Science.gov

Sample records for material properties test

  1. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  2. Wiring test program insulation material related properties

    NASA Technical Reports Server (NTRS)

    Reher, Heinz-Josef

    1995-01-01

    This viewgraph presentation provides an overview of activities at DASA-RI concerning the testing of wires for manned spacecraft, including test facilities, arc-tracking tests, flammability tests, microgravity tests, and standardization, and outlines future activities.

  3. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  4. Cyclic material properties tests supporting elastic-plastic analysis development

    SciTech Connect

    Hodge, S.C.; Minicucci, J.M.

    1996-11-01

    Correlation studies have shown that hardening models currently available in the ABAQUS finite element code (isotropic, kinematic) do not accurately capture the inelastic strain reversals that occur due to structural rebounding from a rapidly applied transient dynamic load. The purpose of the Cyclic Material properties Test program was to obtain response data for the first several cycles of inelastic strain reversal from a cyclic properties test. This data is needed to develop elastic-plastic analysis methods that can accurately predict strains and permanent sets in structures due to rapidly applied transient dynamic loading. Test specimens were cycled at inelastic strain levels typical of rapidly applied transient dynamic analyses (0.5% to 4.0%). In addition to the inelastic response data, cyclic material properties for high yield strength (80 ksi) steel were determined including a cyclic stress-strain curve for a stabilized specimen. Two test methods, the Incremental Step method and the Companion specimen Method, were sued to determine cyclic properties. The incrementally decreasing strain amplitudes in the first loading block of the Incremental Step method test is representative of the response of structures subjected to rapidly applied transient dynamic loads. The inelastic strain history data generated by this test program will be used to support development of a material model that can accurately predict inelastic material behavior including inelastic strain reversals. Additionally, this data can be used to verify material model enhancements to elastic-plastic finite element analysis codes.

  5. Correlation of elastomer material properties from small specimen tests and scale-size bearing tests

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1994-06-01

    Tests were performed on small-size elastomer specimens and scale-size laminated elastomeric bearings to correlate the material properties in shear between the two types of tests. An objective of the tests was to see how well the material properties that were determined from specimen tests could predict the response of scale-size laminated elastomeric bearings. Another objective was to compare the results of specimen test and scale-size bearing test conducted by different testing organizations. A comparison between the test results from different organizations on small specimens showed very good agreement. In contrast, the correlation of scale-size bearing tests showed differences in bearing stiffness.

  6. Laboratory experiments designed to test the remediation properties of materials

    SciTech Connect

    Gilbert, J.S.; Wildeman, T.R.; Ford, K.L.

    1999-07-01

    Passive treatment systems constructed to remediate mine drainage have proven to be very successful for a wide variety of drainage compositions and volumes. The construction of an anaerobic passive treatment system requires a mixture of local materials with the objective of producing a system that allows adequate water flow while supporting the growth of sulfate-reducing bacteria. These bacteria have the effect of reducing the oxidizing potential in the system causing many sulfide-forming metals in solution to precipitate. The focus of these experiments was the study of chemical characteristics of materials, individually and in mixtures, with the purpose of determining which would be best suited for incorporation into a treatment system. The materials of interest were manure (fresh and aged), alfalfa, limestone, and sawdust, which were all collected in close proximity to the construction site of the proposed treatment system. A variety of chemical and physical hypotheses were formulated prior to performing simple chemical characterization and anaerobic treatment tests. The hypotheses relating to the chemical nature of the single materials were carbon to nitrogen ratio, availability of low molecular weight organic acids, number of adsorption sites, and organic carbon content. In addition, hypotheses concerning the performance of mixtures were evaluated by looking at the relative amount of bacterial growth (and metal removal) seen in each mixture over a 4-week period. The results of the laboratory experiments confirmed hypotheses, and demonstrated that in the mixtures, the anaerobic bacteria flourish when alfalfa is present, up to a point. The best mixture that allowed proliferation of bacteria while also removing metals consisted of 50% limestone, 25% aged manure, 15% sawdust, and 10% alfalfa (% by weight).

  7. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  8. Research study for materials/properties test results database

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Lubricants Data Base System was designed and developed for operation on the DEC PDP 11/24 computer. The procedures are written in Datatrieve. In transferring the Lubricants System to the VAX 8600 computer, the Datatrieve had to be 80 percent rewritten. At the end of the contract the Lubricants System is operational on both the PDP 11/24 and VAX 8600 computers. The LOX/GOX, Aluminum/Steel, Toxic, VCM, and Flammability Systems are operational only on the PDP 11/24 computer. The Toxic, VCM, and Flammability Systems do not contain any useable data, only test data. However, the LOX/GOX file does contain test data results supplied by MSFC.

  9. Mechanical property tests on structural materials for ITER magnet system at low temperatures in China

    NASA Astrophysics Data System (ADS)

    Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    High field superconducting magnets need strong non-superconducting components for structural reinforcement. For instance, the ITER magnet system (MS) consists of cable-in-conduit conductor, coil case, magnet support, and insulating materials. Investigation of mechanical properties at magnet operation temperature with specimens machined at the final manufacturing stages of the conductor jacket materials, magnet support material, and insulating materials, even the component of the full-size conductor jacket is necessary to establish sound databases for the products. In China, almost all mechanical property tests of structural materials for the ITER MS, including conductor jacket materials of TF coils, PF coils, CCs, case material of CCs, conductor jacket materials of Main Busbars (MB) and Corrector Busbars (CB), material of magnet supports, and insulating materials of CCs have been carried out at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). In this paper, the mechanical property test facilities are briefly demonstrated and the mechanical tests on the structural materials for the ITER MS, highlighting test rigs as well as test methods, are presented.

  10. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  11. Analysis of three-point-bend test for materials with unequal tension and compression properties

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1974-01-01

    An analysis capability is described for the three-point-bend test applicable to materials of linear but unequal tensile and compressive stress-strain relations. The capability consists of numerous equations of simple form and their graphical representation. Procedures are described to examine the local stress concentrations and failure modes initiation. Examples are given to illustrate the usefulness and ease of application of the capability. Comparisons are made with materials which have equal tensile and compressive properties. The results indicate possible underestimates for flexural modulus or strength ranging from 25 to 50 percent greater than values predicted when accounting for unequal properties. The capability can also be used to reduce test data from three-point-bending tests, extract material properties useful in design from these test data, select test specimen dimensions, and size structural members.

  12. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    SciTech Connect

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  13. Development of a Cryogenic Mechanical Property Testing Station for Superconducting RF Cavity Material

    NASA Astrophysics Data System (ADS)

    Compton, C.; Chandrasekaran, S. K.; Baars, D.; Bieler, T.; Darbandi, P.; Wright, N.

    2010-04-01

    Recent concerns with pressure vessel codes as they relate to the construction of superconducting linacs have raised questions about mechanical proprieties of materials used in their fabrication at cryogenic temperatures. Pressure vessel engineering codes will require demonstration of a level of safety equivalent to that provided by the various ASME pressure and piping codes, so low temperature mechanical properties of niobium, titanium, and their alloys are needed. Michigan State University (MSU), in collaboration with Fermi National Accelerator Laboratory (FNAL) and Florida State University (FSU), is constructing a materials testing station for tensile tests of materials at room and cryogenic temperatures (300, 77, and 4 K). Once complete, the testing station will allow researchers to relate effects of different microstructures arising from manufacturing pathways, including annealing processes, crystal orientations and microstructure characteristics (e.g. welds) to the resulting mechanical properties at cryogenic temperatures. The paper covers the design, construction, and commissioning of the cryogenic testing station, including initial results.

  14. Remarks on Some Mechanical Small-Scale Tests Applied to Properties of Materials

    NASA Astrophysics Data System (ADS)

    Cardu, Marilena; Seccatore, Jacopo

    2016-06-01

    The paper presents the results of test campaigns on small-scale strength properties (particularly, micro-hardness) performed on two homogeneous materials: calcite, a very common and widespread mineral that is characterized by its relatively low Mohs hardness and its high reactivity with even weak acids; and glass, an amorphous solid characterized by the absence of the long-range order which defines crystalline materials. After a synthetic description of the principles underlying two of the three classical comminution laws, known as Kick's law and Rittinger's law, experimental results are discussed. The results of the tests performed show that both scale effect and size effect contribute to the non-constancy of mechanical properties at small scale for crystalline materials. On the other hand, for amorphous materials, a theoretical law considering size effects gives considerably different results from empirical measurements. Considerations and an extended discussion address these findings.

  15. Analysis of materials properties of niobium tube from the results of a virtual bulge test

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Sumption, Michael; Lim, H.; Collings, E. W.

    2012-06-01

    Hydroforming has been selected as a technique for the seamless fabrication of multicell superconducting radiofrequency (SRF) cavities. For the successful application of this technique to cavity fabrication, it is essential to understand deformation behavior of tubes under hydroforming conditions. Input to the finite-element modeling (FEM) which generally precedes the actual hydroforming process requires the constitutive properties of the tube material. This information may be obtained from the results of hydraulic bulge testing. The present paper provides an example of this activity. In order to verify the steps to be taken in analyzing future bulge-test data a circular argument recovers the original constitutive properties from the results of an FEM-based "virtual bulge test".

  16. Material properties of human rib cortical bone from dynamic tension coupon testing.

    PubMed

    Kemper, Andrew R; McNally, Craig; Kennedy, Eric A; Manoogian, Sarah J; Rath, Amber L; Ng, Tracy P; Stitzel, Joel D; Smith, Eric P; Duma, Stefan M; Matsuoka, Fumio

    2005-11-01

    The purpose of this study was to develop material properties of human rib cortical bone using dynamic tension coupon testing. This study presents 117 human rib cortical bone coupon tests from six cadavers, three male and three female, ranging in age from 18 to 67 years old. The rib sections were taken from the anterior, lateral, and posterior regions on ribs 1 through 12 of each cadaver's rib cage. The cortical bone was isolated from each rib section with a low speed diamond saw, and milled into dog bone shaped tension coupons using a small computer numerical control machine. A high-rate servo-hydraulic Material Testing System equipped with a custom slack adaptor, to provide constant strain rates, was used to apply tension loads to failure at an average rate of 0.5 strains/sec. The elastic modulus, yield stress, yield strain, ultimate stress, ultimate strain, and strain energy density were determined from the resulting stress versus strain curves. The overall average of all cadaver data gives an elastic modulus of 13.9 GPa, a yield stress of 93.9 MPa, a yield strain of 0.88 %, an ultimate stress of 124.2 MPa, an ultimate strain of 2.7 %, and a strain energy density of 250.1 MPa-microstrain. For all cadavers, the plastic region of the stress versus strain curves was substantial and contributed approximately 60 % to the strain energy and over 80 % in the tests with the 18 year old cadaver. The rib cortical bone becomes more brittle with increasing age, shown by an increase in the modulus (p < 0.01) and a decrease in peak strain (p < 0.01). In contrast to previous three-bending tests on whole rib and rib cortical bone coupons, there were no significant differences in material properties with respect to rib region or rib level. When these results are considered in conjunction with the previous three-point bending tests, there is regional variation in the structural response of the human rib cage, but this variation appears to be primarily a result of changes in the

  17. An Experimental and Analytical Evaluation of a Biaxial Test for Determining Shear Properties of Composite Materials

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Barnett, Terry R.

    1988-01-01

    The results of an experimental and analytical investigation of a biaxial tension/compression test for determining shear properties of composite materials are reported. Using finite element models of isotropic and orthotropic laminates, a specimen geometry was optimized. A kinematic fixture was designed to introduce an equal and opposite pair of forces into a specimen with a one inch square test section. Aluminum and several composite laminates with the optimized geometry and a configuration with large stress gradients were tested in the fixture. The specimens were instrumented with strain gages in the center of the test section for shear stiffness measurements. Pure shear strain was measured. The results from the experiments correlated well with finite element results. Failure of the specimens occurred through the center of the test section and appeared to have initiated at the high stress points. The results lead to the conclusion that the optimized specimen is suitable for determining shear modulus for composite materials. Further revisions to the specimen geometry are necessary if the method is to give shear strength data.

  18. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    ERIC Educational Resources Information Center

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  19. Human Annulus Fibrosus Material Properties from Biaxial Testing and Constitutive Modeling are Altered with Degeneration

    PubMed Central

    O’Connell, Grace D.; Sen, Sounok; Elliott, Dawn M.

    2012-01-01

    The annulus fibrosus (AF) of the intervertebral disc undergoes large and multidirectional stresses and strains. Uniaxial tensile tests are limited for measuring AF material properties, because freely contracting edges can prevent fiber stretch and are not representative of in situ boundary conditions. The objectives of this study were to measure human AF biaxial tensile mechanics and to apply and validate a constitutive model to determine material properties. Biaxial tensile tests were performed on samples oriented along the circumferential-axial and the radial-axial directions. Data were fit to a structurally-motivated anisotropic hyperelastic model composed of isotropic extrafibrillar matrix, nonlinear fibers, and fiber-matrix interactions (FMI) normal to the fibers. The validated model was used to simulate shear and uniaxial tensile behavior, to investigate AF structure-function, and to quantify the effect of degeneration. The biaxial stress-strain response was described well by the model (R2>0.9). The model showed that the parameters for fiber nonlinearity and the normal FMI correlated with degeneration, resulting in an elongated toe region and lower stiffness with degeneration. The model simulations in shear and uniaxial tension successfully matched previously published circumferential direction Young’s modulus, provided an explanation for the low values in previously published axial direction Young’s modulus, and was able to simulate shear mechanics. The normal FMI were important contributors to stress and changed with degeneration, therefore, their microstructural and compositional source should be investigated. Finally, the biaxial mechanical data and constitutive model can be incorporated into a disc finite element model to provide improved quantification of disc mechanics. PMID:21748426

  20. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1977-01-01

    The potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project were studied to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Materials for study were chosen on the basis of existing knowledge of generic chemical types having high resistance to environmental weathering. The materials varied from rubbers to thermoplastics and presented a broad range of mechanical properties and processing requirements. Basic physical and optical properties were measured on the polymers and were redetermined after exposure to indoor artificial accelerated aging conditions covering four time periods. Strengths and weaknesses of the various materials were revealed and data was accumulated for the development of predictive methodologies. To date, silicone rubbers, fluorocarbons, and acrylic polymers appear to have the most promising combination of characteristics. The fluorocarbons may be used only as films, however, because of their high cost.

  1. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1983-01-01

    A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.

  2. Mechanical properties test data for structural materials. Semiannual progress report for period ending July 31, 1980

    SciTech Connect

    Keiser, D.D.

    1980-01-01

    Mechanical property investigations of Alloy 718 given either the 954/sup 0/C conventional or the INEL heat treatment are continuing. Current conventional heat-treat data include tests showing the effects of surface finish, product variability, and thermal exposure on the high-cycle fatigue properties; creep-fatigue tests at 538, 593, 649, and 704/sup 0/C with 0.1 hour hold times at peak strain; and stress-rupture tests of notched and smooth specimens showing the effect of pretest thermal exposure. A few stress-rupture tests of weld and base metals given the INEL heat treatment are also reported. High-cycle fatigue tests of Type 316 stainless steel at 593/sup 0/C are reported and compared with previous data from other sources.

  3. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1983-01-01

    Low cost encapsulation materials for the Flat Plate Solar Array Program (FSA) are investigated. The goal of the program is to identify, test, evaluate and recommend encapsulation materials and processes for the fabrication of cost effective and long life solar modules. Accelerated aging techniques for module component lifetime studies, investigation of candidate outer cover films and continued evaluation of soil repellant coatings are also included.

  4. Properties of precipitation hardened steel irradiated at 323 K in the Japan materials testing reactor

    NASA Astrophysics Data System (ADS)

    Niimi, M.; Matsui, Y.; Jitsukawa, S.; Hoshiya, T.; Tsukada, T.; Ohmi, M.; Mimura, H.; Ooka, N.; Hide, K.

    A precipitation hardening type 630 stainless steel was irradiated in the Japan Materials Testing Reactor (JMTR) in contact with the reactor primary coolant. The temperature of the irradiated specimens was about 330 K. The fast neutron ( E > 1 MeV) fluence for the specimens ranged from 10 24 to 10 26 m -2. Tension tests and fracture toughness tests were carried out at room temperature, while Charpy impact tests were done at temperatures of 273-453 K. Tensile strength data showed a peak of 1600 MPa at around 7 × 10 24 m -2, then gradually decreased to about 1500 MPa at 1.2 × 10 26 m -2. The elongation decreased with irradiation from 12% for unirradiated material to 6% at 1.2 × 10 26 m -2. The fractography after the tension test revealed that the fracture was ductile. Fracture toughness decreased to about a half of the value for unirradiated material with irradiation. The cleavage fracture was dominant on the fractured surface. Charpy impact tests showed an increase of ductile-brittle transition temperature (DBTT) by 60 K with irradiation.

  5. Investigation of Test Methods, Material Properties and Processes for Solar Cell Encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P.; Baum, B.

    1982-01-01

    The evaluation of potentially useful low cost encapsulation materials is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost effective, long life solar cell modules. Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatment, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. Two component aliphatic urethane casting syrups were evaluated for suitability as solar module pottants on the basis of optical, physical and fabrication characteristics.

  6. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Astrophysics Data System (ADS)

    Willis, P.; Baum, B.

    1982-07-01

    The evaluation of potentially useful low cost encapsulation materials is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost effective, long life solar cell modules. Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatment, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. Two component aliphatic urethane casting syrups were evaluated for suitability as solar module pottants on the basis of optical, physical and fabrication characteristics.

  7. Mechanical properties testing of candidate polymer matrix materials for use in high performance composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. S.; Adams, D. F.

    1985-01-01

    The mechanical properties of four candidate neat resin systems for use in graphite/epoxy composites are characterized. This includes tensile and shear stiffnesses and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests are conducted on specimens in the dry state and moisture-saturated, at temperatures of 23C, 82C and 121C. The neat resins tested are Hexcel HX-1504, Narmco 5245-C, American Cyanamid CYCOM 907, and Union Carbide ERX-4901A (MDA). Results are compared with those obtained for four other epoxy resins tested in a prior program, i.e., Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914, as well as with available Hercules 3501-6 data. Scanning electron microscopic examination of fracture surfaces is performed to permit the correlation of observed failure modes with the environmental test conditions. A finite element micromechanics analysis is used to predict unidirectional composite response under various test conditions, using the measured neat resin properties as input data.

  8. Investigation of test methods, material properties, and processes for solar cell encapsulants. Seventh annual report

    SciTech Connect

    Willis, P.B.

    1983-01-01

    The goal of the program is to identify and evaluate encapsulation materials and processes for the protection of silicon solar cells for service in a terrestrial environment. Aging and degradation studies were performed including: thermal aging, sunlamp exposures, aging in controlled environment reactors and outdoor photothermal aging devices, and metal catalyzed degradation. Other tests addressed water absorption, primers and adhesives, soiling experiments, and corrosion protection. (LEW)

  9. Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures.

    PubMed

    Lobascio, C; Briccarello, M; Destefanis, R; Faraud, M; Gialanella, G; Grossi, G; Guarnieri, V; Manti, L; Pugliese, M; Rusek, A; Scampoli, P; Durante, M

    2008-03-01

    Shielding is the only practical countermeasure for the exposure to cosmic radiation during space travel. It is well known that light, hydrogenated materials, such as water and polyethylene, provide the best shielding against space radiation. Kevlar and Nextel are two materials of great interest for spacecraft shielding because of their known ability to protect human space infrastructures from meteoroids and debris. We measured the response to simulated heavy-ion cosmic radiation of these shielding materials and compared it to polyethylene, Lucite (PMMA), and aluminum. As proxy to galactic nuclei we used 1 GeV n iron or titanium ions. Both physics and biology tests were performed. The results show that Kevlar, which is rich in carbon atoms (about 50% in number), is an excellent space radiation shielding material. Physics tests show that its effectiveness is close (80-90%) to that of polyethylene, and biology data suggest that it can reduce the chromosomal damage more efficiently than PMMA. Nextel is less efficient as a radiation shield, and the expected reduction on dose is roughly half that provided by the same mass of polyethylene. Both Kevlar and Nextel are more effective than aluminum in the attenuation of heavy-ion dose. PMID:18301097

  10. Investigation of test methods, material properties, and processes for solar-cell encapsulants. Annual report

    SciTech Connect

    Willis, P. B.; Baum, B.

    1982-07-01

    Potentially useful low cost encapsulation materials are evaluated. The goal of the program is to identify, evaluate, test, and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations have concerned the development of advanced cure chemistries for lamination type pottants, the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. Experiments are underway to assess the durability and cost effectiveness of coatings for protection of steel. Investigations are continuing with commercial maintenance coatings based on fluorocarbon and silicone-alkyd chemistries. Experiments were conducted to determine the effectiveness of occlusive coatings for wood products such as hard-board. An experimental program continued to determine the usefulness of soil resistant coatings. Primers were evaluated for effectiveness in bonding candidate pottants to outer covers, glass and substate materials. A program of accelerated aging and life predictive strategies is being conducted and data are reported for sunlamp exposure and thermal aging. Supporting activities are also discussed briefly. (LEW)

  11. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1985-01-01

    The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.

  12. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  13. Rhenium material properties

    SciTech Connect

    Biaglow, J.A.

    1995-09-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  14. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  15. Materials property measurements

    SciTech Connect

    Boyd, D.M.; Green, E.R.; Doctor, S.R.; Good, M.S.

    1990-04-19

    An in-depth review of the measurement techniques that could be used in materials characterization is presented. The measurement techniques to non-destructively determine the in-service or time-related aging of materials considered include ultrasonic velocity and attenuation, eddy current conductivity, neutron scattering and absorption, conventional and tomographic imaging for ultrasonic and radiation imaging, x-ray scattering, thermal impedance, and magnetic hysteresis. The three sections of the report include a review of failure mechanisms in steel and a discussion of nondestructive evaluation techniques and fracture mechanics, a description of a chart on Measurement Techniques versus Material Properties, and recommendations on the techniques and tests to be performed for the experimental investigations and analysis task of the project. 49 refs., 7 figs.

  16. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1983-01-01

    The goal of the program is to identify, test, evaluate and recommend encapsulation materials and processes for the fabrication of cost-effective and long life solar modules. Of the $18 (1948 $) per square meter allocated for the encapsulation components approximately 50% of the cost ($9/sq m) may be taken by the load bearing component. Due to the proportionally high cost of this element, lower costing materials were investigated. Wood based products were found to be the lowest costing structural materials for module construction, however, they require protection from rainwater and humidity in order to acquire dimensional stability. The cost of a wood product based substrate must, therefore, include raw material costs plus the cost of additional processing to impart hygroscopic inertness. This protection is provided by a two step, or split process in which a flexible laminate containing the cell string is prepared, first in a vacuum process and then adhesively attached with a back cover film to the hardboard in a subsequent step.

  17. Testing of Replacement Bag Material

    SciTech Connect

    Laurinat, J.E.

    1998-11-03

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties.

  18. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1985-01-01

    Progress in solar energy technology is reported in the following areas: aging and life prediction methodology and devices for solar cell encapsulation; the function of adhesion chemistry, primers, and a new diagnostic technique for estimations of bond durability; a study of fire retardant formulations for decreasing the potential flammability of solar modules; initial studies of the electrical insulating properties of encapsulation materials and measurement of the intrinsic dielectric strength; antisoiling compounds for the prevention of soil build-up on the outer surface of the module; and low temperature processing encapsulants that permit module fabrication at temperatures less than 100 C. Another area of study has been added to determine the degree to which formulation and processes affect the module quality and manufacturing yield.

  19. Investigation of test methods, material properties, and processes for solar cell encapsulants. Ninth annual report

    SciTech Connect

    Willis, P.B.

    1985-01-01

    Progress is reported in the areas of: aging and life prediction methodology and devices for solar cell encapsulation; the function of adhesion chemistry, primers, and a new diagnostic technique for estimations of bond durability; a study of fire retardant formulations for decreasing the potential flammability of solar modules; initial studies of the electrical insulating properties of encapsulation materials and measurement of the intrinsic dielectric strength; anti-soiling compounds for the prevention of soil build-up on the outer surface of the module; and low temperature processing encapsulants that permit module fabrication at temperatures less than 100/sup 0/C. Another area of study has been added to determine the degree to which formulation and processes affect the module quality and manufacturing yield.

  20. Thermo-Optical and Mechanical Property Testing of Candidate Solar Sail Materials

    NASA Technical Reports Server (NTRS)

    Hollerman, WIlliam A.; Stanaland, T. L.; Womack, F.; Edwards, David; Hubbs, Whitney; Semmel, Charles

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Since sails are not limited by reaction mass, they provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Practical solar sails can expand the number of possible missions, enabling new concepts that are difficult by conventional means. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra-lightweight materials for spacecraft propulsion. Solar sails are generally composed of a highly reflective metallic front layer, a thin polymeric substrate, and occasionally a highly emissive back surface. The Space Environmental Effects Team at MSFC is actively characterizing candidate sails to evaluate the thermo-optical and mechanical properties after exposure to electrons. This poster will discuss the preliminary results of this research.

  1. Composite Material Mirror Testing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photograph, the composite material mirror is tested in the X-Ray Calibration Facility at the Marshall Space Flight Center for the James Webb Space Telescope (JWST). The mirror test conducted was to check the ability to accurately model and predict the cryogenic performance of complex mirror systems, and the characterization of cryogenic dampening properties of beryllium. The JWST, a next generation successor to the Hubble Space Telescope (HST), was named in honor of James W. Webb, NASA's second administrator, who led NASA in the early days of the fledgling Aerospace Agency. Scheduled for launch in 2010 aboard an expendable launch vehicle, the JWST will be able to look deeper into the universe than the HST because of the increased light-collecting power of its larger mirror and the extraordinary sensitivity of its instrument to infrared light.

  2. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  3. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Astrophysics Data System (ADS)

    Willis, P. B.

