Science.gov

Sample records for material properties experiments

  1. Hydrodynamics and Material Properties Experiments Using Pulsed Power Techniques*

    NASA Astrophysics Data System (ADS)

    Reinovsky, Robert; Trainor, R. James

    1999-06-01

    Within the last few years a new approach for exploring dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns,and explosives. The principle tool is the high precision, magnetically imploded, near-solid density liner. The most attractive pulse power system for driving such experiments is an ultra-highcurrent, low impedance, microsecond time-scale source that is economical both the build and operate. Liner specifications vary but in general share requirements for a high degree of symmetry and uniformity after implosion. When imploded in free flight to velocities 10-30 km/sec and kinetic energies of from one to 25 MJ/cm of height, liners are attractive impactors for producing strong (>10 Mbar) shocks in the target. Simple geometries can, in principle, produce multi-shock environments to reach off-hugoniot states. When filled with a compressible material, liners can deliver almost adiabatic compression to the target. When the liner surrounds a (small)nearly incompressible target material, for example a condensed noble gas, a liner can deliver enormous pressure to the target almost isentropically. When the compressible material is a magnetic field, flux compression can results in compressed fields above 1000 tesla in macroscopic volumes for materials studies.In this paper we will review basic scaling argumentsthat set the scale of environments available. We will mention the pulse power technology under development at Los Alamos and provide a summary of results from experiments testing solid metal liners under magnetic drive and a few examples of experiments performed withinterim systems. Other papers in this conference will provide specific proposals for pulse power driven shock-wave experiments.

  2. Simple Experiment for Studying the Properties of a Ferromagnetic Material.

    ERIC Educational Resources Information Center

    Sood, B. R.; And Others

    1980-01-01

    Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)

  3. GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA

    SciTech Connect

    Swift, D C; Hawreliak, J A; Braun, D; Kritcher, A; Glenzer, S; Collins, G W; Rothman, S D; Chapman, D; Rose, S

    2011-08-04

    The unprecedented laser capabilities of the National Ignition Facility (NIF) make it possible for the first time to countenance laboratory-scale experiments in which gigabar pressures can be applied to a reasonable volume of material, and sustained long enough for percent level equation of state measurements to be made. We describe the design for planned experiments at the NIF, using a hohlraum drive to induce a spherically-converging shock in samples of different materials. Convergence effects increase the shock pressure to several gigabars over a radius of over 100 microns. The shock speed and compression will be measured radiographically over a range of pressures using an x-ray streak camera. In some cases, we will use doped layers to allow a radiographic measurement of particle velocity.

  4. Laboratory experiments designed to test the remediation properties of materials

    SciTech Connect

    Gilbert, J.S.; Wildeman, T.R.; Ford, K.L.

    1999-07-01

    Passive treatment systems constructed to remediate mine drainage have proven to be very successful for a wide variety of drainage compositions and volumes. The construction of an anaerobic passive treatment system requires a mixture of local materials with the objective of producing a system that allows adequate water flow while supporting the growth of sulfate-reducing bacteria. These bacteria have the effect of reducing the oxidizing potential in the system causing many sulfide-forming metals in solution to precipitate. The focus of these experiments was the study of chemical characteristics of materials, individually and in mixtures, with the purpose of determining which would be best suited for incorporation into a treatment system. The materials of interest were manure (fresh and aged), alfalfa, limestone, and sawdust, which were all collected in close proximity to the construction site of the proposed treatment system. A variety of chemical and physical hypotheses were formulated prior to performing simple chemical characterization and anaerobic treatment tests. The hypotheses relating to the chemical nature of the single materials were carbon to nitrogen ratio, availability of low molecular weight organic acids, number of adsorption sites, and organic carbon content. In addition, hypotheses concerning the performance of mixtures were evaluated by looking at the relative amount of bacterial growth (and metal removal) seen in each mixture over a 4-week period. The results of the laboratory experiments confirmed hypotheses, and demonstrated that in the mixtures, the anaerobic bacteria flourish when alfalfa is present, up to a point. The best mixture that allowed proliferation of bacteria while also removing metals consisted of 50% limestone, 25% aged manure, 15% sawdust, and 10% alfalfa (% by weight).

  5. Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C.; Gaines, G. B.; Sliemers, F. A.; Kistler, C. W.; Igou, R. D.

    1976-01-01

    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions.

  6. Surface electrical properties experiment

    USGS Publications Warehouse

    Simmons, Gene; Strangway, David; Annan, Peter; Baker, Richard G.; Bannister, Lawrence; Brown, Raymon; Cooper, William; Cubley, Dean; deBettencourt, Joseph; England, Anthony W.; Groener, John; Kong, Jin-Au; LaTorraca, Gerald; Meyer, James; Nanda, Ved; Redman, David; Rossiter, James; Tsang, Leung; Urner, Joseph; Watts, Raymond

    1973-01-01

    The surface electrical properties (SEP) experiment was used to explore the subsurface material of the Apollo 17 landing site by means of electromagnetic radiation. The experiment was designed to detect electrical layering, discrete scattering bodies, and the possible presence of water. From the analysis of the data, it was expected that values of the electrical properties (dielectric constant and loss tangent) of lunar material in situ would be obtained.

  7. Using Design of Experiments Methods for Assessing Peak Contact Pressure to Material Properties of Soft Tissue in Human Knee

    PubMed Central

    Jahan, Ali; Arumugam, Manohar; Hassan, Mohd Roshdi

    2013-01-01

    Contact pressure in the knee joint is a key element in the mechanisms of knee pain and osteoarthritis. Assessing the contact pressure in tibiofemoral joint is a challenging mechanical problem due to uncertainty in material properties. In this study, a sensitivity analysis of tibiofemoral peak contact pressure to the material properties of the soft tissue was carried out through fractional factorial and Box-Behnken designs. The cartilage was modeled as linear elastic material, and in addition to its elastic modulus, interaction effects of soft tissue material properties were added compared to previous research. The results indicated that elastic modulus of the cartilage is the most effective factor. Interaction effects of axial/radial modulus with elastic modulus of cartilage, circumferential and axial/radial moduli of meniscus were other influential factors. Furthermore this study showed how design of experiment methods can help designers to reduce the number of finite element analyses and to better interpret the results. PMID:27006925

  8. Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity

    SciTech Connect

    McKenna, S.A.; Rautman, C.A.

    1996-08-01

    A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

  9. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term Irradiation at Elevated Temperature: Critical Experiments

    SciTech Connect

    Was, Gary; Jiao, Zhijie; Allen, Todd; Yang, Yong

    2013-12-20

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by microchemistry changes due to radiation-induced segregation, dislocation loop formation and growth, radiation induced precipitation, destabilization of the existing precipitate structure, as well as the possibility for void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiation-induced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses to 200 dpa and beyond). Further, predictive modeling is not yet possible, as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. This project builds upon joint work at the proposing institutions, under a NERI-C program that is scheduled to end in September, to understand the effects of

  10. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  11. Building Materials Property Table

    SciTech Connect

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  12. Plastic Recycling Experiments in Materials Education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  13. Materials Adherence Experiment: Technology

    SciTech Connect

    Jenkins, P.P.; Landis, G.A.; Oberle, L.G.

    1997-12-31

    NASA`s Mars Pathfinder mission, launched December 4, 1996, reflects a new philosophy of exploiting new technologies to reduce mission cost and accelerate the pace of space exploration. Pathfinder will demonstrate a variety of new technologies aimed at reducing the cost of Mars exploration. Chief among these will be the demonstration of a solar-powered spacecraft on the surface of Mars. The Materials Adherence Experiment on Pathfinder was designed to measure the degradation of solar arrays due to dust settling out of the atmosphere and blocking light to the solar array, lowering the array power output.

  14. Using split-ring resonators to measure the electromagnetic properties of materials: An experiment for senior physics undergraduates

    NASA Astrophysics Data System (ADS)

    Bobowski, J. S.

    2013-12-01

    A spilt-ring resonator experiment suitable for senior physics undergraduates is described and demonstrated in detail. The apparatus consists of a conducting hollow cylinder with a narrow slit along its length and can be accurately modelled as a series LRC circuit. The resonance frequency and quality factor of the split-ring resonator are measured when the apparatus is suspended in air, submerged in water, and submerged in an aqueous solution of various concentrations of NaCl. The experimental results are used to extract the dielectric constant of water and to investigate the dependence of the resonator quality factor on the conductivity of the NaCl solution. The apparatus provides opportunities to experimentally examine radiative losses, complex permittivity, the electromagnetic skin depth, and cutoff frequencies of rf propagation in cylindrical waveguides, which are all concepts introduced in an undergraduate course in electrodynamics. To connect with current research, the use of split-ring resonators as a tool to precisely measure the electromagnetic properties of materials is emphasized.

  15. Material science experiments on the Atlas Facility

    SciTech Connect

    Keinigs, R. K.; Atchison, W. L.; Faehl, R. J.; Lindemuth, I. R.; Anderson, W. E.; Bartsch, R. R.; Flower-Maudlin, E. C.; Hammerberg, J. E.; Holtkamp, D. B.; Jones, M. E.; Kyrala, George A.; Oro, D. M.; Parker, J. V.; Preston, D. L.; Reinovsky, R. E.; Scudder, D. W.; Sheehey, P. T.; Shlacter, J. S.; Stokes, J. L.; Taylor, Antoinette J.,; Tonks, D. L.; Turchi, Peter J.

    2001-01-01

    Three material properties experiments that are to be performed on the Atlas pulsed power facility are described; friction at sliding metal interfaces, spallation and damage in convergent geomety, and plastic flow at high strain and high strain rate. Construction of this facility has been completed and experiments in high energy density hydrodynamics and material dynamics will begin in 2001.

  16. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  17. Rhenium material properties

    SciTech Connect

    Biaglow, J.A.

    1995-09-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  18. Materials property measurements

    SciTech Connect

    Boyd, D.M.; Green, E.R.; Doctor, S.R.; Good, M.S.

    1990-04-19

    An in-depth review of the measurement techniques that could be used in materials characterization is presented. The measurement techniques to non-destructively determine the in-service or time-related aging of materials considered include ultrasonic velocity and attenuation, eddy current conductivity, neutron scattering and absorption, conventional and tomographic imaging for ultrasonic and radiation imaging, x-ray scattering, thermal impedance, and magnetic hysteresis. The three sections of the report include a review of failure mechanisms in steel and a discussion of nondestructive evaluation techniques and fracture mechanics, a description of a chart on Measurement Techniques versus Material Properties, and recommendations on the techniques and tests to be performed for the experimental investigations and analysis task of the project. 49 refs., 7 figs.

  19. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  20. Element material experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ichikawa, Masaaki; Takei, Mitsuru; Torii, Yoshihiro; Ota, Kazuo

    1995-01-01

    National Space Development Agency of JAPAN (NASDA) is planning to perform Element Material Exposure Experiment using Exposed Facility Flyer Unit (EFFU). Several materials which will be used on JEM (Japanese Experiment Module for the space station) will be exposed. Space environment monitoring is also planned in this experiment. Several ground based tests are now being performed and getting useful data.

  1. Preliminary experiments about the measure of the magnetic properties of a material by means of TDR probes

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele

    2016-04-01

    In this contribution, the possibility of measuring possible magnetic properties of materials by means of a TDR probe is studied. A transmission line model is adopted and data in time and frequency domain are exploited together. Simulation results are shown, at the moment based on a bifilar line model. Magnetic properties of materials can be of interest for several applications. In particular, the presence of magnetic features in the soil or in any substance, might be associated to some contaminant (presumably containing some metallic element as iron, nickel or chromium [1]). This kind of pollution might occur close to some farms, especially regarding the dying of dresses, the production of some medicines, the tanning of leather issues. Moreover, modern agriculture puts in the soil several fertilizing substances, and there is a debate about the quantity of heavy metals spread in the terrain by these activities [2]. Still, some depuration-mud can be affected by an excessive presence of metallic elements, because of the presence of batteries, skins, varnishes, cosmetics, and so on [2]. Moreover, it is thought that the soil on the planet Mars might show magnetic properties [3]. Finally, in GPR prospecting, possible magnetic characteristics of the soil or of the targets might be of interest too [4], but they cannot be retrieved by means of only GPR data [5]. In the present paper, the results of a preliminary study are exposed with regard to the possibility to measure the magnetic properties of a material by mean of a TDR probe [6-7]. In particular a TDR probe is essentially a transmission line (a bifilar model will be exploited in this work) open at the end, form which most of the impinging energy (ideally the whole of thi energy in a lossless medium) is back reflected. In particular, this allows a customary measure of the propagation velocity in the medium if an impulsive signal is generated. In fact, the return time along a path of known length is measured. The

  2. Preliminary experiments about the measure of the magnetic properties of a material by means of TDR probes

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele

    2016-04-01

    In this contribution, the possibility of measuring possible magnetic properties of materials by means of a TDR probe is studied. A transmission line model is adopted and data in time and frequency domain are exploited together. Simulation results are shown, at the moment based on a bifilar line model. Magnetic properties of materials can be of interest for several applications. In particular, the presence of magnetic features in the soil or in any substance, might be associated to some contaminant (presumably containing some metallic element as iron, nickel or chromium [1]). This kind of pollution might occur close to some farms, especially regarding the dying of dresses, the production of some medicines, the tanning of leather issues. Moreover, modern agriculture puts in the soil several fertilizing substances, and there is a debate about the quantity of heavy metals spread in the terrain by these activities [2]. Still, some depuration-mud can be affected by an excessive presence of metallic elements, because of the presence of batteries, skins, varnishes, cosmetics, and so on [2]. Moreover, it is thought that the soil on the planet Mars might show magnetic properties [3]. Finally, in GPR prospecting, possible magnetic characteristics of the soil or of the targets might be of interest too [4], but they cannot be retrieved by means of only GPR data [5]. In the present paper, the results of a preliminary study are exposed with regard to the possibility to measure the magnetic properties of a material by mean of a TDR probe [6-7]. In particular a TDR probe is essentially a transmission line (a bifilar model will be exploited in this work) open at the end, form which most of the impinging energy (ideally the whole of thi energy in a lossless medium) is back reflected. In particular, this allows a customary measure of the propagation velocity in the medium if an impulsive signal is generated. In fact, the return time along a path of known length is measured. The

  3. Material properties of oxide superconductors

    SciTech Connect

    Phillips, J.C.

    1996-12-31

    The differences between the old (inter-) metallic superconductors and the new oxide superconductors are not limited to the much higher values of {Tc} attainable in the latter. There are many pervasive differences caused directly by oxide chemistry, quasi-perovskite local coordination configurations, and layered metal-semiconductor-metal{prime}-semiconductor-structures. When these differences are ignored, for instance in theoretical models which make effective medium approximations, many experiments appear to present anomalous results. These anomalies largely disappear when account is taken of the real materials properties of the cuprates and other new oxide superconductors, for instance in theoretical models which treat transport as a partially percolative process. This percolative process directly reflects the fact that the highest values of {Tc}, as well as the most anomalous normal-state transport properties, occur in materials vicinal to a metal-insulator transition. As the metallic and insulating regions alternate even in single-crystal samples, effective medium models, and most effective-medium parameters, lose their significance. Examples of attempts to measure microscopic properties illustrate the importance of filamentary effects on both normal-state and superconductive properties.

  4. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  5. Property changes induced by the space environment in composite materials on LDEF: Solar array materials passive LDEF experiment A0171 (SAMPLE)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.

  6. Property changes induced by the space environment in composite materials on LDEF: Solar array materials passive LDEF experiment A0171 (SAMPLE)

    SciTech Connect

    Not Available

    1993-04-01

    Surface modifications to composite materials induced by long term exposure in low earth orbit (LEO) were dominated by atomic oxygen erosion and micrometeoroid and space debris impacts. As expected, calculated erosion rates were peculiar to material type and within the predicted order of magnitude. Generally, about one ply of the carbon fiber composites was eroded during the 70 month LDEF experiment. Matrix erosion was greater than fiber erosion and was more evident for a polysulfone matrix than for epoxy matrices. Micrometeoroid and space debris impacts resulted in small (less than 1mm) craters and splattered contaminants on all samples. Surfaces became more diffuse and darker with small increases in emissivity and absorption. Tensile strength decreased roughly with thickness loss, and epoxy matrices apparently became slightly embrittled, probably as a result of continued curing under UV and/or electron bombardment. However, changes in the ultimate yield stress of the carbon reinforced epoxy composites correlate neither with weave direction nor fiber type. Unexpected developments were the discovery of new synergistic effects of the space environment in the interaction of atomic oxygen and copious amounts of contamination and in the induced luminescence of many materials.

  7. Materials science experiments in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  8. Teenage experiments contaminate suburban property

    SciTech Connect

    Kassel, D.; Sass, W.; Lall, P.C.; Jensen, L.; Mitchell, J.

    1996-06-01

    In August 1994, 18-year-old Brian Cooper (not his real name) was detained by police in Clinton Township Michigan. When the police searched his car, they discovered a locked tool box and other containers that Brian said contained radioactive material resulting from experiments he had conducted with the radioactive material from, primarily, consumer products. From the ages 14 to 18, Brian spent his spare time at his Union Lake, Michigan, home attempting to concentrate, burn, chemically alter, and experiment with the thorium from hundreds of lantern mantles, radium from various luminescent sources and clock dials, smoke detector sources, and radioactive materials from natural ores. In the process, he had contaminated a wooden shed in his backyard and his bedroom, and injured and exposed himself. In 1995, EPA; their emergency response contractor, Ecology and Environment, Inc.; and the Michigan Department of Public Health performed an emergency assessment and removal at the property. The response and removal were conducted cost-effectively and generated approximately 10 cubic yards of radioactive waste.

  9. Microgravity Materials and Biotechnology Experiments

    NASA Technical Reports Server (NTRS)

    Vlasse, Marcus

    1998-01-01

    Presentation will deal with an overview of the Materials Science and Biotechnology/Crystal Growth flight experiments and their requirements for a successful execution. It will also deal with the hardware necessary to perform these experiments as well as the hardware requirements. This information will serve as a basis for the Abstract: workshop participants to review the poss7ibilifies for a low cost unmanned carrier and the simple automation to carry-out experiments in a microgravity environment with little intervention from the ground. The discussion will include what we have now and what will be needed to automate totally the hardware and experiment protocol at relatively low cost.

  10. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties. PMID:25128819

  11. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  12. Experiments showing dynamics of materials interfaces

    SciTech Connect

    Benjamin, R.F.

    1997-02-01

    The discipline of materials science and engineering often involves understanding and controlling properties of interfaces. The authors address the challenge of educating students about properties of interfaces, particularly dynamic properties and effects of unstable interfaces. A series of simple, inexpensive, hands-on activities about fluid interfaces provides students with a testbed to develop intuition about interface dynamics. The experiments highlight the essential role of initial interfacial perturbations in determining the dynamic response of the interface. The experiments produce dramatic, unexpected effects when initial perturbations are controlled and inhibited. These activities help students to develop insight about unstable interfaces that can be applied to analogous problems in materials science and engineering. The lessons examine ``Rayleigh-Taylor instability,`` an interfacial instability that occurs when a higher-density fluid is above a lower-density fluid.

  13. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  14. Material Science Experiments on Mir

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  15. Mechanical properties of nanophase materials

    SciTech Connect

    Siegel, R.W.; Fougere, G.E.

    1993-11-01

    It has become possible in recent years to synthesize new materials under controlled conditions with constituent structures on a nanometer size scale (below 100 nm). These novel nanophase materials have grain-size dependent mechanical properties significantly different than those of their coarser-grained counterparts. For example, nanophase metals are much stronger and apparently less ductile than conventional metals, while nanophase ceramics are more ductile and more easily formed than conventional ceramics. The observed mechanical property changes are related to grain size limitations and/or the large percentage of atoms in grain boundary environments; they can also be affected by such features as flaw populations, strains and impurity levels that can result from differing synthesis and processing methods. An overview of what is presently known about the mechanical properties of nanophase materials, including both metals and ceramics, is presented. Some possible atomic mechanisms responsible for the observed behavior in these materials are considered in light of their unique structures.

  16. Disk Acceleration Experiment Utilizing Minimal Material (DAXUMM)

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Lorenz, Thomas; Sutherland, Gerrit

    2015-06-01

    A venture between the US Army Research Laboratory (ARL) and Lawrence Livermore National Laboratory (LLNL) is currently underway in an effort to characterize novel energetic material performance properties using a single, high-precision, gram-range charge. A nearly all-inclusive characterization experiment is proposed by combing LLNL's disk acceleration experiment (DAX) with the ARL explosive evaluation utilizing minimal material (AXEUMM) experiment. Spherical-cap charges fitted with a flat circular metal disk are centrally initiated using an exploding bridgewire detonator while photonic doppler velocimetry is used to probe the metal disk surface velocity and measure its temporal history. The metal disk's jump-off-velocity measurement is combined with conservation equations, material Hugoniots, and select empirical relationships to determine performance properties of the detonation wave (i.e., velocity, pressure, particle velocity, and density). Using the temporal velocity history with the numerical hydrocode CTH, a determination of the energetic material's equation of state and material expansion energy is possible. Initial experimental and computational results for the plastic-bonded energetic formulation PBXN-5 are presented.

  17. Experiments to investigate particulate materials in reduced gravity fields

    NASA Technical Reports Server (NTRS)

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.

    1967-01-01

    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  18. Property Status of Lunar Material

    NASA Astrophysics Data System (ADS)

    Pop, V.

    Most of the lunar material in private hands is of meteoric origin, and its property sta- tus does not present many challenges. The intention of Applied Space Resources, Inc, to fly a commercial lunar sample return mission and to subsequently offer lunar ma- terial for sale, raises the issue of the legality of exploitation and private ownership of retrieved lunar material. Lunar samples have been returned in the past by means of the Apollo (US) and Luna (USSR) missions and, while most of the material re- mains government property and is used for scientific means, a small fraction has been transferred abroad and some has entered the private market. Apollo-collected moon- rocks have been offered, symbolically, to heads of States, and some foreign nations have subsequently transferred ownership to private individuals. The same, lunar ma- terial of Soviet provenience has entered the private market, this forming a valuable legal precedent for the lawfulness of sale of lunar material. Recently, plans were made public to award the Apollo astronauts with lunar rocks. While in the US there is a popular misconception that it is illegal to own lunar material, the truth lies elsewhere. As the Apollo samples are the property of the US government and a small fraction was stolen, lost, or misplaced, the US government intends to recover this material, unlawfully owned. In the same time, a significant number of individuals have been prosecuted for offering for sale fake lunar rocks. The present paper will analyse the different categories of lunar material according to its ownership status, and will as- sert that private property of lunar material is lawful, and lunar material that will be returned in the future will be able to enter the market without hindrances.

  19. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  20. Functional Properties of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Kassing, Rainer; Petkov, Plamen; Kulisch, Wilhelm; Popov, Cyril

    This book, based on the lectures and contributions of the NATO ASI on "Functional Properties of Nanostructured Materials", gives a broad overview on this topic, as it combines basic theoretical articles, papers dealing with experimental techniques, and contributions on advanced and up-to-date applications in fields such as microelectronics, optoelectronics, electrochemistry, sensorics, and biotechnology. In addition, it presents an interdisciplinary approach since the authors came from such different fields as physics, chemistry, engineering, materials science and biology.

  1. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  2. Simulation Experiments with Cometary Analogous Material

    NASA Astrophysics Data System (ADS)

    Kochan, Hermann W.; Huebner, Walter F.; Sears, Derek W. G.

    1998-12-01

    Comet simulation experiments are discussed, in the context of physical models and the results in cometary physics, gathered especially from the GIOTTO space mission to comet P'Halley. The “status of the today knowledge” about comets, the experiments could start from, is briefly reviewed. The setup of the KOSI (German = Kometen Simulation) - experiments and the techniques to produce cometary analogous material, on the basis of that knowledge are described in general, as for the different KOSI experiments. The limitations of the simulation of physical processes at the surface of real comets in an earth-bound laboratory are discussed, and the possibilities to receive common insights in cometary physics are shown. Methods and procedures are described, and the major results reviewed. As with attempting to reproduce any natural phenomenon in the laboratory, there are short-comings to these experiments, but there are possibly major new insights to be gained. Physical laws only have the same consequences under same experimental or environmental conditions. A number of small-scale comet simulation experiments have been performed, since the early 60ties in many laboratories, but the largest and most ambitious series of comet simulation experiments to date were performed between 1987 and 1993 using the German space agency's (DLR) space hardware testing facilities in Cologne. These experiments were triggered by the scientific community after the comet P'Halley's recurrence in 1986 and the many data gathered by the space missions in this year. Simulation experiments have proved valuable in developing methods for making cometary analogues, and for exploring specific properties of such materials in detail. These experiments provided new insights into the morphology and physical behavior of aggregates formed out of silicate- /water-ice -grains likely to exist in comets. The formation of a dust mantle on the surface, and a system of ice layers below the mantle from the

  3. NBS (National Bureau of Standards): Materials measurements. [space processing experiments

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1983-01-01

    Work directed toward the measurement of materials properties important to the design and interpretation of space processing experiments and determinations of how the space environment may offer a unique opportunity for performing improved measurements and producing materials with improved properties is reported. Surface tensions and their variations with temperature and impurities; convection during undirectional solidification; and measurement of the high temperature thermophysical properties of tungsten group liquids and solids are discussed and results are summarized.

  4. Thermal Characterization of Functionally Graded Materials: Design of Optimum Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    This paper is a study of optimal experiment design applied to the measure of thermal properties in functionally graded materials. As a first step, a material with linearly-varying thermal properties is analyzed, and several different tran- sient experimental designs are discussed. An optimality criterion, based on sen- sitivity coefficients, is used to identify the best experimental design. Simulated experimental results are analyzed to verify that the identified best experiment design has the smallest errors in the estimated parameters. This procedure is general and can be applied to design of experiments for a variety of materials.

  5. Experiments in materials science from household items

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1993-01-01

    Everyday household items are used to demonstrate some unique properties of materials. A coat hanger, rubber band, balloon, and corn starch have typical properties which we often take for granted but can be truly amazing.

  6. Experiences of Material Hardships among TANF Leavers

    ERIC Educational Resources Information Center

    Hunter, Tamara; Santhiveeran, Janaki

    2005-01-01

    Experiences of food insufficiencies, inadequate access to health care, and housing-related hardships represent how financial strain negatively impacts the entire family. The purpose of this study was to examine experiences of material hardships by TANF leavers and to understand factors that are associated with experiences of material hardship.…

  7. Optical properties monitor: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry

    1990-01-01

    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.

  8. Optical properties monitor: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry

    1989-01-01

    The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.

  9. MEASUREMENT OF MATERIAL PROPERTIES OF DAMAGED ENERGETIC MATERIALS

    SciTech Connect

    Hsu, P C; Hust, G; Dehaven, M; Chidester, S; Glascoe, L; Hoffman, M; Maienschein, J L

    2010-03-10

    We recently conducted damaged experiments on three explosives (mechanical damage on LX-04 and thermal experiments on HPP and PBXN-9) and characterized the effect of damage on some material properties. The MTS equipment was used to apply compressive cycling to LX-04 pressed parts and the results showed that older LX-04 parts became mechanically weaker than newer parts. After repeated compressive cycling for over 20,000 times, older LX-04 parts failed but newer LX-04 parts survived. Thermal insults were applied to PBXN-9 and HPP at 180 C and 200 C, respectively in unconfined conditions for several hours. The thermally-damaged HPP sample suffered 12.0% weight losses and a volume expansion of 20% was observed. Porosity of the damaged HPP increased to 25% after thermal exposure, which led to higher gas permeability. Burn rates of damaged PBXN-9 were 2 orders of magnitude higher than those of pristine samples but burn rates of damaged HPP were only slightly higher than those of pristine HPP. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability at high temperatures were made on HPP samples and the results showed that the gas permeability increased by 3 to 4 orders of magnitude.

  10. MCNP simulations of material exposure experiments (u)

    SciTech Connect

    Temple, Brian A

    2010-12-08

    Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules containing different materials of interest with radiation to observe the chemical breakdown of the materials. Simulations were performed to map out dose in materials as a function of distance from the source, dose variation between materials, dose variation due to ampule orientation, and dose variation due to different source energy. This write up is an overview of the simulations and will provide guidance on how to use the data in the spreadsheet.

  11. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  12. NIST Materials Properties Databases for Advanced Ceramics

    PubMed Central

    Munro, R. G.

    2001-01-01

    The NIST Ceramics Division maintains two databases on the physical, mechanical, thermal, and other properties of high temperature superconductors and structural ceramics. Crystallographic data are featured prominently among the physical property data and serve several important functions in the classification and evaluation of the property values. The scope of materials, properties, and data evaluation protocols are discussed for the two databases.

  13. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  14. MISSE Thermal Control Materials with Comparison to Previous Flight Experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Pippin, H. Gary; Frey, George

    2008-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment (MISSE), including inorganic coatings, anodized aluminum, and multi-layer insulation materials. These and other material samples were exposed to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was limited for some samples. Materials flown on MISSE-1 and MISSE-2 were exposed to the space environment for nearly four years. Materials flown on MISSE-3, MISSE-4, and MISSE-5 were exposed to the space environment for one year. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. Effects of short duration versus long duration exposure on ISS are explored, as well as comparable data from previous flight experiments, such as the Passive Optical Sample Assembly (POSA), Optical Properties Monitor (OPM), and Long Duration Exposure Facility (LDEF).

  15. Mechanical Properties of Cellular Materials

    SciTech Connect

    Solem, J.C.; Dienes, J.K.

    1999-07-09

    The authors calculated the stress-strain relation for elastomeric foam from an ab initio theory, which shows that the plateau and densification regions should be described by a hyperbola. The theory seems to agree reasonably well with experiment.

  16. Acoustical properties of double porosity granular materials.

    PubMed

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics. PMID:22087905

  17. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  18. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at

  19. Synthesis and properties of nanophase materials

    SciTech Connect

    Siegel, R.W.

    1993-03-01

    Nanophase materials, with their grain sizes or phase dimensions in the nanometer size regime, are now being produced by a wide variety of synthesis and processing methods. The interest in these new ultrafine-grained materials results primarily from the special nature of their various physical, chemical, and mechanical properties and the possibilities to control these properties during the synthesis and subsequent processing procedures. Since it is now becoming increasingly apparent that their properties can be engineered effectively during synthesis and processing, and that they can also be produced in quantity, nanophase materials should have considerable potential for technological development in a variety of applications. Some of the recent research on nanophase materials related to their synthesis and properties is briefly reviewed and the future potential of these new materials is considered.

  20. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  1. Lunar surface engineering properties experiment definition

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  2. Learning targeted materials properties from data

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Balachandran, Prasanna V.; Dezhen, Xue; Theiler, James; Hogden, John

    We compare several strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The strategy is decomposed into two steps: a regressor is trained to predict elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties. We examine how the choice of data set size, regressor and selector impact the results.

