Science.gov

Sample records for materials compatibility testing

  1. Materials Compatibility in High Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    1999-01-01

    Previous ratings of the compatibility of high test hydrogen peroxide (HTP) with materials are not adequate for current needs. The goal of this work was to develop a new scheme of evaluation of compatibility of HTP with various materials. Procedures were developed to enrich commercially available hydrogen peroxide to 90% concentration and to assay the product. Reactivity testing, accelerated aging of materials and calorimetry studies were done on HTP with representative metallic and non-metallic materials. It was found that accelerated aging followed by concentration determination using refractive index effectively discriminated between different Class 2 metallic materials. Preliminary experiments using Differential Scanning Calorimetry (DSC) suggest that a calorimetry experiment is the most sensitive means to assay the compatibility of HTP with materials.

  2. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  3. Double Retort System for Materials Compatibility Testing

    SciTech Connect

    V. Munne; EV Carelli

    2006-02-23

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented.

  4. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  5. Materials Compatibility Testing in Concentrated Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)

    2000-01-01

    Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.

  6. Materials compatibility.

    SciTech Connect

    Somerday, Brian P.

    2010-04-01

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  7. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  8. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  9. Integration of test methodology, material database, and material selection/deselection strategies for a chemical-material compatibility database system

    SciTech Connect

    Shuely, W.J.

    1995-12-31

    The effect of chemical exposure on the degradation of material properties is important to material evaluation and selection for both commercial and military products. Described here are a set of enhancements to a traditional chemical-material compatibility database that were required to support the early selection of chemically resistant materials in a concurrent engineering environment. This initial phase in the development of an integrated chemical-material compatibility system included: organization of tests into a comprehensive scheme, test selection for the initial screening tests in the scheme, the increased standardization of test procedures and reports required to support database queries, and the control of data set flow from the test laboratory directly to the database. Emphasized here is the design of modular database files based on material, chemical, and test specification descriptors that are indexed to the resulting test properties database module. ASTM Committee E49 formats were employed where available. The polymeric material documentation has been implemented by development of a menu-driven laboratory database version of ASTM Guide for the Identification of Polymers (Excludes Thermoset Elastomers) in Computerized Material Property Databases (E 1308-92). Examples are provided from the screening test found in the initial section of the test method scheme. One is able to execute a rapid paperless transfer of predictive and experimental screening results to the chemical-material compatibility database, query the results to eliminate a substantial fraction of materials and rank a more limited set of candidate materials to provide a useful ``deselection`` capability.

  10. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (greater than or equal to 70%) offers many advantages in space launch applications; however, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to %Active Oxygen Loss per week (%AOL/wk).

  11. Material compatibility with gaseous fluorine

    NASA Technical Reports Server (NTRS)

    Price, Harold G , Jr; Douglass, Howard W

    1957-01-01

    Static tests on the compatibility of fluorine with non-metals at atmospheric temperature eliminated many materials from further consideration for use in fluorine systems. Several materials were found compatible at atmospheric pressures. Only Teflon and ruby (aluminum oxide) were compatible at 1500 pounds per square inch gage.

  12. Isothermal Microcalorimetric Evaluation of Compatibility of Proposed Injector Materials with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    2003-01-01

    High-test hydrogen peroxide (HTP) is receiving renewed interest as a monopropellant and as the oxidizer for bipropellant systems. HTP is hydrogen peroxide in concentrations ranging from 70 to 98%. All surfaces wetted by HTP must be evaluated for compatibility with the fluid. In the case of tanks, lines and valves compatibility is required to preserve the HTP oxygen and energy content and to avoid overpressurization due to decomposition. With injectors and regenerative cooling passages shorter exposure time reduces these concerns. However, phase changes from fluid to gas impact heat transfer and become the dominant compatibility concern. Isothermal microcalorimetry (IMC) provides a convenient and reproducible means to observe the decomposition of HTP when exposed to structural materials and therefore the compatibility of those materials'. The instrument provides heat flow values in terms of watts that may be converted to a reaction rate given the heat of reaction for the decomposition of hydrogen peroxide. These values are then converted to percent active oxygen loss per week (%AOL/wk) to preserve an earlier convention for quantifying HTP compatibility. Additionally, qualitative designations of compatibility have been assigned to these values. This scheme consists of four classes with Class 1 being the most compatible. While historical compatibility data is available its current applicability is in question due to subtle changes in the compositions of both HTP and structural materials. Trace levels of molecules can have significant influence on compatibility. Therefore representative samples of materials must be evaluated with current HTP formulations. In this work seven materials were selected for their strength characteristics at high temperature as expected in a HTP injector. The materials were then evaluated by IMC for HTP compatibility.

  13. Test of LOX compatibility for asphalt and concrete runway materials

    NASA Technical Reports Server (NTRS)

    Moyers, C. V.; Bryan, C. J.; Lockhart, B. J.

    1973-01-01

    A literature survey and a telephone canvass of producers and users of LOX is reported which yielded one report of an accident resulting from a LOX spill on asphalt, one discussion of hazardous conditions, and an unreferenced mention of an incident. Laboratory tests using standard LOX impact apparatus yielded reactions with both old and new alphalt, but none with concrete. In the final test, using a larger sample of asphalt, the reaction caused extensive damage to equipment. Initial field experiments using 2-meter square asphalt slabs covered with LOX, conducted during rainy weather, achieved no reaction with plummets, and limited reaction with a blasting cap as a reaction initiator. In a final plummet-initiated test on a dry slab, a violent reaction, which appeared to have propagated over the entire slab surface, destroyed the plummet fixture and threw fragments as far as 48 meters.

  14. Assessment of The Compatibility of Composite Materials With High-Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Griffin, Dennis E. (Technical Monitor)

    2000-01-01

    The compatibility of composite materials with high-test hydrogen peroxide (HTP) was assessed using various chemical and mechanical techniques. Methods included classical schemes combining concentration assay with accelerated aging by means of a heated water bath. Exothermic reactivity was observed using Isothermal Microcalorimetry. Mechanical Properties testing determined degradation of the composite material. Photoacoustic Infrared Spectroscopy was used to monitor chemical alteration of the resin matrix. Other materials were examined including some polymers and metals.

  15. Further Studies of Materials Compatibility in High-Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, R.; Owens, T.

    2001-01-01

    Assessment of the compatibility of high-test hydrogen peroxide (HTP) with materials, in particular new materials such as composites, is critical to the development of new propulsion systems meeting requirements of reduced cost and environmental impact. While compatibility with HTP has been addressed previously, newer materials were not considered. The focus of this project was to develop a scheme for evaluation of HTP with all materials. In the previous summer, methods were developed for production of HTP on site, and preliminary steps were taken to evaluate materials. Methods investigated this summer have included accelerated aging by heating, coupled with assay of concentration and stabilization loss, observation of reactivity by means of Isothermal Microcalorimetry, and evaluation of changes to the materials by Short Beam Shear testing and by Photoacoustic-Fourier Transform Infrared Spectroscopy. Various metals, polymers, and composites were examined in this study.

  16. Compatibility tests of materials for a lithium-cooled space power reactor concept

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1973-01-01

    Materials for a lithium-cooled space power reactor concept must be chemically compatible for up to 50,000 hr at high temperature. Capsule tests at 1040 C (1900 F) were made of material combinations of prime interest: T-111 in direct contact with uranium mononitride (UN), Un in vacuum separated from T-111 by tungsten wire, UN with various oxygen impurity levels enclosed in tungsten wire lithium-filled T-111 capsules, and TZM and lithium together in T-111 capsules. All combinations were compatible for over 2800 hr except for T-111 in direct contact with UN.

  17. Hydrazine Materials Compatibility Database

    NASA Astrophysics Data System (ADS)

    Schmidt, E. W.

    2004-10-01

    Anhydrous hydrazine and its methyl derivatives MMH and UDMH have been safely used as monopropellants and bipropellant fuels in thousands of satellites and space probes, hundreds of expendable launch vehicles and hundreds of piloted reusable launch vehicle flights. The term hydrazine(s) is used here to describe the three propellant hydrazines and their mixtures. Over the years, a significant amount of experience has accumulated in the selection of compatible materials of construction for these and other rocket propellants. Only a few materials incompatibility issues have arisen in the recent past. New materials of construction have become available during the past decades which have not yet been extensively tested for long-term compatibility with hydrazine(s). These new materials promise lightweight (i. e., lighter weight) propulsion system designs and increased payloads in launch vehicles and satellites. Other new materials offer reduced contamination caused by leached ingredients, e. g. less silica leaching from diaphragms in propellant management devices in propellant tanks. This translates into longer mission life.

  18. Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not

  19. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    NASA Astrophysics Data System (ADS)

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie

    2016-05-01

    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  20. Compatibility Testing of Polymeric Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Charles D.

    2003-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA) by a distillation process. The urine is pre-treated, containing flush water and stabilizers. About 2.5% solids in the urine are concentrated up to 16% brine through distillation. Dynamic mechanical analysis (DMA) in the stress relaxation mode was primarily used to test 15 polymeric UPA materials for compatibility with the pre-treated and brine solutions. There were concerns that chromium trioxide (CrO3), a stabilizer not in the original pre-treat formulation for similar compatibility testing in 2000, could have an adverse effect on these polymers. DMA testing is partially complete for polymeric material samples immersed in the two solutions at room temperature for as long as 200 days. By comparing each material (conditioned and virgin), the stress relaxation modulus (E) was determined for short-term use and predicted for as long as a 10-year use in space. Such a delta E showed a decrease of as much as 79% for a Nylon material, but an increase as much as 454% for a polysulfone material, with increasing immersion time.

  1. The oxygen sensitivity/compatibility ranking of several materials by different test methods

    NASA Technical Reports Server (NTRS)

    Lockhart, Billy J.; Bryan, Coleman J.; Hampton, Michael D.

    1989-01-01

    Eleven materials were evaluated for oxygen compatibility using the following test methods: heat of combustion (ASTM D 2015), liquid oxygen impact (ASTM D 2512), pneumatic impact (ASTM G 74), gaseous mechanical impact (ASTM G 86), autogenous ignition temperature by pressurized differential scanning calorimeter, and the determination of the 50 percent reaction level in liquid oxygen using silicon carbide as a reaction enhancer. The eleven materials evaluated were: Teflon TFE, Vespel SP-21, Krytox 240AC, Viton PLV5010B, Fluorel E2160, Kel F 81, Fluorogold, Fluorogreen E-600, Rulon A, Garlock 8573, nylon 6/6.

  2. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    NASA Astrophysics Data System (ADS)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  3. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    NASA Technical Reports Server (NTRS)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    1991-01-01

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  4. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High-Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (equal to or greater than 70%) offers many advantages in space launch applications. However, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to % Active Oxygen Loss per week (%AOL/wk).

  5. Compatibility testing with anhydrous ammonia

    NASA Technical Reports Server (NTRS)

    Benner, Steve M.; Schweickart, Russell B.

    1992-01-01

    Anhydrous ammonia has been proposed as the working fluid for a number of two-phase thermal control systems to be used in future space applications, including the Space Station Freedom and the Earth Observing Station (EOS). The compatibility of ammonia with the components in these systems is a major concern due to the corrosive nature of the fluid. Compatibility of ammonia with stainless steel and some aluminum alloys is well documented; however, data on other materials potentially suitable for aerospace use is less common. This paper documents the compatibility testing of nine materials with both gaseous and liquid ammonia. The test procedures are presented along with the resulting measurement data. Tensile strength was the only mechanical property tested that indicated a significant material incompatibility.

  6. Cleaning and materials compatibility test results for elimination of flammable solvents in wipe applications.

    SciTech Connect

    Lopez, Edwin Paul

    2005-06-01

    In recent years, efforts have been made within the nuclear weapons complex (National Nuclear Security Administration) of the Department of Energy (DOE) to replace Resource Conservation and Recovery Act (RCRA) regulated solvents (i.e., flammable, toxic, corrosive, and reactive) and ozone-depleting chemicals (ODC) with more benign alternatives. Within the National Nuclear Security Administration (NNSA) and the Department of Defense (DoD) sectors, these solvents are used for cleaning hardware during routine maintenance operations. A primary goal of this study is to replace flammable solvents used in wiping applications. Two cleaners, including a hydrofluoroether (HFE) and an azeotrope of the HFE and isopropyl alcohol (IPA), have been studied as potential replacements for flammable solvents. Cleaning efficacy, short-term and long-term materials compatibility, corrosion, drying times, flammability, environment, safety and health (ES&H) and accelerated aging issues were among the experiments used to screen candidate solvents by the interagency team performing this work. This report presents cleaning efficacy results as determined by the contact angle Goniometer as well as materials compatibility results of various metal alloys and polymers. The results indicate that IPA (baseline cleaner) and the HFE/IPA azeotrope are roughly equivalent in their ability to remove fluorinated grease, silicone grease, and a simulated finger print contaminant from various metal alloys. All of the ASTM sandwich and immersion corrosion tests with IPA, HFE or the HFE/IPA azeotrope on metal alloys showed no signs of corrosion. Furthermore, no deleterious effects were noted for polymeric materials immersed in IPA, HFE, or the HFE/IPA azeotrope.

  7. Compatibility testing of spacecraft materials and space-storable liquid propellants

    NASA Technical Reports Server (NTRS)

    Constantino, L. L.; Denson, J. R.; Krishnan, C. S.; Toy, A.

    1974-01-01

    Compatibility measurements were made for aluminum 2219-T87 alloy and titanium 6Al-4V alloy in the presence of liquid fluorine and flox. Results of post test characterization after exposure durations of 61 and 70 weeks are presented. Results of the total test program are analyzed.

  8. Compatibility testing of spacecraft materials and spacestorable liquid propellants. [liquid and vapor fluorine and FLOX

    NASA Technical Reports Server (NTRS)

    Denson, J. R.; Toy, A.

    1974-01-01

    Compatibility data for aluminum alloy 2219-T87 and titanium alloy Ti-6Al-4V were obtained while these alloys were exposed to both liquid and vapor fluorine and FLOX at -320 F + or -10 F. These data were obtained using a new low cost compatibility method which incorporates totally sealed containers and double dogbone test specimens and propellants in the simultaneous exposure to vapor and liquid phases. The compatibility investigation covered a storage period in excess of one year. Pitting was more severe in the 2219-T87 aluminum alloy than in the Ti-6Al-4V titanium alloy for both fluorine and FLOX exposure. The degree of chemical attack is more severe in the presence of FLOX than in fluorine and phase. The mechanical properties of the two alloys were not affected by storage in either of the two propellants.

  9. Compatibility Testing of Non-Metallic Materials for the Urine Processor Assembly (UPA) of International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    In the International Space Station (ISS), astronauts will convert urine into potable water with the Urine Processor Assembly (UPA). The urine is distilled, with the concentrated form containing about 15% brine solids, and the dilute form as a blend of pre-treated urine/wastewater. Eighteen candidate non-metallic materials for use with the UPA were tested in 2000 for compatibility with the concentrated and dilute urine solutions for continuous times of at least 30 days, and at conditions of 0.5 psia pressure and 100 F, to simulate the working UPA environment. A primary screening test for each material (virgin and conditioned) was dynamic mechanical analysis (DMA) in the stress relaxation mode, with the test data used to predict material performance for a 10-year use in space. Data showed that most of the candidate materials passed the compatibility testing, although a few significant changes in stress relaxation modulus were observed.

