures from layered material

    NASA Astrophysics Data System (ADS)

    Kniffin, G. P.; Schecklman, S.,; Chen, J.; Henry, S. C.; Zurk, L. M.; Pejcinovic, B.; Timchenko, A. I.

    2010-04-01

    Many materials such as drugs and explosives have characteristic spectral signatures in the terahertz (THz) band. These unique signatures hold great promise for potential detection utilizing THz radiation. While such spectral features are most easily observed in transmission,real life imaging systems will need to identify materials of interest from reflection measurements,often in non-ideal geometries. In this work we investigate the interference effects introduced by layered materials,whic h are commonly encountered in realistic sensing geometries. A model for reflection from a layer of material is presented,along with reflection measurements of single layers of sample material. Reflection measurements were made to compare the response of two materials; α-lactose monohydrate which has sharp absorption features,and polyethylene which does not. Finally,the model is inverted numerically to extract material parameters from the measured data as well as simulated reflection responses from the explosive C4.

  10. On the accuracy and fitting of transversely isotropic material models.

    PubMed

    Feng, Yuan; Okamoto, Ruth J; Genin, Guy M; Bayly, Philip V

    2016-08-01

    Fiber reinforced structures are central to the form and function of biological tissues. Hyperelastic, transversely isotropic material models are used widely in the modeling and simulation of such tissues. Many of the most widely used models involve strain energy functions that include one or both pseudo-invariants (I4 or I5) to incorporate energy stored in the fibers. In a previous study we showed that both of these invariants must be included in the strain energy function if the material model is to reduce correctly to the well-known framework of transversely isotropic linear elasticity in the limit of small deformations. Even with such a model, fitting of parameters is a challenge. Here, by evaluating the relative roles of I4 and I5 in the responses to simple loadings, we identify loading scenarios in which previous models accounting for only one of these invariants can be expected to provide accurate estimation of material response, and identify mechanical tests that have special utility for fitting of transversely isotropic constitutive models. Results provide guidance for fitting of transversely isotropic constitutive models and for interpretation of the predictions of these models. PMID:27136091

  11. A perspective on modeling the multiscale response of energetic materials

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.

    2015-06-01

    The response of an energetic material to insult is perhaps one of the most difficult processes to model due to concurrent chemical and physical phenomena occurring over scales ranging from atomistic to continuum. Unraveling the interdependencies of these complex processes across the scales through modeling can be done only within a multiscale framework. In this talk, I will describe our philosophy and progress in the development of a predictive, experimentally validated multiscale reactive modeling capability for energetic materials. I will also describe new opportunities and challenges that have arisen in the course of our development that will be pursued in the future.

  12. The Constitutive Modeling of Thin Films with Randon Material Wrinkles

    NASA Technical Reports Server (NTRS)

    Murphey, Thomas W.; Mikulas, Martin M.

    2001-01-01

    Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%

  13. A model of material flow during friction stir welding

    SciTech Connect

    Hamilton, Carter Dymek, Stanislaw; Blicharski, Marek

    2008-09-15

    Tin plated 6061-T6 aluminum extrusions were friction stir welded in a 90 deg. butt-weld configuration. A banded microstructure of interleaved layers of particle-rich and particle-poor material comprised the weld nugget. Scanning and transmission electron microscopy revealed the strong presence of tin within the particle-rich bands, but TEM foils taken from the TMAZ, HAZ and base material showed no indication of Sn-containing phases. Since tin is limited to the surface of the pre-weld extrusions, surface material flowed into the nugget region, forming the particle-rich bands. Similarly, the particle-poor bands with no tin originated from within the thickness of the extrusions. A model of material flow during friction stir welding is proposed for which the weld nugget forms as surface material extrudes from the retreating side into a plasticized zone surrounding the FSW pin. The extruded column buckles between the extrusion force driving the material into the zone and the drag force of the in-situ material resisting its entry. A banded microstructure of interleaved surface material and in-situ material, therefore, develops. The model successfully describes several of the experimentally observed weld characteristics, but the model is limited to specific conditions of material flow and assumptions regarding steady-state.

  14. Multiscale modeling of carbon nanotube materials with distinct element method

    NASA Astrophysics Data System (ADS)

    Ostanin, Igor Aleksandrovich

    Mesoscale simulation techniques are becoming increasingly important due to the interest in complex mechanical problems involving nanoscale structures and materials. This work is devoted to the development of a novel mesoscopic modeling technique based on an extension of the distinct element method and its application to the problem of mechanical modeling of carbon nanotube materials. Starting from an atomistic description, the important interactions between segments of the tubes are encapsulated into two types of contact models. The nanomechanics of intratube bonds is characterized by the parallel bond contact model. Intertube interactions are accounted for by an anisotropic vdW contact model. Energy dissipation is formulated in a top-down manner, based on the macroscopic mechanical properties of carbon nanotube materials. The developed model is applied to the analysis of various mesoscopic structures and materials - self-folded nanotube configurations, nanotube bundles and ropes, nanotube papers and films. The results of mesoscopic simulations not only are in good agreement with experimental observations, but they also provide interesting insights on the roles of effects of morphology, vdW adhesion and registry, cross-linking and energy dissipation on the nanomechanics of carbon nanotube based materials.

  15. A model for heterogeneous materials including phase transformations

    SciTech Connect

    Addessio, F.L.; Clements, B.E.; Williams, T.O.

    2005-04-15

    A model is developed for particulate composites, which includes phase transformations in one or all of the constituents. The model is an extension of the method of cells formalism. Representative simulations for a single-phase, brittle particulate (SiC) embedded in a ductile material (Ti), which undergoes a solid-solid phase transformation, are provided. Also, simulations for a tungsten heavy alloy (WHA) are included. In the WHA analyses a particulate composite, composed of tungsten particles embedded in a tungsten-iron-nickel alloy matrix, is modeled. A solid-liquid phase transformation of the matrix material is included in the WHA numerical calculations. The example problems also demonstrate two approaches for generating free energies for the material constituents. Simulations for volumetric compression, uniaxial strain, biaxial strain, and pure shear are used to demonstrate the versatility of the model.

  16. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  17. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  18. Artificial neural network model for material characterization by indentation

    NASA Astrophysics Data System (ADS)

    Tho, K. K.; Swaddiwudhipong, S.; Liu, Z. S.; Hua, J.

    2004-09-01

    Analytical methods to interpret the indentation load-displacement curves are difficult to formulate and solve due to material and geometric nonlinearities as well as complex contact interactions. In this study, large strain-large deformation finite element analyses were carried out to simulate indentation experiments. An artificial neural network model was constructed for the interpretation of indentation load-displacement curves. The data from finite element analyses were used to train and validate the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with the load-displacement curves that were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation load-displacement curve to the elasto-plastic material properties.

  19. System level permeability modeling of porous hydrogen storage materials.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  20. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  1. Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; Ehle, Curt

    2003-01-01

    An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting

  2. An investigation of the material and model parameters for a constitutive model for MSMAs

    NASA Astrophysics Data System (ADS)

    Dikes, Jason; Feigenbaum, Heidi; Ciocanel, Constantin

    2015-04-01

    A two dimensional constitutive model capable of predicting the magneto-mechanical response of a magnetic shape memory alloy (MSMA) has been developed and calibrated using a zero field-variable stress test1. This calibration approach is easy to perform and facilitates a faster evaluation of the three calibration constants required by the model (vs. five calibration constants required by previous models2,3). The calibration constants generated with this approach facilitate good model predictions of constant field-variable stress tests, for a wide range of loading conditions1. However, the same calibration constants yield less accurate model predictions for constant stress-variable field tests. Deployment of a separate calibration method for this type of loading, using a varying field-zero stress calibration test, also didn't lead to improved model predictions of this loading case. As a result, a sensitivity analysis was performed on most model and material parameters to identify which of them may influence model predictions the most, in both types of loading conditions. The sensitivity analysis revealed that changing most of these parameters did not improve model predictions for all loading types. Only the anisotropy coefficient was found to improve significantly field controlled model predictions and slightly worsen model predictions for stress controlled cases. This suggests that either the value of the anisotropy coefficient (which is provided by the manufacturer) is not accurate, or that the model is missing features associated with the magnetic energy of the material.

  3. A multifluid mix model with material strength effects

    SciTech Connect

    Chang, C. H.; Scannapieco, A. J.

    2012-04-23

    We present a new multifluid mix model. Its features include material strength effects and pressure and temperature nonequilibrium between mixing materials. It is applicable to both interpenetration and demixing of immiscible fluids and diffusion of miscible fluids. The presented model exhibits the appropriate smooth transition in mathematical form as the mixture evolves from multiphase to molecular mixing, extending its applicability to the intermediate stages in which both types of mixing are present. Virtual mass force and momentum exchange have been generalized for heterogeneous multimaterial mixtures. The compression work has been extended so that the resulting species energy equations are consistent with the pressure force and material strength.

  4. Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials

    SciTech Connect

    Zhai, P. C.; Chen, G.; Liu, L. S.; Fang, C.; Zhang, Q. J.

    2008-02-15

    A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometries and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.

  5. Computer-Aided Process Model For Carbon/Phenolic Materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.

    1996-01-01

    Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.

  6. Dynamic brittle material response based on a continuum damage model

    SciTech Connect

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  7. Using the split Hopkinson pressure bar to validate material models

    PubMed Central

    Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian

    2014-01-01

    This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer–Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. PMID:25071238

  8. Using the split Hopkinson pressure bar to validate material models.

    PubMed

    Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian

    2014-08-28

    This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer-Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. PMID:25071238

  9. New material model for simulating large impacts on rocky bodies

    NASA Astrophysics Data System (ADS)

    Tonge, A.; Barnouin, O.; Ramesh, K.

    2014-07-01

    Large impact craters on an asteroid can provide insights into its internal structure. These craters can expose material from the interior of the body at the impact site [e.g., 1]; additionally, the impact sends stress waves throughout the body, which interrogate the asteroid's interior. Through a complex interplay of processes, such impacts can result in a variety of motions, the consequence of which may appear as lineaments that are exposed over all or portions of the asteroid's surface [e.g., 2,3]. While analytic, scaling, and heuristic arguments can provide some insight into general phenomena on asteroids, interpreting the results of a specific impact event, or series of events, on a specific asteroid geometry generally necessitates the use of computational approaches that can solve for the stress and displacement history resulting from an impact event. These computational approaches require a constitutive model for the material, which relates the deformation history of a small material volume to the average force on the boundary of that material volume. In this work, we present a new material model that is suitable for simulating the failure of rocky materials during impact events. This material model is similar to the model discussed in [4]. The new material model incorporates dynamic sub-scale crack interactions through a micro-mechanics-based damage model, thermodynamic effects through the use of a Mie-Gruneisen equation of state, and granular flow of the fully damaged material. The granular flow model includes dilatation resulting from the mutual interaction of small fragments of material (grains) as they are forced to slide and roll over each other and includes a P-α type porosity model to account for compaction of the granular material in a subsequent impact event. The micro-mechanics-based damage model provides a direct connection between the flaw (crack) distribution in the material and the rate-dependent strength. By connecting the rate

  10. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  11. A continuous fiber distribution material model for human cervical tissue.

    PubMed

    Myers, Kristin M; Hendon, Christine P; Gan, Yu; Yao, Wang; Yoshida, Kyoko; Fernandez, Michael; Vink, Joy; Wapner, Ronald J

    2015-06-25

    The uterine cervix during pregnancy is the vital mechanical barrier which resists compressive and tensile loads generated from a growing fetus. Premature cervical remodeling and softening is hypothesized to result in the shortening of the cervix, which is known to increase a woman׳s risk of preterm birth. To understand the role of cervical material properties in preventing preterm birth, we derive a cervical material model based on previous mechanical, biochemical and histological experiments conducted on nonpregnant and pregnant human hysterectomy cervical tissue samples. In this study we present a three-dimensional fiber composite model that captures the equilibrium material behavior of the tissue in tension and compression. Cervical tissue is modeled as a fibrous composite material, where a single family of preferentially aligned and continuously distributed collagen fibers are embedded in a compressible neo-Hookean ground substance. The total stress in the collagen solid network is calculated by integrating the fiber stresses. The shape of the fiber distribution is described by an ellipsoid where semi-principal axis lengths are fit to optical coherence tomography measurements. The composite material model is fit to averaged mechanical testing data from uni-axial compression and tension experiments, and averaged material parameters are reported for nonpregnant and term pregnant human cervical tissue. The model is then evaluated by investigating the stress and strain state of a uniform thick-walled cylinder under a compressive stress with collagen fibers preferentially aligned in the circumferential direction. This material modeling framework for the equilibrium behavior of human cervical tissue serves as a basis to determine the role of preferentially-aligned cervical collagen fibers in preventing cervical deformation during pregnancy. PMID:25817474

  12. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  13. New material model for simulating large impacts on rocky bodies

    NASA Astrophysics Data System (ADS)

    Tonge, A.; Barnouin, O.; Ramesh, K.

    2014-07-01

    Large impact craters on an asteroid can provide insights into its internal structure. These craters can expose material from the interior of the body at the impact site [e.g., 1]; additionally, the impact sends stress waves throughout the body, which interrogate the asteroid's interior. Through a complex interplay of processes, such impacts can result in a variety of motions, the consequence of which may appear as lineaments that are exposed over all or portions of the asteroid's surface [e.g., 2,3]. While analytic, scaling, and heuristic arguments can provide some insight into general phenomena on asteroids, interpreting the results of a specific impact event, or series of events, on a specific asteroid geometry generally necessitates the use of computational approaches that can solve for the stress and displacement history resulting from an impact event. These computational approaches require a constitutive model for the material, which relates the deformation history of a small material volume to the average force on the boundary of that material volume. In this work, we present a new material model that is suitable for simulating the failure of rocky materials during impact events. This material model is similar to the model discussed in [4]. The new material model incorporates dynamic sub-scale crack interactions through a micro-mechanics-based damage model, thermodynamic effects through the use of a Mie-Gruneisen equation of state, and granular flow of the fully damaged material. The granular flow model includes dilatation resulting from the mutual interaction of small fragments of material (grains) as they are forced to slide and roll over each other and includes a P-α type porosity model to account for compaction of the granular material in a subsequent impact event. The micro-mechanics-based damage model provides a direct connection between the flaw (crack) distribution in the material and the rate-dependent strength. By connecting the rate

  14. Durability evaluation techniques and modeling for highway materials

    SciTech Connect

    Biswas, M.; Muchane, G.K.

    1995-06-01

    For satisfactory long-term performance of highway facilities, the authors are concerned about durability of materials, in addition to their initial strength. Besides conventional materials, such as Portland cement concrete and asphalt concrete, their interests include high-performance materials such as polymer concrete and polymer modified concrete. Degradation of materials may occur over time due to exposure to a number of aggravating conditions and environments. For investigation of durability, the aggravating exposures that the authors have considered include repeated loading, freeze-thaw cycling. Methods of evaluation of performance of materials include application of vibration spectral techniques for evaluating of material stiffness and damage. Materials are modeled to characterize their performance under repeated loads and other aggravating exposures.

  15. Enhanced micropolar model for wave propagation in granular materials

    NASA Astrophysics Data System (ADS)

    Merkel, Aurélien; Luding, Stefan

    2016-04-01

    In the description of material elastic behavior, the classical theory of elasticity consists of a macroscopic material description. The material is not described at the micro-level by considering the displacement of the different particles in interaction, but is described as a continuum by considering macroscopic quantities as stress and strain. The classical elasticity theory can be viewed as first gradient of the displacement field approximation of the solid state theory and is valid in the long wavelength limit. Granular media, due to their micro-inhomogeneous character, are not well described by the standard continuum theory of elasticity. By contrast to classical continua where the sizes of the vibrating particles are assumed to be negligible compared to the distance between the particles, the sizes of the particles in a granular assembly are comparable to the distance between neighbors. In addition, considering the sliding, torsion and rolling resistances at the level of the contacts between the particles, a consistent description of the elasticity of a granular medium needs to take into account the rotational degrees of freedom of each individual particle. The elastic behavior of crystalline structures of monodisperse beads can be efficiently described by a discrete model, where the displacement and rotation of each individual bead are taken into account. Nevertheless, the discrete model can be solved analytically only for well-know regular crystalline structure, the case of a random assembly of beads is too complex for large systems. A continuum formulation is more suitable for random assemblies of beads different from the ideal crystalline case. The generalization of the classical elasticity theory accounting for the rotational degrees of freedom of point bodies is known as the Cosserat or micropolar theory. In this work, the vibration properties of a face-centered cubic structure of monodisperse granular crystal are predicted using a discrete model as

  16. Modeling of metal cutting as purposeful fracture of work material

    NASA Astrophysics Data System (ADS)

    Abushawashi, Yalla Mussa

    Metal cutting, or simply machining, is one of the oldest processes for shaping components in the manufacturing industry. It is widely quoted that 15% of the value of all mechanical components manufactured worldwide is derived from machining operations. The most influential model for metal cutting is the single-shear plane model (SSPM) of chip formation. The common notion is that new surfaces are formed simply by `plastic flow around the tool tip' so that metal cutting is one of the deforming processes. A number of cutting theories and the finite element method (FEM) models have been developed based on this concept. Metal cutting simulation models are available in commercial FEM packages. However, these model predictions and numerical simulations do not agree with the trends and phenomena observed in metal cutting experiments. Therefore, it is of the utmost importance to have a physically sound model of metal cutting. This thesis is based on the concept that metal cutting is the purposeful fracture of the work material. To reduce the energy required for fracture, one should minimize the energy of plastic deformation of the work material in its transformation into the chip because this energy constitutes up to 80% of the total energy required by the cutting system. Increased tool life and machining efficiency are the outcomes of such an optimization. To investigate this concept requires a work material model which considers the entire process from plastic deformation, damage initiation to final fracture. In this thesis, a work material model was developed based on the recent advancement in ductile fracture of metals. The model parameters must be determined under conditions that are pertinent to metal cutting. In machining, the work material experiences a complex, evolving multi-axial stress history. The existing testing specimens such as the notched bars and flat grooved specimens do not cover the stress triaxiality range found in machining. To generate material

  17. Finite Element Modeling of the Thermographic Inspection for Composite Materials

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with

  18. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  19. Pore-scale Modelling of Capillarity in Swelling Granular Materials

    NASA Astrophysics Data System (ADS)

    Hassanizadeh, S. M.; Sweijen, T.; Nikooee, E.; Chareyre, B.

    2015-12-01

    Capillarity in granular porous media is a common and important phenomenon in earth materials and industrial products, and therefore has been studied extensively. To model capillarity in granular porous media, one needs to go beyond current models which simulate either two-phase flow in porous media or mechanical behaviour in granular media. Current pore-scale models for two-phase flow such as pore-network models are tailored for rigid pore-skeletons, even though in many applications, namely hydro-mechanical coupling in soils, printing, and hygienic products, the porous structure does change during two-phase flow. On the other hand, models such as Discrete Element Method (DEM), which simulate the deformable porous media, have mostly been employed for dry or saturated granular media. Here, the effects of porosity change and swelling on the retention properties was studied, for swelling granular materials. A pore-unit model that was capable to construct the capillary pressure - saturation curve was coupled to DEM. Such that the capillary pressure - saturation curve could be constructed for varying porosities and amounts of absorbed water. The study material was super absorbent polymer particles, which are capable to absorb water 10's to 200 times their initial weight. We have simulated quasi-static primary imbibition for different porosities and amounts of absorbed water. The results reveal a 3 dimensional surface between capillary pressure, saturation, and porosity, which can be normalized by means of the entry pressure and the effective water saturation to a unique curve.

  20. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  1. Constitutive modeling of solid propellant materials with evolving microstructural damage

    NASA Astrophysics Data System (ADS)

    Xu, F.; Aravas, N.; Sofronis, P.

    Solid propellants are composite materials with complex microstructure. In a generic form, the material consists of polymeric binder, crystal oxidizer (e.g., ammonium perchlorate), and fuel particles (e.g., aluminum). Severe stressing and extreme temperatures induce damage which is manifested in particle cracking, dewetting along particle/polymer interfaces, void nucleation and growth. Damage complicates the overall constitutive response of a solid propellant over and above the complexities associated with the differing constitutive properties of the particle and binder phases. Using rigorous homogenization theory for composite materials, we propose a general 3-D nonlinear macroscopic constitutive law that models microstructural damage evolution upon straining through continuous void formation and growth. The law addresses the viscous deformation rate within the framework of additive decomposition of the deformation rate and the concept of back stress is used to improve the model performance in stress relaxation. No restriction is placed on the magnitude of the strains. Experimental data from the standard relaxation and uniaxial tension tests are used to calibrate the model parameters in the case of a high elongation solid propellant. It is emphasized that the model parameters are descriptors of individual phase constitutive response and criticality conditions for particle decohesion which can systematically be determined through experiment. The model is used to predict the response of the material under more complex loading paths and to investigate the effect of crack tip damage on the mechanical behavior of a compact tension fracture specimen.

  2. Expert model process control of composite materials in a press

    NASA Astrophysics Data System (ADS)

    Saliba, Tony E.; Quinter, Suzanne R.; Abrams, Frances L.

    An expert model for the control of the press processing of thermoset composite materials has been developed. The knowledge base written using the PC PLUS expert system shell was interfaced with models written in FORTRAN. The expert model, which is running on a single computer with a single processor, takes advantage of the symbol-crunching capability of LISP and the number crunching capability of FORTRAN. The Expert Model control system is a qualitative-quantitative process automation (QQPA) system since it includes both quantitative model-based and qualitative rule-based expert system operations. Various physical and mechanical properties were measured from panels processed using the two cycles. Using QQPA, processing time has been reduced significantly without altering product quality.

  3. A theoretical model for lunar surface material thermal conductivity.

    NASA Technical Reports Server (NTRS)

    Khader, M. S.; Vachon, R. I.

    1973-01-01

    This paper presents a theoretical thermal conductivity model for the uppermost layer of lunar surface material under the lunar vacuum environment. The model assumes that the lunar soil can be simulated by spherical particles in contact with each other and that the effective thermal conductivity is a function of depth, temperature, porosity, particle dimension, and mechanical-thermal properties of the solid particles. Two modes of heat transport are considered, conduction and radiation - with emphasis on the contact resistance between particles. The model gives effective conductivity values that compare favorably with the experimental data from lunar surface samples obtained on Apollo 11 and 12 missions.

  4. Mathematical modeling and stochastic simulation of soft materials

    NASA Astrophysics Data System (ADS)

    Zeng, Yun

    Soft materials are all around us; they may appear as consumer products, foods, or biological materials. The interest in studying the properties of soft materials both experimentally and theoretically has steadily increased due to their wide range of industrial applications. One example of a soft material is wormlike micellar solutions. Depending on the temperature and composition, these solvent-surfactant-salt mixtures may exhibit close to mono-exponential or, alternatively, power-law or stretched-exponential stress decay. Of particular interest to this thesis is the development of stochastic models that can capture the stress relaxation behavior of such materials in the small strain limit, which is non-exponential in time as opposed to exponential. Continuous time random walk (CTRW) or subordinated Langevin processes are utilized to model systems exhibiting non-exponential relaxation behavior or anomalous diffusion. Stochastic simulations using the CTRW approach or the subordination method are carried out in this thesis for one-dimensional systems in which the probability density distribution of particle positions is described by a fractional Fokker-Planck equation (FFPE). The equivalence of the CTRW simulation and the subordination simulation with that of the FFPE is analyzed through the simulation of an ensemble of particle trajectories. The simulated particle dynamics suggest that CTRW processes or subordinated Langevin dynamics can be included in soft material mesoscale dynamics to capture the anomalous transport. To model the non-exponential stress relaxation dynamics of soft gel systems (three-dimensional fluids), stochastic models are simulated using transient network theory as developed and combined with the CTRW and subordinated Langevin processes. This approach enables us to connect the microstructural dynamics of certain soft gel-like materials with macroscale experimental observations by examining the material properties under homogeneous shear flow

  5. Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite Materials

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.; Nahme, Hartwig

    2002-07-01

    Composite materials are now commonly used as ballistic and hypervelocity protection materials and the demand for simulation of impact on these materials is increasing. A new material model specifically designed for the shock response of anisotropic materials has been developed and implemented in the hydrocode AUTODYN. The model allows for the representation of non-linear shock effects in combination with anisotropic material stiffness and damage. The coupling of the equation of state and anisotropic response is based on the methodology proposed by Anderson et al. [2]. An overview of the coupled formulation is described in order to point out the important assumptions, key innovations and basic theoretical framework. The coupled model was originally developed by Century Dynamics and Fhg-EMI for assessing the hypervelocity impact response of composite satellite protection systems [1]. It was also identified that the developed model should also offer new possibilities and capabilities for modelling modern advanced armour materials. Validation of the advanced composite model is firstly shown via simulations of uniaxial strain flyer plate experiments on aramid and polyethylene fibre composite systems. Finally, practical application of the model as implemented in AUTODYN is demonstrated through the simulation of ballistic and hypervelocity impact events. Comparison with experiment is given where possible.

  6. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  7. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, Matthias; Schreurs, Guido; Rosenau, Matthias; Kemnitz, Helga

    2016-04-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between (c. 100 and 400 micrometer). Analysis of grain shape factors show that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling . Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil., Most materials have a cohesion in the order of 10-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C <10 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density reached during sieving which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains. Also, models

  8. Hierarchical Material Models for Fragmentation Modeling in NIF-ALE-AMR

    SciTech Connect

    Fisher, A; Masters, N; Koniges, A; Anderson, R; Gunney, B; Wang, P; Becker, R; Benson, D; Dixit, P

    2007-08-28

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.

  9. Hierarchical Material Models for Fragmentation Modeling in NIF-ALE-AMR

    SciTech Connect

    Fisher, A C; Masters, N D; Dixit, P; Benson, D J; Koniges, A E; Anderson, R W; Gunney, B N; Wang, P; Becker, R

    2008-01-10

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.

  10. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  11. Thermodynamic modeling of the sorption of radioelements onto cementitious materials

    SciTech Connect

    Heath, T.G.; Ilett, D.J.; Tweed, C.J.

    1996-08-01

    A model has been developed for the sorption of radioelements onto cementitious materials based on the diffuse-layer modeling approach. The model assumes that silicon sites (>SiOH) and calcium sites (>CaOH) dominate the surface chemistry and the sorption of radioelements onto the cementitious materials. Both types of site may undergo surface protonation and deprotonation reactions. Cement-based systems vary greatly in their chemistry depending on their calcium-to-silicon molar ratio, and the corresponding variation in the surface chemistry has been incorporated by allowing sorption of calcium ions onto silicon sites. This process results in a change from a silica-type surface, at very low calcium-silicon ratios, to a calcium hydroxide-type surface for high-calcium cement-based materials. The predicted variation in the surface chemistry is consistent with literature data on measured zeta potentials of cements. The model has been applied successfully to describe the sorption of simple caesium and iodide ions at varying calcium-silicon ratios. In a Nirex repository for low and intermediate level wastes, a high-calcium cementitious backfill would be specified. This model has allowed a consistent interpretation of experimental data for sorption of key radioelements, including uranium and plutonium, onto the backfill, under saline and non-saline conditions.

  12. MODELING THE FATE OF TOXIC ORGANIC MATERIALS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Documentation is given for PEST, a dynamic simulation model for evaluating the fate of toxic organic materials (TOM) in freshwater environments. PEST represents the time-varying concentration (in ppm) of a given TOM in each of as many as 16 carrier compartments; it also computes ...

  13. A dynamic model for material removal in ultrasonic machining

    SciTech Connect

    Wang, Z.Y.; Rojurkar, K.P.