  3. Overview of Materials International Space Station Experiment 7B

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Siamidis, John

    2009-01-01

    Materials International Space Station Experiment 7B (MISSE 7B) is the most recent in a series of experiments flown on the exterior of International Space Station for the purpose of determining the durability of materials and components in the space environment. A collaborative effort among the Department of Defense, the National Aeronautics and Space Administration, industry, and academia, MISSE 7B will be flying a number of NASA experiments designed to gain knowledge in the area of space environmental effects to mitigate risk for exploration missions. Consisting of trays called Passive Experiment Containers, the suitcase sized payload opens on hinges and allows active and passive experiments contained within to be exposed to the ram and wake or zenith and nadir directions in low Earth orbit, in essence, providing a test bed for atomic oxygen exposure, ultraviolet radiation exposure, charged particle radiation exposure, and thermal cycling. New for MISSE 7B is the ability to monitor experiments actively, with data sent back to Earth via International Space Station communications. NASA?s active and passive experiments cover a range of interest for the Agency. Materials relevant to the Constellation Program include: solar array materials, seal materials, and thermal protection system materials. Materials relevant to the Exploration Technology Development Program include: fabrics for spacesuits, materials for lunar dust mitigation, and new thermal control coatings. Sensors and components on MISSE 7B include: atomic oxygen fluence monitors, ultraviolet radiation sensors, and electro-optical components. In addition, fundamental space environmental durability science experiments are being flown to gather atomic oxygen erosion data and thin film polymer mechanical and optical property data relevant to lunar lander insulation and the James Web Space Telescope. This paper will present an overview of the NASA experiments to be flown on MISSE 7B, along with a summary of the

  4. Early space experiments in materials processing

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1979-01-01

    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.

  5. Synthesis, properties, and applications of nanophase materials

    SciTech Connect

    Siegel, R.W. |

    1995-04-01

    Work on the synthesis, properties, and applications of nanophase materials has developed rapidly during the past decade. A wide variety of methods now exist for their production, including several plasma-based processes. The possibilities for engineering new materials with unique or improved properties for a number of applications is now evident from the extant research results. A brief review is presented here along with some examples of useful application areas and some thoughts for the future of this field.

  6. Materials Properties Research at MSFC

    NASA Technical Reports Server (NTRS)

    Presson, Joan B.; Burdine, Robert (Technical Monitor)

    2002-01-01

    MSFC is currently planning, organizing and directing test coupon fabrication and subsequent CTE testing for two mirror materials of specific interest to the AMSD and NGST programs, Beryllium 0-30H (Be 0-30H) and Ultra Low Expansion glass (ULE). The ULE test coupons are being fabricated at MSFC from AMSD core residuals provided by Kodak, The Be 0-30H test coupons are being fabricated at Brush Wellman using residuals from the SBMD. Both sets of test coupons will be sent to a test vendor selected through the NASA competitive proposal process with the test results being provided by written report to MSFC by the end of the fiscal year. The test results will become model input data for the AMSD analysts, both MSFC and contractor, providing an enhancement to the historical CTE data currently available.

  7. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  8. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  9. Skylab Experiments, Volume 3, Materials Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This third volume is concerned with the effect of a weightless environment on melting and…

  10. Nonlinear optical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Haus, Joseph W.; Inguva, Ramarao

    1991-01-01

    The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

  11. Repair material properties for effective structural application

    SciTech Connect

    Mangat, P.S.; Limbachiya, M.C.

    1997-04-01

    Strength and engineering properties of three generic repair materials which are likely to influence long-term performance of repaired concrete structures were studied. Measured properties include strength, stiffness, shrinkage and creep deformations, together with the complete compressive stress-strain characteristics including post-cracking behavior. The repair materials considered in this investigation are commercially available and widely used. These included a high performance non-shrinkable concrete, a mineral based cementitious material with no additives or coarse aggregate size particles, and a cementitious mortar containing styrene acrylic copolymer with fiber additives. Performance comparisons are also made between these materials and plain concrete mixes of similar strength and stiffness, suitable for repair applications. The results show that shrinkage of the repair materials was significantly greater than the shrinkage of normal concrete. Moreover, the shrinkage of those modified with a polymer admixture was found to be very sensitive to the relative humidity of the exposure compared to normal concrete. The post-peak strain capacity of the material modified with a polymer admixture was markedly improved leading to a more pronounced falling branch of stress-strain curve. The ultimate stress level (at a maximum load) of specially formulated repair materials varies significantly, the lowest ultimate stress being recorded for the porous mineral-based material. The inclusion of aggregates improves the mechanical properties and dimensional stability of repair materials.

  12. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  13. Stress transfer through fibrous materials in wicking experiments

    NASA Astrophysics Data System (ADS)

    Monaenkova, Daria; Andrukh, Taras; Kornev, Konstantin

    2009-11-01

    Due to the recent progress in preparation of fibers and nanofibers with different properties, the idea of smart textiles attracts much attention. In many situations the probes and sensors are designed for bio fluid detection. The liquid penetration in fibrous materials causes their deformations including stretching, twisting, wrinkling, buckling etc. The most of researches on wicking properties of textiles are focused on determination of media permeability and ignore the specific features of fibrous materials. On the other hand the theoretical works on quantitative analysis of the deformation effects in porous materials filled with liquids are mostly focused on deformation of fully saturated samples. The fundamental understanding of the stress transfer through the fiber network is crucial for sensors development, but to the best of our knowledge, the stress analysis in the fibrous materials absorbing liquids has never been discussed in the literature. This paper sets a physical basis for analysis of absorption processes in nanotubular and nanofibrous materials. We study absorption of droplets by yarns and webs made of fibers, develop a theory which explains the stress distribution in fibrous materials and checked this theory on wicking experiments. The reported theory and experiments propose a new area of research on absorption-induced deformations of fibrous materials.

  14. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  15. Some functional properties of composite material based on scrap tires

    NASA Astrophysics Data System (ADS)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  16. Large scale Hugoniot material properties for Danby Marble

    SciTech Connect

    Rinehart, E.J.

    1993-11-01

    This paper presents the results of simulation experiments of nuclear underground testing carried out using the HYDROPLUS methodology for yield verifications of non-standard tests. The objective of this test series was to demonstrate the accuracy of stress and velocity measurements in hard, low porosity rock, to obtain comparisons of large-scale material properties with those obtained from laboratory testing of the same material, and to address the problems posed by a material having a clear precursor wave preceding the main shock wave. The test series consisted of three individual experimental tests. The first established material properties of the Danby marble selected for use in the experiments. The second and third tests looked at stress and velocity gage errors obtained when gages were placed in boreholes and grouted into place.

  17. Investigation of Structure-Property Relationships in Systematic Series of Novel Polymers. [low frequency thermomechanical spectrometry of polymeric materials - computerized torsional braid experiments

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.

    1974-01-01

    The results are discussed of the on-line interface of the Torsional Braid Analysis experiment to an Hierarchical Computer System for data acquisition, data reduction and control of experimental variables. Some experimental results are demonstrated and the data reduction procedures are outlined. Several modes of presentation of the final computer-reduced data are discussed in an attempt to elucidate possible interrelations between the thermal variation of the rigidity and loss parameters.

  18. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    properties directly on a single strand of fiber, the technique was automated to allow hysteresis, creep and fatigue studies. Zinc oxide (ZnO) semiconducting nanostructures are well known for their piezoelectric properties and are being integrated into several nanoelectro-mechanical (NEMS) devices. In spite of numerous studies on the mechanical response of ZnO nanostructures, there is not a consensus in its measured bending modulus (E). In this dissertation, by employing an all-electrical Harmonic Detection of Resonance (HDR) technique on ZnO nanowhisker (NW) resonators, the underlying origin for electrically-induced mechanical oscillations in a ZnO NW was elucidated. Based on visual detection and electrical measurement of mechanical resonances under a scanning electron microscope (SEM), it was shown that the use of an electron beam as a resonance detection tool alters the intrinsic electrical character of the ZnO NW, and makes it difficult to identify the source of the charge necessary for the electrostatic actuation. A systematic study of the amplitude of electrically actuated as-grown and gold-coated ZnO NWs in the presence (absence) of an electron beam using an SEM (dark-field optical microscope) suggests that the oscillations seen in our ZnO NWs are due to intrinsic static charges. In experiments involving mechanical resonances of micro and nanostructured resonators, HDR is a tool for detecting transverse resonances and E of the cantilever material. To add to this HDR capability, a novel method of measuring the G using HDR is presented. We used a helically coiled carbon nanowire (HCNW) in singly-clamped cantilever configuration, and analyzed the complex (transverse and longitudinal) resonance behavior of the nonlinear geometry. Accordingly, a synergistic protocol was developed which (i) integrated analytical, numerical (i.e., finite element using COMSOL RTM) and experimental (HDR) methods to obtain an empirically validated closed form expression for the G and resonance

  19. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  20. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  1. Theory and Experiment of Chalcogenide Materials

    NASA Astrophysics Data System (ADS)

    Prasai, Binay K.

    In this dissertation, we present the experimental and theoretical investigation of extensive properties of chalcogenide materials and their potential application in solid electrolytes and phase change memory materials. Extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to study the structural properties and the results were validated from the computer simulated models through ab-initio molecular dynamic (AIMD) simulations. EXAFS analysis on Ge-Sb-Te (GST) alloys, synthesized using electrodeposition and radio frequency sputtering methods confirmed the structural similarities in Ge-Te and Sb-Te bond pairs suggesting the possibility of utilizing the electrodeposition method to grow GST alloys in nanoporous materials and thus enabling miniaturizing the phase change memory devices. The analyses of structural, electronic and optical properties of computer generated amorphous and crystalline TiO 2 confirmed the structural similarities of amorphous TiO2 with the anatase phase of crystalline TiO2 and hence recommending the possibilities of replacing the crystalline TiO2 by less processed thus cheaper form of amorphous TiO2. Moreover, the AIMD simulations of the ionic conductivity of transitions metals like Ag and Cu in Ge-Se glasses confirmed the superiority of Ag over Cu in terms of conductivity. Ag was found to be easily hopping around while Cu was often trapped. In addition, an experimental and computational investigation on Ag-doped Ge-Sb-Te alloys predicted an enhanced crystallization of Ge-Sb-Te alloys. The enhanced crystallization was related to the reduction of fraction of tetrahedral Ge relative to octahedral Ge as also reflected as the increased Ge-Te bond lengths on adding Ag. Finally, further investigation of dopant-induced modification of GST alloys with transition metals (Cu, Ag and Au) demonstrated the superiority of Ag over Cu and Au regarding crystalline speed while at ˜2% dopant level no significant structural modification was

  2. High-toughness graphite/epoxy composite material experiment

    NASA Technical Reports Server (NTRS)

    Felbeck, David K.

    1993-01-01

    This experiment was designed to measure the effect of near-earth space exposure on three mechanical properties of specially toughened 5208/T300 graphite/epoxy composite materials. The properties measured are elastic modulus, strength, and fracture toughness. Six toughness specimens and nine tensile specimens were mounted on an external frame during the 5.8-year orbit of the Long Duration Exposure Facility (LDEF). Three identical sets of specimens were manufactured at the outset: the flight set, a zero-time non-flight set, and a total-time non-flight set.

  3. Characterization of the physical properties for solid granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Guenther, Chris; Benyahia, Sofiane; Mei, Joseph S.; Banta, Larry

    2012-01-01

    Accurate prediction of the behavior of a system is strongly governed by the components within that system. For multiphase systems incorporating solid powder-like particles, there are many different physical properties which need to be known to some level of accuracy for proper design, modeling, or data analysis. In the past, the material properties were determined initially as a secondary part of the study or design. In an attempt to provide results with the least level of uncertainty, a procedure was developed and implemented to provide consistent analysis of several different types of materials. The properties that were characterized included particle sizing and size distributions, shape analysis, density (particle, skeletal and bulk), minimum fluidization velocities, void fractions, particle porosity, and assignment within the Geldart Classification. In the methods used for this experiment, a novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Materials of known properties were initially characterized to validate the accuracy and methodology, prior to testing materials of unknown properties. The procedures used yielded valid and accurate results, with a high level of repeatability. A database of these materials has been developed to assist in model validation efforts and future designs. It is also anticipated that further development of these procedures wil be expanded increasing the properties included in the database.

  4. The Sakharov Experiment Revisited for Granular Materials

    NASA Astrophysics Data System (ADS)

    Vogler, Tracy

    2013-06-01

    Sakharov and co-workers in 1965 proposed an experiment in which a sinusoidal perturbation in a planar wave evolves as it travels through a material. More recent, Liu and co-workers utilized gas gun techniques rather than explosives to drive the shock wave, resulting in a better defined input. The technique has been applied to liquids such as water and mercury as well as solids such as aluminum. All analyses of the experiments conducted to date have utilized a viscous fluid approach, even for the solids. Here, the concept of the decay of a perturbation in a shock wave is revisited and applied to granular materials. Simulations utilizing continuum models for the granular materials as well as mesoscale models in which individual particles are resolved are utilized. It is found that the perturbation decay is influenced by the strength (deviatoric behavior) used in the continuum model. In the mesocale calculations, the simulation parameters as well as the computational approach influence the results. Finally, initial experimental results for the technique using granular tungsten carbide are presented. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  6. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  7. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  8. Analysis of materials from MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    In preparation for the arrival of the Long Duration Exposure Facility (LDEF) samples, a material testing and handling approach was developed for the evaluation of the materials. A configured lab was made ready for the de-integration of the LDEF experiments. The lab was prepared to clean room specifications and arranged with the appropriate clean benches, tables, lab benches, clean room tools, particulate counter, and calibrated and characterized analytical instrumentation. Clean room procedures were followed. Clean room attire and shoe cleaning equipment were selected and installed for those entering. Upon arrival of the shipping crates they were taken to the lab, logged in, and opened for examination. The sample trays were then opened for inspection and test measurements. The control sample measurements were made prior to placement into handling and transport containers for the flight sample measurements and analysis. Both LDEF flight samples and LDEF type materials were analyzed and tested for future flight candidate material evaluation. Both existing and newly purchased equipment was used for the testing and evaluation. Existing Space Simulation Systems had to be upgraded to incorporate revised test objectives and approaches. Fixtures such as special configured sample holders, water, power and LN2 feed-throughs, temperature measurement and control, front surface mirrors for reflectance and deposition, and UV grade windows had to be designed, fabricated, and installed into systems to achieve the revised requirements. New equipment purchased for LDEF analysis was incorporated into and/or used with existing components and systems. A partial list of this equipment includes a portable monochromator, enhanced UV System, portable helium leak detector for porosity and leak measurements, new turbo pumping system, vacuum coaster assembly, cryopumps, and analytical and data acquisition equipment. A list of materials tested, equipment designed, fabricated and installed

  9. Thermal Property Parameter Estimation of TPS Materials

    NASA Technical Reports Server (NTRS)

    Maddren, Jesse

    1998-01-01

    Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.

  10. Element Material Exposure Experiment by EFFU

    NASA Technical Reports Server (NTRS)

    Hashimoto, Yoshihiro; Ito, Masaaki; Ishii, Masahiro

    1992-01-01

    The National Space Development Agency of Japan (NASDA) is planning to perform an 'Element Material Exposure Experiment' using the Exposed Facility Flyer Unit (EFFU). This paper presents an initial design of experiments proposed for this project by our company. The EFFU is installed on the Space Flyer Unit (SFU) as a partial model of the Space Station JEM exposed facility. The SFU is scheduled to be launched by H-2 rocket in January or February of 1994, then various tests will be performed for three months, on orbit of 500 km altitude, and it will be retrieved by the U.S. Space Shuttle and returned to the ground. The mission sequence is shown.

  11. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  12. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  13. Summaries of early materials processing in space experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Mason, D.

    1979-01-01

    Objectives, methods, and results of low-gravity materials processing experiments are summarized, and a bibliography of published results for each experiment is provided. Included are drop tower experiments, the Apollo demonstration experiments, the skylab experiments and demonstration experiments, and the Apollo-Soyuz experiments and demonstrations. The findings of these experiments in the fields of crystal growth, metallurgy, and fluid behavior are summarized.

  14. Tailoring of materials properties under extreme conditions

    NASA Astrophysics Data System (ADS)

    Schenkel, Thomas

    Materials can be driven far from equilibrium e. g. with intense pules of lasers and ions, in mostly destructive processes. When combined with micro- and nano-structuring, the ability to rapidly excite and then quench local excitations opens up. Now opportunities emerge to form and stabilize novel materials phases and to tailor materials properties for applications. Examples are color centers in diamond and silicon carbide for sensing and qubit applications and proposed ordered dopant structures in cuprate superconductors. Results from studies of materials processing under transient extreme conditions, far from equilibrium will be presented. This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  15. Stratospheric experiments on curing of composite materials

    NASA Astrophysics Data System (ADS)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  16. Pressure-shear experiments on granular materials.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Vogler, Tracy John; Alexander, C. Scott

    2011-10-01

    Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.

  17. First principles simulation of materials properties

    SciTech Connect

    Shelton, W.A.; Stocks, G.M.; Pinski, F.J.; Jordan, R.G.; Liu, Y.; Qui, L.L.; Staunton, J.B.; Johnson, D.D.; Ginatempo, B.

    1994-06-01

    We have developed a hybrid, parallel computer code for calculating the electronic structure of both ordered and substitutionally disordered materials. By using PVM3.3, we can integrate into our local computer environment multiple parallel and vector superconductors as well as high performance workstations. Without this approach, calculations of materials properties of large systems would be otherwise untenable due to a lack of computer resources. For example, we have determined the short-range order intensity and its electronic origin for the Ag-Mg alloy system, including an estimate of the order-disorder (spinodal) temperature.

  18. Temperature dependent phonon properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Broido, David; Fultz, Brent

    2015-03-01

    We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.

  19. First principles simulation of materials properties

    SciTech Connect

    Shelton, W.A.; Stocks, G.M.; Jordan, R.G.; Liu, Y.; Qui, L.; Johnson, D.D.; Pinski, F.J.; Staunton, J.B.; Ginatempo, B.

    1994-08-01

    We have developed a hybrid, parallel computer code for calculating the electronic structure of both ordered and substitutionally disordered materials. By using PVM3.3, we can integrate into our local computer environment multiple parallel and vector supercomputers as well as high performance workstations. Without this approach, calculations of materials properties of large systems would be otherwise untenable due to a lack of computer resources. For example, we have determined the short-range order intensity and its electronic origin for the Ag-Mg alloy system, including an estimate of the order-disorder (spinodal) temperature.

  20. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  1. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  2. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  3. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  4. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  5. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  6. Specimens Prepared for Materials International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Snyder, Aaron; Sechkar, Edward A.

    2001-01-01

    The Materials International Space Station Experiment (MISSE) is a materials flight experiment sponsored by the Materials and Manufacturing Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base and the NASA Space Environmental Effects Program at the NASA Marshall Space Flight Center. MISSE is a cooperative effort among the Air Force, several NASA field centers, and industry. The experiment package will be placed on the exterior of the International Space Station in the summer of 2001. Approximately half of the specimens will be exposed to the space environment for 1 year, and the other half will be exposed for 3 years. The Electro-Physics Branch at the NASA Glenn Research Center has prepared and delivered over 150 specimens to be included in MISSE. Specimens include: 1) Double-coated polyimide Kapton to compare mass loss from in-space atomic oxygen undercutting erosion to ground-laboratory atomic oxygen undercutting erosion for predicting in-space durability; 2) Silicones to study changes in surface hardness and optical properties after combined atomic oxygen--ultraviolet radiation exposure for predicting in-space durability; 3) Forty-one different polymers to accurately measure their atomic oxygen erosion yields; 4) Scattering chambers to study atomic oxygen scattering characteristics that are relevant to the degradation found in spacecraft with exterior openings; 5) Thin polymer film disks and tensile specimens to study the effects of radiation on their optical properties and mechanical properties; 6) Lightweight intercalated graphite epoxy composites to study electromagnetic interference shielding performance; and 7) Polymer-based materials utilizing new atomic oxygen protection concepts to study their durability.

  7. DIELECTRIC PROPERTIES OF VARIOUS NANOCOMPOSITE MATERIALS

    SciTech Connect

    Tuncer, E.; Polizos, G.; James, D. R.; Sauers, I.; Ellis, A. R.; More, K. L.

    2010-01-01

    Composite materials based on polymers are used in various engineering applications due to their ability to be tailored for a specific application. As a result a composite could be selected or designed for a high performance part such as field grading applications in high voltage technology. Presently, there exists no commercially available material for electric field control. For this reason in this study we characterize a polymeric system composed of a thermoplast polymer filled with nanometer size ceramic particles. Since it is hard to tailor or to predict properties of composites theoretically, an Edisonian approach is employed. Composites with different filler weight concentrations are prepared and their dielectric performance are characterized. Impedance spectroscopy technique at a constant frequency is used to determine the dielectric properties of the composites at low temperatures. Measurement results and potential applications of the composite systems are presented.

  8. Dielectric properties of various nanocomposite materials

    SciTech Connect

    Tuncer, Enis; Polyzos, Georgios; James, David Randy; Sauers, Isidor; Ellis, Alvin R; More, Karren Leslie

    2010-01-01

    Composite materials based on polymers are used in various engineering applications due to their ability to be tailored for a specific application. As a result a composite could be selected or designed for a high performance part such as field grading applications in high voltage technology. Presently, there exists no commercially available material for electric field control. For this reason in this study we characterize a polymeric system composed of a thermoplast polymer filled with nanometer size ceramic particles. Since it is hard to tailor or to predict properties of composites theoretically, an Edisonian approach is employed. Composites with different filler weight concentrations are prepared and their dielectric performance are characterized. Impedance spectroscopy technique at a constant frequency is used to determine the dielectric properties of the composites at low temperatures. Measurement results and potential applications of the composite systems are presented.

  9. Determining significant material properties: A discovery approach

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. The experiment itself can be informative for persons of any age past elementary school, and even for some in elementary school. The preparation of the plastic samples is readily accomplished by persons with resonable dexterity in the cutting of paper designs. The completion of the statistical Design of Experiments, which uses Yates' Method, requires basic math (addition and subtraction). Interpretive work requires plotting of data and making observations. Knowledge of statistical methods would be helpful. The purpose of this experiment is to acquaint students with the seven classes of recyclable plastics, and provide hands-on learning about the response of these plastics to mechanical tensile loading.

  10. Optical properties of photochromic and thermochromic materials

    NASA Astrophysics Data System (ADS)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  11. Experiments investigating advanced materials under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1988-01-01

    Many high temperature aircraft and rocket engine components experience large mechanical loads as well as severe thermal gradients and transients. These nonisothermal conditions are often large enough to cause inelastic deformations, which are the ultimate cause for failure in those parts. A way to alleviate this problem is through improved engine designs based on better predictions of thermomechanical material behavior. To address this concern, an experimental effort was recently initiated within the Hot Section Technology (HOST) program at Lewis. As part of this effort, two new test systems were added to the Fatigue and Structures Lab., which allowed thermomechanical tests to be conducted under closely controlled conditions. These systems are now being used for thermomechanical testing for the Space Station Receiver program, and will be used to support development of metal matrix composites.

  12. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  13. Magnetic properties of Martian surface material

    NASA Astrophysics Data System (ADS)

    Hargraves, R. B.

    1984-06-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  14. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  15. MATERIAL PROPERTIES OF COMMON SUTURE MATERIALS IN ORTHOPAEDIC SURGERY

    PubMed Central

    Najibi, S; Banglmeier, R; Matta, JM; Tannast, M

    2010-01-01

    Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks. PMID:21045977

  16. Material properties study of the MJ-2 grout

    SciTech Connect

    Larson, D.B.

    1988-08-01

    Material properties experimental tests using the high pressure testing equipment at LLNL have been performed on the grout used in the Mini Jade-2 event (MJ-2) as part of a high pressure equation of state study sponsored by the Defense Nuclear Agency in support of the Misty Echo experiment at the Nevada Test Site. The material properties tests performed at LLNL and included in this report are (1) pressure-volume compression studies to 3.6 GPa, (2) pressure-volume compression and unloading studies to /approximately/1 GPa, and (3) material strength versus confining pressure to /approximately/1 GPa. These data are compared with dynamic results and with other static data using this grout. 4 refs., 5 figs., 4 tabs.

  17. Computing estimates of material properties from transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Giorgi, Giovanni; Haddar, Houssem

    2012-05-01

    This work is motivated by inverse scattering problems, those problems where one is interested in reconstructing the shape and the material properties of an inclusion from electromagnetic farfield measurements. More precisely, we are interested in complementing the so-called sampling methods by providing an estimate of the material properties of the sought inclusion. We use for this purpose a measure of the first transmission eigenvalue. Our method is then based on computing the desired estimate by reformulating the so-called interior transmission eigenvalue problem as an eigenvalue problem for the material coefficients. We will restrict ourselves to the two-dimensional setting of the problem and treat the cases of both transverse electric and transverse magnetic polarizations. We present a number of numerical experiments that validate our methodology for homogeneous and inhomogeneous inclusions and backgrounds. We also treat the case of a background with absorption and the case of scatterers with multiple connected components of different refractive indices.

  18. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  19. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  20. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  1. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  2. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  3. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  4. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  5. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  6. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  7. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  8. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  9. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  10. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  11. Machine-learning-assisted materials discovery using failed experiments

    NASA Astrophysics Data System (ADS)

    Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.; Falk, Casey; Wenny, Malia B.; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A.; Schrier, Joshua; Norquist, Alexander J.

    2016-05-01

    Inorganic–organic hybrid materials such as organically templated metal oxides, metal–organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure–property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully

  12. Machine-learning-assisted materials discovery using failed experiments.

    PubMed

    Raccuglia, Paul; Elbert, Katherine C; Adler, Philip D F; Falk, Casey; Wenny, Malia B; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A; Schrier, Joshua; Norquist, Alexander J

    2016-05-01

    Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on 'dark' reactions--failed or unsuccessful hydrothermal syntheses--collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions

  13. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  14. New Monolayered Materials Exhibiting Unusual Electronic Properties

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    Computationally based approaches are allowing to progress in the discovery and design of nano-scaled materials. Here we propose a series of new mono-layered compounds with exotic properties. By means of density functional theory calculations we demonstrate that the pentagonal arrangement of SiC2 yields an inverted distribution of the p-bands which leads to an unusual electronic behaviour of the material under strain [J. Phys. Chem. C, 2015, 119 (33), pp 19469]. A different pentagonal arrangement of C atoms enables the formation of Dirac cones which, unlike graphene, exhibit a strain-mediated tunable band gap. This work is supported by DOE-BES under Contract No. DE-AC02-06CH11357.

  15. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  16. Molybdenum silicide based materials and their properties

    SciTech Connect

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-06-01

    Molybdenum disilicide (MoSi{sub 2}) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm{sup 3}). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi{sub 2} composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi{sub 2}-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed.

  17. Five experiments in materials science for less than $10.00

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1992-01-01

    Diffusion, twinning, fatigue, acoustic emission, and aging can be studied using readily available materials and the household oven. Each experiment can be expanded to a more extensive investigation of the properties of the material investigated, as well as other materials, and offers an opportunity for the student to learn about the relationship between engineering, science, society, and politics.

  18. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  19. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  20. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch

  1. New Technique for Evaluating Adhesion Properties between Soft Materials

    NASA Astrophysics Data System (ADS)

    Sato, Takaya; Goto, Motoaki; Nakano, Ken; Suzuki, Atsushi

    2005-11-01

    A new, simple apparatus for measuring the surface adhesion properties of soft materials was designed, where the adhesion force of a point contact between soft materials and the total energy required to separate the contact can be measured using the springs of phosphor-bronze thin plates with strain gauges. The adhesion between swollen hydrogels was studied here by this simple technique in air at room temperature. The gels used in the present preliminary experiments were poly(sodium acrylate) hydrogels physically cross-linked by aluminum ions. The adhesion force and the separation energy showed a power-law increase with separation velocity. The apparatus was applied to evaluate the adhesion properties of seven anti-inflammatory analgesic cataplasms on the market. It was found that the easiness to separate (rank of adhesion force and the separation energy) was consistent with the results of those obtained by organoleptic evaluations.

  2. Exposure of Polymer Film Thermal Control Materials on the Materials International Space Station Experiment (MISSE)

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Miller, Sharon; Messer, Russell; Sechkar, Edward; Tollis, Greg

    2002-01-01

    Seventy-nine samples of polymer film thermal control (PFTC) materials have been provided by the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) for exposure to the low Earth orbit environment on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment (MISSE). MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA. This paper will describe background, objectives, and configurations for the GRC PFTC samples for MISSE. These samples include polyimides, fluorinated polyimides, and Teflon fluorinated ethylene propylene (FEP) with and without second-surface metallizing layers and/or surface coatings. Also included are polyphenylene benzobisoxazole (PBO) and a polyarylene ether benzimidazole (TOR-LM). On August 16, 2001, astronauts installed passive experiment carriers (PECs) on the exterior of the ISS in which were located twenty-eight of the GRC PFTC samples for 1-year space exposure. MISSE PECs for 3-year exposure, which will contain fifty-one GRC PFTC samples, will be installed on the ISS at a later date. Once returned from the ISS, MISSE GRC PFTC samples will be examined for changes in optical and mechanical properties and atomic oxygen (AO) erosion. Additional sapphire witness samples located on the AO exposed trays will be examined for deposition of contaminants.

  3. Role of defects in frictional properties of 2-D materials

    NASA Astrophysics Data System (ADS)

    Kavalur, Aditya; Kim, Woo Kyun

    Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.

  4. Auditory perception of geometry-invariant material properties.

    PubMed

    Ren, Zhimin; Yeh, Hengchin; Klatzky, Roberta; Lin, Ming C

    2013-04-01

    Accurately modeling the intrinsic material-dependent damping property for interactive sound rendering is a challenging problem. The Rayleigh damping model is commonly regarded as an adequate engineering model for interactive sound synthesis in virtual environment applications, but this assumption has never been rigorously analyzed. In this paper, we conduct a formal evaluation of this model. Our goal is to determine if auditory perception of material under Rayleigh damping assumption is 'geometry-invariant', i.e. if this approximation model is transferable across different shapes and sizes. First, audio recordings of same-material objects in various shapes and sizes are analyzed to determine if they can be approximated by the Rayleigh damping model with a single set of parameters. Next, we design and conduct a series of psychoacoustic experiments, in subjects evaluate if audio clips synthesized using the Rayleigh damping model are from the same material, when we alter the material, shape, and size parameters. Through both quantitative and qualitative evaluation, we show that the acoustic properties of the Rayleigh damping model for a single material is generally preserved across different geometries of objects consisting of homogeneous materials and is therefore a suitable, geometry-invariant sound model. Our study results also show that consistent with prior crossmodal expectations, visual perception of geometry can affect the auditory perception of materials. These findings facilitate the wide adoption of Rayleigh damping for interactive auditory systems and enable reuse of material parameters under this approximation model across different shapes and sizes, without laborious per-object parameter tuning. PMID:23428439

  5. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Zwiener, James M.

    1999-01-01

    Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.

  6. Viking magnetic properties experiment - Extended mission results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Arvidson, R. E.; Cates, P. M.