    1982-04-01

    Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. One compound in particular, designated Lupersol - TBEC (Lucidol Division of Pennwalt Corp.) was found to be unusually effective in promoting the rapid cure of both these materials. Formulation of these resins with TBEC resulted in compositions of very high gel content, lower temperatures of activation, and much lower cure times, even in the ethylene/methyl acrylate polymer that is more difficult to cure. It is expected that TBEC modified pottant formulations may permit the lamination/encapsulation step to be operated at lower temperatures, higher speed, higher throughput and a much wider tolerance for intentional or accidental variations in the cure schedule. An experimental program continued to determine the effectiveness of soil resistant coatings.

  4. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1982-01-01

    Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. One compound in particular, designated Lupersol - TBEC (Lucidol Division of Pennwalt Corp.) was found to be unusually effective in promoting the rapid cure of both these materials. Formulation of these resins with TBEC resulted in compositions of very high gel content, lower temperatures of activation, and much lower cure times, even in the ethylene/methyl acrylate polymer that is more difficult to cure. It is expected that TBEC modified pottant formulations may permit the lamination/encapsulation step to be operated at lower temperatures, higher speed, higher throughput and a much wider tolerance for intentional or accidental variations in the cure schedule. An experimental program continued to determine the effectiveness of soil resistant coatings.

  5. Test Method To Quantify The Wicking Properties Of Porous Insulation Materials Designed To Prevent Interstitial Condensation

    NASA Astrophysics Data System (ADS)

    Binder, Andrea; Zirkelbach, Daniel; Künzel, Hartwig

    2010-05-01

    Applying an interior insulation often is the only option for a thermal retrofit, especially when heritage buildings are concerned. In doing so, the original construction becomes colder in winter and interstitial condensation may occur. The common way to avoid harmful condensation beneath the interior insulation of the external wall is the installation of a vapor barrier. Since such a barrier works both ways, it may adversely affect the drying potential of the wall during the warmer seasons. One way to avoid the problems described is the installation of an interior insulation system without a vapor barrier to the inside. Here, the effect of capillary transport in porous hydrophilic media is used to conduct condensing moisture away from the wall/insulation interface back to the surface in contact with the indoor air. Following an increasing demand, several water wicking insulation materials (e.g. Calcium-silicate, Autoclave Aerated Concrete based mineral foam, hydrophilic Glass fiber, Cellulose fiber) have appeared on the market. In the past, different methods have been developed to measure and describe the liquid transport properties of hydrophilic porous media. However, the evaluation of the moisture transport mechanisms and their efficiency in this special field of implementation is very complex because of the interacting vapor- and liquid moisture transfer processes. Therefore, there is no consensus yet on its determination and quantification.

  6. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  7. Building Materials Property Table

    SciTech Connect

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  8. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants

    NASA Technical Reports Server (NTRS)

    1979-01-01

    During this quarter the technical activities were directed toward the reformulation of ethylene/vinyl acetate copolymer for use as a compound in solar cell module fabrication. Successful formulations were devised that lowered the temperature required for cure and raised the gel content. A major volatile component was also eliminated (acrylate crosslinking agent) which should aid in the production of bubble free laminates. Adhesive strengths and primers for the bonding of ethylene/vinyl acetate to supersyrate and substrate materials was assessed with encouraging results. The incorporation of silane compounds gave high bond strengths. A survey of scrim materials was also conducted.

  9. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  10. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    SciTech Connect

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1980-07-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Technical activities during the past year have covered a number of topics and have emphasized the development of solar module encapsulation technology that employs ethylene/vinyl acetate, copolymer (EVA) as the pottant. These activities have included: (1) continued production of encapsulation grade EVA in sheet form to meet the needs of the photovoltaic industry; (2) investigations of three non-blocking techniques for EVA sheet; (3) performed an economic analysis of the high volume production of each pottant in order to estimate the large volume selling price (EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate); (4) initiated an experimental corrosion protection program to determine if metal components could be successfully protected by encapsulation; (5) began an investigation to determine the maximum temperature which can be tolerated by the candidate pottant material in the event of hot spot heating or other temperature override; (6) continuation of surveys of potentially useful outer cover materials; and (7) continued with the accelerated artificial weathering of candidate encapsulation materials. Study results are presented. (WHK)

  11. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1981-01-01

    Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds

  12. Material Fatigue Testing System

    NASA Technical Reports Server (NTRS)

    Gilley, P. J. (Inventor)

    1973-01-01

    A system for cyclicly applying a varying load to a material under test is described. It includes a load sensor which senses the magnitude of load being applied to a material, and, upon sensing a selected magnitude of loading, causes the load to be maintained for a predetermined time and then cause the system to resume cyclical loading.

  13. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1981-01-01

    Encapsulant materials and processes for the production of cost effective, long life solar cell modules are identified, and evaluated. Ethylene vinyl acetate lamination pottant studies are conducted with respect to the time/temperature cure requirements for successful use of this compound. The time needed to produce successful gel contents are redetermined at a variety of temperatures and are related to the peroxide half life temperature curve. Formulation of the butyl acrylate syrup casting pottant is complete. The formulation contains an ultraviolet stabilizer system and is cured with an initiator that presents no shipping or handling hazards. The catalyzed syrup is stable at room temperature and has a pot life of at least an eight hour period of time. The syrup cures to a transparent rubber in 18 minutes at a temperature of 60 C.

  14. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulents

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technical activities were directed toward the assessment of encapsulation processes for use with ethylene/vinyl acetate copolymer as the pottant. Potentially successful formulations were prepared by compounding the raw polymer with ultraviolet absorbers and crosslinking agents to give stabilized and curable compositions. The compounded resin was then converted to a more useful form with an extruder to give pottant in sheets that could be more easily used in lamination. After experimenting with various techniques, the vacuum-bag process was found to be an excellent encapsulation method. Miniature single-celled and multi-celled solar modules of both substrate and superstrate designs were prepared by this technique. The resulting modules were of good appearance, were bubble-free, and successfully passed the thermal cycle test.

  15. Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

    SciTech Connect

    K.R. Arpin; T.F. Trimble

    2003-04-01

    This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.

  16. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  17. Experimental tests of irradiation-anneal-reirradiation effects on mechanical properties of RPV plate and weld materials

    SciTech Connect

    Hawthorne, J.R.

    1996-01-01

    The Charpy-V (C{sub V}) notch ductility and tension test properties of three reactor pressure vessel (RPV) steel materials were determined for the 288{degree}C (550{degree}F) irradiated (I), 288{degree}C (550{degree}F) irradiated + 454{degree}C (850{degree}F)-168 h postirradiation annealed (IA), and 288{degree}C (550{degree}F) reirradiated (IAR) conditions. Total fluences of the I condition and the IAR condition were, respectively, 3.33 {times} 10{sup 19} n/cm{sup 2} and 4.18 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV. The irradiation portion of the IAR condition represents an incremental fluence increase of 1. 05 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV, over the I-condition fluence. The materials (specimens) were supplied by the Yankee Atomic Electric Company and represented high and low nickel content plates and a high nickel, high copper content weld deposit prototypical of the Yankee-Rowe reactor vessel. The promise of the IAR method for extending the fluence tolerance of radiation-sensitive steels and welds is clearly shown by the results. The annealing treatment produced full C{sub V} upper shelf recovery and full or nearly full recovery in the C{sub V} 41 J (30 ft-lb) transition temperature. The C{sub V} transition temperature increases produced by the reirradiation exposure were 22% to 43% of the increase produced by the first cycle irradiation exposure. A somewhat greater radiation embrittlement sensitivity and a somewhat greater reirradiation embrittlement sensitivity was exhibited by the low nickel content plate than the high nickel content plate. Its high phosphorus content is believed to be responsible. The IAR-condition properties of the surface vs. interior regions of the low nickel content plate are also compared.

  18. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W,; Montgomery, Eliza M.

    2012-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1 G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  19. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2011-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  20. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2010-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  1. Material Testing Device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.

  2. Celotex Structural Properties Tests

    SciTech Connect

    Smith, A.C.

    2001-01-26

    In the course of regulatory review of the 9975 packaging, the question of the effects environmental conditions on performance of the packaging was raised. The results of previous tests of the Celotex material, used for impact absorption and thermal insulation, indicated that the effect of temperature variation was small. Accordingly, performance under ambient conditions was judged to be representative of performance under temperature extremes. To extend the database to include other effects, and in response to the questions, a series of materials tests were performed on the Celotex brand cellulose fiberboard material.

  3. Reviews of Test Materials.

    ERIC Educational Resources Information Center

    Mullen, Jo-Ann

    1981-01-01

    Reviews four standardized tests geared to helping development educators in placing students in courses and assessing their learning levels: the Davis Reading Test; the Descriptive Tests of Language Skills; the Descriptive Tests of Mathematics Skills; and the Nelson-Denny Reading Test. (CAM)

  4. Material testing of silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Palusinski, Iwona A.

    2009-08-01

    The Aerospace Corporation is developing a space qualification method for silicon carbide optical systems that covers material verification through system development. One of the initial efforts has been to establish testing protocols for material properties. Three different tests have been performed to determine mechanical properties of SiC: modulus of rupture, equibiaxial flexural strength and fracture toughness. Testing materials and methods have been in accordance with the respective ASTM standards. Material from four vendors has been tested to date, as part of the MISSE flight program and other programs. Data analysis has focused on the types of issues that are important when building actual components- statistical modeling of test results, understanding batch-to-batch or other source material variations, and relating mechanical properties to microstructures. Mechanical properties are needed as inputs to design trade studies and development and analysis of proof tests, and to confirm or understand the results of non-destructive evaluations of the source materials. Measuring these properties using standardized tests on a statistically valid number of samples is intended to increase confidence for purchasers of SiC spacecraft components that materials and structures will perform as intended at the highest level of reliability.

  5. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  6. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  7. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  8. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  9. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  10. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  11. Long-Term Materials Test Program: materials exposure test plan

    SciTech Connect

    1981-12-01

    The Long Term Materials Test Program is designed to identify promising corrosion resistant materials for coal-fired gas turbine applications. Resistance of materials to long term accelerated corrosion will be determined through realistic PFB environmental exposure of candidate turbine materials for up to 14,000 hours. Selected materials also will be evaluated for their ability to withstand the combined erosive and corrosive aspects of the PFB effluent. A pressurized fluidized bed combustor facility has been constructed at the General Electric Coal Utilization Research Laboratory at Malta, New York. The 12-inch diameter combustor will burn high sulfur coal with moderate-to-high chlorine and alkali levels and utilize dolomite as the sulfur sorbent. Hot gas cleanup is achieved using three stages of cyclone separators. Downstream of the cylone separators, a low velocity test section (approx. 30 ft/s) capable of housing 180 pin specimens 1/4'' diameter has been installed to assess the corrosion resistance of the various materials at three different temperatures ranging from 1300 to 1600/sup 0/F. Following the low velocity test section is a high velocity test section consisting of four cascades of airfoil shaped specimens, six specimens per cascade. This high velocity test section is being used to evaluate the combined effects of erosion and corrosion on the degradation of gas turbine materials at gas velocities of 800 to 1400 ft/s. This report summarizes the materials selection and materials exposure test plan for the Long Term Materials Test.

  12. Design of test specimens and procedures for generating material properties of Douglas fir/epoxy laminated wood composite material: With the generation of baseline data at two environmental conditions

    NASA Technical Reports Server (NTRS)

    Johnson, Paul E.

    1985-01-01

    In support of the design of wind turbine generator airfoils/blades utilizing Douglas Fir/West System Epoxy laminated composite material, a program was undertaken to define pertinent material properties utilizing small scale test specimens. Task 1 was the development of suitable monotonic tension, compression, short beam shear and full reversed cyclic specimen designs and the companion grips and testing procedures. Task 2 was the generation of the material properties at two environmental conditions utilizing the specimens and procedures developed in Task 1. The monotonic specimens and procedures generated results which compare favorably with other investigators while the cyclic results appear somewhat conservative. Adding moisture and heat or scarf joints degraded the monotonic performance but had a more nebulus effect with cyclic loading.

  13. Methods and instruments for materials testing

    NASA Technical Reports Server (NTRS)

    Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)

    2011-01-01

    Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.

  14. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  15. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  16. Mechanical properties of nanophase materials

    SciTech Connect

    Siegel, R.W.; Fougere, G.E.

    1993-11-01

    It has become possible in recent years to synthesize new materials under controlled conditions with constituent structures on a nanometer size scale (below 100 nm). These novel nanophase materials have grain-size dependent mechanical properties significantly different than those of their coarser-grained counterparts. For example, nanophase metals are much stronger and apparently less ductile than conventional metals, while nanophase ceramics are more ductile and more easily formed than conventional ceramics. The observed mechanical property changes are related to grain size limitations and/or the large percentage of atoms in grain boundary environments; they can also be affected by such features as flaw populations, strains and impurity levels that can result from differing synthesis and processing methods. An overview of what is presently known about the mechanical properties of nanophase materials, including both metals and ceramics, is presented. Some possible atomic mechanisms responsible for the observed behavior in these materials are considered in light of their unique structures.

  17. European tests on materials outgassing

    NASA Technical Reports Server (NTRS)

    Zwaal, A.

    1977-01-01

    With a view to international coordination of spacecraft materials, a number of European firms and institutes performed outgassing tests on identical materials at 125 C in high vacuum. The outgassing data obtained with the different types of equipment is presented and both the results and the critical parameters are discussed.

  18. Property Status of Lunar Material

    NASA Astrophysics Data System (ADS)

    Pop, V.

    Most of the lunar material in private hands is of meteoric origin, and its property sta- tus does not present many challenges. The intention of Applied Space Resources, Inc, to fly a commercial lunar sample return mission and to subsequently offer lunar ma- terial for sale, raises the issue of the legality of exploitation and private ownership of retrieved lunar material. Lunar samples have been returned in the past by means of the Apollo (US) and Luna (USSR) missions and, while most of the material re- mains government property and is used for scientific means, a small fraction has been transferred abroad and some has entered the private market. Apollo-collected moon- rocks have been offered, symbolically, to heads of States, and some foreign nations have subsequently transferred ownership to private individuals. The same, lunar ma- terial of Soviet provenience has entered the private market, this forming a valuable legal precedent for the lawfulness of sale of lunar material. Recently, plans were made public to award the Apollo astronauts with lunar rocks. While in the US there is a popular misconception that it is illegal to own lunar material, the truth lies elsewhere. As the Apollo samples are the property of the US government and a small fraction was stolen, lost, or misplaced, the US government intends to recover this material, unlawfully owned. In the same time, a significant number of individuals have been prosecuted for offering for sale fake lunar rocks. The present paper will analyse the different categories of lunar material according to its ownership status, and will as- sert that private property of lunar material is lawful, and lunar material that will be returned in the future will be able to enter the market without hindrances.

  19. Composite materials: Testing and design

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D. (Editor)

    1988-01-01

    The present conference discusses topics in the analysis of composite structures, composite materials' impact and compression behavior, composite materials characterization methods, composite failure mechanisms, NDE methods for composites, and filament-wound and woven composite materials' fabrication. Attention is given to the automated design of a composite plate for damage tolerance, the effects of adhesive layers on composite laminate impact damage, instability-related delamination growth in thermoset and thermoplastic composites, a simple shear fatigue test for unidirectional E-glass epoxy, the growth of elliptic delaminations in laminates under cyclic transverse shear, and the mechanical behavior of braided composite materials.

  20. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  1. Functional Properties of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Kassing, Rainer; Petkov, Plamen; Kulisch, Wilhelm; Popov, Cyril

    This book, based on the lectures and contributions of the NATO ASI on "Functional Properties of Nanostructured Materials", gives a broad overview on this topic, as it combines basic theoretical articles, papers dealing with experimental techniques, and contributions on advanced and up-to-date applications in fields such as microelectronics, optoelectronics, electrochemistry, sensorics, and biotechnology. In addition, it presents an interdisciplinary approach since the authors came from such different fields as physics, chemistry, engineering, materials science and biology.

  2. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  3. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  4. Materials Properties Research at MSFC

    NASA Technical Reports Server (NTRS)

    Presson, Joan B.; Burdine, Robert (Technical Monitor)

    2002-01-01

    MSFC is currently planning, organizing and directing test coupon fabrication and subsequent CTE testing for two mirror materials of specific interest to the AMSD and NGST programs, Beryllium 0-30H (Be 0-30H) and Ultra Low Expansion glass (ULE). The ULE test coupons are being fabricated at MSFC from AMSD core residuals provided by Kodak, The Be 0-30H test coupons are being fabricated at Brush Wellman using residuals from the SBMD. Both sets of test coupons will be sent to a test vendor selected through the NASA competitive proposal process with the test results being provided by written report to MSFC by the end of the fiscal year. The test results will become model input data for the AMSD analysts, both MSFC and contractor, providing an enhancement to the historical CTE data currently available.

  5. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  6. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  7. Electrostatic testing of thin plastic materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1988-01-01

    Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.

  8. Material properties of oxide superconductors

    SciTech Connect

    Phillips, J.C.

    1996-12-31

    The differences between the old (inter-) metallic superconductors and the new oxide superconductors are not limited to the much higher values of {Tc} attainable in the latter. There are many pervasive differences caused directly by oxide chemistry, quasi-perovskite local coordination configurations, and layered metal-semiconductor-metal{prime}-semiconductor-structures. When these differences are ignored, for instance in theoretical models which make effective medium approximations, many experiments appear to present anomalous results. These anomalies largely disappear when account is taken of the real materials properties of the cuprates and other new oxide superconductors, for instance in theoretical models which treat transport as a partially percolative process. This percolative process directly reflects the fact that the highest values of {Tc}, as well as the most anomalous normal-state transport properties, occur in materials vicinal to a metal-insulator transition. As the metallic and insulating regions alternate even in single-crystal samples, effective medium models, and most effective-medium parameters, lose their significance. Examples of attempts to measure microscopic properties illustrate the importance of filamentary effects on both normal-state and superconductive properties.

  9. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  10. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation`s hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation`s system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  11. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  12. Thermal Property Parameter Estimation of TPS Materials

    NASA Technical Reports Server (NTRS)

    Maddren, Jesse

    1998-01-01

    Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.

  13. The impact of bone and suture material properties on mandibular function in Alligator mississippiensis: testing theoretical phenotypes with finite element analysis

    PubMed Central

    Reed, David A; Porro, Laura B; Iriarte-Diaz, Jose; Lemberg, Justin B; Holliday, Casey M; Anapol, Fred; Ross, Callum F

    2011-01-01

    Abstract The functional effects of bone and suture stiffness were considered here using finite element models representing three different theoretical phenotypes of an Alligator mississippiensis mandible. The models were loaded using force estimates derived from muscle architecture in dissected specimens, constrained at the 18th and 19th teeth in the upper jaw and 19th tooth of the lower jaw, as well as at the quadrate-articular joint. Stiffness was varied systematically in each theoretical phenotype. The three theoretical phenotypes included: (i) linear elastic isotropic bone of varying stiffness and no sutures; (ii) linear elastic orthotropic bone of varying stiffness with no sutures; and (iii) linear elastic isotropic bone of a constant stiffness with varying suture stiffness. Variation in the isotropic material properties of bone primarily resulted in changes in the magnitude of principal strain. By comparison, variation in the orthotropic material properties of bone and isotropic material properties of sutures resulted in: a greater number of bricks becoming either more compressive or more tensile, changing between being either dominantly compressive or tensile, and having larger changes in the orientation of maximum principal strain. These data indicate that variation in these model properties resulted in changes to the strain regime of the model, highlighting the importance of using biologically verified material properties when modeling vertebrate bones. When bones were compared within each set, the response of each to changing material properties varied. In two of the 12 bones in the mandible, varied material properties within sutures resulted in a decrease in the magnitude of principal strain in bricks adjacent to the bone/suture interface and decreases in stored elastic energy. The varied response of the mandibular bones to changes in suture stiffness highlights the importance of defining the appropriate functional unit when addressing relationships of

  14. The impact of bone and suture material properties on mandibular function in Alligator mississippiensis: testing theoretical phenotypes with finite element analysis.

    PubMed

    Reed, David A; Porro, Laura B; Iriarte-Diaz, Jose; Lemberg, Justin B; Holliday, Casey M; Anapol, Fred; Ross, Callum F

    2011-01-01

    The functional effects of bone and suture stiffness were considered here using finite element models representing three different theoretical phenotypes of an Alligator mississippiensis mandible. The models were loaded using force estimates derived from muscle architecture in dissected specimens, constrained at the 18th and 19th teeth in the upper jaw and 19th tooth of the lower jaw, as well as at the quadrate-articular joint. Stiffness was varied systematically in each theoretical phenotype. The three theoretical phenotypes included: (i) linear elastic isotropic bone of varying stiffness and no sutures; (ii) linear elastic orthotropic bone of varying stiffness with no sutures; and (iii) linear elastic isotropic bone of a constant stiffness with varying suture stiffness. Variation in the isotropic material properties of bone primarily resulted in changes in the magnitude of principal strain. By comparison, variation in the orthotropic material properties of bone and isotropic material properties of sutures resulted in: a greater number of bricks becoming either more compressive or more tensile, changing between being either dominantly compressive or tensile, and having larger changes in the orientation of maximum principal strain. These data indicate that variation in these model properties resulted in changes to the strain regime of the model, highlighting the importance of using biologically verified material properties when modeling vertebrate bones. When bones were compared within each set, the response of each to changing material properties varied. In two of the 12 bones in the mandible, varied material properties within sutures resulted in a decrease in the magnitude of principal strain in bricks adjacent to the bone/suture interface and decreases in stored elastic energy. The varied response of the mandibular bones to changes in suture stiffness highlights the importance of defining the appropriate functional unit when addressing relationships of

  15. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  16. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  17. Mast material test program (MAMATEP)

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The Mast Material Test Program (MAMATEP) at NASA Lewis is discussed. Objectives include verifying the need for, and evaluating the performance of, various protection techniques for the Solar Array Assembly mast of the Space Station Photovoltaic Power Module. Mast material samples were evaluated in terms of mass and bending modulus, measured before and after environmental exposure. Test environments included atomic oxygen exposure (RF plasma asher), thermal cycling, and mechanical flexing. Protective coatings included CV-1144 silicon, a Ni/Au/InSn eutectic, and an open weave, Al braid. Results indicate that unprotected samples degrade in an atomic oxygen environment at a steady rate. Open weave, Al braid offers little protection for the fiberglass-epoxy sample in an asher environment. Ni/Au/InSn eutectic offers excellent protection in an asher environment prior to thermal cycling and mechanical flexing. Long duration asher results from unprotected samples indicate that, even though the fiberglass-epoxy degrades, a protection technique may not be necessary to ensure structural integrity. However, a protection technique may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  18. Handbook of photothermal test data on encapsulant materials

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1983-01-01

    Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.

  19. MATERIAL PROPERTIES OF COMMON SUTURE MATERIALS IN ORTHOPAEDIC SURGERY

    PubMed Central

    Najibi, S; Banglmeier, R; Matta, JM; Tannast, M

    2010-01-01

    Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks. PMID:21045977

  20. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grande

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  1. Thermal Systems and Materials Testing

    NASA Technical Reports Server (NTRS)

    Aguirre, Nathan

    2010-01-01

    During my internship, I was involved in Boeing Thermal System/M&P, which handles maintenance and repairs of shuttle tiles, blankets, gap fillers, etc. One project I took part in was the revision of TPS-227, a repair process to tiles that entailed drilling out tile damage and using a cylindrical insert to fill the hole. The previous specification used minimal adhesive for application and when the adhesive cured, there would be several voids in the adhered material, causing an unsatisfactory bond. The testing compared several new methods and I analyzed the number of voids produced by each method to determine which one was most effective at eliminating void space. We revised the original process to apply a light adhesive coat to the top 25% of the borehole and a heavy coat to 100% of the insert. I was also responsible for maintaining the subnominal bond database, which records all unsatisfactory SIP (Strain Isolator Pad) bonds. I then archived each SIP physically for future referral data and statistics. In addition, I performed post-flight tile inspections for damages and wrote dispositions to have these tiles repaired. This also included writing a post-flight damage report for a section of Atlantis and creating summarized repair process guidelines for orbiter technicians.

  2. Ceramic materials testing and modeling

    SciTech Connect

    Wilfinger, K. R., LLNL

    1998-04-30

    Certain refractory ceramics (notably oxides) have desirable properties suitable for the construction of ceramic waste containers for long term use in nuclear waste disposal applications. In particular, they are far less prone to environmental corrosion than metals under realistic repository conditions. The aqueous corrosion rates of oxides such as magnesium aluminate spinel (MgAl{sub 2}0{sub 4}) and alumina (Al{sub 2}0{sub 4}) fall in the range of a few millimeters per million years. Oxide ceramics are also not likely to be subject to microbiologically influenced corrosion, which apparently can attack most, if not all, of the available engineering metals. Ceramics have a reputation for poor mechanical performance and large, impermeable objects are not easily fabricated by most current fabrication methods. As a result, the most promising approach for incorporating ceramics in large waste packages appears to be to apply a high density ceramic coating to a supporting metallic structure. Ceramic coatings 2048 applied by a thermal spray technique can be made effectively seamless and provide a method for final closure of the waste package while maintaining low average temperatures for the entire assembly. The corrosion resistance of the ceramic should prevent or delay water penetration to the underlying metal, which will in turn provide most of the mechanical strength and toughness required by the application. In this way, the major concerns regarding the ceramic coating become ensuring it is impervious to moisture, its adherence and its resistance to mechanical stresses during handling or resulting from rock fall in the repository. Without water, electrochemical corrosion and microbiologically influenced corrosion processes are considered impossible, so a complete coating should protect the metal vessels for far longer than the current design requirements. Even an imperfect coating should extend the life of the package, delaying the onset and reducing the severity of

  3. Integration of test methodology, material database, and material selection/deselection strategies for a chemical-material compatibility database system

    SciTech Connect

    Shuely, W.J.