    1995-12-31

    This paper proposes a dynamic model of the material removal mechanism and provides a relationship between material removal rate and operation parameters in ultrasonic machining (USM). The model incorporates effect of high values of vibration amplitude, frequency and grit size. The effect of non-uniformity of abrasive grits is also considered by using a probability distribution for the diameter of the abrasive particles. The model is able to predict accurately the increasing rate of material removal for increasing values of amplitude and frequency. It can also be used to determine the reducing rate of material removal, after a certain maximum level is attained, for further increments of vibration amplitude and frequency. Equations representing the dynamic normal stress and elastic displacement of work-piece caused by the impact of an arbitrary grit are used in developing a model considering the dynamic impact phenomena of grits on the work-piece. The analysis shows that there is an effective speed zone for the tool. Within this range, grits in the cutting zone can obtain the maximum momentum and energy from the tool. During the machining process, only those grits whose sizes are in the range of the effective speed zone, can abrade work-piece most effectively.

  14. Cataloging, Processing, Administering AV Materials. A Model for Wisconsin Schools.

    ERIC Educational Resources Information Center

    Little, Robert D., Ed.

    The objective of this cataloging manual is to recommend specific methods for cataloging audiovisual materials for use in individual school media centers. The following types of audiovisual aids are included: educational games, filmstrips, flat graphics, kits, models, motion pictures, realia, records, slides, sound filmstrips, tapes,…

  15. CALIBRATION OF A PREDICTIVE MODEL FOR INSTANTANEOUSLY DISCHARGED DREDGED MATERIAL

    EPA Science Inventory

    This report describes modifications to a computer model originally developed by R.C.Y. Koh and Y.C. Chang for predicting the physical fate of dredged material instantaneously released into a water column. Changes to the simulation include the calibration and verification of the p...

  16. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  17. Modeling plasma/material interactions during a tokamak disruption

    SciTech Connect

    Hassanein, A.; Konkashbaev, I.

    1994-10-01

    Disruptions in tokamak reactors are still of serious concern and present a potential obstacle for successful operation and reliable design. Erosion of plasma-facing materials due to thermal energy dump during a disruption can severely limit the lifetime of these components, therefore diminishing the economic feasibility of the reactor. A comprehensive disruption erosion model which takes into account the interplay of major physical processes during plasma-material interaction has been developed. The initial burst of energy delivered to facing-material surfaces from direct impact of plasma particles causes sudden ablation of these materials. As a result, a vapor cloud is formed in front of the incident plasma particles. Shortly thereafter, the plasma particles are stopped in the vapor cloud, heating and ionizing it. The energy transmitted to the material surfaces is then dominated by photon radiation. It is the dynamics and the evolution of this vapor cloud that finally determines the net erosion rate and, consequently, the component lifetime. The model integrates with sufficient detail and in a self-consistent way, material thermal evolution response, plasma-vapor interaction physics, vapor hydrodynamics, and radiation transport in order to realistically simulate the effects of a plasma disruption on plasma-facing components. Candidate materials such as beryllium and carbon have been analyzed. The dependence of the net erosion rate on disruption physics and various parameters was analyzed and is discussed.

  18. Coupled transport/hyperelastic model for nastic materials

    NASA Astrophysics Data System (ADS)

    Homison, Chris; Weiland, Lisa M.

    2006-03-01

    Nastic materials are high energy density active materials that mimic processes used in the plant kingdom to produce large deformations through the conversion of chemical energy. These materials utilize the controlled transport of charge and fluid across a selectively-permeable membrane to achieve bulk deformation in a process referred to in the plant kingdom as nastic movements. The nastic material being developed consists of synthetic membranes containing biological ion pumps, ion channels, and ion exchangers surrounding fluid-filled cavities embedded within a polymer matrix. In this paper the formulation of a biological transport model and its coupling with a hyperelastic finite element model of the polymer matrix is discussed. The transport model includes contributions from ion pumps, ion exchangers, and solvent flux. This work will form the basis for a feedback loop in material synthesis efforts. The goal of these studies is to determine the relative importance of the various parameters associated with both the polymer matrix and the biological transport components.

  19. Modeling of Material Removal by Solid State Heat Capacity Lasers

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2002-04-17

    Pulsed lasers offer the capability of rapid material removal. Here we present simulations of steel coupon tests by two solid state heat capacity lasers built at LLNL. Operating at 1.05 pm, these deliver pulse energies of about 80 J at 10 Hz, and about 500 J at 20 Hz. Each is flashlamp-pumped. The first laser was tested at LLNL, while the second laser has been delivered to HELSTF, White Sands Missile Range. Liquid ejection appears to be an important removal mechanism. We have modeled these experiments via a time-dependent code called THALES, which describes heat transport, melting, vaporization, and the hydrodynamics of liquid, vapor, and air. It was previously used, in a less advanced form, to model drilling by copper vapor lasers [1] . It was also used to model vaporization in beam dumps for a high-power laser [2]. The basic model is in 1D, while the liquid hydrodynamics is handled in 2D.

  20. Finite element modelling for materials with size effect

    NASA Astrophysics Data System (ADS)

    Swaddiwudhipong, S.; Hua, J.; Tho, K. K.; Liu, Z. S.

    2006-10-01

    This paper involves the formulation of the C0 finite elements incorporating the conventional mechanism-based strain gradient plasticity theory. Higher-order variables and consequently higher-order continuity conditions are not required allowing the direct applications of conventional plasticity algorithms in the existing finite element package. Implementation of the model whether analytically or computationally is efficient and straightforward as the strain gradient effect is confined in the material constitutive relation. The accuracy of the proposed elements in simulating the response of materials with strong size effect is verified through several numerical examples. The approach is applicable and valid to any materials with non-uniform plastic deformation larger than about 100 nm onwards. The proposed model becomes imperative when the deformation is less than 10 µm as classical plasticity is unable to describe the phenomenon comprehensively at this low level of deformation.

  1. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  2. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  3. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  4. A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model

    SciTech Connect

    Koniges, A E; Masters, N D; Fisher, A C; Anderson, R W; Eder, D C; Benson, D; Kaiser, T B; Gunney, B T; Wang, P; Maddox, B R; Hansen, J F; Kalantar, D H; Dixit, P; Jarmakani, H; Meyers, M A

    2009-03-03

    Fragmentation is a fundamental material process that naturally spans spatial scales from microscopic to macroscopic. We developed a mathematical framework using an innovative combination of hierarchical material modeling (HMM) and adaptive mesh refinement (AMR) to connect the continuum to microstructural regimes. This framework has been implemented in a new multi-physics, multi-scale, 3D simulation code, NIF ALE-AMR. New multi-material volume fraction and interface reconstruction algorithms were developed for this new code, which is leading the world effort in hydrodynamic simulations that combine AMR with ALE (Arbitrary Lagrangian-Eulerian) techniques. The interface reconstruction algorithm is also used to produce fragments following material failure. In general, the material strength and failure models have history vector components that must be advected along with other properties of the mesh during remap stage of the ALE hydrodynamics. The fragmentation models are validated against an electromagnetically driven expanding ring experiment and dedicated laser-based fragmentation experiments conducted at the Jupiter Laser Facility. As part of the exit plan, the NIF ALE-AMR code was applied to a number of fragmentation problems of interest to the National Ignition Facility (NIF). One example shows the added benefit of multi-material ALE-AMR that relaxes the requirement that material boundaries must be along mesh boundaries.

  5. A projection method to extract biological membrane models from 3D material models.

    PubMed

    Roohbakhshan, Farshad; Duong, Thang X; Sauer, Roger A

    2016-05-01

    This paper presents a projection method for deriving membrane models from the corresponding three-dimensional material models. As a particular example the anisotropic Holzapfel-Gasser-Ogden model is considered. The projection procedure is based on the kinematical and constitutive assumptions of a general membrane theory, considering the membrane to be a general two-dimensional manifold. By assuming zero transverse stress, the Lagrange multiplier associated with the incompressibility constraint can be eliminated from the formulation. The resulting nonlinear model is discretized and linearized within the finite element method. Several numerical examples are shown, considering quadratic Lagrange and NURBS finite elements. These show that the proposed model is in very good agreement with analytical solutions and with full 3D finite element computations. PMID:26455810

  6. Modeling the nanoscratching of self-healing materials

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Kolmakov, German V.; Yashin, Victor V.; Kowalewski, Tomasz; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-02-01

    We use computational modeling to determine the mechanical response of crosslinked nanogels to an atomic force microscope (AFM) tip that is moved through the sample. We focus on two-dimensional systems where the nanogels are interconnected by both strong and labile bonds. To simulate this system, we modify the lattice spring model (LSM) to extend the applicability of this method to a broader range of elastic materials. Via this modified LSM, we model each nanogel as a deformable particle. We utilize the Bell model to describe the bonds between these nanogel particles, and subsequently, simulate the rupturing of bonds due to the force exerted by the moving indenter. The ruptured labile bonds can readily reform and thus can effectively mend the cavities formed by the moving AFM tip. We determine how the fraction of labile bonds, the nanogel stiffness, and the size and velocity of the moving tip affect the self-healing behavior of the material. We find that samples containing just 10% of labile bonds can heal to approximately 90% of their original, undeformed morphology. Our results provide guidelines for creating reconfigurable materials that can undergo self-repair and thereby withstand greater mechanical stress under everyday use.

  7. Microstructural model of mechanical initiation of energetic materials

    SciTech Connect

    Browning, R.V.

    1995-09-01

    Mechanical initiation of chemical reactions in energetic materials depends on microstructural details of the materials. Several models are described in the literature that are appropriate for a continuum, such as energy dissipation from plastic flow, or shear bands. A technique is presented here for developing initiation models using relations between macroscopic variables and conditions at inter-grain contact areas in a granular material. The chemical processes that lead to initiation are included by using a 2-D numerical heat transfer model of energy flux on a surface spot of a half-space medium with multiple species chemical reactions. A number of calculations are done and the time to ignition at a given fluence is obtained as a function of spot size. Then simple kinematic relations between macroscopic stresses and the inter-grain contact forces are developed and the shearing velocity at the contact region is related to the macroscopic shear strain rate. Combining these relations leads to an ignition criterion in terms of macroscopic pressure, shear-strain rate and time. Even though very simple approximations for most relations are used, the overall result is similar to commonly used detonation initiation criterion. Experiments to define the constants in the model are under development and will be described.

  8. Modeling of space environment impact on nanostructured materials. General principles

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  9. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  10. Modeling multiscale evolution of numerous voids in shocked brittle material

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  11. Models for predicting temperature dependence of material properties of aluminum

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Bhandarkar, Upendra V.; Joshi, Suhas S.

    2014-03-01

    A number of processes such as laser ablation, laser welding, electric discharge machining, etc involve high temperatures. Most of the processes involve temperatures much higher than the target melting and normal boiling point. Such large variation in target temperature causes a significant variation in its material properties. Due to the unavailability of experimental data on material properties at elevated temperatures, usually the data at lower temperatures is often erroneously extrapolated during modelling of these processes. Therefore, this paper attempts to evaluate the variation in material properties with temperature using some general and empirical theories, along with the available experimental data for aluminum. The evaluated properties of Al using the proposed models show a significant variation with temperature. Between room temperature and near-critical temperature (0.9Tc), surface reflectivity of Al varies from more than 90% to less than 50%, absorption coefficient decreases by a factor of 7, thermal conductivity decreases by a factor of 5, density decreases by a factor of 4, specific heat and latent heat of vapourization vary by a factor between 1.5 and 2. Applying these temperature-dependent material properties for modelling laser ablation suggest that optical properties have a greater influence on the process than thermophysical properties. The numerical predictions of the phase explosion threshold in laser ablation are within 5% of the experimental values.

  12. Force models for particle-dynamics simulations of granular materials

    SciTech Connect

    Walton, O.R.

    1994-12-01

    Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.

  13. Computational Modeling of Heterogeneous Reactive Materials at the Mesoscale

    NASA Astrophysics Data System (ADS)

    Baer, Mel R.

    1999-06-01

    Nearly all energetic materials, including explosives, pyrotechnics, propellants and intermetallics are heterogeneous and typically consist of a mixture of crystalline constituents and binders. These materials exhibit distinctly different thermal/mechanical/chemical behavior than pure materials because microstructure introduces internal boundary effects at the mesoscale. For example, the threshold to reaction is known to be greatly influenced by changes in crystal morphology, size, defect content and particle distribution. Much of current work in computational modeling describes macroscale behavior based on continuum theory or microscopic/atomistic behavior using molecular dynamics methods. The mesoscale has not been as extensively studied yet it is the level that bridges continuum and atomistic scales. Shock physics analysis can now take advantage of new parallel computing machines to provide improved resolution of shock processes at the mesoscale. This presentation discusses three-dimensional numerical simulations of shock impact on a realistic ensemble of crystalline grains. Detailed wave fields are resolved including the effects of material strength, thermal dissipation and reaction. Numerical simulations demonstrate that rapid material distortion occurs at crystal boundaries and the localization of energy produces hot-spots due to the effects of shock focusing and plastic work as material flows into interstitial regions. These studies provide new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and reaction of shocked heterogeneous materials involve states distinctly different from single jump states. The recent enhancements in numerical modeling due to massively-parallel computing pose new challenges for the development of novel experimental capabilities that can provide the detailed information of appropriate material descriptions and interface conditions at the mesoscale.

  14. Development of a hyperelastic material model of subsynovial connective tissue using finite element modeling.

    PubMed

    Matsuura, Yusuke; Thoreson, Andrew R; Zhao, Chunfeng; Amadio, Peter C; An, Kai-Nan

    2016-01-01

    Carpal tunnel syndrome (CTS) is one of the most common disorders of the hand. Assessment of carpal tunnel tissue mechanical behavior, especially that of the subsynovial connective tissue (SSCT), is important to better understand the mechanisms of CTS. The aim of this study was to develop a hyperelastic material model of human SSCT using mechanical test data and finite element modeling (FEM). Experimental shear test data of SSCT from 7 normal subjects and 7 CTS patients collected in a prior study was used to define material response. Hyperelastic coefficients (μ and α) from the first-order Ogden material property definition were iteratively solved using specimen-specific FEM models simulating the mechanical test conditions. A typical Ogden hyperelastic response for the normal and CTS SSCT was characterized by doing the same with data from all samples averaged together. The mean Ogden coefficients (μ/α) for the normal cadaver and CTS patient SSCT were 1.25×10(-5)MPa/4.51 and 1.99×10(-6)MPa/10.6, respectively when evaluating coefficients for individual specimens. The Ogden coefficients for the typical (averaged data) model for normal cadaver and CTS patient SSCT were 1.63×10(-5)MPa/3.93 and 5.00×10(-7)MPa/9.55, respectively. Assessment of SSCT mechanical response with a hyperelastic material model demonstrated significant differences between patient and normal cadaver. The refined assessment of these differences with this model may be important for future model development and in understanding clinical presentation of CTS. PMID:26482734

  15. Compendium of Material Composition Data for Radiation Transport Modeling

    SciTech Connect

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  16. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  17. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  18. Modelling for the mechanical behavior of cementitious granular materials

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxiong

    Crack damages due to load application are commonly observed in cementitious granular materials such as concrete, cemented sand, and ceramic materials. Previous analytical models for these types of materials have been developed based on continuum mechanics using a phenomenological approach. However, the theories of continuum mechanics have limitations when used for analyzing fracture mechanism and localized damages at a micro-scale level. Therefore, a microstructural approach is desirable for the analysis of these types of materials. In this dissertation, a contact law was derived for the inter-particle behavior of two particles connected by a cement binder. Microcracking process within binder was fully taken into account by regarding crack length as a basic damage factor. The binder initially contains small-size cracks which propagate and grow under external loading. As a result the binder is weakened with lower strength in shear and tension. Theory of fracture mechanics was employed to model the propagation and growth of these microcracks for both the shear fracture mode and normal fracture mode. The contact law was then incorporated in the analysis for the overall damage behaviors of cementitious granular material using the statistical micromechanics approach and the distinct element method. These overall damage behaviors include the stress-strain relationship, fracture strength, development of damage zone, and fatigue deformation. The micro-parameters affecting these behaviors are mainly the microcrack length and density, binder toughness, and binder elastic constants. In the numerical simulations, the cementitious granular materials were represented by 2-D random assemblies of rods bonded by cement binders with preexisting microcracks. Stress-strain relationships were modeled and validated for the uniaxial tension and compression tests, biaxial tension and compression tests, and double cantilever beam test. Force-deflection relationship and fatigue deformation

  19. Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials

    NASA Astrophysics Data System (ADS)

    Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi

    2015-02-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.

  20. Micromechanical modelling of quasi-brittle materials behavior

    SciTech Connect

    Li, V.C.

    1992-12-01

    This special issues on Micromechanical modelling of quasi-brittle materials behavior represents an outgrowth of presentations given at a symposium of the same title held at the 1991 ASME Applied Mechanics and Biomechanics Summer Conference at the Ohio State University. The symposium was organized to promote communication between researchers in three materials groups: rock, cementitious materials, ceramics and related composites. The enthusiastic response of both speakers and attendants at the ASME symposium convinced the organizer that it would be useful to put together a coherent volume which can reach a larger audience. It was decided that the papers individually and as a volume ought to provide a broader view, so that as much as possible, the work contained in each paper would be accessible to readers working in any of the three materials groups. Applied Mechanics Reviews presents an appropriate platform for achieving these objectives.

  1. Scratch modeling of polymeric materials with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hilbig, Travis

    It is impossible to determine the amount of money that is spent every replacing products damaged from wear, but it is safe to assume that it is in the millions of dollars. With metallic materials, liquid lubricants are often used to prevent wear from materials rubbing against one another. However, with polymeric materials, liquid lubricants cause swelling, creating an increase in friction and therefore increasing the wear. Therefore, a different method or methods to mitigate wear in polymers should be developed. For better understanding of the phenomenon of wear, scratch resistance testing can be used. For this project, classic molecular dynamics is used to study the mechanics of nanometer scale scratching on amorphous polymeric materials. As a first approach, a model was created for polyethylene, considering intramolecular and intermolecular interactions as well as mass and volume of the CH 2 monomers in a polymer chain. The obtained results include analysis of penetration depth and recovery percentage related to indenter force and size.

  2. An Overview of Mesoscale Material Modeling with Eulerian Hydrocodes

    NASA Astrophysics Data System (ADS)

    Benson, David

    2013-06-01

    Eulerian hydrocodes were originally developed for simulating strong shocks in solids and fluids, but their ability to handle arbitrarily large deformations and the formation of new free surfaces makes them attractive for simulating the deformation and failure of materials at the mesoscopic scale. A summary of some of the numerical techniques that have been developed to address common issues for this class of problems is presented with the shock compression of powders used as a model problem. Achieving the correct packing density with the correct statistical distribution of particle sizes and shapes is, in itself, a challenging problem. However, since Eulerian codes permit multiple materials within each element, or cell, the material interfaces do not have to follow the mesh lines. The use of digital image processing to map the pixels of micrographs to the Eulerian mesh has proven to be a popular and useful means of creating accurate models of complex microstructures. Micro CT scans have been used to extend this approach to three dimensions for several classes of materials. The interaction between the particles is of considerable interest. During shock compression, individual particles may melt and form jets, and the voids between them collapse. Dynamic interface ordering has become a necessity, and many codes now have a suite of options for handling multi-material mechanics. True contact algorithms are now replacing multi-material approximations in some cases. At the mesoscale, material properties often vary spatially due to sub-scale effects. Using a large number of material species to represent the variations is usually unattractive. Directly specifying the properties point-wise as history variables has not proven successful because the limiters in the transport algorithms quickly smooth out the variations. Circumventing the limiter problem is shown to be relatively simple with the use of a reference configuration and the transport of the initial coordinates

  3. Chemical modeling of boron adsorption by humic materials using the constant capacitance model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The constant capacitance surface complexation model was used to describe B adsorption behavior on reference Aldrich humic acid, humic acids from various soil environments, and dissolved organic matter extracted from sewage effluents. The reactive surface functional groups on the humic materials wer...

  4. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  5. Arctic sea ice modeling with the material-point method.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  6. Computational modelling of cohesive cracks in material structures

    NASA Astrophysics Data System (ADS)

    Vala, J.; Jarošová, P.

    2016-06-01

    Analysis of crack formation, considered as the creation of new surfaces in a material sample due to its microstructure, leads to nontrivial physical, mathematical and computational difficulties even in the rather simple case of quasistatic cohesive zone modelling inside the linear elastic theory. However, quantitative results from such evaluations are required in practice for the development and design of advanced materials, structures and technologies. Although most available software tools apply ad hoc computational predictions, this paper presents the proper formulation of such model problem, including its verification, and sketches the more-scale construction of finite-dimensional approximation of solutions, utilizing the finite element or similar techniques, together with references to original simulations results from engineering practice.

  7. Explicit particle-dynamics model for granular materials

    SciTech Connect

    Walton, O.R.

    1982-05-01

    Discrete-particle simulation of granular-material motion is developing into a viable method for studying how various interparticulate forces affect the bulk behavior of granular solids. A two-dimensional, polygonal-particle computer model, developed from the ideas of Cundall (1976), and incorporating other techniques from molecular dynamics, is being used in a study of the flow behavior of rubblized oil shale. Direct comparison with physical tests involving multiblock systems have verified the model's ability to predict the motion of real materials. Computer generated movies and high-speed motion pictures of physical tests involving gravity flow of 2-dimensional polygonal particles show formation of temporary arches followed by dynamic rupture and reformation of new arches. Direct shear tests on oil-shale rubble involving very large displacements indicate significant circulatory motion in the rubble. Computer simulation of the direct shear tests show similar behavior.

  8. Modeling interfaces between solids: Application to Li battery materials

    NASA Astrophysics Data System (ADS)

    Lepley, N. D.; Holzwarth, N. A. W.

    2015-12-01

    We present a general scheme to model an energy for analyzing interfaces between crystalline solids, quantitatively including the effects of varying configurations and lattice strain. This scheme is successfully applied to the modeling of likely interface geometries of several solid state battery materials including Li metal, Li3PO4 , Li3PS4 , Li2O , and Li2S . Our formalism, together with a partial density of states analysis, allows us to characterize the thickness, stability, and transport properties of these interfaces. We find that all of the interfaces in this study are stable with the exception of Li3PS4/Li . For this chemically unstable interface, the partial density of states helps to identify mechanisms associated with the interface reactions. Our energetic measure of interfaces and our analysis of the band alignment between interface materials indicate multiple factors, which may be predictors of interface stability, an important property of solid electrolyte systems.

  9. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGESBeta

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  10. Extended model of the photoinitiation mechanisms in photopolymer materials

    SciTech Connect

    Liu Shui; Gleeson, Michael R.; Sabol, Dusan; Sheridan, John T.

    2009-11-15

    In order to further improve photopolymer materials for applications such as data storage, a deeper understanding of the photochemical mechanisms which are present during the formation of holographic gratings has become ever more crucial. This is especially true of the photoinitiation processes, since holographic data storage requires multiple sequential short exposures. Previously, models describing the temporal variation in the photosensitizer (dye) concentration as a function of exposure have been presented and applied to two different types of photosensitizer, i.e., Methylene Blue and Erythrosine B, in a polyvinyl alcohol/acrylamide based photopolymer. These models include the effects of photosensitizer recovery and bleaching under certain limiting conditions. In this paper, based on a detailed study of the photochemical reactions, the previous models are further developed to more physically represent these effects. This enables a more accurate description of the time varying dye absorption, recovery, and bleaching, and therefore of the generation of primary radicals in photopolymers containing such dyes.

  11. Universality and depinning models for plastic yield in amorphous materials

    NASA Astrophysics Data System (ADS)

    Budrikis, Zoe; Fernandez Castellano, David; Sandfeld, Stefan; Zaiser, Michael; Zapperi, Stefano

    Plastic yield in amorphous materials occurs as a result of complex collective dynamics of local reorganizations, which gives rise to rich phenomena such as strain localization, intermittent dynamics and power-law distributed avalanches. While such systems have received considerable attention, both theoretical and experimental, controversy remains over the nature of the yielding transition. We present a new fully-tensorial coarsegrained model in 2D and 3D, and demonstrate that the exponents describing avalanche distributions are universal under a variety of loading conditions, system dimensionality and size, and boundary conditions. Our results show that while depinning-type models in general are apt to describe the system, mean field depinning models are not.

  12. Materials constitutive models for nonlinear analysis of thermally cycled structures

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.

  13. Modeling Permanent Deformations of Superelastic and Shape Memory Materials

    PubMed Central

    Urbano, Marco Fabrizio; Auricchio, Ferdinando

    2015-01-01

    In this paper we propose a modification of the polycrystalline shape memory alloy constitutive model originally proposed by Souza. By introducing a transformation strain energy with two different hardening coefficients, we are able to take into account the effect of the martensitic transformation of unfavorably oriented grains occurring after the main plateau. By choosing a proper second hardening coefficient, it is possible to reproduce the correct stress strain behavior of the material after the plateau without the need of introducing a much smaller Young modulus for martensite. The proposed modification is introduced in the model comprising permanent deformation effects. Model results for uniaxial stress tests are compared to experimental results showing good agreement. PMID:26110494

  14. Numerical modeling of materials processes with fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yanke, Jeffrey Michael

    A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a

  15. Modeling of InGaSb thermophotovoltaic cells and materials

    SciTech Connect

    Zierak, M.; Borrego, J.M.; Bhat, I.; Gutmann, R.J.; Charache, G.

    1997-05-01

    A closed form computer program has been developed for the simulation and optimization of In{sub x}Ga{sub 1{minus}x}Sb thermophotovoltaic cells operating at room temperature. The program includes material parameter models of the energy bandgap, optical absorption constant, electron and hole mobility, intrinsic carrier concentration and index of refraction for any composition of GaInSb alloys.

  16. Modeling the Nano-indentation of Self-healing Materials

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Kolmakov, German V.; Yashin, Victor V.; Kowalewski, Tomasz; Matyjaszewski, Krzysztof; Balazs, Anna C.

    2011-03-01

    We use computational modeling to determine the mechanical response of crosslinked nanogels to an atomic force microscope (AFM) tip that is moved through the sample. We focus on two-dimensional systems where the nanogels are interconnected by both strong and labile bonds. We model each nanogel as a deformable particle using the modified lattice spring model that is applicable to a broad range of elastic materials.We utilize the Bell model to describe the bonds between these nanogel particles, and subsequently, simulate the rupturing of bonds due the force exerted by the moving indenter. The ruptured labile bonds can readily reform and thus, can effectively mend the cavities formed by the moving AFM tip. We determine how the fraction of labile bonds, the nanogel stiffness, and the size and velocity of the moving tip affect the self-healing behavior of the material. We find that samples containing just 10 % of labile bonds can heal to approximately 90 % of their original, undeformed morphology.

  17. Modeling of radiation effects on nuclear waste package materials

    SciTech Connect

    Simonson, S.A.

    1988-09-01

    A methodology is developed for the assessment of radiation effects on nuclear waste package materials. An assessment of the current status of understanding with regard to waste package materials and their behavior in radiation environments is presented. The methodology is used to make prediction as to the chemically induced changes in the groundwater surrounding nuclear waste packages in a repository in tuff. The predictions indicate that mechanisms not currently being pursued by the Department of Energy may be a factor in the long-term performance of nuclear waste packages. The methodology embodies a physical model of the effects of radiation on aqueous solutions. Coupled to the physical model is a method for analyzing the complex nature of the physical model using adjoint sensitivity analysis. The sensitivity aid in both the physical understanding of the processes involved as well as aiding in eliminating portions of the model that have no bearing on the desired results. A computer implementation of the methodology is provided. 128 refs.

  18. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  19. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  20. Turning statistical physics models into materials design engines.