    1979-01-01

    The backhoe magnets on Viking Lander (VL) 2 were successfully cleaned, followed by a test involving successive insertions of the cleaned backhoe into the surface. Rapid saturation of the magnets confirmed evidence from primary mission results that the magnetic mineral in the Martian surface is widely distributed, most probably in the form of composite particles of magnetic and nonmagnetic minerals. An image of the VL 2 backhoe taken via the X4 magnifying mirror demonstrates the fine-grained nature of the attracted magnetic material. The presence of maghemite and its occurrence as a pigment in, or a thin coating on, all mineral particles or as discrete, finely divided and widely distributed crystallites, are consistent with data from the inorganic analysis experiments and with laboratory simulations of results of the biology experiments on Mars.

  7. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  8. Corrosion and tribological properties of basalt fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  9. Materials processing in space: Early experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Herring, H. W.

    1980-01-01

    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed.

  10. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  11. Material properties of concentrated pectin networks.

    PubMed

    Zsivanovits, Gabor; MacDougall, Alistair J; Smith, Andrew C; Ring, Stephen G

    2004-05-17

    We have examined the mechanical behaviour of different types of pectin at high concentrations (> 30% w/w), relevant to the behaviour of pectin in the plant cell wall, and as a film-forming agent. Mechanical properties were examined as a function of counterion type (K(+), Ca(2+), Mg(2+)), concentration and extent of hydration. Hydration was controlled in an osmotic stress experiment where pectin films were exposed to concentrated polyethylene glycol [PEG] solutions of known osmotic pressure. We investigated the mechanical behaviour under simple extension. The results show that the swelling and stiffness of the films are strongly dependent on pectin source and ionic environment. At a fixed osmotic stress, both Ca(2+) or Mg(2+) counterions reduce swelling and increase the stiffness of the film. PMID:15113669

  12. Viscoelastic properties and compaction behaviour of pharmaceutical particulate materials

    NASA Astrophysics Data System (ADS)

    Tsardaka, Ekaterini D.

    1990-01-01

    The viscoelastic behaviour of particulate solids is of major relevance in powder compaction. When designing a pharmaceutical tablet formulation, it is highly undesirable for the tablet properties to be markedly affected by changes in compaction rate on different tablet presses, if problems are to be avoided during scale-up and manufacture. In order to be able to predict and minimise the time-dependent deformation of pharmaceutical powders, a full understanding of such behaviour is needed. For comparative purposes, a range of materials with differing compaction properties were studied. Heckel plots were extended in order to study the consolidation behaviour of materials during compression, decompression and after ejection. A number of derived parameters were proposed as a useful means of assessing the viscoelastic characteristics of materials. The mechanical properties of the tablets produced were assessed by means of both a diametral loading test and a direct tension test, in order to study the homogeneity of tablets with respect to strength and toughness. Fitting stress relaxation data to a hyperbolic equation enabled the asymptotic value of relaxed stress and the rate of stress relaxation at short times to be determined. Creep analysis was found to be a most useful method in quantifying the viscoelastic properties of materials. Creep experiments were used to separately quantify the ability of a material to undergo elastic, viscoelastic and plastic deformation at constant stress. Analysis of the viscoelastic compliance provided a time constant and an equilibrium value. Spectral analysis of the creep data was an alternative method of studying viscoelastic behaviour, since analysis in the frequency domain revealed hidden periodicities of mechanisms possibly related to viscoelastic behaviour. A detailed study of several forms of modified starch addressed factors which may influence its viscoelastic behaviour, including manufacturing process variables such as particle

  13. Organic/inorganic nanocomposite materials by electrospinning and their properties

    NASA Astrophysics Data System (ADS)

    Wang, Guan

    One-dimensional (1D) nanostructures, such as nanowires, nanobelts, nanofibers and nanotubes, have been the focus of intensive research due to their peculiar structures and resultant fascinating properties. However, the applications of 1D nanostructures have been hindered by the slow progress of the synthesis and characterization methods for these nanoscaled materials. Well controlled dimensionality, tailorable morphology and assembly, high phase purity and controllable crystallinity are major concerns when generating these nanostructures. In this work, a relatively simple technique---electrospinning---has been introduced for the preparation of 1D organic/inorganic nanocomposite materials. Materials under investigation include polymer/metal oxide (WO 3, MoO3) composite nanofibers and polymer/MWNT composite nanofibers. Notably, peculiar nanostructures, such as polycrystalline nanowires, nanoplatelets and nanobelts, can also be obtained after post-calcination processing on the nanocomposite materials. Spectroscopy techniques, such as XRD, SEM, TEM, AFM and Raman have been carried out to obtain structural and morphological information from the electrospun composite nanofibers. Meanwhile, some advanced characterization methods and measurements have been developed and designed to investigate the nanofibers from a basic science view point as to their properties. Specific designs of experiment include: synchrotron-based in situ XRD for phase transition monitoring; gas flow control bench for sensitivity measurement; three-point-bending by AFM for mechanical property measurement. In summary, the electrospinning technique provides a versatile method for synthesizing and assembling 1D nanocomposite structures. The electrospun composite nanofibers showed promising electrical and mechanical properties, which may find applications for gas sensors, reinforced fibrous materials and nano-electrical devices.

  14. Helium retention properties of plasma facing materials

    NASA Astrophysics Data System (ADS)

    Yanagihara, H.; Yamauchi, Y.; Hino, T.; Hirohata, Y.; Yamashina, T.

    1997-02-01

    In a fusion reactor, the continuous removal of helium from the core plasma is needed in order to sustain the ignition condition. For this purpose, it has been proposed to place helium selective pumping metals, which can trap more helium than hydrogen, in the vicinity of the divertor. In this study, the helium and hydrogen trapping properties of nickel, tungsten, molybdenum, SS 304 and Inconel 625 were examined. Namely, the dependencies of irradiation temperature on the amount of trapped helium and hydrogen were obtained by thermal desorption spectroscopy (TDS), after helium or hydrogen plasma irradiation. In those metals, nickel showed the most suitable selective pumping capability. Nickel had the helium selective pumping property above 100°C. The maximum amount of trapped helium was (2-3) × 10 16He/ cm2 at an irradiation temperature of 200°C and 600°C. The optimum temperature becomes about 600°C when nickel is used for a selective pumping material.

  15. Strain weakening and localisation: material properties or boundary effects?

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Leever, Karen; Rosenau, Matthias; Oncken, Onno

    2015-04-01

    Strain weakening is commonly seen as one of the major causes of localisation of deformation into shear zones in brittle media. Several studies, both numerical and physical experiments, investigate its influence. Typically, these studies choose a certain model configuration and test various material properties and their influence on localisation in that particular configuration. This approach, however, does not take into account the fundamental importance of boundary conditions on the processes of localisation, weakening and overall shear zone evolution. To address this issue, we perform physical experiments in granular materials. We create shear fractures within a sample of granular material (sand) using different experimental apparatuses that apply different boundary conditions. Among them are standard machines such as a Ring-Shear Tester and the classical Riedel set up, as well as a newly designed set up. Boundary conditions can be varied from purely kinematic to more dynamically controlled and from laterally confined to unconfined. Nevertheless, the final result of deformation is an approximately straight strike-slip shear zone in all cases. We monitor boundary force (i. e. material strength) and, where experimentally accessible, strain, at high temporal resolution during deformation. With our different set ups we are able to produce very different patterns of deformation and weakening in the same material under the same constant rate of shearing and with the same final result. Observed patterns span from nearly instantaneous formation of one single through-going shear zone to slow, step-wise growth of a complex network of interacting cracks. Weakening in all cases matches well the structural evolution. Variations of weakening for a given material in different set ups are larger than for different materials in a given set up. Our results show that for a given material the style and rate of localisation can change drastically, depending on only slight changes of

  16. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  17. Distributional properties of stochastic shortest paths for smuggled nuclear material

    SciTech Connect

    Cuellar, Leticia; Pan, Feng; Roach, Fred; Saeger, Kevin J

    2011-01-05

    The shortest path problem on a network with fixed weights is a well studied problem with applications to many diverse areas such as transportation and telecommunications. We are particularly interested in the scenario where a nuclear material smuggler tries to succesfully reach herlhis target by identifying the most likely path to the target. The identification of the path relies on reliabilities (weights) associated with each link and node in a multi-modal transportation network. In order to account for the adversary's uncertainty and to perform sensitivity analysis we introduce random reliabilities. We perform some controlled experiments on the grid and present the distributional properties of the resulting stochastic shortest paths.

  18. Mechanics of Granular Materials (MGM) Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Sture, Stein

    1998-01-01

    The second series of MGM experiment was conducted during the STS-89 mission in January 1998. The experiment was previously flow on Atlantis's STS-79 mission in September 1996. Six displacement-controlled, drained triaxial compression experiments were performed at very low effective confining stresses. The confining stresses were in the ranges 0.05, 0.52 and 1.30 kPa. Three experiments were subjected to monotonic loading and unloading cycles while the other three experiments were subjected to cyclic loading. The results show very high peak strength friction angles in the range of 47.6 to 70.0 degrees, which are mainly due to overconsolidation and grain interlocking effects. It was observed that the residual strength levels in the monotonic loading experiments were in the same range as that observed at higher confining stress levels. The dilatancy angles were unusually high in the range of 30 to 31 degrees. All specimens display substantial initial stiffnesses and elastic moduli during unloading and reloading events, which are nearly an order of magnitude higher than conventional theories predict. A periodic instability phenomenon which appears to result from buckling of multiple internal arches and columnar systems, augmented by stick-slips was observed in the experiments. Computed Tomography (CT) measurements revealed valuable data about the internal fabric and the specimens deformation patterns. Uniform diffuse bifurcation with multiple radial shear bands was observed in the specimens tested in a microgravity environment. In the axial direction, two major conical surfaces were developed. Spatial nonsymmetrical deformations were observed in specimens tested in terrestrial laboratory.

  19. Material properties of novel polymeric films

    NASA Astrophysics Data System (ADS)

    Kim, Gene

    This dissertation will study the material properties of two types of novel polymer films (polyelectrolyte multilayer films and photolithographic polymer films). The formation of polylelectrolyte multilayer films onto functionalized aluminum oxide surfaces and functionalized poly(ethylene terephthaltate) (PET) were studied. Functionalization of the aluminum oxide surfaces was achieved via silane coupling. Functionalization of PET surfaces was achieved via hydrolysis and amidation. Surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements were used to monitor the polyelectrolyte multilayer formation. Mechanical properties of the aluminum oxide supported polyelectrolyte multilayer films were tested using a simplified peel test. XPS was used to analyze the surfaces before and after peel. Single lap shear joint specimens were constructed to test the adhesive shear strength of the PET-supported polyelectrolyte multilayer film samples with the aid of a cyanoacrylate adhesive. The adhesive shear strength and its relation with the type of functionalization, number of polyelectrolyte layers, and the effect of polyelectrolyte conformation using added salt were explored. Also, characterization on the single lap joints after adhesive failure was carried out to determine the locus of failure within the multilayers by using XPS and SEM. Two types of photolithographic polymers were formulated and tested. These two polymers (photocrosslinkable polyacrylate (PUA), and a photocrosslinkable polyimide (HRP)) were used to investigate factors that would affect the structural integrity of these particular polymers under environmental variables such as processing (time, UV cure, pressure, and temperature) and ink exposure. Thermomechanical characterization was carried out to see the behavior of these two polymers under these environmental variables. Microscopic techniques were employed to study the morphological behavior of

  20. Temporal properties of material categorization and material rating: visual vs non-visual material features.

    PubMed

    Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki

    2015-10-01

    Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. PMID:25536464

  1. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1984-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have refined our modulated radiation pressure technique for characterizing the interfaces between liquids so that we can automatically track changes in interfacial tension over time due to contaminants, surfactants, etc. (2) We have improved and simplified our acoustic scattering apparatus for measuring distributions of the properties of microparticle samples, which will allow us to distinguish particulates in liquids by size, compressibility, and density. (3) We are continuing work on theoretical approaches to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a manageable form. (4) Our studies of cavitation have enabled us to derive an analytic expression which predicts the acoustic pressure threshold for cavitation at the micrometer scale - where surface tension effects are important. This work has relevance to the consideration of possible bioeffects from diagnostic ultrasound. (5) Other projects include the calibration of hydrophones using acoustically levitated samples, and the investigation of solitary waves of the sort discovered by Wu, Keolian and Rudnick.

  2. Asteroid Regolith Mechanical Properties: Laboratory Experiments With Cohesive Powders

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Scheeres, D. J.; Roark, S. E.; Dissly, R.; Sanchez, P.

    2012-10-01

    Despite clear evidence that small asteroids undergo drastic physical evolution, the geophysics and mechanics of many of the processes governing that evolution remain a mystery due to a lack of scientific data, both on the sub-surface and global geophysics of these small bodies and on the mechanical properties of regoliths in the unique micro-gravity regime they inhabit. We are beginning a three-year effort to study regolith properties and processes on low-gravity, small asteroids by conducting analog experiments with cohesive powders in a 1-g laboratory environment. Based on a rigorous comparison of forces it can be shown that van der Waals cohesive forces between millimeter to centimeter-sized grains on asteroids ranging in size from Eros to Itokawa, respectively, may exceed their ambient weight several-fold. This observation implies that regoliths composed of impact debris of those sizes should behave on the microgravity surfaces of small asteroids like flour or other cohesive powders do in the 1-g environment here on Earth. Our goal is to develop an improved understanding of the role of cohesion in affecting regolith processes and surface morphology of small Solar System bodies, some the targets of ongoing and proposed NASA New Frontiers and Discovery missions, and to quantify the range of expected mechanical properties of such regoliths. Our experiments will be conducted in ambient and vacuum conditions within an environmental test chamber at Ball Aerospace & Technologies Corporation (BATC) in Boulder, CO. To aid in validating our experiment chamber and support equipment performance, and before proceeding with experiments on geologic regolith simulant materials, we will perform a series of comparative, ‘calibration’ experiments with micro glass spheres; all primary experiments will be performed with at least one non-idealized regolith simulant, like JSC-1, that more realistically simulates the angular particle shapes expected in actual geologic fragments

  3. Materials experience in methanol reforming units

    SciTech Connect

    Baumert, K.L.; Hoffman, J.J.

    1997-09-01

    Metallurgical evaluations were performed on samples of Type 310 and aluminized 304 SS after long-term, high temperature exposure in methanol reforming service. The secondary phases were identified and the effectiveness of aluminizing at inhibiting metal dusting was examined. Secondary phases adversely affect the materials service life and repairability. Aluminizing effectively inhibits metal dusting for at least 13--14 years. Metal dusting is most severe in crevices on bare metal.

  4. Factors Influencing the Dielectric Properties of Agricultural and Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency or microwave electric fields, and water content, temperature, and density of the materials, are discussed on the ...

  5. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1993-01-01

    The main goals of the research under this grant consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular, for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: (1) development of a spectral code for moving boundary problems; and (2) diffusivity measurements on concentrated and supersaturated TGS solutions. Progress made during this seventh half-year period is reported.

  6. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1993-01-01

    The main goals of the research consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and diffusivity measurements on concentrated and supersaturated TGS solutions. During this eighth half-year period, good progress was made on these tasks.

  7. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1992-01-01

    The development is examined of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). The tasks include development of a spectral code for moving boundary problems, kinematic viscosity measurements on liquid MCT at temperatures close to the melting point, and diffusivity measurements on concentrated and supersaturated TGS solutions. A detailed description is given of the work performed for these tasks, together with a summary of the resulting publications and presentations.

  8. Structures and properties of materials recovered from high shock pressures

    SciTech Connect

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be compared with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.

  9. The Magnetic Properties Experiments on Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Knudsen, J. M.; Gunnlaugsson, H. P.; Hviid, S. F.; Madsen, M. B.

    1996-09-01

    A remarkable result from the Viking missions was the discovery that the Martian soil is highly magnetic, in the sense that the soil is attracted by permanent magnets. Both the strong and weak magnets on the Viking landers were saturated with dust throughout the mission. Appropriate limits for the spontaneous magnetization sigma_S were advanced: 1 Am(2) (kg soil)(-1) < sigma_S < 7 Am(2) (kg soil)(-1) . The essential difference between the Magnet Arrays for Mars Pathfinder and the Viking Magnetic Properties Experiment is that Magnet Arrays on Pathfinder will include magnets of lower strengths that the weakest Viking magnet. The five magnets consist of small ring magnets concentric with oppositely polarized cylindrical magnets. The outer diameter of the ring magnets is 18 mm. Discrete (single phase) particles of strongly magnetic minerals (gamma -Fe2O3 or Fe3O4) will stick to all five magnets, while composite (multiphase) particles will stick preferentially to the strongest magnets. Two Magnet Arrays are placed on the Pathfinder lander, with a distance of 1180 and 1450 mm, respectively, from the Imager for Mars Pathfinder (IMP). The magnets will attract airborne dust, and the dust on the magnets will be periodically viewed by the IMP. The images transmitted to Earth are the data on which conclusions on the magnetic properties of the dust will be based. Besides the Magnet Arrays the Pathfinder lander carries two other types of magnets. The Tip Plate Magnet is placed at a distance of 10 cm from the IMP, and thus allows a rather high resolution imaging of the dust clinging to the magnet. The Ramp Magnets are placed near the end of the ramps by which the micro-rover will descend to the surface. The dust on the Ramp Magnets will be studied by the APX-spectrometer of the micro-rover.

  10. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  11. Mechanical properties of irradiated multi-phase polycrystalline BCC materials

    NASA Astrophysics Data System (ADS)

    Song, Dingkun; Xiao, Xiazi; Xue, Jianming; Chu, Haijian; Duan, Huiling

    2015-04-01

    Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility, resulting from irradiation-induced defects such as vacancies, interstitials and dislocation loops, etc. In this paper, we develop an elastic-viscoplastic model for irradiated multi-phase polycrystalline BCC materials in which the mechanical behaviors of individual grains and polycrystalline aggregates are both explored. At the microscopic grain scale, we use the internal variable model and propose a new tensorial damage descriptor to represent the geometry character of the defect loop, which facilitates the analysis of the defect loop evolutions and dislocation-defect interactions. At the macroscopic polycrystal scale, the self-consistent scheme is extended to consider the multiphase problem and used to bridge the individual grain behavior to polycrystal properties. Based on the proposed model, we found that the work-hardening coefficient decreases with the increase of irradiation-induced defect loops, and the orientation/loading dependence of mechanical properties is mainly attributed to the different Schmid factors. At the polycrystalline scale, numerical results for pure Fe match well with the irradiation experiment data. The model is further extended to predict the hardening effect of dispersoids in oxide-dispersed strengthened steels by the considering the Orowan bowing. The influences of grain size and irradiation are found to compete to dominate the strengthening behaviors of materials.

  12. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  13. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well-determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  14. Process modelling for materials preparation experiments

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Alexander, J. Iwan D.

    1994-01-01

    The main goals of the research under this grant consist of the development of mathematical tools and measurement techniques for transport properties necessary for high fidelity modelling of crystal growth from the melt and solution. Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and development of an expedient diffusivity measurement technique for concentrated and supersaturated solutions. We have focused on developing a code to solve for interface shape, heat and species transport during directional solidification. The work involved the computation of heat, mass and momentum transfer during Bridgman-Stockbarger solidification of compound semiconductors. Domain decomposition techniques and preconditioning methods were used in conjunction with Chebyshev spectral methods to accelerate convergence while retaining the high-order spectral accuracy. During the report period we have further improved our experimental setup. These improvements include: temperature control of the measurement cell to 0.1 C between 10 and 60 C; enclosure of the optical measurement path outside the ZYGO interferometer in a metal housing that is temperature controlled to the same temperature setting as the measurement cell; simultaneous dispensing and partial removal of the lower concentration (lighter) solution above the higher concentration (heavier) solution through independently motor-driven syringes; three-fold increase in data resolution by orientation of the interferometer with respect to diffusion direction; and increase of the optical path length in the solution cell to 12 mm.

  15. Shocked materials at the intersection of experiment and simulation

    SciTech Connect

    Kadau, Kai

    2008-01-01

    Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena -- nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.

  16. Shocked materials at the intersection of experiment and simulation

    SciTech Connect

    Lorenzana, H. E.; Belak, J. F.; Bradley, K. S.; Bringa, E. M.; Budil, K. S.; Cazamias, J. U.; El-Dasher, B.; Hawreliak, J. A.; Hessler, J.; Kadau, K.; Kalantar, D. H.; McNaney, J. M.; Milathianaki, D.; Rosolankova, K.; Swift, D. C.; Taravillo, M.; Van Buuren, T. W.; Wark, J. S.; de la Rubia, T. Diaz

    2008-04-01

    Understanding the dynamic lattice response of solids under the extreme conditions of pressure, temperature and strain rate is a scientific quest that spans nearly a century. Critical to developing this understanding is the ability to probe and model the spatial and temporal evolution of the material microstructure and properties at the scale of the relevant physical phenomena-nanometers to micrometers and picoseconds to nanoseconds. While experimental investigations over this range of spatial and temporal scales were unimaginable just a decade ago, new technologies and facilities currently under development and on the horizon have brought these goals within reach for the first time. The equivalent advancements in simulation capabilities now mean that we can conduct simulations and experiments at overlapping temporal and spatial scales. In this article, we describe some of our studies which exploit existing and new generation ultrabright, ultrafast x-ray sources and large scale molecular dynamics simulations to investigate the real-time physical phenomena that control the dynamic response of shocked materials.

  17. Graphite as a plasma-facing material in fusion experiments

    SciTech Connect

    Langley, R.A. )

    1989-01-01

    Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab.

  18. Materials Adherence Experiment on Mars Pathfinder: Early results

    SciTech Connect

    Landis, G.A.; Jenkins, P.P.; Hunter, G.

    1997-12-31

    The Materials Adherence Experiment (MAE) on the Pathfinder Sojourner rover will measure the dust deposition rate. By August, the Sojourner Rover on Mars Pathfinder will have completed its primary mission, and the experiment will have data on dust deposition during the first three weeks of operation on Mars. This paper will present the initial data from the experiment. This will be the first presentation of the results from the Pathfinder MAE experiment.

  19. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  20. Cytocompatibility and antibacterial properties of capping materials.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Beltrami, Riccardo; Monaco, Annachiara; Dagna, Alberto; Lombardini, Marco; Visai, Livia

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  1. Cytocompatibility and Antibacterial Properties of Capping Materials

    PubMed Central

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  2. Absorption properties of waste matrix materials

    SciTech Connect

    Briggs, J.B.

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  3. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  4. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  5. Skylab experiment performance evaluation manual. Appendix E: Experiment M512 Materials processing facility (MSFC)

    NASA Technical Reports Server (NTRS)

    Thomas, O. H., Jr.

    1973-01-01

    Analyses for Experiment M512, Materials Processing Facility (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  6. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  7. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  8. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  9. Dynamic material properties of refractory materials: Tantalum and tantalum/tungsten alloys

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.; Lassila, D.H.; Steinberg, D.J.

    1995-08-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta{sub 97.5}W{sub 2.5} and Ta{sub 90}W{sub 10} (wt. %) with oxygen contents of 30--70 ppM. Information available from these experiments includes Hugoniot, elastic limits, loading fates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Lund rate-dependent material model provides for an excellent match of the shape of the plastic wave, although the release wave is not well modeled. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects.

  10. Photoacoustic characterization of the mechanical properties of thin film materials

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Krishnaswamy, Sridhar; Fei, Dong; Rebinsky, Douglas A.

    2005-05-01

    Two high frequency photoacoustic techniques were applied to investigate the mechanical properties of two sets of thin film materials in this work. Broadband photoacoustic guided-wave method was used to measure the guided-wave phase velocity dispersion curves of nano-structured diamond-like carbon hard coatings. The experimental velocity spectra were analyzed by a nonlinear optimization approach in conjunction with a multi-layer wave-propagation model. The derived Young"s moduli using the broadband photoacoustic technique were compared with line-focus acoustic microscopy and nano-indentation tests and good quantitative agreement is found. In a second set of experiments, ultra-thin two-layer aluminum and silicon nitride thin film materials were tested using the femtosecond transient pump-probe method using high frequency bulk waves generated by the ultra-fast laser pulses. The measured moduli of silicon nitride thin layers are in the range of 270 - 340 GPa. Photoacoustic methods are shown to be suitable for in-situ and non-destructive evaluation of the mechanical properties of thin films.

  11. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    NASA Astrophysics Data System (ADS)

    Abe, K.; Kohyama, A.; Namba, C.; Wiffen, F. W.; Jones, R. H.

    1998-10-01

    A Japan-USA Program of irradiation experiments for fusion research, "JUPITER", has been established as a 6 year program from 1995 to 2000. The goal is to study "the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment". This is phase-three of the collaborative program, which follows RTNS-II Program (Phase-1: 1982-1986) and FFTF/MOTA Program (Phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA Program, JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects.

  12. Structure and Thermal Properties of Porous Geological Materials

    NASA Astrophysics Data System (ADS)

    Kirk, Simon; Williamson, David

    2011-06-01

    Understanding the behaviour of porous geological materials is important for developing models of the explosive loading of rock in mining applications. To this end it is essential to first characterise its complex internal structure. Knowing the structure shows how the properties of the component materials relate to the overall properties of rock. The structure and mineralogy of Gosford sandstone was investigated and this information was used to predict its thermal properties. The thermal properties of the material were measured experimentally and compared against these predictions.

  13. Exposure effects on the optical properties of building materials

    NASA Astrophysics Data System (ADS)

    Lane, Sarah; Cathcart, J. Michael; Harrell, J. Timothy

    2008-04-01

    Georgia Tech recently initiated a weathering effects measurement program to monitor the optical properties of several common building materials. A set of common building materials were placed outdoors and optical property measurements made over a series of weeks to assess the impact of exposure on these properties. Both reflectivity and emissivity measurements were made. Materials in this program included aluminum flashing, plastic sheets, bricks, roof shingles, and tarps. This paper will discuss the measurement approach, experimental setup, and present preliminary results from the optical property measurements.

  14. Calculation of material properties and ray tracing in transformation media.

    PubMed

    Schurig, D; Pendry, J B; Smith, D R

    2006-10-16

    Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability. PMID:19529371

  15. An Experiment to Tame the Plasma Material Interface

    SciTech Connect

    Goldston, R J; Menard, J E; Allain, J P; Brooks, J N; Canik, J M; Doerner, R; Fu, G; Gates, D A; Gentile, C A; Harris, J H; Hassanein, A; Gorelenkov, N N; Kaita, R; Kaye, S M; Kotschenreuther, M; Kramer, G J; Kugel, H W; Maingi, R; Mahajan, S M; Majeski, R; Neumeyer, C L; Nygren, R E; Ono, M; Owen, L W; Ramakrishnan, S; Rognlien, T D; Ruzic, D N; Ryutov, D D; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stevenson, T N; Ulrickson, M A; Valanju, P M; Woolley, R D

    2009-01-08

    The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the resulting key requirements for an experiment to 'tame the plasma material interface' are analyzed. A possible design point for such an experiment is outlined.

  16. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  17. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  18. Determination of the properties of viscoelastic materials using spherical nanoindentation

    NASA Astrophysics Data System (ADS)

    Martynova, Elena

    2016-02-01

    The article is devoted to determining the properties of linearly viscoelastic isotropic materials from the experiment on the introduction of a spherical indenter at a constant-rate displacement in a viscoelastic sample. The results are based on the Lee-Radok (J. Appl. Mech. 27:438-444, 1960) solution of the viscoelastic contact problem. An exact formula is obtained for calculation of the relaxation function using indentation load-displacement data. To illustrate the application of this formula, it is used to find the relaxation function of polymethyl methacrylate (PMMA). The relaxation function found in the article is compared with data measured in a conventional test to evaluate the suitability of the proposed method.

  19. Electronic correlation and transport properties of nuclear fuel materials

    NASA Astrophysics Data System (ADS)

    Yin, Quan; Kutepov, Andrey; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey Y.; Pickett, Warren E.

    2011-11-01

    The electronic structures and transport properties of a series of actinide monocarbides, mononitrides, and dioxides are studied systematically using a combination of density-functional theory and dynamical mean-field theory. The studied materials present different electronic correlation strength and degree of localization of 5f electrons, where a metal-insulator boundary naturally lies within. In the spectral function of Mott-insulating uranium oxide, a resonance peak is observed in both theory and experiment and may be understood as a generalized Zhang-Rice state. We also investigate the interplay between electron-electron and electron-phonon interactions, both of which are responsible for the transport in the metallic compounds. Our findings allow us to gain insight in the roles played by different scattering mechanisms, and suggest how to improve their thermal conductivities.

  20. Electronic correlation and transport properties of nuclear fuel materials

    SciTech Connect

    Yin Quan; Kutepov, Andrey; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey Y.; Pickett, Warren E.

    2011-11-15

    The electronic structures and transport properties of a series of actinide monocarbides, mononitrides, and dioxides are studied systematically using a combination of density-functional theory and dynamical mean-field theory. The studied materials present different electronic correlation strength and degree of localization of 5f electrons, where a metal-insulator boundary naturally lies within. In the spectral function of Mott-insulating uranium oxide, a resonance peak is observed in both theory and experiment and may be understood as a generalized Zhang-Rice state. We also investigate the interplay between electron-electron and electron-phonon interactions, both of which are responsible for the transport in the metallic compounds. Our findings allow us to gain insight in the roles played by different scattering mechanisms, and suggest how to improve their thermal conductivities.

  1. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The ultrasonic nondestructive evaluation techniques discussed in the present paper indicate potentials for material characterization and property prediction. Stress wave interaction and material transfer function concepts are examined as a basis for explaining correlations between material mechanical behavior and ultrasonically measured quantities. It is observed that the effect and criticality of any discrete flaw, such as crack, inclusion, or any other stress raiser, is definable only in terms of its material microstructural environment. This underscores the importance of ultrasonic techniques capable of characterizing the stress wave energy transfer properties of a material.

  2. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  3. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  4. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  5. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  6. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  7. Optimal experimental designs for the estimation of thermal properties of composite materials

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  8. Fish gelatin: Material properties and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main difference between fish gelatin and mammalian gelatin is fish gelatin’s lower gelation temperature. This property limits the use of fish gelatin in applications that currently utilize mammalian gelatin. However, fish gelatin remains an attractive alterative to mammalian gelatin due to relig...

  9. Effects of tritium on material properties

    SciTech Connect

    Caskey, G.R. Jr.

    1985-01-01

    The effecs of tritium on deformation and fracture of metals are reviewed with emphasis on similarities and differences between tritium and the other hydrogen isotopes. Helium generated by radioactive decay of tritium introduces time dependent property changes not observed with protium or deuterium. On-going studies and topics for further investigations are identified. 17 refs., 6 figs., 9 tabs.

  10. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  11. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  12. BMDO materials testing in the EOIM-3 experiment

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Liang, Ranty H.