    1995-12-31

    The effect of chemical exposure on the degradation of material properties is important to material evaluation and selection for both commercial and military products. Described here are a set of enhancements to a traditional chemical-material compatibility database that were required to support the early selection of chemically resistant materials in a concurrent engineering environment. This initial phase in the development of an integrated chemical-material compatibility system included: organization of tests into a comprehensive scheme, test selection for the initial screening tests in the scheme, the increased standardization of test procedures and reports required to support database queries, and the control of data set flow from the test laboratory directly to the database. Emphasized here is the design of modular database files based on material, chemical, and test specification descriptors that are indexed to the resulting test properties database module. ASTM Committee E49 formats were employed where available. The polymeric material documentation has been implemented by development of a menu-driven laboratory database version of ASTM Guide for the Identification of Polymers (Excludes Thermoset Elastomers) in Computerized Material Property Databases (E 1308-92). Examples are provided from the screening test found in the initial section of the test method scheme. One is able to execute a rapid paperless transfer of predictive and experimental screening results to the chemical-material compatibility database, query the results to eliminate a substantial fraction of materials and rank a more limited set of candidate materials to provide a useful ``deselection`` capability.

  4. MEASUREMENT OF MATERIAL PROPERTIES OF DAMAGED ENERGETIC MATERIALS

    SciTech Connect

    Hsu, P C; Hust, G; Dehaven, M; Chidester, S; Glascoe, L; Hoffman, M; Maienschein, J L

    2010-03-10

    We recently conducted damaged experiments on three explosives (mechanical damage on LX-04 and thermal experiments on HPP and PBXN-9) and characterized the effect of damage on some material properties. The MTS equipment was used to apply compressive cycling to LX-04 pressed parts and the results showed that older LX-04 parts became mechanically weaker than newer parts. After repeated compressive cycling for over 20,000 times, older LX-04 parts failed but newer LX-04 parts survived. Thermal insults were applied to PBXN-9 and HPP at 180 C and 200 C, respectively in unconfined conditions for several hours. The thermally-damaged HPP sample suffered 12.0% weight losses and a volume expansion of 20% was observed. Porosity of the damaged HPP increased to 25% after thermal exposure, which led to higher gas permeability. Burn rates of damaged PBXN-9 were 2 orders of magnitude higher than those of pristine samples but burn rates of damaged HPP were only slightly higher than those of pristine HPP. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability at high temperatures were made on HPP samples and the results showed that the gas permeability increased by 3 to 4 orders of magnitude.

  5. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  6. NIST Materials Properties Databases for Advanced Ceramics

    PubMed Central

    Munro, R. G.

    2001-01-01

    The NIST Ceramics Division maintains two databases on the physical, mechanical, thermal, and other properties of high temperature superconductors and structural ceramics. Crystallographic data are featured prominently among the physical property data and serve several important functions in the classification and evaluation of the property values. The scope of materials, properties, and data evaluation protocols are discussed for the two databases.

  7. Machining as a mechanical property test revisited

    NASA Astrophysics Data System (ADS)

    Smith, David L.

    There is much need for data on mechanical behavior of metals at high strains and strain rates. This need is dictated by modeling of processes like forming and machining, wherein the material in the deformation zone is subjected to severe deformation conditions atypical of conventional material property tests such as tension and torsion. Accurate flow stress data is an essential input for robust prediction of process outputs. Similar requirements arise from applications in high speed ballistic penetration and design of materials for armor. Since the deformation zone in cutting of metals is characterized by unique and extreme combinations of strain, strain rate and temperature, an opportunity exists for using plane-strain cutting as a mechanical property test for measuring flow properties of metals. The feasibility of using plane-strain cutting to measure flow properties of metals is revisited in the light of recent data showing controllability of the deformation conditions in chip formation by systematic variation of process input parameters. A method is outlined as to how the deformation conditions can be varied by changing the process parameters. The method is applied to cutting of commercially pure copper (FCC), iron (BCC) and zinc (HCP). Forces and chip geometries are measured, in conjunction with particle image velocimetry characterization of the deformation using high speed image sequences. The flow stresses are estimated from these measurements. The measured flow stress and its dependence on strain are shown to agree well with prior measurements of these parameters using conventional tests, and flow stress inferred from hardness characterization. The method is also demonstrated to be able to measure properties of metals that recrystallize at room temperature (zinc), wherein quasi-static tests predict much lower strength. Sources of variability and uncertainty in the application of this measurement technique are discussed. Future work in the context of further

  8. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  9. Large scale Hugoniot material properties for Danby Marble

    SciTech Connect

    Rinehart, E.J.

    1993-11-01

    This paper presents the results of simulation experiments of nuclear underground testing carried out using the HYDROPLUS methodology for yield verifications of non-standard tests. The objective of this test series was to demonstrate the accuracy of stress and velocity measurements in hard, low porosity rock, to obtain comparisons of large-scale material properties with those obtained from laboratory testing of the same material, and to address the problems posed by a material having a clear precursor wave preceding the main shock wave. The test series consisted of three individual experimental tests. The first established material properties of the Danby marble selected for use in the experiments. The second and third tests looked at stress and velocity gage errors obtained when gages were placed in boreholes and grouted into place.

  10. Electrical Arc Ignition Testing of Spacesuit Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold

    2006-01-01

    A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.

  11. TESTS OF FABRIC FILTRATION MATERIALS

    EPA Science Inventory

    The report describes laboratory and pilot scale testing of filter fabrics. Tests were made on flat specimens and on bags. Fifteen styles of fabrics (made from cotton, polyester, aramid, or glass) were tested, using cement, coal, or talc dusts. Collection efficiencies and pressure...

  12. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  13. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a...

  14. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a...

  15. Nondestructive ultrasonic testing of materials

    DOEpatents

    Hildebrand, B.P.

    1994-08-02

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  16. Nondestructive ultrasonic testing of materials

    DOEpatents

    Hildebrand, Bernard P.

    1994-01-01

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  17. SNLL materials testing compression facility

    SciTech Connect

    Kawahara, W.A.; Brandon, S.L.; Korellis, J.S.

    1986-04-01

    This report explains software enhancements and fixture modifications which expand the capabilities of a servo-hydraulic test system to include static computer-controlled ''constant true strain rate'' compression testing on cylindrical specimens. True strains in excess of -1.0 are accessible. Special software features include schemes to correct for system compliance and the ability to perform strain-rate changes; all software for test control and data acquisition/reduction is documented.

  18. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  19. TEST OF FABRIC FILTRATION MATERIALS

    EPA Science Inventory

    The report describes pilot scale and laboratory tests of U.S. and Polish woven baghouse fabrics. Cotton, polyester, aramid, and glass fabrics were tested using cement, flyash, coal, and talc dusts at loadings of about 10 g/cu m, filtration velocities of 60 and 80 cu m/sq m, and a...

  20. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant...

  1. Investigation of test methods, material properties, and processes for solar cell encapsulants. Eighteenth quarterly progress report, August 12-November 12, 1980

    SciTech Connect

    Willis, P. B.; Baum, B.; Davis, M.

    1980-12-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. A survey was made of elastomers for use as gaskets for the photovoltaic module. Of the wide variety of materials examined EPDM offered the optimum combination of low compression set and low cost. The preference for EPDM is borne out by its long history of use as an automobile gasket. The commercial availability of materials that would be useful for sealants between the edge of the module and the gasket was investigated. Butyl sealants have the best combination of physical properties, low cost and a well-documented history of performance. A preferred composition has not yet been identified. One laminating type pottant ethylene/methyl acrylate copolymer (EMA), and two casting polymers, polybutyl acrylate and polyurethane, have been under investigation this past quarter. An EMA formulation has been developed which is easily extrudable and cures to a high gel content. So far only one commercial US source (Quinn) of aliphatic polyurethane has been located. Work is continuing to improve reaction rate as well as to eliminate source(s) of bubble formation during module fabrication. Considerable effort was spent in developing an improved polybutyl acrylate casting formulation providing high gel. Many viable curing systems are now available: however, the best formulation considering physical properties, freedom from bubbles as well as cure time utilizes Lupersol II (aliphatic peroxide) initiator. This initiator gives the desired gel after 20 minute cure at 45/sup 0/C or 12 minute cure at 55/sup 0/C.

  2. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  3. Database for the Tribological Properties of Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Jett, T. R.; Thom, R. L.

    1998-01-01

    A test program to determine the tribological properties of several self-lubricating composites was performed. Testing was done using an LFW-1 Friction and Wear machine. Each material was tested at four load levels (66 N, 133 N, 266 N, and 400 N) under ambient conditions. The coefficient of friction and wear rate was determined for each material, and a relative ranking of the composites was made.

  4. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H. )

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable.

  5. Materials Compatibility Testing in Concentrated Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)

    2000-01-01

    Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.

  6. Acoustical properties of double porosity granular materials.

    PubMed

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics. PMID:22087905

  7. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Rouvreau, Sebastien; Jomaas, Grunde

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  8. Exploring the influence of loading geometry on the plastic flow properties of geological materials: Results from combined torsion + axial compression tests on calcite rocks

    NASA Astrophysics Data System (ADS)

    Covey-Crump, S. J.; Xiao, W. F.; Mecklenburgh, J.; Rutter, E. H.; May, S. E.

    2016-07-01

    For technical reasons, virtually all plastic deformation experiments on geological materials have been performed in either pure shear or simple shear. These special case loading geometries are rather restrictive for those seeking insight into how microstructure evolves under the more general loading geometries that occur during natural deformation. Moreover, they are insufficient to establish how plastic flow properties might vary with the 3rd invariant of the deviatoric stress tensor (J3) which describes the stress configuration, and so applications that use those flow properties (e.g. glaciological and geodynamical modelling) may be correspondingly compromised. We describe an inexpensive and relatively straightforward modification to the widely used Paterson rock deformation apparatus that allows torsion experiments to be performed under simultaneously applied axial loads. We illustrate the performance of this modification with the results of combined stress experiments performed on Carrara marble and Solnhofen limestone at 500°-600 °C and confining pressures of 300 MPa. The flow stresses are best described by the Drucker yield function which includes J3-dependence. However, that J3-dependence is small. Hence for these initially approximately isotropic calcite rocks, flow stresses are adequately described by the J3-independent von Mises yield criterion that is widely used in deformation modelling. Loading geometry does, however, have a profound influence on the type and rate of development of crystallographic preferred orientation, and hence of mechanical anisotropy. The apparatus modification extends the range of loading geometries that can be used to investigate microstructural evolution, as well as providing greater scope for determining the shape of the yield surface in plastically anisotropic materials.

  9. Synthesis and properties of nanophase materials

    SciTech Connect

    Siegel, R.W.

    1993-03-01

    Nanophase materials, with their grain sizes or phase dimensions in the nanometer size regime, are now being produced by a wide variety of synthesis and processing methods. The interest in these new ultrafine-grained materials results primarily from the special nature of their various physical, chemical, and mechanical properties and the possibilities to control these properties during the synthesis and subsequent processing procedures. Since it is now becoming increasingly apparent that their properties can be engineered effectively during synthesis and processing, and that they can also be produced in quantity, nanophase materials should have considerable potential for technological development in a variety of applications. Some of the recent research on nanophase materials related to their synthesis and properties is briefly reviewed and the future potential of these new materials is considered.

  10. Investigation of test methods, material properties, and processes for solar-cell encapsulants. Twenty-third quarterly progress report for period ending February 12, 1982

    SciTech Connect

    Willis, P.B.; Baum, B.

    1982-04-01

    During the past quarter technical investigations concerned the development of advanced cure chemistries for lamination type pottants, the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants. One compound in particular, designated Lupersol - TBEC was found to be unusually effective in promoting the rapid cure of both these materials. Formulation of these resins with TBEC resulted in compositions of very high gel content, lower temperatures of activation, and much lower cure times, even in the ethylene/methyl acrylate polymer that is more difficult to cure. An experimental program continued to determine the effectiveness of soil resistant coatings. These treatments have been applied to Sunadex glass, Tedlar and oriented acrylic film. The treatments are based on silicone, acrylic, and fluorosilane chemistries. After one year of outdoor exposure, the most effective treatment of Sunadex glass appears to be a fluorosilane designated L-1668, and for both the organic films a silane modified adduct of perfluoric acid gave the best results. After one year of time there is evidence that the treatments are slowly being lost and consequently a maintenance schedule may be required to maintain effectiveness over long periods of time. An accelerated aging test program is underway for the dual purpose of generating practical and empirical data relating to the service life of candidate encapsulation materials, and to provide data that may be useful in a predictive type of analysis.

  11. Investigations of test methods, material properties, and processes, for solar-cell encapsulants. Twenty-second quarterly progress report for period ending November 12, 1982

    SciTech Connect

    Not Available

    1982-01-01

    Investigations were continued into pottants, soil resistant coatings and low cost substrate materials. Two component aliphatic urethane casting syrups for use as solar module pottants were evaluated for suitability on the basis of optical, physical and fabrication characteristics. One formulation was selected as being acceptable for industrial evaluation. This urethane is characterized by high transparency, low mix viscosity, fast cure time and surprising lack of moisture sensitivity that has given trouble with previous urethane compositions. This material is produced with an ultraviolet stabilizer system already blended in. An experimental program was continued to determine the effectiveness of soil resistant coatings. These treatments have been applied to Sunadex glass, Tedlar and oriented acrylic film. The treatments are based on silicone, acrylic and fluorosilane chemistries. Test specimens are being exposed to outdoor soiling conditions with subsequent testing for short circuit-current loss using a standard cell device. After nine months of outdoor exposure, the most effective treatment appears to be a silane modified adduct of perfluorodecanoic acid. The degree of soiling also appears to correlate to the amount of rainfall that results in a natural cleaning of the surface. Wood products, such as hardboard, are potentially the lowest cost candidate substrates identified to date. The difficulty with the use of these materials lies in the very high hygroscopic expansion coefficients. Periods of dryout followed by subsequent moisture regain results in large expansions and contractions that result in cell fracture. Experiments were conducted to determine the effectiveness of occlusive coatings to prevent this effect. Both metal foils and organic films bonded to the hardboard with appropriate adhesives were found to dramatically decrease the hygroscopic response and lower the expansion coefficient by four orders of magnitude.

  12. Material properties of novel polymeric films

    NASA Astrophysics Data System (ADS)

    Kim, Gene

    This dissertation will study the material properties of two types of novel polymer films (polyelectrolyte multilayer films and photolithographic polymer films). The formation of polylelectrolyte multilayer films onto functionalized aluminum oxide surfaces and functionalized poly(ethylene terephthaltate) (PET) were studied. Functionalization of the aluminum oxide surfaces was achieved via silane coupling. Functionalization of PET surfaces was achieved via hydrolysis and amidation. Surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurements were used to monitor the polyelectrolyte multilayer formation. Mechanical properties of the aluminum oxide supported polyelectrolyte multilayer films were tested using a simplified peel test. XPS was used to analyze the surfaces before and after peel. Single lap shear joint specimens were constructed to test the adhesive shear strength of the PET-supported polyelectrolyte multilayer film samples with the aid of a cyanoacrylate adhesive. The adhesive shear strength and its relation with the type of functionalization, number of polyelectrolyte layers, and the effect of polyelectrolyte conformation using added salt were explored. Also, characterization on the single lap joints after adhesive failure was carried out to determine the locus of failure within the multilayers by using XPS and SEM. Two types of photolithographic polymers were formulated and tested. These two polymers (photocrosslinkable polyacrylate (PUA), and a photocrosslinkable polyimide (HRP)) were used to investigate factors that would affect the structural integrity of these particular polymers under environmental variables such as processing (time, UV cure, pressure, and temperature) and ink exposure. Thermomechanical characterization was carried out to see the behavior of these two polymers under these environmental variables. Microscopic techniques were employed to study the morphological behavior of

  13. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  14. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  15. Material Properties for Fiber-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    White, Susan; Rouanet, Stephane; Moses, John; Arnold, James O. (Technical Monitor)

    1994-01-01

    Ceramic fiber-reinforced silica aerogels are novel materials for high performance insulation, including thermal protection materials. Experimental data are presented for the thermal and mechanical properties, showing the trends exhibited over a range of fiber loadings and silica aerogel densities. Test results are compared to that of unreinforced bulk aerogels.

  16. Learning targeted materials properties from data

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Balachandran, Prasanna V.; Dezhen, Xue; Theiler, James; Hogden, John

    We compare several strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The strategy is decomposed into two steps: a regressor is trained to predict elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties. We examine how the choice of data set size, regressor and selector impact the results.

  17. Thermal Properties of Structural Materials Used in LWR Vessels

    SciTech Connect

    J. E. Daw; J. L. Rempe; D. L. Knudson

    2011-01-01

    High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.

  18. Quarantine testing and biocharacterization of lunar materials

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Mieszkuc, B. J.; Simmonds, R. C.; Walkinshaw, C. H.

    1975-01-01

    Quarantine testing was conducted to ensure the safety of all life on earth. The plants and animals which were exposed to lunar material were carefully observed for prolonged periods to determine if any mutation or changes in growing characteristics and behavior occurred. The quarantine testing was terminated after the Apollo 14 flight when it became apparent that previously returned lunar material contained no potentially harmful agents. Further biological experimentation with the lunar material was conducted to determine its chemical, physical, and nutritional qualities.

  19. Investigation of test methods material properties, and processes for solar cell encapsulants. Fifteenth quarterly progress report, November 12, 1979-February 12, 1980

    SciTech Connect

    Willis, P. B.; Baum, B.

    1980-03-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Work performed during this quarter included the development of anti-blocking treatments for EVA sheet intended for use as a lamination pottant. Initial evaluation studies were begun on a new pottant compound, polybutyl acrylate, to assess its preparation and handling characteristics. Corrosion studies using a standard salt spray test wre conducted to determine the degree of protection afforded to a number of metals when encapsulated in candidate pottant compounds. Pottants and outer cover candidates were exposed to intervals of accelerated uv stress aging using the RS/4 fluorescent sunlamp. Results are discussed. (WHK)

  20. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800[degree]C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280[degree]F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

  1. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800{degree}C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280{degree}F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

  2. Synthesis, properties, and applications of nanophase materials

    SciTech Connect

    Siegel, R.W. |

    1995-04-01

    Work on the synthesis, properties, and applications of nanophase materials has developed rapidly during the past decade. A wide variety of methods now exist for their production, including several plasma-based processes. The possibilities for engineering new materials with unique or improved properties for a number of applications is now evident from the extant research results. A brief review is presented here along with some examples of useful application areas and some thoughts for the future of this field.

  3. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  4. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    SciTech Connect

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  5. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  6. Nonlinear optical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Haus, Joseph W.; Inguva, Ramarao

    1991-01-01

    The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

  7. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  8. Software For Uniaxial Mechanical Testing Of Materials

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.; Pech, D. K.

    1995-01-01

    Materials Testing Software system designed to simplify and automate both routine and not-so-routine materials-testing tasks encountered in laboratory. Supports plan/test/analyze cycle through collection of programs, each optimized to specific task. Gives precise control over nature of command waveforms and acquisition of data, including dynamically variable waveform types, sets of data-acquisition channels, and data rates. Differing command and data-acquisition rates required for exploring creep and fatigue material behavior easily accommodated. Written in Modula-2.

  9. Repair material properties for effective structural application

    SciTech Connect

    Mangat, P.S.; Limbachiya, M.C.

    1997-04-01

    Strength and engineering properties of three generic repair materials which are likely to influence long-term performance of repaired concrete structures were studied. Measured properties include strength, stiffness, shrinkage and creep deformations, together with the complete compressive stress-strain characteristics including post-cracking behavior. The repair materials considered in this investigation are commercially available and widely used. These included a high performance non-shrinkable concrete, a mineral based cementitious material with no additives or coarse aggregate size particles, and a cementitious mortar containing styrene acrylic copolymer with fiber additives. Performance comparisons are also made between these materials and plain concrete mixes of similar strength and stiffness, suitable for repair applications. The results show that shrinkage of the repair materials was significantly greater than the shrinkage of normal concrete. Moreover, the shrinkage of those modified with a polymer admixture was found to be very sensitive to the relative humidity of the exposure compared to normal concrete. The post-peak strain capacity of the material modified with a polymer admixture was markedly improved leading to a more pronounced falling branch of stress-strain curve. The ultimate stress level (at a maximum load) of specially formulated repair materials varies significantly, the lowest ultimate stress being recorded for the porous mineral-based material. The inclusion of aggregates improves the mechanical properties and dimensional stability of repair materials.

  10. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  11. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  12. Room temperature mechanical properties of shuttle thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Rummler, D. R.

    1980-01-01

    Tests were conducted at room temperature to determine the mechanical properties and behavior of materials used for the thermal protection system of the space shuttle. The materials investigated include the LI-900 RSI tiles, the RTV-560 adhesive and the .41 cm (.16 thick) strain isolator pad (SIP). Tensile and compression cyclic loading tests were conducted on the SIP material and stress-strain curves obtained for various proof loads and load cyclic conditioning. Ultimate tensile and shear tests were conducted on the RSI, RTV, and SIP materials. The SIP material exhibits highly nonlinear stress-strain behavior, increased tangent modulus and ultimate tensile strength with increased loading rate, and large short time load relaxation and moderate creep behavior. Proof and cyclic load conditioning of the SIP results in permanent deformation of the material, hysteresis effects, and much higher tensile tangent modulus values at large strains.

  13. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  14. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties. PMID:25128819

  15. Ares I-X USS Material Testing

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.

  16. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  17. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  18. Materials Compatibility in High Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    1999-01-01

    Previous ratings of the compatibility of high test hydrogen peroxide (HTP) with materials are not adequate for current needs. The goal of this work was to develop a new scheme of evaluation of compatibility of HTP with various materials. Procedures were developed to enrich commercially available hydrogen peroxide to 90% concentration and to assay the product. Reactivity testing, accelerated aging of materials and calorimetry studies were done on HTP with representative metallic and non-metallic materials. It was found that accelerated aging followed by concentration determination using refractive index effectively discriminated between different Class 2 metallic materials. Preliminary experiments using Differential Scanning Calorimetry (DSC) suggest that a calorimetry experiment is the most sensitive means to assay the compatibility of HTP with materials.

  19. Material properties study of the MJ-2 grout

    SciTech Connect

    Larson, D.B.

    1988-08-01

    Material properties experimental tests using the high pressure testing equipment at LLNL have been performed on the grout used in the Mini Jade-2 event (MJ-2) as part of a high pressure equation of state study sponsored by the Defense Nuclear Agency in support of the Misty Echo experiment at the Nevada Test Site. The material properties tests performed at LLNL and included in this report are (1) pressure-volume compression studies to 3.6 GPa, (2) pressure-volume compression and unloading studies to /approximately/1 GPa, and (3) material strength versus confining pressure to /approximately/1 GPa. These data are compared with dynamic results and with other static data using this grout. 4 refs., 5 figs., 4 tabs.

  20. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  1. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  2. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  3. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  4. CANMET Gasifier Liner Coupon Material Test Report

    SciTech Connect

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  5. Cytocompatibility and antibacterial properties of capping materials.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Beltrami, Riccardo; Monaco, Annachiara; Dagna, Alberto; Lombardini, Marco; Visai, Livia

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  6. Cytocompatibility and Antibacterial Properties of Capping Materials

    PubMed Central

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  7. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  8. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant...

  9. IHE material qualification tests description and criteria

    SciTech Connect

    Slape, R J

    1984-06-01

    This report describes the qualification tests presently being used at Pantex Plant, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory that are required by the Department of Energy prior to the approval for an explosive as an Insensitive High Explosive (IHE) material. The acceptance criteria of each test for IHE qualification is also discussed. 5 references, 10 figures.

  10. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  11. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  12. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  13. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  14. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  15. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  16. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  17. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  18. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  19. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  20. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... item is tested before use to determine that the actual strength properties of that particular item will... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material...

  1. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  2. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  3. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  4. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  5. Erosion testing of hard materials and coatings

    SciTech Connect

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  6. SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS

    SciTech Connect

    Klein, J; Jeffrey Holder, J

    2007-07-16

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

  7. Estimation of uncertain material parameters using modal test data

    SciTech Connect

    Veers, P.S.; Laird, D.L.; Carne, T.G.; Sagartz, M.J.

    1997-11-01

    Analytical models of wind turbine blades have many uncertainties, particularly with composite construction where material properties and cross-sectional dimension may not be known or precisely controllable. In this paper the authors demonstrate how modal testing can be used to estimate important material parameters and to update and improve a finite-element (FE) model of a prototype wind turbine blade. An example of prototype blade is used here to demonstrate how model parameters can be identified. The starting point is an FE model of the blade, using best estimates for the material constants. Frequencies of the lowest fourteen modes are used as the basis for comparisons between model predictions and test data. Natural frequencies and mode shapes calculated with the FE model are used in an optimal test design code to select instrumentation (accelerometer) and excitation locations that capture all the desired mode shapes. The FE model is also used to calculate sensitivities of the modal frequencies to each of the uncertain material parameters. These parameters are estimated, or updated, using a weighted least-squares technique to minimize the difference between test frequencies and predicted results. Updated material properties are determined for axial, transverse, and shear moduli in two separate regions of the blade cross section: in the central box, and in the leading and trailing panels. Static FE analyses are then conducted with the updated material parameters to determine changes in effective beam stiffness and buckling loads.