    PubMed

    Miskin, Marc Z; Khaira, Gurdaman; de Pablo, Juan J; Jaeger, Heinrich M

    2016-01-01

    Despite the success statistical physics has enjoyed at predicting the properties of materials for given parameters, the inverse problem, identifying which material parameters produce given, desired properties, is only beginning to be addressed. Recently, several methods have emerged across disciplines that draw upon optimization and simulation to create computer programs that tailor material responses to specified behaviors. However, so far the methods developed either involve black-box techniques, in which the optimizer operates without explicit knowledge of the material's configuration space, or require carefully tuned algorithms with applicability limited to a narrow subclass of materials. Here we introduce a formalism that can generate optimizers automatically by extending statistical mechanics into the realm of design. The strength of this approach lies in its capability to transform statistical models that describe materials into optimizers to tailor them. By comparing against standard black-box optimization methods, we demonstrate how optimizers generated by this formalism can be faster and more effective, while remaining straightforward to implement. The scope of our approach includes possibilities for solving a variety of complex optimization and design problems concerning materials both in and out of equilibrium. PMID:26684770

  1. Micromechanical modeling of dynamic fracture in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Zhai, Jun

    Fracture is the principal mode of failure for a variety of materials under dynamic conditions. The mathematical complexity precludes analytical solution to be obtained. The difficulty is especially pronounced when material inhomogeneities and anisotropy need to be considered. Recently, alumina/titanium diboride (Al2O3/TiB 2) composites with a wide range of micro and nano phase sizes and phase morphologies have been developed in the School of Materials Science and Engineering at Georgia Tech. In order to understand failure mechanisms in this material system and the influence of phase morphologies and phase size on fracture resistance, a numerical framework is needed to explicitly account for arbitrary microstructures and fracture patterns. Micromechanical modeling and simulation provide an important approach for analyzing the effects of material inhomogeneity and anisotropy over a range of microscopic length scales. A framework is proposed in this research for explicit modeling and simulation of microscopic damage/fracture/failure processes. The model and approach account for the real arbitrary microstructural morphologies. A cohesive finite element method (CFEM) based on cohesive surface theory is used. A fully dynamic kinetic framework and finite deformation kinematic formulation are used. Mesh independence of solution is studied and verified. Idealized microstructures containing circular and elliptical particles and real microstructures with arbitrary morphologies are used to investigate the effects of phase morphologies, phase size and phase anisotropy on fracture of this ceramic composite system. Numerical results show that rnicrostructural variations give rise to a range of fracture resistance. Higher fracture resistance is obtained from microstructures with fine evenly distributed microstructural reinforcement entities. The failure mode is found to be significantly influenced by the interfacial bonding strength between the phases. Two distinct failure modes

  2. Materials modeling by design: applications to amorphous solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Tafen, D. N.; Inam, F.; Cai, Bin; Drabold, D. A.

    2009-02-01

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe1.5. We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC.

  3. Materials modeling by design: applications to amorphous solids.

    PubMed

    Biswas, Parthapratim; Tafen, D N; Inam, F; Cai, Bin; Drabold, D A

    2009-02-25

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe(1.5). We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC. PMID:21817359

  4. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  5. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.

    PubMed

    San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan

    2012-02-01

    Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM. PMID:22156291

  6. Life prediction and constitutive models for anisotropic materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1982-01-01

    The intent of this program is to develop a basic understanding of cyclic creep-fatigue deformation mechanisms and damage accumulation, a capability for reliable life prediction, and the ability to model the constitutive behavior of anisotropic single crystal (SC) and directionally solidified or recrystallized (DSR) comprise the program, and the work breakdown for each option reflects a distinct concern for two classes of anisotropic materials, SC and DSR materials, at temperatures encountered in the primary gas path (airfoil temperatures), and at temperatures typical of the blade root attachment and shank area. Work directed toward the higher temperature area of concern in the primary gas path includes effects of coatings on the behavior and properties of the materials of interest. The blade root attachment work areas will address the effects of stress concentrations associated with attachment features.

  7. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  8. Three-dimensional micromechanical modeling of voided polymeric materials

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Parks, D. M.; Boyce, M. C.

    2002-02-01

    A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states. The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix. The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality. The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for

  9. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  10. Turning statistical physics models into materials design engines

    PubMed Central

    Miskin, Marc Z.; Khaira, Gurdaman; de Pablo, Juan J.; Jaeger, Heinrich M.

    2016-01-01

    Despite the success statistical physics has enjoyed at predicting the properties of materials for given parameters, the inverse problem, identifying which material parameters produce given, desired properties, is only beginning to be addressed. Recently, several methods have emerged across disciplines that draw upon optimization and simulation to create computer programs that tailor material responses to specified behaviors. However, so far the methods developed either involve black-box techniques, in which the optimizer operates without explicit knowledge of the material’s configuration space, or require carefully tuned algorithms with applicability limited to a narrow subclass of materials. Here we introduce a formalism that can generate optimizers automatically by extending statistical mechanics into the realm of design. The strength of this approach lies in its capability to transform statistical models that describe materials into optimizers to tailor them. By comparing against standard black-box optimization methods, we demonstrate how optimizers generated by this formalism can be faster and more effective, while remaining straightforward to implement. The scope of our approach includes possibilities for solving a variety of complex optimization and design problems concerning materials both in and out of equilibrium. PMID:26684770

  11. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  12. Material modeling for multistage tube hydroforming process simulation

    NASA Astrophysics Data System (ADS)

    Saboori, Mehdi

    strain on the nucleation, growth and coalescence of voids are investigated through a new user material for burst prediction during tube hydroforming. A numerical procedure for both plasticity and fracture is developed and implemented into 3D explicit commercial finite element software (LS-DYNA) through a new user material subroutine. The FLDs and predicted bursting pressure results are compared to the experimental data to validate the models. Finally, the new user material model is used to predict the bursting point of some real tube hydroforming parts such as round to square and round to V parts. Then, the predicted bursting pressure results are compared to the experimental data to validate the models in real and multistep tube hydroforming processes.

  13. A Reproducible Oral Microcosm Biofilm Model for Testing Dental Materials

    PubMed Central

    Rudney, J.D.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.S.; Reilly, C.; Fok, A.S.; Aparicio, C.

    2012-01-01

    Aims Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite disks were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms were analyzed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose-pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veilonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. PMID:22925110

  14. Model for temperature-dependent magnetization of nanocrystalline materials

    SciTech Connect

    Bian, Q.; Niewczas, M.

    2015-01-07

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau–Lifshitz–Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc–Ni is discussed.

  15. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  16. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  17. Mooney-Rivlin biomechanical modeling of lung with Inhomogeneous material.

    PubMed

    Nasehi Tehrani, J; Wang, J

    2015-01-01

    In this study, the Mooney-Rivlin material with hyperelastic strain energy was proposed for biomechanical modeling of the lung. We modeled the lung as an inhomogeneous Mooney-Rivlin material with uncoupled deviatoric and volumetric behavior. The proposed method was evaluated on the lungs of eight lung cancer patients. For each patient, the lung was segmented from the 4D-CT images and tetrahedral volume mesh of the lung in phase 50% was created by using the adaptive mesh generation toolkit. The demons deformable registration algorithm was used to extract the displacement vector fields (DVFs). The Jacobian of the deformation gradient was calculated from DVFs, and the lung strain energy function was optimized to improve the tumor center of mass (TCM) motion simulation accuracy between respiratory phase 50% and 0%. The average TCM motion simulation error for the proposed strategy is 1.95 mm for eight patients. We observed 13% improvement in the TCM position prediction compared with the homogeneous Mooney-Rivlin modeling. PMID:26738123

  18. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    SciTech Connect

    Malchow, Russell L.; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela; Marsac, Kara; Hausrath, Elisabeth; Adcock, Christopher

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  19. Constitutive models for static and dynamic response of geotechnical materials

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, S.

    1983-11-01

    The objective of this research program has been to develop realistic macroscopic constitutive relations which describe static and dynamic properties of geotechnical materials (soils and rocks). To this end a coordinated theoretical and experimental activity has been followed. The theoretical work includes a balanced combination of statistical microscopic (at the grain size level) modeling and a nonclassical elasto-plastic macroscopic formulation. The latter includes the effects of internal friction, plastic compressibility, and pressure sensitivity, as well as anisotropy which is commonly observed in geotechnical materials. The following specific goals have been sought: (1) to develop three-dimensional constitutive relations under ordinary or high pressures (such as those induced by blasting or tectonic forces which may cause a large amount of densification by relative motion and possible crushing of grains); and (2) to examine and characterize the behavior of saturated granular materials under dynamic loading. The latter item includes characterization of possible liquefaction and subsidence which may be induced in granular materials under confining pressure by ground vibration or passage of waves. The theoretical work has been carefully coordinated with key experiments in order to: (1) understand the basic physics of the process, both at macroscopic and microscopic levels; (2) to verify the corresponding theoretical predictions; and (3) to establish relevant material parameters.

  20. A variable polytrope index applied to planet and material models

    NASA Astrophysics Data System (ADS)

    Weppner, S. P.; McKelvey, J. P.; Thielen, K. D.; Zielinski, A. K.

    2015-09-01

    We introduce a new approach to a century-old assumption which enhances not only planetary interior calculations but also high-pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method, we create a high-quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 1018 Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our Solar system. We argue that the bulk modulus and its derivatives have been underutilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe that this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

  1. A variable polytrope index applied to planet and material models

    NASA Astrophysics Data System (ADS)

    Thielen, Kevin; Weppner, Stephen; Zielinski, Alexander

    2016-01-01

    We introduce a new approach to a century-old assumption which enhances not only planetary interior calculations but also high-pressure material physics. We show that the polytropic index is the derivative of the bulk modulus with respect to pressure. We then augment the traditional polytrope theory by including a variable polytrope index within the confines of the Lane-Emden differential equation. To investigate the possibilities of this method, we create a high-quality universal equation of state, transforming the traditional polytrope method to a tool with the potential for excellent predictive power. The theoretical foundation of our equation of state is the same elastic observable which we found equivalent to the polytrope index, the derivative of the bulk modulus with respect to pressure. We calculate the density-pressure of six common materials up to 1018 Pa, mass-radius relationships for the same materials, and produce plausible density-radius models for the rocky planets of our Solar system. We argue that the bulk modulus and its derivatives have been underutilized in previous planet formation methods. We constrain the material surface observables for the inner core, outer core, and mantle of planet Earth in a systematic way including pressure, bulk modulus, and the polytrope index in the analysis. We believe that this variable polytrope method has the necessary apparatus to be extended further to gas giants and stars. As supplemental material we provide computer code to calculate multi-layered planets.

  2. Modelling challenges for battery materials and electrical energy storage

    NASA Astrophysics Data System (ADS)

    Muller, Richard P.; Schultz, Peter A.

    2013-10-01

    Many vital requirements in world-wide energy production, from the electrification of transportation to better utilization of renewable energy production, depend on developing economical, reliable batteries with improved performance characteristics. Batteries reduce the need for gasoline and liquid hydrocarbons in an electrified transportation fleet, but need to be lighter, longer-lived and have higher energy densities, without sacrificing safety. Lighter and higher-capacity batteries make portable electronics more convenient. Less expensive electrical storage accelerates the introduction of renewable energy to electrical grids by buffering intermittent generation from solar or wind. Meeting these needs will probably require dramatic changes in the materials and chemistry used by batteries for electrical energy storage. New simulation capabilities, in both methods and computational resources, promise to fundamentally accelerate and advance the development of improved materials for electric energy storage. To fulfil this promise significant challenges remain, both in accurate simulations at various relevant length scales and in the integration of relevant information across multiple length scales. This focus section of Modelling and Simulation in Materials Science and Engineering surveys the challenges of modelling for energy storage, describes recent successes, identifies remaining challenges, considers various approaches to surmount these challenges and discusses the potential of these methods for future battery development. Zhang et al begin with atoms and electrons, with a review of first-principles studies of the lithiation of silicon electrodes, and then Fan et al examine the development and use of interatomic potentials to the study the mechanical properties of lithiated silicon in larger atomistic simulations. Marrocchelli et al study ionic conduction, an important aspect of lithium-ion battery performance, simulated by molecular dynamics. Emerging high

  3. A multimodal location and routing model for hazardous materials transportation.

    PubMed

    Xie, Yuanchang; Lu, Wei; Wang, Wen; Quadrifoglio, Luca

    2012-08-15

    The recent US Commodity Flow Survey data suggest that transporting hazardous materials (HAZMAT) often involves multiple modes, especially for long-distance transportation. However, not much research has been conducted on HAZMAT location and routing on a multimodal transportation network. Most existing HAZMAT location and routing studies focus exclusively on single mode (either highways or railways). Motivated by the lack of research on multimodal HAZMAT location and routing and the fact that there is an increasing demand for it, this research proposes a multimodal HAZMAT model that simultaneously optimizes the locations of transfer yards and transportation routes. The developed model is applied to two case studies of different network sizes to demonstrate its applicability. The results are analyzed and suggestions for future research are provided. PMID:22633882

  4. Model of heterogeneous material dissolution in simulated biological fluid

    NASA Astrophysics Data System (ADS)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  5. Damage Prediction Models for Advanced Materials and Composites

    NASA Technical Reports Server (NTRS)

    Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)

    2005-01-01

    In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.

  6. Seismoelectric wave propagation numerical modelling in partially saturated materials

    NASA Astrophysics Data System (ADS)

    Warden, S.; Garambois, S.; Jouniaux, L.; Brito, D.; Sailhac, P.; Bordes, C.

    2013-09-01

    To better understand and interpret seismoelectric measurements acquired over vadose environments, both the existing theory and the wave propagation modelling programmes, available for saturated materials, should be extended to partial saturation conditions. We propose here an extension of Pride's equations aiming to take into account partially saturated materials, in the case of a water-air mixture. This new set of equations was incorporated into an existing seismoelectric wave propagation modelling code, originally designed for stratified saturated media. This extension concerns both the mechanical part, using a generalization of the Biot-Gassmann theory, and the electromagnetic part, for which dielectric permittivity and electrical conductivity were expressed against water saturation. The dynamic seismoelectric coupling was written as a function of the streaming potential coefficient, which depends on saturation, using four different relations derived from recent laboratory or theoretical studies. In a second part, this extended programme was used to synthesize the seismoelectric response for a layered medium consisting of a partially saturated sand overburden on top of a saturated sandstone half-space. Subsequent analysis of the modelled amplitudes suggests that the typically very weak interface response (IR) may be best recovered when the shallow layer exhibits low saturation. We also use our programme to compute the seismoelectric response of a capillary fringe between a vadose sand overburden and a saturated sand half-space. Our first modelling results suggest that the study of the seismoelectric IR may help to detect a sharp saturation contrast better than a smooth saturation transition. In our example, a saturation contrast of 50 per cent between a fully saturated sand half-space and a partially saturated shallow sand layer yields a stronger IR than a stepwise decrease in saturation.

  7. CASTING DEFECT MODELING IN AN INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING APPROACH

    SciTech Connect

    Sabau, Adrian S

    2015-01-01

    To accelerate the introduction of new cast alloys, the simultaneous modeling and simulation of multiphysical phenomena needs to be considered in the design and optimization of mechanical properties of cast components. The required models related to casting defects, such as microporosity and hot tears, are reviewed. Three aluminum alloys are considered A356, 356 and 319. The data on calculated solidification shrinkage is presented and its effects on microporosity levels discussed. Examples are given for predicting microporosity defects and microstructure distribution for a plate casting. Models to predict fatigue life and yield stress are briefly highlighted here for the sake of completion and to illustrate how the length scales of the microstructure features as well as porosity defects are taken into account for modeling the mechanical properties. Thus, the data on casting defects, including microstructure features, is crucial for evaluating the final performance-related properties of the component. ACKNOWLEDGEMENTS This work was performed under a Cooperative Research and Development Agreement (CRADA) with the Nemak Inc., and Chrysler Co. for the project "High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines. The author would also like to thank Amit Shyam for reviewing the paper and Andres Rodriguez of Nemak Inc. Research sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of this research was conducted through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, which is sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  8. Modeling Material Flow Characteristics Over Multiple Recrystallization Cycles

    SciTech Connect

    Foster, A. D.; Lin, J.; Dean, T. A.; Farrugia, D. C. J.

    2007-04-07

    The evolution of steel microstructure during multi-pass hot rolling processes may include several recrystallization (RX) stages. Assuming a sufficient dislocation density is present at the exit of the roll, RX will occur during the interpass time between rolling stages. This will result in the material reaching the next rolling stand in either a full recrystallized or part recrystallized state. In this study an equation set is proposed in which complex RX cycles may be modeled, including overlapping cycles. Other microstructure information such as grain size evolution may be mapped.

  9. Modeling aspects of the dynamic response of heterogeneous materials

    SciTech Connect

    Ionita, Axinte; Clements, Brad; Mas, Eric

    2009-01-01

    In numerical simulations of engineering applications involving heterogeneous materials capturing the local response coming from a distribution of heterogeneities can lead to a very large model thus making simulations difficult. The use of homogenization techniques can reduce the size of the problem but will miss the local effects. Homogenization can also be difficult if the constituents obey different types of constitutive laws. Additional complications arise if inelastic deformation. In such cases a two-scale approach is prefened and tills work addresses these issues in the context of a two-scale Finite Element Method (FEM). Examples of using two-scale FEM approaches are presented.

  10. Characterization and Modeling of Materials for Kr-Xe Separations

    SciTech Connect

    Forster, Paul; Naduvalath, Balakrishnan; Czerwinski, Ken

    2015-11-16

    We sought to identify practical adsorbents for the separation of Kr from Xe through pressure swing adsorption. We spent appreciable efforts on two categories of materials: metal-organic frameworks (MOFs) and zeolites. MOFs represent a new and exciting sorbent with numerous new framework topologies and surface chemistries. Zeolites are widely used and available commercial adsorbents. We have employed a combination of gas sorption analysis to analyze gas – surface interactions, computational modelling to both aid in interpreting experimental results and to predict practical adsorbents, and in-situ crystallographic studies to confirm specific experimental results.

  11. Towards enhancing Sandia's capabilities in multiscale materials modeling and simulation.

    SciTech Connect

    Aidun, John Bahram; Fang, Huei Eliot; Barbour, John Charles; Westrich, Henry Roger; Chen, Er-Ping

    2004-01-01

    We report our conclusions in support of the FY 2003 Science and Technology Milestone ST03-3.5. The goal of the milestone was to develop a research plan for expanding Sandia's capabilities in materials modeling and simulation. From inquiries and discussion with technical staff during FY 2003 we conclude that it is premature to formulate the envisioned coordinated research plan. The more appropriate goal is to develop a set of computational tools for making scale transitions and accumulate experience with applying these tools to real test cases so as to enable us to attack each new problem with higher confidence of success.

  12. First-principles modelling of materials: From polythiophene to phosphorene

    NASA Astrophysics Data System (ADS)

    Ziletti, Angelo

    As a result of the computing power provided by the current technology, computational methods now play an important role in modeling and designing materials at the nanoscale. The focus of this dissertation is two-fold: first, new computational methods to model nanoscale transport are introduced, then state-of-the-art tools based on density functional theory are employed to explore the properties of phosphorene, a novel low dimensional material with great potential for applications in nanotechnology. A Wannier function description of the electron density is combined with a generalized Slater-Koster interpolation technique, enabling the introduction of a new computational method for constructing first-principles model Hamiltonians for electron and hole transport that maintain the density functional theory accuracy at a fraction of the computational cost. As a proof of concept, this new approach is applied to model polythiophene, a polymer ubiquitous in organic photovoltaic devices. A new low dimensional material, phosphorene - a single layer of black phosphorous - the phosphorous analogue of graphene was first isolated in early 2014 and has attracted considerable attention. It is a semiconductor with a sizable band gap, which makes it a perfect candidate for ultrathin transistors. Multi-layer phosphorene transistors have already achieved the highest hole mobility of any two-dimensional material apart from graphene. Phosphorene is prone to oxidation, which can lead to degradation of electrical properties, and eventually structural breakdown. The calculations reported here are some of the first to explore this oxidation and reveal that different types of oxygen defects are readily introduced in the phosphorene lattice, creating electron traps in some situations. These traps are responsible for the non-ambipolar behavior observed by experimental collaborators in air-exposed few-layer black phosphorus devices. Calculation results predict that air exposure of phosphorene

  13. On Lagrangian stochastic modelling of material transport in oceanic gyres

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2002-11-01

    The introduction of ‘spin’ into second-order Lagrangian stochastic models (LSM) for stationary turbulence with broken reflectional symmetry is shown to result in the prediction of super-diffusive transport at intermediate times and the occurrence of anomalously large normal diffusion at later times. These characteristic features of material transport in oceanic gyres cannot be reproduced by two-dimensional first-order LSM. A correspondence is established between high-dimensional, low-order LSM and lower-dimensional, higher-order LSM. It is found that time-dependent spin statistics allow for the coexistence of rotating particle trajectories and non-oscillatory Lagrangian velocity autocorrelation functions.

  14. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    SciTech Connect

    Gunzburger, Max

    2015-02-17

    We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.

  15. Multi-component transparent conducting oxides: progress in materials modelling

    NASA Astrophysics Data System (ADS)

    Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai

    2011-08-01

    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on density functional theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n and (In2O3)m(Ga2O3)l(ZnO)n; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high performance of amorphous oxide semiconductors. On the basis of these advances, the challenge of the rational design of novel electroceramic materials is discussed.

  16. Multiscale Modeling of Metallic Materials Containing Embedded Particles

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Iesulauro, Erin; Glaessgen, Edward H.

    2004-01-01

    Multiscale modeling at small length scales (10(exp -9) to 10(exp -3) m) is discussed for aluminum matrices with embedded particles. A configuration containing one particle surrounded by about 50 grains and subjected to uniform tension and lateral constraint is considered. The analyses are performed to better understand the effects of material configuration on the initiation and progression of debonding of the particles from the surrounding aluminum matrix. Configurational parameters considered include particle aspect ratio and orientation within the surrounding matrix. Both configurational parameters are shown to have a significant effect on the behavior of the materials as a whole. For elliptical particles with the major axis perpendicular to the direction of loading, a particle with a 1:1 aspect ratio completely debonds from the surrounding matrix at higher loads than particles with higher aspect ratios. As the particle major axis is aligned with the direction of the applied load, increasing amounts of load are required to completely debond the particles.

  17. RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2013-06-05

    The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include all the contents and configurations, including the addition of a new content, and its submittal for recertification.

  18. Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials

    NASA Astrophysics Data System (ADS)

    Chiu Huang, Cheng-Kai

    Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current

  19. Multiscale Modeling of Biomimetic Self-Healing Materials

    NASA Astrophysics Data System (ADS)

    Kolmakov, German; Scarbrough, Amy; Gnegy, Chet; Salib, Isaac; Matyjaszewski, Krzysztof; Balazs, Anna

    2011-03-01

    We use a hybrid computational approach to examine the self-healing behavior of polymeric materials composed of soft nanogel particles crosslinked by a network of both stable and labile bonds. The latter are highly reactive and therefore, can break and readily reform. To capture the multiscale structure of the material, we take advantage of the multi-level Hierarchical Bell Model (mHBM) where the labile crosslinks are organized into M levels of interconnected elements, each of them represents a number of bonds that lie in parallel and is described by a single-level HBM. We vary the number of hierarchical levels M and the number of labile bonds in each element to determine optimal conditions for improving strength and toughness of the material. We also compare the properties of the multiscale material with those for the gel, in which only single-level interconnections are presented. This study takes its inspiration from biological systems that show remarkable resilience in response to mechanical deformation.

  20. Model-Based Material Parameter Estimation for Terahertz Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kniffin, Gabriel Paul

    Many materials such as drugs and explosives have characteristic spectral signatures in the terahertz (THz) band. These unique signatures imply great promise for spectral detection and classification using THz radiation. While such spectral features are most easily observed in transmission, real-life imaging systems will need to identify materials of interest from reflection measurements, often in non-ideal geometries. One important, yet commonly overlooked source of signal corruption is the etalon effect -- interference phenomena caused by multiple reflections from dielectric layers of packaging and clothing likely to be concealing materials of interest in real-life scenarios. This thesis focuses on the development and implementation of a model-based material parameter estimation technique, primarily for use in reflection spectroscopy, that takes the influence of the etalon effect into account. The technique is adapted from techniques developed for transmission spectroscopy of thin samples and is demonstrated using measured data taken at the Northwest Electromagnetic Research Laboratory (NEAR-Lab) at Portland State University. Further tests are conducted, demonstrating the technique's robustness against measurement noise and common sources of error.

  1. Modeling Natural Space Ionizing Radiation Effects on External Materials

    NASA Technical Reports Server (NTRS)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  2. Model of the magnetization of nanocrystalline materials at low temperatures

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2014-07-01

    A theoretical model incorporating the material texture has been developed to simulate the magnetic properties of nanocrystalline materials at low temperatures where the effect of thermal energy on magnetization is neglected. The method is based on Landau-Lifshitz-Gilbert (LLG) theory and it describes the magnetization dynamics of individual grains in the effective field. The modified LLG equation incorporates the intrinsic fields from the intragrain magnetocrystalline and grain boundary anisotropies and the interacting fields from intergrain dipolar and exchange couplings between the neighbouring grains. The model is applied to study magnetic properties of textured nanocrystalline Ni samples at 2K and is capable to reproduce closely the hysteresis loop behaviour at different orientations of applied magnetic field. Nanocrystalline Ni shows the grain boundary anisotropy constant K 1 s = - 6.0 × 104 J / m 3 and the intergrain exchange coupling denoted by the effective exchange constant Ap = 2.16 × 10-11 J/m. Analytical expressions to estimate the intergrain exchange energy density and the effective exchange constant have been formulated.

  3. Modelling of residually stressed materials with application to AAA.

    PubMed

    Ahamed, T; Dorfmann, L; Ogden, R W

    2016-08-01

    Residual stresses are generated in living tissues by processes of growth and adaptation and they significantly influence the mechanical behaviour of the tissues. Thus, to effectively model the elastic response of the tissues relative to a residually stressed configuration the residual stresses need to be incorporated into the constitutive equations. The purposes of this paper are (a) to summarise a general elastic constitutive formulation that includes residual stress, (b) to specify the tensors needed for the three-dimensional implementation of the theory in a nonlinear finite element code, and (c) to use the theory and its implementation to evaluate the wall stress distribution in an abdominal aortic aneurysm (AAA) using patient specific geometry and material model parameters. The considered material is anisotropic with two preferred directions indicating the orientation of the collagen fibres in the aortic tissue. The method described in this paper is general and can be used, by specifying appropriate energy functions, to investigate other residually stressed biological systems. PMID:26874252

  4. Simplified modeling of transition to detonation in porous energetic materials

    SciTech Connect

    Stewart, D.S. ); Asay, B.W. ); Prasad, K. )

    1994-07-01

    A simplified model that can predict the transitions from compaction to detonation and shock to detonation is given with the aim of describing experiments in beds of porous HMX. In the case of compaction to detonation, the energy of early impact generates a slowly moving, convective-reactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined deflagration to detonation transition. A single-phase state variable theory is adopted in contrast to a two-phase axiomatic mixture theory. The ability of the porous material to compact is treated as an endothermic process. Reaction is treated as an exothermic process. The algebraic (Rankine--Hugoniot) steady wave analysis is given for inert compaction waves and steady detonation waves in a piston supported configuration, typical of the experiments carried out in porous HMX. A structure analysis of the steady compaction wave is given. Numerical simulations of deflagration to detonation are carried out for parameters that describe an HMX-like material and compared with the experiments. The simple model predicts the high density plug that is observed in the experiments and suggests that the leading front of the plug is a secondary compaction wave. A shock to detonation transition is also numerically simulated.