    1995-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a testbed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground-based exposure evaluation was conducted using the Fast Atom Sample Tester (FAST) atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 flight materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 20) atoms/sq cm. The ground-based exposure fluence of 2.0 - 2.5 x 10(exp 20) atoms/sq cm permits direct comparison with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground-based exposure are summarized here. A more detailed correlation study is presented in the JPL Publication 93-31 entitled 'Flight-and Ground-Test Correlation Study of BMDO SDS Materials: Phase 1 Report'. In general, the majority of the materials survived the AO environment with their performance tolerances maintained for the duration of the exposure. Optical materials, baffles, and coatings performed extremely well as did most of the thermal coatings and tribological materials. A few of the candidate radiator, threat shielding, and structural materials showed significant degradation. Many of the coatings designed to protect against AO erosion of sensitive materials performed this function well.

  13. IMAP: Interferometry for Material Property Measurement in MEMS

    SciTech Connect

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  14. Data base for crack growth properties of materials

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Lawrence, Victor B.; Nguy, Henry L.

    1988-01-01

    A computerized data base of crack growth properties of materials was developed for use in fracture control analysis of rocket engine components and other NASA space hardware. The software system has files of basic crack growth rate data, other fracture mechanics material properties such as fracture toughness and environmental crack growth threshold values, and plotting and fitting routines for deriving material properties for use in fracture control analysis. An extensive amount of data was collected and entered, and work is continuing on compiling additional data. The data base and software codes are useful both for fracture control analysis and for evaluation or development of improved crack growth theories.

  15. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1985-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have derived a theory, and tested it on tissues, for predicting the composition of composite materials using mixture rules, such as the one we derived for the nonlinear parameter two years ago; (2) We have published one article and another is in review on our use of modulated acoustic radiation pressure on levitated drops to characterize interfaces with and without surfactants. We have begun to study in a systematic way the nonlinear dynamics of drops, including drop fission: (3) we have improved apparatus for 30 MHz ultrasonic scattering from microparticles (approx. micron size), which should allow us to discriminate between different microparticles in a liquid; (4) We have begun to study the nonlinear mechanics of hydrodynamic solitons in cylindrical (2-d) geometry; and (5) We have been studying the use of acoustic levitation for transducer calibration.

  16. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  17. Mapping the fracture properties of engineering materials

    NASA Astrophysics Data System (ADS)

    Ashby, Mike

    2013-09-01

    Among Alan Cottrell's many extraordinary talents was that of an inspirational teacher. He had a masterful ability to explain the underlying physics of the Science of Materials and at the same time to simplify and to present the big picture. His teaching-texts live on, still among the clearest and most insightful expositions of the subject. This paper surveys part of one of the fields to which he contributed so much - Fracture - with education and the big picture in mind.

  18. Temperature dependent terahertz properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Whitley, Von H.; Brown, Kathryn E.; Ahmed, Towfiq; Sorensen, Christian J.; Moore, David S.

    2016-04-01

    Reliable detection of energetic materials is still a formidable challenge which requires further investigation. The remote standoff detection of explosives using molecular fingerprints in the terahertz spectral range has been an evolving research area for the past two decades. Despite many efforts, identification of a particular explosive remains difficult as the spectral fingerprints often shift due to the working conditions of the sample such as temperature, crystal orientation, presence of binders, etc. In this work, we investigate the vibrational spectrum of energetic materials including RDX, PETN, AN, and 1,3-DNB diluted in a low loss PTFE host medium using terahertz time domain spectroscopy (THz-TDS) at cryogenic temperatures. The measured absorptions of these materials show spectral shifts of their characteristic peaks while changing their operating temperature from 300 to 7.5 K. We have developed a theoretical model based on first principles methods, which is able to predict most of the measured modes in 1, 3-DNB between 0.3 to 2.50 THz. These findings may further improve the security screening of explosives.

  19. Materials properties: heterogeneity and appropriate sampling modes.

    PubMed

    Esbensen, Kim H

    2015-01-01

    The target audience for this Special Section comprises parties related to the food and feed sectors, e.g., field samplers, academic and industrial scientists, laboratory personnel, companies, organizations, regulatory bodies, and agencies who are responsible for sampling, as well as project leaders, project managers, quality managers, supervisors, and directors. All these entities face heterogeneous materials, and the characteristics of heterogeneous materials needs to be competently understood by all of them. Before delivering analytical results for decision-making, one form or other of primary sampling is always necessary, which must counteract the effects of the sampling target heterogeneity. Up to five types of sampling error may arise as a specific sampling process interacts with a heterogeneous material; two sampling errors arise because of the heterogeneity of the sampling target, and three additional sampling errors are produced by the sampling process itself-if not properly understood, reduced, and/or eliminated, which is the role of Theory of Sampling. This paper discusses the phenomenon and concepts involved in understanding, describing, and managing the adverse effects of heterogeneity in sampling. PMID:25807041

  20. System Report for the Optical Properties Monitor (OPM) Experiment

    NASA Technical Reports Server (NTRS)

    Hummer, L.

    2001-01-01

    This systems report describes how the Optical Properties Monitor (OPM) experiment was developed. Pertinent design parameters are discussed, along with mission information and system requirements to successfully complete the mission. Environmental testing was performed on the OPM to certify it for spaceflight. This testing included vibration, thermal vacuum, electromagnetic interference and conductance, and toxicity tests. Instrument and monitor subsystem performances, including the reflectometer, vacuum ultraviolet, total integrated scatter, atomic oxygen monitor, irradiance monitor, and molecular contamination monitor during the mission are discussed. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. The OPM conducted in situ measurements of a number of material samples. These data may be found in the OPM Science Report. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  1. Emergent properties in experiments with active microparticles

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie

    Self-propelled micro-particles are intrinsically out-of-equilibrium. This renders their physics far richer than passive colloids and give rise to the emergence of complex phenomena e.g. collective behavior, swarming... I will present experimental demonstration of emergent properties beyond equilibrium.

  2. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  3. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  4. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  5. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  6. Accelerated search for materials with targeted properties by adaptive design

    NASA Astrophysics Data System (ADS)

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-04-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ~800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

  7. Accelerated search for materials with targeted properties by adaptive design.

    PubMed

    Xue, Dezhen; Balachandran, Prasanna V; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  8. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  9. Electrical properties of commercial sheet insulation materials for cryogenic applications

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Pace, Marshall O

    2008-01-01

    Dielectric properties of electrical insulation materials are needed for low-temperature power applications. Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. In this work we report the dielectric properties of some commercially available materials in sheet form. The selected materials are polypropylene laminated paper from Sumitomo Electric U.S.A., Inc., porous polyethylene (Tyvek\\texttrademark) from Dupont, and polyamide paper (Nomex\\texttrademark) from Dupont. The dielectric properties are characterized with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 50 to 300 K. The dielectric breakdown characteristics of the materials are measured in a liquid nitrogen bath at atmospheric pressure.

  10. Thermal Properties of Structural Materials Used in LWR Vessels

    SciTech Connect

    J. E. Daw; J. L. Rempe; D. L. Knudson

    2011-01-01

    High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.

  11. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  12. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  13. MIDAS (Material Implementation, Database, and Analysis Source): A comprehensive resource of material properties

    SciTech Connect

    Tang, M; Norquist, P; Barton, N; Durrenberger, K; Florando, J; Attia, A

    2010-12-13

    MIDAS is aimed to be an easy-to-use and comprehensive common source for material properties including both experimental data and models and their parameters. At LLNL, we will develop MIDAS to be the central repository for material strength related data and models with the long-term goal to encompass other material properties. MIDAS will allow the users to upload experimental data and updated models, to view and read materials data and references, to manipulate models and their parameters, and to serve as the central location for the application codes to access the continuously growing model source codes. MIDAS contains a suite of interoperable tools and utilizes components already existing at LLNL: MSD (material strength database), MatProp (database of materials properties files), and MSlib (library of material model source codes). MIDAS requires significant development of the computer science framework for the interfaces between different components. We present the current status of MIDAS and its future development in this paper.

  14. Use of material dielectric properties for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  15. Heat Transmission Properties of Insulating and Building Materials

    National Institute of Standards and Technology Data Gateway

    SRD 81 NIST Heat Transmission Properties of Insulating and Building Materials (Web, free access)   NIST has accumulated a valuable and comprehensive collection of thermal conductivity data. Version 1.0 of the database includes data for over 2000 measurements, covering several categories of materials including concrete, fiberboard, plastics, thermal insulation, and rubber.

  16. Material Properties for Fiber-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    White, Susan; Rouanet, Stephane; Moses, John; Arnold, James O. (Technical Monitor)

    1994-01-01

    Ceramic fiber-reinforced silica aerogels are novel materials for high performance insulation, including thermal protection materials. Experimental data are presented for the thermal and mechanical properties, showing the trends exhibited over a range of fiber loadings and silica aerogel densities. Test results are compared to that of unreinforced bulk aerogels.

  17. Perspective: Interactive material property databases through aggregation of literature data

    NASA Astrophysics Data System (ADS)

    Seshadri, Ram; Sparks, Taylor D.

    2016-05-01

    Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.

  18. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  19. MISSE 6, 7 and 8 Materials Sample Experiments from the International Space Station Materials and Processes Team

    NASA Technical Reports Server (NTRS)

    Kravchenko, Michael; ORourke, Mary Jane; Golden, Johnny; Finckenor, Miria; Leatherwood, Michael; Alred, John

    2010-01-01

    The International Space Station Materials and Processes (ISS M&P) team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. The ISS M&P team has participated in previous MISSE activities in order to better characterize the LEO effects on Space Station materials. This investigation will further this effort. Results for the following MISSE 6 samples materials will be presented: a comparison of anodize and chemical conversion coatings on various aluminum alloys, electroless nickel; AZ93 white ceramic thermal control coating with and without Teflon; Hyzod(TM) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; reformulated Teflon (TM) coated Beta Cloth (Teflon TM without perfluorooctanoic acid (PFOA)) and a Dutch version of beta cloth. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: deionized water sealed anodized aluminum Photofoil(TM); indium tin oxide (ITO)- coated Kapton(TM) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth ( alpha/Beta transformation); Crew Exploration Vehicle (CEV) parachute soft goods. MISSE 8 sample: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, Davlyn fiberglass sleeve material, Permacel and Intertape protective tapes, and ITO-coated Kapton.

  20. Material Analysis/Characterization for Ultra-Low Background Experiments

    NASA Astrophysics Data System (ADS)

    Jasinski, Ben

    For the discovery of rare event physics processes related to new physics beyond the Standard Model, the next generation of physics experiments requires to be built underground. For instance, the Large Underground Xenon experiment and MAJORANA DEMONSTRATOR, both located underground at the Sanford Underground Research Facility (SURF), require an ultra-low background rate for their respective discovery of Dark Matter and the Majorana particle. The next generation of detectors designated for these ultra-low background experiments require a complete understanding of the materials used in the experiment to achieve the detection sensitivity below the current limits. Experimental limits can be seen in ton scale detector designs where ultrapure materials are needed for detector performance, suppression of background radiation, and electronic noise. This thesis studies the three main aspects of ultra-low background experiments. First, an investigation of the mechanical design constraints for SURF underground physics experiments is performed. Second, a study into each detector's characterization and performance is described for the SURF experiments. Lastly, an optimization of data analysis algorithm for rare event physics is discussed. We describe the techniques used for the above three investigations in detail. First, the test of the mechanical design constraints is investigated using an adaptive sample holder capable of testing sample materials of gas, liquid or solid state. Second, the characterization of materials is studied with a design of a Capacitance-Voltage Measurement system. Lastly, the optimization of data analysis algorithm for small signals is performed by a detailed data analysis to verify isotopic enrichment obtained from a novel isotope separation method of molecules of CO2.

  1. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  2. Optimization of low gravity materials processing experiments using expert systems

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Choudry, Amar

    1988-01-01

    The use of an expert system for the control of materials processing experiments in a facility such as the Space Station provides a number of attractive features for insuring that certain critical process parameters can be used to optimize the productivity of the materials processing experiments. The proposed approach to implementation of an expert system utilizes a knowledge base of desired process characteristics which will provide the desired results. The knowledge base for each experiment will be created in conjunction with the scientific investigator in charge of the experiment. Improvements to the knowledge base will be expanded to include self learning sessions in ground based experiments in order to teach the expert system how to respond to perturbations in the process and update the knowledge base on what process change should be implemented in order to reach the desired end product. Design considerations using an on-line real time expert system such as PICON is studied. The types of experiments evaluated include several types of solidification experiments which will be performed on the Space Station.

  3. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  4. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  5. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  6. Models for predicting temperature dependence of material properties of aluminum

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Bhandarkar, Upendra V.; Joshi, Suhas S.

    2014-03-01

    A number of processes such as laser ablation, laser welding, electric discharge machining, etc involve high temperatures. Most of the processes involve temperatures much higher than the target melting and normal boiling point. Such large variation in target temperature causes a significant variation in its material properties. Due to the unavailability of experimental data on material properties at elevated temperatures, usually the data at lower temperatures is often erroneously extrapolated during modelling of these processes. Therefore, this paper attempts to evaluate the variation in material properties with temperature using some general and empirical theories, along with the available experimental data for aluminum. The evaluated properties of Al using the proposed models show a significant variation with temperature. Between room temperature and near-critical temperature (0.9Tc), surface reflectivity of Al varies from more than 90% to less than 50%, absorption coefficient decreases by a factor of 7, thermal conductivity decreases by a factor of 5, density decreases by a factor of 4, specific heat and latent heat of vapourization vary by a factor between 1.5 and 2. Applying these temperature-dependent material properties for modelling laser ablation suggest that optical properties have a greater influence on the process than thermophysical properties. The numerical predictions of the phase explosion threshold in laser ablation are within 5% of the experimental values.

  7. Single particle measurements of material line stretching in turbulence: Experiments

    NASA Astrophysics Data System (ADS)

    Kramel, Stefan; Tympel, Saskia; Toschi, Federico; Voth, Greg

    2015-11-01

    We find that particles in the shape of chiral dipoles display a preferential rotation direction in three dimensional isotropic turbulence. The particles consist of two helical ends with opposite chirality that are connected by a straight rod. They are fabricated using 3D printing and have an aspect ratio of 10 and a length in the inertial range of our flow between oscillating grids. Due to their high aspect ratio, they move like material lines. Because material lines align with the extentional eigenvectors of the velocity gradient tensor they experience a mean stretching in turbulence. The stretching of a chiral dipole produces a rotation about the dipole axis and so chiral dipoles experience a non-zero mean spinning rate in turbulence. These results provide a first direct experimental measurement of the rate of material line stretching in turbulence.

  8. Surface electrical properties experiment, part 1. [flown on Apollo 17

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Annan, A. P.; Redman, J. D.; Rossiter, J. R.; Rylaarsdam, J. A.; Watts, R. D.

    1974-01-01

    The work is reported which was performed on the Surface Electrical Properties Experiment Data Acquisition System. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included.

  9. The magnetic properties experiments on Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Hviid, S. F.; Gunnlaugsson, H. P.; Knudsen, J. M.; Goetz, W.; Pedersen, C. T.; Dinesen, A. R.; Mogensen, C. T.; Olsen, M.; Hargraves, R. B.

    1999-04-01

    The Mars Pathfinder lander carried two magnet arrays, each containing five small permanent magnets of varying strength. The magnet arrays were passively exposed to the wind borne dust on Mars. By the end of the Mars Pathfinder mission a bull's-eye pattern was visible on the four strongest magnets of the arrays showing the presence of magnetic dust particles. From the images we conclude that the dust suspended in the atmosphere is not solely single phase particles of hematite (α-Fe2O3) and that single phase particles of the ferrimagnetic minerals maghemite (γ-Fe2O3) or magnetite (Fe3O4) are not present as free particles in any appreciable amount. The material on the strongest magnets seems to be indistinguishable from the bright surface material around the lander. From X-ray fluorescence it is known that the soil consists mainly of silicates. The element iron constitutes about 13% of the soil. The particles in the airborne dust seem to be composite, containing a few percent of a strongly magnetic component. We conclude that the magnetic phase present in the airborne dust particles is most likely maghemite. The particles thus appear to consist of silicate aggregates stained or cemented by ferric oxides, some of the stain and cement being maghemite. These results imply that Fe2+ ions were leached from the bedrock, and after passing through a state as free Fe2+ ions in liquid water, the Fe2+ was oxidized to Fe3+ and then precipitated. It cannot, however, be ruled out that the magnetic particles are titanomagnetite (or titanomaghemite) occurring in palagonite, having been inherited directly from the bedrock.

  10. Changes in the Optical Properties of Materials Are Observed After 18 Months in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1999-01-01

    Materials located on the exterior of spacecraft in low Earth orbit are subjected to a number of environmental threats, including atomic oxygen, ultraviolet radiation, thermal cycling, and micrometeroid and debris impact. Atomic oxygen attacks materials vulnerable to oxidation. Ultraviolet radiation can break chemical bonds and cause undesirable changes in optical properties. Thermal cycling can cause cracking, and micrometeroid and debris impacts can damage protective coatings. Another threat is contamination. The outgassing of volatile chemicals can contaminate nearby surfaces, changing their thermal control properties. Contaminated surfaces may undergo further change as a result of atomic oxygen and ultraviolet radiation exposure. The Passive Optical Sample Assembly (POSA) experiment was designed as a risk mitigation experiment for the International Space Station. Samples were characterized before launch, exposed for 18 months on the exterior of Mir, and characterized upon their return. Lessons learned from POSA about the durability of material properties can be applied to the space station and other long-duration missions.

  11. Surface electrical properties experiment study phase, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The choice of an antenna for a subsurface radio sounding experiment is discussed. The radiation properties of the antennas as placed on the surface of the medium is examined. The objective of the lunar surface electrical properties experiment is described. A numerical analysis of the dielectric permittivity and magnetic permeability of a subsurface domain is developed. The application of electromagnetic field measurements between one or more transmitting antennas and a roving receiving station is explained.

  12. Materials flight experiment carrier capability and future flight experiments on Hitchhiker-M carrier program

    NASA Technical Reports Server (NTRS)

    Davis, D.

    1993-01-01

    The CMSS has designed, fabricated, and qualified a unique Materials FLight EXperiment (MFLEX) carrier. The MFLEX is a reusable materials experiment carrier designed to support a wide array of sensors that measure synergistic effects on candidate space materials in Low Earth Orbit (LEO). The MFLEX can be integrated on a variety of launch vehicles/carriers and multiple units can be networked to optimize the surface area of carriers such as the Hitchhiker-M currently being built by the Goddard Space Flight Center (GSFC).

  13. MPOD: A Material Property Open Database linked to structural information

    NASA Astrophysics Data System (ADS)

    Pepponi, Giancarlo; Gražulis, Saulius; Chateigner, Daniel

    2012-08-01

    Inspired by the Crystallography Open Database (COD), the Material Properties Open Database (MPOD) was given birth. MPOD aims at collecting and making publicly available at no charge tensorial properties (including scalar properties) of phases and linking such properties to structural information of the COD when available. MPOD files are written with the STAR file syntax, used and developed for the Crystallographic Information Files. A dictionary containing new definitions has been written according to the Dictionary Definition Language 1, although some tricks were adopted to allow for multiple entries still avoiding ambiguousness. The initial set includes mechanical properties, elastic stiffness and compliance, internal friction; electrical properties, resistivity, dielectric permittivity and stiffness, thermodynamic properties, heat capacity, thermal conductivity, diffusivity and expansion; electromechanical properties, piezoelectricity, electrostriction, electromechanical coupling; optical properties; piezooptic and photoelastic properties; superconducting properties, critical fields, penetration and coherence lengths. Properties are reported in MPOD files where the original published paper containing the data is cited and structural and experimental information is also given. One MPOD file contains information relative to only one publication and one phase. The files and the information contained therein can also be consulted on-line at http://www.materialproperties.org.

  14. A Summary of the Fatigue Properties of Wind Turbine Materials

    SciTech Connect

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  15. Properties of Extruded PS-212 Type Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  16. Surface magnetometer experiments: Internal lunar properties

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1973-01-01

    Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are respectively 38 gammas, 103 gammas (maximum), 3 gammas, and 327 gammas. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites are compressed and that the scale size of the Apollo 16 remanent field is 5 or = L 100 km. The global eddy current fields, induced by magnetic step transients in the solar wind, were analyzed to calculate an electrical conductivity profile. From nightside data it was found that deeper than 170 km into the moon, the conductivity rises from 0.0003 mhos/m to 0.01 mhos/m at 1000 km depth. Analysis of dayside transient data using a spherically symmetric two-layer model yields a homogeneous conducting core of radios 0.9 R and conductivity sigma = 0.001 mhos/m, surrounded by a nonconducting shell of thickness 0.1 R. This result is in agreement with a nonconducting profile determined from nightside data. The conductivity profile is used to calculate the temperature for an assumed lunar material of peridotite. In an outer layer the temperature rises to 850 to 1050 K, after which it gradually increases to 1200 to 1500 K at a depth of approximately 1000 km.

  17. Corrosion properties of second-generation conductive materials

    NASA Technical Reports Server (NTRS)

    Groshart, E.

    1984-01-01

    Since the introduction of silver-filled epoxy adhesives and silver-filled nitrocellulose lacquer as RFI control materials, a number of new materials have been introduced. The resin carriers have been changed in an effort to make the materials more usable or more EPA acceptable and the fillers have been varied in an effort to make the materials less costly. The corrosion-related properties of second-generation materials were assessed, including adhesives, caulks, and greases. Aluminum 2024 was used as the only substrate material. Ten days of salt fog was used as the corrosive environment. If a noble material such as silver, nickel, or carbon is sandwiched with aluminum an increase in dc resistance results given enough time. If this is unsatisfactory electrically it should either not be used or have all corrosive environments excluded.

  18. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  19. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  20. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-01

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling. PMID:25278046

  1. Optimization of the Inverse Algorithm for Estimating the Optical Properties of Biological Materials Using Spatially-resolved Diffuse Reflectance Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of the optical properties from intact biological materials based on diffusion approximation theory is a complicated inverse problem, and it requires proper implementation of inverse algorithm, instrumentation, and experiment. This work was aimed at optimizing the procedure of estimatin...

  2. Neural networks as tools for predicting materials properties

    SciTech Connect

    Sumpter, B.G.; Noid, D.W.

    1995-12-31

    Materials science is of fundamental significance to science and technology because our industrial base and society depend upon our ability to develop advanced materials. Materials and materials processing cuts across almost every sector of industry. The key in all of these areas is the ability to rapidly screen possible designs which will have significant impact. However up to now materials design and processing have been to a large extent empirical sciences. In addition we are still unable to design new alloys and polymers to meet application specific requirements. Being able to do so quickly and at minimum cost would provide an incredible advantage. Obviously, the ability to predict physical, chemical, or mechanical properties of compounds prior to their synthesis is of great technological value in optimizing their design, processing, or recycling. In addition, in order to realize the ultimate goal of materials by computational design, the reverse problem, prediction of chemical structure based on desired properties, has to be resolved. Research at ORNL has lead to the development of a novel computational paradigm (coupling computational neural networks with graph theory, genetic algorithms, wavelet theory, fuzzy logic, molecular dynamics, and quantum chemistry) capable of performing accurate computational synthesis (both predictions of properties or the design of compounds that have specified performance criteria). The computational paradigm represents a hybrid of a number of emerging technologies and has proven to work very well for test compounds ranging from small organic molecules to polymeric materials. Fundamental to the method is the neural network-based formulation of the correlations between structure and properties. The advantages of this method is in its ease of use, speed, accuracy, and that it can be used to predict both properties from structure, and also structure from properties.

  3. High-rate mechanical properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Siviour, C. R.; Drodge, D. R.; Williamson, D. M.

    2010-01-01

    Compared to the many thousands of studies that have been performed on the energy release mechanisms of high energy materials, relatively few studies have been performed (a few hundred) into their mechanical properties. Since it is increasingly desired to model the high rate deformation of such materials, it is of great importance to gather data on their response so that predictive constitutive models can be constructed. This paper reviews the state of the art concerning what is known about the mechanical response of high energy materials. Examples of such materials are polymer bonded explosives (used in munitions), propellants (used to propel rockets), and pyrotechnics (used to initiate munitions and also in flares).

  4. Experiences managing radioactive material at the National Ignition Facility.

    PubMed

    Thacker, Rick L

    2013-06-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's largest and most energetic laser system for inertial confinement fusion and experiments studying high energy density science. Many experiments performed at the National Ignition Facility involve radioactive materials; these may take the form of tritium and small quantities of depleted uranium used in targets, activation products created by neutron-producing fusion experiments, and fission products produced by the fast fissioning of the depleted uranium. While planning for the introduction of radioactive material, it was recognized that some of the standard institutional processes would need to be customized to accommodate aspects of NIF operations, such as surface contamination limits, radiological postings, airborne tritium monitoring protocols, and personnel protective equipment. These customizations were overlaid onto existing work practices to accommodate the new hazard of radioactive materials. This paper will discuss preparations that were made prior to the introduction of radioactive material, the types of radiological work activities performed, and the hazards and controls encountered. Updates to processes based on actual monitoring results are also discussed. PMID:23629067

  5. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  6. Experiment with curable composite material during the stratospheric flight.

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Kondyurin, Alexey; Svistkov, Alexander L.; Lykov, Alexey; Chudinov, Viacheslav; Demin, Anton; Osorgina, I.; Terpugov, Viktor

    Development of the space materials is a complicate task and needs real space flight experiments. However, the space flight experiments are expensive and limited by regulations. The laboratory space simulators can provide only separate factors of the space environment. The stratospheric flight is a good possibility to come close to the space environment with low cost. We designed the stratospheric flight experiment with curable composite material during the flight. The composite based on carbon fibers and epoxy matrix (E201/E201S) was tested in laboratory under high vacuum and temperature. The cassette of uncured composite was designed to measure temperature, altitude, pressure, radiation during the flight. The stratospheric flight was realised from Moscow to altitude of 25 km. The temperature in stratosphere was -60C and pressure of 10 mbar. The composite was under cosmic rays when the flight was higher than the ozone layer. The presentation includes a discussion on the composite materials for space application, stratospheric flight design and conditions, and results of the flight experiment. The study is supported by RFBR (grant 14-08-96011 r_ural_a).

  7. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    SciTech Connect

    Smith, F.; Flach, G.

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  8. Optical properties of plasmonic nanostructures: Theory & experiments

    NASA Astrophysics Data System (ADS)

    Bala Krishna, Juluri

    Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are

  9. Dynamic material properties of the pregnant human uterus.

    PubMed

    Manoogian, Sarah J; Bisplinghoff, Jill A; Kemper, Andrew R; Duma, Stefan M

    2012-06-01

    Given that automobile crashes are the largest single cause of death for pregnant females, scientists are developing advanced computer models of pregnant occupants. The purpose of this study is to quantify the dynamic material properties of the human uterus in order to increase the biofidelity of these models. A total of 19 dynamic tension tests were performed on pregnant human uterus tissues taken from six separate donors. The tissues were collected during full term Cesarean style deliveries and tested within 36 h of surgery. The tissues were processed into uniform coupon sections and tested at 1.5 strains/s using linear motors. Local stress and strain were determined from load data and optical markers using high speed video. The experiments resulted in a non-linear stress versus strain curves with an overall average peak failure true strain of 0.32±0.112 and a corresponding peak failure true stress of 656.3±483.9 kPa. These are the first data available for the dynamic response of pregnant human uterus tissues, and it is anticipated they will increase the accuracy of future pregnant female computational models. PMID:22542221

  10. Implementation Plan: Jasper Management Prestart Review (Surrogate Material Experiments)

    SciTech Connect

    Cooper, W.E.

    2000-09-29

    Able Site is located 24 km northwest of Mercury on the Nevada Test Site. The Nevada Test Site is approximately 105 km northwest of Las Vegas, NV. Major facilities at Able Site include Buildings 5100,5180, and 5191. Significant external interfaces for the JASPER site include the electrical system, wastewater system, communications systems, and water supply system, which provides both potable and fire-protection water. Support services, which are provided on the Nevada Test Site, include medical, emergency response (NTS Fire Department), radiation protection, industrial hygiene, and waste management. Although JASPER will ultimately be used for actinide research, the start-up process requires system demonstration using surrogates in place of the actinide targets. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. A second MPR will be conducted before actinide experiments are executed. This document addresses implementation requirements for only the first MPR. This first review coincides with the completion of authorization-basis documents and physical subsystems, which have undergone appropriate formal engineering design reviews. This MPR will affirm the quality of those reviews, their findings/resolutions, and will look most closely at systems integration requirements and demonstrations that will have undergone technical acceptance reviews before this formal MPR action. Closure of MPR findings will finalize requirements for a DOE/NV Real Estate/Operations Permit (REOP) for surrogate-material experiments. Upon completion of that experiment series and the establishment of capabilities for incorporating special nuclear material (SNM) into future experiments, the team will convene again as part of the process of authorizing those activities. A summary of the review schedule is provided.

  11. Design of meta-materials with novel thermoelastic properties

    NASA Astrophysics Data System (ADS)

    Watts, Seth

    The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites. We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials. We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable. We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow

  12. Flow-induced properties of nanotube-filled polymer materials.

    PubMed

    Kharchenko, Semen B; Douglas, Jack F; Obrzut, Jan; Grulke, Eric A; Migler, Kalman B

    2004-08-01

    Carbon nanotubes (CNTs) are under intense investigation in materials science owing to their potential for modifying the electrical conductivity sigma, shear viscosity eta, and other transport properties of polymeric materials. These particles are hybrids of filler and nanoscale additives because their lengths are macroscopic whereas their cross-sectional dimensions are closer to molecular scales. The combination of extended shape, rigidity and deformability allows CNTs to be mechanically dispersed in polymer matrices in the form of disordered 'jammed' network structures. Our measurements on representative network-forming multiwall nanotube (MWNT) dispersions in polypropylene indicate that these materials exhibit extraordinary flow-induced property changes. Specifically, sigma and eta both decrease strongly with increasing shear rate, and these nanocomposites exhibit impressively large and negative normal stress differences, a rarely reported phenomenon in soft condensed matter. We illustrate the practical implications of these nonlinear transport properties by showing that MWNTs eliminate die swell in our nanocomposites, an effect crucial for their processing. PMID:15273745

  13. Control over magnetic properties in bulk hybrid materials

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  14. Chemistry and properties of blends of acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1991-01-01

    As part of a NASA program to develop new high temperature/high performance structural materials, the chemistry and properties of acetylene-containing materials and their cured resins are under investigation. The objective of this work is to develop materials that are readily processable (i.e., 200-300 C and about 1.4 MPa or less) and possess usable mechanical properties at temperatures as high as 177 C. An acetylene-terminated aspartimide (ATA) was blended with an equal weight of an acetylene-terminated arylene ether (ATAE) oligomer. The blend was subsequently thermally cured to yield a resin which was evaluated in the form of neat resin moldings, adhesive specimens, and laminates. Adhesive specimens and laminates gave good mechanical properties to temperatures as high as 177 C. In addition, preliminary laminate work is presented on the resin from a blend of a new N-methyl substituted ATA and an ATAE.