  8. Principles for supplying virus-tested material.

    PubMed

    Varveri, Christina; Maliogka, Varvara I; Kapari-Isaia, Theodora

    2015-01-01

    Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world. PMID:25591875

  9. Characterization of the physical properties for solid granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Guenther, Chris; Benyahia, Sofiane; Mei, Joseph S.; Banta, Larry

    2012-01-01

    Accurate prediction of the behavior of a system is strongly governed by the components within that system. For multiphase systems incorporating solid powder-like particles, there are many different physical properties which need to be known to some level of accuracy for proper design, modeling, or data analysis. In the past, the material properties were determined initially as a secondary part of the study or design. In an attempt to provide results with the least level of uncertainty, a procedure was developed and implemented to provide consistent analysis of several different types of materials. The properties that were characterized included particle sizing and size distributions, shape analysis, density (particle, skeletal and bulk), minimum fluidization velocities, void fractions, particle porosity, and assignment within the Geldart Classification. In the methods used for this experiment, a novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Materials of known properties were initially characterized to validate the accuracy and methodology, prior to testing materials of unknown properties. The procedures used yielded valid and accurate results, with a high level of repeatability. A database of these materials has been developed to assist in model validation efforts and future designs. It is also anticipated that further development of these procedures wil be expanded increasing the properties included in the database.

  10. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  11. Offgassing test methodology for composite materials

    NASA Technical Reports Server (NTRS)

    Scheer, Dale A.

    1994-01-01

    A significant increase in the use of composite materials has occurred during the past 20 years. Associated with this increased use is the potential for employees to be exposed to offgassing components from composite systems. Various components in composite systems, particularly residual solvents, offgas under various conditions. The potential for offgassing to occur increases as a composite material is heated either during cure or during lay-up operations. Various techniques can be employed to evaluate the offgassing characteristics of a composite system. A joint effort between AIA and SACMA resulted in the drafting of a proposed test method for evaluating the offgassing potential of composite materials. The purpose of testing composite materials for offgassing is to provide the industrial hygienist with information which can be used to assess the safety of the workplace. This paper outlines the proposed test method and presents round robin testing data associated with the test method. Also in this presentation is a discussion of classes of compounds which require specialized sampling techniques.

  12. Durability Testing of Commercial Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Schienle, J. L.

    1996-01-01

    Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.

  13. Using Virtual Testing for Characterization of Composite Materials

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  14. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  15. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  16. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  17. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    NASA Technical Reports Server (NTRS)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  18. Tailoring of materials properties under extreme conditions

    NASA Astrophysics Data System (ADS)

    Schenkel, Thomas

    Materials can be driven far from equilibrium e. g. with intense pules of lasers and ions, in mostly destructive processes. When combined with micro- and nano-structuring, the ability to rapidly excite and then quench local excitations opens up. Now opportunities emerge to form and stabilize novel materials phases and to tailor materials properties for applications. Examples are color centers in diamond and silicon carbide for sensing and qubit applications and proposed ordered dopant structures in cuprate superconductors. Results from studies of materials processing under transient extreme conditions, far from equilibrium will be presented. This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  19. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  20. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  1. Recent developments in dynamic testing of materials

    NASA Astrophysics Data System (ADS)

    Gilat, Amos; Seidt, Jeremy D.

    2015-09-01

    New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012), and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC) is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  2. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  3. Double Retort System for Materials Compatibility Testing

    SciTech Connect

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.

  4. Molecular properties of polymeric materials for space applications

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.; Kern, Kristen T.; Stancil, Phillip C.

    1992-01-01

    This cooperative agreement was intended to investigate the effects of a space environment on the properties of polymeric materials. In addition, efforts have been made to understand and investigate environment simulation techniques and test methodology. The results identified the changes in the properties of six aerospace structural adhesives, three neat high polymers, and two fiber-reinforced polymers, as caused by exposure to four simulated space environmental conditions. Significant property changes occurred for several of the systems as a result of one or more of the exposures. A summary of the research follows a list of related publications and presentations.

  5. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  6. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1974-01-01

    Description of a thermoelastic stress analysis procedure for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range from -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations, which were tested in the Space Molecular Sink. Results of the analysis indicate the optimum design configuration with respect to materials and geometry, effect of the solder coating, and effect of the interconnector geometry.

  7. Testing of SRS and RFETS Nylon Bag Material

    SciTech Connect

    Laurinat, J.E.

    1998-11-03

    This report compares the effects of radiation and heating on nylon bagout materials used at the Savannah River Site (SRS) and the Rocky Flats Environmental Technology Site (RFETS). Recently, to simplify the processing of sand, slag, and crucible (SS and C), FB-Line has replaced the low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bags normally used to package cans of plutonium-bearing material with nylon bags. LDPE and PVC are not soluble in the nitric acid dissolver solution used in F-Canyon, so cans bagged using these materials had to be repackaged before they were added to the dissolver. Because nylon dissolves in nitric acid, cans bagged in nylon can be charged to the F-Canyon dissolvers without repackaging, thereby reducing handling requirements and personnel exposure. As part of a program to process RFETS SS and C at SRS, RFETS has also begun to use a nylon bagout material. The RFETS bag materials is made from a copolymer of nylon 6 and nylon 6.9, while the SRS material is made from a nylon 6 monomer. In addition, the SRS nylon has an anti-static agent added. The RFETS nylon is slightly softer than the SRS nylon, but does not appear to be as resistant to flex cracks initiated by contact with sharp corners of the inner can containing the SS and C.2 FB-Line Operations has asked for measurement of the effects of radiation and heating on these materials. Specifically, they have requested a comparison of the material properties of the plastics before and after irradiation, a measurement of the amount of outgassing when the plastics are heated, and a calculation of the amount of radiolytic gas generation. Testing was performed on samples taken from material that is currently used in FB-Line (color coded orange) and at RFETS. The requested tests are the same tests previously performed on the original and replacement nylon and LDPE bag materials.3,4,5. To evaluate the effect of irradiation on material properties, tensile stresses and elongations to break

  8. First principles simulation of materials properties

    SciTech Connect

    Shelton, W.A.; Stocks, G.M.; Pinski, F.J.; Jordan, R.G.; Liu, Y.; Qui, L.L.; Staunton, J.B.; Johnson, D.D.; Ginatempo, B.

    1994-06-01

    We have developed a hybrid, parallel computer code for calculating the electronic structure of both ordered and substitutionally disordered materials. By using PVM3.3, we can integrate into our local computer environment multiple parallel and vector superconductors as well as high performance workstations. Without this approach, calculations of materials properties of large systems would be otherwise untenable due to a lack of computer resources. For example, we have determined the short-range order intensity and its electronic origin for the Ag-Mg alloy system, including an estimate of the order-disorder (spinodal) temperature.

  9. Temperature dependent phonon properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Broido, David; Fultz, Brent

    2015-03-01

    We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.

  10. First principles simulation of materials properties

    SciTech Connect

    Shelton, W.A.; Stocks, G.M.; Jordan, R.G.; Liu, Y.; Qui, L.; Johnson, D.D.; Pinski, F.J.; Staunton, J.B.; Ginatempo, B.

    1994-08-01

    We have developed a hybrid, parallel computer code for calculating the electronic structure of both ordered and substitutionally disordered materials. By using PVM3.3, we can integrate into our local computer environment multiple parallel and vector supercomputers as well as high performance workstations. Without this approach, calculations of materials properties of large systems would be otherwise untenable due to a lack of computer resources. For example, we have determined the short-range order intensity and its electronic origin for the Ag-Mg alloy system, including an estimate of the order-disorder (spinodal) temperature.

  11. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  12. Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-01-01

    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.

  13. MISSE 6-Testing Materials in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S; Kinard, William H.

    2008-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.

  14. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-01

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling. PMID:25278046

  15. Elastic therapeutic tape: do they have the same material properties?

    PubMed Central

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-01-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex®, ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight® 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young’s modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young’s modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  16. Elastic therapeutic tape: do they have the same material properties?

    PubMed

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-04-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex(®), ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight(®) 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young's modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young's modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  17. DIELECTRIC PROPERTIES OF VARIOUS NANOCOMPOSITE MATERIALS

    SciTech Connect

    Tuncer, E.; Polizos, G.; James, D. R.; Sauers, I.; Ellis, A. R.; More, K. L.

    2010-01-01

    Composite materials based on polymers are used in various engineering applications due to their ability to be tailored for a specific application. As a result a composite could be selected or designed for a high performance part such as field grading applications in high voltage technology. Presently, there exists no commercially available material for electric field control. For this reason in this study we characterize a polymeric system composed of a thermoplast polymer filled with nanometer size ceramic particles. Since it is hard to tailor or to predict properties of composites theoretically, an Edisonian approach is employed. Composites with different filler weight concentrations are prepared and their dielectric performance are characterized. Impedance spectroscopy technique at a constant frequency is used to determine the dielectric properties of the composites at low temperatures. Measurement results and potential applications of the composite systems are presented.

  18. Dielectric properties of various nanocomposite materials

    SciTech Connect

    Tuncer, Enis; Polyzos, Georgios; James, David Randy; Sauers, Isidor; Ellis, Alvin R; More, Karren Leslie

    2010-01-01

    Composite materials based on polymers are used in various engineering applications due to their ability to be tailored for a specific application. As a result a composite could be selected or designed for a high performance part such as field grading applications in high voltage technology. Presently, there exists no commercially available material for electric field control. For this reason in this study we characterize a polymeric system composed of a thermoplast polymer filled with nanometer size ceramic particles. Since it is hard to tailor or to predict properties of composites theoretically, an Edisonian approach is employed. Composites with different filler weight concentrations are prepared and their dielectric performance are characterized. Impedance spectroscopy technique at a constant frequency is used to determine the dielectric properties of the composites at low temperatures. Measurement results and potential applications of the composite systems are presented.

  19. Using Mathematical Methods to Compensate for Problems Resulting from Differences in Material Properties for Remote-Field Eddy Current Testing in Tubes

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Jhy

    2005-06-01

    Remote-field eddy current (RFEC) testing is a nondestructive testing method. It has been comprehensively applied to detect wall loss in ferromagnetic tubes. According to our experience, the problem of variations in a material’s electromagnetic characteristics often occurred in practice in carbon steel tubes. Therefore, if we fail to compensate for changes in electromagnetic characteristics during inspection, an error of evaluation will be generated. This study applied the skin-depth theory of RFEC and geometric relationships on the voltage plane to derive a compensatory model using a mathematical methodology. The new evaluation curve established on the basis of this mathematical methodology compensates for the error contributed by changing electromagnetic characteristics in the tube. The method offered by this study has proved to be reasonable, feasible and acceptable in terms of its mathematical derivation and in comparison with experimental result.

  20. Investigation of test methods, material properties, and processes for solar cell encapsulants. Seventeenth quarterly progress report, May 12-August 12, 1980

    SciTech Connect

    Willis, P. B.; Baum, B.

    1980-09-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Development efforts have emphasized the reformulation of polybutyl acrylate, a liquid pottant used in the casting encapsulation process. This material has been modified to yield a composition with much faster cure at lower temperatures. Minimodules have been successfully prepared from this low cost compound and are currently being evaluated by thermal/humidity cycling. Differential thermal analysis (DTA) was used for the examination of thermal stability in some of the pottant compounds of current interest. This method was useful in determining the temperatures at which oxidative or pyrolysis reactions resulted in degradation of the polymers. All the candidate pottants showed degradation onsets of over 200/sup 0/C. The effectiveness of a new primer was determined during this period. This formulation was similar to the silane coupling agent used in past experimentation but was modified with a peroxide to enhance the activity. Excellent bound strengths were obtained to glass, and mild steel that were resistant to immersion in boiling water. EVA to low iron glass gave an average bond strength of 35 lbs per inch of width. This new primer was also evaluated for the corrosion protection that could be provided to metal surfaces when primed and encapsulated in EVA. (WHK)

  1. The Evaluation of Flammability Properties Regarding Testing Methods

    NASA Astrophysics Data System (ADS)

    Osvaldová, Linda Makovická; Gašpercová, Stanislava

    2015-12-01

    In this paper, we address the historical comparison methods with current methods for the assessment of flammability characteristics for materials an especially for wood, wood components and wooden buildings. Nowadays in European Union brings harmonization in evaluated of standards into each European country and try to make one concept of evaluated the flammability properties. In each European country to the one standard level which will be used by evaluation of materials regarding flammability. In our article we focused mainly on improving the evaluation methods in terms of flammability characteristics of using materials at building industry. In the article we present examples of different assessment methods at their own test methods in terms of fire prevention. On the base of old compared of materials by STN, BS and DIN methods for testing materials on fire and new methods of evaluating the flammability properties regarding EU standards before and after starting the flash over.

  2. Optical properties of photochromic and thermochromic materials

    NASA Astrophysics Data System (ADS)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  3. Fabrication, properties, and tritium recovery from solid breeder materials

    SciTech Connect

    Johnson, C.E. ); Kondo, T. ); Roux, N. ); Tanaka, S. ); Vollath, D. )

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  4. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  5. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  6. Magnetic properties of Martian surface material

    NASA Astrophysics Data System (ADS)

    Hargraves, R. B.

    1984-06-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  7. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  8. Neural networks as tools for predicting materials properties

    SciTech Connect

    Sumpter, B.G.; Noid, D.W.

    1995-12-31

    Materials science is of fundamental significance to science and technology because our industrial base and society depend upon our ability to develop advanced materials. Materials and materials processing cuts across almost every sector of industry. The key in all of these areas is the ability to rapidly screen possible designs which will have significant impact. However up to now materials design and processing have been to a large extent empirical sciences. In addition we are still unable to design new alloys and polymers to meet application specific requirements. Being able to do so quickly and at minimum cost would provide an incredible advantage. Obviously, the ability to predict physical, chemical, or mechanical properties of compounds prior to their synthesis is of great technological value in optimizing their design, processing, or recycling. In addition, in order to realize the ultimate goal of materials by computational design, the reverse problem, prediction of chemical structure based on desired properties, has to be resolved. Research at ORNL has lead to the development of a novel computational paradigm (coupling computational neural networks with graph theory, genetic algorithms, wavelet theory, fuzzy logic, molecular dynamics, and quantum chemistry) capable of performing accurate computational synthesis (both predictions of properties or the design of compounds that have specified performance criteria). The computational paradigm represents a hybrid of a number of emerging technologies and has proven to work very well for test compounds ranging from small organic molecules to polymeric materials. Fundamental to the method is the neural network-based formulation of the correlations between structure and properties. The advantages of this method is in its ease of use, speed, accuracy, and that it can be used to predict both properties from structure, and also structure from properties.

  9. ESP – Data from Restarted Life Tests of Various Silicon Materials

    SciTech Connect

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  10. Fiber twist test: A new test technique to measure composite interface properties

    SciTech Connect

    Chepolis, W.M.; Ertuerk, T.

    1995-10-01

    This paper discusses the work accomplished, thus far, in the development of the Fiber Twist Test (FTT) as an alternative and improved technique for testing the interface properties of continuous fiber composite materials. The unique features of the fiber twist test include the absence of Poisson effects during testing. This eliminates the nonlinear variation, with changing embedded fiber lengths, of fracture modes and accompanying debond energy, and of friction along the interface. Since the fiber is not removed from its surrounding matrix during testing, the interface area remains constant. This facilitates a more accurate measurement of friction properties at the interface.

  11. Ground Deployment Demonstration and Material Testing for Solar Sail

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li

    2016-07-01

    Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.

  12. Optimization of pyrolysis properties using TGA and cone calorimeter test

    NASA Astrophysics Data System (ADS)

    Park, Won-Hee; Yoon, Kyung-Beom

    2013-04-01

    The present paper describes an optimization work to obtain the properties related to a pyrolysis process in the solid material such as density, specific heat, conductivity of virgin and char, heat of pyrolysis and kinetic parameters used for deciding pyrolysis rate. A repulsive particle swarm optimization algorithm is used to obtain the pyrolysis-related properties. In the previous study all properties obtained only using a cone calorimeter but in this paper both the cone calorimeter and thermo gravimetric analysis (TGA) are used for precisely optimizing the pyrolysis properties. In the TGA test a very small mass is heated up and conduction and heat capacity in the specimen is negligible so kinetic parameters can first be optimized. Other pyrolysis-related properties such as virgin/char specific heat and conductivity and char density are also optimized in the cone calorimeter test with the already decided parameters in the TGA test.

  13. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  14. Arc jet tests of metallic TPS materials.

    NASA Technical Reports Server (NTRS)

    Centolanzi, F. J.; Zimmerman, N. B.; Probst, H. B.; Lowell, C. E.

    1971-01-01

    Seven thoria dispersed nickel base alloys and one cobalt base alloy, candidates for the Metallic Thermal Protection System for the Space Shuttle Vehicle, were tested simultaneously in an arc jet at a nominal test temperature of 1366 deg K (2000 deg F) and pressure of 0.01 atmospheres. The degradation of the materials after 50 one half-hour cycles in the arc jet simulating Space Shuttle entry conditions was determined utilizing techniques including X-ray diffraction, metallography, and electron beam microprobe.

  15. Comparative study of the physical properties of core materials.

    PubMed

    Saygili, Gülbin; Mahmali, Sevil M

    2002-08-01

    This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals. PMID:12212682

  16. Mechanical properties testing and results for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Cruse, T. A.; Johnsen, B. P.; Nagy, A.

    1997-03-01

    Mechanical test data for thermal barrier coatings, including modulus, static strength, and fatigue strength data, are reviewed in support of the development of durability models for heat engine applica-tions. The materials include 7 and 8 wt % yttria partially stabilized zirconia (PSZ) as well as a cermet ma-terial (PSZ +10 wt % NiCoCrAlY). Both air plasma sprayed and electron beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  17. Apparatus Tests Peeling Of Bonded Rubbery Material

    NASA Technical Reports Server (NTRS)

    Crook, Russell A.; Graham, Robert

    1996-01-01

    Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.

  18. Test System for Thermoelectric Modules and Materials

    NASA Astrophysics Data System (ADS)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot < 450°C) and mechanical loading ( P = 0 N to 104 N). The proposed instrument is able to monitor the temperature and electrical output of the TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  19. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the compressed sand column with the protective water jacket removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  20. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the top of the sand column with the metal platten removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  1. Irradiation Environment of the Materials Test Station

    SciTech Connect

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  2. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  3. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis.

    PubMed

    Monsell, Fergal; Hughes, Andrew William; Turner, James; Bellemore, Michael C; Bilston, Lynne

    2014-04-01

    Evaluation of the material properties of regenerate bone is of fundamental importance to a successful outcome following distraction osteogenesis using an external fixator. Plain radiographs are in widespread use for assessment of alignment and the distraction gap but are unable to detect bone formation in the early stages of distraction osteogenesis and do not quantify accurately the structural properties of the regenerate. Dual X-ray absorptiometry (DXA) is a widely available non-invasive imaging modality that, unlike X-ray, can be used to measure bone mineral content (BMC) and density quantitatively. In order to be useful as a clinical investigation; however, the structural two-dimensional geometry and density distributions assessed by DXA should reflect material properties such as modulus and also predict the structural mechanical properties of the regenerate bone formed. We explored the hypothesis that there is a relationship between DXA assessment of regenerate bone and structural mechanical properties in an animal model of distraction osteogenesis. Distraction osteogenesis was carried out on the tibial diaphysis of 41 male, 12 week old, New Zealand white rabbits as part of a larger study. Distraction started after a latent period of 24 h at a rate of 0.375 mm every 12 h and continued for 10-days, achieving average lengthening of 7.1 mm. Following an 18-day period of consolidation, the regenerate bone was subject to bone density measurements using a total body dual-energy X-ray densitometer. This produced measurement of BMC, bone mineral density (BMD) and volumetric bone mineral density (vBMD). The tibiae were then disarticulated and cleaned of soft tissue before loading in compression to failure using an Instron mechanical testing machine (Instron Corporation, Massachusetts USA). Using Spearman rank correlation and linear regression, there was a significant correlation between vBMD and the Modulus of Elasticity, Yield Stress and Failure Stress of the

  4. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  5. New Monolayered Materials Exhibiting Unusual Electronic Properties

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    Computationally based approaches are allowing to progress in the discovery and design of nano-scaled materials. Here we propose a series of new mono-layered compounds with exotic properties. By means of density functional theory calculations we demonstrate that the pentagonal arrangement of SiC2 yields an inverted distribution of the p-bands which leads to an unusual electronic behaviour of the material under strain [J. Phys. Chem. C, 2015, 119 (33), pp 19469]. A different pentagonal arrangement of C atoms enables the formation of Dirac cones which, unlike graphene, exhibit a strain-mediated tunable band gap. This work is supported by DOE-BES under Contract No. DE-AC02-06CH11357.

  6. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  7. Clinical Biospecimens: Reference Materials, Certified for Nominal Properties?

    PubMed Central

    2014-01-01

    This report makes the case for clinical biospecimens to be certified for nominal properties, in particular the diagnosis, and to attain the level of Reference Materials. Clinical certified biospecimens that are collected, processed, characterized, stored, and distributed by biobanks are urgently needed to facilitate diagnostic test development, evaluation, and quality assurance. Four examples are provided to illustrate this purpose and the certification approaches that could be applied are proposed. PMID:24749878

  8. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  9. Molybdenum silicide based materials and their properties

    SciTech Connect

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-06-01

    Molybdenum disilicide (MoSi{sub 2}) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm{sup 3}). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi{sub 2} composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi{sub 2}-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed.

  10. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown approximately 20 and 60 minutes after the start of an experiment on STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  11. Mechanics of Granular Materials Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown from all three sides by its video camera during STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  12. Material Testing for Robotic Omnidirectional Anchor

    NASA Technical Reports Server (NTRS)

    Witkoe, Kevin S.

    2012-01-01

    To successfully explore near-Earth Asteroids the question of mobility emerges as the key issue for any robotic mission. When small bodies have extremely low escape velocities, traditional methods, such as wheels, would send the robot hurtling off of the asteroid's surface. To solve this problem, JPL has developed an omni-directional anchoring mechanism for use in microgravity that utilizes microspine technology. These microspines are placed in circular arrays with 16 independent carriages biasing the surface of the rock. The asperities in the surface allow the gripper to hold nearly 150N in all directions. While the gripper has been proven successful on consolidated rocks, it had yet to be tested on a variety of other surfaces that are suspected to separate the large boulders on an asteroid. Since asteroid surfaces vary widely, from friable rocks to lose ponds of regolith, the gripper was tested in a large variety of materials such as, bonded pumice, sand, gravel, and loose rocks. The forces are applied tangent, at 45 degrees, and normal to the surface of the material. The immediate results from this experiment will give insight into the gripper's effectiveness across the wide spectrum of materials found on asteroids.

  13. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  14. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  15. Mechanical properties of materials with nanometer scale microstructures

    SciTech Connect

    Nix, W.D.

    1991-07-01

    For the past two years we have been engaged in a program of research on the mechanical properties of a variety of new materials with nanometer scale microstructures. These materials have been developed recently using vapor phase synthesis techniques and are available in the form of compositionally-modulated (multilayered) thin film materials and ultrafine-grained (nanocrystalline) solids. They have interesting microstructures and mechanical properties that may lead to new applications for these materials. In this report we give a brief summary of some of the results we have obtained to date in the course of this research. Other, more detailed, descriptions of some of this work can be found in the papers that we have published. These are listed at the end of this report along with a listing of the oral presentations we have given. We report briefly on our studies of the elastic properties of metallic multilayered thin films. Using indentation and microbeam deflection techniques, we have found that Au/Ni multilayers do not show supermodulus effects, contrary to some previous reports based on bulge test results. However, we have discovered large and significant substrate interaction stresses in these films which depend systematically on the composition modulation wavelength. We believe that these residual stresses may have led to bulge testing errors which in turn led to erroneous reports of supermodulus effects.

  16. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  17. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  18. Materials characterization of cermet anodes tested in a pilot cell

    SciTech Connect

    Windisch, C.F. Jr.; Strachan, D.M.; Henager, C.H. Jr. ); Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. . Mfg. Technology Lab.)

    1993-02-01

    Cermet anodes were evaluated as nonconsumable substitutes for carbon anodes using a pilot-scale reduction cell at the Reynolds Manufacturing Technology Laboratory. After pilot cell testing, tile anodes were subjected to extensive materials characterization and physical properties measurements at the Pacific Northwest Laboratory. Significant changes in the composition of the cermet anodes were observed including the growth of a reaction layer and penetration of electrolyte deep into the cermet matrix. Fracture strength and toughness were measured as a function of temperature and the ductile-brittle transition wasreduced by 500C following pilot cell testing. These results imply difficulties with anode material and control of operating conditions in the pilot cell, and suggest that additional development work be performed before the cermet anodes are used in commercial reduction cells. The results also highlight specific fabrication and operational considerations that should be addressed in future testing.

  19. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  20. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    SciTech Connect

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  1. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at

  2. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  3. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  4. Materials screening chamber for testing materials resistance to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Carruth, Ralph

    1989-01-01

    A unique test chamber for exposing material to a known flux of oxygen atoms is described. The capabilities and operating parameters of the apparatus include production of an oxygen atom flux in excess of 5 x 10 to the 16th atoms/sq cm-sec, controlled heating of the sample specimen, RF circuitry to contain the plasma within a small volume, and long exposure times. Flux measurement capabilities include a calorimetric probe and a light titration system. Accuracy and limitations of these techniques are discussed. An extension to the main chamber to allow simultaneous ultraviolet and atomic oxygen exposure is discussed. The oxygen atoms produced are at thermal energies. Sample specimens are maintained at any selected temperature between ambient and 200 C, to within + or - 2 C. A representative example of measurements made using the chamber is presented.

  5. Asbestos penetration test system for clothing materials

    SciTech Connect

    Bradley, O.D.; Stampfer, J.F.; Sandoval, A.N.; Heath, C.A.; Cooper, M.H.