  5. Otoplasty Outcomes With Different Suture Materials in a Rabbit Model.

    PubMed

    Taylor, Benjamin A; Hong, Paul

    2016-03-01

    Otoplasty is a commonly performed procedure to correct prominent ears. Many different otoplasty techniques have been described but there is no gold standard technique. As well, many different suture materials are used in otoplasty but studies directly comparing different sutures materials are lacking. An otoplasty outcome study with Nylon and Mersilene (2 of the most commonly used sutures in otoplasty) sutures was conducted using a rabbit model. Each rabbit ear was randomized to receive a Mustardé-type horizontal mattress suture with either 4-0 clear Nylon (N = 12 ears) or 4-0 Mersilene sutures (N = 12 ears). Two weeks after surgery, the auricular bend angle was measured with a finger goniometer and histologic analysis with hematoxylin and eosin staining was performed on the rabbit auricular cartilage. Overall, there was no significant difference in the mean bend angle between the 2 groups (Nylon: 135.8°, SD = 22.7° and Mersilene: 143.2°, SD = 19.7°; P = 0.559). Also, no qualitative difference was observed on histologic analysis between the 2 suture groups. In the current rabbit model study, both Nylon and Mersilene sutures performed well and no significant differences were noted. PMID:26967081

  6. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  7. Modeling segregation of bidisperse granular materials: A parametric study

    NASA Astrophysics Data System (ADS)

    Schlick, Conor; Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2013-11-01

    Predicting segregation and mixing of size bidisperse granular material is a challenging problem with many industrial applications. Using an accurate segregation model based on kinematic properties of the flow that we recently developed, we present a parametric study of segregation of bidisperse granular material in quasi-two-dimensional bounded heaps. The model depends on the Péclet number, Pe, which is the ratio of the advection rate to the diffusion rate, and Λ, which is the ratio of the segregation rate to the advection rate. Both dimensionless parameters depend on the feed rate, the particle size ratio, and the system size. Systematic variation of Λ and Pe demonstrates how the spatial particle configuration depends on the interplay of advection, segregation, and diffusion. At large values of Pe and Λ, segregation dominates and the heap consists of distinct regions of small (upstream) and large (downstream) particles, whereas at low values of Pe and Λ, diffusion dominates which results in a well-mixed heap. Advection plays an important role for large Pe and small Λ and preserves the initial configuration of particles in the feed zone. Y.F. was funded by The Dow Chemical Company. C.S. was supported by NSF Grant CMMI-1000469.

  8. A viscoelastic model to simulate soft tissue materials

    NASA Astrophysics Data System (ADS)

    Espinoza Ortiz, J. S.; Lagos, R. E.

    2015-09-01

    Continuum mechanic theories are frequently used to simulate the mechanical behavior of elastic and viscous materials, specifically soft tissues typically showing incompressibility, nonlinear deformation under stress, fading memory and insensitivity to the strain-rate. The time dependence of a viscoelastic material could be better understood by considering it as composed by an elastic solid and a viscous fluid. Different types of mechanical devices can be constructed provided a particular configuration of elastic springs and dashpots. In this work our aim is to probe many of the soft tissue mechanical behavior, by considering a Kelvin's device coupled to a set of in parallel Maxwell's devices. Then, the resulting model composed of a long series of modified Kelvin bodies must span a broad range of characteristic times resulting in a suitable model for soft tissue simulation. Under driving static and dynamic stress applied to a 2-Dim system, its time dependence strain response is computed. We obtain a set of coupled Volterra integral equations solved via the extended trapezoidal rule scheme, and the Newton-Raphson method to solve nonlinear coupled equations.

  9. Challenges in Modeling of the Plasma-Material Interface

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Meyer, Fred; Allain, Jean Paul

    2013-09-01

    Plasma-Material Interface mixes materials of the two worlds, creating a new entity, a dynamical surface, which communicates between the two and represent one of the most challenging areas of multidisciplinary science, with many fundamental processes and synergies. How to build an integrated theoretical-experimental approach? Without mutual validation of experiment and theory chances very slim to have believable results? The outreach of the PMI science modeling at the fusion plasma facilities is illustrated by the significant step forward in understanding achieved recently by the quantum-classical modeling of the lithiated carbon surfaces irradiated by deuterium, showing surprisingly large role of oxygen in the deuterium retention and erosion chemistry. The plasma-facing walls of the next-generation fusion reactors will be exposed to high fluxes of neutrons and plasma-particles and will operate at high temperatures for thermodynamic efficiency. To this end we have been studying the evolution dynamics of vacancies and interstitials to the saturated dpa doses of tungsten surfaces bombarded by self-atoms, as well as the plasma-surface interactions of the damaged surfaces (erosion, hydrogen and helium uptake and fuzz formation). PSK and FWM acknowledge support of the ORNL LDRD program.

  10. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  11. Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite Materials

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.; Nahme, Hartwig

    2001-06-01

    Validation of an advanced continuum based numerical model for the simulation of the shock response of composite materials during high rate transient dynamic loading is described. The constitutive model, implemented in AUTODYN-2D and 3D, allows for the representation of non-linear shock effects in combination with orthotropic stiffness and damage. Simulations of uniaxial flyer plate experiments on aramid and polyethylene fibre composite systems are presented and compared with experiment. The continuum model is shown to reproduce well the experimental VISAR velocity traces at the rear surface of the targets. Finally, practical application of the model as implemented in AUTODYN is demonstrated through the simulation of ballistic and hypervelocity impact events. Comparison with experiment is given where possible.

  12. The phase field technique for modeling multiphase materials

    NASA Astrophysics Data System (ADS)

    Singer-Loginova, I.; Singer, H. M.

    2008-10-01

    This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.

  13. Computational modeling of multicellular constructs with the material point method.

    PubMed

    Guilkey, James E; Hoying, James B; Weiss, Jeffrey A

    2006-01-01

    Computational modeling of the mechanics of cells and multicellular constructs with standard numerical discretization techniques such as the finite element (FE) method is complicated by the complex geometry, material properties and boundary conditions that are associated with such systems. The objectives of this research were to apply the material point method (MPM), a meshless method, to the modeling of vascularized constructs by adapting the algorithm to accurately handle quasi-static, large deformation mechanics, and to apply the modified MPM algorithm to large-scale simulations using a discretization that was obtained directly from volumetric confocal image data. The standard implicit time integration algorithm for MPM was modified to allow the background computational grid to remain fixed with respect to the spatial distribution of material points during the analysis. This algorithm was used to simulate the 3D mechanics of a vascularized scaffold under tension, consisting of growing microvascular fragments embedded in a collagen gel, by discretizing the construct with over 13.6 million material points. Baseline 3D simulations demonstrated that the modified MPM algorithm was both more accurate and more robust than the standard MPM algorithm. Scaling studies demonstrated the ability of the parallel code to scale to 200 processors. Optimal discretization was established for the simulations of the mechanics of vascularized scaffolds by examining stress distributions and reaction forces. Sensitivity studies demonstrated that the reaction force during simulated extension was highly sensitive to the modulus of the microvessels, despite the fact that they comprised only 10.4% of the volume of the total sample. In contrast, the reaction force was relatively insensitive to the effective Poisson's ratio of the entire sample. These results suggest that the MPM simulations could form the basis for estimating the modulus of the embedded microvessels through a parameter

  14. Modeling of H2S migration through landfill cover materials.

    PubMed

    Xu, Qiyong; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-01-15

    The emission of H2S from landfills in the United States is an emergent problem because measured concentrations within the waste mass and in ambient air have been observed at potentially unsafe levels for on-site workers and at levels that can cause a nuisance and potentially deleterious health impacts to surrounding communities. Though recent research has provided data on H2S concentrations that may be observed at landfills, facility operators and landfill engineers have limited predictive tools to anticipate and plan for potentially harmful H2S emissions. A one-dimensional gas migration model was developed to assist engineers and practitioners better evaluate and predict potential emission levels of H2S based on four factors: concentration of H2S below the landfill surface (C0), advection velocity (v), H2S effective diffusion coefficient (D), and H2S adsorption coefficient of landfill cover soil (μ). Model simulations indicated that H2S migration into the atmosphere can be mitigated by reducing H2S diffusion and advection or using alternative cover soils with a high H2S adsorption coefficient. Laboratory column experiments were conducted to investigate the effects of the four parameters on H2S migration in cover soils and to calculate the adsorption coefficient of different cover materials. The model was validated by comparing results with laboratory column experiments. Based on the results, the laboratory column provides an effective way to estimate the H2S adsorption coefficient, which can then be incorporated into the developed model to predict the depth of cover soil required to reduce emitted H2S concentrations below a desired level. PMID:24316799

  15. Modelling the shock response of a damageable anisotropic composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-09-01

    The purpose of this paper is the investigation of the effect of fibre orientation on the shock response of a damageable carbon fibre-epoxy composite (CFEC). A carbon fibre-epoxy composite (CFEC) shock response in the through-thickness orientation and in one of the fibre directions is significantly different. Modelling the effect of fibre orientation on the shock response of a CFEC has been performed using a generalised decomposition of the stress tensor [A.A. Lukyanov, Int. J. Plasticity 24, 140 (2008)] and an accurate extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The analysis of the experimental data subject to the linear relation between shock velocities and particle velocities has shown that damage softening process produces discontinuities both in value and slope in the generalized bulk shock velocity and particle velocity relation [A.A. Lukyanov, Eur Phys J B 74, 35 (2010)]. Therefore, in order to remove these discontinuities, the three-wave structure (non-linear anisotropic, fracture and isotropic elastic waves) that accompanies damage softening process is proposed in this work for describing CFEC behavior under shock loading. A numerical calculation shows that Hugoniot Stress Levels (HELs) agree with the experimental data for selected CFEC material in different directions at low and at high intensities. In the through-thickness orientation, the material behaves similar to a simple polymer. In the fibre direction, the proposed model explains a pronounced ramp, before at sufficiently high stresses, and a much faster rising shock above it. The results are presented and discussed, and future studies are outlined.

  16. Advances in design and modeling of porous materials

    NASA Astrophysics Data System (ADS)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  17. Modeling, simulation and experimental verification of constitutive models for energetic materials

    SciTech Connect

    Haberman, K.S.; Bennett, J.G.; Assay, B.W.

    1997-09-01

    Simulation of the complete response of components and systems composed of energetic materials, such as PBX-9501 is important in the determination of the safety of various explosive systems. For example, predicting the correct state of stress, rate of deformation and temperature during penetration is essential in the prediction of ignition. Such simulation requires accurate constitutive models. These models must also be computationally efficient to enable analysis of large scale three dimensional problems using explicit lagrangian finite element codes such as DYNA3D. However, to be of maximum utility, these predictions must be validated against robust dynamic experiments. In this paper, the authors report comparisons between experimental and predicted displacement fields in PBX-9501 during dynamic deformation, and describe the modeling approach. The predictions used Visco-SCRAM and the Generalized Method of Cells which have been implemented into DYNA3D. The experimental data were obtained using laser-induced fluorescence speckle photography. Results from this study have lead to more accurate models and have also guided further experimental work.

  18. Sensitivity of hydrological performance assessment analysis to variations in material properties, conceptual models, and ventilation models

    SciTech Connect

    Sobolik, S.R.; Ho, C.K.; Dunn, E.; Robey, T.H.; Cruz, W.T.

    1996-07-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface- based and underground testing. Analyses have been performed to support the design of an Exploratory Studies Facility (ESF) and the design of the tests performed as part of the characterization process, in order to ascertain that they have minimal impact on the natural ability of the site to isolate waste. The information in this report pertains to sensitivity studies evaluating previous hydrological performance assessment analyses to variation in the material properties, conceptual models, and ventilation models, and the implications of this sensitivity on previous recommendations supporting ESF design. This document contains information that has been used in preparing recommendations for Appendix I of the Exploratory Studies Facility Design Requirements document.

  19. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  20. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  1. Computational modelling of Er(3+): Garnet laser materials

    NASA Astrophysics Data System (ADS)

    Spangler, Lee H.

    1994-12-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  2. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  3. Fabrication, Characterization and Modeling of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Lee, Po-Hua

    In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based

  4. Density Effects in Cellular Automata Models of Granular Materials

    NASA Astrophysics Data System (ADS)

    Baxter, G. W.; Behringer, R. P.

    1996-11-01

    We have studied density waves in a two dimensional cellular automata model of the gravity-driven flow of ellipsoidal particles through a wedge-shaped hopper(G. W. Baxter and R. P. Behringer, PRA 42), 1017 (1990).. The density variations form above the apex of the hopper and move upward, opposite the grain motion, with a well defined velocity. The waves become more pronounced as they travel. Density waves and alignment of particles are competing effects. Nearest-neighbor interactions which lead to alignment of neighboring grains can destroy the density waves. The relationship of these results to previous studies of density waves in real granular materials will be discussed(G. W. Baxter, R. P. Behringer, T. Fagert, and G. A. Johnson, PRL 62), 2825 (1989)..

  5. Heat transfer model for cw laser material processing

    SciTech Connect

    Mazumder, J.; Steen, W.M.

    1980-02-01

    A three-dimensional heat transfer model for laser material processing with a moving Gaussian heat source is developed using finite difference numerical techniques. In order to develop the model, the process is physically defined as follows: A laser beam, having a defined power distribution, strikes the surface of an opaque substrate of infinite length but finite width and depth moving with a uniform velocity in the positive x direction (along the length). The incident radiation is partly reflected and partly absorbed according to the value of the reflectivity. The reflectivity is considered to be zero at any surface point where the temperature exceeds the boiling point. This is because a ''keyhole'' is considered to have formed which will act as a black body. Some of the absorbed energy is lost by reradiation and convection from both the upper and lower surfaces while the rest is conducted into the substrate. That part of the incident radiant power which falls on a keyhole is considered to pass into the keyhole losing some power by absorption and reflection from the plasma within the keyhole as described by a Beer Lambert absorption coefficient. Matrix points within the keyhole are considered as part of the solid conduction network, but operating at fictitiously high temperatures. The convective heat transfer coefficient is enhanced to allow for a concentric gas jet on the upper surface as used for shielding in welding and surface treatment, but not cutting. The system is considered to be in a quasi-steady-state condition in that the thermal profile is considered steady relative to the position of the laser beam. The advantages of this method of calculation over others are discussed together with comparisons between the model predictions and experiments in laser welding, laser arc augmented welding, laser surface treatment, and laser glazing.

  6. Energy level modeling of lanthanide materials: review and uncertainty analysis.

    PubMed

    Joos, Jonas J; Poelman, Dirk; Smet, Philippe F

    2015-07-15

    Energy level schemes are an essential tool for the description and interpretation of atomic spectra. During the last 40 years, several empirical methods and relationships were devised for constructing energy level schemes of lanthanide defects in wide band gap solids, culminating in the chemical shift model by Thiel and Dorenbos. This model allows us to calculate the electronic and optical properties of the considered materials. However, an unbiased assessment of the accuracy of the obtained values of the calculated parameters is still lacking to a large extent. In this paper, error margins for calculated electronic and optical properties are deduced. It is found that optical transitions can be predicted within an acceptable error margin, while the description of phenomena involving conduction band states is limited to qualitative interpretation due to the large error margins for physical observables such as thermal quenching temperature, corresponding to standard deviations in the range 0.3-0.5 eV for the relevant energy differences. As an example, the electronic structure of lanthanide doped calcium thiogallate (CaGa2S4) is determined, taking the experimental spectra of CaGa2S4:Ln(Q+) (Ln(Q+) = Ce(3+), Eu(2+), Tm(3+)) as input. Two different approaches to obtain the shape of the zig-zag curves connecting the 4f levels of the different lanthanides are explored and compared. PMID:26129935

  7. FEMA: a Finite Element Model of Material Transport through Aquifers

    SciTech Connect

    Yeh, G.T.; Huff, D.D.

    1985-01-01

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  8. Modeling adsorption of liquid mixtures on porous materials.

    PubMed

    Monsalvo, Matias A; Shapiro, Alexander A

    2009-05-01

    The multicomponent potential theory of adsorption (MPTA), which was previously applied to adsorption from gases, is extended onto adsorption of liquid mixtures on porous materials. In the MPTA, the adsorbed fluid is considered as an inhomogeneous liquid with thermodynamic properties that depend on the distance from the solid surface (or position in the porous space). The theory describes the two kinds of interactions present in the adsorbed fluid, i.e. the fluid-fluid and fluid-solid interactions, by means of an equation of state and interaction potentials, respectively. The proposed extension of the MPTA onto liquids has been tested on experimental binary and ternary adsorption data. We show that, for the set of experimental data considered in this work, the MPTA model is capable of correlating binary adsorption equilibria. Based on binary adsorption data, the theory can then predict ternary adsorption equilibria. Good agreement with the theoretical predictions is achieved in most of the cases. Some limitations of the model are also discussed. PMID:19243781

  9. A Model of Research Paper Writing Instructional Materials for Academic Writing Course: "Needs & Documents Analysis and Model Design"

    ERIC Educational Resources Information Center

    Ghufron, M. Ali; Saleh, Mursid; Warsono; Sofwan, Ahmad

    2016-01-01

    This study aimed at designing a model of instructional materials for Academic Writing Course focusing on research paper writing. The model was designed based on the Curriculum at the English Education Study Program, Faculty of Language and Art Education of IKIP PGRI Bojonegoro, East Java, Indonesia. This model was developed in order to improve…

  10. Modelling one-dimensional insulating materials with the ionic Hubbard model

    NASA Astrophysics Data System (ADS)

    Refolio, M. C.; Lòpez Sancho, J. M.; Rubio, J.

    2005-10-01

    The single-particle spectral-weight function of the ionic Hubbard model (IHM) at half-filling shows an abrupt change of regime at a critical value of the coupling constant (Hubbard U). Specifically, this function jumps at the Fermi points kF = ± π/2 from a two-peak to a four-peak structure accompanied by a (non-vanishing) minimum of the single-particle charge gap. This jump separates a weak-coupling regime, the band insulating phase, from a strong-coupling regime which evolves gradually into the Mott Hubbard phase. We take advantage of this critical behaviour to model several quasi-one-dimensional materials in terms of the IHM instead of the simpler one-band Hubbard model. For instance, the two regimes are physically realized in the angle-resolved photoelectron spectra of (TaSe4)2I, and the blue-bronze K0.3MoO3, respectively.

  11. Towards CFD modeling of turbulent pipeline material transportation

    NASA Astrophysics Data System (ADS)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  12. Modeling the relaxation dynamics of fluids in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Edison, John R.

    Mesoporous materials are being widely used in the chemical industry in various environmentally friendly separation processes and as catalysts. Our research can be broadly described as an effort to understand the behavior of fluids confined in such materials. More specifically we try to understand the influence of state variables like temperature and pore variables like size, shape, connectivity and structural heterogeneity on both the dynamic and equilibrium behavior of confined fluids. The dynamic processes associated with the approach to equilibrium are largely unexplored. It is important to look into the dynamic behavior for two reasons. First, confined fluids experience enhanced metastabilities and large equilibration times in certain classes of mesoporous materials, and the approach to the metastable/stable equilibrium is of tremendous interest. Secondly, understanding the transport resistances in a microscopic scale will help better engineer heterogeneous catalysts and separation processes. Here we present some of our preliminary studies on dynamics of fluids in ideal pore geometries. The tool that we have used extensively to investigate the relaxation dynamics of fluids in pores is the dynamic mean field theory (DMFT) as developed by Monson [P. A. Monson, J. Chem. Phys., 128, 084701 (2008)]. The theory is based on a lattice gas model of the system and can be viewed as a highly computationally efficient approximation to the dynamics averaged over an ensemble of Kawasaki dynamics Monte Carlo trajectories of the system. It provides a theory of the dynamics of the system consistent with the thermodynamics in mean field theory. The nucleation mechanisms associated with confined fluid phase transitions are emergent features in the calculations. We begin by describing the details of the theory and then present several applications of DMFT. First we present applications to three model pore networks (a) a network of slit pores with a single pore width; (b) a network

  13. Digital Learning Material for Model Building in Molecular Biology

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  14. The modeling of the shock response of powdered ceramic materials

    NASA Astrophysics Data System (ADS)

    Rajendran, A. M.; Ashmawi, W. M.; Zikry, M. A.

    2006-06-01

    A two-cap constitutive model that incorporates inelastic yielding, frictional sliding, and densification was modified for shock-loading applications, and used to model shock-wave propagation of a powdered ceramic that is constrained by aluminum layers in a system, which is impacted by a flyer plate. The numerical results included analyses of the effects of shock stress amplitudes on densification, unloading behaviors, stress attenuation and dispersion, and stress and pressure distributions. An understanding of how interfacial impedances affect shock-front attenuation, dispersion, and propagation were obtained through modeling different shock-load conditions. The constitutive and computational models were validated with detailed simulations of shock-front experiments pertaining to powdered ceramics. It is shown how shock amplitude duration and rise time are related to stress evolution, and how physically limiting values result in inelastic damage. This analysis underscores how modeling with the appropriate constitutive description can provide insights on how powdered ceramics behave under impact-loading conditions.

  15. Efficient material flow in mixed model assembly lines.

    PubMed

    Alnahhal, Mohammed; Noche, Bernd

    2013-01-01

    In this study, material flow from decentralized supermarkets to stations in mixed model assembly lines using tow (tugger) trains is investigated. Train routing, scheduling, and loading problems are investigated in parallel to minimize the number of trains, variability in loading and in routes lengths, and line-side inventory holding costs. The general framework for solving these problems in parallel contains analytical equations, Dynamic Programming (DP), and Mixed Integer Programming (MIP). Matlab in conjunction with LP-solve software was used to formulate the problem. An example was presented to explain the idea. Results which were obtained in very short CPU time showed the effect of using time buffer among routes on the feasible space and on the optimal solution. Results also showed the effect of the objective, concerning reducing the variability in loading, on the results of routing, scheduling, and loading. Moreover, results showed the importance of considering the maximum line-side inventory beside the capacity of the train in the same time in finding the optimal solution. PMID:24024101

  16. Modeling the thermal characteristics of masonry mortar containing recycled materials

    NASA Astrophysics Data System (ADS)

    Laney, Morgan Gretchen

    As the building industry in the United States rapidly expands, the reuse of recycled demolition waste aggregates is becoming increasingly more important. Currently, the building industry is the largest consumer of natural resources. The constant use of raw virgin aggregate is resulting in depleting resources, lack of space for landfills, increasing costs, and heightened levels of pollution. The use of these recycled aggregates in building envelopes and the study of thermal properties are becoming a popular area of research in order to improve building energy usage. The construction of Zero Energy Buildings (ZEB) is encouraged by the United States government as a result of the unresolved finite resources and environmental pollution. The focus of this research is on the impact of using recycled demolition waste aggregates on thermal properties, including specific heat capacity and thermal conductivity, in masonry mortar applications. The new forms of aggregate were analyzed for efficiency and practical utilization in construction in seven locations across the United States by embedding the new material into the building envelope of a strip mall mercantile build model from the National Renewable Energy Laboratory (NREL) in the EnergyPlus Building Energy Simulation Program (BESP). It was determined that the recycled aggregate mortar mixtures performed as well as or better than the traditional mortar mix. Opportunities for future research in recycled aggregate mortar mixtures exist in a regional analysis, a regional recycled aggregate cost analysis, and a life cycled cost analysis (LCCA).

  17. Charge transport model to predict intrinsic reliability for dielectric materials

    SciTech Connect

    Ogden, Sean P.; Borja, Juan; Plawsky, Joel L. Gill, William N.; Lu, T.-M.; Yeap, Kong Boon

    2015-09-28

    Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.

  18. Charge transport model to predict intrinsic reliability for dielectric materials

    NASA Astrophysics Data System (ADS)

    Ogden, Sean P.; Borja, Juan; Plawsky, Joel L.; Lu, T.-M.; Yeap, Kong Boon; Gill, William N.

    2015-09-01

    Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.

  19. Parameter estimation approach for particle flow model of rockfill materials using response surface method

    NASA Astrophysics Data System (ADS)

    Li, Shouju; Li, De; Cao, Lijuan; Shangguan, Zichang

    2015-02-01

    Particle flow code (PFC) is widely used to model deformation and stress states of rockfill materials. The accuracy of numerical modeling with PFC is dependent upon the model parameter values. How to accurately determine model parameters remains one of the main challenges. In order to determine model parameters of particle flow model of rockfill materials, some triaxial compression experiments are performed, and the inversion procedure of model parameters based on response surface method is proposed. Parameters of particle flow model of rockfill materials are determined according to the observed data in triaxial compression tests for rockfill materials. The investigation shows that the normal stiffness, tangent stiffness and friction coefficient of rockfill materials will slightly increase with increase of confining pressure in triaxial compression tests. The experiments in laboratory show that the proposed inversion procedure behaves higher computing efficiency and the forecasted stress-strain relations agree well with observed values.

  20. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  1. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2010-01-01

    Complex material behavior is represented by a single equation of product form to account for interaction among the various factors. The factors are selected by the physics of the problem and the environment that the model is to represent. For example, different factors will be required for each to represent temperature, moisture, erosion, corrosion, etc. It is important that the equation represent the physics of the behavior in its entirety accurately. The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the external launch tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points - the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used were obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated. The problem lies in how to represent the divot weight with a single equation. A unique solution to this problem is a multi-factor equation of product form. Each factor is of the following form (1 xi/xf)ei, where xi is the initial value, usually at ambient conditions, xf the final value, and ei the exponent that makes the curve represented unimodal that meets the initial and final values. The exponents are either evaluated by test data or by technical judgment. A minor disadvantage may be the selection of exponents in the absence of any empirical data. This form has been used successfully in describing the foam ejected in simulated space environmental conditions. Seven factors were required

  2. A guide to using material model No. 11 in NIKE2D: An internal variable, viscoplasticity model

    SciTech Connect

    Flower, E.C.; Nikkel, D.J. Jr.

    1990-10-30

    The need to accurately model the superplastic forming process which is highly rate and temperature dependent motivated the evaluation of Bammann's internal variable, viscoplasticity material model. The model is based upon the concepts of unified creep plasticity, but employs a yield surface for efficient implementation into large-scale numerical computer codes. It has proven elsewhere to be quite successful in describing large strain, thermal-mechanical behavior of crystalline materials. Features of the model enable it to simulate the apparent strain-rate behavior exhibited by many metals above one half the melt temperature. It is the efficient incorporation of features that make the model attractive for use in finite element modeling of metal deformation processes. Although this model was implemented into the Lawrence Livermore National Laboratory's NIKE2D finite element program in 1986, there have been no known reports of successful use by NIKE2D users. The purpose of this report is to provide the user the proper format to input model parameters, a procedure for determining appropriate values for material constants from experimental data, and supplemental information on the model relevant to the implementation in the NIKE2D finite element program. Detailed accounts of the theoretical aspects of the model can be found in the cited references. 4 refs., 8 figs.

  3. Simulation of human atherosclerotic femoral plaque tissue: the influence of plaque material model on numerical results

    PubMed Central

    2015-01-01

    Background Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue. Methods Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue. Results Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen. Conclusions Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large

  4. Assessing Models of Public Understanding In ELSI Outreach Materials

    SciTech Connect

    Bruce V. Lewenstein, Ph.D.; Dominique Brossard, Ph.D.