  15. Surface electrical properties experiment study phase, volume 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The reliability and quality assurance system and procedures used in developing test equipment for the Lunar Experiment projects are described. The subjects discussed include the following: (1) documentation control, (2) design review, (3) parts and materials selection, (4) material procurement, (5) inspection procedures, (6) qualification and special testing, and failure modes and effects analysis.

  16. Plasma-materials interactions during rf experiments in tokamaks

    SciTech Connect

    Cohen, S.A.; Bernabei, S.; Budny, R.; Chu, T.K.; Colestock, P.; Hinnov, E.; Hooke, W.; Hosea, J.; Hwang, D.; Jobes, F.

    1984-09-01

    Plasma-materials interactions studied in recent ICRF heating and lower hybrid current drive experiments are reviewed. The microscopic processes responsible for impurity generation are discussed. In ICRF experiments, improvements in machine operation and in antenna and feedthrough design have allowed efficient plasma heating at RF powers up to 3 MW. No significant loss of energy from the plasma core due to impurity radiation occurs. Lower hybrid current drive results in the generation and maintenance of hundreds of kiloamperes of plasma current carried by suprathermal electrons. The loss of these electrons and their role in impurity generation are assessed. Methods to avoid this problem are evaluated.

  17. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  18. Micro-mechanical properties of bio-materials

    NASA Astrophysics Data System (ADS)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  19. Calendering and Rolling of Viscoplastic Materials: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.

    2007-04-01

    The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.

  20. Wetting properties of molten carbonate fuel cell electrode materials

    SciTech Connect

    Fisher, J.M.; Bennett, P.S.; Pignon, J.F. ); Makkus, R.C.; Weewer, R.; Hemmes, K. )

    1990-05-01

    Molten carbonate fuel cells (MCFC) are of interest for their potentially highly efficient conversion of chemical energy into electrical energy. This paper discusses how the wetting properties of electrode materials by molten carbonate have a high relevance for the performance of the porous electrodes. When internal reforming of the fuel gas at the anode is performed, the wetting properties also influence the efficiency of the reforming process. Distribution of the electrolyte in an MCFC stack is mainly determined by the wetting properties of the porous MCFC materials, such as electrodes and tile in contact with the electrolyte. The quality of the wet seal areas of the separator plates in an MCFC stack to prevent gas leakage also depends on the wetting properties.

  1. On the hitchhiker Robot Operated Materials Processing System: Experiment data system

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Jenstrom, Del

    1995-01-01

    The Space Shuttle Discovery STS-64 mission carried the first American autonomous robot into space, the Robot Operated Materials Processing System (ROMPS). On this mission ROMPS was the only Hitchhiker experiment and had a unique opportunity to utilize all Hitchhiker space carrier capabilities. ROMPS conducted rapid thermal processing of the one hundred semiconductor material samples to study how micro gravity affects the resulting material properties. The experiment was designed, built and operated by a small GSFC team in cooperation with industry and university based principal investigators who provided the material samples and data interpretation. ROMPS' success presents some valuable lessons in such cooperation, as well as in the utilization of the Hitchhiker carrier for complex applications. The motivation of this paper is to share these lessons with the scientific community interested in attached payload experiments. ROMPS has a versatile and intelligent material processing control data system. This paper uses the ROMPS data system as the guiding thread to present the ROMPS mission experience. It presents an overview of the ROMPS experiment followed by considerations of the flight and ground data subsystems and their architecture, data products generation during mission operations, and post mission data utilization. It then presents the lessons learned from the development and operation of the ROMPS data system as well as those learned during post-flight data processing.

  2. Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral; Kosmatka, John B.

    1997-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  3. Room temperature mechanical properties of shuttle thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Rummler, D. R.

    1980-01-01

    Tests were conducted at room temperature to determine the mechanical properties and behavior of materials used for the thermal protection system of the space shuttle. The materials investigated include the LI-900 RSI tiles, the RTV-560 adhesive and the .41 cm (.16 thick) strain isolator pad (SIP). Tensile and compression cyclic loading tests were conducted on the SIP material and stress-strain curves obtained for various proof loads and load cyclic conditioning. Ultimate tensile and shear tests were conducted on the RSI, RTV, and SIP materials. The SIP material exhibits highly nonlinear stress-strain behavior, increased tangent modulus and ultimate tensile strength with increased loading rate, and large short time load relaxation and moderate creep behavior. Proof and cyclic load conditioning of the SIP results in permanent deformation of the material, hysteresis effects, and much higher tensile tangent modulus values at large strains.

  4. Fabrication, properties, and tritium recovery from solid breeder materials

    SciTech Connect

    Johnson, C.E. ); Kondo, T. ); Roux, N. ); Tanaka, S. ); Vollath, D. )

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  5. Spectral reflectance properties of carbon-bearing materials

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Gaffey, M. J.; Moslow, T. F.

    1994-02-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  6. Fibrous random materials: From microstructure to macroscopic properties

    NASA Astrophysics Data System (ADS)

    Yazdchi, K.; Luding, S.

    2013-06-01

    Fibrous porous materials are involved in a wide range of applications including composite materials, fuel cells, heat exchangers and (biological)filters. Fluid flow through these materials plays an important role in many engineering applications and processes, such as textiles and paper manufacturing or transport of (under)ground water and pollutants. While most porous materials have complex geometry, some can be seen as two-dimensional particulate/fibrous systems, in which we introduce several microscopic quantities, based on Voronoi and Delaunay tessellations, to characterize their microstructure. In particular, by analyzing the topological properties of Voronoi polygons, we observe a smooth transition from disorder to order, for increasing packing fraction. Using fully resolved finite element (FE) simulations of Newtonian, incompressible fluid flow perpendicular to the fibres, the macroscopic permeability is calculated in creeping flow regimes. The effect of fibre arrangement and local crystalline regions on the macroscopic permeability is discussed and the macroscopic property is linked to the microscopic structural quantities.

  7. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  8. Reflector and Shield Material Properties for Project Prometheus

    SciTech Connect

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  9. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  10. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  11. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiments)

    SciTech Connect

    Cooper, W.E.

    2000-09-29

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is to take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have

  12. Plan of Action: JASPER Management Prestart Review (Surrogate Material Experiment)

    SciTech Connect

    Cooper, W E

    2000-12-05

    The Lawrence Livermore National Laboratory (LLNL) Joint Actinide Shock Physics Experimental Research (JASPER) Facility is being developed at the Nevada Test Site (NTS) to conduct shock physics experiments on special nuclear material and other actinide materials. JASPER will use a two-stage, light-gas gun to shoot projectiles at actinide targets. Projectile velocities will range from 1 to 8 km/s, inducing pressures in the target material up to 6 Mbar. The JASPER gas gun has been designed to match the critical dimensions of the two-stage, light-gas gun in Building 341 of LLNL. The goal in copying the LLNL gun design is to take advantage of the extensive ballistics database that exists and to minimize the effort spent on gun characterization in the initial facility start-up. A siting study conducted by an inter-Laboratory team identified Able Site in Area 27 of the NTS as the best location for the JASPER gas gun. Able Site consists of three major buildings that had previously been used to support the nuclear test program. In April 1999, Able Site was decommissioned as a Nuclear Explosive Assembly Facility and turned back to the DOE for other uses. Construction and facility modifications at Able Site to support the JASPER project started in April 1999 and were completed in September 1999. The gas gun and the secondary confinement chamber (SCC) were installed in early 2000. During the year, all facility and operational systems were brought on line. Initial system integration demonstrations were completed in September 2000. The facility is anticipated to be operational by August 2001, and the expected life cycle for the facility is 10 years. LLNL Nevada Experiments and Operations (N) Program has established a Management Prestart Review (MPR) team to determine the readiness of the JASPER personnel and facilities to initiate surrogate-material experiments. The review coincides with the completion of authorization-basis documents and physical subsystems, which have

  13. Cyclic material properties tests supporting elastic-plastic analysis development

    SciTech Connect

    Hodge, S.C.; Minicucci, J.M.

    1996-11-01

    Correlation studies have shown that hardening models currently available in the ABAQUS finite element code (isotropic, kinematic) do not accurately capture the inelastic strain reversals that occur due to structural rebounding from a rapidly applied transient dynamic load. The purpose of the Cyclic Material properties Test program was to obtain response data for the first several cycles of inelastic strain reversal from a cyclic properties test. This data is needed to develop elastic-plastic analysis methods that can accurately predict strains and permanent sets in structures due to rapidly applied transient dynamic loading. Test specimens were cycled at inelastic strain levels typical of rapidly applied transient dynamic analyses (0.5% to 4.0%). In addition to the inelastic response data, cyclic material properties for high yield strength (80 ksi) steel were determined including a cyclic stress-strain curve for a stabilized specimen. Two test methods, the Incremental Step method and the Companion specimen Method, were sued to determine cyclic properties. The incrementally decreasing strain amplitudes in the first loading block of the Incremental Step method test is representative of the response of structures subjected to rapidly applied transient dynamic loads. The inelastic strain history data generated by this test program will be used to support development of a material model that can accurately predict inelastic material behavior including inelastic strain reversals. Additionally, this data can be used to verify material model enhancements to elastic-plastic finite element analysis codes.

  14. Single And Multiple Jet Penetration Experiments Into Geologic Materials

    SciTech Connect

    Kuklo, R; Murphy, M J; Rambur, T A; Switzer, L L; Summers, M A

    2003-12-19

    This paper presents the results of experiments that investigate the effect of single and multiple jet penetration into geologic materials. In previous studies of jet penetration into concrete targets, we demonstrated that an enhanced surface crater could be created by the simultaneous penetration of multiple shaped charge jets and that an enhanced target borehole could be created by the subsequent delayed penetration of a single shaped charge jet. This paper describes an extension of the multiple jet penetration research to limestone and granite.

  15. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  16. Database for the Tribological Properties of Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Jett, T. R.; Thom, R. L.

    1998-01-01

    A test program to determine the tribological properties of several self-lubricating composites was performed. Testing was done using an LFW-1 Friction and Wear machine. Each material was tested at four load levels (66 N, 133 N, 266 N, and 400 N) under ambient conditions. The coefficient of friction and wear rate was determined for each material, and a relative ranking of the composites was made.

  17. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  18. Electron paramagnetic resonance of material properties and processes

    SciTech Connect

    Brower, K. L.

    1980-01-01

    This paper demonstrates, primarily for the non-specialist and within the context of new and recent achievements, the diagnostic value of electron paramagnetic resonance (EPR) in the study of material properties and processes. I have selected three EPR studies which demonstrate the elegance and uniqueness of EPR in atomic defect studies and exemplify unusual achievements through the use of new techniques for material measurement and preparation. A brief introduction into the origin, interaction, and detection of unpaired electrons is included.

  19. Material properties and fracture mechanics in relation to ceramic machining

    SciTech Connect

    Griffith, L.V.

    1993-12-02

    Material removal rate, surface finish, and subsurface damage are largely governed by fracture mechanics and plastic deformation, when ceramics are machined using abrasive methods. A great deal of work was published on the fracture mechanics of ceramics in the late 1970s and early 1980s, although this work has never resulted in a comprehensive model of the fixed abrasive grinding process. However, a recently published model describes many of the most important features of the loose abrasive machining process, for example depth of damage, surface roughness, and material removal rate. Many of the relations in the loose abrasive machining model can be readily discerned from fracture mechanics models, in terms of material properties. By understanding the mechanisms of material removal, from a material properties perspective, we can better estimate how one material will machine in relation to another. Although the fracture mechanics models may have been developed for loose abrasive machining, the principles of crack initiation and propagation are equally valuable for fixed abrasive machining. This report provides a brief review of fracture in brittle materials, the stress distribution induced by abrasives, critical indenter loads, the extension of cracks, and the relation of the fracture process to material removal.

  20. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.

    PubMed

    Agrawal, Megha; Prasad, Abhinav; Bellare, Jayesh R; Seshia, Ashwin A

    2016-01-01

    This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials. PMID:26387979

  1. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    NASA Astrophysics Data System (ADS)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-03-01

    More is known about Mars from data collected in 2004. We present particle size and electrostatic data for particles derived from various terrestrial materials to provide analogue studies for what also appears to be present: sedimentary compositions.

  2. Molecular properties of polymeric materials for space applications

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.; Kern, Kristen T.; Stancil, Phillip C.

    1992-01-01

    This cooperative agreement was intended to investigate the effects of a space environment on the properties of polymeric materials. In addition, efforts have been made to understand and investigate environment simulation techniques and test methodology. The results identified the changes in the properties of six aerospace structural adhesives, three neat high polymers, and two fiber-reinforced polymers, as caused by exposure to four simulated space environmental conditions. Significant property changes occurred for several of the systems as a result of one or more of the exposures. A summary of the research follows a list of related publications and presentations.

  3. Low-gravity materials experiments in the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chassay, Roger P.

    1990-01-01

    The science and hardware programs laying the science and technology framework for experiments to be conducted aboard SSF are described. Six microgravity facilities planned for the Laboratory Module encompass the Fluid Physics/Dynamics Facility, investigating fundamental fluid behavior; the Advanced Protein Crystal Growth Facility, growing high-quality crystals for pharmaceutical, medical, chemical, and biotechnology applications; the Biotechnology Facility, investigating microgravity effects on biological processes and living organisms at the cellular level and on the purification and production of biological materials; the Space Station Furnace Facility, conducting metal and alloy solidification experiments; the Modular Containerless Processing Facility, supporting experiments through levitation techniques; and the Modular Combustion Facility, performing studies of fundumental combustion processes.

  4. Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing

    SciTech Connect

    Park, Sang-In; Choi, Seung-kyum; Rosen, David W; Duty, Chad E

    2014-01-01

    In this paper, a two-step homogenization method is proposed and implemented for evaluating effective mechanical properties of lattice structured material fabricated by the material extrusion additive manufacturing process. In order to consider the characteristics of the additive manufacturing process in estimation procedures, the levels of scale for homogenization are divided into three stages the levels of layer deposition, structural element, and lattice structure. The method consists of two transformations among stages. In the first step, the transformation between layer deposition and structural element levels is proposed to find the geometrical and material effective properties of structural elements in the lattice structure. In the second step, the method to estimate effective mechanical properties of lattice material is presented, which uses a unit cell and is based on the discretized homogenization method for periodic structure. The method is implemented for cubic lattice structure and compared to experimental results for validation purposes.

  5. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models

    NASA Astrophysics Data System (ADS)

    Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael

    2011-08-01

    In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.

  6. Analysis of Fluorinated Polyimides Flown on the Materials International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Rodman, L.; Farmer, B.

    2015-01-01

    This Technical Memorandum documents the results from the Materials on International Space Station Experiment (MISSE) series involving fluorinated polyimide films analyzed at NASA Marshall Space Flight Center. These films may be used in thermal control, sunshield, solar sail, solar concentrator, and other lightweight polymer film applications. Results include postflight structural integrity, visual observations, determination of atomic oxygen erosion yield, and optical property changes as compared to preflight values.

  7. Symbolic derivation of material property matrices in finite element analysis

    NASA Technical Reports Server (NTRS)

    Tan, H. Q.

    1988-01-01

    The principles and operation of MMAX, a symbolic-computation program which automates the process of generating property matrices for structural materials, are briefly described and illustrated with sample analyses of a rubberlike material and an elastoplastic material. MMAX is written in LISP under the symbolic finite-element generator FINGER and the general symbolic manipulator MACSYMA; it first derives the formulas required by mathematical manipulation, and then translates the formulas into FORTRAN code, adapted to the particular type of machine to be used for the numerical calculations. This approach is shown to combine efficiently the advantages of symbolic and numerical computation for engineering applications.

  8. Making Mudstones: insights into material behavior through resedimentation experiments

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.; Reece, J.; Adams, A. L.; Germaine, J. T.

    2012-12-01

    We explore how composition controls permeability, stiffness, and fabric in 'resedimented' mudstones. We mix slurries of natural mudstone (e.g. Boston Blue Clay and Gulf of Mexico Mudstone) with other components (e.g. silt) and we subject them to uniaxial compression to effective stresses up to 40 MPa. We show that increasing the silt fraction in mudstones results in a transition from a single porosity to a dual porosity structure. This dual porosity structure results from the development of large pore throat pathways associated with silt-to-silt contacts in the mixture. We describe how fabric evolves with increased effective stress due to increasing alignment of platy materials that rotate during uniaxial compression. We illustrate how pore throats evolve from approximately circular to elongate and how this results in the development of permeability anisotropy from isotropic at low effective stresses to anisotropic (Kh/Kv >2) at 40 MPa. Finally, we show how stiffness increases during compression. As compression proceeds, increasing grain-to-grain contact increases the stiffness. With the resedimentation approach, the effects of sample variability and sample disturbance are removed and the fundamental material behavior of mudstones is illuminated. The results can be used to simulate the evolution of mudstone properties during burial and the associated flow that must occur. More broadly, the results provide insight into the material properties of mudstones given particular burial histories that allow us to predict their flow behavior, and their sealing capacity.

  9. Compatibility experiments of facilities, materials, and propellants for electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Whalen, M. V.; Grisnik, S. P.; Sovey, J. S.

    1985-01-01

    Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojets for Space station and rhenium for high performance resistojets for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum-yttria heater would last over 100 000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum-yttria in hydrogen, methane, carbon dioxide/methane mixtures and ammonia environments. In each of these 100 hr tests, the platinum-yttria mass change indicated a minimum coil life of 100 000 hr. Facility related effects were investigated in materials tests using rhenium heated to high tempertures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rhenium heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

  10. Compatibility experiments of facilities, materials, and propellants for electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Whalen, M. V.; Grisnik, S. P.; Sovey, J. S.

    1985-01-01

    Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojets for space station and rhenium for high performance resistojets for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum-yttria heater would last over 100,000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum-yttria in hydrogen, methane, carbon dioxide/methane mixtures and ammonia environments. In each of these 100 hr tests, the platinum-yttria mass change indicated a minimum coil life of 100,000 hr. Facility related effects were investigated in materials tests using rhenium heated to high temperatures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rhenium heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

  11. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel

    NASA Astrophysics Data System (ADS)

    Johnson, Todd D.; Lin, Stephen Y.; Christman, Karen L.

    2011-12-01

    In the native tissue, the interaction between cells and the extracellular matrix (ECM) is essential for cell migration, proliferation, differentiation, mechanical stability, and signaling. It has been shown that decellularized ECMs can be processed into injectable formulations, thereby allowing for minimally invasive delivery. Upon injection and increase in temperature, these materials self-assemble into porous gels forming a complex network of fibers with nanoscale structure. In this study we aimed to examine and tailor the material properties of a self-assembling ECM hydrogel derived from porcine myocardial tissue, which was developed as a tissue specific injectable scaffold for cardiac tissue engineering. The impact of gelation parameters on ECM hydrogels has not previously been explored. We examined how modulating pH, temperature, ionic strength, and concentration affected the nanoscale architecture, mechanical properties, and gelation kinetics. These material characteristics were assessed using scanning electron microscopy, rheometry, and spectrophotometry, respectively. Since the main component of the myocardial matrix is collagen, many similarities between the ECM hydrogel and collagen gels were observed in terms of the nanofibrous structure and modulation of properties by altering ionic strength. However, variation from collagen gels was noted for the gelation temperature along with varied times and rates of gelation. These discrepancies when compared to collagen are likely due to the presence of other ECM components in the decellularized ECM based hydrogel. These results demonstrate how the material properties of ECM hydrogels could be tailored for future in vitro and in vivo applications.

  12. Food material properties and early hominin processing techniques.

    PubMed

    Zink, Katherine D; Lieberman, Daniel E; Lucas, Peter W

    2014-12-01

    Although early Homo is hypothesized to have used tools more than australopiths to process foods prior to consumption, it is unknown how much the food processing techniques they used altered the material properties of foods, and therefore the masticatory forces they generated, and how well they were able to comminute foods. This study presents experimental data on changes to food material properties caused by mechanical tenderization (pounding with a stone tool) and cooking (dry roasting) of two foods likely to have been important components of the hominin diet: meat and tubers. Mechanical tenderization significantly decreased tuber toughness by 42%, but had no effect on meat toughness. Roasting significantly decreased several material properties of tubers correlated with masticatory effort including toughness (49%), fracture stress (28%) and elastic modulus (45%), but increased the toughness (77%), fracture stress (50%-222%), and elastic modulus of muscle fibers in meat (308%). Despite increasing many material properties of meat associated with higher masticatory forces, roasting also decreased measured energy loss by 28%, which likely makes it easier to chew. These results suggest that the use of food processing techniques by early Homo probably differed for meat and tubers, but together would have reduced masticatory effort, helping to relax selection to maintain large, robust faces and large, thickly enameled teeth. PMID:25439707

  13. Learning to Apply Models of Materials While Explaining Their Properties

    ERIC Educational Resources Information Center

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  14. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  15. Comparative study of the physical properties of core materials.

    PubMed

    Saygili, Gülbin; Mahmali, Sevil M

    2002-08-01

    This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals. PMID:12212682

  16. Defect-related luminescent materials: synthesis, emission properties and applications.

    PubMed

    Zhang, Cuimiao; Lin, Jun

    2012-12-01

    Luminescent materials have found a wide variety of applications, including information displays, lighting, X-ray intensification and scintillation, and so on. Therefore, much effort has been devoted to exploring novel luminescent materials so far. In the past decade, defect-related luminescent materials have inspired intensive research efforts in their own right. This kind of luminescent material can be basically classified into silica-based materials, phosphate systems, metal oxides, BCNO phosphors, and carbon-based materials. These materials combine several favourable attributes of traditional commercially available phosphors, which are stable, efficient, and less toxic, being free of the burdens of intrinsic toxicity or elemental scarcity and the need for stringent, intricate, tedious, costly, or inefficient preparation steps. Defect-related luminescent materials can be produced inexpensively and on a large scale by many approaches, such as sol-gel process, hydro(solvo)thermal reaction, hydrolysis methods, and electrochemical methods. This review article highlights the recent advances in the chemical synthesis and luminescent properties of the defect-related materials, together with their control and tuning, and emission mechanisms (solid state physics). We also speculate on their future and discuss potential developments for their applications in lighting and biomedical fields. PMID:23019577

  17. The interpretation of XPS spectra: Insights into materials properties

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Ilton, Eugene S.; Nelin, Connie J.

    2013-06-01

    We review basic and advanced concepts needed for the correct analysis of XPS features. We place these concepts on rigorous foundations and explore their physical and chemical meanings without stressing the derivation of the mathematical formulations, which can be found in the cited literature. The significance and value of combining theory and experiment is demonstrated by discussions of the physical and chemical origins of the main and satellite XPS features for a variety of molecular and condensed phase materials. BE: binding energy. The binding energy of an electron associated with a peak in a photoelectron spectra. CI: configuration interaction. The common use is to describe many-body wavefunctions that are the mixing of several determinants for different configurations. CSF: configuration state function. A determinant or combination of determinants that is an eigenfunction of the angular momentum operators. Normally CSFs are formed for Russell-Saunders, L-S coupling but they can also be formed for j-j coupling. CT: charge transfer. Usually refers to the transfer of an electron from a ligand orbital into an unoccupied or partially occupied, metal orbital. CSOV: constrained space orbital variation. A theoretical procedure for decomposing the contributions to various properties by constraining the space of orbitals varied and the space of basis functions in which they are varied. ΔSCF: delta self-consistent field. Normally refers to the difference in the properties of two states, an initial and a final state, each determined from separate self-consistent field variations. DFT: density functional theory. DHF: Dirac-Hartree-Fock. ER: relaxation energy. Erel: relative energy. Normally of the BE of a peak relative to some reference BE taken as zero. FC: Franck-Condon. Normally used in connection with the vibrational broadening of peaks in photoemission spectra. FO: frozen orbital. Used to describe wavefunctions and other properties obtained when the orbitals of the

  18. Radiation-induced electrical degradation experiments in the Japan materials testing reactor

    SciTech Connect

    Farnum, E.; Scharborough, K.; Shikama, Tatsuo

    1995-04-01

    The objective of this experiment is to determine the extent of degradation during neutron irradiation of electrical and optical properties of candidate dielectric materials. The goals are to identify promising dielectrics for ITER and other fusion machines for diagnostic applications and establish the basis for optimization of candidate materials. An experiment to measure radiation-induced electrical degradation (REID) in sapphire and MgO-insulated cables was conducted at the JMTR light water reactor. The materials were irradiated at about 260 {degree}C to a fluence of 3{times}10{sup 24} n/m{sup 2} (E>1 MeV) with an applied DC electric field between 100 kV/m and 500 kV/m.

  19. Structure-property relationships in silica-siloxane nanocomposite materials

    SciTech Connect

    Ulibarri, T.A.; Derzon, D.K.; Wang, L.C.

    1997-03-01

    The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on the effects of temperature and relative humidity on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process- structure-property relations. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate. Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

  20. Residual stresses calculation in autofrettage using variable material properties method

    SciTech Connect

    Jahed, H.; Dubey, R.N.

    1996-12-01

    Autofrettaged cylinders are used for variety of applications in chemical and nuclear industries where large internal pressures have to be withstood. Autofrettage is in the process by which beneficial residual stresses are introduced into thick-walled tubes by initially subjected the tube to high internal pressure which causes inelastic deformation. Here, the variable material properties method is employed to obtain elastic-plastic analysis of an autofrettaged tube. This method develops inelastic solution from the elastic solution by treating the material properties as field variables. The distribution of these parameters are obtained in an iterative manner as a part of the solution. An energy based scheme is used to update these variables. The residual stress field of autofrettaged tubes based on the actual material curve and isotropic and kinematic hardening models are obtained. The results are shown to be in good agreement with the published experimental and finite element results.

  1. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  2. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    PubMed

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. PMID:26001706

  3. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1974-01-01

    Description of a thermoelastic stress analysis procedure for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range from -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations, which were tested in the Space Molecular Sink. Results of the analysis indicate the optimum design configuration with respect to materials and geometry, effect of the solder coating, and effect of the interconnector geometry.

  4. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  5. Materials Experiment Carrier - An approach to expanded space processing capability

    NASA Technical Reports Server (NTRS)

    Taylor, K. R.; Meissinger, H. F.; Waltz, D. M.

    1980-01-01

    Conceptual design studies and mission analyses within the NASA Materials Processing in Space (MPS) program of the Materials Experiment Carrier (MEC) approach to conducting near-term as well as future free-flying experiments in materials processing in space are discussed. The experimental background of the MPS program is reviewed, and it is pointed out that the use of the MEC coupled with the 25-kW power system can provide an order-of-magnitude cost savings over conventional Shuttle-based systems, as well as increased orbital stay time and microgravity stability. The determination of the physical and engineering requirements for future MEC scientific/commercial candidate payloads is then discussed, and two proposed candidates for the MEC configuration, which is intended to be a self-contained, general-purpose, versatile and reusable carrier, are illustrated. Possible MEC operations are considered, including mission profiles, deployment sequences, on-orbit payload/sample change-out, optimal power system utilization, the use of real-time, ground-based control and advanced automatic payload operation. Areas in which technology development could benefit the MEC project are also identified.

  6. Tearing resistance of a thin shell against projectile penetration: Material property effects

    SciTech Connect

    Trinh, K.V.

    1994-01-01

    This report presents results from a series of finite element analyses performed to study material effects on the tearing resistance of a thin shell subjected to projectile penetration. These analyses simulated a round, slender projectile impacting the top center of a metallic cylindrical shell at high speed. We varied eight selected shell material properties systematically using an L18 matrix (design of experiment technique). From the results, we determined effects of the eight properties on the minimum projectile velocity required to penetrate the shell. The material properties examined here included: yield strength, hardening and recovery characteristics, heat coefficient, initial porosity, and damage exponent (a void growth parameter). The DYNA2D finite element code along with the Sandia plasticity/damage model for ductile metals were used in the analyses.

  7. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    NASA Astrophysics Data System (ADS)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  8. Material Property Measurement in Hostile Environments using Laser Acoustics

    SciTech Connect

    Ken L. Telschow

    2004-08-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods—it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100’s of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for

  9. The Casimir force between real materials: Experiment and theory

    SciTech Connect

    Klimchitskaya, G. L.; Mohideen, U.; Mostepanenko, V. M.

    2009-10-15

    The physical origin of the Casimir force is connected with the existence of zero-point and thermal fluctuations. The Casimir effect is very general and finds applications in various fields of physics. This review is limited to the rapid progress at the intersection of experiment and theory that has been achieved in the last few years. It includes a critical assessment of the proposed approaches to the resolution of the puzzles arising in the applications of the Lifshitz theory of the van der Waals and Casimir forces to real materials. All the primary experiments on the measurement of the Casimir force between macroscopic bodies and the Casimir-Polder force between an atom and a wall that have been performed in the last decade are reviewed, including the theory needed for their interpretation. The methodology for the comparison between experiment and theory in the force-distance measurements is presented. The experimental and theoretical results described here provide a deeper understanding of the phenomenon of dispersion forces in real materials and offer guidance for the application of the Lifshitz theory to the interpretation of the measurement results.

  10. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-01-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  11. RIM as the data base management system for a material properties data base

    NASA Technical Reports Server (NTRS)

    Karr, P. H.; Wilson, D. J.

    1984-01-01

    Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.

  12. Deformation Monitoring of Materials Under Stress in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Skarlatos, D.; Yiatros, S.

    2016-06-01

    Photogrammetry is a valid alternative solution to linear variable differential transformer (LVDT) measurements in structural testing in laboratory conditions. Although the use of LVDTs boasts a high degree of accuracy, on the other hand it is limiting as it offers measurements between two points and it thus might be unable to capture localized deformations and strains over a bigger area of a structural specimen. In this aspect photogrammetry seems to offer certain advantages. Commercial solutions provide limited testing envelopes, while on the other hand, the wide range on new materials need more versatile techniques. Based on the need to develop an in-house photogrammetric toolbox to support several structural and material experiments in the department Advanced Pore Morphology (APM) aluminium foam specimens developed at Fraunhofer IFAM in Germany and cured at CUT, were tested under monotonic compressive load. Data acquisition, analysis and results, along with lessons learnt from the process are presented in this work.

  13. Progress photograph of sample experiments being conducted with lunar material

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A progress photograph of sample experiments being conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory with lunar material brought back to Earth by the crew of the Apollo 11 mission. Aseptic cultures of liverwort (marchantia polymorpha) - a species of plant commonly found growing on rocks or in wooded areas - are shown in two rows of sample containers. Seven weeks or some 50 days prior to this photograph 0.22 grams of finely ground lunar material was added to each of the upper samples of cultures. The lower cultures were untreated, and a noted difference can be seen in the upper row and the lower one, both in color and size of the culture.

  14. Impact of materials used in lab and field experiments on the recovery of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    Organic micropollutants are frequently detected in the aquatic environment. There-fore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and ob-served mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies.