    1997-04-01

    For hazardous work such as asbestos abatement, there is a need to assess protective clothing fabrics and seam constructions to assure an adequate barrier against hazardous material. The penetration of aerosols through fabrics usually is measured by challenging fabric samples with an aerosol stream at a constant specified airflow. To produce the specified airflow, pressure differentials across the samples often are higher than exist in a work environment. This higher airflow results in higher aerosol velocities through the fabric and, possibly, measured penetration values not representative of those actually experienced in the field. The objective of the reported work was to develop a test method that does not require these higher airflows. The authors have designed and fabricated a new system that tests fabric samples under a low, constant, specified pressure differential across the samples. This differential is adjustable from tenths of a mm Water Gauge (hundredths of an in WG) to over 25-mm WG (1-in WG). The system operates at a pressure slightly lower than its surroundings. Although designed primarily for asbestos, the system is equally applicable to the testing of other aerosols by changing the aerosol generator and detector. Through simple modification of the sample holders, the test apparatus would be capable of evaluating seam and closure constructions.

  6. Test set for materials science and engineering

    NASA Astrophysics Data System (ADS)

    Morshedloo, Toktam; Richter, Norina A.; Mohamed, Fawzi; Ren, Xinguo; Levchenko, Sergey V.; Ghiringhelli, Luca M.; Zhang, Igor Ying; Scheffler, Matthias

    2015-03-01

    Understanding of the applicability and limitations of electronic-structure methods needs detailed comparison with highly accurate data of representative test sets. A variety of highly valuable test sets have been established in quantum chemistry for small molecules. However, for crystalline solids they are still lacking. We present a representative test set for materials science and engineering (MSE) which includes first and second row elements and their binaries, comprising various crystal structures. This allows for unbiased benchmarking for various chemical interactions. In the MSE test set, we consider cohesive energy, lattice constant, bulk modulus, electronic, band structures and phonons etc. A big effort is made to produce systematically converged results with respect to basis set and k mesh for a hierarchy of electronic-structure methods, ranging from the local-density approximation to advanced orbital-dependent functionals implemented in the all-electron, full-potential FHI-aims code. Furthermore, we use incremental schemes to obtain benchmark values calculated with coupled-cluster approaches.

  7. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1985-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have derived a theory, and tested it on tissues, for predicting the composition of composite materials using mixture rules, such as the one we derived for the nonlinear parameter two years ago; (2) We have published one article and another is in review on our use of modulated acoustic radiation pressure on levitated drops to characterize interfaces with and without surfactants. We have begun to study in a systematic way the nonlinear dynamics of drops, including drop fission: (3) we have improved apparatus for 30 MHz ultrasonic scattering from microparticles (approx. micron size), which should allow us to discriminate between different microparticles in a liquid; (4) We have begun to study the nonlinear mechanics of hydrodynamic solitons in cylindrical (2-d) geometry; and (5) We have been studying the use of acoustic levitation for transducer calibration.

  8. Viscoelastic properties and compaction behaviour of pharmaceutical particulate materials

    NASA Astrophysics Data System (ADS)

    Tsardaka, Ekaterini D.

    1990-01-01

    The viscoelastic behaviour of particulate solids is of major relevance in powder compaction. When designing a pharmaceutical tablet formulation, it is highly undesirable for the tablet properties to be markedly affected by changes in compaction rate on different tablet presses, if problems are to be avoided during scale-up and manufacture. In order to be able to predict and minimise the time-dependent deformation of pharmaceutical powders, a full understanding of such behaviour is needed. For comparative purposes, a range of materials with differing compaction properties were studied. Heckel plots were extended in order to study the consolidation behaviour of materials during compression, decompression and after ejection. A number of derived parameters were proposed as a useful means of assessing the viscoelastic characteristics of materials. The mechanical properties of the tablets produced were assessed by means of both a diametral loading test and a direct tension test, in order to study the homogeneity of tablets with respect to strength and toughness. Fitting stress relaxation data to a hyperbolic equation enabled the asymptotic value of relaxed stress and the rate of stress relaxation at short times to be determined. Creep analysis was found to be a most useful method in quantifying the viscoelastic properties of materials. Creep experiments were used to separately quantify the ability of a material to undergo elastic, viscoelastic and plastic deformation at constant stress. Analysis of the viscoelastic compliance provided a time constant and an equilibrium value. Spectral analysis of the creep data was an alternative method of studying viscoelastic behaviour, since analysis in the frequency domain revealed hidden periodicities of mechanisms possibly related to viscoelastic behaviour. A detailed study of several forms of modified starch addressed factors which may influence its viscoelastic behaviour, including manufacturing process variables such as particle

  9. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  10. Aerothermal Testing of Woven TPS Ablative Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Feldman, Jay; Olson, Michael; Venkatapathy, Ethiraj

    2012-01-01

    Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing a variety of TPS materials capable of wide ranging performances demanded by a spectrum of solar system exploration missions. Currently, missions anticipated to encounter heat fluxes in the range of 1500 4000 Watts per square centimeter are limited to using one proven material fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 Watts per square centimeter, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This poster will summarize some recent arc jet testing to evaluate the performance of WTPS. Both mid density and fully dense WTPS test results will be presented and results compared to heritage carbon phenolic where applicable.

  11. Proficiency Testing for Evaluating Aerospace Materials Test Anomalies

    NASA Technical Reports Server (NTRS)

    Hirsch, D.; Motto, S.; Peyton, S.; Beeson, H.

    2006-01-01

    ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to ignition in liquid and gaseous oxygen systems. However, the methods have been known for their lack of repeatability. The inherent problems identified with the test logic would either not allow precise identification or the magnitude of problems related to running the tests, such as lack of consistency of systems performance, lack of adherence to procedures, etc. Excessive variability leads to increasing instances of accepting the null hypothesis erroneously, and so to the false logical deduction that problems are nonexistent when they really do exist. This paper attempts to develop and recommend an approach that could lead to increased accuracy in problem diagnostics by using the 50% reactivity point, which has been shown to be more repeatable. The initial tests conducted indicate that PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good choices for additional testing and consideration for inter-laboratory evaluations. The approach presented could also be used to evaluate variable effects with increased confidence and tolerance optimization.

  12. ESP – Data from Restarted Life Tests of Various Silicone Materials - 2011

    SciTech Connect

    Jim Schneider

    2011-12-31

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. This report will provide data on materials used in production and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  13. ESP - Data From Restarted Life Tests of Various Silicone Materials - 2009

    SciTech Connect

    J. W. Schneider

    2010-02-24

    Enhanced Surveillance Project (ESP) funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until ESP funding allowed the restart in FY97. This report will provide data on materials used on various programs and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  14. Multidimensional Tests of Thermal Protection Materials in the Arcjet Test Facility

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Mathew R.; Squire, Thomas H.

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. This paper investigates the effects of sidewall heating coupled with anisotropic thermal properties of thermal protection materials in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to verify the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  15. Multidimensional Testing of Thermal Protection Materials in the Arcjet Test Facility

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Ellerby, Donald T.; Switzer, Matt R.; Squire, Thomas Howard

    2010-01-01

    Many thermal protection system materials used for spacecraft heatshields have anisotropic thermal properties, causing them to display significantly different thermal characteristics in different directions, when subjected to a heating environment during flight or arcjet tests. The anisotropic effects are enhanced in the presence of sidewall heating. This paper investigates the effects of anisotropic thermal properties of thermal protection materials coupled with sidewall heating in the arcjet environment. Phenolic Impregnated Carbon Ablator (PICA) and LI-2200 materials (the insulation material of Shuttle tiles) were used for this study. First, conduction-based thermal response simulations were carried out, using the Marc.Mentat finite element solver, to study the effects of sidewall heating on PICA arcjet coupons. The simulation showed that sidewall heating plays a significant role in thermal response of these models. Arcjet tests at the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center were performed later on instrumented coupons to obtain temperature history at sidewall and various radial locations. The details of instrumentation and experimental technique are the prime focus of this paper. The results obtained from testing confirmed that sidewall heating plays a significant role in thermal response of these models. The test results were later used to validate the two-dimensional ablation, thermal response, and sizing program, TITAN. The test data and model predictions were found to be in excellent agreement

  16. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  17. THERMAL PREDICTIONS OF NEW COMPOSITE MATERIAL DURING INPILE TESTING

    SciTech Connect

    Donna Post Guillen; W. David Swank; Heng Ban; Kurt Harris; Adam Zabriskie

    2011-09-01

    An inpile experiment is currently underway wherein specimens comprised of a newly developed material are being irradiated at Idaho National Laboratory's Advanced Test Reactor (ATR) in conjunction with Utah State University under the auspices of the ATR National Scientific User Facility. This paper provides the thermophysical properties of this new material measured prior to irradiation. After the irradiation campaign is complete, the thermophysical properties of the specimens will be measured and compared to the preirradiation values. A finite-element model was constructed to predict bounding specimen temperatures during irradiation. Results from the thermal hydraulic modeling, including the steady-state temperatures of the specimens within sealed capsules, are presented. After the irradiation campaign is completed, best-estimate thermal predictions will be performed for the individual specimens using the actual as-run irradiation power levels.

  18. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, Matthias; Schreurs, Guido; Rosenau, Matthias; Kemnitz, Helga

    2016-04-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between (c. 100 and 400 micrometer). Analysis of grain shape factors show that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling . Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil., Most materials have a cohesion in the order of 10-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C <10 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density reached during sieving which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains. Also, models

  19. Controlled Chemistry Helium High Temperature Materials Test Loop

    SciTech Connect

    Richard N. WRight

    2005-08-01

    A system to test aging and environmental effects in flowing helium with impurity content representative of the Next Generation Nuclear Plant (NGNP) has been designed and assembled. The system will be used to expose microstructure analysis coupons and mechanical test specimens for up to 5,000 hours in helium containing potentially oxidizing or carburizing impurities controlled to parts per million levels. Impurity levels in the flowing helium are controlled through a feedback mechanism based on gas chromatography measurements of the gas chemistry at the inlet and exit from a high temperature retort containing the test materials. Initial testing will focus on determining the nature and extent of combined aging and environmental effects on microstructure and elevated temperature mechanical properties of alloys proposed for structural applications in the NGNP, including Inconel 617 and Haynes 230.

  20. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  1. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  2. Testing methods and techniques: Strength of materials and components. A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The methods, techniques, and devices used in testing the mechanical properties of various materials are presented. Although metals and metal alloys are featured prominently, some of the items describe tests on a variety of other materials, from concrete to plastics. Many of the tests described are modifications of standard testing procedures, intended either to adapt them to different materials and conditions, or to make them more rapid and accurate. In either case, the approaches presented can result in considerable cost savings and improved quality control. The compilation is presented in two sections. The first deals specifically with material strength testing; the second treats the special category of fracture and fatigue testing.

  3. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  4. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  5. A comparative evaluation of mechanical properties of nanofibrous materials

    NASA Astrophysics Data System (ADS)

    Lyubun, German P.; Bessudnova, Nadezda O.

    2014-01-01

    Restoration or replacement of lost or damaged hard tooth tissues remain a reconstructive clinical dentistry challenge. One of the most promising solutions to this problem is the development of novel concepts and methodologies of tissue engineering for the synthesis of three-dimensional graft constructs that are equivalent to original organs and tissues. This structural and functional compatibility can be reached by producing ultra-thin polymer filament scaffolds. This research aims through a series of studies to examine different methods of polymer filament material special preparation and test mechanical properties of the produced materials subjected to a tensile strain. Nanofibrous material preparation using chemically pure acetone and mixtures of ethanol/water has shown no significant changes in sample surface morphology. The high temperature impact on material morphology has resulted in the modification of fiber structure. In the course of mechanical tests it has been revealed the dependence of the material strength on the spinning solution compositions. The results achieved point to the possibility to develop nanofibrous materials with required parameters changing the methodology of spinning solution production.

  6. Helium retention properties of plasma facing materials

    NASA Astrophysics Data System (ADS)

    Yanagihara, H.; Yamauchi, Y.; Hino, T.; Hirohata, Y.; Yamashina, T.

    1997-02-01

    In a fusion reactor, the continuous removal of helium from the core plasma is needed in order to sustain the ignition condition. For this purpose, it has been proposed to place helium selective pumping metals, which can trap more helium than hydrogen, in the vicinity of the divertor. In this study, the helium and hydrogen trapping properties of nickel, tungsten, molybdenum, SS 304 and Inconel 625 were examined. Namely, the dependencies of irradiation temperature on the amount of trapped helium and hydrogen were obtained by thermal desorption spectroscopy (TDS), after helium or hydrogen plasma irradiation. In those metals, nickel showed the most suitable selective pumping capability. Nickel had the helium selective pumping property above 100°C. The maximum amount of trapped helium was (2-3) × 10 16He/ cm2 at an irradiation temperature of 200°C and 600°C. The optimum temperature becomes about 600°C when nickel is used for a selective pumping material.

  7. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  8. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  9. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  10. Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test

    SciTech Connect

    Jiang, Hao; Wang, Jy-An John

    2014-01-01

    An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, such as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.

  11. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  12. Diffractive optical element in materials testing

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik

    1998-09-01

    The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.

  13. Analysis of material properties for MEMS using interferometric measurements

    NASA Astrophysics Data System (ADS)

    O'Mahony, Conor; Hill, Martin; Mathewson, Alan

    2003-03-01

    As the scope and depth of research into microelectromechanical systems increases, the issue of mechanical characterisation has emerged as a major consideration in device design. It is now common to include a set of test structures on a MEMS wafer for extraction of thin film material properties (in particular, residual stress and Young's modulus). These structures usually consist of micromachined beams and strain gauges, and measurement techniques include tensile testing, electromechanical characterisation, SEM imaging, and Raman spectroscopy. However, some of these tests are destructive and difficult to carry out at wafer scale. This work uses electrostatic actuation to pull fixed-fixed beams towards the substrate, and a white-light interferometer to record the beam deflection profile. Finite-element simulation software is employed to model this deflection, and to estimate the material properties which minimise the difference between the measured and simulated profiles. The test is non-destructive, suitable for wafer-level characterisation, and the structures involved require less die space than other methods. We have developed a 1.5mm surface micromachining process for the fabrication of composite and monolayer structures with applications in relay switching, optical imaging and radio-frequency components. This work presents results obtained using interferometric analysis for both monolayer (titanium) and composite (SiOx - metal) thin films fabricated with this process.

  14. Development and mechanical properties of structural materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  15. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.

  16. Triaxial testing of polymer concrete materials under different temperature

    SciTech Connect

    Salami, M.R.; Zhao, S.

    1995-06-01

    Since polymer mortar materials are used in construction, there is a need for an accurate material model to predict the behavior of the materials under various loading conditions. To make use of a material failure model, it is necessary to determine the material constants by conducting laboratory tests on material specimens. To find the constants for a failure model the material will be subjected to static load testing at different temperatures and loading rates.

  17. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  18. Corrosion and tribological properties of basalt fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  19. Development and mechanical properties of construction materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  20. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Arnold, Steve

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v

  1. Test device for measuring permeability of a barrier material

    DOEpatents

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  2. Ocean acidification alters the material properties of Mytilus edulis shells.

    PubMed

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  3. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  4. Tensile tests of ITER TF conductors jacket materials

    NASA Astrophysics Data System (ADS)

    Anashkin, O. P.; Kеilin, V. E.; Krivykh, A. V.; Diev, D. N.; Dinisilov, A. S.; Shcherbakov, V. I.; Tronza, V. I.

    2012-06-01

    The set of very tough requirements has been formulated for TF jacket materials with extremely high plasticity at liquid helium temperature. The stainless steel 316LN-IG is recommended to be used for TF jacket tubes. Samples of 316LN-IG tubes (whole tubes and sub-size samples) made of the material from the same electro slag remelt have been tested in different conditions - as received tubes and tubes after prescribed compaction, 2.5% deformation at room temperature and heat treatment at 650 0C, 200 hours. The tensile tests were carried out at room, liquid nitrogen and liquid helium temperatures down to 4.2 K, meeting corresponding ASME and ASTM requirements. The low temperature testing devices are described. The tests results for sub-size samples and whole tubes show that the latter tests are considerably more representative and important for butt weld qualification at LHe temperature. It was observed that the ferromagnetic properties of all samples and especially of butt welds increase with lowering the temperature and increasing the degree of deformation. At LHe temperature a non-uniform and highly localized serrated deformations were observed.

  5. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  6. Properties of materials using acoustic waves

    NASA Astrophysics Data System (ADS)

    Apfel, R. E.

    1984-10-01

    Our goal of characterizing materials using acoustic waves was forwarded through a number of projects: (1) We have refined our modulated radiation pressure technique for characterizing the interfaces between liquids so that we can automatically track changes in interfacial tension over time due to contaminants, surfactants, etc. (2) We have improved and simplified our acoustic scattering apparatus for measuring distributions of the properties of microparticle samples, which will allow us to distinguish particulates in liquids by size, compressibility, and density. (3) We are continuing work on theoretical approaches to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a manageable form. (4) Our studies of cavitation have enabled us to derive an analytic expression which predicts the acoustic pressure threshold for cavitation at the micrometer scale - where surface tension effects are important. This work has relevance to the consideration of possible bioeffects from diagnostic ultrasound. (5) Other projects include the calibration of hydrophones using acoustically levitated samples, and the investigation of solitary waves of the sort discovered by Wu, Keolian and Rudnick.

  7. A combined analytical-experimental tensile test technique for brittle materials

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1992-01-01

    A semiconventional tensile test technique is developed for impact ices and other brittle materials. Accurate results have been obtained on ultimate strength and modulus of elasticity in a refrigerated ice test. It is noted that the technique can be used to determine the physical properties of impact ices accreted inside icing wind tunnels or other brittle materials.

  8. Radiation damage calculations for the APT materials test program

    SciTech Connect

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-09-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons ({approximately}1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV.

  9. Psychometric properties of the Affect Phobia Test.

    PubMed

    Frankl, My; Philips, Björn; Berggraf, Lene; Ulvenes, Pål; Johansson, Robert; Wennberg, Peter

    2016-10-01

    The aim of this study was to make the first evaluation of the psychometric properties of the Affect Phobia Test, using the Swedish translation - a test developed to screen the ability to experience, express and regulate emotions. Data was collected from a clinical sample (N = 82) of patients with depression and/or anxiety participating in randomized controlled trial of Internet-based affect-focused treatment, and a university student sample (N = 197). The internal consistency for the total score was satisfactory (Clinical sample α = 0.88/Student sample α = 0.84) as well as for all the affective domains, except Anger/Assertion (α = 0.44/0.36), Sadness/Grief (α = 0.24/0.46) and Attachment/Closeness (α = 0.67/0.69). Test retest reliability was satisfactory (ICC > 0.77) for the total score and for all the affective domains except for Sadness/Grief (ICC = 0.04). The exploratory factor analysis resulted in a six-factor solution and did only moderately match the test's original affective domains. An empirical cut-off between the clinical and the university student sample were calculated and yielded a cut-off of 72 points. As expected, the Affect Phobia test showed negative significant correlations in the clinical group with measures on depression (rxy  = -0.229; p < 0.01) and anxiety (rxy  = -0.315; p < 0.05). The conclusion is that the psychometric properties are satisfactory for the total score of the Affect Phobia Test but not for some of the test's affective domains. Consequently the domains should not be used as subscales. The test can discriminate between individuals who seek help for psychological problems and those who do not. PMID:27461917

  10. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material

  11. Factors Influencing the Dielectric Properties of Agricultural and Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency or microwave electric fields, and water content, temperature, and density of the materials, are discussed on the ...

  12. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  13. Comparative analysis of physicochemical properties of root perforation sealer materials

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Pedro, Fábio Luis Miranda; Bandeca, Matheus Coelho; Guedes, Orlando Aguirre; Villa, Ricardo Dalla

    2014-01-01

    Objectives This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (α = 0.05). Results The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO (Ângelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses. PMID:25110644

  14. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  15. Development of materials screening tests for oxygen-enriched environments

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Pippen, D. L.

    1971-01-01

    The criteria governing materials to be used in an oxygen enriched atmosphere and tests to determine suitability for fireproof considerations in spacecraft design are discussed. The nine tests applied to materials before acceptance in spacecraft construction are presented. The application of the standard tests to determine ranking of materials is included.

  16. Trusted materials using orthogonal testing. 2015 Annual report

    SciTech Connect

    Van Benthem, Mark

    2015-09-01

    The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.

  17. Materials Tested on the International Space Station

    NASA Video Gallery

    Miria Finckenor, a materials engineer, analyzes samples in her laboratory at NASA's Marshall Space Flight Center in Huntsville, Ala. The materials spent several years exposed to the harsh space env...

  18. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization

    NASA Astrophysics Data System (ADS)

    Rudolf, Chris; Boesl, Benjamin; Agarwal, Arvind

    2016-01-01

    In situ mechanical property testing has the ability to enhance quantitative characterization of materials by revealing the occurring deformation behavior in real time. This article will summarize select recent testing performed inside a scanning electron microscope on various materials including metals, ceramics, composites, coatings, and 3-Dimensional graphene foam. Tensile and indentation testing methods are outlined with case studies and preliminary data. The benefits of performing a novel double-torsion testing technique in situ are also proposed.

  19. Mechanical Properties and Simulated Wear of Provisional Resin Materials.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6

  20. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  1. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  2. Mechanical properties of new dental pulp-capping materials.

    PubMed

    Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S

    2016-01-01

    The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time. PMID:26742167

  3. 1000-ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    NASA Astrophysics Data System (ADS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R&D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  4. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    SciTech Connect

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  5. Relative toxicity testing of spacecraft materials. 2: Aircraft materials

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.

    1980-01-01

    The relative toxicity of thermodegradation (pyrolysis/combustion) products of aircraft materials was studied. Two approaches were taken to assess the biological activity of the pyrolysis/combustion products of these materials: (1) determine the acute lethality to rats from inhalation of these pyrolysates and (2) examine the tendency for sublethal exposure to the pyrolysates to disrupt behavioral (shock avoidance) performance of exposed rats. The ralative importance of lethality vs. behavioral effects in selection of a material may be dictated by whether or not individuals potentially exposed to such products, would have an opportunity to escape if they were behaviorally capable of doing so. If so, the second parameter would assume greater importance, but if not the first parameter may be of much greater importance in selecting materials.

  6. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  7. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well-determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  8. Characterization of reference materials for the Barrier Materials Test Program

    SciTech Connect

    Palmer, R.A.; Aden, G.D.; Johnston, R.G.; Jones, T.E.; Lane, D.L.; Noonan, A.F.

    1982-06-01

    Initial characterization of the geologic and engineered barrier materials for a nuclear waste repository in basalt has been completed. Data have been obtained on the characteristics of the reference waste forms which are being studied for eventual disposal in such a repository. Reference basalt entablature, colonnade, and flow top specimens have been selected from the Umtanum flow, which is the primary basalt flow under consideration for repository siting. Material from the Mabton Interbed Stratum, Pomona Flow basalt, smectite clay from the Pomona Flow, a potassium clinoptilolite, Beverly sandstone and tuff, and Grande Ronde groundwater are also included in the suite of reference geologic materials. Reference engineered barrier materials include sodium bentonite and canister metals such as carbon steel, cupronickel, Hastelloy and Inconel alloys. Spent fuel, borosilicate glass, and supercalcine ceramic comprise the reference waste forms. Analyses were made for physical, chemical, and morphological characteristics using techniques ranging from simple observations of color to sophisticated ultrastructural analysis in the electron microscope. Analyses of the elemental and phase chemistries for most of the reference materials have been completed on typical samples. Determinations of material homogeneity are currently being performed.

  9. Correlations among ultrasonic propagation factors and fracture toughness properties of metallic materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1976-01-01

    Empirical evidence was developed to show that a close relation exists among fracture toughness, yield strength, and ultrasonic attenuation properties of metallic materials. The evidence was obtained by ultrasonic probing of specimens of two maraging steels and a titanium alloy. It was concluded that nondestructive ultrasonic methods can be used to indirectly evaluate fracture-related material properties. The results suggest that these nondestructive ultrasonic measurements can also serve as an adjunct to destructive testing, measurement, and analysis of fracture properties.

  10. SRM propellant and polymer materials structural test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The SRM propellant and polymer materials structural test program has potentially wide application to the testing and structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. The test program will provide a basis for characterization of the dynamic failure criteria for Solid Rocket Motor (SRM) propellant, insulation, inhibitor and liners. This experimental investigation will also endeavor to obtain a consistent complete set of materials test data. This test will be used to improve and revise the presently used theoretical math models for SRM propellant, insulators, inhibitor, liners, and O-ring seals.

  11. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Richardson, David E. (Inventor); Stratton, Troy C. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  12. Tests with ceramic waste form materials made by pressureless consolidation.

    SciTech Connect

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-12-02

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  13. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  14. Survey of hazardous materials used in nuclear testing

    SciTech Connect

    Bryant, E.A.; Fabryka-Martin, J.

    1991-02-01

    The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

  15. Photoacoustic characterization of the mechanical properties of thin film materials

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Krishnaswamy, Sridhar; Fei, Dong; Rebinsky, Douglas A.

    2005-05-01

    Two high frequency photoacoustic techniques were applied to investigate the mechanical properties of two sets of thin film materials in this work. Broadband photoacoustic guided-wave method was used to measure the guided-wave phase velocity dispersion curves of nano-structured diamond-like carbon hard coatings. The experimental velocity spectra were analyzed by a nonlinear optimization approach in conjunction with a multi-layer wave-propagation model. The derived Young"s moduli using the broadband photoacoustic technique were compared with line-focus acoustic microscopy and nano-indentation tests and good quantitative agreement is found. In a second set of experiments, ultra-thin two-layer aluminum and silicon nitride thin film materials were tested using the femtosecond transient pump-probe method using high frequency bulk waves generated by the ultra-fast laser pulses. The measured moduli of silicon nitride thin layers are in the range of 270 - 340 GPa. Photoacoustic methods are shown to be suitable for in-situ and non-destructive evaluation of the mechanical properties of thin films.

  16. Structural properties of laminated Douglas fir/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Esgar, Jack B.; Gougeon, Meade; Zuteck, Michael D.

    1990-01-01

    This publication contains a compilation of static and fatigue strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 by 24 in. in cross section and approximately 30 ft. long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications.