    2006-03-01

    issues has been used in educational public settings to affect public understanding of science. After a theoretical background discussion, our approach is three-fold. First, we will provide an overview, a ?map? of DOE-funded of outreach programs within the overall ELSI context to identify the importance of the educational component, and to present the criteria we used to select relevant and representative case studies. Second, we will document the history of the case studies. Finally, we will explore an intertwined set of research questions: (1) To identify what we can expect such projects to accomplish -in other words to determine the goals that can reasonably be achieved by different types of outreach, (2) To point out how the case study approach could be useful for DOE-ELSI outreach as a whole, and (3) To use the case study approach as a basis to test theoretical models of science outreach in order to assess to what extent those models accord with real world outreach activities. For this last goal, we aim at identifying what practices among ELSI outreach activities contribute most to dissemination, or to participation, in other words in which cases outreach materials spark action in terms of public participation in decisions about scientific issues.

  5. Probabilistic material degradation model for aerospace materials subjected to high temperature, mechanical and thermal fatigue, and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1992-01-01

    A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.

  6. Characterization and Modeling of Microwave Plasmas Used for Materials Processing

    NASA Astrophysics Data System (ADS)

    Wei, Peter

    1995-11-01

    Detailed models of the behavior of both charged and neutral species in nitrogen afterglows and hydrogen/argon discharges were developed in this study. Mass continuity equations were solved to investigate the dominant transport and rate processes in a low-pressure, non-isothermal nitrogen afterglow. Electron density and N-atom flux were measured as a function of position in the afterglow and compared with model results. It was found that the model, with no adjustable parameters, yielded very good agreement with experimental measurements. The radial gradient of N-atom concentration was shown to be insignificant, which reduced the model to a one-dimensional mass continuity equation. However, the model of charged species behavior must be carried out in two dimensions. Wall recombination play a very important role for both neutral and charges species while the homogeneous recombination can be ignored. A volume-averaged model coupling species and power balance equations was developed to predict the electron temperature and species concentration as a function of operating parameters in a pure hydrogen discharge. It was found that the pressure, power, flow rate, reactor radius, and gas temperature all affect the generation of H-atoms. Electron temperature is mainly determined by the gas pressure. Finally, the effect of argon addition on a hydrogen discharge was studied. The model results showed that the argon addition increases the electron density through direct ionization of ground state Ar, which in turn, enhances the degree of hydrogen dissociation. It was also found that the plasma retains the basic properties of a hydrogen plasma even for mixtures containing 90% Ar. Electron temperature and H-atom concentration are only slightly changed with argon addition, and the dominant ionic species is still H_3^+..

  7. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  8. Analysis of forming characteristics of Ta EFP according to material model

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Yi, Y. S.; Park, L. J.

    2015-09-01

    This paper presents numerical analysis result of forming characteristics of Ta explosively formed penetrator (EFP) according to various material models and their values. Dynamic material properties of Ta were measured with static tensile testing machine and Hopkinson pressure bar tests. We used AUTODYN hydrodynamic code to simulate these phenomena. We used three material models, such as Von-Mises model, linear hardening model and Johnson-Cook model. We also compared the numerical results with the EFP forming test data. The numerical results show that material model and its parameter are so important to predict the shape of formed penetrator and Von-Mises model predicts the shape of the formed liner most well. We also analysed the influence of liner thickness on EFP formation using the verified numerical model.

  9. A computational library for multiscale modeling of material failure

    NASA Astrophysics Data System (ADS)

    Talebi, Hossein; Silani, Mohammad; Bordas, Stéphane P. A.; Kerfriden, Pierre; Rabczuk, Timon

    2014-05-01

    We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the continuum level is modeled by the extended finite element method (XFEM). Using several novel or state of the art methods, the piece software handles semi-concurrent multiscale methods as well as concurrent multiscale methods for fracture, coupling two continuum domains or atomistic domains to continuum domains, respectively. The efficiency of our open-source software is shown through several simulations including a 3D crack modeling in clay nanocomposites, a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM coupling for dynamic crack propagation.

  10. The anisotropic material constitutive models for the human cornea.

    PubMed

    Li, Long-yuan; Tighe, Brian

    2006-03-01

    This paper presents an anisotropic analysis model for the human cornea. The model is based on the assumption that the fibrils in the cornea are organised into lamellae, which may have preferential orientation along the superior-inferior and nasal-temporal directions, while the alignment of lamellae with different orientations is assumed to be random. Hence, the cornea can be regarded as a laminated composite shell. The constitutive equation describing the relationships between membrane forces, bending moments, and membrane strains, bending curvatures are derived. The influences of lamella orientations and the random alignment of lamellae on the stiffness coefficients of the constitutive equation are discussed. PMID:16426861

  11. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    PubMed

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-01

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  12. Models of Teaching. Description of Teacher Inservice Education Materials.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.

    The teacher program described here provides a framework in which teachers may identify and understand their own theories and styles of teaching and may become familiar and competent with a variety of teaching strategies. The seven models studied are: concept formation, concept attainment, role playing, inquiry training. synectics, simulation, and…

  13. Micromechanical model of crack growth in fiber reinforced brittle materials

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.; Xu, Kang

    1990-01-01

    A model based on the micromechanical mechanism of crack growth resistance in fiber reinforced ceramics is presented. The formulation of the model is based on a small scale geometry of a macrocrack with a bridging zone, the process zone, which governs the resistance mechanism. The effect of high toughness of the fibers in retardation of the crack advance, and the significance of the fiber pullout mechanism on the crack growth resistance, are reflected in this model. The model allows one to address issues such as influence of fiber spacing, fiber flexibility, and fiber matrix friction. Two approaches were used. One represents the fracture initiation and concentrated on the development of the first microcracks between fibers. An exact closed form solution was obtained for this case. The second case deals with the development of an array of microcracks between fibers forming the bridging zone. An implicit exact solution is formed for this case. In both cases, a discrete fiber distribution is incorporated into the solution.

  14. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Subramanian, Rajan; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA (Registered), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  15. Thermomechanics of damageable materials under diffusion: modelling and analysis

    NASA Astrophysics Data System (ADS)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2015-12-01

    We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.

  16. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  17. Modeling crack growth processes in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Jones, Russell H.; Wolfer, Wilhelm G.

    1984-05-01

    Models for the effect of the chemical environment on crack growth processes in austenitic and ferritic stainless were evaluated. The effect of impurity segregation, yield strength, and hydrogen on crack growth of HT-9 and radiation induced phosphorus segregation on the intergranular stress corrosion of 316SS have been evaluated. Moderate increases in impurity segregation and/or yield strength caused significant decreases in the K IC and K TH of HT-9, while less than a 10 fold increase in the intergranular stress corrosion crack growth rate of 316SS was predicted for a fluence of 100 dpa using the radiation induced phosphorus segregation data of Brimhall et al. and the stress corrosion model of Parkins. Therefore, while radiation induced impurity segregation is greater in 316SS than HT-9, the effect of impurity segregation may be more pronounced in HT-9. The effect of hydrogen on fatigue crack thresholds was evaluated using a model by Tien which describes the threshold as a function of surface energy. A reduction in the surface energy by hydrogen adsorption was found to cause a decrease in the fatigue threshold a small but comparable amount to that observed for 2-1/4Cr-lMo steel.

  18. Calibrating corneal material model parameters using only inflation data: an ill-posed problem.

    PubMed

    Kok, S; Botha, N; Inglis, H M

    2014-12-01

    Goldmann applanation tonometry (GAT) is a method used to estimate the intraocular pressure by measuring the indentation resistance of the cornea. A popular approach to investigate the sensitivity of GAT results to material and geometry variations is to perform numerical modelling using the finite element method, for which a calibrated material model is required. These material models are typically calibrated using experimental inflation data by solving an inverse problem. In the inverse problem, the underlying material constitutive behaviour is inferred from the measured macroscopic response (chamber pressure versus apical displacement). In this study, a biomechanically motivated elastic fibre-reinforced corneal material model is chosen. The inverse problem of calibrating the corneal material model parameters using only experimental inflation data is demonstrated to be ill-posed, with small variations in the experimental data leading to large differences in the calibrated model parameters. This can result in different groups of researchers, calibrating their material model with the same inflation test data, drawing vastly different conclusions about the effect of material parameters on GAT results. It is further demonstrated that multiple loading scenarios, such as inflation as well as bending, would be required to reliably calibrate such a corneal material model. PMID:25112972

  19. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  20. Shape memory behavior of epoxy-based model materials: Tailoring approaches and thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Pandini, Stefano; Avanzini, Andrea; Battini, Davide; Berardi, Mario; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    A series of structurally related epoxy resins were prepared as model systems for the investigation of the shape memory response, with the aim to assess the possibility of tailoring their thermo-mechanical response and conveniently describing their strain evolution under triggering stimuli with a simple thermoviscoelastic model. The resins formulation was varied in order to obtain systems with controlled glass transition temperature and crosslink density. The shape memory response was investigated by means of properly designed thermo-mechanical cycles, which allowed to measure both the ability to fully recover the applied strain and to exert a stress on a confining medium. The results were also compared with the predictions obtained by finite element simulations of the thermo-mechanical cycle by the employ of a model whose parameters were implemented from classical DMA analysis.

  1. Modeling brittle material failure under high velocity impact conditions: From experiments to simulations

    NASA Astrophysics Data System (ADS)

    Tonge, Andrew; Ramesh, K. T.

    2013-03-01

    Brittle materials have a deviatoric strength that is highly dependent on the applied pressure. To successfully model impact events involving brittle materials it is important to capture both the hydrostatic response, which is dominated by the equation of state, and the deviatoric response witch is dominated by the activation of microcracks within the material. The behavior of microcracks within the material is strongly affected by the applied pressure and gives rise to a material strength that is rate, size, and pressure dependent. In this work we present a material model that is based on an experimentally motivated micromechanics damage growth model coupled with a Mie-Gruneisen equation of state. We use this material model to simulate quarter inch glass spheres impacting a basalt cube at 2.2 km/s.

  2. Modeling materials failures for knowledge based system applications

    SciTech Connect

    Roberge, P.R.

    1996-12-31

    The evaluation of the probability of given premises to play a role in a final outcome can only be done when the parameters involved and their interactions are properly elucidated. But, for complex engineering situations, this often appears as an insurmountable task. The prediction of failures for the optimization of inspection and maintenance is such an example of complexity. After reviewing the models of expertise commonly used by knowledge engineers, this paper presents an object-oriented framework to guide the elicitation and organization of lifetime information for knowledge based system applications.

  3. Percolation Model for Slow Dynamics in Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Lois, Gregg; Blawzdziewicz, Jerzy; O'Hern, Corey S.

    2009-01-01

    We identify a link between the glass transition and percolation of regions of mobility in configuration space. We find that many hallmarks of glassy dynamics, for example, stretched-exponential response functions and a diverging structural relaxation time, are consequences of the critical properties of mean-field percolation. Specific predictions of the percolation model include the range of possible stretching exponents 1/3≤β≤1 and the functional dependence of the structural relaxation time τα and exponent β on temperature, density, and wave number.

  4. REFINEMENT OF A MODEL TO PREDICT THE PERMEATION OF PROTECTIVE CLOTHING MATERIALS

    EPA Science Inventory

    A prototype of a predictive model for estimating chemical permeation through protective clothing materials was refined and tested. he model applies Fickian diffusion theory and predicts permeation rates and cumulative permeation as a function of time for five materials: butyl rub...

  5. A numerical model for the thermo-elasto-plastic behaviour of a material

    NASA Technical Reports Server (NTRS)

    Ray, Sujit K.; Utki, Senol

    1989-01-01

    This paper presents a numerical model for the thermo-elasto-plastic behavior of an isotropic material. The model is based on the assumption that the yielding of the material obeys von Mises distortion energy theory and the material exhibits isotropic strain hardening. This unique model can be used both for isothermal and non-isothermal cases. The original formulation for the non-isothermal three-dimensional case has been specialized for plane stress conditions and the equations for the computation of warping and thickness change are provided. The finite element implementation of this model is also outlined.

  6. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    PubMed Central

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  7. Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model

    SciTech Connect

    Kay, G

    2002-09-16

    A validated Johnson-Cook model could be employed to perform simulations that conform to FAA standards for evaluating aircraft and engine designs for airworthiness and containment considerations. A previous LLNL report [1] described the motivation for using the Johnson-Cook material model in simulations involving engine containment and the effect of uncontained engine debris on aircraft structures. In that report, experimental studies of the deformation and failure behavior of Ti-6Al-4V and 2024-T3 aluminum at high strain rates and large strains were conducted. The report also describes the generation of material constants for the Johnson-Cook strength model. This report describes the determination and validation of parameters for Ti-6Al-4V and 2024-T3 aluminum that can be used in the failure portion of the Johnson-Cook material.

  8. Experiments for calibration and validation of plasticity and failure material modeling: 304L stainless steel.

    SciTech Connect

    Lee, Kenneth L.; Korellis, John S.; McFadden, Sam X.

    2006-01-01

    Experimental data for material plasticity and failure model calibration and validation were obtained from 304L stainless steel. Model calibration data were taken from smooth tension, notched tension, and compression tests. Model validation data were provided from experiments using thin-walled tube specimens subjected to path dependent combinations of internal pressure, extension, and torsion.

  9. Youngs-Type Material Strength Model in the Besnard-Harlow-Rauenzahn Turbulence Equations

    SciTech Connect

    Denissen, Nicholas Allen; Plohr, Bradley J.

    2015-08-17

    Youngs [AWE Report Number 96/96, 1992] has augmented a two-phase turbulence model to account for material strength. Here we adapt the model of Youngs to the turbulence model for the mixture developed by Besnard, Harlow, and Rauenzahn [LANL Report LA-10911, 1987].

  10. Comparative Study on Strength of Knee Joint Using Various Material Models

    NASA Astrophysics Data System (ADS)

    Yang, Zhengzhi; Ding, Zhiwei; Liu, Zishun; Swaddiwudhipong, Somsak; Tan, Yi Min; Lee, Kevin

    2012-06-01

    In this study, we adopt different material models to study the strength and stiffness of menisci of the knee joint using finite element method. The three-dimensional (3-D) knee joint finite element model is constructed based on the Magnetic Resonance (MR) images of a human knee joint, and the strength of menisci is analyzed under a specific vertical loading case. In this paper we categorize and implement three types of appropriate material properties, namely isotropic linearly elastic, transversely isotropic elastic and isotropic hyperelastic for menisci of the knee joint. Different strain energy models are also studied and compared under hyperelastic category. The comparative study demonstrates that the hyperelastic model with Ogden form is more appropriate in modeling menisci of the knee joint. By referring to the test data of different material properties from earlier studies by various researchers, we hope to provide a comparative study leading to appropriate menisci material models and properties for finite element analyses of knee joint structures.

  11. Cookoff response of PBXN-109: material characterization and ALE3D model

    SciTech Connect

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2000-10-24

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and an initial ALE3D model for cookoff is discussed. A significant effort is underway in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating and ignition in cookoff tests. In order to provide a predictive capability, materials characterization measurements are being performed to specify parameters in these models. We report on progress in the development of these ALE3D materials models and present measurements as a function of temperature for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX).

  12. A sparse digital signal model for ultrasonic nondestructive evaluation of layered materials.

    PubMed

    Bochud, N; Gomez, A M; Rus, G; Peinado, A M

    2015-09-01

    Signal modeling has been proven to be an useful tool to characterize damaged materials under ultrasonic nondestructive evaluation (NDE). In this paper, we introduce a novel digital signal model for ultrasonic NDE of multilayered materials. This model borrows concepts from lattice filter theory, and bridges them to the physics involved in the wave-material interactions. In particular, the proposed theoretical framework shows that any multilayered material can be characterized by a transfer function with sparse coefficients. The filter coefficients are linked to the physical properties of the material and are analytically obtained from them, whereas a sparse distribution naturally arises and does not rely on heuristic approaches. The developed model is first validated with experimental measurements obtained from multilayered media consisting of homogeneous solids. Then, the sparse structure of the obtained digital filter is exploited through a model-based inverse problem for damage identification in a carbon fiber-reinforced polymer (CFRP) plate. PMID:26092090

  13. Presentation on the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC): A Working Model and Progress Report

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.; Vican, L.

    2015-12-01

    Physical analog models and demonstrations can be effective educational tools for helping instructors teach abstract concepts in the Earth, planetary, and space sciences. Reducing the learning challenges for students using physical analog models and demonstrations, however, can often increase instructors' workload and budget because the cost and time needed to produce and maintain such curriculum materials is substantial. First, this presentation describes a working model for the Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC) to support instructors' use of physical analog models and demonstrations in the science classroom. The working model is based on a combination of instructional resource models developed by the Association of College & Research Libraries and by the Physics Instructional Resource Association. The MEDL-CMC aims to make the curriculum materials available for all science courses and outreach programs within the institution where the MEDL-CMC resides. The sustainability and value of the MEDL-CMC comes from its ability to provide and maintain a variety of physical analog models and demonstrations in a wide range of science disciplines. Second, the presentation then reports on the development, progress, and future of the MEDL-CMC at the University of California Los Angeles (UCLA). Development of the UCLA MEDL-CMC was funded by a grant from UCLA's Office of Instructional Development and is supported by the Department of Earth, Planetary, and Space Sciences. Other UCLA science departments have recently shown interest in the UCLA MEDL-CMC services, and therefore, preparations are currently underway to increase our capacity for providing interdepartmental service. The presentation concludes with recommendations and suggestions for other institutions that wish to start their own MEDL-CMC in order to increase educational effectiveness and decrease instructor workload. We welcome an interuniversity collaboration to

  14. Recent advances in modeling discontinuities in anisotropic and heterogeneous materials in eddy current NDE

    SciTech Connect

    Aldrin, John C.; Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2011-06-23

    Recent advances are presented to model discontinuities in random anisotropies that arise in certain materials, such as titanium alloys. A numerical model is developed to provide a full anisotropic representation of each crystalline in a gridded region of the material. Several simulated and experimental demonstrations are presented highlighting the effect of grain noise on eddy current measurements. Agreement between VIC-3D(c) model calculations and experimental data in titanium alloy specimens with known flaws is demonstrated.

  15. Material Characterization and Computer Model Simulation of Low Density Polyurethane Foam Used in a Rodent Traumatic Brain Injury Model

    PubMed Central

    Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.

    2011-01-01

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  16. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    PubMed

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  17. Global mixed-material migration modeling of NSTX-U and a parameterized Li-C-O surface model

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Kaita, R.; Schmid, K.

    2015-11-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. Prior experiments with Li evaporation on NSTX suggest that poloidally inhomogenous mixed-material C/Li/O surfaces will evolve over the course of the campaign due to wall material migration during plasma operation. Understanding the depletion and accumulation of Li in different parts of the machine is a key component of optimizing the Li conditioning process. To that end, the WallDYN global mixed-material surface evolution model has been applied to the NSTX-U geometry. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. For this work, a C/Li/O mixed-material erosion model has been generated by parameterizing dynamic sputter and reflection yield calculations from SDTrimSP. The sensitivity of global lithium migration rates to various surface model parameters will be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  18. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  19. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  20. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points, the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  1. Theory and learning protocols for the material tempotron model

    NASA Astrophysics Data System (ADS)

    Baldassi, Carlo; Braunstein, Alfredo; Zecchina, Riccardo

    2013-12-01

    Neural networks are able to extract information from the timing of spikes. Here we provide new results on the behavior of the simplest neuronal model which is able to decode information embedded in temporal spike patterns, the so-called tempotron. Using statistical physics techniques we compute the capacity for the case of sparse, time-discretized input, and ‘material’ discrete synapses, showing that the device saturates the information theoretic bounds with a statistics of output spikes that is consistent with the statistics of the inputs. We also derive two simple and highly efficient learning algorithms which are able to learn a number of associations which are close to the theoretical limit. The simplest versions of these algorithms correspond to distributed online protocols of interest for neuromorphic devices, and can be adapted to address the more biologically relevant continuous-time version of the classification problem, hopefully allowing the understanding of some aspects of synaptic plasticity.

  2. A novel criterion for determination of material model parameters

    NASA Astrophysics Data System (ADS)

    Andrade-Campos, A.; de-Carvalho, R.; Valente, R. A. F.

    2011-05-01

    Parameter identification problems have emerged due to the increasing demanding of precision in the numerical results obtained by Finite Element Method (FEM) software. High result precision can only be obtained with confident input data and robust numerical techniques. The determination of parameters should always be performed confronting numerical and experimental results leading to the minimum difference between them. However, the success of this task is dependent of the specification of the cost/objective function, defined as the difference between the experimental and the numerical results. Recently, various objective functions have been formulated to assess the errors between the experimental and computed data (Lin et al., 2002; Cao and Lin, 2008; among others). The objective functions should be able to efficiently lead the optimisation process. An ideal objective function should have the following properties: (i) all the experimental data points on the curve and all experimental curves should have equal opportunity to be optimised; and (ii) different units and/or the number of curves in each sub-objective should not affect the overall performance of the fitting. These two criteria should be achieved without manually choosing the weighting factors. However, for some non-analytical specific problems, this is very difficult in practice. Null values of experimental or numerical values also turns the task difficult. In this work, a novel objective function for constitutive model parameter identification is presented. It is a generalization of the work of Cao and Lin and it is suitable for all kinds of constitutive models and mechanical tests, including cyclic tests and Baushinger tests with null values.

  3. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    Energy Science and Technology Software Center (ESTSC)

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  4. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  5. Effect of Material Property Heterogeneity on Biomechanical Modeling of Prostate under Deformation

    PubMed Central

    Samavati, Navid; McGrath, Deirdre M.; Jewett, Michael A.S.; van der Kwast, Theo; Ménard, Cynthia; Brock, Kristy K.

    2015-01-01

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo Magnetic Resonance Imaging (MRI), and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of heterogeneous prostate model in the calculated displacement differences compared to homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. . Such differences in the deformation of prostate could bepotentially clinically significant given the voxel size of the ex vivo MR images (0.3×0.3×0.3 mm). However, no significant changes in the registration accuracy were observed using heterogeneous models

  6. Computational Modeling of Heterogeneous Reactive Materials at the Mesoscale

    SciTech Connect

    BAER, MARVIN R.

    1999-09-22

    The mesoscopic processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete ''crystals.'' Highly resolved three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states with wavelengths of the order of several particle diameters. Localization of energy produces ''hot-spots'' due to shock focusing and plastic work near internal boundaries as material flows into interstitial regions. Numerical experiments indicate that ''hot-spots'' are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and sustained reaction of shocked heterogeneous materials involves states distinctly different from single jump state descriptions.

  7. The EXPURT model for calculating external gamma doses from deposited material in inhabited areas.

    PubMed

    Jones, J A; Singer, L N; Brown, J

    2006-01-01

    EXPURT, NRPB's model for calculating external gamma doses in inhabited areas, was originally developed in the mid-1980s. Deposition on surfaces in the area, the subsequent transfer of material between different surfaces or its removal from the system, and dose rates in various locations from material on the different surfaces are modelled. The model has been updated to take account of more recent experimental data on the transfer rates between surfaces and to make it more flexible for use in assessing dose rates following an accidental release. EXPURT is a compartmental model and models the transfer of material between the surfaces using a set of first order differential equations. It enables the impact of the decontamination of surfaces on doses and dose rates to be explored. The paper describes the EXPURT model and presents some preliminary results obtained using it. PMID:16242820

  8. A Short Review of Ablative-Material Response Models and Simulation Tools

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean; Magin, Thierry E.; Cozmuta, Ioana; Mansour, Nagi N.

    2011-01-01

    A review of the governing equations and boundary conditions used to model the response of ablative materials submitted to a high-enthalpy flow is proposed. The heritage of model-development efforts undertaken in the 1960s is extremely clear: the bases of the models used in the community are mathematically equivalent. Most of the material-response codes implement a single model in which the equation parameters may be modified to model different materials or conditions. The level of fidelity of the models implemented in design tools only slightly varies. Research and development codes are generally more advanced but often not as robust. The capabilities of each of these codes are summarized in a color-coded table along with research and development efforts currently in progress.

  9. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  10. A Model for Rate-Dependent Hysteresis in Piezoceramic Materials Operating at Low Frequencies

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Ounaies, Zoubeida; Wieman, Robert

    2001-01-01

    This paper addresses the modeling of certain rate-dependent mechanisms which contribute to hysteresis inherent to piezoelectric materials operating at low frequencies. While quasistatic models are suitable for initial material characterization in some applications, the reduction in coercive field and polarization values which occur as frequencies increase must be accommodated to achieve the full capabilities of the materials. The model employed here quantifies the hysteresis in two steps. In the first, anhysteretic polarization switching is modeled through the application of Boltzmann principles to balance the electrostatic and thermal energy. Hysteresis is then incorporated through the quantification of energy required to translate and bend domain walls pinned at inclusions inherent to the materials. The performance of the model is illustrated through a fit to low frequency data (0.1 Hz - 1 Hz) from a PZT5A wafer.

  11. Calibration and Finite Element Implementation of an Energy-Based Material Model for Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hackl, Klaus

    2016-06-01

    Numerical simulations are a powerful tool to analyze the complex thermo-mechanically coupled material behavior of shape memory alloys during product engineering. The benefit of the simulations strongly depends on the quality of the underlying material model. In this contribution, we discuss a variational approach which is based solely on energetic considerations and demonstrate that unique calibration of such a model is sufficient to predict the material behavior at varying ambient temperature. In the beginning, we recall the necessary equations of the material model and explain the fundamental idea. Afterwards, we focus on the numerical implementation and provide all information that is needed for programing. Then, we show two different ways to calibrate the model and discuss the results. Furthermore, we show how this model is used during real-life industrial product engineering.

  12. Transferable tight-binding model for strained group IV and III-V materials and heterostructures

    NASA Astrophysics Data System (ADS)

    Tan, Yaohua; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard

    2016-07-01

    It is critical to capture the effect due to strain and material interface for device level transistor modeling. We introduce a transferable s p3d5s* tight-binding model with nearest-neighbor interactions for arbitrarily strained group IV and III-V materials. The tight-binding model is parametrized with respect to hybrid functional (HSE06) calculations for varieties of strained systems. The tight-binding calculations of ultrasmall superlattices formed by group IV and group III-V materials show good agreement with the corresponding HSE06 calculations. The application of the tight-binding model to superlattices demonstrates that the transferable tight-binding model with nearest-neighbor interactions can be obtained for group IV and III-V materials.

  13. Fracture analysis for biological materials with an expanded cohesive zone model.

    PubMed

    An, Bingbing; Zhao, Xinluo; Arola, Dwayne; Zhang, Dongsheng

    2014-07-18

    In this study, a theoretical framework for simulation of fracture of bone and bone-like materials is provided. An expanded cohesive zone model with thermodynamically consistent framework has been proposed and used to investigate the crack growth resistance of bone and bone-like materials. The reversible elastic deformation, irreversible plastic deformation caused by large deformation of soft protein matrix, and damage evidenced by the material separation and crack nucleation in the cohesive zone, were all taken into account in the model. Furthermore, the key mechanisms in deformation of biocomposites consisting of mineral platelets and protein interfacial layers were incorporated in the fracture process zone in this model, thereby overcoming the limitations of previous cohesive zone modeling of bone fracture. Finally, applications to fracture of cortical bone and human dentin were presented, which showed good agreement between numerical simulation and reported experiments and substantiated the effectiveness of the model in investigating the fracture behavior of bone-like materials. PMID:24877880

  14. User-defined Material Model for Thermo-mechanical Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.

  15. Fatigue Crack Growth Analysis Models for Functionally Graded Materials

    SciTech Connect

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    2008-02-15

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  16. Advanced Modeling and Materials in Kraft Pulp Mills

    SciTech Connect

    Keiser, J.R.; Gorog, J.P.

    2002-05-15

    This CRADA provided technical support to the Weyerhaeuser Company on a number of issues related to the performance and/or selection of materials at a number of locations in a pulp and paper mill. The studies related primarily to components for black liquor recovery boilers, but some effort was directed toward black liquor gasifiers and rolls for paper machines. The purpose of this CRADA was to assist Weyerhaeuser in the evaluation of materials exposed in various paper mill environments and to provide direction in the selection of alternate materials, when appropriate.