  10. Chemical compatibility of cartridge materials

    NASA Technical Reports Server (NTRS)

    Wilcox, Roy C.; Zee, R. H.

    1991-01-01

    This twelve month progress report deals with the chemical compatibility of semiconductor crystals grown in zero gravity. Specifically, it studies the chemical compatibility between TZM, a molybdenum alloy containing titanium and zirconium, and WC 103, a titanium alloy containing Niobium and Hafnium, and Gallium arsenide (GaAs) and Cadmium Zinc Tellurite (CdZnTe). Due to the health hazards involved, three approaches were used to study the chemical compatibility between the semiconductor and cartridge materials: reaction retort, thermogravimetric analysis, and bulk cylindrical cartridge containers. A scanning electron microscope with an energy dispersive X-ray analyzer was used to examine all samples after testing. The first conclusion drawn is that reaction rates with TZM were not nearly as great as they were with WC 103. Second, the total reaction between GaAs and WC 103 was almost twice that with TZM. Therefore, even though WC 103 is easier to fabricate, at least half of the cartridge thickness will be degraded if contact is made with one of the semiconductor materials leading to a loss of strength properties.

  11. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  12. ECLSS Sustaining Compatibility Testing on Urine Processor Assembly Nonmetallic Materials for Reformulation of Pretreated Urine Solution

    NASA Technical Reports Server (NTRS)

    Wingard, C. D.

    2015-01-01

    On International Space Station (ISS), the Urine Processor Assembly (UPA) converts human urine and flush water into potable water. The urine is acid-pretreated primarily to control microbial growth. In recent years, the sulfuric acid (H2SO4) pretreatment was believed to be largely responsible for producing salt crystals capable of plugging filters in UPA components and significantly reducing the percentage of water recovery from urine. In 2012, ISS management decided to change the acid pretreatment for urine from sulfuric to phosphoric with the goal of eliminating or minimizing formation of salt crystals. In 2013-2014, as part of the qualification of the phosphoric acid (H3PO4) formulation, samples of 12 nonmetallic materials used in UPA components were immersed for up to one year in pretreated urine and brine solutions made with the new H3PO4 formulation. Dynamic mechanical analysis (DMA) was used to measure modulus (stiffness) of the immersed samples compared to virgin control samples. Such compatibility data obtained by DMA for the H3PO4-based solutions were compared to DMA data obtained for the H2SO4-based solutions in 2002-2003.

  13. Chemical compatibility of cartridge materials

    NASA Technical Reports Server (NTRS)

    Ambrose, Bryan; Wilcox, R. C.; Zee, R. H.

    1992-01-01

    The objectives were to determine the chemical compatibility of titanium-zirconium-molybdenum (TZM) with GaAs and CdZnTe, and Inconel with HgCdTe and HgZnTe. At the present time, no other studies regarding the compatibility of these crystal components and their respective cartridge materials have been performed. This study was to identify any possible problems between these materials to insure proper containment of possibly hazardous fumes during crystal growth experiments. In this study, the reaction zone between the materials was studied and the amount of degradation to the system was measured. Detailed results are presented.

  14. Materials investigation and tests for the development of space compatible electrical connectors

    NASA Technical Reports Server (NTRS)

    Pomeroy, C.; Mccabe, T.

    1971-01-01

    A molding study of compounds based on copolymers of highly fluorinated olefins and of flame retardant silicone is reported. Both single cavity and four cavity molds having size 22 and 24 holes with three webs in each hole were used. Also covered are dielectric strength, arc resistance, Bashore rebound, and maintenance aging tests on the various materials that have been successfully molded.

  15. ITP Materials Compatibility Issues

    SciTech Connect

    Skidmore, T.E.

    1998-09-01

    Based on information provided by ITP, normal operation will consist of controlled exposure to benzene and TBP concentrations of 300 and 100 ppm, respectively, in an approximate 5M NaOH solution at temperatures as high as 50 degrees C. Other compounds present in the filtrate solution were much lower in concentration and were not tested. In addition, levels as high as 1000 ppm benzene or TBP may be reached. It is assumed that the TBP will be maintained at a constant concentration to control foaming behavior.

  16. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    SciTech Connect

    Chang H. Oh

    2006-06-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

  17. Electromagnetic Compatibility Testing Studies

    NASA Technical Reports Server (NTRS)

    Trost, Thomas F.; Mitra, Atindra K.

    1996-01-01

    This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.

  18. ECLSS Sustaining Metal Materials Compatibility Final Report, Electrochemical and Crevice Corrosion Test Results

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2015-01-01

    Electrochemical test results are presented for six noble metals evaluated in two acidic test solutions which are representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The two test solutions consisted of fresh waste liquid which had been modified with a proposed or alternate pretreatment formulation and its associated brine concentrate. The six test metals included three titanium grades, (Commercially Pure, 6Al-4V alloy and 6Al-4V Low Interstitial alloy), two nickel-chromium alloys (Inconel® 625 and Hastelloy® C276), and one high tier stainless steel (Cronidur® 30).

  19. Fusion reactor breeder material safety compatibility studies

    SciTech Connect

    Jeppson, D.W.; Cohen, S.; Muhlestein, L.D.

    1983-09-01

    Tritium breeder material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Breeder material safety compatibility studies are being conducted to identify and characterize breeder-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate the following. 1. Ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/, and LiTiO/sub 3/) at postulated blanket operating temperatures are chemically compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ reactions with water generate heat, aerosol, and hydrogen. 2. Lithium oxide and 17Li-83Pb alloy react mildly with water requiring special precautions to control hydrogen release. 3. Liquid lithium reacts substantially, while 17Li83Pb alloy reacts mildly with concrete to produce hydrogen. 4. Liquid lithium-air reactions may present some major safety concerns. Additional scoping tests are needed, but the ternary oxides, lithium oxide, and 17Li-83Pb have definite safety advantages over liquid lithium and Li/sub 7/Pb/sub 2/. The ternary oxides present minimal safetyrelated problems when used with water as coolant, air or concrete; but they do require neutron multipliers, which may have safety compatibility concerns with surrounding materials. The combined favorable neutronics and minor safety compatibility concerns of lithium oxide and 17Li-83Pb make them prime candidates as breeder materials. Current safety efforts are directed toward assessing the compatibility of lithium oxide and the lithium-lead alloy with coolants and other materials.

  20. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility - 2004 Annual Report

    SciTech Connect

    Chang Oh; Thomas Lillo; William Windes; Terry Totemeier; Richard Moore

    2004-10-01

    The U.S. and other countries address major challenges related to energy security and the environmental impacts of fossil fuels. Solutions to these issues include carbon-free electricity generation and hydrogen production for fuel cell car, fertilizer synthesis, petroleum refining, and other applications. The Very High Temperature Gas Reactor (HTGR) has been recognized as a promising technology for high efficiency electricity generation and high temperature process heat applications. Therefore, the U.S. needs to make the HTGR intrinsically safe and proliferation-resistant. The U.S. and the world, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30% reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to some Generation-IV reactors such as the HTGR and supercritical water reactor, (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase turbine work enhancing the plant net efficiency.

  1. An Evaluation of the Oxygen Compatibility of Composite Materials

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Hall, Joylene

    2003-01-01

    Three tests are described which evaluate the oxygen compatibility characteristics of multiple composite materials: 1) Mechanical Impact Bruceton 'Up and Down' Method; 2) Promoted Combustion; 3) Electrostatic Discharge.

  2. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  3. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  4. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  5. Propellant material compatibility program and results

    NASA Technical Reports Server (NTRS)

    Toth, L. R.; Cannon, W. A.; Coulbert, C. D.; Long, H. R.

    1976-01-01

    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned.

  6. Chemical compatibility screening test results

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.

  7. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  8. Research Update: ARTI Materials Compatibility and Lubricant Research (MCLR) program

    SciTech Connect

    Szymurski, S.R.

    1993-10-01

    Since September 1991, the Air-Conditioning and Refrigeration Technology Institute (ARTI) has been conducting materials compatibility and lubricants research on chlorfluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC) refrigerant alternatives. During the first two years of this program, ARTI has subcontracted and managed sixteen research projects totaling over $4 million. This research has included materials compatibility tests, refrigerant-lubricant interaction studies, measurement of thermophysical properties, and development of accelerated test methods. This paper summarizes results to date and discusses plans for future research for the Materials Compatibility and Lubricants Research (MCLR) program.

  9. Nonmetallic Material Compatibility with Liquid Fluorine

    NASA Technical Reports Server (NTRS)

    Price, Harold G , Jr; Douglass, Howard W

    1957-01-01

    Static tests were made on the compatibility of liquid fluorine with several nonmetallic materials at -3200 F and at pressures of 0 and 1500 pounds per square inch gage. The results are compared with those from previous work with gaseous fluorine at the same pressures, but at atmospheric temperature. In general, although environmental effects were not always consistent, reactivity was least with the low-temperature, low-pressure liquid fluorine. Reactivity was greatest with the warm, high-pressure gaseous fluorine. None of the liquids and greases tested was found to be entirely suitable for use in fluorine systems. Polytrifluorochloroethylene and N-43, the formula for which is (C4F9)3N, did not react with liquid fluorine at atmospheric pressure or 1500 pounds per square inch gage under static conditions, but they did react when injected into liquid fluorine at 1500 pounds per square inch gage; they also reacted with gaseous fluorine at 1500 pounds per square inch gage. While water did not react with liquid fluorine at 1500 pounds per square inch gage, it is known to react violently with fluorine under other conditions. The pipe-thread lubricant Q-Seal did not react with liquid fluorine, but did react with gaseous fluorine at 1500 pounds per square inch gage. Of the solids, ruby (Al2O3) and Teflon did not react under the test conditions. The results show that the compatibility of fluorine with nonmetals depends on the state of the fluorine and the system design.

  10. Materials compatibility and lubricants research on CFC-refrigerant substitutes

    NASA Astrophysics Data System (ADS)

    Szymurski, S. R.; Hawley, M.; Hourahan, G. C.; Godwin, D. S.

    1994-08-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  11. Chemical Compatibility of Polymeric Materials.

    ERIC Educational Resources Information Center

    Solen, Kenneth A.; Kuchar, Marvin C.

    1990-01-01

    Presents some principles for specifying general classes of polymers for predicting relative chemical attack from acids, bases, oxidants, and certain common antagonists. Also discusses predicting relative solvent effects. Suggests uses of this information in two or three lectures in a chemical engineering materials course. (YP)

  12. A review of the compatibility of structural materials with oxygen

    NASA Technical Reports Server (NTRS)

    Clark, A. F.; Hust, J. G.

    1974-01-01

    Consideration of the problem of ignition and combustion of structural materials, particularly metals, which may come in contact with oxygen during its production, transport, and use. Following a review of the historical development of compatibility problems and research, a detailed account is given of compatibility testing methods aimed at detecting probable ignition sources, such as mechanical impact, electric sparks or flashes, heat, sound waves, abrasion, and surface fractures. A summary is presented of the ignition and combustion research reported in the literature, dwelling particularly on papers concerning oxygen-related accidents and the compatibility of metals with high-pressure oxygen. The relative oxygen compatibility of a number of common materials is discussed, including that of nickel and copper alloys, stainless steels, aluminum alloys, and titanium alloys. Finally, an effort is made to pinpoint research areas which would enhance understanding of the compatibility of bulk materials.

  13. Hazardous Fluids Compatibility Test Apparatus

    NASA Technical Reports Server (NTRS)

    Flores, Frank; Daniel, James

    1995-01-01

    Document describes test apparatus designed to hold test tubes containing hazardous fluids such as hydrazine, nitrogen tetroxide, or ammonia. Test tube suspended over water bath or other solution or mixture. Control of test sample performed by one-hand operation within fume hood or glove box. System adaptable for automated control of lowering and raising of test samples.

  14. CHEMICAL REACTIVITY TEST: Assessing Thermal Stability and Chemical Compatibility

    SciTech Connect

    Koerner, J; Tran, T; Gagliardi, F; Fontes, A

    2005-04-21

    The thermal stability of high explosive (HE) and its compatibility with other materials are of critical importance in storage and handling practices. These properties are measured at Lawrence Livermore National Laboratory using the chemical reactivity test (CRT). The CRT measures the total amount of gas evolved from a material or combination of materials after being heat treated for a designated period of time. When the test result is compared to a threshold value, the relative thermal stability of an HE or the compatibility of an HE with other materials is determined. We describe the CRT testing apparatus, the experimental procedure, and the comparison methodology and provide examples and discussion of results.

  15. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  16. Compatibility of refrigerants and lubricants with motor materials

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-10-01

    During the compatibility study of 10 pure refrigerants with 24 motor materials, it was observed that the greatest damage to the insulation system was caused by absorption of refrigerant followed by rapid desorption. The observed effects were blisters, cracking, internal bubbles and delamination. Measured results includes decreased bond strength, dielectric strength and overall integrity of the material. Refrigerants HCFC-22, HFC-32, HFC-134 and HFC-152a exhibited this phenomena. The effect of HCFC-22 was most severe of the tested refrigerants. Since HCFC-22 has an excellent reliability history with many of the materials tested, compatibility with the new refrigerants is expected.

  17. Automation of electromagnetic compatability (EMC) test facilities

    NASA Technical Reports Server (NTRS)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  18. Research update: Materials compatibility and lubricant research (MCLR) program

    SciTech Connect

    Szymurski, S.R.

    1994-04-01

    Since September 1991, the Air-Conditioning and Refrigeration Technology Institute (ARTI) has been conducting materials compatibility and lubricants research on CFC and HCFC refrigerant alternatives. This work has been supported by a grant from the US Department of Energy, Office of Building Technology, with co-funding from the Air-Conditioning and Refrigeration Technology Institute (ARI). During the first two and one-half years of this program, ARTI has subcontracted and managed twenty-one research projects totaling over $5.2 million. This research has included materials compatibility tests, refrigerant-lubricant interaction studies, measurement of thermophysical properties, and development of accelerated test methods. This paper summarizes results to date and discusses plans for future research for the Materials Compatibility and Lubricants Research (MCLR) program.

  19. Micro-Compatibility Testing of Polysulfone

    SciTech Connect

    Gregg, H; Harvey, C; Maxwell, R; Vance, A

    2004-09-28

    Polysulfone has many useful properties, and its compatibility with other materials is of interest. It is a tough, rigid, high-strength thermoplastic that maintains its properties over a wide temperature range. It is chemically resistant to mineral acids and alkali and moderately resistant to hydrocarbon oils; however, it is not resistant to polar organic solvents such as ketones, chlorinated hydrocarbons and aromatic hydrocarbons. Micro-compatibility experiments were initiated to determine possible detrimental interactions in a sealed environment between polysulfone components and a number of other organic species.