  17. Structural properties of laminated Douglas fir/epoxy composite material

    SciTech Connect

    Spera, D.A. . Lewis Research Center); Esgar, J.B. ); Gougeon, M.; Zuteck, M.D. )

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  18. Europa Missions: Generic Materials Test Methodology

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.

    2006-01-01

    This viewgraph presentation discusses: radiation fundamentals, radiation damage, how radiation dosage is determined, fluence testing approaches, ionization damage exposure, displacement damage exposure, Europa energy "bins", rationale for group flux (energy bins), electron/proton group fluences, electron beam exposure testing, proton sources, reactor exposures, gamma exposures, preliminary exposure findings, testing caveats, preliminary conclusions, internal discharge, and electron dose depth curves.

  19. Thermostructural Analysis of Carbon Cloth Phenolic Material Tested at the Laser Hardened Material Evaluation Laboratory

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie; Ehle, Curt; Saxon, Jeff (Technical Monitor)

    2002-01-01

    RSRM nozzle liner components have been analyzed and tested to explore the occurrence of anomalous material performance known as pocketing erosion. Primary physical factors that contribute to pocketing seem to include the geometric permeability, which governs pore pressure magnitudes and hence load, and carbon fiber high temperature tensile strength, which defines a material limiting capability. The study reports on the results of a coupled thermostructural finite element analysis of Carbon Cloth Phenolic (CCP) material tested at the Laser Hardened Material Evaluation Laboratory (the LHMEL facility). Modeled test configurations will be limited to the special case of where temperature gradients are oriented perpendicular to the composite material ply angle. Analyses were conducted using a transient, one-dimensional flow/thermal finite element code that models pore pressure and temperature distributions and in an explicitly coupled formulation, passes this information to a 2-dimensional finite element structural model for determination of the stress/deformation behavior of the orthotropic fiber/matrix CCP. Pore pressures are generated by thermal decomposition of the phenolic resin which evolve as a multi-component gas phase which is partially trapped in the porous microstructure of the composite. The nature of resultant pressures are described by using the Darcy relationships which have been modified to permit a multi-specie mass and momentum balance including water vapor condensation. Solution to the conjugate flow/thermal equations were performed using the SINDA code. Of particular importance to this problem was the implementation of a char and deformation state dependent (geometric) permeability as describing a first order interaction between the flow/thermal and structural models. Material property models are used to characterize the solid phase mechanical stiffness and failure. Structural calculations were performed using the ABAQUS code. Iterations were made

  20. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    SciTech Connect

    Wang, Jy-An John; Jiang, Hao

    2013-08-01

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant

  1. Assessment of The Compatibility of Composite Materials With High-Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Griffin, Dennis E. (Technical Monitor)

    2000-01-01

    The compatibility of composite materials with high-test hydrogen peroxide (HTP) was assessed using various chemical and mechanical techniques. Methods included classical schemes combining concentration assay with accelerated aging by means of a heated water bath. Exothermic reactivity was observed using Isothermal Microcalorimetry. Mechanical Properties testing determined degradation of the composite material. Photoacoustic Infrared Spectroscopy was used to monitor chemical alteration of the resin matrix. Other materials were examined including some polymers and metals.

  2. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  3. Absorption properties of waste matrix materials

    SciTech Connect

    Briggs, J.B.

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  4. Strain weakening and localisation: material properties or boundary effects?

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Leever, Karen; Rosenau, Matthias; Oncken, Onno

    2015-04-01

    Strain weakening is commonly seen as one of the major causes of localisation of deformation into shear zones in brittle media. Several studies, both numerical and physical experiments, investigate its influence. Typically, these studies choose a certain model configuration and test various material properties and their influence on localisation in that particular configuration. This approach, however, does not take into account the fundamental importance of boundary conditions on the processes of localisation, weakening and overall shear zone evolution. To address this issue, we perform physical experiments in granular materials. We create shear fractures within a sample of granular material (sand) using different experimental apparatuses that apply different boundary conditions. Among them are standard machines such as a Ring-Shear Tester and the classical Riedel set up, as well as a newly designed set up. Boundary conditions can be varied from purely kinematic to more dynamically controlled and from laterally confined to unconfined. Nevertheless, the final result of deformation is an approximately straight strike-slip shear zone in all cases. We monitor boundary force (i. e. material strength) and, where experimentally accessible, strain, at high temporal resolution during deformation. With our different set ups we are able to produce very different patterns of deformation and weakening in the same material under the same constant rate of shearing and with the same final result. Observed patterns span from nearly instantaneous formation of one single through-going shear zone to slow, step-wise growth of a complex network of interacting cracks. Weakening in all cases matches well the structural evolution. Variations of weakening for a given material in different set ups are larger than for different materials in a given set up. Our results show that for a given material the style and rate of localisation can change drastically, depending on only slight changes of

  5. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  6. Elucidating the role of interfacial materials properties in microfluidic packages.

    SciTech Connect

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  7. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  8. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  9. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  10. Investigating the Size Dependent Material Properties of Nanoceria

    NASA Astrophysics Data System (ADS)

    Alam, Bushra B.

    Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet defined and one of the limitations has been the challenge of obtaining quantitative measurements of the antioxidant properties. In this work, we create our own library of ceria nanoparticles of various size distributions by two synthesis methods: sol-gel peroxo and thermal decomposition/calcination and annealing in open atmosphere at three different temperatures. The synthesis methods and conditions produce characteristic sizes and morphologies of ceria nanoparticles. Qualitative and quantitative approaches are used for characterization and to predict reactivity. Qualitative approaches include Brunauer-Emmett-Teller (BET) surface area measurements and Raman analysis while quantitative approaches include a combination of powder X-ray diffraction (XRD) Rietveld analysis, Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) to measure crystallite sizes, lattice parameters, oxygen site occupancies, and the relative abundance of Ce(III) ions in a nanoceria sample. These methods are discussed in detail in addition to their limitations and challenges. These methods are used to predict nanocrystalline or bulk-like behavior of ceria nanoparticles. The investigation of the material properties is also extended to test the redox properties of ceria

  11. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  12. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  13. ABINIT: First-principles approach to material and nanosystem properties

    NASA Astrophysics Data System (ADS)

    Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.

    2009-12-01

    ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and

  14. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  15. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  16. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  17. Structure and Thermal Properties of Porous Geological Materials

    NASA Astrophysics Data System (ADS)

    Kirk, Simon; Williamson, David

    2011-06-01

    Understanding the behaviour of porous geological materials is important for developing models of the explosive loading of rock in mining applications. To this end it is essential to first characterise its complex internal structure. Knowing the structure shows how the properties of the component materials relate to the overall properties of rock. The structure and mineralogy of Gosford sandstone was investigated and this information was used to predict its thermal properties. The thermal properties of the material were measured experimentally and compared against these predictions.

  18. Exposure effects on the optical properties of building materials

    NASA Astrophysics Data System (ADS)

    Lane, Sarah; Cathcart, J. Michael; Harrell, J. Timothy

    2008-04-01

    Georgia Tech recently initiated a weathering effects measurement program to monitor the optical properties of several common building materials. A set of common building materials were placed outdoors and optical property measurements made over a series of weeks to assess the impact of exposure on these properties. Both reflectivity and emissivity measurements were made. Materials in this program included aluminum flashing, plastic sheets, bricks, roof shingles, and tarps. This paper will discuss the measurement approach, experimental setup, and present preliminary results from the optical property measurements.

  19. Materials properties, loads, and stress analysis, Spartan REM: Appendix A

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The mechanical properties, load tests, and stress analysis of the Spartan Release Engagement Mechanism (REM) is presented. The fracture properties of the components of the unit are also discussed. Detailed engineering drawings are included.

  20. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    EPA Science Inventory

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  1. Calculation of material properties and ray tracing in transformation media.

    PubMed

    Schurig, D; Pendry, J B; Smith, D R

    2006-10-16

    Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability. PMID:19529371

  2. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  3. Dynamic tensile material properties of human pelvic cortical bone.

    PubMed

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    IIn order for finite element models of the human body to predict pelvic injuries accurately, the appropriate material properties must be applied. Therefore, the purpose of this study was to quantify the dynamic material properties of human pelvic cortical bone in tension. In order to accomplish this, a total of 20 tension coupon specimens were obtained from four regions of four human cadaver pelves: anterior ilium wing, posterior ilium wing, superior pubic ramus, and ischium body. For the anterior and posterior regions of the ilium wing, samples were taken in two orientations to investigate any direction dependence. A high-rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor was used to apply tension loads to failure at a constant loading rate of 0.5 strains/s. The horizontally oriented anterior ilium specimens were found to have a significantly larger ultimate stress (p=0.02), ultimate strain (p>0.01), and modulus (p=0.02) than the vertically oriented anterior ilium specimens. There were no significant differences in ultimate stress (p=0.27), ultimate strain (p=0.85), or modulus (p=0.87) found between horizontally oriented and vertically oriented posterior ilium specimens. However, additional testing should be conducted at specimen orientation 45 degree from the orientations used in the current study to further investigate the effect of specimen orientation on the posterior portion of the ilium wing. There were no significant differences in ultimate stress (p=0.79), ultimate strain (p=0.31), or modulus (p=0.15) found between the superior pubic ramus and ischium body specimens. However, the statistical comparison between superior pubic ramus and ischium body specimens was considered weak due to the limited samples and large variation between subjects. PMID:19141951

  4. Tribology: Properties of materials. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1998-03-01

    The bibliography contains citations concerning tribological properties of composite materials, plastics, metals, and ceramics. Test apparatus and design techniques for evaluating the effects of temperature, load, sliding speed, surface contact, lubricants, and additives on tribological behavior of materials are discussed. Tribological assessment of materials and wear processes on tribologically loaded material surfaces are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. MISSE-X Tests the Materials of Tomorrow's Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) focus on maturing technology for use in future missions. The Materials on International Space Station Experiment-X, MISSE-X, will test numerous materi...

  6. Comparison of Autogenous and Alloplastic Cranioplasty Materials Following Impact Testing.

    PubMed

    Wallace, Robert D; Salt, Craig; Konofaos, Petros

    2015-07-01

    Alloplastic materials are often used when significant defects exist. Benefits include no donor site morbidity, relative ease of use, limitless supply, and predictable durability. Depending on the type of alloplast, limitations include a persistent risk of extrusion and infection. Of particular interest in relation to cranioplasties is the ability of the material to provide neuroprotection. The integrity and neuroprotective properties of autologous bone flaps, polymethylmethacrylate (PMMA), and high-density porous polyethylene (PP) were evaluated following impact testing. Three groups of New Zealand white rabbits (N = 4) underwent a cranioplasty with either a bone flap, PMMA, or PP. In the control group (N = 4), the animals had no cranioplasty. At the end of the eighth week, an impact was delivered to the center of each cranioplasty. At necropsy each cranium and brain was evaluated grossly and histologically. There was a statistical significant difference among groups for the severity of the hemorrhage (P = 0.022) and the grade of cranioplasty disruption (P = 0.0045). Autologous bone was found to be the weakest of the materials tested. In this group severe injury resulted at much lower energy levels than was observed in the control, PMMA, or PP groups. Both PMMA and PP were resistant to fracture and disruption. PMMA provided the greatest neuroprotection, followed by PP. Autologous bone provided the least protection with cranioplasty disruption and severe brain injury occurring in every patient. Brain injury patterns correlated with the degree of cranioplasty disruption regardless of the cranioplasty material. Regardless of the energy of impact, lack of dislodgement generally resulted in no obvious brain injury. PMID:26114508

  7. Research on the icephobic properties of fluoropolymer-based materials

    NASA Astrophysics Data System (ADS)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  8. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1986-01-01

    A comprehensive software system for automating much of the experimental process has recently been completed at the Lewis Research Center's high-temperature fatigue and structures laboratory. The system was designed to support experiment definition and conduct, results analysis and archiving, and report generation activities. This was accomplished through the design and construction of several software systems, as well as through the use of several commercially available software products, all operating on a local, distributed minicomputer system. Experimental capabilities currently supported in an automated fashion include both isothermal and thermomechanical fatigue and deformation testing capabilities. The future growth and expansion of this system will be directed toward providing multiaxial test control, enhanced thermomechanical test control, and higher test frequency (hundreds of hertz).

  9. GUIDE TO CURRICULUM MATERIALS AND TESTING INSTRUMENTS.

    ERIC Educational Resources Information Center

    Educational Projects, Inc., Washington, DC.

    THIS BIBLIOGRAPHY WAS PREPARED FOR CONSULTANTS WHO SERVE OEO MIGRANT AND SEASONAL FARM WORKER PROGRAMS. THE FIRST SECTION PERTAINS TO CURRICULUM MATERIALS AND INCLUDES (1) READING AND LANGUAGE, (2) ENGLISH AS A SECOND LANGUAGE, (3) SOCIAL STUDIES, (4) MATHEMATICS, (5) VOCATIONAL, AND (6) CHILDREN'S SERIES. THE SECOND PART IS A LIST OF TESTING…

  10. Inoculation testing of Apollo 12 materials

    NASA Technical Reports Server (NTRS)

    1969-01-01

    E. Landrum Young, Brown and Root Northrop, injects a young Japanese quail with a suspension of pulvarized Apollo 12 lunar material within a quarantine cabinet in the Invertebrate, Aves and Fish Laboratory of the Lunar Receiving Laboratory, bldg 37, Manned Spacecraft Center. The bird is being inoculated in the abdominal cavity.

  11. Partial Testing Can Potentiate Learning of Tested and Untested Material from Multimedia Lessons

    ERIC Educational Resources Information Center

    Yue, Carole L.; Soderstrom, Nicholas C.; Bjork, Elizabeth Ligon

    2015-01-01

    Test-potentiated learning occurs when testing renders a subsequent study period more effective than it would have been without an intervening test. We examined whether testing only a subset of material from a multimedia lesson would potentiate the restudy of both tested and untested material. In Experiments 1a and 1b, participants studied a…

  12. Novel organosilicon phantoms as testing material for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Avigo, Cinzia; Armanetti, Paolo; Masciullo, Cecilia; Di Lascio, Nicole; Cavigli, Lucia; Ratto, Fulvio; Pini, Roberto; Cecchini, Marco; Kusmic, Claudia; Faita, Francesco; Menichetti, Luca

    2016-03-01

    The contrast in photoacoustic (PA) imaging depends on the mechanical and elastic properties of the tissue, as well as on his optical absorption and scatter properties. Thanks to these futures, this novel modality could offer additional specificity compared to conventional ultrasound techniques, being able to reveal the signal of absorbing materials and chomophores, e.g. endogenous molecules like haemoglobin or specific near infrared dyes or plasmonic contrast agents. The development of semi-quantitative protocols for the assessment of the contrast enhancement, is one of the key aspect of the ongoing research, that could open new routes to the use of PA imaging for a variety of applications in preclinical research of cancer and cardiovascular diseases. In this work, we designed and tested a tissue mimicking polydimethylsiloxane (PDMS) phantom for photoacoustic applications, with tailored biomechanical/optical and geometrical properties. In order to modulate the light fluence and penetration, that remains one of the major challenge for this technique, we added titanium dioxide and black ink, rendering the optical absorption and scattering coefficients similar to those of biological tissues. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  13. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The ultrasonic nondestructive evaluation techniques discussed in the present paper indicate potentials for material characterization and property prediction. Stress wave interaction and material transfer function concepts are examined as a basis for explaining correlations between material mechanical behavior and ultrasonically measured quantities. It is observed that the effect and criticality of any discrete flaw, such as crack, inclusion, or any other stress raiser, is definable only in terms of its material microstructural environment. This underscores the importance of ultrasonic techniques capable of characterizing the stress wave energy transfer properties of a material.

  14. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  15. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  16. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  17. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  18. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab, Slitted Trigonal Pattern) § 164.013-3 Material properties and workmanship. (a) General. The unicellular.... Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  19. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  20. Testing of novel desiccant materials and dehumidifier matrices for desiccant cooling applications

    SciTech Connect

    Pesaran, A.A.; Bingham, C.E.

    1989-03-01

    This paper presents the results of testing of desiccant materials and dehumidifier matrices for desiccant cooling and dehumidification applications. In testing desiccant materials, we used a gravimetric technique to measure the moisture capacity of four desiccant materials. These materials were microporous silica gel powder, macroporous silica gel powder, polystyrene sulfonic acid sodium salt, and a silica-gel/epoxy composite. The microporous silica gel powder had the most desirable moisture capacity properties of the four materials tested for desiccant cooling applications. The polystyrene sulfonic acid sodium salt showed some promise. Our testing of dehumidifier matrices included measuring the pressure drop and heat- and mass-transfer rate characteristics of a silica-gel/corrugated dehumidifier matrix under conditions typical of desiccant cooling systems. The matrix is a section of a commercial dehumidifier. The transient dehumidification capacity of the matrix was calculated from the tests and compared with previously tested matrices. 9 refs., 10 figs., 2 tabs.

  1. Fish gelatin: Material properties and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main difference between fish gelatin and mammalian gelatin is fish gelatin’s lower gelation temperature. This property limits the use of fish gelatin in applications that currently utilize mammalian gelatin. However, fish gelatin remains an attractive alterative to mammalian gelatin due to relig...

  2. Effects of tritium on material properties

    SciTech Connect

    Caskey, G.R. Jr.

    1985-01-01

    The effecs of tritium on deformation and fracture of metals are reviewed with emphasis on similarities and differences between tritium and the other hydrogen isotopes. Helium generated by radioactive decay of tritium introduces time dependent property changes not observed with protium or deuterium. On-going studies and topics for further investigations are identified. 17 refs., 6 figs., 9 tabs.

  3. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  4. Cibachrome testing. [photographic processing and printing materials

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1974-01-01

    The use of Cibachrome products as a solution to problems encountered when contact printing Kodak film type SO-397 onto Kodak Ektrachrome color reversal paper type 1993 is investigated. A roll of aerial imagery consisting of Kodak film types SO-397 and 2443 was contact printed onto Cibachrome and Kodak materials and compared in terms of color quality, resolution, cost, and compatibility with existing equipment and techniques. Objective measurements are given in terms of resolution and sensitometric response. Comparison prints and transparencies were viewed and ranked according to overall quality and aesthetic appeal. It is recommended that Cibachrome Print material be used in place of Kodak Ektachrome paper because it is more easily processed, the cost is equivalent, and it provides improved resolution, color quality, and image fade resistance.

  5. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  6. Aircraft seat cushion materials tests. [flammability

    NASA Technical Reports Server (NTRS)

    Bricker, R. W.

    1975-01-01

    Five component level flammability tests were conducted in a 400 cubic foot chamber to determine the products of combustion and relative destruction of coated (with fire-retardants) and uncoated polyurethane foams during exposure of the foams to a large flaming ignition source for five minutes. The test results indicate that the improved state-of-the-art polyurethane foams without the added fire retardant and coating treatments were not significantly better than untreated older less fire-resistant polyurethane foams. however, by treating and coating the state-of-the-art foams, the production of toxic gases was delayed and the destruction of the foam limited.

  7. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  8. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  9. NASA Dryden: Flight Loads Lab Capabilities and Mass Properties Testing

    NASA Technical Reports Server (NTRS)

    Wolfe, David Michael; Bakalyar, John A.

    2011-01-01

    This presentation covers the basic capabilities of the Dryden Flight Loads Lab. It also covers in detail the mass properties capabilities of the loads lab, focusing on the recent mass properties testing of the X-48B, and the recent tests of the Dynamic Inertia Measurement method (DIMM). Presentation focuses on the test methods and issues discovered during the mass properties testing of the X-48B leading to the requirement of new instrumentation on all conventional mass properties testing. Presentation also focuses on development of DIMM for replacement of conventional mass properties tests.

  10. Effect of High-Humidity Testing on Material Parameters of Flexible Printed Circuit Board Materials

    NASA Astrophysics Data System (ADS)

    Lahokallio, Sanna; Saarinen, Kirsi; Frisk, Laura

    2013-09-01

    The tendency of polymers to absorb moisture impairs especially their electrical and mechanical properties. These are important characteristics for printed circuit board (PCB) materials, which should provide mechanical support as well as electrical insulation in many different environments in order to guarantee safe operation for electrical devices. Moreover, the effects of moisture are accelerated at increased temperatures. In this study, three flexible PCB dielectric materials, namely polyimide (PI), fluorinated ethylene-propylene (FEP), and polyethylene terephthalate (PET), were aged over different periods of time in a high-humidity test, in which the temperature was 85°C and relative humidity 85%. After aging, the changes in the structure of the polymers were studied by determining different material parameters such as modulus of elasticity, glass-transition temperature, melting point, coefficient of thermal expansion, water absorption, and crystallinity, and changes in the chemical structure with several techniques including thermomechanical analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, moisture analysis, and a precision scale. The results showed that PI was extremely stable under the aging conditions and therefore an excellent choice for electrical applications under harsh conditions. Similarly, FEP proved to be relatively stable under the applied aging conditions. However, its crystallinity increased markedly during aging, and after 6000 h of aging the results indicated oxidation. PET suffered from hydrolysis during the test, leading to its embrittlement after 2000 h of aging.

  11. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.

  12. Simple Test For Organic Material In Gas

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Klibanov, Alexander; Karel, Marcus

    1989-01-01

    Dried enzymes and color indicators test sensitively and selectively. Dehydrated enzymes used in convenient method for analyzing gases for specific organic substances, outside laboratory. Method used to detect alcohol in breath or formaldehyde in gas streams. Used for simple semiquantitative detection or for precise quantitative measurement.

  13. Thermophysical property testing using transient techniques

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Shoemaker, R. L.; Stark, J. A.; Koshigoe, L. G.

    1984-06-01

    Transient techniques were applied to the study of energetic materials (AP, HMX, RDX and HTPB) used in solid rocket fuel to carbon/carbon materials used as rocket nozzles. Studies on AP included single crystals, pressed powders and AP/HTPB mixtures. It was found that the conductivity of AP can be considered isotropic, even the orthrohombic phase. The conductivity values for pure AP calculated from the AP/HTPB mixtures were somewhat larger than those measured directly on single crystals due to imperfections in the relatively large single crystals. Conductivity values for Beta HMX obtained on pressed powders are believed to be 20% below those that would be obtained on good single crystals if they were available. Delta phase values are believed representative. Conductivity data useful for modeling AP/binder and HMX/binder fuel from RT to combustion were obtained. Successful techniques for determining in-situ conductivity values for carbon fibers and matrix in c/c composites were developed. The relative roles of the fibers and matrix in c/c subject to transient heat fluxes were delineated. The advantages of off-axis testing were revealed. Diffusivity values corresponding to thermal conductivity results could be obtained. The presence of a surface layer in which interconstituent thermal gradients are important and beyond which they are negligible was demonstrated.

  14. Designing functionally graded materials with superior load-bearing properties

    PubMed Central

    Zhang, Yu; Sun, Ming-jie; Zhang, Denzil

    2011-01-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidlines for designing FGM with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (Eb/Es) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15 < n < 0.5), coupled with a relatively small modulus ratio (3 < Eb/Es < 6), is most desirable for reducing the maximum stress and transferring it into the interior, while keeping the surface stress low. Experimentally, we demonstrate that elastically graded materials with various n values and Eb/Es ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20% to 50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications. PMID:22178651

  15. The Effect of Material Properties on Dynamo Generation in Planets

    NASA Astrophysics Data System (ADS)

    Vilim, Ryan

    2015-10-01

    In this thesis I use a three dimensional numerical dynamo model to explore the effect of novel material properties and core states on magnetic field generation in the planet Mercury, and in rocky extra-solar planets. In the first part of this work I focus on the recent evidence of pressure induced metallisation in materials which commonly comprise planetary mantles. In this scenario the materials which make up the lower mantle of a planet conduct electricity with a conductivity similar to that of iron. I show that a metallised mantle changes the way in which magnetic field is generated by providing a new source of magnetic shear between the fluid outer core and the solid mantle. I then show that this has the effect of making planetary magnetic fields more difficult to observe from Earth. The second and third parts of this work focus on the planet Mercury. First, I incorporate recent evidence of buoyancy sources mid-way through Mercury's liquid core (known as "snow zones") to show that they can explain the weak observed magnetic field of Mercury. In a second project on Mercury I test whether recent evidence of a dense solid layer at the top of Mercury's core, attributed to a solid, electrically conducting layer of FeS, could help explain Mercury's weak magnetic field. I find that the addition of this layer causes the dynamo to generate a strong, dipolar magnetic field, which does not match the observations made by the MESSENGER spacecraft.

  16. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  17. Hydrodynamics and Material Properties Experiments Using Pulsed Power Techniques*

    NASA Astrophysics Data System (ADS)

    Reinovsky, Robert; Trainor, R. James

    1999-06-01

    Within the last few years a new approach for exploring dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns,and explosives. The principle tool is the high precision, magnetically imploded, near-solid density liner. The most attractive pulse power system for driving such experiments is an ultra-highcurrent, low impedance, microsecond time-scale source that is economical both the build and operate. Liner specifications vary but in general share requirements for a high degree of symmetry and uniformity after implosion. When imploded in free flight to velocities 10-30 km/sec and kinetic energies of from one to 25 MJ/cm of height, liners are attractive impactors for producing strong (>10 Mbar) shocks in the target. Simple geometries can, in principle, produce multi-shock environments to reach off-hugoniot states. When filled with a compressible material, liners can deliver almost adiabatic compression to the target. When the liner surrounds a (small)nearly incompressible target material, for example a condensed noble gas, a liner can deliver enormous pressure to the target almost isentropically. When the compressible material is a magnetic field, flux compression can results in compressed fields above 1000 tesla in macroscopic volumes for materials studies.In this paper we will review basic scaling argumentsthat set the scale of environments available. We will mention the pulse power technology under development at Los Alamos and provide a summary of results from experiments testing solid metal liners under magnetic drive and a few examples of experiments performed withinterim systems. Other papers in this conference will provide specific proposals for pulse power driven shock-wave experiments.