  17. Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Saleeb, Atef F.

    2005-01-01

    Typical High Temperature Applications High Temperature Applications Demand High Performance Materials: 1) Complex Thermomechanical Loading; 2) Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic; and 3) Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems.

  18. Materials processing in a centrifuge - Numerical modeling of macrogravity effects

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Jones, J. C.; Curreri, P. A.

    1992-01-01

    The fluid mechanics associated with crystal growth processes on a centrifuge is investigated. A simple scaling analysis is used to examine the relative magnitudes of the forces acting on the system and good agreement is obtained with previous studies. A two-dimensional model of crystal growth on a centrifuge is proposed and calculations are undertaken to help in understanding the fundamental transport processes within the crystal growth cell. Results from three-dimensional calculations of actual centrifuge-based crystal growth systems are presented both for the thermodynamically stable and unstable configurations. The calculations show the existence of flow bifurcations in certain configurations but not in all instances. The numerical simulations also show that the centrifugal force is the dominant stabilizing force on fluid convection in the stable configuration. The stabilizing influence of the Coriolis force is found to be only secondary in nature. No significant impact of gravity gradient is found in the calculations. Simulations of unstable configurations show that the Coriolis force has a stabilizing influence on fluid motion by delaying the onset of unsteady convection. Detailed flow and thermal field characteristics are presented for all the different cases that are simulated.

  19. First-principles modeling of materials for nuclear energy applications

    SciTech Connect

    Dmitriev, Andrey I. Nikonov, Anton Yu.; Ponomareva, Alena V.; Abrikosov, Igor A.; Barannikova, Svetlana A.

    2014-11-14

    We discuss recent developments in the field of ab initio electronic structure theory and its use for studies of materials for nuclear energy applications. We review state-of-the-art simulation methods that allow for an efficient treatment of effects due to chemical and magnetic disorder, and illustrate their predictive power with examples of two materials systems, Fe-Cr-Ni alloys and Zr-Nb alloys.

  20. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2015-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  1. Verification and Validation of a Three-Dimensional Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Harrington, Joseph; Subramaniam, D. Rajan; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther

    2014-01-01

    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800- F3900 fiber/resin composite material.

  2. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    PubMed Central

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2014-01-01

    Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874

  3. Dynamical screening in correlated electron systems—from lattice models to realistic materials

    NASA Astrophysics Data System (ADS)

    Werner, Philipp; Casula, Michele

    2016-09-01

    Recent progress in treating the dynamical nature of the screened Coulomb interaction in strongly correlated lattice models and materials is reviewed with a focus on computational schemes based on the dynamical mean field approximation. We discuss approximate and exact methods for the solution of impurity models with retarded interactions, and explain how these models appear as auxiliary problems in various extensions of the dynamical mean field formalism. The current state of the field is illustrated with results from recent applications of these schemes to U-V Hubbard models and correlated materials.

  4. Dynamical screening in correlated electron systems-from lattice models to realistic materials.

    PubMed

    Werner, Philipp; Casula, Michele

    2016-09-28

    Recent progress in treating the dynamical nature of the screened Coulomb interaction in strongly correlated lattice models and materials is reviewed with a focus on computational schemes based on the dynamical mean field approximation. We discuss approximate and exact methods for the solution of impurity models with retarded interactions, and explain how these models appear as auxiliary problems in various extensions of the dynamical mean field formalism. The current state of the field is illustrated with results from recent applications of these schemes to U-V Hubbard models and correlated materials. PMID:27440180

  5. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  6. High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    2002-01-01

    A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.

  7. Extending the energy range of materials activation modelling

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.

    2004-08-01

    Activation calculations are an essential contribution to understanding the interactions of fusion materials with neutrons. The existing state-of-the-art tools such as EASY-2003 enable calculations to be carried out with neutrons up to 20 MeV. Plans to expose fusion components to high neutron fluxes include the IFMIF materials testing facility. This accelerator-based device will produce neutrons with a high-energy tail up to about 55 MeV. In order to carry out activation calculations on materials exposed to such neutrons it is necessary to extend the energy range of the data libraries. An extension of the European Activation System (EASY) to a new version, EASY-2004, for testing has been completed. The existing reactions have been extended up to 60 MeV and new classes of reactions added using calculated cross sections. Results of preliminary calculations in an IFMIF relevant neutron field are given.

  8. Modeling Ablation of Fibrous Materials from Bulk to Knudsen Regime

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean; Mansour, Nagi N.

    2008-01-01

    Material-environment interactions are analyzed at microscopic scale to explain the lower than expected density observed by post-flight analysis of the char layer on the Stardust shield. Mass transfer, ablation (oxidation), and surface recession of fibrous material is simulated in 3D using a Monte-Carlo simulation tool. Ablation is found to occur either at the surface or in volume depending on Knudsen and Thiele number values. This study supports the idea of volume ablation followed by possible carbon fiber spallation that may explain post-flight analyses.

  9. Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials

    NASA Astrophysics Data System (ADS)

    Tjahjanto, D. D.; Girlanda, O.; Östlund, S.

    2015-11-01

    A continuum material model is developed for simulating the mechanical response of high-density cellulose-based materials subjected to stationary and transient loading. The model is formulated in an infinitesimal strain framework, where the total strain is decomposed into elastic and plastic parts. The model adopts a standard linear viscoelastic solid model expressed in terms of Boltzmann hereditary integral form, which is coupled to a rate-dependent viscoplastic formulation to describe the irreversible plastic part of the overall strain. An anisotropic hardening law with a kinematic effect is particularly adopted in order to capture the complex stress-strain hysteresis typically observed in polymeric materials. In addition, the present model accounts for the effects of material densification associated with through-thickness compression, which are captured using an exponential law typically applied in the continuum description of elasticity in porous media. Material parameters used in the present model are calibrated to the experimental data for high-density (press)boards. The experimental characterization procedures as well as the calibration of the parameters are highlighted. The results of the model simulations are systematically analyzed and validated against the corresponding experimental data. The comparisons show that the predictions of the present model are in very good agreement with the experimental observations for both stationary and transient load cases.

  10. Shade Material Evaluation Using a Cattle Response Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle produced in open feedlots are vulnerable to a variety of weather events; under certain conditions heat events can be especially detrimental. Shade structures are often considered as one method of reducing cattle stress. A variety of shading materials are available; selection of a suitable mat...

  11. Contributions to the validation of the CJS model for granular materials

    NASA Astrophysics Data System (ADS)

    Elamrani, Khadija

    1992-07-01

    Behavior model validation in the field of geotechnics is addressed, with the objective of showing the advantages and limits of the CJS (Cambou Jafari Sidoroff) behavior model for granular materials. Several levels are addressed: theoretical analysis of the CJS model to reveal consistence and first capacities; shaping (followed by validation by confrontation with other programs) of a computation code by finite elements (FINITEL) to integrate this model and prepare it for complex applications; validation of the code/model structure thus constituted by comparing its results to those of experiments in the case of nonhomogeneous (superficial foundations) problems.

  12. COMGEN-BEM: Boundary element model generation for composite materials micromechanical analysis

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1992-01-01

    Composite Model Generation-Boundary Element Method (COMGEN-BEM) is a program developed in PATRAN command language (PCL) which generates boundary element models of continuous fiber composites at the micromechanical (constituent) scale. Based on the entry of a few simple parameters such as fiber volume fraction and fiber diameter, the model geometry and boundary element model are generated. In addition, various mesh densities, material properties, fiber orientation angles, loads, and boundary conditions can be specified. The generated model can then be translated to a format consistent with a boundary element analysis code such as BEST-CMS.

  13. Modeling aerosol emissions from the combustion of composite materials

    NASA Technical Reports Server (NTRS)

    Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.

    1994-01-01

    The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.

  14. Modeling of fissile material diversion in solvent extraction cascades

    SciTech Connect

    Schneider, A.; Carlson, R.W.

    1980-05-22

    Changes were calculated for measurable parameters of a solvent extraction section of a reprocessing plant resulting from postulated fissile material diversion actions. The computer program SEPHIS was modified to calculate the time-dependent concentrations of uranium and plutonium in each stage of a cascade. The calculation of the inventories of uranium and plutonium in each contactor was also included. The concentration and inventory histories were computed for a group of four sequential columns during start-up and for postulated diversion conditions within this group of columns. Monitoring of column exit streams or of integrated column inventories for fissile materials could provide qualitative indications of attempted diversions. However, the time delays and resulting changes are complex and do not correlate quantitatively with the magnitude of the initiating event.

  15. An overview of mesoscale material modeling with Eulerian hydrocodes

    NASA Astrophysics Data System (ADS)

    Olney, K.; Benson, D. J.; Nesterenko, V.

    2014-05-01

    Eulerian hydrocodes were originally developed for simulating strong shocks in solids and fluids, but their ability to handle arbitrarily large deformations and the formation of new free surfaces makes them attractive for simulating the deformation and failure of materials at the mesoscopic scale. A summary of several numerical techniques that have been developed to address issues that commonly arise for this class of problems is presented.

  16. Deficiencies in numerical models of anisotropic nonlinearly elastic materials.

    PubMed

    Ní Annaidh, A; Destrade, M; Gilchrist, M D; Murphy, J G

    2013-08-01

    Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson's ratio' close to the perfect incompressibility limit of 1/2 are made. PMID:23011411

  17. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2015-10-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  18. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    NASA Astrophysics Data System (ADS)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  19. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.

    1985-01-01

    The purpose is to develop life prediction models for coated anisotropic materials used in gas temperature airfoils. Two single crystal alloys and two coatings are now being tested. These include PWA 1480; Alloy 185; overlay coating, PWA 286; and aluminide coating, PWA 273. Constitutive models are also being developed for these materials to predict the plastic and creep strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularily important for high temperature gas turbine applications and is basic to any life prediction system.

  20. Identification of the relation between the material parameters in the Preisach model and in the Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Dupré, Luc R.; Van Keer, Roger; Melkebeek, Jan A. A.

    1999-04-01

    In this article the relation between the material parameters appearing in the Preisach model and those entering the Jiles-Atherton model is discussed. Emphasis is on the variation of the anhysteretic curve and on the magnetization dependency of the pinning parameter, when changing the Preisach distribution function. The discussion rests upon the consideration of the shape of the MH loop on the one hand and upon the identification of the instantaneous loss dissipation on the other hand. The techniques outlined are applied to silicon iron alloys and are compared with results from measurements.

  1. Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method

    NASA Astrophysics Data System (ADS)

    Tang, Tian; Yu, Wenbin

    2009-12-01

    A multiphysics micromechanics model is developed to predict the effective properties as well as the local fields of periodic smart materials responsive to fully coupled electric, magnetic, thermal and mechanical fields. This work is based on the framework of the variational asymptotic method for unit cell homogenization (VAMUCH), a recently developed micromechanics modeling scheme. To treat the general microstructure of smart materials, we implemented this model using the finite element technique. Several examples of smart materials are used to demonstrate the application of the proposed model for prediction of multiphysical behavior. A preliminary version of this paper was presented at the 2008 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Ellicott City, MD, USA.

  2. Developing Creativity Instructional Materials According to the Osborn-Parnes Creative Problem Solving Model.

    ERIC Educational Resources Information Center

    Torrance, E. Paul; Torrance, J. Pansy

    1978-01-01

    The authors describe practice problems of the 1977-78 Future Problem Solving Program (involving gifted students from fourth to twelfth grade) to illustrate the Osborne-Parnes problem solving model for developing creativity instructional materials. (SBH)

  3. Geometry generation challenges for modelling and analysis of micro-structured materials

    NASA Astrophysics Data System (ADS)

    McMillan, A. J.

    2015-02-01

    Engineers evaluating the performance of a component at the design stage will typically convert Computer Aided Design (CAD) geometry into a Finite Element model, and run a Finite Element Analysis (FEA) to determine deformations and stress levels as a result of applied loads or displacements. The analysis results would then be interpreted by comparing them with the required duty of the component. For metallic components, homogeneous and isotropic material properties are generally assumed - "macro-scale" modelling. For components to be manufactured from composite materials, models may represent heterogeneity at the ply level, and orthotropic material properties applied with appropriate directionality. This ply-level modelling is often termed "meso-scale" modelling. Engineering interpretation of failure in materials is often based on empirical understanding of experimental data. This approach is generally robust: safety critical components would always be subject to validation by means of a suitable programme of testing. The aspect that is missing is the opportunity to improve understanding of the material performance by investigating the material performance at the "micro-scale". This paper describes computational algorithms for generating random geometries exhibiting similar characteristics to those seen at the "micro-scale" in real materials, and the use of these to predict the influence of the "micro-scale" structure on the "macro-scale" material performance.

  4. A one-dimension coupled hysteresis model for giant magnetostrictive materials

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaojing; Sun, Le

    2007-02-01

    This paper addresses the development of a one-dimension model for quantifying magnetic-elastic-thermal coupling and hysteresis inherent to giant magnetostrictive materials. Firstly, the anhysteretic law is modeled by considering the Gibbs free energy function G( σ, M, T), and thermodynamic relations are used to obtain the constitutive expressions. These expressions character the effects of coupling between stress, magnetization, and temperature in the giant magnetostrictive material but hysteresis, i.e. strain and magnetic intensity described by above the constitutive expressions are single-valued function of the magnetization. And then pinning is incorporated to describe hysteresis based on Jiles-Atherton model. The model considered in the paper is demonstrated valid by comparing the predicted results with experimental data. Moreover, the model proposed in the paper is convenient to be used in engineering applications since the parameters referred to the model have definite physical mean and can all be easily determined by experiments.

  5. Unexpected collapses during isotropic consolidation of model granular materials

    NASA Astrophysics Data System (ADS)

    Doanh, Thiep; Le Bot, Alain; Abdelmoula, Nouha; Gribaa, Lassad; Hans, Stéphane; Boutin, Claude

    2016-02-01

    This paper reports the unexpected instantaneous instabilities of idealized granular materials under simple isotropic drained compression. Specimens of monosized glass beads submitted to isotropic compression exhibit a series of local collapses under undetermined external stress with partial liquefaction, experience sudden volumetric compaction and axial contraction of various amplitude. Short-lived excess pore water pressure vibrates like an oscillating underdamped system in the first dynamic transient phase and rapidly disperses in the subsequent longer dissipation phase. However, very dense samples maintain a collapse-free behaviour below a threshold void ratio e30col at 30 kPa of stress. The potential mechanisms that could explain these spontaneous collapses are discussed.

  6. Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Jordan, E. H.

    1985-01-01

    A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.

  7. Rheological and physical characteristics of crustal-scaled materials for centrifuge analogue modelling

    NASA Astrophysics Data System (ADS)

    Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.

    2016-05-01

    We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates < 0.5 × 10-2 s-1, while other modelling clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.

  8. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  9. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  10. A micro-continuum-mechanical material model for failure of rubber-like materials: Application to ageing-induced fracturing

    NASA Astrophysics Data System (ADS)

    Dal, Hüsnü; Kaliske, Michael

    2009-08-01

    Rubbery polymers are subjected to severe environmental conditions under service. As a consequence of various ageing mechanisms, the outer surface of rubber components hardens in time and cracking occurs as a result of combined mechanical and chemical processes. Conventional phenomenological hyperelastic constitutive models do not account for material softening. Consequently, the stored energy and stresses tend to infinity as stretch increases. In this contribution, a network alteration for the ageing mechanism of rubber-like materials is introduced along with a micromolecular description of material failure. The proposed micro-continuum material model is based on a serial construction of a Langevin-type spring representing the energy storage owing to conformational changes induced by deformation, to a bond potential representing the energy stored in the polymer chain due to the interatomic displacement. For the representation of the micro-macro transition, the non-affine kinematics of the micro-sphere model is used. The Morse potential is utilized for the interatomic bond, which describes the energetic contribution to rubber-like materials and governs the failure of the polymer chain in terms of bond rupture. A novel numerical scheme for the FE implementation of the proposed model is demonstrated. The hardening phenomenon as a result of diffusion limited oxidation of rubber is explained by the principle of mass conservation which dictates simultaneous modulus hardening along with decrease in ultimate stretch observed in aged rubbery polymers.

  11. Experiments with a low-cost system for computer graphics material model acquisition

    NASA Astrophysics Data System (ADS)

    Rushmeier, Holly; Lockerman, Yitzhak; Cartwright, Luke; Pitera, David

    2015-03-01

    We consider the design of an inexpensive system for acquiring material models for computer graphics rendering applications in animation, games and conceptual design. To be useful in these applications a system must be able to model a rich range of appearances in a computationally tractable form. The range of appearance of interest in computer graphics includes materials that have spatially varying properties, directionality, small-scale geometric structure, and subsurface scattering. To be computationally tractable, material models for graphics must be compact, editable, and efficient to numerically evaluate for ray tracing importance sampling. To construct appropriate models for a range of interesting materials, we take the approach of separating out directly and indirectly scattered light using high spatial frequency patterns introduced by Nayar et al. in 2006. To acquire the data at low cost, we use a set of Raspberry Pi computers and cameras clamped to miniature projectors. We explore techniques to separate out surface and subsurface indirect lighting. This separation would allow the fitting of simple, and so tractable, analytical models to features of the appearance model. The goal of the system is to provide models for physically accurate renderings that are visually equivalent to viewing the original physical materials.

  12. Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization

    NASA Astrophysics Data System (ADS)

    Bause, Fabian; Gravenkamp, Hauke; Rautenberg, Jens; Henning, Bernd

    2015-09-01

    In this contribution, we present an efficient approach for the transient and time-causal modeling of guided waves in viscoelastic cylindrical waveguides in the context of ultrasonic material characterization. We use the scaled boundary finite element method (SBFEM) for efficient computation of the phase velocity dispersion. Regarding the viscoelastic behavior of the materials under consideration, we propose a decomposition approach that considers the real-valued frequency dependence of the (visco-)elastic moduli and, separately, of their attenuation. The modal expansion approach is utilized to take the transmitting and receiving transducers into account and to propagate the excited waveguide modes through a waveguide of finite length. The effectiveness of the proposed simulation model is shown by comparison with a standard transient FEM simulation as well as simulation results based on the exact solution of the complex-valued viscoelastic guided wave problem. Two material models are discussed, namely the fractional Zener model and the anti-Zener model; we re-interpret the latter in terms of the Rayleigh damping model. Measurements are taken on a polypropylene sample and the proposed transient simulation model is used for inverse material characterization. The extracted material properties may then be used in computer-aided design of ultrasonic systems.

  13. Finite element implementation of a new model of slight compressibility for transversely isotropic materials.

    PubMed

    Pierrat, B; Murphy, J G; MacManus, D B; Gilchrist, M D

    2016-01-01

    Modelling transversely isotropic materials in finite strain problems is a complex task in biomechanics, and is usually addressed by using finite element (FE) simulations. The standard method developed to account for the quasi-incompressible nature of soft tissues is to decompose the strain energy function (SEF) into volumetric and deviatoric parts. However, this decomposition is only valid for fully incompressible materials, and its use for slightly compressible materials yields an unphysical response during the simulation of hydrostatic tension/compression of a transversely isotropic material. This paper presents the FE implementation as subroutines of a new volumetric model solving this deficiency in two FE codes: Abaqus and FEBio. This model also has the specificity of restoring the compatibility with small strain theory. The stress and elasticity tensors are first derived for a general SEF. This is followed by a successful convergence check using a particular SEF and a suite of single-element tests showing that this new model does not only correct the hydrostatic deficiency but may also affect stresses during shear tests (Poynting effect) and lateral stretches during uniaxial tests (Poisson's effect). These FE subroutines have numerous applications including the modelling of tendons, ligaments, heart tissue, etc. The biomechanics community should be aware of specificities of the standard model, and the new model should be used when accurate FE results are desired in the case of compressible materials. PMID:26252069

  14. In-space production of large space systems from extraterrestrial materials: A program implementation model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1977-01-01

    A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.

  15. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    SciTech Connect

    Browning, R.V.; Scammon, R.J.

    1997-07-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-950l. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate the viscoelastic based model show that the observed characteristic behavior is captured by this model.

  16. Contaminant tailing in highly heterogeneous porous formations: Sensitivity on model selection and material properties

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mahdi; Jankovic, Igor; Weissmann, Gary S.; Matott, L. Shawn; Allen-King, Richelle M.; Rabideau, Alan J.

    2015-12-01

    Coupled impacts of slow advection, diffusion and sorption were investigated using two heterogeneity models that differ in structure and in the mathematical framework that was used to simulate flow and transport and to quantify contaminant tailing. Both models were built using data from a highly heterogeneous exposure of the Borden Aquifer at a site located 2 km north-west of the Stanford-Waterloo experimental site at Canadian Forces Base Borden, Ontario, Canada. The inclusions-based model used a simplified representation of the different materials found at the site, while the second model was based on transitional probability geostatistics of the formation. These two models were used to investigate sensitivity of contaminant tailing on model selection and on geometric and material properties. While simulations were based on data collected at Borden, models were exercised beyond the geometric and material properties that characterize the site. Various realizations have identified very low conductive silty clay, found at volume fraction of 23.4%, as the material with dominant influence on tailing, and vertical diffusion in and out of low conductive units, affected by sorption, as the dominant transport mechanism causing tailing. The two models yielded almost identical transport results when vertical correlation lengths of silty clay were matched. Several practical implications relevant for characterization of low conductive units were identified and briefly discussed.

  17. Application and limitations of a mass transfer VOC emission model for a dry building material

    NASA Astrophysics Data System (ADS)

    Crawford, S.; Lungu, C. T.

    2013-12-01

    Volatile organic compound (VOC) emission from building materials into air has been quantified, characterized and modeled. Internal diffusion of VOC through a material based on Fick's law of diffusion is the basis for mass transfer modeling of diffusive emission used to estimate VOC concentrations in air over time. Current mass transfer models have been shown to appropriately estimate air VOC concentrations at approximate room temperature, while other research has shown that temperature has a profound effect on the diffusion coefficient, D, of VOC in a material. Here, a mass transfer model is operated at 23 °C and 40 °C using input parameters applicable for each temperature. The model estimates are validated against environmental test chamber data for styrene emission from a vinyl ester resin thermoset composite material. The model correlates well with the 23 °C chamber data, but underestimates chamber data by as much as 10-4 at 264 h for the 40 °C modeling. This suggests that the model requires adjustment for predicting VOC air concentrations at temperatures other than 23 °C.

  18. A COMPUTER STUDY OF THE KOH-CHANG MODEL FOR DREDGED MATERIAL DISPOSAL

    EPA Science Inventory

    This report is on a computer study of the Koh-Chang model for physical fate prediction in dredge material disposal. This computer model can simulate three discharge methods: instantaneous bottom release, jet discharge, and discharge into a wake. Convective descent, dynamic collap...

  19. In-Service Workshop Model. Development Work, Volunteer Service and Project Review. Core Curriculum Resource Materials.

    ERIC Educational Resources Information Center

    Edwards, Dan

    A model is provided for an inservice workshop to provide systematic project review, conduct individual volunteer support and problem solving, and conduct future work planning. Information on model use and general instructions are presented. Materials are provided for 12 sessions covering a 5-day period. The first session on climate setting and…

  20. Nonlinear material parameter estimation for characterizing hyper elastic large strain models

    NASA Astrophysics Data System (ADS)

    Gendy, A. S.; Saleeb, A. F.

    An automated, systematic, and computationally efficient methodology to estimate the material parameters for characterizing general nonlinear material models for large strain analysis (e.g., hyperelastic and hyper foam materials) is presented. Such constitutive material models often require a large number of material constants to describe a host of physical phenomena and complicated deformation mechanisms. Extracting such material constants for a model from the volumes of data generated in the test laboratory is usually a very difficult, and frustrating. The integrated code COMPARE (that is an acronym of Constitutive Material PARameter Estimator) is being developed to enable the determination of an ``optimum'' set material parameters by minimizing the errors between the experimental test data and the predicted response. The key ingredients of COMPARE are listed as follows: (i) primal analysis tools (response functionals) for differential form of constitutive models; (ii) sensitivity analysis; (iii) optimization technique of an error/cost function; and (iv) graphical user interface. The code COMPARE casts the estimation of the material parameters as a minimum-error, weighted-multiobjective, optimization problem. Detailed derivations and results generated by applying the proposed technique to a comprehensive set of test data are given. These results have clearly demonstrated the great practical utility of the automated scheme developed.

  1. Paradigm Shift in Data Content and Informatics Infrastructure Required for Generalized Constitutive Modeling of Materials Behavior

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    2006-01-01

    Materials property information such as composition and thermophysical/mechanical properties abound in the literature. Oftentimes, however, the corresponding response curves from which these data are determined are missing or at the very least difficult to retrieve. Further, the paradigm for collecting materials property information has historically centered on (1) properties for materials comparison/selection purposes and (2) input requirements for conventional design/analysis methods. However, just as not all materials are alike or equal, neither are all constitutive models (and thus design/ analysis methods) equal; each model typically has its own specific and often unique required materials parameters, some directly measurable and others indirectly measurable. Therefore, the type and extent of materials information routinely collected is not always sufficient to meet the current, much less future, needs of the materials modeling community. Informatics has been defined as the science concerned with gathering, manipulating, storing, retrieving, and classifying recorded information. A key aspect of informatics is its focus on understanding problems and applying information technology as needed to address those problems. The primary objective of this article is to highlight the need for a paradigm shift in materials data collection, analysis, and dissemination so as to maximize the impact on both practitioners and researchers. Our hope is to identify and articulate what constitutes "sufficient" data content (i.e., quality and quantity) for developing, characterizing, and validating sophisticated nonlinear time- and history-dependent (hereditary) constitutive models. Likewise, the informatics infrastructure required for handling the potentially massive amounts of materials data will be discussed.

  2. Evaluation of advanced materials through experimental mechanics and modelling

    NASA Astrophysics Data System (ADS)

    Yang, Yii-Ching

    1993-11-01

    Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental

  3. Evaluation of advanced materials through experimental mechanics and modelling

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1993-01-01

    Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental

  4. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  5. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    NASA Astrophysics Data System (ADS)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  6. Nitride Fuel Modeling Recommendation for Nitride Fuel Material Property Measurement Priority

    SciTech Connect

    William Carmack; Richard Moore

    2005-09-01

    The purpose of this effort was to provide the basis for a model that effectively predicts nitride fuel behavior. Material property models developed for the uranium nitride fuel system have been used to approximate the general behavior of nitride fuels with specific property models for the transuranic nitride fuels utilized as they become available. The AFCI fuel development program now has the means for predicting the behavior of the transuranic nitride fuel compositions. The key data and models needed for input into this model include: Thermal conductivity with burnup Fuel expansion coefficient Fuel swelling with burnup Fission gas release with burnup. Although the fuel performance model is a fully functional FEA analysis tool, it is limited by the input data and models.

  7. Noninteractive macroscopic reliability model for ceramic matrix composites with orthotropic material symmetry

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Manderscheid, Jane M.

    1989-01-01

    A macroscopic noninteractive reliability model for ceramic matrix composites is presented. The model is multiaxial and applicable to composites that can be characterized as orthotropic. Tensorial invariant theory is used to create an integrity basis with invariants that correspond to physical mechanisms related to fracture. This integrity basis is then used to construct a failure function per unit volume (or area) of material. It is assumed that the overall strength of the composite is governed by weakest link theory. This leads to a Weibull type model similar in nature to the principle of independent action (PIA) model for isotropic monolithic ceramics. An experimental program to obtain model parameters is briefly discussed. In addition, qualitative features of the model are illustrated by presenting reliability surfaces for various model parameters.