  20. Materials compatibility and lubricants research on CFC-refrigerant substitutes

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1993-01-01

    The materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Preliminary results from these projects are reported in technical progress reports prepared by each researcher.

  1. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1992-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR pregrain the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing several research projects and a data collection and dissemination effort. Preliminary results is from these projects are reported in technical progress reports prepared by each researcher.

  2. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes

    SciTech Connect

    Godwin, D.A.; Hourahan, G.C.; Szymurski, S.R.

    1993-04-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each researcher.

  3. Compatibility of header materials with pyrotechnic powder

    SciTech Connect

    Weirick, L.J.

    1982-12-01

    The intent of this research program is to qualify several stainless steels, nickel-base alloys and a titanium alloy as candidates for explosive component applications. This report focuses on the compatibility of these materials with pyrotechnic powder. The powder is a combined titanium subhydride-potassium perchlorate mixture, used both wet and dry. Hollow tensile bars were utilized to discern interactions between the metal and powder which underwent accelerated aging. Metallography was employed along with the mechanical property results to characterize the extent of interaction. No degradation in mechanical properties was noted. 6 figures, 6 tables.

  4. Effect of Time on Gypsum-Impression Material Compatibility

    NASA Astrophysics Data System (ADS)

    Won, John Boram

    The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control. Materials and Methods: Testing of materials was conducted in accordance with ANSI/ADA Specification No. 18 for Alginate Impression Materials. Statistical Analysis: The 3-Way ANOVA test was used to analyze measurements between different time points at a significance level of (p < 0.05). Outcome: It was found that there was greater compatibility between gypsum and the alternative materials over time than the traditional irreversible hydrocolloid material that was tested. A statistically significant amount of surface change/incompatibility was found over time with the combination of the dental gypsum products and the control impression material (Jeltrate Plus antimicrobial®).

  5. Engine Materials Compatibility with Alternate Fuels

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  6. Engine Materials Compatability with Alternative Fuels

    SciTech Connect

    Pawel, Steve; Moore, D.

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  7. MCU MATERIALS COMPATIBILITY WITH CSSX SOLVENT

    SciTech Connect

    Fondeur, F

    2006-01-13

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) plans to use several new materials of construction not previously used with CSSX solvent. SRNL researchers tested seven materials proposed for service in seal and gasket applications. None of the materials leached detectable amounts of components into the CSSX solvent during 96 hour tests. All are judged acceptable for use based on their effect on the solvent. However, some of the materials adsorbed solvent or changed dimensions during contact with solvent. Consultation with component and material vendors with regard to performance impact and in-use testing of the materials is recommended. Polyetheretherketone (PEEK), a material selected for use in contactor bearing seals, did not gain weight or change dimensions on contact with CSSX solvent. Analysis of the solvent contacted with this material showed no impurities and the standard dispersion test gave acceptable phase separation results. The material contains a leachable hydrocarbon substance, detectable on exposed surfaces, that did not adversely contaminate the solvent within the limits of the testing. We recommend contacting the vendor to determine the source and purpose of this component, or, alternatively, pursue the infrared analysis of the PEEK in an effort to better define potential impacts.

  8. Compatibility experiments of facilities, materials, and propellants for electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Whalen, M. V.; Grisnik, S. P.; Sovey, J. S.

    1985-01-01

    Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojets for Space station and rhenium for high performance resistojets for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum-yttria heater would last over 100 000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum-yttria in hydrogen, methane, carbon dioxide/methane mixtures and ammonia environments. In each of these 100 hr tests, the platinum-yttria mass change indicated a minimum coil life of 100 000 hr. Facility related effects were investigated in materials tests using rhenium heated to high tempertures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rhenium heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

  9. Compatibility experiments of facilities, materials, and propellants for electrothermal thrusters

    NASA Technical Reports Server (NTRS)

    Whalen, M. V.; Grisnik, S. P.; Sovey, J. S.

    1985-01-01

    Experiments were performed to determine the compatibility of materials and propellants for electro-thermal thrusters. Candidate propellants for resistojet propulsion include carbon dioxide, methane, hydrogen, ammonia, and hydrazine. The materials being examined are grain stabilized platinum for resistojets for space station and rhenium for high performance resistojets for satellites. Heater mass loss and deterioration of materials were evaluated. A coiled tube of platinum, with yttria dispersed throughout the base material to inhibit grain growth, was tested in carbon dioxide at 1300 C for 2000 hr. Post-test examination indicated the platinum-yttria heater would last over 100,000 hr with less than 10 percent mass loss. Short-term compatibility tests were conducted to test the integrity of the platinum-yttria in hydrogen, methane, carbon dioxide/methane mixtures and ammonia environments. In each of these 100 hr tests, the platinum-yttria mass change indicated a minimum coil life of 100,000 hr. Facility related effects were investigated in materials tests using rhenium heated to high temperatures. Vacuum facility water reduction was monitored using a mass spectrometer. In vacuum environments obtained using only diffusion pumping and those obtained with the assistance of cryogenic equipment there were mass gains in the rhenium heaters. These mass gains were the result of the high amount of oxygen and water contained in the gas. Propellant purity and preferred test facility environments are discussed.

  10. Compatibility of hydrosoluble polymers with corrodible materials

    SciTech Connect

    Audibert, A.; Lecourtier, J. )

    1992-05-01

    This paper reports that application of water-soluble polymers in the oil industry (e.g., fluid-loss reducer, polymer flooding, and water-based drilling muds) requires hydrosoluble polymers to be compatible with corrodible materials. The behavior of polyacrylamides and xanthans in the presence of various materials used for oil production (steel, stainless steel, carbon steel, and Inconel) has been studied vs. different water salinities, oxygen contents, and temperatures. The influence of such commonly used additives as oxygen scavengers and sequestrants on corrosion and polymer stability has also been investigated. For both types of polymers, as corrosion occurs under anaerobic conditions, strong interactions between polymer chains and divalent cations (Fe{sup 2+} to Fe{sup 2+}) are observed. Such interactions also depend on polymer quality. In the presence of oxygen, corrosion induces a molecular-weight degradation of the polymer followed by a gelation process for xanthan. Some additives may accelerate the transformation of Fe{sup 2+} to Fe{sup 3+}, thus inducing polymer degradation, but this reaction depends on the nature of the chelating agent. These results provide guidelines for the implementation of polymers in oil production, including the selection of materials, water treatment, or mud formulation.

  11. Compatibility of refractory materials for nuclear reactor poison control systems

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1974-01-01

    Metal-clad poison rods have been considered for the control system of an advanced space power reactor concept studied at the NASA Lewis Research Center. Such control rods may be required to operate at temperatures of about 140O C. Selected poison materials (including boron carbide and the diborides of zirconium, hafnium, and tantalum) were subjected to 1000-hour screening tests in contact with candidate refractory metal cladding materials (including tungsten and alloys of tantalum, niobium, and molybdenum) to assess the compatibility of these materials combinations at the temperatures of interest. Zirconium and hafnium diborides were compatible with refractory metals at 1400 C, but boron carbide and tantalum diboride reacted with the refractory metals at this temperature. Zirconium diboride also showed promise as a reaction barrier between boron carbide and tungsten.

  12. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  13. Material Compatibility of Medical Sterilizer Using Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi; Ono, Reoto; Hayashi, Nobuya; Hanada, Yasushi; Noda, Minoru; Goto, Masaaki

    2015-09-01

    Material compatibility of oxygen plasma sterilizer is investigated comparing with hydrogen peroxide (H2O2) sterilizers and a gaseous H2O2 sterilizer. Organic materials such as ABS, PE, PP, and PET are used as sample materials, and are irradiated by active oxygen species produced in oxygen plasma. After plasma irradiation, surface of the sample materials is observed using a scanning electron microscope and FTIR spectroscopy. Strengths of the organic materials are evaluated by the tension test. Also, H2O2 plasma sterilizer and a gaseous H2O2 sterilizer those are commercially available are utilized to compare the material compatibility, especially organic compounds. The ABS resin becomes slightly soft after irradiation by both plasmas and gaseous H2O2. Also, PET material becomes soften by each sterilization treatment. Decrease of peak heights of CH around 1200 and 1730 cm-1 and increase of that of OH at 3300 cm-1 in FTIR spectra indicates the oxidation of ABS resin by both plasma and gaseous H2O2. In the case of PET material, treatment by the plasma has not modified chemical composition but changed the crystal structure. The gaseous H2O2 is completely friendly for the PET material.

  14. The resupply interface mechanism RMS compatibility test

    NASA Technical Reports Server (NTRS)

    Jackson, Stewart W.; Gallo, Frank G.

    1990-01-01

    Spacecraft on-orbit servicing consists of exchanging components such as payloads, orbital replacement units (ORUs), and consumables. To accomplish the exchange of consumables, the receiving vehicle must mate to the supplier vehicle. Mating can be accomplished by a variety of docking procedures. However, these docking schemes are mission dependent and can vary from shuttle bay berthing to autonomous rendezvous and docking. Satisfying the many docking conditions will require use of an innovative docking device. The device must provide fluid, electrical, pneumatic and data transfer between vehicles. Also, the proper stiffness must be obtained and sustained between the vehicles. A device to accomplish this, the resupply interface mechanism (RIM), was developed. The RIM is a unique device because it grasps the mating vehicle, draws the two vehicles together, simultaneously mates all connectors, and rigidizes the mating devices. The NASA-Johnson Manipulator Development Facility was used to study how compatible the RIM is to on orbit docking and berthing. The facility contains a shuttle cargo bay mockup with a remote manipulator system (RMS). This RMS is used to prepare crew members for shuttle missions involving spacecraft berthing operations. The MDF proved to be an excellant system for testing the RIM/RMS compatibility. The elements examined during the RIM JSC test were: RIM gross and fine alignment; berthing method sequence; visual cuing aids; utility connections; and RIM overall performance. The results showed that the RIM is a good device for spacecraft berthing operations. Mating was accomplished during every test run and all test operators (crew members) felt that the RIM is an effective device. The purpose of the JSC RIM test and its results are discussed.

  15. Standards for compatibility of printed circuit and component lead materials

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Study of packaging of microminiature electronic components reveals methods of improving compatibility of lead materials, joining techniques, transfer molding concepts, printed circuit board materials, and process and material specifications.

  16. Fusion-reactor blanket-material safety-compatibility studies

    SciTech Connect

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/ and LiTiO/sub 3/) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li/sub 17/Pb/sub 83/ alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li/sub 17/Pb/sub 83/ alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns.

  17. Compatibility studies of metallic materials with lithium-based oxides

    NASA Astrophysics Data System (ADS)

    Hofmann, P.; Dienst, W.

    1988-07-01

    The compatibility of Li 2O, Li 4SiO 4 and Li 2SiO 3 with the cladding materials AISI 316, 1.4914, Hastelloy X and Inconel 625 was investigated at 800-1000°C for annealing times up to 1000 h. A controlled oxygen reactivity was established by adding 1 mol% NiO per mole Li 2O to the Li-based oxides. In addition, some compatibility tests were performed at 600-900°C on Be, which is of interest as a neutron multiplier material, with Li 2SiO 3 as well as AISI 316. Li 2O accounted for the strongest cladding attack, followed by Li 4SiO 4 and Li 2SiO 3. In the absence of NiO, Li 2SiO 3 caused no chemical interactions at all. With respect to the cladding materials, there was no considerable difference in the reaction rates of AISI 316, Hastelloy X and Inconel 625. However, the steel 1.4914 was clearly more heavily attacked at and above 800°C. The compatibility of Be with Li 2SiO 3 or AISI 316 seems to be tolerable up to about 650°C. At higher temperatures a liquid Li suicide phase is formed which results in strong local attack and penetration into Li 2SiO 3.

  18. Compatibility of refrigerants and lubricants with motor materials

    SciTech Connect

    Doerr, R.; Kujak, S.; Waite, T. )

    1993-01-01

    Equipment manufacturers are challenged to replace CFC-based refrigerants and their lubricants with environmentally acceptable alternatives. Information on the compatibility of motor materials with these alternative refrigerants and lubricants is a basic requirement for reliable performance. This report presents compatibility data for 24 commercially used motor materials exposed to 17 refrigerant/lubricant combinations. This compatibility data will enable the phase out of CFC's to continue at its current fast pace and insure the continued reliable performance of refrigerant-based equipment.

  19. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  20. Compatibility of Fluorinert, FC-72, with selected materials.

    SciTech Connect

    Aubert, James Henry; Sawyer, Patricia Sue

    2006-02-01

    Removable encapsulants have been developed as replacement materials for electronic encapsulation. They can be removed from an electronic assembly in a fairly benign manner. Encapsulants must satisfy a limited number of criteria to be useful. These include processing ease, certain mechanical, thermal, and electrical properties, adhesion to common clean surfaces, good aging characteristics, and compatibility. This report discusses one aspect of the compatibility of removable blown epoxy foams with electronic components. Of interest is the compatibility of the blowing agent, Fluorinert{trademark} (FC-72) electronic fluid with electronic parts, components, and select materials. Excellent compatibility is found with most of the investigated materials. A few materials, such as Teflon{reg_sign} that are comprised of chemicals very similar to FC-72 show substantial absorption of FC-72. No compatibility issues have yet been identified even for the few materials that show substantial absorption.

  1. Dibasic calcium phosphate dihydrate, USP material compatibility with gamma radiation

    NASA Astrophysics Data System (ADS)

    Betancourt Quiles, Maritza

    Gamma radiation is a commonly used method to reduce the microbial bioburden in compatible materials when it is applied at appropriate dose levels. Gamma irradiation kills bacteria and mold by breaking down the organism’s DNA and inhibiting cell division. The purpose of this study is to determine the radiation dosage to be used to treat Dibasic Calcium Phosphate Dihydrate, USP (DCPD) and to evaluate its physicochemical effects if any, on this material. This material will be submitted to various doses of gamma radiation that were selected based on literature review and existing regulations that demonstrate that this method is effective to reduce or eliminate microbial bioburden in natural source and synthetic materials. Analytical testing was conducted to the DCPD exposed material in order to demonstrate that gamma radiation does not alter the physicochemical properties and material still acceptable for use in the manufacture of pharmaceutical products. The results obtained through this study were satisfactory and demonstrated that the gamma irradiation dosages from 5 to 30 kGy can be applied to DCPD without altering its physicochemical properties. These are supported by the Assay test data evaluation of lots tested before and after gamma irradiation implementation that show no significant statistical difference between irradiated and non irradiated assay results. The results of this study represent an achievement for the industry since they provide as an alternative the use of Gamma irradiation technology to control the microbial growth in DCPD.

  2. RP-1 Thermal Stability and Copper Based Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.

    2005-01-01

    A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.

  3. Material Compatibility with Space Storable Propellants. Design Guidebook

    NASA Technical Reports Server (NTRS)

    Uney, P. E.; Fester, D. A.