  18. Determination of the properties of viscoelastic materials using spherical nanoindentation

    NASA Astrophysics Data System (ADS)

    Martynova, Elena

    2016-02-01

    The article is devoted to determining the properties of linearly viscoelastic isotropic materials from the experiment on the introduction of a spherical indenter at a constant-rate displacement in a viscoelastic sample. The results are based on the Lee-Radok (J. Appl. Mech. 27:438-444, 1960) solution of the viscoelastic contact problem. An exact formula is obtained for calculation of the relaxation function using indentation load-displacement data. To illustrate the application of this formula, it is used to find the relaxation function of polymethyl methacrylate (PMMA). The relaxation function found in the article is compared with data measured in a conventional test to evaluate the suitability of the proposed method.

  19. Nonlinear elastic properties of various man-made materials

    SciTech Connect

    Darvennes, C.M.; Hou, X.

    1998-12-31

    Second harmonic generation was measured in several man-made materials for possible application of nonlinear elastic properties to non-destructive testing. Samples included several thicknesses of two types of carbon fiber/polymer matrix composites, three types of concretes, and plywood. Steel and Aluminum specimens were used as references and one of the composite samples was evaluated before and after fatigue cycles. Some interesting observations were made: (1) the two composites were much more nonlinear than the metals, (2) the concretes and the wood were extremely absorptive, (3) one of the concrete samples exhibited a third harmonic but no second harmonic, and (4) fatigue cycles significantly increased the second harmonic, even though no damage was observed by C-scan. The possible applications of these results to NDE will be discussed.

  20. IMAP: Interferometry for Material Property Measurement in MEMS

    SciTech Connect

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  1. Data base for crack growth properties of materials

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Lawrence, Victor B.; Nguy, Henry L.

    1988-01-01

    A computerized data base of crack growth properties of materials was developed for use in fracture control analysis of rocket engine components and other NASA space hardware. The software system has files of basic crack growth rate data, other fracture mechanics material properties such as fracture toughness and environmental crack growth threshold values, and plotting and fitting routines for deriving material properties for use in fracture control analysis. An extensive amount of data was collected and entered, and work is continuing on compiling additional data. The data base and software codes are useful both for fracture control analysis and for evaluation or development of improved crack growth theories.

  2. Material behavior and materials problems in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Dylla, H.F.; Ulrickson, M.A.; Owens, D.K.; Heifetz, D.B.; Mills, B.E.; Pontau, A.E.; Wampler, W.R.; Doyle, B.L.; Lee, S.R.; Watson, R.D.; Croessmann, C.D.

    1988-05-01

    This paper reviews the experience with first-wall materials over a 20-month period of operation spanning 1985--1987. Experience with the axisymmetric inner wall limiter, constructed of graphite tiles, will be described including the necessary conditioning procedures needed for impurity and particle control of high power ({le}20 MW) neutral injection experiments. The thermal effects in disruptions have been quantified and no significant damage to the bumper limiter has occurred as a result of disruptions. Carbon and metal impurity redeposition effects have been quantified through surface analysis of wall samples. Estimates of the tritium retention in the graphite limiter tiles and redeposited carbon films have been made based on analysis of deuterium retention in removed graphite tiles and wall samples. New limiter structures have been designed using a 2D carbon/carbon (C/C) composite material for RF antenna protection. Laboratory tests of the important thermal, mechanical and vacuum properties of C/C materials will be described. Finally, the last series of experiments in TFTR with in-situ Zr/Al surface pumps will be described. Problems with Ar/Al embrittlement have led to the removal of the getter material from the in-torus environment. 53 refs., 8 figs., 3 tabs.

  3. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  4. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of eleven alloys were evaluated. The eleven alloys studied were three nitriding alloys (Super Nitralloy, Nitralloy 135, and Nitralloy N), four case carburizing alloys (AISI 9310, CBS 600, CBS 1000M and Vasco X-2), and four throughhardening alloys (Vasco Matrix II,AISI W-1, AISI S-2 and AISI O-2). Several different heat treatments and/or melting processes were studied on the three carburizing alloy steels. Metallurgical analyses were made before and after the RC rig tests. Test data were statistically analyzed using the Weibull distribution function. B-10 lives were compared versus VIM-VAR AISI M-50 and carburized VAR AISI 9310, as reference alloys.

  5. Mapping the fracture properties of engineering materials

    NASA Astrophysics Data System (ADS)

    Ashby, Mike

    2013-09-01

    Among Alan Cottrell's many extraordinary talents was that of an inspirational teacher. He had a masterful ability to explain the underlying physics of the Science of Materials and at the same time to simplify and to present the big picture. His teaching-texts live on, still among the clearest and most insightful expositions of the subject. This paper surveys part of one of the fields to which he contributed so much - Fracture - with education and the big picture in mind.

  6. Temperature dependent terahertz properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Whitley, Von H.; Brown, Kathryn E.; Ahmed, Towfiq; Sorensen, Christian J.; Moore, David S.

    2016-04-01

    Reliable detection of energetic materials is still a formidable challenge which requires further investigation. The remote standoff detection of explosives using molecular fingerprints in the terahertz spectral range has been an evolving research area for the past two decades. Despite many efforts, identification of a particular explosive remains difficult as the spectral fingerprints often shift due to the working conditions of the sample such as temperature, crystal orientation, presence of binders, etc. In this work, we investigate the vibrational spectrum of energetic materials including RDX, PETN, AN, and 1,3-DNB diluted in a low loss PTFE host medium using terahertz time domain spectroscopy (THz-TDS) at cryogenic temperatures. The measured absorptions of these materials show spectral shifts of their characteristic peaks while changing their operating temperature from 300 to 7.5 K. We have developed a theoretical model based on first principles methods, which is able to predict most of the measured modes in 1, 3-DNB between 0.3 to 2.50 THz. These findings may further improve the security screening of explosives.

  7. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  8. Materials properties: heterogeneity and appropriate sampling modes.

    PubMed

    Esbensen, Kim H

    2015-01-01

    The target audience for this Special Section comprises parties related to the food and feed sectors, e.g., field samplers, academic and industrial scientists, laboratory personnel, companies, organizations, regulatory bodies, and agencies who are responsible for sampling, as well as project leaders, project managers, quality managers, supervisors, and directors. All these entities face heterogeneous materials, and the characteristics of heterogeneous materials needs to be competently understood by all of them. Before delivering analytical results for decision-making, one form or other of primary sampling is always necessary, which must counteract the effects of the sampling target heterogeneity. Up to five types of sampling error may arise as a specific sampling process interacts with a heterogeneous material; two sampling errors arise because of the heterogeneity of the sampling target, and three additional sampling errors are produced by the sampling process itself-if not properly understood, reduced, and/or eliminated, which is the role of Theory of Sampling. This paper discusses the phenomenon and concepts involved in understanding, describing, and managing the adverse effects of heterogeneity in sampling. PMID:25807041

  9. Results of the mole penetration tests in different materials

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Roman; Seweryn, Karol; Grygorczuk, Jerzy; Banaszkiewicz, Marek; Rybus, Tomasz; Wisniewski, Lukasz; Neal, Clive R.; Huang, Shaopeng

    2010-05-01

    Mole devices are low velocity, medium to high energy, self-driven penetrators, designed as a carrier of different sensors for in situ investigations of subsurface layers of planetary bodies. The maximum insertion depth of such devices is limited by energy of single mole's stroke and soil resistance for the dynamic penetration. A mole penetrator ‘KRET' has been designed, developed, and successfully tested at Space Research Centre PAS in Poland. The principle of operation of the mole bases on the interaction between three masses: the cylindrical casing, the hammer, and the rest of the mass, acting as a support mass. This approach takes advantage of the MUPUS penetrator (a payload of Philae lander on Rosetta mission) insertion tests knowledge. Main parameters of the mole KRET are listed below: - outer diameter: 20.4mm, - length: 330mm, - total mass: 488g, - energy of the driving spring: 2.2J, - average power consumption: 0.28W, - average insertion progress/stroke: 8.5mm, The present works of Space Research Center PAS team are focused on three different activities. First one includes investigations of the mole penetration effectiveness in the lunar analogues (supported by ESA PECS project). Second activity, supported by Polish national fund, is connected with numerical calculation of the heat flow investigations and designing and developing the Heat Flow Probe Hardware Component (HPHC) for L-GIP NASA project. It's worth noting that L-GIP project refers to ILN activity. Last activity focuses on preparing the second version of the mole ready to work in low thermal and pressure conditions. Progress of a mole penetrator in granular medium depends on the mechanical properties of this medium. The mole penetrator ‘KRET' was tested in different materials: dry quartz sand (0.3 - 0.8 grain size), wet quartz sand, wheat flour and lunar regolith mechanical simulant - Chemically Enhanced OB-1 (CHENOBI). Wheat flour was selected due to its high cohesion rate and small grain size

  10. Material Properties for the Simulation of Cold Pressing of Armstrong CP-Ti Powders

    SciTech Connect

    Sabau, Adrian S; Kiggans, Jim; Peter, William H; ERDMAN III, DONALD L; Wang, Yanli; Clark, Michael B

    2010-01-01

    A review of the mechanical property data needed for the process simulation of cold pressing was conducted. The material property data for the newly developed low-cost commercially pure titanium, CP-Ti, powders made by Armstrong process was presented. The following data was obtained from mechanical testing: Youngs modulus, bulk modulus, failure line for the plasticity model. The Youngs modulus and bulk modulus were obtained from the uniaxial compression tests of a cylinder. The failure line for the plasticity model was obtained from failure compression tests. Materials testing software was written to provide automatic test control and data acquisition during material testing, such as axial displacement, axial stress, radial strain, and failure stress.

  11. Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.

    1992-01-01

    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.

  12. Outgassing and contamination properties of prospective Apollo Telescope Mount materials.

    NASA Technical Reports Server (NTRS)

    Poehlmann, H. C.

    1972-01-01

    Some of the test techniques used to evaluate the outgassing and contamination characteristics of prospective Apollo telescope mount (ATM) materials are reviewed. These include a screening test providing information on weight losses of materials, weights of their condensed outgas products, and white-light scattered by the condensed products. They also include an ultraviolet-region screening test and a comprehensive continuous in situ weight-loss test. Examples are presented of data obtained from each of the tests on various prospective ATM materials.

  13. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applies to Corps of Engineers Divisions and Districts operating soils, concrete, water quality and... materials testing. 209.340 Section 209.340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... materials testing. (a) Purpose. The purpose of this section is to define and establish policies...

  14. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applies to Corps of Engineers Divisions and Districts operating soils, concrete, water quality and... materials testing. 209.340 Section 209.340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... materials testing. (a) Purpose. The purpose of this section is to define and establish policies...

  15. Preparation and Use of Polish Mushroom Proficiency Testing Materials

    SciTech Connect

    Polkowska-Motrenko, Halina

    2008-08-14

    Mushroom reference materials have been prepared and characterized for the use in proficiency tests according to a procedure established within the frame of an IAEA Interregional Technical Cooperation Project. The materials were used for conducting the proficiency tests in Poland in 2005-2007. The results obtained by participating laboratories are presented and discussed.

  16. Structure and Thermoelectric Properties of Zinc Oxide Based Materials

    NASA Astrophysics Data System (ADS)

    Liang, Xin

    The present dissertation investigates the relationship between the structure and thermoelectric properties of ZnO based materials, with a focus on trivalent element doping on engineering the microstructure and altering the electrical and thermal transport properties. Within the solubility range, the addition of trivalent elements, such as In3+, Fe 3+ and Ga3+, is observed to increase the electrical conductivity of ZnO and decrease the thermal conductivity. As the solubility is exceeded, the consequent structure and thermoelectric properties varies with dopant species. The ZnO-In2O3 binary system, which we have chosen as one of the model systems, is of particular interests as it contains a variety of phase equilibria and microstructures. The In2O3(ZnO)k superlattice structures, which form as the indium solubility is reached, are observed to strongly scatter phonons while relatively permissive to electrons, resulting in a low thermal conductivity of about 2 W/mK and improved electrical conductivity. The thermal (Kapitza) resistance of In2O3(ZnO)k superlattice interfaces is found to be 5.0 +/- 0.6 x 10-10 m 2K/W by fitting the modified Klemens-Callaway's thermal conductivity model to the experimental data. Across the phase diagram, the materials behave as n-type free-electron semiconductors at high temperatures. An effective medium approximation model is for the first time successfully tested on the thermoelectrics of two-phase regions. Both Fe2O3-ZnO and Ga2O3-ZnO binary systems are also investigated. In the Fe doped ZnO system, a highly Fe concentrated ZnO solid solution phase as well as the significant grain refinement are observed after high temperature annealing. The Ga2O 3(ZnO)9 homologous superlattices in Ga2O 3-ZnO system is also found to strongly scatter phonons and induces a drastic reduction in thermal conductivity. Thermal conductivity, as one of the key factors in thermoelectrics, is highly sensitive to material defects. In this dissertation, I also

  17. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  18. Mechanical properties characterization of composite sandwich materials intended for space antenna applications

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Vannucci, Raymond D.

    1989-01-01

    The composite materials proposed for use in the Advanced Communications Technology Satellite (ACTS) program contains a new, high modulus graphite fiber as the reinforcement. A study was conducted to measure certain mechanical properties of the new fiber-reinforced material as well as of a composite-faced aluminum honeycomb sandwich structure. Properties were measured at -157, 22, and 121 C. Complete characterization of this material was not intended. Longitudinal tensile, picture-frame shear, short-beam shear, and flexural tests were performed on specimens of the composite face-sheet materials. Unidirectional, cross-plied, and quasi-isotropic fiber composite ply layup designs were fabricated and tested. These designs had been studied by using NASA's Integrated Composite Analyzer (ICAN) computer program. Flexural tests were conducted on (+/- 60/0 deg) sub s composite-faced sandwich structure material. Resistance strain gages were used to measure strains in the tensile, picture-frame, and sandwich flexural tests. The sandwich flexural strength was limited by the core strength at 157 and 22 c. The adhesive bond strength was the limiting factor at 121 C. Adhesive mechanical properties are reflected in sandwich structure flexural properties when the span-to-depth ratio is great enough to allow a significant shear effect on the load-deflection behavior of the sandwich beam. Most measured properties agreed satisfactorily with the properties predicted by ICAN.

  19. Mechanical properties characterization of composite sandwich materials intended for space antenna applications

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Vannucci, Raymond D.

    1986-01-01

    The composite materials proposed for use in the Advanced Communications Technology Satellite (ACTS) Program contains a new, high modulus graphite fiber as the reinforcement. A study was conducted to measure certain mechanical properties of the new fiber-reinforced material as well as of a composite-faced aluminum honeycomb sandwich structure. Properties were measured at -157, 22, and 121 C. Complete characterization of this material was not intended. Longitudinal tensile, picture-frame shear, short-beam shear, and flexural tests were performed on specimens of the composite face-sheet materials. Unidirectional, cross-plied, and quasi-isotropic fiber composite ply layup designs were fabricated and tested. These designs had been studied by using NASA's Integrated Composite Analyzer (ICAN) computer program. Flexural tests were conducted on (+/- 60/0 deg) sub s composite-faced sandwich structure material. Resistance strain gages were used to measure strains in the tensile, picture-frame, and sandwich flexural tests. The sandwich flexural strength was limited by the core strength at -157 and 22 C. The adhesive bond strength was the limiting factor at 121 C. Adhesive mechanical properties are reflected in sandwich structure flexural properties when the span-to-depth ratio is great enough to allow a significant shear effect on the load-deflection behavior of the sandwich beam. Most measured properties agreed satisfactorily with the properties predicted by ICAN.

  20. Material Properties of the Human Lumbar Facet Joint Capsule

    PubMed Central

    Little, Jesse S.; Khalsa, Partap S.

    2005-01-01

    The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexion). Computational models of the spine have not been able to include accurate nonlinear and viscoelastic material properties, as they have not previously been measured. Capsules were tested using a uniaxial ramp-hold protocol or a haversine displacement protocol using a commercially available materials testing device. Plane strain was measured optically. Capsules were tested both parallel and perpendicular to the dominant orientation of the collagen fibers in the capsules. Viscoelastic material properties were determined. Parallel to the dominant orientation of the collagen fibers, the complex modulus of elasticity was E* = 1.63MPa, with a storage modulus of E′ = 1.25MPa and a loss modulus of: E″ = 0.39MPa. The mean stress relaxation rates for static and dynamic loading were best fit with first-order polynomials: B (ɛ) = 0.1110 ɛ − 0.0733 and B (ɛ) = −0.1249ɛ 11794-8181 +0.0190, respectively. Perpendicular to the collagen fiber orientation, the viscous and elastic secant moduli were 1.81 and 1.00 MPa, respectively. The mean stress relaxation rate for static loading was best fit with a first-order polynomial: B (ɛ) = − 0.04ɛ − 0.06. Capsule strength parallel and perpendicular to collagen fiber orientation was 1.90 and 0.95 MPa, respectively, and extensibility was 0.65 and 0.60, respectively. Poisson’s ratio parallel and perpendicular to fiber orientation was 0.299 and 0.488, respectively. The elasticity moduli were nonlinear and anisotropic, and capsule strength was larger aligned parallel to the collagen fibers. The phase lag between stress and strain increased with haversine frequency, but the storage modulus remained large relative to the complex modulus. The stress relaxation rate was strain dependent parallel to the collagen fibers, but was strain independent perpendicularly

  1. Properties of test metal ceramic titanium alloys.

    PubMed

    Akagi, K; Okamoto, Y; Matsuura, T; Horibe, T

    1992-09-01

    Four test alloys were prepared using a high frequency centrifugal casting machine and a ceramic crucible for the development of titanium bonding alloys that can be cast in the ordinary atmosphere. Of these alloys, 10.06% Ti, 78.79% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir could be cast by the conventional high frequency centrifugal method; however, 89.18% Ti, 8.75% Ni, 1.03% Pd, 0.28% Sn and 89.81% Ti, 8.15% Ni, 1.01% Pd, 0.18% Sn, 0.67% Ir could be cast only by the argon are melting method. The alloys 10.06% Ti, 78.95% Ni, 9.02% Pd, 1.77% Sn and 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed excellent physical and mechanical properties and bonding strengths, surpassing those of the commercial alloys TPW and Unimetal. Concerning the elution of component elements, the amounts of titanium eluted from these alloys were far smaller than those from pure titanium or a Ti-6Al-4V alloy, and nickel elution, which has become an issue in relation to metal allergy, was almost nil in contrast to Unimetal (Ni-Cr alloy). The alloy 9.91% Ti, 78.56% Ni, 9.07% Pd, 1.86% Sn, 0.65% Ir showed properties that indicated its favorable use as an alloy for the bonding of dental porcelain. PMID:1432762

  2. Method For Testing Properties Of Corrosive Lubricants

    DOEpatents

    Ohi, James; De La Cruz, Jose L.; Lacey, Paul I.

    2006-01-03

    A method of testing corrosive lubricating media using a wear testing apparatus without a mechanical seal. The wear testing apparatus and methods are effective for testing volatile corrosive lubricating media under pressure and at high temperatures.

  3. High temperature ultrasonic testing of materials for internal flaws

    SciTech Connect

    Kupperman, D.S.; Linzer, M.

    1990-02-06

    This patent describes an apparatus disclosed for nondestructive evaluation of defects in hot materials, such as metals and ceramics, by sonic signals. It comprises: a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  4. High temperature ultrasonic testing of materials for internal flaws

    SciTech Connect

    Kupperman, D.S.; Linzer, M.

    1988-08-23

    An apparatus is disclosed for nondestructive evaluation of defects in hot materials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, transmitting means mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and receiving means mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer. 2 figs.

  5. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.

  6. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  7. Dynamic material properties of the pregnant human uterus.

    PubMed

    Manoogian, Sarah J; Bisplinghoff, Jill A; Kemper, Andrew R; Duma, Stefan M

    2012-06-01

    Given that automobile crashes are the largest single cause of death for pregnant females, scientists are developing advanced computer models of pregnant occupants. The purpose of this study is to quantify the dynamic material properties of the human uterus in order to increase the biofidelity of these models. A total of 19 dynamic tension tests were performed on pregnant human uterus tissues taken from six separate donors. The tissues were collected during full term Cesarean style deliveries and tested within 36 h of surgery. The tissues were processed into uniform coupon sections and tested at 1.5 strains/s using linear motors. Local stress and strain were determined from load data and optical markers using high speed video. The experiments resulted in a non-linear stress versus strain curves with an overall average peak failure true strain of 0.32±0.112 and a corresponding peak failure true stress of 656.3±483.9 kPa. These are the first data available for the dynamic response of pregnant human uterus tissues, and it is anticipated they will increase the accuracy of future pregnant female computational models. PMID:22542221

  8. Material Properties of the Mandibular Trabecular Bone

    PubMed Central

    Lakatos, Éva; Magyar, Lóránt; Bojtár, Imre

    2014-01-01

    The present paper introduces a numerical simulation aided, experimental method for the measurement of Young's modulus of the trabecular substance in the human mandible. Compression tests were performed on fresh cadaveric samples containing trabecular bone covered with cortical layer, thus avoiding the destruction caused by the sterilization, preservation, and storage and the underestimation of the stiffness resulting from the individual failure of the trabeculae cut on the surfaces. The elastic modulus of the spongiosa was determined by the numerical simulation of each compression test using a specimen specific finite element model of each sample. The received mandibular trabecular bone Young's modulus values ranged from 6.9 to 199.5 MPa. PMID:27006933

  9. Ultrasonic Measurement of Dimensional and Material Properties

    NASA Astrophysics Data System (ADS)

    Stoyko, D. K.; Popplewell, N.; Shah, A. H.

    2009-03-01

    A computer model-based inversion procedure is used to simultaneously determine the elastic constants and wall thickness of a typical steel pipe from the experimentally determined cut-off frequencies of three guided wave modes as well as the pipe's mass density and outer diameter. Nominal values for the unknown parameters agree well with those found from conventional tension and torsion tests performed on a short piece of the pipe cut from one end.

  10. Retrieval-Induced Facilitation: Initially Nontested Material Can Benefit from Prior Testing of Related Material

    ERIC Educational Resources Information Center

    Chan, Jason C. K.; McDermott, Kathleen B.; Roediger, Henry L., III

    2006-01-01

    Classroom exams can assess students' knowledge of only a subset of the material taught in a course. What are the implications of this approach for long-term retention? Three experiments (N = 210) examined how taking an initial test affects later memory for prose materials not initially tested. Experiment 1 shows that testing enhanced recall 24 hr…

  11. Dynamic Material Properties of the Heat-Affected Zone (haz) in Resistance SPOT Welding

    NASA Astrophysics Data System (ADS)

    Ha, Ji-Woong; Song, Jung-Han; Huh, Hoon; Lim, Ji-Ho; Park, Sung-Ho

    This paper is concerned with a methodology to identify the dynamic material properties of the heat-affected zone (HAZ) near the base metal in a resistance spot weld process at various strain rates. In order to obtain the dynamic material properties of the HAZ in the spot-welded steel sheet, specimens are prepared to have similar material properties, hardness and microstructure to the actual HAZ. Such thermally simulated specimens are fabricated with the material thermal cycle simulator (MTCS) and compared with the real one for the hardness and microstructure. Dynamic tensile tests are then conducted with a high speed material testing machine. Stress-strain curves of the thermally simulated HAZ are obtained at various strain rates ranged from 0.001/sec to 100/sec. Obtained material properties are applied to the finite element analysis of the spot-welded tensile-shear specimen in order to verify validity of the proposed testing methodology and obtained results. Analysis results demonstrate that the material properties obtained are appropriate for the FE analysis of spot-welded specimens.

  12. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  13. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  14. Material properties of concentrated pectin networks.

    PubMed

    Zsivanovits, Gabor; MacDougall, Alistair J; Smith, Andrew C; Ring, Stephen G

    2004-05-17

    We have examined the mechanical behaviour of different types of pectin at high concentrations (> 30% w/w), relevant to the behaviour of pectin in the plant cell wall, and as a film-forming agent. Mechanical properties were examined as a function of counterion type (K(+), Ca(2+), Mg(2+)), concentration and extent of hydration. Hydration was controlled in an osmotic stress experiment where pectin films were exposed to concentrated polyethylene glycol [PEG] solutions of known osmotic pressure. We investigated the mechanical behaviour under simple extension. The results show that the swelling and stiffness of the films are strongly dependent on pectin source and ionic environment. At a fixed osmotic stress, both Ca(2+) or Mg(2+) counterions reduce swelling and increase the stiffness of the film. PMID:15113669

  15. Some functional properties of composite material based on scrap tires

    NASA Astrophysics Data System (ADS)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  16. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  17. Rheological properties of granular materials - Critical parameters and mixing rules

    NASA Astrophysics Data System (ADS)

    Vasilenko, Alisa Victoria

    2011-12-01

    Granular materials can be found at any stage of processing in many industries, such as food, pharmaceuticals, catalysts, and chemicals. These materials exhibit a variety of flow patterns, and their state and behavior differ from application to application. Since there is a lack of fundamental understanding of particulate or powder behavior, multiple problems can be encountered during routine manufacturing. Scale-up can also be a challenge, as the lack of constitutive equations for granular materials forces most scaleup efforts to follow the trial-and-error route. Powder characterization measurements are employed as both a selection tool and a predictive method for the material's process performance. Therefore, it plays a very important role in process and product development. The numerous existing methods used to characterize the flow properties of powders are mostly application-specific and it is not clear how they correlate with each other or with process performance. Moreover, understanding the relationships between the material properties and the processing conditions is necessary for a successful design of a continuous manufacturing system, which has been a major focus for pharmaceutical industry in the recent years. Before such changes can be implemented, a better understanding of fundamental physical phenomena governing powder flow behavior must be developed. In this work we study particulate/powder flow behavior experimentally using several characterization methods, including the Gravitational Displacement Rheometer (an avalanching tester), the rotational shear cell, and the compressibility tester. We establish the variables of interest through correlative comparison and study the differences and similarities between the methods in order to investigate particulate/powder flow behavior during processing and characterization. A mixing rule for principal stresses is developed through investigation of shear behavior of binary mixtures in a shear cell. In order

  18. Electrical properties of commercial sheet insulation materials for cryogenic applications

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Pace, Marshall O

    2008-01-01

    Dielectric properties of electrical insulation materials are needed for low-temperature power applications. Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. In this work we report the dielectric properties of some commercially available materials in sheet form. The selected materials are polypropylene laminated paper from Sumitomo Electric U.S.A., Inc., porous polyethylene (Tyvek\\texttrademark) from Dupont, and polyamide paper (Nomex\\texttrademark) from Dupont. The dielectric properties are characterized with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 50 to 300 K. The dielectric breakdown characteristics of the materials are measured in a liquid nitrogen bath at atmospheric pressure.