  15. Impact of materials used in lab and field experiments on the recovery of organic micropollutants.

    PubMed

    Hebig, Klaus H; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott J

    2014-03-01

    Organic micropollutants are frequently detected in the aquatic environment. Therefore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and observed mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies. PMID:24365588

  16. Material property data and their use in design and analysis for an elevated temperature solar code

    NASA Astrophysics Data System (ADS)

    Berman, I.

    1981-11-01

    Specific properties of the materials, temperatures, and operating parameters for elevated temperature solar thermal power plants are considered as a basis for developing standards of implementation. Physical and mechanical properties such as thermal conductivity, elastic modulus, expansion, strength, and creep are discussed and recommendations for ASME Code I and III materials are cited where feasible. Inelastic behavior tests involving beam bending, pipe ratcheting, torsion-torsion tests, and axial cyclic tests of various stainless steel specimens and Incoloy 800 material are reported. Peculiarities of problems for solar applications are noted to be a lack of information of basic material behavior due to the low amount of actual operational experience, a large number of transient temperature cycles, and primary creep.

  17. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    NASA Technical Reports Server (NTRS)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-01-01

    NASA missions to Mars confirm presence of surficial particles, as well as dramatic periods of aeolian reworking. Dust deposition on, or infiltration into, exploration equipment such as spacecraft, robotic explorers, solar panel power supplies, and even spacesuits, can pose significant problems such as diminished power collection, short circuits / discharges, and added weight. We report results conducted initially as a science fair project and a study now part of a first year University undergraduate research experience.

  18. Structural instabilities involving time dependent materials : theory and experiment

    NASA Astrophysics Data System (ADS)

    Minahen, Timothy M.

    The creep buckling of viscoelastic structures is studied analytically and experimentally to investigate structural stability in the presence of time dependent materials. The theory of linear viscoelasticity is used to model polymeric column specimens subjected to constant compressive end loads. A strength of materials approach (Euler-Bernoulli beam theory) is employed to model the moment-curvature relation for the column. The growth of initial imperfections is calculated using the hereditary integral formulation. Solution techniques are developed for small displacements and then generalized to include the effects of large displacements and rotations. A failure criterion based on maximum deformation allows the column life to be estimated directly from the material relaxation modulus. A discussion generalizing the results to include plates and shells is presented.Rectangular cross-section polymethylmethacrylate (PMMA) specimens with hinged boundary conditions are used to study viscoelastic buckling experimentally. Constant compressive end loads are applied using a servo-controlled load frame while the specimens are kept in a temperature cabinet at elevated temperatures (accelerating the creep behavior). Specimen shortening and out-of-plane deflections are monitored during the tests. The relaxation modulus of PMMA is approximated by a Prony-Dirichlet series and the model is used to simulate the laboratory experiments. Model and experimental results show good agreement during the "glassy" and slow growth phases of the column response. As the growth rate increases some deviations between theory and experiment are seen. It is shown that the deviations are not a result of geometric nonlinearities, but may, in part, be explained by material nonlinearities not accounted for in the model.

  19. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  20. Mechanical properties of materials with nanometer scale microstructures

    SciTech Connect

    Nix, W.D.

    1991-07-01

    For the past two years we have been engaged in a program of research on the mechanical properties of a variety of new materials with nanometer scale microstructures. These materials have been developed recently using vapor phase synthesis techniques and are available in the form of compositionally-modulated (multilayered) thin film materials and ultrafine-grained (nanocrystalline) solids. They have interesting microstructures and mechanical properties that may lead to new applications for these materials. In this report we give a brief summary of some of the results we have obtained to date in the course of this research. Other, more detailed, descriptions of some of this work can be found in the papers that we have published. These are listed at the end of this report along with a listing of the oral presentations we have given. We report briefly on our studies of the elastic properties of metallic multilayered thin films. Using indentation and microbeam deflection techniques, we have found that Au/Ni multilayers do not show supermodulus effects, contrary to some previous reports based on bulge test results. However, we have discovered large and significant substrate interaction stresses in these films which depend systematically on the composition modulation wavelength. We believe that these residual stresses may have led to bulge testing errors which in turn led to erroneous reports of supermodulus effects.

  1. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    for characterization of a sample filling the cross-section of a waveguide. Due to the rectangular nature of the waveguide, typically three different samples are manufactured from the same material in order to characterize the six complex material parameters. The second technique for measuring the electromagnetic properties of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder designed to accommodate a cubical sample. All the tensor material parameters can then be determined by measuring the reflection and transmission coefficients of a single sample placed into several orientations. The parameters are obtained using a root-searching algorithm by comparing theoretically computed and measured reflection and transmission coefficients. The theoretical coefficients are determined using a mode matching technique. The first technique for characterizing the electromagnetic properties of gyromagnetic materials considers requires filling the cross-section of a waveguide. The material parameters are extracted from the measured reflection and transmission coefficients. Since the cross-sectional dimensions of waveguides become prohibitively large at low frequencies, and it is at these frequencies that the gyromagnetic properties are most pronounced, sufficiently large samples may not be available. Therefore, the second technique uses a reduced-aperture sample holder that does not require the sample to fill the entire cross section of the guide. The theoretical reflection and transmission coefficients for both methods are determined using a mode matching technique. A nonlinear least squares method is employed to extract the gyromagnetic material parameters. Finally, this dissertation introduces a waveguide standard that acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the NRW technique. A genetic algorithm is used to optimize the all

  2. Properties of a glass-ionomer/resin-composite hybrid material.

    PubMed

    Mathis, R S; Ferracane, J L

    1989-09-01

    A small percentage of the liquid resin used in commercial dental composites was added to the liquid used in a commercial glass-ionomer restorative in order to produce a fluoride-containing hybrid restorative-type material that would adhere to dentin while being stronger, less brittle, and less sensitive to desiccation in the oral cavity than glass ionomer. Compressive strength, yield strength, elastic modulus, fracture toughness, and tensile strength were analyzed for this hybrid, light-cured material. In addition, the solubility in water, adhesion to dentin, and surface roughness were also examined in vitro. The results suggest that the early (one-hour) mechanical properties of the hybrid material exceed those of glass ionomer. In addition, the brittleness and solubility of the material are less than those of commercial glass ionomer, while adhesion to dentin is unaffected. Most importantly, surface crazing, a documented problem with some glass ionomers when they become desiccated, is alleviated with this hybrid formulation. PMID:2638281

  3. Pipette aspiration of hyperelastic compliant materials: Theoretical analysis, simulations and experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Gong; Cao, Yan-Ping; Li, Guo-Yang; Feng, Xi-Qiao

    2014-08-01

    This paper explores the pipette aspiration test of hyperelastic compliant materials. Explicit expressions of the relationship between the imposed pressure and the aspiration length are developed, which serve as fundamental relations to deduce the material parameters from experimental responses. Four commonly used hyperelastic constitutive models, e.g. neo-Hookean, Mooney-Rivlin, Fung, and Arruda-Boyce models, are investigated. Through dimensional analysis and nonlinear finite element simulations, we establish the relations between the experimental responses and the constitutive parameters of hyperelastic materials in explicit form, upon which inverse approaches for determining the hyperelastic properties of materials are developed. The reliability of the results given by the proposed methods has been verified both theoretically and numerically. Experiments have been carried out on an elastomer (polydimethylsiloxane, 1:50) and porcine liver to validate the applicability of the inverse approaches in practical measurements.

  4. Elastic therapeutic tape: do they have the same material properties?

    PubMed Central

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-01-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex®, ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight® 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young’s modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young’s modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  5. Elastic therapeutic tape: do they have the same material properties?

    PubMed

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-04-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex(®), ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight(®) 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young's modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young's modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  6. An overview of laminate materials with enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    Mumby, Stephen J.

    1989-03-01

    This report focuses on laminate materials (resins and reinforcements) having potential applications in the manufacture of multi-layer printed wiring boards (PWBs) that are required to efficiently transmit high-speed digital pulses. It is intended to be a primer and a reference for selection of candidate materials for such high-performance PWBs. Included are dielectric and physical properties, and where available chemical composition and/or structure, commercial availability, compatibility with typical PWB processing schemes and approximate relative cost. Recommendations are made as to the most viable candidate materials for this type of PWB application, based on a comparison of electrical and physical properties together with processing and cost considerations. The cyanate ester resin system appears promising. Such a resin may be reinforced with regular E-glass, or the more newly available S-glass, to produce a laminate useful for intermediate performance applications. For more demanding applications the E-glass will have to be replaced by a material of much lower relative permittivity. The expanded-PTFE reinforced laminates from W. L. Gore appear to be a good choice for these applications. The processing of the Gore materials can be expected to deviate from that used with FR-4 type materials, but is likely to be less problematic than laminates comprised of a fluorinated resin. Processing is a key obstacle to the implementation of any of the new materials herein. If implementation is to be successful, programs must be established to develop and optimize processing procedures. Cost will remain an important issue. However, the higher cost of the new materials may be justified in high-end products by the performance they deliver.

  7. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  8. Postnatal Experience Modulates Functional Properties of Mouse Olfactory Sensory Neurons

    PubMed Central

    He, Jiwei; Tian, Huikai; Lee, Anderson C.; Ma, Minghong

    2012-01-01

    Early experience considerably modulates the organization and function of all sensory systems. In the mammalian olfactory system, deprivation of the sensory inputs via neonatal, unilateral naris closure has been shown to induce structural, molecular, and functional changes from the olfactory epithelium to the olfactory bulb and cortex. However, it remains unknown how early experience shapes functional properties of individual olfactory sensory neurons (OSNs), the primary odor detectors in the nose. To address this question, we examined odorant response properties of mouse OSNs in both the closed and open nostril after four weeks of unilateral naris closure with age-matched untreated animals as control. Using patch-clamp technique on genetically-tagged OSNs with defined odorant receptors (ORs), we found that sensory deprivation increased the sensitivity of MOR23 neurons in the closed side while overexposure caused the opposite effect in the open side. We next analyzed the response properties including rise time, decay time, and adaptation induced by repeated stimulation in MOR23 and M71 neurons. Even though these two types of neurons showed distinct properties in dynamic range and response kinetics, sensory deprivation significantly slowed down the decay phase of odorant-induced transduction events in both types. Using western blotting and antibody staining, we confirmed upregulation of several signaling proteins in the closed side as compared with the open side. This study suggests that early experience modulates functional properties of OSNs, probably via modifying the signal transduction cascade. PMID:22703547

  9. Electronic Properties of Low-Dimensional Materials Under Periodic Potential

    NASA Astrophysics Data System (ADS)

    Jamei, Mehdi

    In the quest for the further miniaturization of electronic devices, numerous fabrication techniques have been developed. The semiconductor industry has been able to manifest miniaturization in highly complex and ultra low-power integrated circuits and devices, transforming almost every aspect of our lives. However, we may have come very close to the end of this trend. While advanced machines and techniques may be able to overcome technological barriers, theoretical and fundamental barriers are inherent to the top-down miniaturization approach and cannot be circumvented. As a result, the need for novel and natural alternatives to replace old materials is valued now more than ever. Fortunately, there exists a large group of materials that essentially has low-dimensional (quasi-one- or quasi-two-dimensional) structures. Graphene, a two-dimensional form of carbon, which has attracted a lot of attention in recent years, is a perfect example of a prime material from this group. Niobium tri-selenide (NbSe3), from a family of trichalcogenides, has a highly anisotropic structure and electrical conductivity. At sufficiently low temperatures, NbSe3 also exhibits two independent "sliding charge density waves"-- an exciting phenomenon, which could be altered by changing the overall size of the material. In NbSe3 (and Blue Bronze K0.3MoO3 which has a similar structure and electrical behavior), the effect of a periodic potential could be seen in creating a charge density wave (CDW) that is incommensurate to the underlying lattice. The required periodic potential is provided by the crystal ions when ordered in a particular way. The consequence is a peculiar non-linear conductivity behavior, as well as a unique narrow-band noise spectrum. Theoretical and experimental studies have concluded that the dynamic properties of resulting CDW are directly related to the crystal impurity density, and other pinning potentials. Therefore, reducing the overall size of the crystal could

  10. Electrostatic levitation technology for thermophysical properties of molten materials

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1993-01-01

    Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.

  11. Electron Correlation and Tranport Properties in Nuclear Fuel Materials

    NASA Astrophysics Data System (ADS)

    Yin, Quan; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey; Pickett, Warren

    2011-03-01

    Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. Our results capture the metal--insulator Mott transition within the studied systems, and the appearance of the Zhang-Rice state in uranium dioxide. More importantly, by understanding the physics underlying their transport properties, we suggest ways to improve the efficiency of currently used fuels. This work is supported by the DOE Nuclear Energy University Program, contract No. 00088708.

  12. Statistically based material properties: A military handbook-17 perspective

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Vangel, Mark G.

    1990-01-01

    The statistical procedures and their importance in obtaining composite material property values in designing structures for aircraft and military combat systems are described. The property value is such that the strength exceeds this value with a prescribed probability with 95 percent confidence in the assertion. The survival probabilities are the 99th percentile and 90th percentile for the A and B basis values respectively. The basis values for strain to failure measurements are defined in a similar manner. The B value is the primary concern.

  13. Physical Properties of Granulates Used in Analogue Experiments of Caprock Failure and Sediment Remobilisation

    NASA Astrophysics Data System (ADS)

    Kukowski, N.; Warsitzka, M.; May, F.

    2014-12-01

    Geological systems consisting of a porous reservoir and a low-permeable caprock are prone to hydraulic fracturing, if pore pressure rises to the effective stress. Under certain conditions, hydraulic fracturing is associated with sediment remobilisation, e.g. sand injections or pipes, leading to reduced seal capacity of the caprock. In dynamically scaled analogue experiments using granular materials and air pressure, we intent to investigate strain patterns and deformation mechanisms during caprock failure and fluidisation of shallow over-pressured reservoirs. The aim of this study is to improve the understanding of leakage potential of a sealing formation and the fluidisation potential of a reservoir formation depending on rock properties and effective stress. For reliable interpretation of analogue experiments, physical properties of analogue materials, e.g. frictional strength, cohesion, density, permeability etc., have to be correctly scaled according to those of their natural equivalents. The simulation of caprock requires that the analogue material possess a low permeability and is capable to shear failure and tensional failure. In contrast, materials representing the reservoir have to possess high porosity and low shear strength. In order to find suitable analogue materials, we measured the stress-strain behaviour and the permeability of over 25 different types of natural and artificial granular materials, e.g. glass powder, siliceous microspheres, diatomite powder, loess, or plastic granulate. Here, we present data of frictional parameters, compressibility and permeability of these granular materials characterized as a function of sphericity, grain size, and density. The repertoire of different types of granulates facilitates the adjustment of accurate mechanical properties in the analogue experiments. Furthermore, conditions during seal failure and fluidisation can be examined depending on the wide range of varying physical properties.

  14. Shock wave experiments to examine the multiphase properties of cerium

    SciTech Connect

    Jensen, Brian James

    2009-01-01

    There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake method to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.

  15. Effective material properties of thermoelectric composites with elliptical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ze

    2015-06-01

    In the present work, the effective material properties of thermoelectric composites with elliptical fibers are studied. Explicit solutions are derived by the conformal mapping function and Mori-Tanaka method. Numerical simulations are performed to present the behaviors of normalized effective material constants. From the results, it can be observed that both the effective electric and thermal conductivities can be reduced by increasing the filling ratio and a/ b. Such influences can also be found for the effective thermoelectric figure of merit. But they are different from those on the effective Seebeck and Peltier coefficients.

  16. Advances in optical property measurements of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Dever, Joyce A.; Jaworske, Donald A.

    1997-01-01

    Some of the instruments and experimental approaches, used for measuring the optical properties of thermal control systems, are presented. The instruments' use in studies concerning the effects of combined contaminants and space environment on these materials, and in the qualification of hardware for spacecraft, are described. Instruments for measuring the solar absorptance and infrared emittance offer improved speed, accuracy and data handling. A transient method for directly measuring material infrared emittance is described. It is shown that oxygen exposure before measuring the solar absorptance should be avoided.

  17. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  18. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  19. Phase Change Material Heat Sink for an ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  20. Assessment of material radiopurity for Rare Event experiments using Micromegas

    NASA Astrophysics Data System (ADS)

    Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Diago, A.; García, J. A.; Garza, J. G.; Gómez, H.; González-Díaz, D.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Luzón, G.; Mirallas, H.; Oliván, M. A.; Ortiz de, A.; Solórzano; Pons, P.; Rodríguez, A.; Ruiz, E.; Seguí, L.; Tomás, A.; Villar, J. A.

    2013-11-01

    Micromesh gas amplification structures (Micromegas) can be used as readout of Time Projection Chambers in the field of Rare Event searches dealing with dark matter, double beta decay or solar axions. The topological information of events offered by these gaseous detectors is a very powerful tool for signal identification and background rejection. However, in this kind of experiments the radiopurity of the detector components and surrounding materials must be thoroughly controlled in addition in order to keep the experimental background as low as possible. A screening program based mainly on gamma-ray spectrometry using an ultra-low background HPGe detector in the Canfranc Underground Laboratory is being developed for several years, with the aim to measure the activity levels of materials used in the Micromegas planes and also in other components involved in a plausible experimental set-up: gas vessel, field cage, electronic boards, calibration system or shielding. The techniques and equipment used in these measurements will be described and the main results will be presented and discussed. In particular, first results for the activity of Micromegas readouts of the microbulk type produced at CERN indicate that they are already comparable to the cleanest readout systems in low background experiments and it should be possible to further improve these levels after dedicated development.

  1. Dynamic materials response at multiscales: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian

    One of the grand challenges in materials physics is dynamic responses to impulsive loading, including shock waves, radiation, and pulsed fields, due to their highly transient nature and extremely complex microstructure effects. Dynamic responses, such as plasticity, damage, cavitation, phase changes, and chemical reactions, are inherently multiscale and heavily dependent on microstructure. One has to resort to a suite of tools, including experiments, modeling and simulations, and theory. However, the gaps in spatial or temporal scales between experiments and simulations are still wide, while cross-scale theories are still in early development. To this end, we exploit large-scale molecular dynamics simulations, electron microscopy, and ultrafast synchrotron X-ray imaging and scattering, to probe materials response at length scales ranging from lattice to micron, and time scales, from picosecond to second. For examples, simultaneous, high-speed, X-ray imaging (mesoscale strain-field mapping) and diffraction measurements along with macroscopic measurements have been achieved. Based on classical nucleation theory and large-scale molecular dynamics simulations, we demonstrate the equivalence between length and time scales for nucleation events, which provides a framework to bridge different scales. Certainly, advancing multiscale science requires sustained, concerted, experimental, modeling and theoretical efforts. We have benefited from the colleagues at the Advanced Photon Source, and the Peac Institute of Multiscales Sciences.

  2. Experiments in Natural and Synthetic Dental Materials: A Mouthful of Experiments

    NASA Technical Reports Server (NTRS)

    Masi, James V.

    1996-01-01

    The objectives of these experiments are to show that the area of biomaterials, especially dental materials (natural and synthetic), contain all of the elements of good and bad design, with the caveat that a person's health is directly involved. The students learn the process of designing materials for the complex interactions in the oral cavity, analyze those already used, and suggest possible solutions to the problems involved with present technology. The N.I.O.S.H. Handbook is used extensively by the students and judgement calls are made, even without extensive biology education.

  3. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  4. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  5. PROPERTIES AND NANOSTRUCTURES OF MATERIALS PROCESSED BY SPD TECHNIQUES

    SciTech Connect

    Liao, Xiaoshan; Huang, J.; Zhu, Y. T.

    2001-01-01

    Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. It demonstrates the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or non-equilibrium states. This paper reviews the mechanical properties and the defect structures of SPD-processed nanostructured materials. Keywords: strength, ductility, nanostructures, SPD, non-equilibrium grain boundary

  6. Correlation of Local Structure and Electronic Properties of Glass Materials

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Adelstein, Nicole

    2015-03-01

    Wide band gap glasses such as silica and its derivatives are typically considered insulators. However, electronic transport in glasses can be important for certain applications, such as when used as the host material for a scintillator radiation detector. Here we explore the relationship between local structure in glass materials and the corresponding electronic properties of carrier transport and charge trapping. We present a novel analysis that decomposes the distribution of localized band tail states in terms of specific local structural features in the glass. Comparison of the structure-related transport properties of different glass compositions is given, using silica and sodium silicate as prototypes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Effects of dielectric material properties on graphene transistor performance

    NASA Astrophysics Data System (ADS)

    Jang, Sung Kyu; Jeon, Jaeho; Jeon, Su Min; Song, Young Jae; Lee, Sungjoo

    2015-07-01

    Graphene has attracted attention due to its excellent electrical properties; however, the electrical performance of graphene devices, including device hysteresis, mobility, and conductivity, tends to be limited by the supporting dielectric layer properties. In this work, the impact of a dielectric material on a graphene transistor was investigated by fabricating graphene field effect transistors integrated with four different dielectric substrates (SiO2, Al2O3, Si3N4 and hexagonal boron nitride) and by comparing the transistor performances. Results revealed that the carrier transport characteristics of the graphene transistors, including the hysteresis, Dirac point shift, and mobility, were highly correlated with the hydrophobicity-induced charge trapping and surface optical phonon energies of the dielectric materials.

  8. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  9. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  10. Ottawa Sand for Mechanics of Granular Materials (MGM) Experiment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    What appear to be boulders fresh from a tumble down a mountain are really grains of Ottawa sand, a standard material used in civil engineering tests and also used in the Mechanics of Granular Materials (MGM) experiment. The craggy surface shows how sand grans have faces that can cause friction as they roll and slide against each other, or even causing sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM uses the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. These images are from an Electron Spectroscopy for Chemical Analysis (ESCA) study conducted by Dr. Binayak Panda of IITRI for Marshall Space Flight Center (MSFC). (Credit: NASA/MSFC)

  11. Installing Mechanics of Granular Materials (MGM) Experiment Test Cell

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Carl Walz installs Mechanics of Granular Materials (MGM) test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/John Space Center

  12. Clinical Biospecimens: Reference Materials, Certified for Nominal Properties?

    PubMed Central

    2014-01-01

    This report makes the case for clinical biospecimens to be certified for nominal properties, in particular the diagnosis, and to attain the level of Reference Materials. Clinical certified biospecimens that are collected, processed, characterized, stored, and distributed by biobanks are urgently needed to facilitate diagnostic test development, evaluation, and quality assurance. Four examples are provided to illustrate this purpose and the certification approaches that could be applied are proposed. PMID:24749878

  13. Predicting the Highly Nonlinear Mechanical Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Porter, David

    2009-06-01

    Over the past few years, we have developed models that calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular and morphological structure. A review of these models is presented here, with emphasis on combining the fundamental aspects of molecular physics that dictate these properties and the pragmatic need to make realistic predictions for our customers; the designer of new materials and the engineers who use these materials. The models calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular structure. The model is based upon the premise that mechanical properties are a direct consequence of energy stored and energy dissipated during deformation of a material. This premise is transformed into a consistent set of structure-property relations for the equation of state, EoS, and the engineering constitutive relations in a polymer by quantifying energy storage and loss at the molecular level of interactions between characteristic groups of atoms in a polymer. These relations are derived from a simple volumetric mean field Lennard-Jones potential function for the potential energy of intermolecular interactions in a polymer. First, properties such as temperature-volume relations and glass transition temperature are calculated directly from the potential function. Then, the `shock' EoS is derived simply by differentiating the potential function with respect to volume, assuming that the molecules cannot relax in the time scales of the deformation. The energy components are then used to predict the dynamic mechanical spectrum of a polymer in terms of temperature and rate. This can be transformed directly into the highly nonlinear stress-strain relations through yield. The constitutive relations are formulated as a set of analytical equations that predict properties directly in terms of a small set of

  14. Crossmodal Association of Visual and Haptic Material Properties of Objects in the Monkey Ventral Visual Cortex.

    PubMed

    Goda, Naokazu; Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Komatsu, Hidehiko

    2016-04-01

    Just by looking at an object, we can recognize its non-visual properties, such as hardness. The visual recognition of non-visual object properties is generally accurate [1], and influences actions toward the object [2]. Recent studies suggest that, in the primate brain, this may involve the ventral visual cortex, which represents objects in a way that reflects not only visual but also non-visual object properties, such as haptic roughness, hardness, and weight [3-7]. This new insight raises a fundamental question: how does the visual cortex come to represent non-visual properties--knowledge that cannot be acquired directly through vision? Here we addressed this unresolved question using fMRI in macaque monkeys. Specifically, we explored whether and how simple visuo-haptic experience--just seeing and touching objects made of various materials--can shape representational content in the visual cortex. We measured brain activity evoked by viewing images of objects before and after the monkeys acquired the visuo-haptic experience and decoded the representational space from the activity patterns [8]. We show that simple long-term visuo-haptic experience greatly impacts representation in the posterior inferior temporal cortex, the higher ventral visual cortex. After the experience, but not before, the activity pattern in this region well reflected the haptic material properties of the experienced objects. Our results suggest that neural representation of non-visual object properties in the visual cortex emerges through long-term crossmodal exposure to objects. This highlights the importance of unsupervised learning of crossmodal associations through everyday experience [9-12] for shaping representation in the visual cortex. PMID:26996504

  15. INFLEX: an inexpensive structure and materials flight experiment

    NASA Astrophysics Data System (ADS)

    Gogan, Ray E.

    1993-09-01

    The Inexpensive Structure and Materials Flight Experiment (INFLEX) validates new technologies for space that can reduce cost and improve the performance of future precision structure space programs. These technologies include advanced sensors, structural modeling, actuators, system identification, active control algorithms, health monitoring, passive damping, and advanced composites. The INFLEX payload consists of a 16-foot deployable structure, avionics, control system actuators, and structural sensors. The entire payload structure is hinged with the spacecraft bus and is controlled by an extendible strut. Sensors and proof-mass actuators are distributed on the structure to conduct dynamics and control experiments. Two video cameras (wide and narrow field of view) monitor deployment, assess structural status, and quantitatively monitor structural motion. The data acquisition Remote Units, located on each rib and the central tower, interface to the actuators and sensors mounted nearby. The payload processor is mounted on the thermally controlled bulkhead of the spacecraft bus, and communicates with the Remote Units and the spacecraft to control all experiment hardware.

  16. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  17. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  18. Ocean acidification alters the material properties of Mytilus edulis shells.

    PubMed

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  19. Effects of prestresses on mechanical properties of isotropic graphite materials

    NASA Astrophysics Data System (ADS)

    Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.

    1998-10-01

    Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.

  20. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  1. Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP)

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Mokhov, N.; Hurh, P.; Misek, J.; /Fermilab

    2010-11-01

    Effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been under study using the Brookhaven National Laboratory's (BNL) 200 MeV Linac. The primary objectives of the study that includes a wide array of materials and alloys ranging between low and high-Z are to (a) observe changes in physio-mechanical properties which are important in maintaining high-power target functionality, (b) identify possible limits of proton flux or fluence above which certain material seize to maintain integrity, (c) study the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) correlate radiation damage effects of different species such as energetic protons and neutrons on materials by utilizing reactor and particle accelerator experience data. These objectives are specifically being addressed in the latest material irradiation study linked to the Long Baseline Neutrino Experiment (LBNE). Observations on irradiation effects on materials considered for high-power targets and other beam intercepting elements, such as collimators, from past studies and preliminary observations of the ongoing LBNE study are presented in this paper.

  2. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    SciTech Connect

    Furnish, M.D.; Boslough, M.B.; Gray, G.T. III; Remo, J.L.

    1994-07-01

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  3. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  4. Correlation of materials properties with the atomic density concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.

  5. Perception of the material properties of wood based on vision, audition, and touch.

    PubMed

    Fujisaki, Waka; Tokita, Midori; Kariya, Kenji

    2015-04-01

    Most research on the multimodal perception of material properties has investigated the perception of material properties of two modalities such as vision-touch, vision-audition, audition-touch, and vision-action. Here, we investigated whether the same affective classifications of materials can be found in three different modalities of vision, audition, and touch, using wood as the target object. Fifty participants took part in an experiment involving the three modalities of vision, audition, and touch, in isolation. Twenty-two different wood types including genuine, processed, and fake were perceptually evaluated using a questionnaire consisting of twenty-three items (12 perceptual and 11 affective). The results demonstrated that evaluations of the affective properties of wood were similar in all three modalities. The elements of "expensiveness, sturdiness, rareness, interestingness, and sophisticatedness" and "pleasantness, relaxed feelings, and liked-disliked" were separately grouped for all three senses. Our results suggest that the affective material properties of wood are at least partly represented in a supramodal fashion. Our results also suggest an association between perceptual and affective properties, which will be a useful tool not only in science, but also in applied fields. PMID:25576379

  6. Hygrothermal Simulations of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is a complicated process. The computational approach for heat transfer via the ground is well defined (EN-ISO-13370:, 2007) together with simplified methods (Staszczuk, Radon, & Holm). Though the soil moisture transfer is generally ignored, it is proven not negligible (Janssen, Carmeliet, & Hens, 2004). Even though reliable material properties of soils are required to perform realistic hygrothermal calculations of soils coupled to buildings, such material properties have not been well defined in hygrothermal calculations tools. Typical building constructions which are greatly influenced by soils are basements, crawl spaces and slab on grade and reliable hygrothermal performance of such construction are highly requested; as it is ranked within the top 10 Building America Enclosure Research Ideas according to Enclosures STC - Residential Energy Efficiency Stakeholder Meeting, February 29, 2012 Austin, TX. There exists an extensive amount of measurements on soil properties in Soil Science though this information must be gathered as well as adapted to be applicable in Building Science and for hygrothermal simulation purposes. Soil properties are important when analyzing and designing both new building constructions and retrofitting measures, where the outer boundary of the buildings enclosure consists of soil materials. Concerning basement energy retrofits, interior solutions of improving the energy demand has to cooperate with the existing soil properties and must therefore be designed thereafter. In concerns of exterior retrofits, the soil material can be replaced, if needed, with a more suitable filling material, though this approach applies only for basement walls. The soil material beneath the basement floor can naturally not be replaced hence the soil properties of this part of the buildings enclosure still must be taken into consideration. This study is divided into several parts. The intention of the first

  7. A comparative evaluation of mechanical properties of nanofibrous materials

    NASA Astrophysics Data System (ADS)

    Lyubun, German P.; Bessudnova, Nadezda O.

    2014-01-01

    Restoration or replacement of lost or damaged hard tooth tissues remain a reconstructive clinical dentistry challenge. One of the most promising solutions to this problem is the development of novel concepts and methodologies of tissue engineering for the synthesis of three-dimensional graft constructs that are equivalent to original organs and tissues. This structural and functional compatibility can be reached by producing ultra-thin polymer filament scaffolds. This research aims through a series of studies to examine different methods of polymer filament material special preparation and test mechanical properties of the produced materials subjected to a tensile strain. Nanofibrous material preparation using chemically pure acetone and mixtures of ethanol/water has shown no significant changes in sample surface morphology. The high temperature impact on material morphology has resulted in the modification of fiber structure. In the course of mechanical tests it has been revealed the dependence of the material strength on the spinning solution compositions. The results achieved point to the possibility to develop nanofibrous materials with required parameters changing the methodology of spinning solution production.