    1972-01-01

    An important consideration in the design of spacecraft for interplanetary missions is the compatibility of storage materials with the propellants. Serious problems can arise because many propellants are either extremely reactive or subject to catalytic decomposition, making the selection of proper materials of construction for propellant containment and control a critical requirement for the long-life applications. To aid in selecting materials and designing and evaluating various propulsion subsystems, available information on the compatibility of spacecraft materials with propellants of interest was compiled from literature searches and personal contacts. The compatibility of both metals and nonmetals with hydrazine, monomethyl hydrazine, nitrated hydrazine, and diborance fuels and nitrogen tetroxide, fluorine, oxygen difluoride, and Flox oxidizers was surveyed. These fuels and oxidizers encompass the wide variety of problems encountered in propellant storage. As such, they present worst case situations of the propellant affecting the material and the material affecting the propellant. This includes material attack, propellant decomposition, and the formation of clogging materials.

  4. Material compatibility and thermal aging of thermoelectric materials.

    SciTech Connect

    Gardea, Andrew D.; Nishimoto, Ryan; Yang, Nancy Y. C.; Morales, Alfredo Martin; Whalen, Scott A.; Chames, Jeffrey M.; Clift, W. Miles

    2009-09-01

    In order to design a thermoelectric (TE) module suitable for long-term elevated temperature use, the Department 8651 has conducted parametric experiments to study material compatibility and thermal aging of TE materials. In addition, a comprehensive material characterization has been preformed to examine thermal stability of P- and N-based alloys and their interaction with interconnect diffusion barrier(s) and solder. At present, we have completed the 7-days aging experiments for 36 tiles, from ambient to 250 C. The thermal behavior of P- and N-based alloys and their thermal interaction with both Ni and Co diffusion barriers and Au-Sn solder were examined. The preliminary results show the microstructure, texture, alloy composition, and hardness of P-(Bi,Sb){sub 2}Te{sub 3} and N-Bi{sub 2}(Te,Se){sub 3} alloys are thermally stable up to 7 days annealing at 250 C. However, metallurgical reactions between the Ni-phosphor barriers and P-type base alloy were evident at temperatures {ge} 175 C. At 250 C, the depth (or distance) of the metallurgical reaction and/or Ni diffusion into P-(Bi,Sb){sub 2}Te{sub 3} is approximately 10-15 {micro}m. This thermal instability makes the Ni-phosphor barrier unsuitable for use at temperatures {ge} 175 C. The Co barrier appeared to be thermally stable and compatible with P(Bi,Sb){sub 2}Te{sub 3} at all annealing temperatures, with the exception of a minor Co diffusion into Au-Sn solder at {ge} 175 C. The effects of Co diffusion on long-term system reliability and/or the thermal stability of the Co barrier are yet to be determined. Te evaporation and its subsequent reaction with Au-Sn solder and Ni and Co barriers on the ends of the tiles at temperatures {ge} 175 C were evident. The Te loss and its effect on the long-term required stoichiometry of P-(Bi, Sb){sub 2}Te{sub 3} are yet to be understood. The aging experiments of 90 days and 180 days are ongoing and scheduled to be completed in 30 days and 150 days, respectively. Material

  5. Oxygen Compatibility Screening Tests in Oxygen-Rich Combustion Environment

    NASA Technical Reports Server (NTRS)

    Eckel, Anerew J.

    1997-01-01

    The identification and characterization of oxygen-rich compatible materials enables full-flow, staged combustion designs. Although these oxygen-rich designs offer significant cost, performance, and reliability benefits over existing systems, they have never been used operationally by the United States. If these systems are to be realized, it is critical to understand the long-term oxidative stability in high-temperature, high-pressure, oxygen-rich combustion environments. A unique facility has been constructed at the NASA Lewis Research Center to conduct tests of small-scale rocket engine materials and subcomponents in an oxygen-rich combustion environment that closely approximates a full-scale rocket engine. Thus, a broad range of advanced materials and concepts can be screened in a timely manner and at a relatively low cost.

  6. Compatibility of polyacetylene with lithium battery materials

    SciTech Connect

    Not Available

    1982-07-01

    The object of this research is to evaluate polyacetylene (CHx) as a replacement for carbon as the cathode material in primary lithium/thionyl chloride (Li/SOC12) and lithium/sulfur dioxide (Li/SO2) batteries. The choice of the Li/SOC12 inorganic electrolyte cell is based on the fact that it is the highest energy density system known to date. By itself, the favorable ratio of obtainable work to weight is not sufficient. For Navy applications, the rate at which the cell supplies energy - the power density - is very important. CHx is a lightweight material with extremely high effective surface area (60 m squared/g) and good electrical conductivity when doped, thus making it a good candidate for an electrode in a high power density cell.

  7. Flammability, Offgassing, and Compatibility Requirements and Test Procedures. Interim NASA Technical Standard

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.

  8. A compatibility study of FEFO with various containment materials

    SciTech Connect

    Shepodd, T.J.; Goods, S.H.; Foster, P.

    1994-01-01

    Compatibility between FEFO (bis-(2-fluoro-2,2-dinitroethyl) formal) and a number of organic and metallic materials was evaluated at 22 and 74 C for up to 8 months. The metals included common structural alloys and elemental metals that the extrudable explosive might contact in its service life. The organic materials included flexible materials for use as collapsible extrusion membranes or permeation barriers, rigid engineering resins (matrices for composite vessels), and polymer viscosity modifiers.

  9. FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  10. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect

    Chang Oh

    2005-07-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  11. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect

    Chang Oh

    2005-04-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  12. Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test S

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test Sets and Networks Integration Management Office Testing for the Tracking and Data Relay Satellite System

  13. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume 1

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1996-10-01

    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours. The original refrigerants and the Alternatives tested for retrofit were as follows: Most motor materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) were compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant. This was attributed to solution of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) found in Mylar and Melinex sheet and sleeving insulations was initially observed, but subsequent tests under dry conditions showed that embrittlement of the PET materials was caused by moisture present during the exposure. Compatibility tests of elastomers with R-245ca, retrofitted from R-11 and R-123, showed that the nitrile was compatible with both R-11 and R-245ca, but not with R-123. The neoprene was unsatisfactory because of shrinkage in the R-245ca.

  14. EMC (electromagnetic compatibility) system test and analysis interface

    NASA Astrophysics Data System (ADS)

    Ball, E. F.; Knutson, L.; Carlson, B. L.

    1983-05-01

    One of the major problems in ensuring the electromagnetic compatibility (ECM) of a system is the efficient utilization of equipment level measurements and system level analysis tools. The contents of this report present an indepth evaluation of MIL-STD-461 and the United States Air Force's system level analysis tool, Intrasystem Electromagnetic Compatibility Analysis Program (IEMCAP). Recommended changes to improve system level ECM predictions based on equipment and system level test results are presented along with recommended changes to IEMCAP.

  15. Progress toward developing high performance immersion compatible materials and processes

    NASA Astrophysics Data System (ADS)

    Petrillo, Karen; Patel, Kaushal; Chen, Rex; Li, Wenjie; Kwong, Ranee; Lawson, Peggy; Varanasi, Rao; Robinson, Chris; Holmes, Steven J.; Gil, Dario; Kimmel, Kurt; Slezak, Mark; Dabbagh, Gary; Chiba, Takashi; Shimokawa, Tsutomu

    2005-05-01

    To make immersion lithography a reality in manufacturing, several challenges related to materials and defects must be addressed. Two such challenges include the development of water immersion compatible materials, and the vigorous pursuit of defect reduction with respect to both the films and the processes. Suitable resists and topcoats must be developed to be compatible with the water-soaked environment during exposure. Going beyond the requisite studies of component leaching from films into the water, and absorption of water into the films, application-specific optimization of photoresists and top coats will be required. This would involve an understanding of how a wide array of resist chemistry and formulations behave under immersion conditions. The intent of this paper is to compare lithographic performance under immersion and dry conditions of resists containing different polymer platforms, protecting groups, and formulations. The compatibility of several developer-soluble top-coat materials with a variety of resists is also studied with emphasis on profile control issues. With respect to defects, the sources are numerous. Bubbles and particles created during the imaging process, material remnants from incomplete removal of topcoats, and image collapse as related to resist swelling from water infusion are all sources of yield-limiting defects. Parallel efforts are required in the material development cycle focusing both on meeting the lithographic requirements, and on understanding and eliminating sources of defects. In this paper, efforts in the characterization and reduction of defects as related to materials chemistry and processing effects will be presented.

  16. Compatibility of structural materials with liquid bismuth, lead, and mercury

    SciTech Connect

    Weeks, J.R.

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  17. Preparation of refractory cermet structures for lithium compatibility testing

    NASA Technical Reports Server (NTRS)

    Heestand, R. L.; Jones, R. A.; Wright, T. R.; Kizer, D. E.

    1973-01-01

    High-purity nitride and carbide cermets were synthesized for compatability testing in liquid lithium. A process was developed for the preparation of high-purity hafnium nitride powder, which was subsequently blended with tungsten powder or tantalum nitride and tungsten powders and fabricated into 3 in diameter billets by uniaxial hot pressing. Specimens were then cut from the billets for compatability testing. Similar processing techniques were applied to produce hafnium carbide and zirconium carbide cermets for use in the testing program. All billets produced were characterized with respect to chemistry, structure, density, and strength properties.

  18. Compatibility of ITER candidate materials with static gallium

    SciTech Connect

    Luebbers, P.R.; Chopra, O.K.

    1995-09-01

    Corrosion tests have been conducted to determine the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor (ITER) first wall/blanket systems, e.g., Type 316 stainless steel (SS), Inconel 625, and Nb-5 Mo-1 Zr. The results indicate that Type 316 SS is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 C, corrosion rates for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy are {approx} 4.0, 0.5, and 0.03 mm/yr, respectively. Iron, nickel, and chromium react rapidly with gallium. Iron shows greater corrosion than nickel at 400 C ({ge} 88 and 18 mm/yr, respectively). The present study indicates that at temperatures up to 400 C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The growth of intermetallic compounds may control the overall rate of corrosion.

  19. Compatibility of ITER candidate structural materials with static gallium

    SciTech Connect

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.

    1993-12-01

    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  20. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume IV - pictures

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1996-10-01

    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.

  1. Integrated Data Collection Analysis (IDCA) Program - Mixing Procedures and Materials Compatibility

    SciTech Connect

    Olinger, Becky D.; Sandstrom, Mary M.; Warner, Kirstin F.; Sorensen, Daniel N.; Remmers, Daniel L.; Moran, Jesse S.; Shelley, Timothy J.; Whinnery, LeRoy L.; Hsu, Peter C.; Whipple, Richard E.; Kashgarian, Michaele; Reynolds, John G.

    2011-01-14

    Three mixing procedures have been standardized for the IDCA proficiency test—solid-solid, solid-liquid, and liquid-liquid. Due to the variety of precursors used in formulating the materials for the test, these three mixing methods have been designed to address all combinations of materials. Hand mixing is recommended for quantities less than 10 grams and Jar Mill mixing is recommended for quantities over 10 grams. Consideration must also be given to the type of container used for the mixing due to the wide range of chemical reactivity of the precursors and mixtures. Eight web site sources from container and chemical manufacturers have been consulted. Compatible materials have been compiled as a resource for selecting containers made of materials stable to the mixtures. In addition, container materials used in practice by the participating laboratories are discussed. Consulting chemical compatibility tables is highly recommended for each operation by each individual engaged in testing the materials in this proficiency test.

  2. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films

    SciTech Connect

    Alvine, Kyle J.; Shutthanandan, V.; Bennett, Wendy D.; Bonham, Charles C.; Skorski, Daniel C.; Pitman, Stan G.; Dahl, Michael E.; Henager, Charles H.

    2010-12-02

    Abstract: Hydrogen is being considered as a next-generation clean burning fuel. However, hydrogen has well known materials issues, including blistering and embrittlement in metals. Piezoelectric materials are used as actuators in hydrogen fuel technology. We present studies of materials compatibility of piezoelectric films in a high pressure hydrogen environment. Absorption of high pressure hydrogen was studied with Elastic Recoil Detection Analysis (ERDA) and Rutherford Back Scattering (RBS) in lead zirconate titanate (PZT) and barium titanate (BTO) thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed.

  3. Compatibility of refrigerants and lubricants with motor materials. Volume 1, Final report

    SciTech Connect

    Doerr, R.; Kujak, S.

    1993-05-01

    This volume contains the abstract, scope, discussion of results, charts of motor material compatibility, test procedures, material identifications, and 84 pages of data summary tables. Compatibility test results for 11 pure refrigerants and 17 refrigerant-lubricant combinations with 24 motor materials are included. The greatest effect on the motor materials was caused by adsorption followed by desorption of refrigerants at higher temperatures. High internal pressure of the adsorbed refrigerants and their tendency to evolve from the materials resulted in blisters, cracks, internal bubbles in the varnish, and delamination or bubbles in the sheet insulations. The second effect was extraction or dissolution of materials that lead to embrittlement of some sheet insulations. HCFC-22 and HCFC- 22/mineral oil had the most deleterious effects; the materials are expected to be reliable when used with most of the new refrigerants and lubricants. Tables.

  4. Materials compatibility with the volcanic environment. Final report

    SciTech Connect

    Htun, K.M.

    1984-03-08

    Attempts were made to run materials compatibility, volcanic gas collection, and heat transfer experiments during the 1977 Kilauea eruption. Preliminary results from the recovered samples showed that Fe, Ni, and Fe-Ni alloys were the most heavily oxidized. The Mo and W alloys showed some attack and only neglible reaction was seen on 310 stainless, Hastelloy C, Inconel 600, Inconel 718, Rene 41, and Nichrome. Results are qualitative only. (DLC)

  5. Materials Compatibility Studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1998-09-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. The energy deposited in the target is transported by two separate mercury flow streams: one to transport heat in the interior target region and one to cool the stainless steel container. Three-dimensional computational fluid dynamics simulations have been performed to predict temperature, velocity, and pressure distributions in the target. Results have generally shown that the power deposited in the bulk mercury can be effectively transported with reasonable flow rates and the bulk mercury temperature should not exceed 160{deg}C. Assuming good thermal contact, the maximum stainless steel wall temperature should be 130 {deg}C. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R&D programs. In addition, corrosion studies include evaluation of Inconel 718 because it has been successfully used in previous water cooled spallation neutron systems as a window material. With type 316 SS selected to contain the mercury target of the SNS, two types of compatibility issues have been examined: LME and temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275{deg}C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 {deg}C. Inconel 718 also showed no change in room temperature properties when tested in mercwy or mercury-gallium. However, there

  6. MRI-compatible micromanipulator; design and implementation and MRI-compatibility tests.

    PubMed

    Koseki, Yoshihiko; Tanikawa, Tamio; Chinzei, Kiyoyuki

    2007-01-01

    In this paper, we present a magnetic resonance imaging (MRI)-compatible micromanipulator, which can be employed to provide medical and biological scientists with the ability to concurrently manipulate and observe micron-scale objects inside an MRI gantry. The micromanipulator formed a two-finger micro hand, and it could handle a micron-scale object using a chopstick motion. For performing operations inside the MRI gantry in a manner such that the MRI is not disturbed, the system was designed to be nonmagnetic and electromagnetically compatible with the MRI. The micro-manipulator was implemented with piezoelectric transducers (PZT) as actuators for micro-motion, strain gauges as sensors for closed-loop control, and a flexure parallel mechanism made of acrylic plastic. Its compatibility with a 2-Tesla MRI was preliminarily tested by checking if the MRI obtained with the micromanipulator were similar to those obtained without the micromanipulator. The tests concluded that the micromanipulator caused no distortion but small artifacts on the MRI. The signal-to-noise ratio (SNR) of the MRI significantly deteriorated mainly due to the wiring of the micromanipulator. The MRI caused noise of the order of ones of volts in the strain amplifier. PMID:18001990

  7. Mixed waste chemical compatibility: A testing program for plastic packaging components

    SciTech Connect

    Nigrey, P.J.