  19. Statistical distribution of mechanical properties for three graphite-epoxy material systems

    NASA Technical Reports Server (NTRS)

    Reese, C.; Sorem, J., Jr.

    1981-01-01

    Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.

  20. Determining significant material properties: A discovery approach

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. The experiment itself can be informative for persons of any age past elementary school, and even for some in elementary school. The preparation of the plastic samples is readily accomplished by persons with resonable dexterity in the cutting of paper designs. The completion of the statistical Design of Experiments, which uses Yates' Method, requires basic math (addition and subtraction). Interpretive work requires plotting of data and making observations. Knowledge of statistical methods would be helpful. The purpose of this experiment is to acquaint students with the seven classes of recyclable plastics, and provide hands-on learning about the response of these plastics to mechanical tensile loading.

  1. Correlating Flammability of Materials with FTIR Analysis Test Results

    NASA Technical Reports Server (NTRS)

    Moore, Robin; Whitfield, Steve

    2003-01-01

    The purpose of this experiment was to correlate flammability data with FTIR test results. Kydex 100 is a blend of chlorinated polyvinyl chloride and polymethylmethacrylate, with some filler materials. Samples supplied were 0.125 in. thick. 10 samples were taken from a sheet of Kydex and analyzed for flammability and by FTIR spectroscopy. This material was utilized as a round robin sample for flammability testing. The flammability test results were found to vary across the same sheet.

  2. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  3. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  4. The effects of material property assumptions on predicted meltpool shape for laser powder bed fusion based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Teng, Chong; Ashby, Kathryn; Phan, Nam; Pal, Deepankar; Stucker, Brent

    2016-08-01

    The objective of this study was to provide guidance on material specifications for powders used in laser powder bed fusion based additive manufacturing (AM) processes. The methodology was to investigate how different material property assumptions in a simulation affect meltpool prediction and by corrolary how different material properties affect meltpool formation in AM processes. The sensitvity of meltpool variations to each material property can be used as a guide to help drive future research and to help prioritize material specifications in requirements documents. By identifying which material properties have the greatest affect on outcomes, metrology can be tailored to focus on those properties which matter most; thus reducing costs by eliminating unnecessary testing and property charaterizations. Futhermore, this sensitivity study provides insight into which properties require more accurate measurements, thus motivating development of new metrology methods to measure those properties accurately.

  5. MIDAS (Material Implementation, Database, and Analysis Source): A comprehensive resource of material properties

    SciTech Connect

    Tang, M; Norquist, P; Barton, N; Durrenberger, K; Florando, J; Attia, A

    2010-12-13

    MIDAS is aimed to be an easy-to-use and comprehensive common source for material properties including both experimental data and models and their parameters. At LLNL, we will develop MIDAS to be the central repository for material strength related data and models with the long-term goal to encompass other material properties. MIDAS will allow the users to upload experimental data and updated models, to view and read materials data and references, to manipulate models and their parameters, and to serve as the central location for the application codes to access the continuously growing model source codes. MIDAS contains a suite of interoperable tools and utilizes components already existing at LLNL: MSD (material strength database), MatProp (database of materials properties files), and MSlib (library of material model source codes). MIDAS requires significant development of the computer science framework for the interfaces between different components. We present the current status of MIDAS and its future development in this paper.

  6. Cryogenic material properties of stainless steel tube-to-flange welds

    NASA Astrophysics Data System (ADS)

    Siewert, T. A.; McCowan, C. N.; Vigliotti, D. P.

    The mechanical properties of stainless steel tube-to-flange welds for a cryogenic piping application were measured. A planar specimen was developed to duplicate the constraint, loading and heat-sink properties of the circular joint, while reducing preparation time and cost. Specimens were evaluated containing welds between the tube material (21 Cr-6Ni-9Mn) and the three stainless steels being considered for the flange materials: type 304L, type 316L and 21 Cr-6Ni-9Mn. The mechanical property tests consisted of three phases: simple tensile testing to failure, tensile testing of notched specimens (where the notch simulated fabrication flaws) and fatigue testing of notched specimens for the 4 × 10 4 cycle design life of the structure. The type 316L stainless steel flange produced welds with the best combination of strength and ductility at 295 and 4 K in all three phases of testing.

  7. Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)

    SciTech Connect

    Francois, Elizabeth Green; Morris, John S; Novak, Alan M; Kennedy, James E

    2010-01-01

    Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to density gradients, pressing methods and geometry can be seen on the wave breakout behavior.

  8. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the Low-Cost Silicon Solar Array project. Thirteenth quarterly progress report, May 12, 1979-August 12, 1979

    SciTech Connect

    1980-01-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the product of cost-effective, long-life solar cell modules. Current technical activities are directed primarily towards the development of a solar module encapsulation technology that employs ethylene/vinyl acetate copolymer as the pottant. Due to the surface tack of EVA, a slip sheet of release paper is required between each layer to prevent the plies from adhering. Manufacturers were surveyed and a source for inexpensive release paper in roll form was identified. A survey of separator materials was also conducted. Corrosion studies using a standard salt spray test were used to determine the degree of protection offered to a variety of metals by encapsulation in EVA pottant. Due to the low surface hardness of EVA and the remaining sensitivity to ultraviolet light, outer covers are required to prevent soiling and improve the weatherability. Two candidate films (Korad 212 and Tedlar UT) have been identified for this function. These films are somewhat scratch and abrasion sensitive, however, and their useful life can be prolonged with the application of thin layers of abrasion resistant hard coats. A survey of manufacturers of these coatings was performed and the products compared. Field trials of outdoor performance must be performed to fully assess the durability of these coatings.

  9. A new tribological test for candidate brush seal materials evaluation

    SciTech Connect

    Fellenstein, J.A.; DellaCorte, C.

    1994-10-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  10. A New Tribological Test for Candidate Brush Seal Materials Evaluation

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; Dellacorte, Christopher

    1994-01-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  11. Cryogenic Chamber for Servo-Hydraulic Materials Testing

    NASA Technical Reports Server (NTRS)

    Francis, John J.; Tuttle, James

    2009-01-01

    A compact cryogenic test chamber can be cooled to approximately 5 to 6 Kelvin for materials testing. The system includes a temperature controller and multiple sensors to measure specimen temperature at different locations. The testing chamber provides a fast and easy method to perform materials testing at lower than liquid nitrogen temperature (77 K). The purpose of the chamber is to cool a composite lap shear specimen to approximately 20 K so that tensile test force and displacement data may be acquired at this cryogenic temperature range.

  12. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  13. Use of material dielectric properties for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  14. Heat Transmission Properties of Insulating and Building Materials

    National Institute of Standards and Technology Data Gateway

    SRD 81 NIST Heat Transmission Properties of Insulating and Building Materials (Web, free access)   NIST has accumulated a valuable and comprehensive collection of thermal conductivity data. Version 1.0 of the database includes data for over 2000 measurements, covering several categories of materials including concrete, fiberboard, plastics, thermal insulation, and rubber.

  15. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  16. Perspective: Interactive material property databases through aggregation of literature data

    NASA Astrophysics Data System (ADS)

    Seshadri, Ram; Sparks, Taylor D.

    2016-05-01

    Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.

  17. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  18. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  19. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  20. Optimizing material properties of composite plates for sound transmission problem

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Ting; Pawar, S. J.; Huang, Jin H.

    2015-01-01

    To calculate the specific transmission loss (TL) of a composite plate, the conjugate gradient optimization method is utilized to estimate and optimize material properties of the composite plate in this study. For an n-layer composite plate, a nonlinear dynamic stiffness matrix based on the thick plate theory is formulated. To avoid huge computational efforts due to the combination of different composite material plates, a transfer matrix approach is proposed to restrict the dynamic stiffness matrix of the composite plate to a 4×4 matrix. Moreover, the transfer matrix approach has also been used to simplify the complexity of the objective function gradient for the optimization method. Numerical simulations are performed to validate the present algorithm by comparing the TL of the optimal composite plate with that of the original plate. Small number of iterations required during convergence tests illustrates the efficiency of the optimization method. The results indicate that an excellent estimation for the composite plate can be obtained for the desired sound transmission.

  1. DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES

    SciTech Connect

    Gupta, N.

    2010-03-03

    The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

  2. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  3. Mechanical and vibration testing of carbon fiber composite material with embedded piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-04-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  4. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  5. High temperature ultrasonic testing of materials for internal flaws

    DOEpatents

    Kupperman, David S.; Linzer, Melvin

    1990-01-01

    An apparatus is disclosed for nondestructive evaluation of defects in hot terials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  6. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  7. Dynamic material properties of refractory materials: Tantalum and tantalum/tungsten alloys

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.; Lassila, D.H.; Steinberg, D.J.

    1995-08-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta{sub 97.5}W{sub 2.5} and Ta{sub 90}W{sub 10} (wt. %) with oxygen contents of 30--70 ppM. Information available from these experiments includes Hugoniot, elastic limits, loading fates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Lund rate-dependent material model provides for an excellent match of the shape of the plastic wave, although the release wave is not well modeled. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects.

  8. Models for predicting temperature dependence of material properties of aluminum

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Bhandarkar, Upendra V.; Joshi, Suhas S.

    2014-03-01

    A number of processes such as laser ablation, laser welding, electric discharge machining, etc involve high temperatures. Most of the processes involve temperatures much higher than the target melting and normal boiling point. Such large variation in target temperature causes a significant variation in its material properties. Due to the unavailability of experimental data on material properties at elevated temperatures, usually the data at lower temperatures is often erroneously extrapolated during modelling of these processes. Therefore, this paper attempts to evaluate the variation in material properties with temperature using some general and empirical theories, along with the available experimental data for aluminum. The evaluated properties of Al using the proposed models show a significant variation with temperature. Between room temperature and near-critical temperature (0.9Tc), surface reflectivity of Al varies from more than 90% to less than 50%, absorption coefficient decreases by a factor of 7, thermal conductivity decreases by a factor of 5, density decreases by a factor of 4, specific heat and latent heat of vapourization vary by a factor between 1.5 and 2. Applying these temperature-dependent material properties for modelling laser ablation suggest that optical properties have a greater influence on the process than thermophysical properties. The numerical predictions of the phase explosion threshold in laser ablation are within 5% of the experimental values.

  9. High strain-rate testing of parachute materials

    SciTech Connect

    Gwinn, K.W.; Totten, J.J.; Waye, D.E.

    1994-12-31

    Research at Sandia National Laboratories has shown a strain rate dependence of many materials used in the production of parachutes. Differences in strength of 30% have been found between strain rates of 12 sec{sup {minus}1} and slow rates normally used to define material properties for lightweight nylon cloth. These structures are sometimes deployed in a rapid fashion and the loading is experienced in milliseconds; the production of material data in the same loading regime is required for full understanding of material response. Also, material behavior suitable for structural analysis of these structures is required for successful analysis. This is especially important when different materials are used in the same fabric structure. Determining the distribution of load to various portions of a nylon and Kevlar parachute requires the correct moduli and material behavior in the analytical model. The effect of strain rate on the material properties of nylon and Kevlar components commonly used in parachute construction are reported in this paper. These properties are suitable for use in analytical models of these fabric structures.

  10. Milestone 4: Test plan for Reusable Hydrogen Composite Tank System (RHCTS). Task 3: Composite tank materials

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.

  11. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  12. Physical and chemical test results of electrostatic safe flooring materials

    NASA Technical Reports Server (NTRS)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  13. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  14. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    SciTech Connect

    DeAnn Long; Michael Murphy

    2008-07-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

  15. Material property data and their use in design and analysis for an elevated temperature solar code

    NASA Astrophysics Data System (ADS)

    Berman, I.

    1981-11-01

    Specific properties of the materials, temperatures, and operating parameters for elevated temperature solar thermal power plants are considered as a basis for developing standards of implementation. Physical and mechanical properties such as thermal conductivity, elastic modulus, expansion, strength, and creep are discussed and recommendations for ASME Code I and III materials are cited where feasible. Inelastic behavior tests involving beam bending, pipe ratcheting, torsion-torsion tests, and axial cyclic tests of various stainless steel specimens and Incoloy 800 material are reported. Peculiarities of problems for solar applications are noted to be a lack of information of basic material behavior due to the low amount of actual operational experience, a large number of transient temperature cycles, and primary creep.

  16. Structural and Radiation Shielding Properties of a Martian Habitat Material Synthesized From In-Situ Resources

    NASA Technical Reports Server (NTRS)

    Sen, S.; Caranza, S.; Bhattacharya, M.; Makel, D. B.

    2006-01-01

    The 2 primary requirements of a Martian habitat structure include sufficient structural integrity and effective radiation shielding. In addition, the capability to synthesize such building materials primarily from in-situ resources would significantly reduce the cost associated with transportation of such materials and structures from earth. To demonstrate the feasibility of such an approach we have fabricated samples in the laboratory using simulated in-situ resources, evaluated radiation shielding effectiveness using radiation transport codes and radiation test data, and conducted mechanical properties testing. In this paper we will present experimental results that demonstrate the synthesis of polyethylene from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with polyethylene as the binding material. Results from radiation transport calculations and data from laboratory radiation testing using a 500 MeV/nucleon Fe beam will be discussed. Mechanical properties of the proposed composite as a function of composition and processing parameters will also be presented.

  17. TRIAXIAL AND SHEAR TESTING OF SELECTED BACKFILL MATERIALS

    SciTech Connect

    N. E. Kramer

    2000-08-07

    The Subsurface Performance Testing Section is performing tests in the Department of Energy's Atlas Facility to evaluate the performance of various backfill materials. Triaxial and shear tests were conducted on select backfill materials. The specific materials tested were: crushed tuff, overton sand, 4- 10 silica sand, 1/4'' dolostone/marble, and limestone. The objective of this report is to provide an estimated value for Poisson's ratio, determine internal friction angle, and stress-strain modulus of the backfill materials that were tested. These basic parameters are necessary for the selection of a backfill material to be included in the repository. This report transmits the results in both hardcopy and electronic formats plus describes the methodology and interpretation of the results. No conclusions will be drawn about the test results, as this will be the purview of other reports. The scope of this report is to use the triaxial and shear testing information and calculate, the internal friction angle, stress-strain modulus, and provide an estimate of Poisson's ratio (Sowers 1979, p. 199) of the selected backfill materials. Standard laboratory procedures, mentioned in Section 2 of this report, were used.

  18. Rationale and summary of methods for determining ultrasonic properties of materials at Lawrence Livermore National Laboratory

    SciTech Connect

    Brown, A.E.

    1995-02-09

    This report is a summary of the methods used to determine ultrasonic velocities through the many materials tested at the Acoustic Properties of Materials Laboratory. Ultrasonic velocity techniques enable the determination of material properties, including elastic moduli, without harming the materials being tested, an advantage some over mechanical methods. Ultrasonic modulus determination has other advantages as well: (1) relative ease and low cost of material preparation; and (2) comparative analysis to physical testing as a function of material loading rate dependence. In addition, ultrasonic measurement provides clues to determine grain size and orientation, and provides a relative indication of material anisotropy with respect to the material geometry. The authors usually perform ultrasonic measurements on materials in ambient atmospheric conditions, and in a relatively free-free condition. However, the authors can perform them in other environments, as required. This paper describes some of the techniques used in this laboratory and shows how ultrasonic velocities are used to establish elastic constants. It also includes a sample test report for a homogeneous isotropic solid, along with a list of references.

  19. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a

  20. Quantitative measurement of nanomechanical properties in composite materials

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    In this work, quantitative Atomic force acoustic microscopy (AFAM) was used to measure nanomechanical properties and to determine microstructural morphology in fiber reinforced composites and hard calcified tissue. In carbon fiber reinforced composites, the fiber-matrix interphase is of interest as it affects the primary load-transfer process and thereby bulk mechanical properties of reinforced composites. The study of properties in the interphase region is important for an understanding of the bulk mechanical properties, which have been shown affected by moisture-based environmental degradation. Single point AFAM testing has been used to quantitatively determine elastic properties at the fiber-matrix interphase by taking advantage of the high spatial scanning resolution capable of measuring interphase dimensions. Carbon-fiber epoxy composite samples were degraded in laboratory conditions by exposure to a accelerated hydrothermal degradation environment in deionized water and salt water. Composite degradation has been characterized by the change in the epoxy matrix contact stiffness and the interphase properties. A decrease in matrix stiffness was found to coincide with the environmental exposure and moisture absorption of the samples. Interphase stiffness measurements indicate a constant interphase thickness as a function of environmental exposure. Chemical analysis of the epoxy using FTIR and Raman spectroscopy indicate hydrolysis of the C-O-C and Epoxide bonds which contribute to the decrease in epoxy mechanical properties. Accelerated degradation by salt water and deionized water both resulted in degradation of the epoxy, though the presence of sodium chloride showed less degradation. From SEM, debonding of the fiber-matrix interface was observed to be more severe when exposed to a salt water environment. In performing quantitative AFAM measurements, the effects of tip shape on the contact mechanics at the epoxy interface were found to influence the reported

  1. MPOD: A Material Property Open Database linked to structural information

    NASA Astrophysics Data System (ADS)

    Pepponi, Giancarlo; Gražulis, Saulius; Chateigner, Daniel

    2012-08-01

    Inspired by the Crystallography Open Database (COD), the Material Properties Open Database (MPOD) was given birth. MPOD aims at collecting and making publicly available at no charge tensorial properties (including scalar properties) of phases and linking such properties to structural information of the COD when available. MPOD files are written with the STAR file syntax, used and developed for the Crystallographic Information Files. A dictionary containing new definitions has been written according to the Dictionary Definition Language 1, although some tricks were adopted to allow for multiple entries still avoiding ambiguousness. The initial set includes mechanical properties, elastic stiffness and compliance, internal friction; electrical properties, resistivity, dielectric permittivity and stiffness, thermodynamic properties, heat capacity, thermal conductivity, diffusivity and expansion; electromechanical properties, piezoelectricity, electrostriction, electromechanical coupling; optical properties; piezooptic and photoelastic properties; superconducting properties, critical fields, penetration and coherence lengths. Properties are reported in MPOD files where the original published paper containing the data is cited and structural and experimental information is also given. One MPOD file contains information relative to only one publication and one phase. The files and the information contained therein can also be consulted on-line at http://www.materialproperties.org.

  2. A Summary of the Fatigue Properties of Wind Turbine Materials

    SciTech Connect

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  3. Properties of Extruded PS-212 Type Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  4. Status of coal ash corrosion resistant materials test program

    SciTech Connect

    McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

    1999-07-01

    In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for three and

  5. Modern Technologies of Nondestructive Testing of Construction Materials

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Yushin, A.

    2016-06-01

    The article presents the modern methods of research of building materials (such as styrofoam, cement, concrete admixtures, etc.), applied in the Far Eastern Federal University. The latest equipment described for these studies and modern methods of testing.

  6. Damage testing of sapphire and Ti: sapphire laser materials

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Diffusion bonded sapphire and Ti (Titanium). Sapphire laser materials that will be damage tested to determine if there is an increase in damage threshold. Photographed in building 1145, photographic studio.

  7. Comparative study of mechanical properties of direct core build-up materials

    PubMed Central

    Kumar, Girish; Shivrayan, Amit

    2015-01-01

    Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905

  8. Corrosion properties of second-generation conductive materials

    NASA Technical Reports Server (NTRS)

    Groshart, E.

    1984-01-01

    Since the introduction of silver-filled epoxy adhesives and silver-filled nitrocellulose lacquer as RFI control materials, a number of new materials have been introduced. The resin carriers have been changed in an effort to make the materials more usable or more EPA acceptable and the fillers have been varied in an effort to make the materials less costly. The corrosion-related properties of second-generation materials were assessed, including adhesives, caulks, and greases. Aluminum 2024 was used as the only substrate material. Ten days of salt fog was used as the corrosive environment. If a noble material such as silver, nickel, or carbon is sandwiched with aluminum an increase in dc resistance results given enough time. If this is unsatisfactory electrically it should either not be used or have all corrosive environments excluded.

  9. Mechanical properties of materials at micro/nano scales

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Hua

    Mechanical properties of materials in small dimensions, including the depth-dependent hardness at the nano/micrometer scales, and the mechanical characterization of thin films and nanotubes, are reported. The surface effect on the depth-dependent nano/microhardness was studied and an apparent surface stress was introduced to represent the energy dissipated per unit area of a solid surface. A plastic bearing ratio model was proposed for the nanoindentation of rough surfaces. The energy dissipation occurring at the indented surface is among the factors that cause the Indentation Size Effect (ISE) at the micro/nanometer scales. Furthermore, an elastic-plastic bearing ratio model was developed for nanoindentation of rough surfaces with a flat indenter tip. The theoretical predictions agree with the experimental results and finite element simulations, from which the elastic constant and the surface hardness were extracted. The surface hardness exhibits an inverse ISE due to the interaction of asperities. The nanoindentation tests on Highly Oriented Pyrolytic Graphite (HOPG) may lead to the formation of carbon tubes, which are rolled up by the delaminated graphite layers. The nanoindentation loading-unloading curves reveal single pop-in and multiple pop-in phenomena, which is induced by fracture of the graphite layers and/or by delamination between the layers. From the load at pop-in, the fracture strength of the layers and/or the bonding strength between the layers can be estimated by the elastic field model for Hertzian contact including sliding friction for transverse isotropy. Two novel methods were developed to estimate the mechanical properties of films, including the Raman spectra method for the estimation of residual stresses in thin ferroelectric films and the microbridge testing method for the mechanical characterization of trilayer thin films. Mechanical characterization was also carried out on Tobacco Mosaic Virus (TMV) nanotubes with each being comprised of

  10. Fuzzy Modal Finite Element Analysis of Structures with Imprecise Material Properties

    NASA Astrophysics Data System (ADS)

    Lallemand, B.; Cherki, A.; Tison, T.; Level, P.

    1999-02-01

    This paper extends the fuzzy set theory to a dynamic finite element analysis of engineering systems which have uncertainties in material properties. A general algorithm which resolves the uncertain eigenvalue problem by using a reanalysis approach is considered. This algorithm is applied to the study of the modal behaviour of structures presenting uncertain material properties. Some indexes which determine the more sensitive eigenvalue to several uncertainty sources are also put forward. Finally, a plate structure as numerical path-test is analysed. The results of such a calculation determine the sensitivity of the modal behaviour to multiple simultaneous material parameters.

  11. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  12. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  13. Some attributes of a language for property-based testing.

    SciTech Connect

    Neagoe, Vicentiu; Bishop, Matt

    2004-11-01

    Property-based testing is a testing technique that evaluates executions of a program. The method checks that specifications, called properties, hold throughout the execution of the program. TASpec is a language used to specify these properties. This paper compares some attributes of the language with the specification patterns used for model-checking languages, and then presents some descriptions of properties that can be used to detect common security flaws in programs. This report describes the results of a one year research project at the University of California, Davis, which was funded by a University Collaboration LDRD entitled ''Property-based Testing for Cyber Security Assurance''.

  14. Data on Material Properties and Panel Compressive Strength of a Plastic-bonded Material of Glass Cloth and Canvas

    NASA Technical Reports Server (NTRS)

    Zender, George W; Schuette, Evan H; Weinberger, Robert A

    1944-01-01

    Results are presented of tests for determining the tensile, compressive, and bending properties of a material of plastic-bonding glass cloth and canvas layers. In addition, 10 panel specimens were tested in compression. Although the material is not satisfactory for primary structural use in aircraft when compared on a strength-weight basis with other materials in common use, there appears to be potential strength in the material that will require research for development. These points are considered in some detail in the concluding discussion of the report. An appendix shows that a higher tensile strength can be obtained by changes in the type of weave used in the glass-cloth reinforcement.

  15. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  16. High-rate mechanical properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Siviour, C. R.; Drodge, D. R.; Williamson, D. M.

    2010-01-01

    Compared to the many thousands of studies that have been performed on the energy release mechanisms of high energy materials, relatively few studies have been performed (a few hundred) into their mechanical properties. Since it is increasingly desired to model the high rate deformation of such materials, it is of great importance to gather data on their response so that predictive constitutive models can be constructed. This paper reviews the state of the art concerning what is known about the mechanical response of high energy materials. Examples of such materials are polymer bonded explosives (used in munitions), propellants (used to propel rockets), and pyrotechnics (used to initiate munitions and also in flares).

  17. Lining material tests for the AUGER PROJECT surface detector

    NASA Astrophysics Data System (ADS)

    Escobar, C. O.; Fauth, A. C.; Guzzo, M. M.; Shibuya, E. H.

    1999-03-01

    We are trying to obtain a suitable material to compose the lining of a water Cerenkov tank for the surface detector. part of a hybrid detector of the Auger Project. Results of tests were compared with DuPont 1073Tyvek TM and obtained a reasonable performance for (PVC+BaSO 4) material.

  18. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  19. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  20. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    SciTech Connect

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.