  8. Computer-based learning materials for medical education: a model production.

    PubMed

    Mooney, G A; Bligh, J G

    1997-05-01

    Computer-based learning materials (CBL or courseware) have the potential to be valuable learning resources for medical education. However, CBL has failed to realize its potential primarily because of unstructured approaches towards design and development. This paper describes the courseware development model (CDM), a conceptual model produced and used by the Medical Education Unit at The University of Liverpool. The model describes a structured multi-disciplinary approach to the design and production of CBL materials. It promotes meticulous planning, communication and organization. The CDM draws on three areas of expertise: (1) education; (2) computer science; and (3) medical content. PMID:9231139

  9. A Ubiquitiformal One-Dimensional Steady-State Conduction Model for a Cellular Material Rod

    NASA Astrophysics Data System (ADS)

    Li, Guan-Ying; Ou, Zhuo-Cheng; Xie, Ran; Duan, Zhuo-Ping; Huang, Feng-Lei

    2016-04-01

    A ubiquitiformal model for the one-dimensional steady-state heat transfer of a cellular material rod is developed in this paper, and the explicit analytical expressions for both the temperature distribution and the equivalent thermal conductivity are obtained. The calculated results for two kinds of dry soil are found to be in good agreement with previous experimental data. Moreover, it is demonstrated that the ubiquitiformal model is more reasonable for describing such a cellular material than the fractal one, and hence a ubiquitiformal rather than a fractal model should be considered in practical applications whenever the integral dimensional measure of a real physical object must be taken into account.

  10. Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.

    2004-01-01

    Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.

  11. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  12. Finite element modeling of magnetic bias eddy current probe interaction with ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Lei, J.

    2013-01-01

    Requirements to demonstrate eddy current inspection capabilities for inspection of steam generator tubes in nuclear power generation stations are becoming more rigorous. One method to support qualification of an existing, modified, or new eddy current probe design is to model the probe response to various degradation modes and tube artifacts with a finite element approach. Magnetic-bias probes are used to inspect for defects in conditions where material magnetic permeability effects are a concern, such as in the presence of ferromagnetic tubes, deposits, or supports. In this paper, a transient finite element modeling approach was used to model the interaction of magnetic-bias eddy current probes with ferromagnetic materials.

  13. Effects of Material Degradation on the Structural Integrity of Composite Materials: Experimental Investigation and Modeling of High Temperature Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.; McManus, Hugh L.

    1996-01-01

    It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.

  14. Phase-field model simulation of ferroelectric/antiferroelectric materials microstructure evolution under multiphysics loading

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi

    Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the

  15. Micromechanics and constitutive models for soft active materials with phase evolution

    NASA Astrophysics Data System (ADS)

    Wang, Binglian

    Soft active materials, such as shape memory polymers, liquid crystal elastomers, soft tissues, gels etc., are materials that can deform largely in response to external stimuli. Micromechanics analysis of heterogeneous materials based on finite element method is a typically numerical way to study the thermal-mechanical behaviors of soft active materials with phase evolution. While the constitutive models that can precisely describe the stress and strain fields of materials in the process of phase evolution can not be found in the databases of some commercial finite element analysis (FEA) tools such as ANSYS or Abaqus, even the specific constitutive behavior for each individual phase either the new formed one or the original one has already been well-known. So developing a computationally efficient and general three dimensional (3D) thermal-mechanical constitutive model for soft active materials with phase evolution which can be implemented into FEA is eagerly demanded. This paper first solved this problem theoretically by recording the deformation history of each individual phase in the phase evolution process, and adopted the idea of effectiveness by regarding all the new formed phase as an effective phase with an effective deformation to make this theory computationally efficient. A user material subroutine (UMAT) code based on this theoretical constitutive model has been finished in this work which can be added into the material database in Abaqus or ANSYS and can be easily used for most soft active materials with phase evolution. Model validation also has been done through comparison between micromechanical FEA and experiments on a particular composite material, shape memory elastomeric composite (SMEC) which consisted of an elastomeric matrix and the crystallizable fibre. Results show that the micromechanics and the constitutive models developed in this paper for soft active materials with phase evolution are completely relied on.

  16. FinFET Doping; Material Science, Metrology, and Process Modeling Studies for Optimized Device Performance

    SciTech Connect

    Duffy, R.; Shayesteh, M.

    2011-01-07

    In this review paper the challenges that face doping optimization in 3-dimensional (3D) thin-body silicon devices will be discussed, within the context of material science studies, metrology methodologies, process modeling insight, ultimately leading to optimized device performance. The focus will be on ion implantation at the method to introduce the dopants to the target material.

  17. An extended Foerster-Dexter model for correlated donor-acceptor placement in solid state materials

    NASA Astrophysics Data System (ADS)

    Rotman, S. R.; Hartmann, F. X.

    1987-09-01

    The current theory of donor-acceptor interactions in solid-state materials is based on a random distribution of donors and acceptors through the crystal. In this paper, we present a model to calculate the observable transfer rates for the correlated positioning of donors and acceptors in laser materials. Chemical effects leading to such correlations are discussed.

  18. Nine Model Programs for Young Children: Appendix of Supplementary Materials. Volume II.

    ERIC Educational Resources Information Center

    Quillian, Benjamin F., Jr.; Rogers, Kathryn S.

    This appendix to the National Program on Early Childhood Education (NPECE) Survey contains materials intended to provide additional information about six of the nine programs described in the survey. The materials include: (1) narrative descriptions of cooking and reading experiences for the Tucson Early Education Model; (2) information on…

  19. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    SciTech Connect

    Browning, R.V.; Scammon, R.J.

    1998-07-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. {copyright} {ital 1998 American Institute of Physics.}

  20. On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material

    PubMed Central

    Momeni Shahraki, Narjes; Fatemi, Ali; Goel, Vijay K.; Agarwal, Anand

    2015-01-01

    Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions. PMID:26090359

  1. Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Yong; Lee, Doo-Ho

    2009-07-01

    The dynamic properties of viscoelastic damping materials are highly frequency- and temperature-dependent. Numerical methods of structural and acoustic systems require the mathematical model for these dependencies. The fractional-derivative model on damping material has become a powerful solution that describes the frequency-dependent dynamic characteristics of damping materials. The model parameters on a damping material are very important information both for describing the responses of damped structures and in the design of damped structures. The authors proposed an efficient identification method of the material parameters using an optimization technique, showing its applicability through numerical studies in a previous work. In this study, the proposed procedure is applied to a damping material to identify the fractional-derivative-model parameters of viscoelastic materials. In the proposed method, frequency response functions (FRFs) are measured via a cantilever beam impact test. The FRFs on the points identical to those measured are calculated using an FE model with the equivalent stiffness approach. The differences between the measured and the calculated FRFs are minimized using a gradient-based optimization algorithm in order to estimate the true values of the parameters. The FRFs of a damped beam structure are measured in an environmental chamber at different temperatures and used as reference responses. A light impact hammer and a laser vibrometer are used to measure the reference responses. Both linear and nonlinear relationships between the logarithmically scaled shift factors and temperatures are examined during the identification of the material parameters. The applied results show that the proposed method accurately identifies the fractional-derivative-model parameters of a viscoelastic material.

  2. Models for Curricular Materials Development: Combining Applied Development Processes with Theory

    NASA Astrophysics Data System (ADS)

    Appleton, James; Lawrenz, Frances; Craft, Elaine; Cudmore, Wynn; Hall, Jim; Waintraub, Jack

    2007-12-01

    Developing curricular materials for technical and vocational education is particularly challenging because of the comprehensive requirements for technical education and the rapidity with which technical positions are evolving. Well-educated employees are expected to have general communication, reasoning, problem-solving, and behavioral skills in addition to occupation-specific technical knowledge. Furthermore, technical and vocational education materials must meet the needs of various contexts each with its own unique array of factors which must be accommodated. To assist in the process of materials development, this paper presents a comprehensive and contextualized model as a guide for curricular developers. This model was formed through the synthesis of two theoretical and four applied models, with the outline of the applied models occurring as part of a national evaluation of the National Science Foundation's Advanced Technological Education Program. Examples illuminating the elements of the template are provided.

  3. Characterization and modeling of an advanced flexible thermal protection material for space applications

    NASA Technical Reports Server (NTRS)

    Clayton, Joseph P.; Tinker, Michael L.

    1991-01-01

    This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.

  4. Life prediction and constitutive models for engine hot section anisotropic materials

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1987-01-01

    The results are presented of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and fatigue data, tests were conducted on uncoated and coated specimens loaded in the CH76 100 CH110 , CH76 110 CH110 , CH76 111 CH110 and CH76 123 CH110 crystallographic directions. Two constitutive models are being developed and evaluated for the single crystal materials: a micromechanic model based on crystallographic slip systems, and a macroscopic model which employs anisotropic tensors to model inelastic deformation anisotropy. Based on tests conducted on the overlay coating material, constitutive models for coatings also appear feasible and two initial models were selected. A life prediction approach was proposed for coated single crystal materials, including crack initiation either in the coating or in the substrate. The coating initiated failures dominated in the tests at load levels typical of gas turbine operation. Coating life was related to coating stress/strain history which was determined from specimen data using the constitutive models.

  5. A micromechanical constitutive model for the dynamic response of brittle materials "Dynamic response of marble"

    NASA Astrophysics Data System (ADS)

    Haberman, Keith

    2001-07-01

    A micromechanically based constitutive model for the dynamic inelastic behavior of brittle materials, specifically "Dionysus-Pentelicon marble" with distributed microcracking is presented. Dionysus-Pentelicon marble was used in the construction of the Parthenon, in Athens, Greece. The constitutive model is a key component in the ability to simulate this historic explosion and the preceding bombardment form cannon fire that occurred at the Parthenon in 1678. Experiments were performed by Rosakis (1999) that characterized the static and dynamic response of this unique material. A micromechanical constitutive model that was previously successfully used to model the dynamic response of granular brittle materials is presented. The constitutive model was fitted to the experimental data for marble and reproduced the experimentally observed basic uniaxial dynamic behavior quite well. This micromechanical constitutive model was then implemented into the three dimensional nonlinear lagrangain finite element code Dyna3d(1998). Implementing this methodology into the three dimensional nonlinear dynamic finite element code allowed the model to be exercised on several preliminary impact experiments. During future simulations, the model is to be used in conjunction with other numerical techniques to simulate projectile impact and blast loading on the Dionysus-Pentelicon marble and on the structure of the Parthenon.

  6. Identification and verification of a Preisach-based vector model for ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Sutor, Alexander; Bi, Shasha; Lerch, Reinhard

    2015-03-01

    In many applications of ferromagnetic materials concerning sensors and actuators, magnetic fields are rotating. In order to precisely describe the behavior of ferromagnetic materials in rotating magnetic fields, vector hysteresis models are necessary. Therefore, much effort is being put into the development of efficient vector models. For the reason of computational efficiency, models have been developed that differ from the Preisach approach and are for example based on rotationally coupled step functions. We have proposed a very efficient Preisach-based model before, which we called the rotational vector Preisach model. In this paper, we propose an extension of the rotational switching function, which improves the model characteristics for arbitrary H-field trajectories. We also introduce a set of special vectorial minor loops for the general validation and comparison of vector models. We apply those H-field trajectories to isotropic materials such as sputtered FeCo thin films as used in micromechanical systems. The vectorial minor loops can readily be utilized to evaluate the model output, and the results agree well with vectorial measurements.

  7. Modeling the material properties at the onset of damage initiation in bulk potassium dihydrogen phosphate crystals

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Feit, Michael D.; Duchateau, Guillaume

    2014-10-01

    A model simulating transient optical properties during laser damage in the bulk of KDP/DKDP crystals is presented. The model was developed and tested using as a benchmark its ability to reproduce the well-documented damage initiation behaviors but most importantly, the salient behavior of the wavelength dependence of the damage threshold. The model involves two phases. During phase I, the model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse via excited state absorption and thermally driven generation of additional point defects in the surrounding material. The model suggests that during a fraction of the pulse duration, the host material around the defect cluster is transformed into a strong absorber that leads to significant increase of the local temperature. During phase II, the model suggests that the excitation pathway consists mainly of one photon absorption events within a quasicontinuum of short-lived vibronic defect states spanning the band gap that was generated after the initial localized heating of the material due to thermal quenching of the excited state lifetimes. The width of the transition (steps) between different number of photons is governed by the instantaneous temperature, which was estimated using the experimental data. The model also suggests that the critical physical parameter prior to initiation of breakdown is the conduction band electron density. This model, employing very few free parameters, for the first time is able to quantitatively reproduce the wavelength dependence of the damage initiation threshold, and thus provides important insight into the physical processes involved.

  8. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

  9. Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review

    PubMed Central

    Galbusera, Fabio; Freutel, Maren; Dürselen, Lutz; D’Aiuto, Marta; Croce, Davide; Villa, Tomaso; Sansone, Valerio; Innocenti, Bernardo

    2014-01-01

    Knee ligaments are elastic bands of soft tissue with a complex microstructure and biomechanics, which are critical to determine the kinematics as well as the stress bearing behavior of the knee joint. Their correct implementation in terms of material models and properties is therefore necessary in the development of finite element models of the knee, which has been performed for decades for the investigation of both its basic biomechanics and the development of replacement implants and repair strategies for degenerative and traumatic pathologies. Indeed, a wide range of element types and material models has been used to represent knee ligaments, ranging from elastic unidimensional elements to complex hyperelastic three-dimensional structures with anatomically realistic shapes. This paper systematically reviews literature studies, which described finite element models of the knee, and summarizes the approaches, which have been used to model the ligaments highlighting their strengths and weaknesses. PMID:25478560

  10. Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model Application to wood material

    NASA Astrophysics Data System (ADS)

    Vidal-Sallé, Emmanuelle; Chassagne, Pierre

    2007-06-01

    This paper presents a nonlinear viscoelastic orthotropic constitutive equation applied to wood material. The proposed model takes into account mechanical and mechanosorptive creep via a 3D stress ratio and moisture change rate for a cylindrical orthotropic material. Orthotropic frame is based on the grain direction (L), radial (R) and hoop (T) directions, which are natural wood directions. Particular attention is taken to ensure the model to fulfill the necessary dissipation conditions. It is based on a rheological generalized Maxwell model with two elements in parallel in addition with a single linear spring taking into account the long term response. The proposed model is implemented in the finite element code ABAQUS/Standard® via a user subroutine UMAT and simple example is shown to demonstrate the capability of the proposed model. Future works would deal with damage and fracture prediction for wooden structures submitted to climate variations and mechanical loading.

  11. SCDAP/RELAP5 Modeling of Movement of Melted Material Through Porous Debris in Lower Head

    SciTech Connect

    Siefken, Larry James; Harvego, Edwin Allan

    2000-04-01

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head.

  12. SCDAP/RELAP5 modeling of movement of melted material through porous debris in lower head

    SciTech Connect

    L. J. Siefken; E. A. Harvego

    2000-04-02

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head.

  13. Hierarchical fiber bundle model to investigate the complex architectures of biological materials.

    PubMed

    Pugno, Nicola M; Bosia, Federico; Abdalrahman, Tamer

    2012-01-01

    The mechanics of fiber bundles has been widely studied in the literature, and fiber bundle models in particular have provided a wealth of useful analytical and numerical results for modeling ordinary materials. These models, however, are inadequate to treat bioinspired nanostructured materials, where hierarchy, multiscale, and complex properties play a decisive role in determining the overall mechanical characteristics. Here, we develop an ad hoc hierarchical theory designed to tackle these complex architectures, thus allowing the determination of the strength of macroscopic hierarchical materials from the properties of their constituents at the nanoscale. The roles of finite size, twisting angle, and friction are also included. Size effects on the statistical distribution of fiber strengths naturally emerge without invoking best-fit or unknown parameters. A comparison between the developed theory and various experimental results on synthetic and natural materials yields considerable agreement. PMID:22400587

  14. Engineered materials characterization report, volume 3 - corrosion data and modeling update for viability assessments

    SciTech Connect

    McCright, R D

    1998-06-30

    This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WP design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.

  15. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  16. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. PMID:24619924

  17. Advanced Process Model for Polymer Pyrolysis and Uranium Ceramic Material Processing

    SciTech Connect

    Wang, Xiaolin; Zunjarrao, Suraj C.; Zhang, Hui; Singh, Raman P.

    2006-07-01

    Silicon carbide (SiC) based uranium ceramic material can be fabricated as hosts for ultra high temperature applications, such as gas-cooled fast reactor fuels and in-core materials. A pyrolysis-based material processing technique allows for the fabrication of SiC based uranium ceramic materials at a lower temperature compared to sintering route. Modeling of the process is considered important for optimizing the fabrication and producing material with high uniformity. This study presents a process model describing polymer pyrolysis and uranium ceramic material processing, including heat transfer, polymer pyrolysis, SiC crystallization, chemical reactions, and species transport of a porous uranium oxide mixed polymer. Three key reactions for polymer pyrolysis and one key reaction for uranium oxide polymer interaction are established for the processing. Included in the model formulation are the effects of transport processes such as heat-up, polymer decomposition, and volatiles escape. The model is capable of accurately predicting the polymer pyrolysis and chemical reactions of the source material. Processing of a sample with certain geometry is simulated. The effects of heating rate, particle size and volume ratio of uranium oxide and polymer on porosity evolution, species uniformity, reaction rate are investigated. (authors)

  18. Reaction rate modeling in the deflagration to detonation transition of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.; Kober, E.M.

    1996-07-01

    The problem of accidental initiation of detonation in granular material has been the initial focus of the Los Alamos explosives safety program. Preexisting models of deflagration-to-detonation transition (DDT) in granular explosives, especially the Baer and Nunziato (BN) model, have been examined. The main focus of this paper is the reaction rate model. Comparison with experiments are made using the BN rate model. Many features are replicated by the simulations. However, some qualitative features, such as inert plug formation in DDT tube-test experiments and other trends, are not produced in the simulations. By modifying the reaction rate model the authors show inert plug formation that more closely replicates the qualitative features of experimental observations. Additional improvements to the rate modeling are suggested.

  19. Modelling the Thermal Decomposition of Carbon Fibre Materials During Re-Entry

    NASA Astrophysics Data System (ADS)

    Fritsche, B.

    2013-08-01

    The SCARAB software is a tool for calculating the motion and aerothermal destruction of spacecraft entering the Earth's atmosphere. To increase the accuracy of the re-entry simulation for spacecraft containing CFRP as wall material, the modelling of the properties of CFRP was improved. Different to the simple conventional "metallic" model with monolithic properties a sophisticated model with different zones with different properties and taking into account additional effects was developed. First a mathematical model was formulated, which was then converted to a numerical model. The numerical 1D model was tested in a testbed software, then implemented into the SCARAB software and applied to wind tunnel conditions and the re-entry of the ROSAT satellite.

  20. Modelling strain localization in granular materials using micropolar theory: mathematical formulations

    NASA Astrophysics Data System (ADS)

    Alsaleh, Mustafa I.; Voyiadjis, George Z.; Alshibli, Khalid A.

    2006-12-01

    It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill-posedness and mesh dependency. Therefore, a non-local theory with internal length scales is needed to overcome such problems. The micropolar and high-order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper, Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper. Copyright

  1. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. PMID:26291782

  2. Realistic micromechanical modeling and simulation of two-phase heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Sreeranganathan, Arun

    This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry

  3. Mesoscale modeling of strain induced solid state amorphization in crystalline materials

    NASA Astrophysics Data System (ADS)

    Lei, Lei

    Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with

  4. Modelling of fracture phenomenon in case of composite materials reinforced with short carbon fibers

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2015-11-01

    The research work presented in this paper describes the composite materials in terms of formation and propagation of cracks using an algorithm that imposes disproportional loads to composite samples. The required parameters that describe the composites fracture demand inputs as: load intensity, geometry features and relative loading direction. In order to obtain reliable results, it should be a good correlation between the model which describes the facture propagation, the composition of the material and the structural homogeneity. The presented study is using a Functionally Graded Material with local homogeneity in fracture area, and a numerical model based on integration of interactions (Mori - Tanaka method). The parameters that describes the fracture behaviour, includes a factor of stress intensity which is important for establish the fracture direction. The model used in simulations is considering a composite sample with rectangular shape and 6 mm thickness. The sample is loaded with predefined stress σct (MPa) above and under the fracture line. σct represents the critical stress able to lead to fracture propagation. The main objective of this research work it was to generate a numerical model which describes the fracture behaviour of a composite material. The obtained model and its accuracy to describe the fracture behaviour of a composite material is presented in the final part of this paper.

  5. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    SciTech Connect

    Chen, Z.; Schreyer, H.L.

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  6. Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability.

    PubMed

    Souffrant, R; Zietz, C; Fritsche, A; Kluess, D; Mittelmeier, W; Bader, R

    2012-01-01

    Primary stability of artificial acetabular cups, used for total hip arthroplasty, is required for the subsequent osteointegration and good long-term clinical results of the implant. Although closed-cell polymer foams represent an adequate bone substitute in experimental studies investigating primary stability, correct numerical modelling of this material depends on the parameter selection. Material parameters necessary for crushable foam plasticity behaviour were originated from numerical simulations matched with experimental tests of the polymethacrylimide raw material. Experimental primary stability tests of acetabular press-fit cups consisting of static shell assembly with consecutively pull-out and lever-out testing were subsequently simulated using finite element analysis. Identified and optimised parameters allowed the accurate numerical reproduction of the raw material tests. Correlation between experimental tests and the numerical simulation of primary implant stability depended on the value of interference fit. However, the validated material model provides the opportunity for subsequent parametric numerical studies. PMID:22817471

  7. Severe accident modeling of a PWR core with different cladding materials

    SciTech Connect

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCS rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)

  8. Constitutive Modeling of Anisotropic Finite-Deformation Hyperelastic Behaviors of Soft Materials Reinforced by Tortuous Fibers.

    PubMed

    Kao, Philip H; Lammers, Steven R; Hunter, Kendall; Stenmark, Kurt R; Shandas, Robin; Qi, H Jerry

    2010-04-01

    Many biological materials are composites composed of a soft matrix reinforced with stiffer fibers. These stiffer fibers may have a tortuous shape and wind through the soft matrix. At small material deformation, these fibers deform in a bending mode and contribute little to the material stiffness; at large material deformation, these fibers deform in a stretching mode and induce a stiffening effect in the material behavior. The transition from bending mode deformation to stretching mode deformation yields a characteristic J-shape stress-strain curve. In addition, the spatial distribution of these fibers may render the composite an anisotropic behavior. In this paper, we present an anisotropic finite-deformation hyperelastic constitutive model for such materials. Here, the matrix is modeled as an isotropic neo-Hookean material. "The behaviors of single tortuous fiber are represented by a crimped fiber model". The anisotropic behavior is introduced by a structure tensor representing the effective orientation distribution of crimped fibers. Parametric studies show the effect of fiber tortuosity and fiber orientation distribution on the overall stress-strain behaviors of the materials. PMID:21822502

  9. Object-oriented process modeling for material-at-risk estimation.

    SciTech Connect

    Kornreich, D. E.; Farman, Richard F.

    2002-01-01

    Nuclear analytical chemistry/materials characterization operations at Los Alamos support many programs related to national security. These operations work with a wide range of material masses (microgram to tens of grams) and several forms (metal, oxide, and liquid). We have used detailed flowsheets for the chemistry and characterization functions to construct a process model of the facility operations. The model, constructed with the commercially available package ExtendTMt,r acks material amounts and forms through the process of sample receiving through data return. The model calculates equipment utilization, throughput, and turnaroundtime, as well as the material-at-risk and source term as a function of time for facility safety analyses. We see that the source-term is highly dependent on the material holding time, as expected; thus, proper material management policies are essential to operating a facility within regulatory guidelines regarding material-at-risk. In addition, we see that segregation of operations based on the material used can be beneficial to the overall operations.

  10. A simple modelling approach for prediction of standard state real gas entropy of pure materials.

    PubMed

    Bagheri, M; Borhani, T N G; Gandomi, A H; Manan, Z A

    2014-01-01

    The performance of an energy conversion system depends on exergy analysis and entropy generation minimisation. A new simple four-parameter equation is presented in this paper to predict the standard state absolute entropy of real gases (SSTD). The model development and validation were accomplished using the Linear Genetic Programming (LGP) method and a comprehensive dataset of 1727 widely used materials. The proposed model was compared with the results obtained using a three-layer feed forward neural network model (FFNN model). The root-mean-square error (RMSE) and the coefficient of determination (r(2)) of all data obtained for the LGP model were 52.24 J/(mol K) and 0.885, respectively. Several statistical assessments were used to evaluate the predictive power of the model. In addition, this study provides an appropriate understanding of the most important molecular variables for exergy analysis. Compared with the LGP based model, the application of FFNN improved the r(2) to 0.914. The developed model is useful in the design of materials to achieve a desired entropy value. PMID:25158071

  11. Modeling the time-dependent flexural response of wood-plastic composite materials

    NASA Astrophysics Data System (ADS)

    Hamel, Scott E.

    Wood-plastic composites (WPCs) are moisture sensitive bimodal anisotropic nonlinear viscoelastic materials, with time and temperature having the greatest effect on mechanical behavior. As WPC producers seek to manufacture structural bending members, such as beams and joists, it is important that the material's time and temperature-dependent mechanical behavior be understood and characterized. The complicated time-dependent behavior means that WPC bending deflections cannot be adequately predicted for even practical design purposes using simple linear-elastic models. Instead, mechanics-based models that incorporate the observed time-dependent and nonlinear responses are necessary. This dissertation presents an experimental and modeling program used to test and characterize the axial and shear behaviors of seven different WPC products (primarily polyethylene and polypropylene) subjected to both quasi-static and creep loading at multiple temperatures. These data were used to develop a mechanics based model that can predict bending deflections of complex sections at any time or temperature. Additionally, a practical design method and standardized test procedures were created for use in typical long-term bending situations. A mechanical model for WPCs must combine time-dependent material characterization with a tool that can simulate mode dependence, temperature dependence, changing neutral axis location, and nonlinear axial stress distributions that vary over the length of a member and evolve with time. Finite-element (FE) modeling was chosen as the most practical way to satisfy these requirements. The model developed in this study uses an FE model with a custom-designed material model. Bending deflection predictions from the model were compared to experimental testing and the model showed some success despite the difficulties created by the material variability. The practical method created for designing WPC structural bending members utilizes four material constants

  12. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    NASA Astrophysics Data System (ADS)

    Brely, Lucas; Bosia, Federico; Pugno, Nicola

    2015-07-01

    In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  13. Model of high-temperature plastic deformation of nanocrystalline materials: Application to yttria tetragonal zirconia

    NASA Astrophysics Data System (ADS)

    Gómez-García, D.; Lorenzo-Martín, C.; Muñoz-Bernabé, A.; Domínguez-Rodríguez, A.

    2003-04-01

    The possibility of the influence of segregation-induced local electric fields in the bulk diffusion of the species controlling the plastic deformation of nanocrystalline materials has been pointed out. Until now, there is only a model applicable to the case of a monodimensional system. In spite of its simplicity, it predicts a significative influence of a local electric field in creep. Our work develops a different model applicable to three-dimensional systems. It takes as a starting point the diffusional model, and it can be generalized to those systems in which the grain-boundary sliding model accommodated by diffusional processes accurately describes plasticity in the submicron range of grain size. The range of validity, as well as the different behavior of nanocrystalline materials from the submicron ones is discussed. Preliminary results are in good agreement with the published data for yttria tetragonal zirconia (YTZP) nanocrystalline ceramics.