    1995-12-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the United States have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). The design requirements for both hazardous [49 CFR 173.24 (e)(1)] and radioactive [49 CFR 173.412 (g)] materials packaging specify packaging compatibility, i.e., that the materials of the packaging @d any contents be chemically compatible with each other. Furthermore, Type A [49 CFR 173.412 (g)] and Type B (10 CFR 71.43) packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program attempts to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. This program has been described in considerable detail in an internal SNL document, the Chemical Compatibility Test Plan & Procedure Report (Nigrey 1993).

  8. Chemical compatibility of structural materials in alkali metals

    SciTech Connect

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  9. An evaluation of potential material coolant compatibility for applications in advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Watanabe, Y.; Yi, Y. S.; Hishinuma, A.

    1998-10-01

    In assessing possible potential issues for fusion applications, the compatibility of several metallic structural materials was examined using high temperature/pressure steam as test environment. High corrosion resistance associated with protective oxide film formation was regarded as essential for the function of protecting from tritium permeation and corrosion damage. A Ti-Al-based intermetallic compound with V addition, recently developed, showed excellent performance. A low-activation ferritic/martensitic steel, F82-H, was comparable with the current advanced materials for modern supercritical fossil boilers, while some potential vanadium alloys, although not intended for use in steam, were found less compatible.

  10. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  11. Project W-314 Polyurea Special Protective Coating (SPC) Test Plan Chemical Compatibility and Physical Characteristics Testing

    SciTech Connect

    MAUSER, R.W.

    2001-01-15

    This Test Plan outlines the testing to be done on the Special Protective Coating (SPC) Polyurea which includes: Tank Waste Compatibility, Decontamination Factor Testing, and Adhesion Strength Testing after a sample has been exposed to Radiation.

  12. Materials compatibility and wall stresses in hydride storage beds

    SciTech Connect

    Clark, E.A.; Dunn, K.A.; McKillip, S.T.; Bannister, C.E.

    1991-01-01

    Hydrogen isotope handling and storage will be accomplished using solid-state hydride compounds at the Savannah River Site in the new Replacement Tritium Facility (RTF). The hydride powder is contained in a horizontal cylindrical vessel, and the combination of hydride powder, vessel, and associated heating and cooling facilities are termed in a hydride storage bed. The materials compatibility of the storage powder with the stainless steel vessel has been examined, and the stresses developed in the vessel due to expansion of the powder by absorbing hydrogen have been measured.

  13. Materials compatibility and wall stresses in hydride storage beds

    SciTech Connect

    Clark, E.A.; Dunn, K.A.; McKillip, S.T.; Bannister, C.E.

    1991-12-31

    Hydrogen isotope handling and storage will be accomplished using solid-state hydride compounds at the Savannah River Site in the new Replacement Tritium Facility (RTF). The hydride powder is contained in a horizontal cylindrical vessel, and the combination of hydride powder, vessel, and associated heating and cooling facilities are termed in a hydride storage bed. The materials compatibility of the storage powder with the stainless steel vessel has been examined, and the stresses developed in the vessel due to expansion of the powder by absorbing hydrogen have been measured.

  14. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    SciTech Connect

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  15. An optimized method for mycelial compatibility testing in Sclerotinia sclerotiorum.

    PubMed

    Schafer, Michelle R; Kohn, Linda M

    2006-01-01

    Classification of isolates into mycelial compatibility groups (MCGs) is used routinely in many laboratories as a quick marker for genotyping Sclerotinia sclerotiorum within populations. Scoring each new sample requires optimization of standardized conditions to support adequate growth of all paired isolates. Appropriate conditions for growth are especially important because diverse compatibility reactions are difficult to categorize and score (e.g., in samples from populations with high genetic diversity, such as those that receive immigration from genetically diverse sources or those that deviate from strict clonality). The current standard medium for MCG testing can be inhibitory to isolates from some samples, confounding scoring of compatibility. We identified two foci for optimization: (i) choice of medium, in this experiment, Patterson's medium amended with red food coloring (termed modified Patterson's medium, MPM, the current standard medium) versus potato dextrose agar (PDA) and (ii) amount of McCormick's red food coloring amended to the growth medium. The red food coloring often yields a red reaction line in incompatible interactions; alternative incompatible reactions are a line of thick or thin hyphae. Based on results to date, self-self pairings of S. sclerotiorum are compatible and are a reliable standard for scoring compatible self-nonself mycelial interactions. PDA amended with 75 microl/L of McCormick's red food coloring was identified as optimal for isolates inhibited by MPM from a highly diverse, recombining population sample. This precisely amended PDA was also suitable for isolates from highly clonal populations that were not inhibited by MPM or by higher concentrations of red food coloring. Under the optimized, standardized conditions all paired isolates grew together and produced interactions that could be scored in repeatedly identifiable categories, compatible or incompatible. Workers are advised to optimize conditions before screening a new

  16. Compatibility of materials with liquid metal targets for SNS

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.

  17. High Temperature Compatibility of 60-Watt IHS Materials

    SciTech Connect

    Worley, C. M.; Merten, C. W.

    1995-11-21

    The 60-Watt Isotopic Heat Source (IHS) utilizes a variety of materials which have been selected for their properties at elevated temperatures. These include iridium, molybdenum, and the T-111 alloy which consists of 90 wt% tantalum, 8 wt% tungsten, and 2 wt% hafnium. Properties of interest in radioisotopic heat source applications include high temperature strength, resistance to oxidation, weldability, and ability to act as a diffusion barrier. Iridium is utilized as a clad for fuel pellets because of its high temperature mechanical properties and good compatibility with carbon and plutonium oxide. Molybdenum retains good high temperature strength and has been used as a diffusion barrier in past applications. However, molybdenum also exhibits poor resistance to oxidation. Therefore, it is necessary to enclose molybdenum components so that they are not exposed to the atmosphere. T-111 exhibits moderate oxidation resistance, good high temperature mechanical properties, and good weldability. For these reasons, it is used as the outer containment boundary for the 60-Watt IHS. Because the temperature in GPHS fueled dads is on the order of 1000 degrees Celsius in the 60-W configuration, the potential for diffusion of dissimilar materials from one into another exists. Deleterious effects of diffusion can include degradation of mechanical strength through the formation of brittle intermetallics, degradation of mechanical properties through simple alloying, or formation of voids through the Kirkendall effect. Because of the possibility of these effects, design methodology calls for use of diffusion barriers between materials likely to exhibit interdiffusion at elevated temperatures. The necessity to assure the long term integrity of the 60-Watt IHS dictates that the diffusion behavior of its component materials be known. This report describes the high temperature compatibility studies which were conducted on the component materials of the 60-Watt IHS.

  18. Seal Materials Compatible with the Electroplating Solvent Used in Constellation-X Mirrors

    NASA Technical Reports Server (NTRS)

    Pei, Xiong-Skiba

    1999-01-01

    The existing gasket seals used in electroplating of the Constellation-X mirrors are difficult to assemble, and the current seal material is hydrophobic and too thick. The combination of the above problems result in: 1) non-uniform plating; 2) defect sites such as pits on the mirror edges; 3) "bear claws" on the edges of the mandrels and mirrors causing difficulties in shell-mirror separations; and 4) leakage of the plating solution past the seals into the mandrel causing chemical etching of the mandrel interior. This paper reports the results of this summer study in searching for alternate seal materials chemically compatible with the electroplating solvent. Fifteen common elastomeric rubber seal materials made-by Parker Seals were investigated including butyl, ethylene propylene, fluorosilicone, nitrile, Viton fluorocarbon, and silicone. Test results showed that Viton fluorocarbon compounds as a group were superior to the other tested compounds for chemical compatibility with the plating bath.

  19. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Technical progress report, 1 April 1995--30 June 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-08-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The AirConditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  20. Report on sodium compatibility of advanced structural materials.

    SciTech Connect

    Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T.

    2012-07-09

    This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four

  1. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1995-12-01

    Compatibility tests were conducted on motor materials to determine whether exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials with the alternative refrigerant/lubricant after retrofit. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Motor materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant at high temperature. This was attributed to incompatibility of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) sheet and sleeving insulations was initially observed, but subsequent tests under extremely dry conditions showed that embrittlement of the PET materials was attributed to moisture present during the exposure.

  2. Solid phase microextraction analysis of B83 SLTS and Core B compatibility test units

    SciTech Connect

    Chambers, D M; Ithaca, J; King, H A; Malcolm, S

    1999-03-26

    Solid phase microextraction has permitted the efficient collection and analysis of a broad range of volatile and semivolatile compounds outgassed from materials. In 1998, we implemented a microextraction protocol at Mason and Hanger, Pantex Plant, for the analysis of weapons and compatibility test units. The chemical information that was obtained from this work is interpreted by determining the source and outgas mechanism for each compound in the weapon signature, which is a task only accomplished by analysis of material standards.

  3. Material compatibility evaluation for liquid oxygen turbopump fluid foil bearings

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.; Dees, J.; Gu, A.; Dolan, F.

    1992-01-01

    Three series of tests were carried out on three polymer-coated Inconel substrate materials, Teflon S, polyimide bonded graphite fluoride (PBGF), and Teflon, which are considered for use in fluid foil bearings for a liquid oxygen turbopump. All the candidate materials passed the liquid oxygen frictional heating test. During the gaseous oxygen frictional heating test, all coatings wore off before ignition occured. Both Teflon S and PBGF coated foils passed 100 start/stop cycles against chrome-plated Inconel 718 shaft in the direct foil bearing lift-off simulation test in liquid oxygen.

  4. Compatibility of gas turbine materials with steam cooling

    SciTech Connect

    Desai, V.; Tamboli, D.; Patel, Y.

    1995-10-01

    Gas turbines had been traditionally used for peak load plants and remote locations as they offer advantage of low installation costs and quick start up time. Their use as a base load generator had not been feasible owing to their poor efficiency. However, with the advent of gas turbines based combined cycle plants (CCPs), continued advances in efficiency are being made. Coupled with ultra low NO{sub x} emissions, coal compatibility and higher unit output, gas turbines are now competing with conventional power plants for base load power generation. Currently, the turbines are designed with TIT of 2300{degrees}F and metal temperatures are maintained around 1700{degrees}F by using air cooling. New higher efficiency ATS turbines will have TIT as high as 2700{degrees}F. To withstand this high temperature improved materials, coatings, and advances in cooling system and design are warranted. Development of advanced materials with better capabilities specifically for land base applications are time consuming and may not be available by ATS time frame or may prove costly for the first generation ATS gas turbines. Therefore improvement in the cooling system of hot components, which can take place in a relatively shorter time frame, is important. One way to improve cooling efficiency is to use better cooling agent. Steam as an alternate cooling agent offers attractive advantages because of its higher specific heat (almost twice that of air) and lower viscosity.

  5. Neutron irradiation and compatibility testing of Li 2O

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Krsul, J. R.; Laug, M. T.; Walters, L. C.; Tetenbaum, M.

    1984-05-01

    A study was made of the neutron irradiation behavior of 6Li-enriched Li 2O in EBR-II. In addition, a stress corrosion study was performed ex-reactor to test the compatibility of Li 2O with a variety of stainless steels. The irradiation tests showed that tritium and helium retention in the Li 2O (˜ 89% dense) lessened with neutron exposure, and the retentions appear to approach a steady-state after ˜ 1% 6Li burnup. The stress corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li 2O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe because a passivation in sealed capsules seemed to occur after a time which greatly reduced corrosion rates.

  6. Development of blood compatible materials by glow discharge-treatment

    NASA Astrophysics Data System (ADS)

    Ishikawa, Y.; Sasakawa, S.

    Glow discharge-treatment was applied to preparation of blood compatible materials. Plasticized polyvinylchloride (PVC) which is used for blood bags was treated in the presence of various gases or monomers. Wettability of PVC was modified by the treatment over a wide range. And leakage of plasticizer, di-(2-ethylhexyl)phthalate (DEHP), was prevented. When platelet concentrates were stored in the treated PVC bags, impairment of platelet functions was suppressed by the prevention of DEHP leakage. But platelet adhesion to the surfaces increased by the treatments. Aldehyde groups were grafted on polyethylene film (PE) by glow discharge-treatment in the presence of formaldehyde gas. Although the aldehyde-grafted PE (HCHO-PE) had higher reactivity with platelet than PE after albumin coating, it exhibited excellent antithrombogenicity after blood plasma coating. HCHO-PE adsorbed proteins with almost the same composition as blood plasma, although non-treated PE adsorbed proteins with higher fibinogen/albumin ratio. Segmented-polyurethane which is well known to exhibit good antithrombogenicity, also formed the adsorption layer having composition like that of blood plasma. These results suggest that protein layer adsorbed with blood plasma composition is hardly recognized by platelets. Glow discharge-treatment is a simple and effective method for surface modification of medical polymers.

  7. Long-time dynamic compatibility of elastomeric materials with hydrazine

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.

    1973-01-01

    The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.

  8. The Astrometric Model Implementation. Simulations and Data Reduction Compatibility Test

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.; Masana, E.; Luri, X.

    2005-01-01

    The aim of this paper is to give a brief description of the astrometric model accuracy at the current stage of the implementation in GASS (simulator) and GDAAS2 (Data Reduction study). The astrometric model described is a set of algorithms which relate the astrometric parameters with the observed directions on the satellite quasi-intertial reference frame. This includes the kinematics of point sources, the relativistic light deflection due to Solar System gravitational field and the aberration. The description of this model was given by Klioner (2002), The form of these algorithms is slightly different in the telemetry simulations (S.A. Klioner, ANSI-C code) and in the data reduction scheme (Lindegren 2002, Fortran90). Both versions make use of the ephemeris for the Solar System by Observatoire de la Côte d'Azur (Mignard 2003, Fortran 90). All these algorithms have been wrapped or recoded since the simulations and data reduction both run in a Java environment. All these manipulations required a strict verification since these algorithms constitute the core of the GIS (Global Iterative Solution). We present the compatibility tests performed during last year that helped us to make fully compatible the simulated data with the data reduction scheme.