  8. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  9. PREFACE: Workshop on Oxide Materials 2014: Novel Multifunctional Properties

    NASA Astrophysics Data System (ADS)

    Gómez, M. E.; Lopera, W.

    2015-07-01

    The 2014 Workshop on Oxide Materials: Novel Multifunctional Properties was held in Cali, Colombia, from September 15 to September 19 on the campus of Universidad del Valle. It was a great privilege to have had this workshop in Cali after the first workshop on oxide materials commemorating the first centennial of the discovery of the superconductivity in 2011. The meeting gathered an audience of 80 participants, 10 invited speakers with two or three plenary talks each, 20 short oral contributions, two poster sessions with 20 presentations each. This proceedings volume contains papers reported at the conference. The Proceedings of the 2014 Workshop on Oxide Materials: Novel Multifunctional Properties were edited by Maria Elena Gomez and Wilson Lopera with the assistance of Carlos William Sanchez and Albert Ortiz as copy editor. We are grateful for the financial support from COLCIENCIAS through research project COLCIENCIAS-UNIVALLE contract 002/2013; Universidad de Valle through Professor Ivan Ramos, Rector; the Faculty of Science with Professor Jaime Cantera, Dean; the Center of Excellence on Novel Materials with Professor Pedro Prieto, Director; ICETEX, and INTECO Ltda. Further details about the conference, including details of the invited speakers and plenary sessions are available in the PDF. Maria Elena Gómez, Editor Wilson Lopera, Editor

  10. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. PMID:26072333

  11. Silk/nano-material hybrid: properties and functions

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.

    2014-03-01

    Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.

  12. Characterization of Secondary Electron Emission Properties of Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Capece, Angela M.; Raitses, Yevgeny; Koel, Bruce E.

    2015-11-01

    The behavior of wall-bounded plasmas is significantly affected by the plasma-wall interactions, including the emission of secondary electrons (SEE) from the wall materials due to bombardment by primary electrons. The importance of SEE has prompted previous investigations of SEE properties of materials especially with applications to magnetic fusion, plasma thrusters, and high power microwave devices. In this work, we present results of measurements of SEE properties of graphite and lithium materials relevant for the divertor region of magnetic fusion devices. Measurements of total SEE yield (defined as the number of emitted secondary electrons per incident primary electron) for lithium are extended up to 5 keV primary electron energy, and the energy distributions of secondary electrons are provided for graphite and lithium. Additionally, the effect of contamination on the total SEE yield of lithium was explored by exposing the material to water vapor. Auger electron spectroscopy (AES) was used to determine surface composition and temperature programmed desorption (TPD) was used to determine lithium film thickness. Results show an order of magnitude increase in total SEE yield for lithium exposed to water vapor. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, and AF9550-09-1-0695; and DOE Office of Science Graduate Student Research Program.

  13. Computed Tomography Support for Microgravity Materials Science Experiments

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. Peter; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The accurate measurement of density in both liquid and solid samples is of considerable interest to Principal Investigators with materials science experiments slated for the ISS. The work to be described is an innovative application of a conventional industrial nondestructive evaluation instrument. Traditional applications of industrial computed tomography (CT) rely on reconstructing cross sections of large structures to provide two-dimensional planar views which can identify defects such as porosity, or other material anomalies. This has been done on microgravity materials science experiments to check the integrity of ampoule-cartridge assemblies for safety purposes. With a substantially monoenergetic flux, as can be obtained with a radioactive cobalt source, there will be a direct correlation between absorption and density. Under such conditions it then becomes possible to make accurate measurements of density throughout a sample, and even when the sample itself is enclosed within a furnace and a safety required cartridge. Such a system has been installed at Kennedy Space Center (KSC) and is available to PIs to examine samples before and after flight. The CT system is being used to provide density information for two purposes. Firstly, the determination of density changes from liquid to solid is vital information to the PI for purposes of modeling the solidification behavior of his sample, and to engineers who have to design containment ampoules and must allow for shrinkage and other volume changes that may occur during processing. While such information can be obtained by pycnometric measurements, the possibility of using a furnace installed on the CT system enables one to examine potentially dangerous materials having high vapor pressures, while not needing visible access to the material. In addition, uniform temperature can readily be obtained, and the system can be controlled to ramp up, hold, and ramp down while collecting data over a wide range of

  14. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  15. Surface reflectance and material studies for the PROSPECT Experiment

    NASA Astrophysics Data System (ADS)

    Bowes, Alyssa; Prospect Collaboration

    2015-10-01

    The PROSPECT Experiment aims to probe the existence of sterile neutrino oscillations by measuring the energy spectrum of antineutrinos emanating from nuclear reactors in a matrix of optically separated target scintillator cells at a variety of reactor-detector baselines. By measuring the absolute spectrum we also learn about reactors and what isotopes they produce. In order to properly model and optimise PROSPECT's energy resolution and background rejection capabilities, the reflective properties of the cell surfaces must be well understood. To address this, a study of various reflective surfaces under consideration to be used in the detector was conducted at non-normal incident angles through liquid using a custom-built laser-based reflectance measurement system. This presentation will describe the apparatus, reflectance measurements, and implications for the PROSPECT optical cell performance. Future plans to incorporate measurements into existing optical simulations will also be discussed. Funding provided by Illinois Institute of Technology College of Science.

  16. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  17. The Interpretation of XPS Spectra: Insights Into Materials Properties

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.; Nelin, Constance J.

    2013-06-01

    We review basic and advanced concepts needed for the correct analysis of XPS features. We place these concepts on rigorous foundations and explore their physical and chemical meanings without stressing the derivation of the mathematical formulations, which can be found in the cited literature. The significance and value of combining theory and experiment is demonstrated by discussions of the physical and chemical origins of the main and satellite XPS features for a variety of molecular and condensed phase materials.

  18. Computational materials science aided design of glass ceramics and crystal properties (abstract only)

    NASA Astrophysics Data System (ADS)

    Mannstadt, Wolfgang

    2008-02-01

    . In this presentation results of density functional theory (DFT) calculations of various crystal structures, mainly oxides, are discussed. The focus is on the thermomechanical and optical properties. We present elastic properties and the anisotropic Young's modulus for spinel structures, pyrosilicates and further oxides like rutile. Their influence on the stiffness of a resulting glass ceramic is discussed. The thermal expansion of glass ceramics is an important feature and is strongly dependent on the coefficient of thermal expansion (CTE) of the crystalline phases. For selective oxides the calculation of the CTE in the harmonic approximation is presented and a comparison with experiments is given. Optical devices for microlithography use CaF2 crystal as a lens material. The optical properties and the influence of certain impurities in CaF2 are crucial for the performance of such devices. 'Ab initio' simulation helps us here to estimate the formation of defects and color centers. Local density approximation screened exchange calculations for the optical properties of CaF2 are presented as well as DFT simulation results for impurities and defects.

  19. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    PubMed

    Mannstadt, Wolfgang

    2008-02-13

    . In this presentation results of density functional theory (DFT) calculations of various crystal structures, mainly oxides, are discussed. The focus is on the thermomechanical and optical properties. We present elastic properties and the anisotropic Young's modulus for spinel structures, pyrosilicates and further oxides like rutile. Their influence on the stiffness of a resulting glass ceramic is discussed. The thermal expansion of glass ceramics is an important feature and is strongly dependent on the coefficient of thermal expansion (CTE) of the crystalline phases. For selective oxides the calculation of the CTE in the harmonic approximation is presented and a comparison with experiments is given. Optical devices for microlithography use CaF(2) crystal as a lens material. The optical properties and the influence of certain impurities in CaF(2) are crucial for the performance of such devices. 'Ab initio' simulation helps us here to estimate the formation of defects and color centers. Local density approximation screened exchange calculations for the optical properties of CaF(2) are presented as well as DFT simulation results for impurities and defects. PMID:21693894

  20. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, Matthias; Schreurs, Guido; Rosenau, Matthias; Kemnitz, Helga

    2016-04-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between (c. 100 and 400 micrometer). Analysis of grain shape factors show that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling . Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil., Most materials have a cohesion in the order of 10-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C <10 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density reached during sieving which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains. Also, models

  1. Measurements of radiative material properties for astrophysical plasmas.

    SciTech Connect

    Bailey, James E.

    2010-10-01

    The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10{sup 22} e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important

  2. Active material based active sealing technology: Part 1. Active seal requirements vs. active material actuator properties

    NASA Astrophysics Data System (ADS)

    Henry, Christopher P.; Carter, William; Herrera, Guillermo A.; McKnight, Geoffrey P.; Browne, Alan L.; Johnson, Nancy L.; Bazzi, Imad F.

    2010-04-01

    Current seals used for vehicle closures/swing panels are essentially flexible, frequently hollow structures whose designs are constrained by numerous requirements, many of them competing, including door closing effort (both air bind and seal compression), sound isolation, prevention of water leaks, and accommodation of variations in vehicle build. This paper documents the first portion of a collaborative research study/exploration of the feasibility of and approaches for using active materials with shape and stiffness changing attributes to produce active seal technologies, seals with improved performance. An important design advantage of an active material approach compared to previous active seal technologies is the distribution of active material regions throughout the seal length, which would enable continued active function even with localized failure. Included as a major focus of this study was the assessment of polymeric active materials because of their potential ease of integration into the current seal manufacturing process. In Part 1 of this study, which is documented in this paper, potential materials were evaluated in terms of their cost, activation mechanisms, and mechanical and actuation properties. Based on these properties, simple designs were proposed and utilized to help determine which materials are best suited for active seals. Shape memory alloys (SMA) and electroactive polymers (EAP) were judged to be the most promising.

  3. Study of biomechanical, anatomical, and physiological properties of scorpion stingers for developing biomimetic materials.

    PubMed

    Zhao, Zi-Long; Shu, Tao; Feng, Xi-Qiao

    2016-01-01

    Through natural selection, many animal organs have evolved superior mechanical properties and elegant hierarchical structures adaptive to their multiple biological functions. We combine experiments and theory to investigate the composition-structure-property-function relations of scorpion stingers. Their hierarchical structures and functionally gradient mechanical properties were revealed. Slow motion analysis of the penetration process of a scorpion stinger was performed to examine the refined survival skills of scorpions. An experiment-based mechanics model of the stinger was proposed, the results of which revealed an optimized range of penetration angle in an insertion event. Both theoretical and numerical results are in good agreement with our experimental measurements. The analysis method and physical insights of this work are potentially important for investigating a general class of sharp-edge biological materials, e.g., cattle horns, spider fangs, cat claws, and plant thorns. PMID:26478411

  4. Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral

    1998-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  5. Dust on Mars: Materials Adherence Experiment results from Mars Pathfinder

    SciTech Connect

    Landis, G.A.; Jenkins, P.P.

    1997-12-31

    Mars Pathfinder is the first solar-powered probe to operate on the surface of Mars. Pathfinder consists of a lander and a small, autonomous, six-wheel solar-powered rover, Sojourner. The Pathfinder spacecraft reflects NASA`s new philosophy of exploiting new technologies to reduce mission cost. The Materials Adherence Experiment on Pathfinder was designed to measure the degradation of solar arrays due to dust settling out of the atmosphere and blocking light to the solar array, lowering the array power output. The MAE measurements indicate steady dust accumulation at a rate of about 0.28% per day. This value is consistent with the performance of the solar arrays, which have decreased in power at an estimated rate of 0.29% per day.

  6. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Arnold, Steve

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v

  7. Surface electrical properties experiment study phase, volume 1

    NASA Technical Reports Server (NTRS)

    Meyer, J. W.; Baker, R. H.; Johnson, L. B.

    1973-01-01

    The evolution of a conceptual design of the flight hardware for the surface electrical properties experiment (SEP), the definition of requests for proposals, the analysis of proposals submitted by prospective flight hardware subcontractors, and recommendations for the flight configuration to be implemented are discussed. Initial efforts were made to assess the electromagnetic environment of the SEP experiment. An EMI receiver and tri-loop antenna were constructed and tests of opportunity were performed with a lunar roving vehicle (LRV). Initial analyses were made of data from these tests with support from this contract, analyses which were continued in depth under the hardware contract.

  8. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

    PubMed

    Wagnac, Eric; Arnoux, Pierre-Jean; Garo, Anaïs; El-Rich, Marwan; Aubin, Carl-Eric

    2011-10-01

    Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with

  9. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  10. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.

    PubMed

    Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials. PMID:27587118

  11. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  12. ICP MS selection of radiopure materials for the GERDA experiment

    NASA Astrophysics Data System (ADS)

    di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-01

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the 76Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10-3 counts/keV kg y) at the Qββ. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system

  13. Installing Mechanics of Granular Materials (MGM) experiment Test Cell

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Astronaut Jay Apt installs Mechanics of Granular Materials (MGM0 test cell on STS-79. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: NASA/John Space Center).

  14. ICP MS selection of radiopure materials for the GERDA experiment

    SciTech Connect

    Di Vacri, M. L.; Nisi, S.; Cattadori, C.; Janicsko, J.; Lubashevskiy, A.; Smolnikov, A.; Walter, M.

    2015-08-17

    The GERDA (GERmanium Detector Array) experiment, located in the Gran Sasso Underground Laboratory (LNGS, Italy) aims to search for neutrinoless double beta (0νββ) decay of the {sup 76}Ge isotope. Both an ultra-low radioactivity background environment and active techniques to abate the residual background are required to reach the background index (of 10{sup −3} counts/keV kg y) at the Q{sub ββ}. In order to veto and suppress those events that partially deposit energy in Ge detectors, the readout of liquid argon (LAr) scintillation light (SL) has been implemented for the second GERDA experimental Phase. A double veto system has been designed and constructed using highly radiopure materials (scintillating fibers, wavelength shifters, polymeric foils, reflective foils). This work describes the study of lead, thorium and uranium ultra-trace content, performed at the LNGS Chemistry Laboratory by High Resolution Mass Spectrometry (HR ICP MS), for the selection of all materials involved in the construction of the veto system.

  15. Nonlinear optical properties and nonlinear optical probes of organic materials

    NASA Astrophysics Data System (ADS)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  16. Synthesis, processing and properties of materials for SOFCs

    SciTech Connect

    Bates, J.L.; Armstrong, T.A.; Kingsley, J.J.; Pederson, L.R.

    1994-03-01

    The synthesis and processing methods of complex oxide materials can significantly influence use in solid oxide fuel cells (SOFCs). This paper discusses (1) effects of powder synthesis and conditioning on fabrication, i.e., sintering, where close, reproducible control of composition and structure are required, and (2) influences on electrical, mechanical, structural and electrochemical properties that can influence SOFC performance. Examples are given for chromites, manganites and related oxides used as interconnections and electrodes in SOFCs. Materials, from source to incorporation into the fuel cell and generator, is a major issue in the development of solid oxide fuel cells (SOFCs). An integral part of this is the synthesis from chemicals and other virgin materials, generally as an oxide or metal powder, which can become a SOFC component. In some instances, such as with electrochemical vapor deposition, the component is formed directly from the chemicals. The synthesized materials are then conditioned and processes prior to fabrication into the fuel cell component, either separately or in conjunction with other material components.

  17. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  18. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  19. Electromagnetic properties of Permendur granular composite materials containing flaky particles

    NASA Astrophysics Data System (ADS)

    Kasagi, Teruhiro; Tsutaoka, Takanori; Hatakeyama, Kenichi

    2014-10-01

    Electromagnetic properties of Permendur (Fe50Co50 alloy) granular composite materials containing flaky particle have been studied from the RF to microwave frequency range. Properties of the flaky particle composites were compared with the spherical particle ones. The electrical conductivity of the flaky particle composite was higher than that of the spherical particle composite at the same particle content. An insulator to metal transition was observed at the percolation threshold φc in both composites. The φc of the flaky particle composite was lower than that of the spherical one. The relative complex permittivity indicates that the insulating state has dielectric properties. For the spherical particle composite, the permittivity enhancement caused by particle cluster formation can be described by the effective cluster model (ECM). The enhancement of the dielectric constant in the flaky particle composite is larger than the ECM prediction. A negative permittivity spectrum indicating a low frequency plasmonic state was observed in the metallic 70 vol. % flaky particle composite. The relative complex permeability spectra of the flaky particle composite are different from those of the spherical one. The flaky particle composite shows a larger permeability value and lower permeability dispersion frequency than the spherical particle composite. Negative permeability spectra were observed in the both composite materials. The negative permeability frequency band of the flaky particle composite is lower than that of the spherical particle composite owing to the demagnetizing field effect.

  20. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (˜20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of

  1. Materials experience and selection for nuclear materials production reactor heat exchangers

    SciTech Connect

    Marra, J.E.; Louthan, M.R. Jr.

    1990-01-01

    The primary coolant systems for the heavy-water nuclear materials production reactors at the Savannah River Site are coupled to the secondary coolant systems through shell and tube heat exchangers. The head, shell, and tube sheets of these heat exchangers are fabricated from AISI Type 304 grades of austenitic stainless steel. The 8,957 tubes in each heat exchanger were originally fabricated from Type 304 stainless steel, but service experience has lead to the use of Sea Cure tubing in newer systems. The design includes double tube sheets, core rods, and 33,410 square feet of heat transfer surface. Tubes are rolled into the tube sheets and seal welded after rolling. The tubes contain Type 304 stainless steel rods which are positioned in the center of each tube axis to increase the fraction of the cooling water contacting the heat transfer surface. Each reactor utilizes twelve heat exchangers; thus the 120+ reactor-years of operating experience provide approximately 1,440 heat exchanger-years of service. Fatigue, stress corrosion cracking, crevice corrosion, and pitting have been observed during the service life. This paper describes the observed degradation processes and uses the operational experience to recommend materials for the Heavy Water -- New Production Reactor (HW-NPR).

  2. The Study of the Thermoelectric Properties of Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Abdi, Mohammed; Noimande, Zibusisu; Mbamalu, Godwin; Alameeri, Dheyaa; Datta, Timir

    We study thermoelectric property that is electrical phenomena occurring in conjunction with the flow of heat of phase-change materials (PCM) in particular GeSbTe (GST225). From given sets of material parameters, COMSOL Multiphysics heat-transfer module is used to compute maps of temperature and voltage distribution in the PCM samples. These results are used to design an apparatus including the variable temperature sample holder set up. An Arbitrary/ Function generator and a circuit setup is also designed to control the alternation of heaters embedded on the sample holder in order to ensure sequential back and forward flow of heat current from both sides of the sample. Accurate values of potential differences and temperature distribution profiles are obtained in order to compute the Seebeck coefficient of the sample. The results of elemental analysis and imaging studies such as XRD, UV-VIS, EDEX and SEM of the sample are obtained. Factors affecting the thermoelectric properties of phase change memory are also discussed. NNSA/ DOD Consortium for Materials and Energy Studies.

  3. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  4. Mechanical properties of composite materials with integrated embedded sensor networks

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Cook, Ben; Ghezzo, Fabrizia; Starr, Anthony; Nemat-Nasser, Sia

    2005-05-01

    We present efforts to develop structural composite materials which include networks of embedded sensors with decision-making capabilities that extend the functionality of the composite materials to be information-aware. The next generation of structural systems will include the capability to acquire, process, and if necessary respond to structural or other types of information. We present work related to the development of embedded arrays of miniature electronic-based microsensors within a structural composite materials, such as GFRP. Although the scale and power consumption of such devices continues to decrease while increasing the functionality, the size of these devices remain large relative the typical scale of the reinforcing fibers and the interlayer spacing. Therefore, the question of the impact of those devices on the various mechanical properties is relevant and important. We present work on characterizing some of those effects in specific systems where sensors, or suitable dummy sensors, are arrayed with ~1 cm spacing between elements. The typical size of the microelectronic sensing element is ~1 mm, and here is orthorhombic. Of particular importance are the effects of inclusion of such devices on strength or fatigue properties of the base composite. Our work seeks to characterize these effects for 1 and 2 dimensional arrays lying in planes normal to the thickness direction in laminated composites. We also seek to isolate the effects due to the sensing elements and the required interconnections that represent the power-carrying and data communications capabilities of the embedded network.

  5. Infrared optical properties of Mars soil analog materials: Palagonites

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    1992-01-01

    The globally distributed bright soils on Mars represent products of chemical alteration of primary igneous materials. As such, understanding the chemistry and mineralogy of these soils provides clues about the nature of the parent materials and the type, duration, and extent of the chemical weathering environments on Mars. Such clues are key in developing an understanding of the interior and surficial processes that have operated throughout Mars' history to yield the surface as it is currently observed. The generally homogeneous nature of these soils is illustrated by a variety of observational data. These data include (1) direct determination of elemental abundances by the X-ray fluorescence instruments on both Viking Landers, (2) Earth-based telescopic observations, and (3) space-based observations. Based on their spectral properties in the visible and near-infrared, terrestrial palagonitic soils have been suggested as analogs for the bright regions on Mars. Palagonites represent the weathering products of basaltic glass and as such are composed of a variety of minerals/materials. In order to gain an understanding regarding the chemical, mineralogical, and spectral properties of a broad suite of palagonites, several samples were collected from the eastern and central regions of the island of Hawaii.

  6. Elastic properties of nanostructured materials with layered grain boundary structure

    NASA Astrophysics Data System (ADS)

    Karakasidis, T. E.; Charitidis, C. A.; Skarakis, D.; Chouliaras, F.

    2007-08-01

    Atomistic calculations of the elastic constants for a bulk nanostructured material that consists of a layered structure where alternating layers meet along high angle grain boundaries and where atoms interact via a Lennard-Jones potential are presented. The calculations of the elastic constants were performed in the frame of homogeneous deformations for a wide range of layer widths ranging from 2.24 up to 74.62 nm. The results showed that the relaxation of the atomic structure affects the elastic constants for the cases where more than 5% of atoms are located in the GB region. Also it was found that the way that external stresses are applied on the system affects the values of the obtained elastic properties, with the elastic constants related to the characteristic directions of the grain boundary being the most affected ones. The findings of this work are of interest for the fabrication methods of nanostructured materials, the measurement methods of their elastic properties as well as multiscale modeling schemes of nanostructured materials.

  7. Novel Material Designed to Achieve Greater Tunability of Magnetic Dynamo Experiments

    NASA Astrophysics Data System (ADS)

    Casara, J. G.; Brown, E.

    2013-12-01

    We propose to use a novel material for dynamo experiments, creating suspensions of magnetic particles in liquid metals. These suspensions combine the conductive nature of liquid metals with the magnetic permeabilities of the particles, allowing much higher magnetic Reynolds numbers than previous liquid-metal experiments. Additionally, by adjusting the packing fraction φ of non-magnetic or magnetic particles in suspension, we can tune the viscosity and permeability respectively, thus achieving independent control of Reynolds and magnetic Reynolds numbers over a wide range of parameter space. We will report rheology measurements showing that liquid metal suspensions of 10μm diameter iron powders in a eutectic mixture of gallium and indium exhibit Newtonian viscosity with the expected increase in viscosity with φ up to φ = 0.22. Preliminary investigation into the magnetic properties of these suspensions has suggested that magnetic permeabilities are proportional to the packing fraction and inherent permeability of the suspended particles. These results confirm that the resulting Reynolds and magnetic Reynolds numbers will be highly tunable and straightforward to predict based on the proportions and properties of the suspension materials. The flow curve for suspensions of iron powder in eutectic gallium and indium exhibit Newtonian-like behavior for packing fractions φ below φ = 0.22. The viscosities of suspensions of iron powder in a eutectic mixture of gallium and indium follow a Krieger-Dougherty curve, providing more evidence that the material behaves in a Newtonian-like manner.

  8. Mesostructured Composite Materials with Electrically Tunable Upconverting Properties.

    PubMed

    Mundoor, Haridas; Smalyukh, Ivan I

    2015-11-01

    A promising approach of designing mesostructured materials with novel physical behavior is to combine unique optical and electronic properties of solid nanoparticles with long-range ordering and facile response of soft matter to weak external stimuli. Here, orientationally ordered nematic liquid crystalline dispersions of rod-like upconversion nanoparticles are designed, practically realized, and characterized. Boundary conditions on particle surfaces, defined through surface functionalization, promote spontaneous unidirectional self-alignment of the dispersed rod-like nanoparticles, mechanically coupled to the molecular ordering direction of the thermotropic nematic liquid crystal host. As host is electrically switched at low voltages ≈ 1 V, nanorods rotate, yielding tunable upconversion and polarized luminescence properties of the composite. Spectral and polarization dependencies are characterized and explained through invoking models of electrical switching of liquid crystals and upconversion dependence on crystalline matrices of nanorods, and their potential practical uses are discussed. PMID:26332163

  9. Research on lunar materials. [optical, chemical, and electrical properties

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  10. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  11. Mechanical Properties and Simulated Wear of Provisional Resin Materials.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6

  12. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  13. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  14. Properties and processing of nanocrystalline materials. Quarterly report

    SciTech Connect

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  15. Development and mechanical properties of structural materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  16. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  17. Measurement of Thermal Properties of Biosourced Building Materials

    NASA Astrophysics Data System (ADS)

    Pierre, Thomas; Colinart, Thibaut; Glouannec, Patrick

    2014-10-01

    This paper presents both experimental and theoretical works concerning the evaluation of the thermal conductivity and thermal diffusivity of hemp concrete. Experimental measurements of thermal properties are performed using a hot-strip technique for temperatures ranging from 3 to 30 and relative humidities ranging from 0 % to 95 %, thus creating a large database for this material. These experimental thermal conductivities are then compared with the results from the Krischer theoretical predictive model. The comparison shows good agreement, and a predictive analytical relation between the hemp concrete thermal conductivity, temperature, and relative humidity is determined.

  18. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters.

    PubMed

    Prasai, K; Alves, E; Bagliani, D; Basak Yanardag, S; Biasotti, M; Galeazzi, M; Gatti, F; Ribeiro Gomes, M; Rocha, J; Uprety, Y

    2013-08-01

    In a microcalorimetric neutrino mass experiment using the radioactive decay of (163)Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the (163)Ho fabrication), in the temperature range 70 mK-300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment. PMID:24007077

  19. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  20. Investigating the Size Dependent Material Properties of Nanoceria

    NASA Astrophysics Data System (ADS)

    Alam, Bushra B.

    Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet defined and one of the limitations has been the challenge of obtaining quantitative measurements of the antioxidant properties. In this work, we create our own library of ceria nanoparticles of various size distributions by two synthesis methods: sol-gel peroxo and thermal decomposition/calcination and annealing in open atmosphere at three different temperatures. The synthesis methods and conditions produce characteristic sizes and morphologies of ceria nanoparticles. Qualitative and quantitative approaches are used for characterization and to predict reactivity. Qualitative approaches include Brunauer-Emmett-Teller (BET) surface area measurements and Raman analysis while quantitative approaches include a combination of powder X-ray diffraction (XRD) Rietveld analysis, Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) to measure crystallite sizes, lattice parameters, oxygen site occupancies, and the relative abundance of Ce(III) ions in a nanoceria sample. These methods are discussed in detail in addition to their limitations and challenges. These methods are used to predict nanocrystalline or bulk-like behavior of ceria nanoparticles. The investigation of the material properties is also extended to test the redox properties of ceria

  1. Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials

    NASA Astrophysics Data System (ADS)

    Bagdassarov, N.; Pinkerton, H.

    2004-04-01

    Realistic lava flow models require a comprehensive understanding of the rheological properties of lava under a range of stress conditions. Previous measurements have shown that at typical eruption temperatures lavas are non-Newtonian. This is commonly attributed to the formation and destruction of crystal networks. In the present study, the effects of bubbles on the time-dependent, non-Newtonian properties of vesicular melts are investigated experimentally using analogue materials. The shear-thinning behaviour of bubbly liquids is shown to be dependent on the previous shearing history. This thixotropic behaviour, which was investigated using a rotational vane-viscometer, is caused by delayed bubble deformation and recovery when subjected to changes in shear stress. The viscoelastic transition and the transient flow behaviour of analogue fluids were studied using both a rotational vane-viscometer and oscillatory shear apparatus. These experiments have shown that vesicular suspensions are viscoelastic fluids with a yield strength, power law rheology, and a non-zero shear modulus. These properties are also found in polymer fluids commonly used as analogue materials for lava such as gum rosin. We show that, when materials with this rheology are accelerated in channels, they may be fragmented, and when they flow through a narrowing conduit, pulsating flow can develop as a consequence of a transition from slip to non-slip conditions at the conduit wall. This has important implications both for effusive and explosive volcanic eruptions.

  2. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    NASA Astrophysics Data System (ADS)

    Deeb, Maha; Grimaldi, Michel; Lerch, Thomas Z.; Pando, Anne; Gigon, Agnès; Blouin, Manuel

    2016-04-01

    There is no information on how organisms influence hydrostructural properties of constructed Technosols and how such influence will be affected by the parent-material composition factor. In a laboratory experiment, parent materials, which were excavated deep horizons of soils and green waste compost (GWC), were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, but not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass, resulting in positive effects on available water in macropores. Organisms and their interaction with parent materials positively affected the hydrostructural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  3. Research on the icephobic properties of fluoropolymer-based materials

    NASA Astrophysics Data System (ADS)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  4. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  5. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  6. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  7. Development and mechanical properties of construction materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  8. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  9. Mechanical properties of new dental pulp-capping materials.

    PubMed

    Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S

    2016-01-01

    The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time. PMID:26742167

  10. Nonlinear elastic properties of materials with residual stresses

    NASA Astrophysics Data System (ADS)

    Korobov, A.; Romanov, A.; Morozov, A.

    2012-12-01

    The non-linear elastic properties of rock samples and metal samples of microcrystalline aluminium alloy were studied using NRUS method. The residual shear strains were initially introduced in metal samples. In these samples the effect of slow dynamics was also investigated. Based on the analysis of experimental results it was concluded: the effect of slow dynamics, observed in the experiment, can not be explained solely by thermoelastic effects, but it is associated, in our opinion, with the slow relaxation of the internal structure of the samples.

  11. Electrostatics of Granular Material (EGM): Space Station Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Sauke, T.; Farrell, W.