  14. Developing and evaluating printed education materials: a prescriptive model for quality.

    PubMed

    Bernier, M J

    1993-01-01

    Nurses are frequently called upon to develop and evaluate printed education materials (PEMs) in their role as patient educators. This article describes the use of the Evaluating Printed Education Materials (EPEM) model as a prescriptive guide and quality standard for developing new PEMs or critiquing existing ones. Outlined in the five phases of the model are a series of nursing, learning, and instructional design principles that are intended to increase the relevance, readability, and comprehensibility of PEMs for the patients and families who use them. The patient-centered focus of the model makes it applicable across nursing specialty areas and care settings. Examples of how the model can be used in the care of orthopaedic patients are presented. PMID:8121709

  15. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner. PMID:26192511

  16. Computer modeling of the mechanical behavior of composites -- Interfacial cracks in fiber-reinforced materials

    SciTech Connect

    Schmauder, S.; Haake, S. |; Mueller, W.H. |

    1996-06-15

    Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interface crack will be analyzed numerically and typical results will be presented graphically.

  17. Radioactive materials in biosolids : national survey, dose modeling, and publicly owned treatment works (POTW) guidance.

    SciTech Connect

    Bastian, R. K.; Bachmaier, J. T.; Schmidt, D. W.; Salomon, S. N.; Jones, A.; Chiu, W. A.; Setlow, L. W.; Wolbarst, A. B.; Yu, C.; Goodman, J.; Lenhart, T.; Environmental Assessment; U.S. EPA; U.S. DOE; U.S. NRC; NJ Dept of Environmental Radiation; NE Ohio Regional Sewer District

    2005-01-01

    Received for publication March 1, 2004. The Nuclear Regulatory Commission (NRC) announced the availability of three new documents concerning radioactive materials in sewage sludge and ash from publicly owned treatment works (POTW). One of the documents is a report presenting the results of a volunteer survey of sewage sludge and ash samples provided by 313 POTWs. The second document is a dose modeling document, using multiple exposure pathway modeling focused on a series of generic scenarios, to track possible exposure of POTW workers and members of the general public to radioactivity from the sewage sludge or ash. The third document is a guidance report providing recommendations on the management of radioactivity in sewage sludge and ash for POTW owners and operators. This paper explains how radioactive materials enter POTWs, provides criteria for evaluating levels of radioactive material in sludge and ash, and gives a summary of the results of the survey and dose modeling efforts.

  18. Investigation of Ti6Al4V Orthogonal Cutting Numerical Simulations using Different Material Models

    SciTech Connect

    Alvarez, Roberto

    2010-06-15

    Titanium alloys are materials considered as extremely difficult to cut and titanium alloy Ti6Al4V is a reference in machining of titanium. The segmented (saw toothed) chip morphology has attracted great interest in researchers because the understanding of the saw-toothed chip morphology helps to understand the chip formation mechanisms. In this study, the effect of different constitutive models on the saw-toothed chip morphology is examined in machining Ti6Al4V. The paper presents the influence of eight material constitutive modelling in the simulation of segmented chip formation. A critical comparison of outstanding process outputs as cutting force, temperature and measurable parameters for segmented chips is carried out to compare and discuss the performance of the eight different material models to each other and with experimental data.

  19. Propagating mode-I fracture in amorphous materials using the continuous random network model

    NASA Astrophysics Data System (ADS)

    Heizler, Shay I.; Kessler, David A.; Levine, Herbert

    2011-08-01

    We study propagating mode-I fracture in two-dimensional amorphous materials using atomistic simulations. We use the continuous random network model of an amorphous material, creating samples using a two-dimensional analog of the Wooten-Winer-Weaire Monte Carlo algorithm. For modeling fracture, molecular-dynamics simulations were run on the resulting samples. The results of our simulations reproduce the main experimental features. In addition to achieving a steady-state crack under a constant driving displacement (which has not yet been achieved by other atomistic models for amorphous materials), the runs show microbranching, which increases with driving, transitioning to macrobranching for the largest drivings. In addition to the qualitative visual similarity of the simulated cracks to experiment, the simulation also succeeds in reproducing qualitatively the experimentally observed oscillations of the crack velocity.

  20. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  1. A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials.

    SciTech Connect

    Luscher, Darby J.

    2010-04-01

    All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic “engineering” scales. In many cases, it is necessary to treat this behavior as a multiscale process thus integrating the physical understanding of material behavior at various physical (length and time) scales in order to more accurately predict the thermomechanical response of materials as their microstructure evolves. The intent of the dissertation is to provide a formal framework for multiscale hierarchical homogenization to be used in developing constitutive models.

  2. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    SciTech Connect

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  3. Analysis of delamination in thick section composite materials using homogenized FE modeling

    NASA Astrophysics Data System (ADS)

    Lee, One-Chul

    Composite materials have various failure modes, which often coexist and interact. Interply delamination is the most frequently observed of these failure modes in laminated composite. Much previous research has been conducted to investigate the delamination phenomenon, often using computational mechanics approaches. The majority of the existing analytical models employ a zero thickness interface element to represent the delaminating interply region. This type of modeling requires explicit modeling of the delamination, which is not suitable for thick section composites. This type of modeling also introduces difficulties in predicting mode mixture. Two structural modeling approaches are proposed herein. The first one involves explicit modeling of the delamination crack, which is suitable for thin section composites. The second incorporates the delamination behavior into a homogenized constitutive model, which is appropriate for thick section composites. Both approaches utilize a nonlinear interface model with finite thickness, which models the resin rich interply zone explicitly. The thickness of the interface is treated as a constitutive parameter. An Elastic damaging model is adopted to characterize the nonlinear behavior of the interface. Several interlaminar fracture toughness tests are simulated for calibration and validation purposes. Pure mode nonlinear properties of the interface are calibrated by trial-and-error matching of P-delta curves from selected experiments. These properties are then used to simulate independent mixed mode tests for validation. Predictions of behavior and mode mixture are reasonably good, and dissipated energy due to damage also exhibits good agreement with experimentally obtained energy release rate values. For thick section composites, the proposed interface model is incorporated into an existing homogenized constitutive model. The interface is treated as one of the layers constituting the repeating sublaminate, which is the basic

  4. Toward Multi-scale Modeling and simulation of conduction in heterogeneous materials.

    SciTech Connect

    Lechman, Jeremy B.; Battaile, Corbett Chandler.; Bolintineanu, Dan; Cooper, Marcia A.; Erikson, William W.; Foiles, Stephen M.; Kay, Jeffrey J; Phinney, Leslie M.; Piekos, Edward S.; Specht, Paul Elliott; Wixom, Ryan R.; Yarrington, Cole

    2015-01-01

    This report summarizes a project in which the authors sought to develop and deploy: (i) experimental techniques to elucidate the complex, multiscale nature of thermal transport in particle-based materials; and (ii) modeling approaches to address current challenges in predicting performace variability of materials (e.g., identifying and characterizing physical- chemical processes and their couplings across multiple length and time scales, modeling infor- mation transfer between scales, and statically and dynamically resolving material structure and its evolution during manufacturing and device performance). Experimentally, several capabilities were sucessfully advanced. As discussed in Chapter 2 a flash diffusivity capabil- ity for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic materials and properties impacting component development. Chapter 4 describes sucess for the first time, although preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic components. Chapter 7 summarizes the first ever (as far as the authors know) application of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize these materials at the interfacial scale. On the modeling side, new capabilities in image processing of experimental microstructures and direct numerical simulation on complicated structures were advanced (see Chapters 3 and 5). In addition, modeling work described in Chapter 8 led to improved prediction of interface thermal conductance from first principles calculations. Toward the second point, for a model system of packed particles, significant headway was made in implementing numerical algorithms and collecting data to justify the approach in terms of highlighting the phenomena at play and pointing the way forward in de- veloping and informing the kind of modeling approach oringinally envisioned (see Chapter 6

  5. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    NASA Astrophysics Data System (ADS)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  6. Towards a dynamic assessment of raw materials criticality: linking agent-based demand--with material flow supply modelling approaches.

    PubMed

    Knoeri, Christof; Wäger, Patrick A; Stamp, Anna; Althaus, Hans-Joerg; Weil, Marcel

    2013-09-01

    Emerging technologies such as information and communication-, photovoltaic- or battery technologies are expected to increase significantly the demand for scarce metals in the near future. The recently developed methods to evaluate the criticality of mineral raw materials typically provide a 'snapshot' of the criticality of a certain material at one point in time by using static indicators both for supply risk and for the impacts of supply restrictions. While allowing for insights into the mechanisms behind the criticality of raw materials, these methods cannot account for dynamic changes in products and/or activities over time. In this paper we propose a conceptual framework intended to overcome these limitations by including the dynamic interactions between different possible demand and supply configurations. The framework integrates an agent-based behaviour model, where demand emerges from individual agent decisions and interaction, into a dynamic material flow model, representing the materials' stocks and flows. Within the framework, the environmental implications of substitution decisions are evaluated by applying life-cycle assessment methodology. The approach makes a first step towards a dynamic criticality assessment and will enhance the understanding of industrial substitution decisions and environmental implications related to critical metals. We discuss the potential and limitation of such an approach in contrast to state-of-the-art methods and how it might lead to criticality assessments tailored to the specific circumstances of single industrial sectors or individual companies. PMID:23453658

  7. Reading materials for post-literacy: The development and testing of a model of social writing

    NASA Astrophysics Data System (ADS)

    Bhola, Harbans S.

    1989-12-01

    A model of social writing, for use in writing socially relevant, easy-to-read, follow-up books for neo-literate adults, is presented. The model was fully developed and tested in the context of a series of writers' workshops during 1981-87; and incorporates all of the three aspects of writing: the expressive, the cognitive, and the social. Specifically, the following elements are included: selection of subject and topic within a dialectic of national development needs and community learning needs; negotiable definitions of general and specific objectives; acquiring knowledge of subject matter, and establishing necessary collaboration with subject-matter specialists; content planning to choose content and language of discourse, participatively with the future community of readers; choice of treatment of content as didactic or dramatic; outlining of manuscript as argument, dialogue or story; writing easy-to-read yet interesting materials; trying out the manuscript and making revisions; working with the illustrator and the editor; and preparing the manuscript for printing. Both the development and the testing of the model involved reflection-in-action and not stand-alone research exercises. The successful use of the model in workshops to train writers of post-literacy materials provided one source of support for the model. A comparison of this model of social writing with other models of writing available in literature has provided further support for the conceptual and procedural structure of the model. Transfers of the model to other cultural settings as well as to the writing of other types of educational materials, such as distance education texts and units, have also proved effective.

  8. Modeling ozone removal to indoor materials, including the effects of porosity, pore diameter, and thickness.

    PubMed

    Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L

    2015-04-01

    We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm. PMID:25748309

  9. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    SciTech Connect

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  10. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-01

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  11. Managing critical materials with a technology-specific stocks and flows model.

    PubMed

    Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy

    2014-01-21

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245

  12. Helium embrittlement model and program plan for weldability of ITER materials

    SciTech Connect

    Louthan, M.R. Jr.; Kanne, W.R. Jr.; Tosten, M.H.; Rankin, D.T.; Cross, B.J.

    1997-02-01

    This report presents a refined model of how helium embrittles irradiated stainless steel during welding. The model was developed based on experimental observations drawn from experience at the Savannah River Site and from an extensive literature search. The model shows how helium content, stress, and temperature interact to produce embrittlement. The model takes into account defect structure, time, and gradients in stress, temperature and composition. The report also proposes an experimental program based on the refined helium embrittlement model. A parametric study of the effect of initial defect density on the resulting helium bubble distribution and weldability of tritium aged material is proposed to demonstrate the roll that defects play in embrittlement. This study should include samples charged using vastly different aging times to obtain equivalent helium contents. Additionally, studies to establish the minimal sample thickness and size are needed for extrapolation to real structural materials. The results of these studies should provide a technical basis for the use of tritium aged materials to predict the weldability of irradiated structures. Use of tritium charged and aged material would provide a cost effective approach to developing weld repair techniques for ITER components.

  13. A blind deconvolution method for attenuative materials based on asymmetrical Gaussian model.

    PubMed

    Jin, Haoran; Chen, Jian; Yang, Keji

    2016-08-01

    During propagation in attenuative materials, ultrasonic waves are distorted by frequency-dependent acoustic attenuation. As a result, reference signals for blind deconvolution in attenuative materials are asymmetrical and should be accurately estimated by considering attenuation. In this study, an asymmetrical Gaussian model is established to estimate the reference signals from these materials, and a blind deconvolution method based on this model is proposed. Based on the symmetrical Gaussian model, the asymmetrical one is formulated by adding an asymmetrical coefficient. Upon establishing the model, the reference signal for blind deconvolution is determined via maximum likelihood estimation, and the blind deconvolution is implemented with an orthogonal matching pursuit algorithm. To verify the feasibility of the established model, spectra of ultrasonic signals from attenuative polyethylene plates with different thicknesses are measured and estimated. The proposed blind deconvolution method is applied to the A-scan signal and B-scan image from attenuative materials. Results demonstrate that the proposed method is capable of separating overlapping echoes and therefore achieves a high temporal resolution. PMID:27586747

  14. A Numerical Model of the Temperature Field of the Cast and Solidified Ceramic Material

    SciTech Connect

    Kavicka, Frantisek; Sekanina, Bohumil; Stransky, Karel; Stetina, Josef; Dobrovska, Jana

    2010-06-15

    Corundo-baddeleyit material (CBM)--EUCOR--is a heat- and wear-resistant material even at extreme temperatures. This article introduces a numerical model of solidification and cooling of this material in a non-metallic mould. The model is capable of determining the total solidification time of the casting and also the place of the casting which solidifies last. Furthermore, it is possible to calculate the temperature gradient in any point and time, and also determine the local solidification time and the solidification interval of any point. The local solidification time is one of the input parameters for the cooperating model of chemical heterogeneity. This second model and its application on samples of EUCOR prove that the applied method of measurement of chemical heterogeneity provides detailed quantitative information on the material structure and makes it possible to analyse the solidification process. The analysis of this process entails statistical processing of the results of the measurements of the heterogeneity of the components of EUCOR and performs correlation of individual components during solidification. The crystallisation process seems to be very complicated, where the macro- and microscopic segregations differ significantly. The verification of both numerical models was conducted on a real cast 350x200x400 mm block.

  15. Material properties assignment to finite element models of bone structures: a new method.

    PubMed

    Zannoni, C; Mantovani, R; Viceconti, M

    1998-12-01

    Finite element analysis (FEA) is widely adopted to investigate the mechanical behaviour of bone structures. Computed tomography (CT) data are frequently used to generate FE models of bone. If properly calibrated, CT images are capable of providing accurate information about the bone morphology and tissue density. The aim of this work was to develop a special program able to read a CT data set as well as the FEA mesh generated from it, and to assign to each element of the mesh the material properties derived from the bone tissue density at the element location. The program was tested on phantom data sets and was adopted to evaluate the effects of the discrete description of the bone material properties. A three-dimensional FE model was generated automatically from a 16 bit CT data set of a distal femur acquired in vivo. The strain energy density (SED) was evaluated for each model element for increasing model complexity (number of different material cards assigned to the model). The computed SED were strongly dependent on the material mapping strategy. PMID:10223642

  16. Geomechanical Modeling to Predict Wellbore Stresses and Strains for the Design of Wellbore Seal Repair Materials

    NASA Astrophysics Data System (ADS)

    Gomez, S. P.; Sobolik, S. R.; Matteo, E. N.; Dewers, T. A.; Taha, M. R.; Stormont, J. C.

    2013-12-01

    A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. For the DOE-NETL project 'Wellbore Seal Repair Using Nanocomposite Materials,' we are especially interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Building on existing thermo-hydro-mechanical (THM) finite element modeling of wellbore casings subject to significant tensile and shear loads, we advance a conceptual and numerical methodology to assess responses of annulus cement and casing. Bench-scale models complement bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. Field scale models use the stratigraphy from a pilot CO2 injection operation to estimate the necessary mechanical properties needed for a successful repair material. We report on approaches used for adapting existing wellbore models and share preliminary results of field scale models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6241A.

  17. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  18. Characterization & Modeling of Materials in Glass-To-Metal Seals: Part I

    SciTech Connect

    Chambers, Robert S.; Emery, John M.; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.

    2014-01-01

    To support higher fidelity modeling of residual stresses in glass-to-metal (GTM) seals and to demonstrate the accuracy of finite element analysis predictions, characterization and validation data have been collected for Sandia’s commonly used compression seal materials. The temperature dependence of the storage moduli, the shear relaxation modulus master curve and structural relaxation of the Schott 8061 glass were measured and stress-strain curves were generated for SS304L VAR in small strain regimes typical of GTM seal applications spanning temperatures from 20 to 500 C. Material models were calibrated and finite element predictions are being compared to measured data to assess the accuracy of predictions.

  19. Charging characteristics of materials: Comparison of experimental results with simple analytical models

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Stevens, N. J.; Oglebay, J. C.

    1977-01-01

    An understanding of the behavior of materials, of dielectrics in particular, under charged particle bombardment is essential to the prediction and prevention of the adverse effects of spacecraft charging. A one-dimensional model for charging of samples in a test facility was used in conjunction with experimental data taken to develop "material charging characteristics" for silvered Teflon. These characteristics were then used in a one-dimensional model for charging in space to examine expected response. Relative charging rates as well as relative charging levels for silvered Teflon and metal are discussed.

  20. A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations

    NASA Astrophysics Data System (ADS)

    Michel, Jean-Claude; Suquet, Pierre

    2016-05-01

    In 2003 the authors proposed a model-reduction technique, called the Nonuniform Transformation Field Analysis (NTFA), based on a decomposition of the local fields of internal variables on a reduced basis of modes, to analyze the effective response of composite materials. The present study extends and improves on this approach in different directions. It is first shown that when the constitutive relations of the constituents derive from two potentials, this structure is passed to the NTFA model. Another structure-preserving model, the hybrid NTFA model of Fritzen and Leuschner, is analyzed and found to differ (slightly) from the primal NTFA model (it does not exhibit the same variational upper bound character). To avoid the "on-line" computation of local fields required by the hybrid model, new reduced evolution equations for the reduced variables are proposed, based on an expansion to second order (TSO) of the potential of the hybrid model. The coarse dynamics can then be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations. The acceleration provided by the new coarse dynamics over the full-field computations (and over the hybrid model) is then spectacular, larger by three orders of magnitude than the acceleration due to the sole reduction of unknowns.

  1. Validity of Various Approaches to Global Kinetic Modeling of Material Lifetimes

    SciTech Connect

    Burnham, A K; Dinh, L N

    2006-09-11

    Chemical kinetic modeling has been used for many years in process optimization, estimating real-time material performance, and lifetime prediction. Chemists have tended towards developing detailed mechanistic models, while engineers have tended towards global or lumped models. Many, if not most, applications use global models by necessity, since it is impractical or impossible to develop a rigorous mechanistic model. Model fitting acquired a bad connotation in the thermal analysis community after that community realized a decade after other disciplines that deriving kinetic parameters for an assumed model from a single heating rate produced unreliable and sometimes nonsensical results. In its place, advanced isoconversional methods, which have their roots in the Friedman and Ozawa-Flynn-Wall methods of the 1960s, have become increasingly popular. In fact, as pointed out by the ICTAC kinetics project in 2000, valid kinetic parameters can be derived by both isoconversional and model fitting methods as long as a diverse set of thermal histories are used to derive the kinetic parameters. The current paper extends the understanding from that project to give a better appreciation of the strengths and weaknesses of isoconversional and model-fitting approaches. Examples are given from a variety of data sets.

  2. A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Satyaki; Matouš, Karel

    2016-05-01

    A new manifold-based reduced order model for nonlinear problems in multiscale modeling of heterogeneous hyperelastic materials is presented. The model relies on a global geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic loading parameters are linked to the reduced space using a Neural Network. The proposed model provides both homogenization and localization of the multiscale solution in the context of computational homogenization. To construct the manifold, we perform a number of large three-dimensional simulations of a statistically representative unit cell using a parallel finite strain finite element solver. The manifold-based reduced order model is verified using common principles from the machine-learning community. Both homogenization and localization of the multiscale solution are demonstrated on a large three-dimensional example and the local microscopic fields as well as the homogenized macroscopic potential are obtained with acceptable engineering accuracy.

  3. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  4. Development of model-based multispectral controllers for smart material systems

    NASA Astrophysics Data System (ADS)

    Kim, Byeongil; Washington, Gregory N.

    2009-03-01

    The primary objective of this research is to develop novel model-based multispectral controllers for smart material systems in order to deal with sidebands and higher harmonics and with several frequency components simultaneously. Based on the filtered-X least mean square algorithm, it will be integrated with a nonlinear model-based controller called model predictive sliding mode control. Their performance will be verified in simulation and with various applications such as helicopter cabin noise reduction. This research will improve active vibration and noise control systems used in engineering structures and vehicles by effectively dealing with a wide range of multispectral signals.

  5. Constitutive and damage material modeling in a high pressure hydrogen environment

    NASA Astrophysics Data System (ADS)

    Russell, D. A.; Fritzemeier, L. G.

    1991-05-01

    Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.

  6. On the theory of the galvanomagnetic properties of composite materials: Lattice model

    NASA Astrophysics Data System (ADS)

    Balagurov, B. Ya.

    2015-07-01

    The problem of the galvanomagnetic properties of composite materials is formulated for a lattice model. The effective galvanomagnetic characteristics of a weakly heterogeneous lattice are determined in the quadratic approximation in the deviation of local conductivity tensor ( r) from average value <>. In the case of a low concentration ( c ≪ 1) of "defect" bonds, effective conductivity tensor e of a binary lattice model is calculated in the c-linear approximation. Effective medium method equations are derived for the formulated lattice problem, and the results are compared with the results obtained in a continuous medium model.

  7. Constitutive and damage material modeling in a high pressure hydrogen environment

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Fritzemeier, L. G.

    1991-01-01

    Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.

  8. Numerical Approximation of Tangent Moduli for Finite Element Implementations of Nonlinear Hyperelastic Material Models

    PubMed Central

    Sun, Wei; Chaikof, Elliot L.; Levenston, Marc E.

    2009-01-01

    Finite element (FE) implementations of nearly incompressible material models often employ decoupled numerical treatments of the dilatational and deviatoric parts of the deformation gradient. This treatment allows the dilatational stiffness to be handled separately to alleviate ill conditioning of the tangent stiffness matrix. However, this can lead to complex formulations of the material tangent moduli that can be difficult to implement or may require custom FE codes, thus limiting their general use. Here we present an approach, based on work by Miehe (Miehe, 1996, “Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large Strain Computational Inelasticity,” Comput. Methods Appl. Mech. Eng., 134, pp. 223–240), for an efficient numerical approximation of the tangent moduli that can be easily implemented within commercial FE codes. By perturbing the deformation gradient, the material tangent moduli from the Jaumann rate of the Kirchhoff stress are accurately approximated by a forward difference of the associated Kirchhoff stresses. The merit of this approach is that it produces a concise mathematical formulation that is not dependent on any particular material model. Consequently, once the approximation method is coded in a subroutine, it can be used for other hyperelastic material models with no modification. The implementation and accuracy of this approach is first demonstrated with a simple neo-Hookean material. Subsequently, a fiber-reinforced structural model is applied to analyze the pressure-diameter curve during blood vessel inflation. Implementation of this approach will facilitate the incorporation of novel hyperelastic material models for a soft tissue behavior into commercial FE software. PMID:19045532

  9. Modeling the effect of orientation on the shock response of a damageable composite material

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexander A.

    2012-10-01

    A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The

  10. Mechanical optimization of an arteriovenous malformation embolization material: a predictive model analysis.

    PubMed

    Birdno, Merrill; Vernon, Brent

    2005-02-01

    Arteriovenous malformations (AVMs) pose a constant danger of hemorrhages, seizures, and headaches to patients; they also disrupt oxygen-rich blood flow entering capillaries of the brain. We have utilized a linear model to mechanically characterize and optimize a water-borne, reverse emulsion, self-reactive, in situ cross-linking material, which we propose clinical use as an embolization material. The material is formed by cross-linking various acrylate and thiol multifunctional precursors with NaOH supplemented PBS. We compared theoretical elastic modulus values to modulus values observed during compression testing to determine the cross-linking efficiency of the material. Empirically determined elastic moduli for various material compositions ranged from 0.76 to 2.26 MPa, with corresponding cross-link efficiencies averaging 55+/-4%. We predict a reduction in theoretical circumferential stress exerted on AVM vasculature from 4933 to 10.9 Pa after embolization with the optimal material configuration. Theoretical risk of AVM rupture, as defined by Hademenos et al., was reduced below 1.0% for extreme variations of vessel modulus, thickness, and blood pressure after embolization with the optimized material. We will be using this material configuration to embolize swine rete mirabile AVM models and further assess the clinical viability of this potential embolization material. PMID:15771272

  11. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    NASA Astrophysics Data System (ADS)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-06-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  12. A new approach to hazardous materials transportation risk analysis: decision modeling to identify critical variables.

    PubMed

    Clark, Renee M; Besterfield-Sacre, Mary E

    2009-03-01

    We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk. PMID:19087232

  13. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    NASA Astrophysics Data System (ADS)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  14. Models, Databases, and Simulation Tools Needed for the Realization of Integrated Computational Materials Engineering. Proceedings of the Symposium Held at Materials Science and Technology 2010

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Editor); Wong, Terry T. (Editor)

    2011-01-01

    Topics covered include: An Annotative Review of Multiscale Modeling and its Application to Scales Inherent in the Field of ICME; and A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures.

  15. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    SciTech Connect

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    2005-08-05

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25 deg. C-260 deg. C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching of aluminum sheets and results were compared with experiments.

  16. Warm Forming of Aluminum Alloys using a Coupled Thermo-Mechanical Anisotropic Material Model

    NASA Astrophysics Data System (ADS)

    Abedrabbo, Nader; Pourboghrat, Farhang; Carsley, John E.

    2005-08-01

    Temperature-dependant anisotropic material models for two types of automotive aluminum alloys (5754-O and 5182-O) were developed and implemented in LS-Dyna as a user material subroutine (UMAT) for coupled thermo-mechanical finite element analysis (FEA) of warm forming of aluminum alloys. The anisotropy coefficients of the Barlat YLD2000 plane stress yield function for both materials were calculated for the range of temperatures 25°C-260°C. Curve fitting was used to calculate the anisotropy coefficients of YLD2000 and the flow stress as a function of temperature. This temperature-dependent material model was successfully applied to the coupled thermo-mechanical analysis of stretching of aluminum sheets and results were compared with experiments.

  17. A finite element model for wave propagation in an inhomogeneous material including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1987-01-01

    A finite element model was developed to solve for the acoustic pressure field in a nonhomogeneous region. The derivations from the governing equations assumed that the material properties could vary with position resulting in a nonhomogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between the different materials. For a two media region consisting of part air (in the duct) and part bulk absorber (in the wall), a model was used to describe the bulk absorber properties in two directions. An experiment to verify the numerical theory was conducted in a rectangular duct with no flow and absorbing material mounted on one wall. Changes in the sound field, consisting of planar waves, was measured on the wall opposite the absorbing material. As a function of distance along the duct, fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber.

  18. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  19. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for

  20. A model for electrical tree growth in solid insulating materials using cellular automata

    SciTech Connect

    Danikas, M.G.; Karafyllidis, I.; Thanailakis, A.; Bruning, A.M.

    1996-12-31

    Models proposed to explain the breakdown mechanisms of the solid insulating materials are based, among others, on electromagnetic theory, avalanche theory and fractals. In this paper the breakdown of insulating materials is simulated using von Neumann`s Cellular Automata (CAs). An algorithm for solid dielectric breakdown simulation based on CAs is presented with a point/plane electrode arrangement. The algorithm is also used to simulate breakdown in a solid dielectric having a spherical void.