  9. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, 1 July 1992--30 September 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-10-01

    During the compatibility study of 10 pure refrigerants with 24 motor materials, it was observed that the greatest damage to the insulation system was caused by absorption of refrigerant followed by rapid desorption. The observed effects were blisters, cracking, internal bubbles and delamination. Measured results includes decreased bond strength, dielectric strength and overall integrity of the material. Refrigerants HCFC-22, HFC-32, HFC-134 and HFC-152a exhibited this phenomena. The effect of HCFC-22 was most severe of the tested refrigerants. Since HCFC-22 has an excellent reliability history with many of the materials tested, compatibility with the new refrigerants is expected.

  10. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Group L. 176.184 Section 176.184 Transportation Other Regulations Relating to Transportation PIPELINE... (explosive) Materials in Port § 176.184 Class 1 (explosive) materials of Compatibility Group L. Class 1 (explosive) materials in compatibility group L may not be handled in a port area without the...

  11. Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry

    SciTech Connect

    Dole, LR

    2004-12-17

    The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

  12. Materials compatibility with oxidizer-rich gases at elevated temperatures and pressure

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An investigation of oxygen compatibility and resistance to ignition of candidate materials for use in a liquid rocket engine designed to incorporate an oxidizer rich preburner-LOX turbopump configuration was discussed. The program was divided into two basic tasks. The first task was to develop a preliminary design of an oxidizer turbopump preburner section complete with thermal and MS Parameter analyses and to develop a conceptual design of the main injector with a preliminary engine specification as the final product. The second task was directed totally at testing materials in oxygen-rich environments.

  13. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  14. Environmentally compatible solder materials for thick film hybrid assemblies

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Rejent, J.A.; Hernandez, C.L.

    1997-02-01

    New soldering materials and processes have been developed over the last several years to address a variety of environmental issues. One of the primary efforts by the electronics industry has involved the development of alternative solders to replace the traditional lead-containing alloys. Sandia National Laboratories is developing such alternative solder materials for printed circuit board and hybrid microcircuit (HMC) applications. This paper describes the work associated with low residue, lead-free soldering of thick film HMC`s. The response of the different materials to wetting, aging, and mechanical test conditions was investigated. Hybrid test vehicles were designed and fabricated with a variety of chip capacitors and leadless ceramic chip carriers to conduct thermal, electrical continuity, and mechanical evaluations of prototype joints. Microstructural development along the solder and thick film interface, after isothermal solid state aging over a range of elevated temperatures and times, was quantified using microanalytical techniques. Flux residues on soldered samples were stressed (temperature-humidity aged) to identify potential corrosion problems. Mechanical tests also supported the development of a solder joint lifetime prediction model. Progress of this effort is summarized.

  15. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  16. Cesium chloride compatibility testing program. Annual report, fiscal year 1983

    SciTech Connect

    Bryan, G.H.

    1984-03-01

    A program was started in FY 1982 to evaluate the compatibility of WESF-produced CsCl with 316L stainless steel under the thermal conditions that would be encountered in a geologic repository. The major part of the program involves compatibility testing of six standard WESF CsCl capsules at a maximum CsCl/metal interface temperature of 450/sup 0/C. The capsules are allowed to self heat to the test temperature in insulated containers and then held at temperature for 2200 to 32,000 h. After thermal aging, the capsules are destructively examined to determine the extent of the metal attack by the CsCl. This report describes the test procedure and summarizes the results obtained during the second year of the program. Metallographic examination was completed of the two zero-time capsules. The photomicrographs obtained of the metal samples indicate the maximum metal attack resulting from the capsule-filling operation was about 25 ..mu..m. Metallographic examination of the WESF CsCl capsules held at temperature for 2208 and 4392 h was completed. Both capsules exhibited substantial attack by the CsCl. Maximum attack observed in the 2208-hour capsule was estimated to be about 60 ..mu..m, while maximum attack in the 4392-h capsule was estimated at 110 ..mu..m. The data indicate the corrosion rate is linear with time for the first 4392 h. When the 4392-h capsule was opened for metallographic examination, it was found that the outer surface of the inner capsule was discolored and pitted at several locations. Metallographic examination of the affected areas showed pits up to 300-..mu..m deep in some areas. The maximum depth observed corresponded to about 9% of the initial capsule wall thickness. No similar pitting conditions observed on the outer surface of the 2208-h inner capsule; but was observed, although apparently to a lesser degree, on the outer surface of the 8784-h inner capsule. 2 references, 31 figures, 5 tables.

  17. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume III - data tables, low pressure refrigerants

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1996-10-01

    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.

  18. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume II - data tables, high pressure refrigerants

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1996-10-01

    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.

  19. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  20. Thermodynamic analysis of chemical compatibility of ceramic reinforcement materials with niobium aluminides

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1990-01-01

    Chemical compatibility of several reinforcement materials with three niobium aluminides, Nb3Al, Nb2Al, and NbAl3, were examined from thermodynamic considerations. The reinforcement materials considered in this study include carbides, borides, nitrides, oxides, silicides, and Engel-Brewer compounds. Thermodynamics of the Nb-Al system were reviewed and activities of Nb and Al were derived at desired calculation temperatures. Criteria for chemical compatibility between the reinforcement material and Nb-Al compounds have been defined and several chemically compatible reinforcement materials have been identified.

  1. Thermodynamic analysis of chemical compatibility of several reinforcement materials with niobium aluminides

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Chemical compatibility of several reinforcement materials with three niobium aluminides, Nb3Al, Nb2Al, and NbAl3, were examined from thermodynamic considerations. The reinforcement materials considered in this study include carbides, borides, nitrides, oxides, silicides, and Engel-Brewer compounds. Thermodynamics of the Nb-Al system were reviewed and activities of Nb and Al were derived at desired calculation temperatures. Criteria for chemical compatibility between the reinforcement material and Nb-Al compounds have been defined and several chemically compatible reinforcement materials have been identified.

  2. Compatibility of strontium-90 fluoride with containment materials at elevated temperatures

    SciTech Connect

    Fullam, H.T.

    1981-08-01

    The use of /sup 90/SrF/sub 2/ as a heat-source fuel requires that the /sup 90/Sr be adequately contained during heat-source service. A program for determining the compatibility of /sup 90/SrF/sub 2/ with containment materials at heat-source operating temperatures is described. These compatibility studies included: initial and supplemental screening tests; WESF /sup 90/SrF/sub 2/ capsule demonstration tests; thermal gradient test; and long-term tests. TZM, Haynes Alloy 25, and Hastelloy C-276 were the three materitals selected for evaluation at 600/sup 0/, 800/sup 0/ and 1000/sup 0/C for periods up to 30,000 h. Results showed that all three alloys suffered substantial attack when exposed to the /sup 90/SrF/sub 2/, although the TZM was more resistant to attack than the Hastelloy C-276 and Haynes Alloy 25. The latter two alloys appeared to provide about equal resistance to fluoride attack for exposures longer than about 12,000 h. Attack of the alloys tested by the /sup 90/SrF/sub 2/ was due primarily to impurities.

  3. Gallium-cladding compatibility testing plan: Phase 3 -- Test plan for centrally heated surrogate rodlet test. Revision 2

    SciTech Connect

    Morris, R.N.; Baldwin, C.A.; Wilson, D.F.

    1998-07-01

    The Fissile Materials Disposition Program (FMDP) is investigating the use of weapons grade plutonium in mixed oxide (MOX) fuel for light-water reactors (LWR). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons derived fuel may differ from the previous commercial fuels because of small amounts of gallium impurities. A concern presently exists that the gallium may migrate out of the fuel, react with and weaken the clad, and thereby promote loss of fuel pin integrity. Phases 1 and 2 of the gallium task are presently underway to investigate the types of reactions that occur between gallium and clad materials. This is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. This Plan summarizes the projected Phase 3 Gallium-Cladding compatibility heating test and the follow-on post test examination (PTE). This work will be performed using centrally-heated surrogate pellets, to avoid unnecessary complexities and costs associated with working with plutonium and an irradiation environment. Two sets of rodlets containing pellets prepared by two different methods will be heated. Both sets will have an initial bulk gallium content of approximately 10 ppm. The major emphasis of the PTE task will be to examine the material interactions, particularly indications of gallium transport from the pellets to the clad.

  4. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly progress report, 1 July 1992--30 September 1992

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1992-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR pregrain the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing several research projects and a data collection and dissemination effort. Preliminary results is from these projects are reported in technical progress reports prepared by each researcher.

  5. GROUND WATER ISSUE: NONAQUEOUS PHASE LIQUIDS COMPATIBILITY WITH MATERIALS USED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION.

    EPA Science Inventory

    This issue paper provides a comprehensive literature review regarding the compatibility of NAPLs with a wide variety of materials used at hazardous waste sites. A condensed reference table of compatibility data for 207 chemicals and 28 commonly used well construction and sampling...

  6. A materials compatibility study in FM-1, a liquid component of a paste extrudable explosive

    SciTech Connect

    Goods, S.H.; Shepodd, T.J.; Mills, B.E.; Foster, P.

    1993-09-01

    The chemical compatibility of various metallic and organic containment materials with a constituent of a paste extrudable explosive (PEX) has been examined through a series of long-term exposures. Corrosion coupons and mechanical test specimens (polymers only) were exposed to FM-1, a principal liquid component of PEX, at 74{degree}C. RX-08-FK is the LLNL designator for this formulation. Compatibility was determined by measuring changes in weight, physical dimensions, and mechanical properties, by examining the coupons for discoloration, surface attack, and corrosion products, and by analyzing for dissolved metals in the FM-1. Of the metals and alloys examined, none of the 300 series stainless steels exhibited adequate corrosion resistance after 74 days of exposure. Copper showed evidence of severe uniform surface attack. Monel 400 also exhibited signs of chemical attack. Nickel and tantalum showed less evidence of attack, although neither, was immune to the liquid. Gold coupons developed a ``tarnish`` film. The gold along with an aluminum alloy, 6061 (in the T6 condition) performed the most satisfactorily. A wide range of polymers were tested for 61 days at 74{degree}C. The materials that exhibited the most favorable response in terms of weight change, dimensional stability, and mechanical properties were Kalrez, PTFE Teflon, and polyethylene.

  7. Project W-314 Polyurea Special Protective Coating (SPC) Test Report Chemical Compatibility and Physical Characteristics Testing

    SciTech Connect

    MAUSER, R.W.

    2001-04-09

    This Engineering Test report outlines the results obtained from testing polyurea on its decon factor, tank waste compatibility, and adhesion strength when subjected to a high level of gamma radiation. This report is used in conjunction with RPP-7187 Project W-314 Pit Coatings Repair Requirements Analysis, to document the fact polyurea meets the project W-314 requirements contained in HNF-SD-W314-PDS-005 and is therefore an acceptable SPC for use in W-314 pit refurbishments.

  8. [Blood compatibility of two novel polyurethane coating materials].

    PubMed

    Yu, Guanhua; Ji, Jian; Wang, Dongan; Feng, Linxian; Shen, Jiacong

    2004-04-01

    Amphiphilic coupling-polymer of stearyl poly (ethylene oxide)-co-4, 4'-methylendiphenyl diisocyanate-co-stearyl poly(ethylene oxide), MSPEO, was specially designed as surface-modifying additives. The blends of MSPEO in both polyether urethane (PEU) and chitosan(Chi), as the coating materials for intravascular device were investigated. Two kinds of static clotting time tests, plasma recalcification time (PRT) and prothrombin time(PT), as well as the static platelet adhesion experiment were carried out. And the dynamic anti-coagulation experiment was performed with a closed-loop tubular system under a blood shear rate of 1,500 s-1. The results demonstrate that both blend coatings can improve the anti-coagulation of polyurethane greatly and will not lead to hemolysis, and that more platelets adhere to the surface modified by Chi-MSPEO blend coating as compared with those adhere to the surface modified by PEU-MSPEO blend coating. The surface modified by Chi-MSPEO has longer PRT, whereas the surface modified by PEU-MSPEO has longer PT. PMID:15143535

  9. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation

  10. COMPATIBILITY OF NAPLS AND OTHER ORGANIC COMPOUNDS WITH MATERIALS UED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION

    EPA Science Inventory

    Structural integrity of well construction, sampling, and remediation materials may be compromised at many hazardous sites by nonaqueous phase liquids (NAPLs) and their dissolved constituents. A literature review of compatibility theory and qualitative field experiences are provid...

  11. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  12. Materials Compatibility and Aging for Flux and Cleaner Combinations.

    SciTech Connect

    Archuleta, Kim; Piatt, Rochelle

    2015-01-01

    A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

  13. Design and development of a high-temperature sodium compatibility testing facility

    SciTech Connect

    Hvasta, M. G.; Nolet, B. K.; Anderson, M. H.

    2012-07-01

    The use of advanced alloys within sodium-cooled fast reactors (SFRs) has been identified as a means of increasing plant efficiency and reducing construction costs. In particular, alloys such as NF-616, NF-709 and HT-UPS are promising because they exhibit greater strength than traditional structural materials such as 316-SS. However, almost nothing is known about the sodium compatibility of these new alloys. Therefore, research taking place at the Univ. of Wisconsin-Madison is focused on studying the effects of sodium corrosion on these materials under prototypic SFR operating conditions (600 [ deg. C], V Na=10 [m/s], C 0{approx} 1 [wppm]). This paper focuses on the design and construction of the testing facility with an emphasis on moving magnet pumps (MMPs). Corrosion data from a preliminary 500 [hr] natural convection test will also be presented. (authors)

  14. Waste handling: A study of tributyl phosphate compatibility with nonmetallic materials

    SciTech Connect

    Jenkins, C.F.; Briedenbach, P.J.

    1989-01-01

    The need for numerous seals, plastic tubing, instrument components, and miles of plastic pipe for transferring process waste streams containing tributyl phosphate (TBP) and petroleum solvents led to an investigation of compatibility. TBP is a solvent for many plastics and elastomers and causes softening, crazing, or cracking of most nonmetallics tested. In this regard it may be considered an external plasticizer for some polymers. TBP also is a surfactant in aqueous solution. Dimension changes and property changes associated with softening will preclude the use of some materials as gaskets. Teflon/trademark/ and Kalrez/trademark/ gaskets appear to be compatible with TBP. Mixed results were obtained with EPDM elastomers, but EPDM O-rings are less costly than Kalrez/trademark/ and are being applied in some areas. Exposure of CPVC rigid piping led to crazing and, ultimately, catastrophic stress cracking, thus precluding its use in the waste services described. High-density polyethylene and PVDF plastic piping were unaffected by the test exposures and are useable for process and process waste service. Applications include 25-30 miles of polyethylene pipe and a large number of EPDM gaskets in the filter assembly of an effluent treatment system at the Savannah River Plant. 3 refs., 7 figs., 3 tabs.

  15. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Class 1 (explosive) materials of Compatibility Group L. 176.184 Section 176.184 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed...

  16. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  17. Flexible Material Systems Testing

    NASA Technical Reports Server (NTRS)

    Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.

    2010-01-01

    An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.