    2000-01-01

    Aggregates were observed to form very suddenly in a lab-contained dust cloud, transforming (within seconds) an opaque monodispersed cloud into a clear volume containing rapidly-settling, long hair-like aggregates. The implications of such a "phase change" led to a series of experiments progressing from the lab, to KC-135, followed by micro-g flights on USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden "collapse" of a cloud to the effect of dipoles. This has significant ramifications for all types of cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of granular matter. Notably, there is the inference that like-charged grains need not necessarily repel if they are close enough together: attraction or repulsion depends on intergranular distance (the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of mixed charges on individual grains resulting from tribological processes --are not universally recognized in electrostatics, granular material studies, and aerosol science, despite some early seminal work in the literature, and despite commercial applications of dipoles in such modern uses as "Krazy Glue", housecleaning dust cloths, and photocopying. The overarching goal of EGM is to empirically prove that (triboelectrically) charged dielectric grains of material have dipole moments that provide an "always attractive" intergranular force as a result of both positive and negative charges residing on the surfaces of individual grains. Microgravity is required for this experiment because sand grains can be suspended as a cloud for protracted periods, the grains are free to rotate to express their electrostatic character, and Coulombic forces are unmasked. Suspended grains

  12. Experiments in materials science on the ground and in reduced gravity using electrostatic levitators

    NASA Astrophysics Data System (ADS)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    To counter residual accelerations, dedicated levitators or positioners are necessary to support a host of materials science experiments on the ground and in microgravity. All levitators (e.g., aerodynamic, acoustic, electromagnetic, electrostatic, optical) have their own merits and limitations but the electrostatic scheme offers the combined advantages of processing millimeter-size objects, independent heating, quasi-spherical shape of molten materials, handling of materials under extreme temperatures for hours, virtually convection-free samples, and wide view around the samples for diagnostic. These attributes provide unique research opportunities in materials science on the ground as well as under reduced gravity. In particular, electrostatic levitators are very attractive to measure the physical and structural properties of equilibrium and non-equilibrium liquids, to synthesize multi-function materials, and to understand metastable phase formation, vitrification, and diffusion. In this paper, research and development carried out by the Japan Aerospace Exploration Agency over the years in the field of electrostatic levitation are summarized and the main results obtained in materials science are presented.

  13. Experiments in materials science on the ground and in reduced gravity using electrostatic levitators

    NASA Astrophysics Data System (ADS)

    Paradis, P.-F.; Ishikawa, T.; Yoda, S.

    To counter residual accelerations and to support a host of materials science experiments in microgravity the Japan Aerospace Exploration Agency JAXA developed levitation facilities dedicated to the processing of glass and ceramics under pressurized atmospheres as well as metals and semiconductors in vacuum All levitators e g aerodynamic acoustic electromagnetic electrostatic optical have their own merits and limitations but the electrostatic scheme offers the combined advantages of processing millimeter-size objects independent heating quasi-spherical shape of molten materials handling of materials under extreme temperatures for hours virtually convection-free samples and wide view around the samples for diagnostic These attributes provide unique research opportunities in materials science on the ground as well as under reduced gravity In particular electrostatic levitators are very attractive to measure the physical e g viscosity and structural properties of equilibrium and supercooled liquids to synthesize multi-function materials and to understand metastable phase formation vitrification and diffusion In this paper JAXA s research and development over the years in the field of electrostatic levitation are summarized and the main results obtained in materials science on the ground and in reduced gravity are presented

  14. Vanadium oxide based materials: Synthesis, characterization and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ayesh, Samar I.

    In recent years, the demand for gas sensors based on safety and process control requirements has been expanding. The reason for such demand sterns from environmental and safety concerns since the toxic gases released from automobile exhausts and chemical plants can directly or indirectly pollute our environment and affect our health. Among the chemicals studied, nitrogen oxide (NOx) gases are among the most dangerous air pollutants. Transition metal oxide clusters (or polyoxometalates) provide an exciting opportunity for the design and synthesis of a new generation of materials for efficient NOx sensing. Polyoxometalates are an important and fast emerging class of compounds that exhibit many remarkable properties. Chapter 1 provides introduction and background of chemical sensors. It describes the need for gas sensors and the current status of research in the area of NOx gas sensors in particular. A description of polyoxmetalates and their relevance as potential novel gas sensor materials is also given. Chapter 2 describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, bond valence sum calculation, temperature dependent magnetic properties studies, electron paramagnetic resonance, and complete single crystal X-ray diffraction analysis of newly prepared vanadium oxide based-systems that have been discovered during the course of this work. First, the system containing arrays of decavanadates networked by extensive hydrogen bonding with cyclic nitrogen bases are described. This is followed by the mixed-valence vanadium oxide cluster, [VV 13VIV3O42(Cl)]-7, containing a hitherto unknown vanadium oxide framework structure. Finally the synthesis of 3D-framework materials is described. These compounds have highly symmetrical closely related three-dimensional framework structures consisting vanadium oxide shells {V18O42(XO4)} linked via heterometallic atoms {M' = Cd, Zn} into three

  15. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  16. Elucidating the role of interfacial materials properties in microfluidic packages.

    SciTech Connect

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  17. Modeling of material erosion and redeposition for dedicated DiMES experiments on DIII-D

    NASA Astrophysics Data System (ADS)

    Ding, R.; Abrams, T.; Chrobak, C. P.; Guo, H. Y.; Snyder, P. B.; Chan, V. S.; Rudakov, D. L.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Wampler, W. R.; Kirschner, A.; McLean, A. G.

    2015-11-01

    Erosion and redeposition of plasma facing materials is a key issue for high-power, long pulse tokamak operation. A series of experiments has been carried out on DIII-D in which well-characterized samples of different materials were exposed to divertor plasma using DiMES. Such experiments provide a good benchmark for PMI codes, such as ERO. It was found that the erosion and redeposition are strongly determined by the impurity content in the plasma and sheath properties near the surface. The principal experimental results (net erosion rate and profile, net/gross erosion ratio) are reproduced by ERO simulations to within the uncertainties, indicating that the controlling physics has likely been identified. New techniques suggested by modeling such as external biasing and local gas injection for suppressing material erosion are planned to be tested in DiMES/DIII-D experiments. Work supported by US DOE DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC04-94AL85000, DE-AC52-07NA27344.

  18. Adaptive mechanical properties of topologically interlocking material systems

    NASA Astrophysics Data System (ADS)

    Khandelwal, S.; Siegmund, T.; Cipra, R. J.; Bolton, J. S.

    2015-04-01

    Topologically interlocked material systems are two-dimensional granular crystals created as ordered and adhesion-less assemblies of unit elements of the shape of platonic solids. The assembly resists transverse forces due to the interlocking geometric arrangement of the unit elements. Topologically interlocked material systems yet require an external constraint to provide resistance under the action of external load. Past work considered fixed and passive constraints only. The objective of the present study is to consider active and adaptive external constraints with the goal to achieve variable stiffness and energy absorption characteristics of the topologically interlocked material system through an active control of the in-plane constraint conditions. Experiments and corresponding model analysis are used to demonstrate control of system stiffness over a wide range, including negative stiffness, and energy absorption characteristics. The adaptive characteristics of the topologically interlocked material system are shown to solve conflicting requirements of simultaneously providing energy absorption while keeping loads controlled. Potential applications can be envisioned in smart structure enhanced response characteristics as desired in shock absorption, protective packaging and catching mechanisms.

  19. Analysis of material properties for MEMS using interferometric measurements

    NASA Astrophysics Data System (ADS)

    O'Mahony, Conor; Hill, Martin; Mathewson, Alan

    2003-03-01

    As the scope and depth of research into microelectromechanical systems increases, the issue of mechanical characterisation has emerged as a major consideration in device design. It is now common to include a set of test structures on a MEMS wafer for extraction of thin film material properties (in particular, residual stress and Young's modulus). These structures usually consist of micromachined beams and strain gauges, and measurement techniques include tensile testing, electromechanical characterisation, SEM imaging, and Raman spectroscopy. However, some of these tests are destructive and difficult to carry out at wafer scale. This work uses electrostatic actuation to pull fixed-fixed beams towards the substrate, and a white-light interferometer to record the beam deflection profile. Finite-element simulation software is employed to model this deflection, and to estimate the material properties which minimise the difference between the measured and simulated profiles. The test is non-destructive, suitable for wafer-level characterisation, and the structures involved require less die space than other methods. We have developed a 1.5mm surface micromachining process for the fabrication of composite and monolayer structures with applications in relay switching, optical imaging and radio-frequency components. This work presents results obtained using interferometric analysis for both monolayer (titanium) and composite (SiOx - metal) thin films fabricated with this process.

  20. Understanding nanoscale mechanical properties of materials using ultrafast EUV photoacoustics

    NASA Astrophysics Data System (ADS)

    Hoogeboom-Pot, K.; Turgut, E.; Shaw, J.; Hernandez-Charpak, J.; Murnane, M.; Kapteyn, H.; Nardi, D.

    2014-03-01

    How do the elastic properties of materials evolve as a nanostructure builds up layer by layer? A host of questions in nanoscience, nanotechnology, quantum dot systems and more rely on an answer to this issue; but our ability to probe mechanical properties is severely constrained at dimensions below 100 nm. With tabletop high harmonic generation (HHG), we overcome these limitations by extending non-destructive visible photoacoustics to extreme ultraviolet (EUV) wavelengths. The short wavelength of EUV light, combined with the coherence and ultrashort pulses of HHG creates a unique and powerful probe of nanostructured materials on their intrinsic length and time scales. We study a series of ultrathin bilayer (10-nm Ni/0-6-nm Ta) nanostructures on SiO2 substrates. A femtosecond infrared pulse excites longitudinal acoustic waves (LAWs) within the nanostructures and surface acoustic waves (SAWs) in the substrate. Diffraction of a time-delayed EUV probe pulse monitors the dynamics. LAW resonances are directly related to the bilayer thickness and effective speed of sound; their dependence on Ta-layer thickness reveals that the LAW velocities of both Ni and Ta differ from bulk values. The changing mass of Ta also affects the SAW frequency, allowing us to extract nanoscale densities. This work was supported by the SRC Contract 2012-OJ-2304, by NSF Award No.: DGE 1144083, and used facilities provided by the NSF Engineering Research Center in EUV Science and Technology.

  1. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  2. Material Properties of Three Candidate Elastomers for Space Seals Applications

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  3. Soil Materials and Health: An new experience for teaching

    NASA Astrophysics Data System (ADS)

    Del Hoyo Martínez, Carmen

    2014-05-01

    Cationic clays are very extended compounds on the earth surface so they constitute the main component of soils and sedimentary rocks. Due to their presence and special properties that they have, mankind has used them with therapeutic aims from Prehistory, not being rare to find references to this subject in works of classic authors. During the Renaissance and with the appearance of the first Pharmacopeia, its use was regulated to a certain extent. The scientific development reached during the XXth century has allowed to understand and to study the reasons of the useful and peculiar properties of clays, directly related to their colloidal size and crystalline structure. These properties are translated in a high specific surface area, optimal rheological properties and/or excellent sorptive capacity; everything makes cationic clays very useful for a wide range of applications. In the field of health, cationic clays are used in Pharmaceutical Technology and Dermopharmacy as ideal excipients and substances of suitable biological activity due to their chemical inertness and low or null toxicity for the patient (Carretero, 2002; Lopez Galindo et al., 2005; Choy et al., 2007; del Hoyo, 2007). Cationic clays can be used in a wide range of applications in health. However, it must be also considered that the risk exposure to cationic clays may cause several diseases, as it has been seen above. Cationic clays have been used as excipients and active principles in the pharmaceutical industry. The last tendencies are their use in geomedicine, as much to come up as to treat diseases. One stands out his presence in spas and aesthetic medicine. Development of new pharmaceutical formulations is observed, based on cationic clays, for cancer therapy. It has to emphasize the importance in the synthesis of biosensors with cationic clays. Cationic clays can be considered a group of promising materials in the development of new health applications. The study of the use of the cationic

  4. Structure and Thermoelectric Properties of Zinc Oxide Based Materials

    NASA Astrophysics Data System (ADS)

    Liang, Xin

    The present dissertation investigates the relationship between the structure and thermoelectric properties of ZnO based materials, with a focus on trivalent element doping on engineering the microstructure and altering the electrical and thermal transport properties. Within the solubility range, the addition of trivalent elements, such as In3+, Fe 3+ and Ga3+, is observed to increase the electrical conductivity of ZnO and decrease the thermal conductivity. As the solubility is exceeded, the consequent structure and thermoelectric properties varies with dopant species. The ZnO-In2O3 binary system, which we have chosen as one of the model systems, is of particular interests as it contains a variety of phase equilibria and microstructures. The In2O3(ZnO)k superlattice structures, which form as the indium solubility is reached, are observed to strongly scatter phonons while relatively permissive to electrons, resulting in a low thermal conductivity of about 2 W/mK and improved electrical conductivity. The thermal (Kapitza) resistance of In2O3(ZnO)k superlattice interfaces is found to be 5.0 +/- 0.6 x 10-10 m 2K/W by fitting the modified Klemens-Callaway's thermal conductivity model to the experimental data. Across the phase diagram, the materials behave as n-type free-electron semiconductors at high temperatures. An effective medium approximation model is for the first time successfully tested on the thermoelectrics of two-phase regions. Both Fe2O3-ZnO and Ga2O3-ZnO binary systems are also investigated. In the Fe doped ZnO system, a highly Fe concentrated ZnO solid solution phase as well as the significant grain refinement are observed after high temperature annealing. The Ga2O 3(ZnO)9 homologous superlattices in Ga2O 3-ZnO system is also found to strongly scatter phonons and induces a drastic reduction in thermal conductivity. Thermal conductivity, as one of the key factors in thermoelectrics, is highly sensitive to material defects. In this dissertation, I also

  5. The Material Plasma Exposure eXperiment (MPEX)

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  6. The properties of weft knitted fabric medical and preventive treatment action using eco-raw materials

    NASA Astrophysics Data System (ADS)

    Halavska, L.; Batrak, O.

    2016-07-01

    A new trend in the world is the clothing production using the new types of ecological raw materials application - milk, pineapple, coconut, hemp, banana, eucalyptus, clams, corn, bamboo, soya, nettle yarn. This makes it possible to create textile materials of new generation with unique antibacterial and antiseptic properties. Such materials have a positive preventive and sometimes therapeutic effect on people, and their health. Eco-raw materials clothing is able to protect the human body from the environment harmful effects: cold, heat, rain, dust, opportunely remove from underclothing layer the steam and gases, sweat; maintain in underclothing layer the necessary microclimate for normal organism functioning. Study of knitwear consumer properties, produced with eco-materials, is an urgent task of the world vector, directed on ecological environmental protection. This paper presents the research results of hygroscopicity and capillarity weft knitted fabrics, what knitted from different types of eco-raw materials: bamboo yarn, yarn containing soybean and nettle yarn. Character of influence of the liquid raising level changes depending on the experiment time and the knitting structure is revealed.

  7. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    SciTech Connect

    Ren, Weiju; Lin, Lianshan

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced features facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.

  8. Comparative analysis of physicochemical properties of root perforation sealer materials

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Pedro, Fábio Luis Miranda; Bandeca, Matheus Coelho; Guedes, Orlando Aguirre; Villa, Ricardo Dalla

    2014-01-01

    Objectives This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (α = 0.05). Results The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO (Ângelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses. PMID:25110644

  9. Fundamental properties and applications of low- dimensional materials

    NASA Astrophysics Data System (ADS)

    Kim, Philip

    1999-11-01

    Physics in reduced dimensions has attracted much attention during the last decades owing to the discovery of new phenomena in low-dimensional materials and their potential importance in device applications. The unique properties of these low dimensional materials have been generally understood by considering the increased role of fluctuations and singularities in physical quantities due to the reduction in available phase space. In this thesis, I have investigated the fundamental physical properties of several low dimensional materials and have presented a technological application of these materials. Magnetic flux lines in high temperature superconductors (HTSCs) can be effectively treated as 2+1 dimensional systems due to the large anisotropy of HTSCs. The microscopic structure of the magnetic flux line lattice in Bi 2Sr2CaCu2O8 + x superconducting single crystals was studied at temperatures up to 77 K by Bitter magnetic decoration technique. Analysis of structural correlations shows that the flux line lattices are in the hexatic phase for the high temperature and low field regime, and enables us to estimate the flux line lattice freezing temperature. In addition, dislocation-free decoration images containing up to 80,000 vortices, which are two orders of magnitude larger number than that of previous studies, have been obtained. Analyses of these large length new data shows that the observed flux line lattices are in the random manifold regime with a roughening exponent of 0.44 for length scales up to 80-100 lattice constants. At larger length scales, the data exhibit nonequilibrium features that persist for different cooling rates and field histories. Charge density waves in transition-metal dichalcogenides are a good example of a two dispensional electronic system. A scanning tunneling microscope (STM) was used to fabricate T-phase tantalum diselenide (TaSe2) nanocrystals with sizes ranging from 7 to more than 100 nanometers within the surface layer of 2H phase

  10. Comparison of the insulation property of an innovative material and a traditional one by infrared thermography

    NASA Astrophysics Data System (ADS)

    Barizza, A.; Bison, P.; Boldrini, S.; Bortolin, A.; Cadelano, G.; Colla, L.; Ferrarini, G.

    2015-05-01

    An innovative ceramic material has been developed as a possible substitute of the traditional rock-wool as thermal insulating material. It should be used in the future inside a machine working at a temperature greater than 200 °C. The effect of exposition to this temperature for several hours has been evaluated to check if a degradation of the insulating properties can be measured. Experiments did not show any evidence of degradation. Nonetheless the value of the thermal conductivity measured both at high and ambient temperature was not so good as expected. At the same time, the same measurements on rock-wool (the traditional choice for insulation in this machinery) revealed to be very difficult as it is not possible to prepare samples to be tested in a laser flash. To overcome this problem in the measurement of the performance at high temperature a new experiment was prepared by heating one side of the material by means of an electric heater and by looking and comparing (at least qualitatively) the temperature increase on the other side. On the purpose, two parallel-piped samples of the two rival materials, with the same thickness have been prepared and put in contact with the electric heater plate. The temperature evolution of the side facing the ambient has been measured by means of a thermographic camera for almost one hour. The experiment shows that the traditional material owns better insulation performance than the innovative one. Attention has been paid on the properties of the innovative material that, being highly hygroscopic, can maintain a low temperature during the drying process due to the very high value of the latent heat of water when changing from liquid to gas phase.

  11. ABINIT: First-principles approach to material and nanosystem properties

    NASA Astrophysics Data System (ADS)

    Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.

    2009-12-01

    ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and

  12. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  13. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  14. A study of thermoelectric properties of graphene materials

    NASA Astrophysics Data System (ADS)

    Twombly, Chris

    Graphene has very beneficial charge transport properties which make it an interesting potential thermoelectric material, but its thermoelectric efficiency is limited by large thermal conductivity. Nanostructuring graphene by incorporating periodic holes in the crystal structure produces graphene nanomesh with reduced thermal conductivity due to increased phonon scattering. The goal of this study was to investigate the thermoelectric properties of graphene nanomeshes and defected graphene using Density Functional Theory and semi-classical Boltzmann Transport Theory. We computed the Seebeck coefficient, electrical conductivity, and the electrical component of thermal conductivity from first principles. We first developed and verified the accuracy of our techniques using silicon. We then examined the properties of silicon nanowires in order to study systems with more complex geometry and to show that nanostructuring can improve thermoelectric properties. Our results agreed closely with previous experimental and theoretical studies of silicon systems. We then employed this suite of methods to study graphene, graphene nanomeshes, and periodically defected graphene. Our calculations for pristine graphene agreed closely with experimental measurements, proving that our methods work well with 2D systems. Our calculations suggest that there is up to a one order of magnitude increase in Seebeck coefficient for graphene nanomeshes compared to pristine graphene. This increase was found to be strongly dependent on a previously predicted geometrically based semimetal to semiconductor transition. We estimated a maximum ZT of 0.15-0.4 for graphene nanomeshes based on a simple scaling law for the thermal conductivity in these systems. The ZT value is strongly dependent on the purity and the quality of the graphene crystal lattice, which affects the relaxation time of charge carriers in these systems. We then studied defected graphene with partial hydrogen passivation and boron

  15. A thermodynamic approach to obtain materials properties for engineering applications

    NASA Technical Reports Server (NTRS)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  16. Material properties from acoustic radiation force step response

    PubMed Central

    Orescanin, Marko; Toohey, Kathleen S.; Insana, Michael F.

    2009-01-01

    An ultrasonic technique for estimating viscoelastic properties of hydrogels, including engineered biological tissues, is being developed. An acoustic radiation force is applied to deform the gel locally while Doppler pulses track the induced movement. The system efficiently couples radiation force to the medium through an embedded scattering sphere. A single-element, spherically-focused, circular piston element transmits a continuous-wave burst to suddenly apply and remove a radiation force to the sphere. Simultaneously, a linear array and spectral Doppler technique are applied to track the position of the sphere over time. The complex shear modulus of the gel was estimated by applying a harmonic oscillator model to measurements of time-varying sphere displacement. Assuming that the stress-strain response of the surrounding gel is linear, this model yields an impulse response function for the gel system that may be used to estimate material properties for other load functions. The method is designed to explore the force-frequency landscape of cell-matrix viscoelasticity. Reported measurements of the shear modulus of gelatin gels at two concentrations are in close agreement with independent rheometer measurements of the same gels. Accurate modulus measurements require that the rate of Doppler-pulse transmission be matched to a priori estimates of gel properties. PMID:19425636

  17. Martian physical properties experiments: The Viking Mars Lander

    USGS Publications Warehouse

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J.; Scott, R.F.

    1972-01-01

    Current data indicate that Mars, like the Earth and Moon, will have a soil-like layer. An understanding of this soil-like layer is an essential ingredient in understanding the Martian ecology. The Viking Lander and its subsystems will be used in a manner similar to that used by Sue Surveyor program to define properties of the Martian "soil". Data for estimates of bearing strength, cohesion, angle of internal friction, porosity, grain size, adhesion, thermal inertia, dielectric constants, and homogeneity of the Martian surface materials will be collected. ?? 1972.

  18. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    SciTech Connect

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  19. Dynamic tensile material properties of human pelvic cortical bone.

    PubMed

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    IIn order for finite element models of the human body to predict pelvic injuries accurately, the appropriate material properties must be applied. Therefore, the purpose of this study was to quantify the dynamic material properties of human pelvic cortical bone in tension. In order to accomplish this, a total of 20 tension coupon specimens were obtained from four regions of four human cadaver pelves: anterior ilium wing, posterior ilium wing, superior pubic ramus, and ischium body. For the anterior and posterior regions of the ilium wing, samples were taken in two orientations to investigate any direction dependence. A high-rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor was used to apply tension loads to failure at a constant loading rate of 0.5 strains/s. The horizontally oriented anterior ilium specimens were found to have a significantly larger ultimate stress (p=0.02), ultimate strain (p>0.01), and modulus (p=0.02) than the vertically oriented anterior ilium specimens. There were no significant differences in ultimate stress (p=0.27), ultimate strain (p=0.85), or modulus (p=0.87) found between horizontally oriented and vertically oriented posterior ilium specimens. However, additional testing should be conducted at specimen orientation 45 degree from the orientations used in the current study to further investigate the effect of specimen orientation on the posterior portion of the ilium wing. There were no significant differences in ultimate stress (p=0.79), ultimate strain (p=0.31), or modulus (p=0.15) found between the superior pubic ramus and ischium body specimens. However, the statistical comparison between superior pubic ramus and ischium body specimens was considered weak due to the limited samples and large variation between subjects. PMID:19141951

  20. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    SciTech Connect

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  1. Rheological properties of granular materials - Critical parameters and mixing rules

    NASA Astrophysics Data System (ADS)

    Vasilenko, Alisa Victoria

    2011-12-01

    Granular materials can be found at any stage of processing in many industries, such as food, pharmaceuticals, catalysts, and chemicals. These materials exhibit a variety of flow patterns, and their state and behavior differ from application to application. Since there is a lack of fundamental understanding of particulate or powder behavior, multiple problems can be encountered during routine manufacturing. Scale-up can also be a challenge, as the lack of constitutive equations for granular materials forces most scaleup efforts to follow the trial-and-error route. Powder characterization measurements are employed as both a selection tool and a predictive method for the material's process performance. Therefore, it plays a very important role in process and product development. The numerous existing methods used to characterize the flow properties of powders are mostly application-specific and it is not clear how they correlate with each other or with process performance. Moreover, understanding the relationships between the material properties and the processing conditions is necessary for a successful design of a continuous manufacturing system, which has been a major focus for pharmaceutical industry in the recent years. Before such changes can be implemented, a better understanding of fundamental physical phenomena governing powder flow behavior must be developed. In this work we study particulate/powder flow behavior experimentally using several characterization methods, including the Gravitational Displacement Rheometer (an avalanching tester), the rotational shear cell, and the compressibility tester. We establish the variables of interest through correlative comparison and study the differences and similarities between the methods in order to investigate particulate/powder flow behavior during processing and characterization. A mixing rule for principal stresses is developed through investigation of shear behavior of binary mixtures in a shear cell. In order

  2. Designing functionally graded materials with superior load-bearing properties

    PubMed Central

    Zhang, Yu; Sun, Ming-jie; Zhang, Denzil

    2011-01-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidlines for designing FGM with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (Eb/Es) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15 < n < 0.5), coupled with a relatively small modulus ratio (3 < Eb/Es < 6), is most desirable for reducing the maximum stress and transferring it into the interior, while keeping the surface stress low. Experimentally, we demonstrate that elastically graded materials with various n values and Eb/Es ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20% to 50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications. PMID:22178651

  3. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  4. Flexural stiffness of feather shafts: geometry rules over material properties.

    PubMed

    Bachmann, Thomas; Emmerlich, Jens; Baumgartner, Werner; Schneider, Jochen M; Wagner, Hermann

    2012-02-01

    Flight feathers of birds interact with the flow field during flight. They bend and twist under aerodynamic loads. Two parameters are mainly responsible for flexibility in feathers: the elastic modulus (Young's modulus, E) of the material (keratin) and the geometry of the rachises, more precisely the second moment of area (I). Two independent methods were employed to determine Young's modulus of feather rachis keratin. Moreover, the second moment of area and the bending stiffness of feather shafts from fifth primaries of barn owls (Tyto alba) and pigeons (Columba livia) were calculated. These species of birds are of comparable body mass but differ in wing size and flight style. Whether their feather material (keratin) underwent an adaptation in stiffness was previously unknown. This study shows that no significant variation in Young's modulus between the two species exists. However, differences in Young's modulus between proximal and distal feather regions were found in both species. Cross-sections of pigeon rachises were particularly well developed and rich in structural elements, exemplified by dorsal ridges and a well-pronounced transversal septum. In contrast, cross-sections of barn owl rachises were less profiled but had a higher second moment of area. Consequently, the calculated bending stiffness (EI) was higher in barn owls as well. The results show that flexural stiffness is predominantly influenced by the geometry of the feathers rather than by local material properties. PMID:22246249

  5. Electron Transport Materials: Synthesis, Properties and Device Performance

    SciTech Connect

    Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

    2012-06-01

    We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

  6. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  7. The Effect of Material Properties on Dynamo Generation in Planets

    NASA Astrophysics Data System (ADS)

    Vilim, Ryan

    2015-10-01

    In this thesis I use a three dimensional numerical dynamo model to explore the effect of novel material properties and core states on magnetic field generation in the planet Mercury, and in rocky extra-solar planets. In the first part of this work I focus on the recent evidence of pressure induced metallisation in materials which commonly comprise planetary mantles. In this scenario the materials which make up the lower mantle of a planet conduct electricity with a conductivity similar to that of iron. I show that a metallised mantle changes the way in which magnetic field is generated by providing a new source of magnetic shear between the fluid outer core and the solid mantle. I then show that this has the effect of making planetary magnetic fields more difficult to observe from Earth. The second and third parts of this work focus on the planet Mercury. First, I incorporate recent evidence of buoyancy sources mid-way through Mercury's liquid core (known as "snow zones") to show that they can explain the weak observed magnetic field of Mercury. In a second project on Mercury I test whether recent evidence of a dense solid layer at the top of Mercury's core, attributed to a solid, electrically conducting layer of FeS, could help explain Mercury's weak magnetic field. I find that the addition of this layer causes the dynamo to generate a strong, dipolar magnetic field, which does not match the observations made by the MESSENGER spacecraft.

  8. Research on Microstructure and Property of Fe-VC Composite Material Made by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The experiment of laser cladding on the surface of H13 steel was made. Vanadium carbide (VC) powder and Fe-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were studied. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The average hardness of cladding zone was 900HV0.2. The average hardness of cladding layer increased five times than that of base material. H13 steel was widely used in the field of hot dies. Using laser cladding, the good wear layer would greatly increase the mold useful life.

  9. Properties and performance of the LiCaAlF6:Cr3+ laser material

    NASA Astrophysics Data System (ADS)

    Payne, Stephen A.; Chase, Lloyd L.; Atherton, L. Jeffrey; Caird, John A.; Kway, Wayne L.; Shinn, Michelle D.; Hughes, Robert S.; Smith, Larry K.

    1990-04-01

    The laser properties of the LiCaAlF6:Cr3+ (Cr:LiCAF) material are reviewed. The impact of the absorption and emission spectra on the laser performance is discussed. Laser-pumping and flashlamp-pumping experiments have shown that Cr:LiCAF has potential for high efficiency, although the presence of scattering losses remains a significant problem. The "gradient freeze" growth technique has been found to generate lower-loss material compared to Czochralski growth. The thermal lensing of Cr:LiCAF has been measured to be small and is in rough agreement with the magnitude expected on the basis of the intrinsic thermo-optical properties.

  10. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect

    Sumpter, Bobby G; Liang, Liangbo; Nicolai, Adrien; Meunier, V.

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the

  11. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  12. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  13. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  14. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  15. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  16. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  17. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  18. Environmental assessment for consolidation of certain materials and machines for nuclear criticality experiments and training

    SciTech Connect

    1996-05-21

    In support of its assigned missions and because of the importance of avoiding nuclear criticality accidents, DOE has adopted a policy to reduce identifiable nuclear criticality safety risks and to protect the public, workers, government property and essential operations from the effects of a criticality accident. In support of this policy, the Los Alamos Critical Experiments Facility (LACEF) at the Los Alamos National Laboratory (LANL) Technical Area (TA) 18, provides a program of general purpose critical experiments. This program, the only remaining one of its kind in the United States, seeks to maintain a sound basis of information for criticality control in those physical situations that DOE will encounter in handling and storing fissionable material in the future, and ensuring the presence of a community of individuals competent in practicing this control.

  19. Probabilistic Prediction of Homogenized Property and Update of Prediction for Spherical Porous Material Considering Microstructural Uncertainties

    NASA Astrophysics Data System (ADS)

    Wen, Pin; Yokota, Kenichiro; Takano, Naoki

    2015-02-01

    The purpose of this work is to simulate uncertainties existing in microscopic field of spherical porous material so that the homogenized property of interest can be predicted with high reliability. Moreover, the final goal is to build a bridge of feedback between microstructure design and fabrication to predict microstructure morphology by limited measurement data of macroscopic property. The uncertainties are identified as parametric variables in constituent material property and nonparametric variables in morphological fluctuation such as disordering and clustering in microstructure. First-order perturbation, based stochastic homogenization (FPSH) method together with mixture distribution technique is employed for probabilistic prediction. Furthermore, the update of prediction is accomplished in the case of an assumed virtual experimental trial. Two numerical examples show that the probabilistic prediction has given a better decision in microstructure design than deterministic prediction. The main conclusion coming from the new method derived by gap between measured data and prediction showed that, when the update is used for morphology prediction of microstructure, it is almost perfect agreement with parameters’ setup of virtual experiment. After it is applied for update of probabilistic homogenized property, it could make the updated homogenized property closer to measurement data so that it becomes more realistic.

  20. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.