  18. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1993-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  19. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes; Quarterly MCLR program technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1994-01-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The AirConditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  20. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly MCLR program technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1995-04-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  1. ISO 14624 Series - Space Systems - Safety and Compatibility of Materials Flammability Assessment of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2007-01-01

    A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation

  2. Test plan/procedure for the checkout of the USA cable communications test configuration for the electromagnetic compatibility (EMC) tests

    NASA Technical Reports Server (NTRS)

    Perry, J. C.

    1975-01-01

    A series of electromagnetic compatibility (EMC) tests were conducted in May, 1975 in the Soviet Union. The purpose of the EMC tests was to determine the effects of the operating environment of the Soviet aircraft, Soyuz, upon the electrical performance of the USA's cable communications equipment located in Soyuz. The test procedures necessary to check out the cable communications test configuration in preparation for the EMC tests are presented.

  3. Compatibility of refrigerants and lubricants with motor materials

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  4. Evaluation of four methods for platelet compatibility testing

    SciTech Connect

    McFarland, J.G.; Aster, R.H.

    1987-05-01

    Four platelet compatibility assays were performed on serum and platelet or lymphocyte samples from 38 closely HLA-matched donor/recipient pairs involved in 55 single-donor platelet transfusions. The 22 patients studied were refractory to transfusions of pooled random-donor platelets. Of the four assays (platelet suspension immunofluorescence, PSIFT; /sup 51/Cr release; microlymphocytotoxicity; and a monoclonal anti-IgG assay, MAIA), the MAIA was most predictive of platelet transfusion outcome (predictability, 74% for one-hour posttransfusion platelet recovery and 76% for 24-hour recovery). The only other assay to reach statistical significance was the PSIFT (63% predictability for one-hour posttransfusion recovery). The degree of HLA compatibility between donor and recipient (exact matches v those utilizing cross-reactive associations) was unrelated to the ability of the MAIA to predict transfusion results. The MAIA may be capable of differentiating HLA antibodies, ABO antibodies, and platelet-specific antibodies responsible for failure of HLA-matched and selectively mismatched single-donor platelet transfusions.

  5. A CMOS compatible Microbulk Micromegas-like detector using silicon oxide as spacer material

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Fransen, M.; van der Graaf, H.; Lu, J.; Schmitz, J.

    2011-02-01

    We present a new Micro Pattern Gaseous Detector (MPGD) fabricated with nonpolymeric materials. The device structure is similar to a Microbulk Micromegas design, consisting of a punctured metal grid supported by a continuous perforated insulating structure. In this detector, the supporting structure is made out of silicon oxide. Devices were tested in He/ iC 4H 10 (80/20) and Ar/ iC 4H 10 (80/20) gas mixtures under 55Fe irradiation. Gas gain of 20,000 and energy resolution below 13% FWHM were achieved. The CMOS compatibility of the fabrication process has been studied in Timepix chips as well as individual 0.13-μm technology CMOS transistors. Complete detectors have been fabricated on top of Timepix chips. In an Ar/ iC 4H 10 (80/20) gas mixture 55Fe decay events were recorded operating the Timepix chip in 2D readout mode.

  6. Material Fatigue Testing System

    NASA Technical Reports Server (NTRS)

    Gilley, P. J. (Inventor)

    1973-01-01

    A system for cyclicly applying a varying load to a material under test is described. It includes a load sensor which senses the magnitude of load being applied to a material, and, upon sensing a selected magnitude of loading, causes the load to be maintained for a predetermined time and then cause the system to resume cyclical loading.

  7. A Materials Compatibility and Thermal Stability Analysis of Common Hydrocarbon Fuels

    NASA Technical Reports Server (NTRS)

    Meyer, M. L.; Stiegemeier, B. R.

    2005-01-01

    A materials compatibility and thermal stability investigation was conducted using five common liquid hydrocarbon fuels and two structural materials. The tests were performed at the NASA Glenn Research Center Heated Tube Facility under environmental conditions similar to those encountered in regeneratively cooled rocket engines. Scanning-electron microscopic analysis in conjunction with energy dispersive spectroscopy (EDS) was utilized to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion that was formed during selected runs. Results show that the carbon deposition process in stainless steel tubes was relatively insensitive to fuel type or test condition. The deposition rates were comparable for all fuels and none of the stainless steel test pieces showed any signs of corrosion. For tests conducted with copper tubing, the sulfur content of the fuel had a significant impact on both the condition of the tube wall and carbon deposition rates. Carbon deposition rates for the lowest sulfur fuels (2 ppm) were slightly higher than those recorded in the stainless steel tubes with no corrosion observed on the inner wall surface. For slightly higher sulfur content (25 ppm) fuels, nodules that intruded into the flow area were observed to form on the inner wall surface. These nodules induced moderate tube pressure drop increases. The highest sulfur content fuels (400 ppm) produced extensive wall pitting and dendritic copper sulfide growth that was continuous along the entire tube wall surface. The result of this tube degradation was the inability to maintain flow rate due to rapidly increasing test section pressure drops. Accompanying this corrosion were carbon deposition rates an order of magnitude greater than those observed in comparable stainless steel tests. The results of this investigation indicate that trace impurities in fuels (i.e. sulfur) can significantly impact the carbon deposition process and produce unacceptable

  8. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Homer, G. David

    1991-01-01

    The results of dynamic tests using methane and NASA-Z copper test specimen under conditions that simulate those expected in the cooling channels of a regeneratively cooled LOX/hydrocarbon booster engine operating at chamber pressures up to 3000 psi are presented. Methane with less than 0.5 ppm sulfur contamination has little or no effect on cooling channel performance. At higher sulfur concentrations, severe corrosion of the NASA-Z copper alloy occurs and the cuprous sulfide Cu2S, thus formed impedes mass flow rate and heat transfer efficiency. Therefore, it is recommended that the methane specification for this end use set the allowable sulfur content at 0.5 ppm (max). Bulk high purity liquid methane that meets this low sulfur requirement is currently available from only one producer. Pricing, availability, and quality assurance are discussed in detail. Additionally, it was found that dilute sodium cyanide solutions effectively refurbish sulfur corroded cooling channels in only 2 to 5 minutes by completely dissolving all the Cu2S. Sulfur corroded/sodium cyanide refurbished channels are highly roughened and the increased surface roughness leads to significant improvements in heat transfer efficiency with an attendant loss in mass flow rate. Both the sulfur corrosion and refurbishment effects are discussed in detail.

  9. 42 CFR 493.863 - Standard; Compatibility testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for Laboratories Performing Tests of Moderate Complexity (including the Subcategory), High Complexity... overall testing event score of at least 100 percent is unsatisfactory performance. (b) Failure to participate in a testing event is unsatisfactory performance and results in a score of 0 for the testing...

  10. Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends

    SciTech Connect

    Pawel, Steven J; Kass, Michael D; Janke, Christopher James

    2009-11-01

    The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test

  11. Selection and evaluation of blood- and tribologically compatible journal bearing materials.

    PubMed

    Murray, S F; Calabrese, S J; Malanoski, S B; Golding, L R; Smith, W A; Hamby, M

    1997-01-01

    A critical issue in the Cleveland Clinic Foundation (CCF) Innovative Ventricular Assist System (IVAS) blood pump is the selection of materials for the blood-lubricated journal bearing. Under normal operating conditions, the journal bearing geometry creates a thick blood film that separates the rotating and stationary surfaces. However, since start-up and certain transients could cause temporary contact, the material pair selected for these surfaces must be both tribologically and blood compatible. Combinations of two biocompatible alloys were tested: a titanium-zirconium-niobium alloy (Ti-13Zr-13Nb) and a zirconium-niobium alloy (Zr-2.5Nb). A standard pin-on-disk tester was used, with the contact surfaces lubricated by glycerol/saline mixtures simulating the viscosity range of blood. One test series evaluated start-up conditions; the other modeled a high-speed rub that might occur if the fluid film broke down. Results showed that the preoxidized Zr-2.5Nb pin/Ti-13Zr-13Nb disk combination was superior at all sliding velocities; a self-mated Zr-2.5Nb pair also showed promise. The oxide film on a self-mated Ti-13Zr-13Nb pair, and a Ti-13Zr-13Nb pin and Zr-2.5Nb disk combination did not show adequate wear life. More work remains to explain distinct performance differences of certain combinations, with more data needed on mechanical properties of thin, hard coatings on softer metal substrates. PMID:9360116

  12. Space Systems - Safety and Compatibility of Materials - Method to Determine the Flammability Thresholds of Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David

    2009-01-01

    Spacecraft fire safety emphasizes fire prevention, which is achieved primarily through the use of fire-resistant materials. Materials selection for spacecraft is based on conventional flammability acceptance tests, along with prescribed quantity limitations and configuration control for items that are non-pass or questionable. ISO 14624-1 and -2 are the major methods used to evaluate flammability of polymeric materials intended for use in the habitable environments of spacecraft. The methods are upward flame-propagation tests initiated in static environments and using a well-defined igniter flame at the bottom of the sample. The tests are conducted in the most severe flaming combustion environment expected in the spacecraft. The pass/fail test logic of ISO 14624-1 and -2 does not allow a quantitative comparison with reduced gravity or microgravity test results; therefore their use is limited, and possibilities for in-depth theoretical analyses and realistic estimates of spacecraft fire extinguishment requirements are practically eliminated. To better understand the applicability of laboratory test data to actual spacecraft environments, a modified ISO 14624 protocol has been proposed that, as an alternative to qualifying materials as pass/fail in the worst-expected environments, measures the actual upward flammability limit for the material. A working group established by NASA to provide recommendations for exploration spacecraft internal atmospheres realized the importance of correlating laboratory data with real-life environments and recommended NASA to develop a flammability threshold test method. The working group indicated that for the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extravehicular landers and habitats

  13. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  14. Strain compatibility tests for sprayed foam cryogenic insulation

    NASA Technical Reports Server (NTRS)

    Hill, W. L.; Kimberlin, D. O.

    1970-01-01

    Mechanical stress applied to foam-coated aluminum alloy specimens maintained at cryogenic temperature simulates actual use conditions of the foam insulation. The testing reveals defects in the polyurethane foam or in the foam to metal bond.

  15. SCREENING METHODS FOR AGENT COMPATIBILITY WITH PEOPLE, MATERIALS, AND THE ENVIRONMENT

    EPA Science Inventory

    A workshop on fire suppressant agent compatibility with people, materials and the environment was held at the National Institute of Standards and Technology on November 14 and 15, 1997, which was attended by approximately 40 representatives from government, academia, and industry...

  16. Could We Make Diverse Learning Materials Compatible with E-Readers Used in Classroom Learning Settings?

    ERIC Educational Resources Information Center

    Young, Shelley Shwu-Ching; Lin, Wei-Lin

    2012-01-01

    This study explores how to make diverse learning/instructional materials compatible with e-readers when the instructor pioneered to adopt e-readers into a course of the graduate level. What problems did the instructor encounter when she used the e-readers as a major tool to deliver learning contents, such as the process of converting the…

  17. Magnetic resonance imaging compatibility test of a cranial prosthesis with titanium screws

    NASA Astrophysics Data System (ADS)

    Jimenez, R.; Benavides, A.; Flores, D.; Hidalgo, S. S.; Solis, S. E.; Uribe, E.; Rodriguez, A. O.

    2012-10-01

    The follow-up of patients with skull prosthesis is necessary to provide adequate medical care. Skull prostheses for cranioplasty have been developed at the Faculty of Odontology of Universidad Nacional Autonoma de Mexico. We built a skull prosthesis phantom and tested for compatibility with standard magnetic resonance imaging procedures. Results showed full compatibility but susceptibility artefacts occurred due to titanium used to fix the prosthesis to the skull.

  18. Shuttle communication systems compatibility and performance tests. [transponder, range error, and power amplifier problems

    NASA Technical Reports Server (NTRS)

    Bromley, L. K.; Travis, A. D.

    1980-01-01

    The compatibility and performance of the Shuttle communications system must be certified prior to operational missions. For this purpose, NASA has established the Electronics Systems Test Laboratory (ESTL) at the Johnson Space Center. This paper discusses the Shuttle communications system compatibility and performance testing being performed in the ESTL. The ESTL system verification test philosophy, including capabilities, procedures, and unique testing equipment are summarized. Summaries of the significant results of compatibility and performance tests of the Orbiter/Space-flight Tracking and Data Network, Orbiter/Air Force Remote Tracking Station, Orbiter/Tracking and Data Relay Satellite System and Orbiter/Shuttle Launch Support System interfaces are presented. The ESTL's unique ability to locate potential communication problems and participate in the resolution of these problems are discussed in detail.

  19. Compatibility of structural materials with liquid lead-bismuth and mercury

    SciTech Connect

    Weeks, J.R.

    1997-04-01

    Both liquid Hg and Pb-Bi eutectic have been proposed as possible target materials for spallation neutron sources. During the 1950s and 1960s, a substantial program existed at BNL as part of the Liquid Metal Fuel Reactor program on compatibility of Bi, Pb, and their alloys with structural materials. Subsequently, compatibility studies of Hg with structural materials were performed in support of development of Rankine-cycle Hg turbines for nuclear applications. This paper reviews our understanding of the corrosion/mass-transfer reactions of structural materials with these liquid-metal coolants. Topics discussed include the basic solubility relations of Fe, Cr, Ni, and refractory metals in these liquid metals, results of inhibition studies, role of oxygen on corrosion, and specialized topics such as cavitation corrosion and liquid-metal embrittlement. Emphasis is on utilizing the understanding gained in this earlier work on the development of heavy-liquid-metal targets in spallation neutron sources.

  20. [Problem-solving in immunohematology: direct compatibility laboratory test ].

    PubMed

    Mannessier, L; Roubinet, F; Chiaroni, J

    2001-12-01

    Cross-matching between the serum of a patient and the red blood cells to be transfused is most important for the prevention of hemolytic transfusion reactions in allo-immunized or new-born patients found positive with direct antiglobulin test. Cross-matching is a time-consuming and complex laboratory test. In order to obtain valid results, it is necessary to abide by some technical rules detailed in this article. The choice of the blood units to be cross-matched depends on the patient's clinical story and on the specificity of anti-erythrocyte antibodies present in the serum. The identification and the management of most frequent difficulties met by using the cross-match technique are discussed hereby. PMID:11802611

  1. Material Testing Device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.

  2. NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect

    Fondeur, F.; Peters, T.; Fink, S.

    2011-09-29

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The

  3. Cesium Chloride Compatibility Testing Program. Annual report, fiscal year 1984

    SciTech Connect

    Bryan, G.H.; Divine, J.R.

    1985-01-01

    During the course of a prior examination, it was found that one of the aged test capsules exhibited discoloration and pitting on the outer surface of the inner capsule. The damage was attributed to problems encountered in the electropolishing operation, which is used to decontaminate the inner capsule after it is loaded with the CsCl and welded shut. A study was carried out in FY 1984 to: determine if the pitting was associated with the electropolishing operation; identify acceptable solution(s) to the problem; and establish the effect, if any, on the long-term integrity of the capsule. Another special study performed in FY 1984 was that of examining two capsules from the Waste Encapsulation and Storage Facility (WESF) storage pool. The objective was to establish the extent of the capsule corrosion while in storage. The study of cause and long-term consequences of the pitting on the WESF cesium chloride capsules has found: The pitting is caused by a nonuniform current distribution at the rack/capsule contact, which forms localized hot spots. The high temperature causes the acid to become more concentrated through boiling of the acid. The concentrated boiling phosphoric acid causes a high rate of corrosion which forms the crevice. The lack of intergranular attack at the base of the crevices and the favorable results of the mechanical testing leads to the conclusion that there will be no long-term failure mechanism accentuated by the pitting, beyond that of having a small hole in the capsule wall with a consequential thinner wall. An attempt to penetrate the capsule wall by electropolishing failed after 30 min with the loss of electrical contact. Consequently, the maximum wall penetration is 40 mils, out of a total thickness of 136 mil. No justification was found to require examination and repack of the existing capsules. A modification of the rack design is recommended for future work, however, to eliminate the pitting.

  4. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  5. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  6. Evaluation of the polyethylene glycol-indirect antiglobulin test for routine compatibility testing.

    PubMed

    Slater, J L; Griswold, D J; Wojtyniak, L S; Reisling, M J

    1989-10-01

    All specimens received in the blood bank over a 5-month period for crossmatch or group and screen requests were tested in parallel by a polyethylene glycol-indirect antiglobulin test (PEG-IAT) and a low-ionic-strength saline (LISS)-IAT. The sera of 41 of 1471 patients had reactions, with 50 antibodies being detected. Ten antibodies reacted only on the PEG-IAT and 14 only by the LISS-IAT; the remaining 26 antibodies were detected by both methods. Of the antibodies that reacted only by the LISS-IAT, one (anti-Jka) was considered clinically significant, whereas five of the antibodies that reacted only by the PEG-IAT (1 anti-c, 2-Fya, 1-Jkb, and 1-S) were considered significant. Two antibodies of questionable clinical significance were detected only by the PEG-IAT. In 97 percent of the sera tested, no reaction was detected by either method. The PEG-IAT is an acceptable technique for routine compatibility testing. PMID:2799893

  7. Composite Material Mirror Testing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this photograph, the composite material mirror is tested in the X-Ray Calibration Facility at the Marshall Space Flight Center for the James Webb Space Telescope (JWST). The mirror test conducted was to check the ability to accurately model and predict the cryogenic performance of complex mirror systems, and the characterization of cryogenic dampening properties of beryllium. The JWST, a next generation successor to the Hubble Space Telescope (HST), was named in honor of James W. Webb, NASA's second administrator, who led NASA in the early days of the fledgling Aerospace Agency. Scheduled for launch in 2010 aboard an expendable launch vehicle, the JWST will be able to look deeper into the universe than the HST because of the increased light-collecting power of its larger mirror and the extraordinary sensitivity of its instrument to infrared light.

  8. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  9. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. A survey of compatibility of materials with high pressure oxygen service

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Clark, A. F.

    1972-01-01

    The available information on the compatibility of materials with oxygen as applied to the production, transport, and applications experience of high pressure liquid and gaseous oxygen is compiled. High pressure is defined as about 2000 to 3000 psia. Since high pressure projections sometimes can be made from lower pressure data, some low pressure data are also included. Low pressure data are included if they are considered helpful to a better understanding of the behavior at high pressures.

  11. Materials compatibility considerations for a fusion-fission hybrid reactor design

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of /sup 233/U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490/sup 0/C) and the recycling time of breeding materials (<1 year).

  12. Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; safety considerations related to extractables and leachables.

    PubMed

    Jenke, Dennis

    2007-10-01

    A review is provided on the general topic of the compatibility of plastic materials with pharmaceutical products, with specific emphasis on the safety aspects associated with extractables and leachables related to such plastic materials. PMID:17701994

  13. Studies of material and process compatibility in developing compact silicon vapor chambers

    NASA Astrophysics Data System (ADS)

    Cai, Qingjun; Bhunia, Avijit; Tsai, Chialun; Kendig, Martin W.; DeNatale, Jeffrey F.

    2013-06-01

    The performance and long-term reliability of a silicon vapor chamber (SVC) developed for thermal management of high-power electronics critically depend on compatibility of the component materials. A hermetically sealed SVC presented in this paper is composed of bulk silicon, glass-frit as a bonding agent, lead/tin solder as an interface sealant and a copper charging tube. These materials, in the presence of a water/vapor environment, may chemically react and release noncondensable gas (NCG), which can weaken structural strength and degrade the heat transfer performance with time. The present work reports detailed studies on chemical compatibility of the components and potential solutions to avoid the resulting thermal performance degradation. Silicon surface oxidation and purification of operating liquid are necessary steps to reduce performance degradation in the transient period. A lead-based solder with its low reflow temperature is found to be electrochemically stable in water/vapor environment. High glazing temperature solidifies molecular bonding in glass-frit and mitigates PbO precipitation. Numerous liquid flushes guarantee removal of chemical residual after the charging tube is soldered to SVC. With these improvements on the SVC material and process compatibility, high effective thermal conductivity and steady heat transfer performance are obtained.

  14. Assessing a Couple's Relationship and Compatibility Using the MARI[R] Card Test and Mandala Drawings

    ERIC Educational Resources Information Center

    Frame, Phyllis G.

    2006-01-01

    This paper illustrates the use of the MARI[R] Card Test, a transpersonal assessment tool which includes archetypal designs and color choices, as well as the drawing of a white and black mandala, or circle picture, for assessing the compatibility of two people in a committed relationship. In an informal pilot research study, 22 couples were given…

  15. Compatibility of R-245ca with motor materials under retrofit conditions

    SciTech Connect

    Doerr, R.G.; Waite, T.D.

    1995-07-01

    This document, which is a reproduction of slides from a presentation at the June 1995 ASHRAE conference, evaluates and provides data on a number of motor parameters after the motor materials have been exposed to the refrigerant R-245ca. Data on conditions of the insulating varnish, the magnet wire, the insulations, and the elastomers are presented, as well as a note on work in progress. While it was concluded that most materials are compatible with R-245ca under retrofit conditions, it was also noted that the flammability, toxicity, efficiency, and cost of R-245ca and/or Blends are unresolved.

  16. Experimental study of compatibility of reduced metal oxides with thermal energy storage lining materials

    NASA Astrophysics Data System (ADS)

    El-Leathy, Abdelrahman; Danish, Syed Noman; Al-Ansary, Hany; Jeter, Sheldon; Al-Suhaibani, Zeyad

    2016-05-01

    Solid particles have been shown to be able to operate at temperatures higher than 1000 °C in concentrated solar power (CSP) systems with thermal energy storage (TES). Thermochemical energy storage (TCES) using metal oxides have also found to be advantageous over sensible and latent heat storage concepts. This paper investigates the compatibility of the inner lining material of a TES tank with the reduced metal oxide. Two candidate metal oxides are investigated against six candidate lining materials. XRD results for both the materials are investigated and compared before and after the reduction of metal oxide at 1000°C in the presence of lining material. It is found that the lining material rich in zirconia is suitable for such application. Silicon Carbide is also found non-reacting with one of the metal oxides so it needs to be further investigated with other candidate metal oxides.

  17. Development testing of the two-watt RTG heat source and Hastelloy-S/T-111 alloy compatibility studies

    SciTech Connect

    Howell, E.I.; Teaney, P.E.

    1993-09-29

    The two-watt radioisotope thermoelectric generator heat source capsules were tested to determine their survivability under extreme environmental conditions: high external pressure, high impact, and high internal pressure. Test results showed that the capsules could withstand external pressures of 1,000 bars and impacts at velocities near 150 meters per second. However, the results of the internal pressure tests (stress-rupture) were not so favorable, possibly because of copper contamination, leading to a recommendation for additional testing. A material compatibility study examined the use of Hastelloy-S as a material to clad the tantalum strength member of the two-watt radioisotopic heat source. Test capsules were subjected to high temperatures for various lengths of time, then cross sectioned and examined with a scanning electron microscope. Results of the study indicate that Hastelloy-S would be compatible with the underlying alloy, not only at the normal operating temperatures of the heat source, but also when exposed to the much higher temperatures of a credible accident scenario.

  18. Materials Compatibility and Lubricants Research of CFC-refrigerant substitutes. Quarterly technical progress report, 1 April 1993--30 June 1993

    SciTech Connect

    Godwin, D.S.; Hourahan, G.C.; Szymurski, S.R.

    1993-07-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The DCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each researcher.

  19. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Hourahan, G.C.; Szymurski, S.R.

    1993-01-01

    The materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Preliminary results from these projects are reported in technical progress reports prepared by each researcher.

  20. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly technical progress report, 1 January 1993--31 March 1993

    SciTech Connect

    Godwin, D.A.; Hourahan, G.C.; Szymurski, S.R.

    1993-04-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each researcher.

  1. Reviews of Test Materials.

    ERIC Educational Resources Information Center

    Mullen, Jo-Ann

    1981-01-01

    Reviews four standardized tests geared to helping development educators in placing students in courses and assessing their learning levels: the Davis Reading Test; the Descriptive Tests of Language Skills; the Descriptive Tests of Mathematics Skills; and the Nelson-Denny Reading Test. (CAM)

  2. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility

    SciTech Connect

    Zhao, Wei; Rovore, Thomas; Weerawarne, Darshana; Osterhoudt, Gavin; Kang, Ning; Joseph, Pharrah; Luo, Jin; Shim, Bonggu; Poliks, Mark; Zhong, Chuan-Jian

    2015-06-02

    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal such as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple “nanoalloy printing 'laser sintering' nanostructure printing” process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.

  3. Materials compatibility for 238Pu-HNO3/HF solution containment: 238Pu aqueous processing

    NASA Astrophysics Data System (ADS)

    Reimus, M. A.; Pansoy-Hjelvik, M. E.; Silver, G.; Brock, J.; Nixon, J.; Ramsey, K. B.; Moniz, P.

    2000-07-01

    The Power Source Technologies Group at Los Alamos National Laboratory is building a 238Pu Aqueous Scrap Recovery Line at the Plutonium Facility. The process line incorporates several unit operations including dissolution, filtration, ion exchange, and precipitation. During 1997-1999, studies were carried out to determine the chemistry used in the full-scale process. Other studies focussed on the engineering design of the operation. Part of the engineering design was to determine, in compatibility studies, the materials for reaction and storage vessels which will contain corrosive 238Pu-HNO3/HF solutions. The full-scale line is to be operational by the end of year 2000.

  4. Subtask 12E1: Compatibility of structural materials in liquid alkali metals

    SciTech Connect

    Natesan, K.; Rink, D.L.; Haglund, R.; Clark, R.W.

    1995-03-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures that are in the range of interest for the International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal environments. Candidate structural materials are being evaluated for their compatibility, interstitial-element transfer, and corrosion in liquid alkali-metal systems such as lithium and NaK. Type 316 stainless steel and V-5Cr-5Ti coupon specimens with and without prealuminizing treatment have been exposed to NaK and lithium environments of commercial purity for times up to 3768 h at temperatures between 300 and 400{degrees}C. 13 refs., 8 figs., 3 tabs.

  5. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  6. Fan Performance Testing and Oxygen Compatibility Assessment Results for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.; Paul, Heather L.; Vogel, Matthew

    2008-01-01

    An advanced portable life support system (PLSS) for the space suit will require a small, robust, and energy-efficient system to transport the ventilation gas through the space suit for lunar Extravehicular Activity (EVA) operations. A trade study identified and compared ventilation transport technologies in commercial, military, and space applications to determine which technologies could be adapted for EVA use. Based on the trade study results, five commercially available, 24volt fans were selected for performance testing at various pressures and flow rates. Measured fan parameters included fan delta-pressures, input voltages, input electrical currents, and in some cases motor windings electrical voltages and currents. In addition, a follow-on trade study was performed to identify oxygen compatibility issues and assess their impact on fan design. This paper outlines the results of the fan performance characterization testing, as well as the results from the oxygen compatibility assessment.

  7. Fan Performance Testing and Oxygen Compatibility Assessment Results for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Vogel, Matthew

    2009-01-01

    An advanced portable life support system (PLSS) for the space suit will require a small, robust, and energyefficient system to transport the ventilation gas through the space suit for lunar Extravehicular Activity (EVA) operations. A trade study identified and compared ventilation transport technologies in commercial, military, and space applications to determine which technologies could be adapted for EVA use. Based on the trade study results, five commercially available, 24-volt fans were selected for performance testing at various pressures and flow rates. Measured fan parameters included fan delta-pressures, input voltages, input electrical currents, and in some cases motor windings electrical voltages and currents. In addition, a follow-on trade study was performed to identify oxygen compatibility issues and assess their impact on fan design. This paper outlines the results of the fan performance characterization testing, as well as the results from the oxygen compatibility assessment.

  8. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, 1 October 1992--31 December 1992

    SciTech Connect

    Doerr, R.; Kujak, S.; Waite, T.

    1993-01-01

    Equipment manufacturers are challenged to replace CFC-based refrigerants and their lubricants with environmentally acceptable alternatives. Information on the compatibility of motor materials with these alternative refrigerants and lubricants is a basic requirement for reliable performance. This report presents compatibility data for 24 commercially used motor materials exposed to 17 refrigerant/lubricant combinations. This compatibility data will enable the phase out of CFC`s to continue at its current fast pace and insure the continued reliable performance of refrigerant-based equipment.

  9. Long-Term Materials Test Program: materials exposure test plan

    SciTech Connect

    1981-12-01

    The Long Term Materials Test Program is designed to identify promising corrosion resistant materials for coal-fired gas turbine applications. Resistance of materials to long term accelerated corrosion will be determined through realistic PFB environmental exposure of candidate turbine materials for up to 14,000 hours. Selected materials also will be evaluated for their ability to withstand the combined erosive and corrosive aspects of the PFB effluent. A pressurized fluidized bed combustor facility has been constructed at the General Electric Coal Utilization Research Laboratory at Malta, New York. The 12-inch diameter combustor will burn high sulfur coal with moderate-to-high chlorine and alkali levels and utilize dolomite as the sulfur sorbent. Hot gas cleanup is achieved using three stages of cyclone separators. Downstream of the cylone separators, a low velocity test section (approx. 30 ft/s) capable of housing 180 pin specimens 1/4'' diameter has been installed to assess the corrosion resistance of the various materials at three different temperatures ranging from 1300 to 1600/sup 0/F. Following the low velocity test section is a high velocity test section consisting of four cascades of airfoil shaped specimens, six specimens per cascade. This high velocity test section is being used to evaluate the combined effects of erosion and corrosion on the degradation of gas turbine materials at gas velocities of 800 to 1400 ft/s. This report summarizes the materials selection and materials exposure test plan for the Long Term Materials Test.

  10. The Market Gate of Miletus: damages, material characteristics and the development of a compatible mortar for restoration

    NASA Astrophysics Data System (ADS)

    Siegesmund, Siegfried; Middendorf, Bernhard

    2008-12-01

    The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.

  11. MATERIALS COMPATIBILITY OF SNAP FUEL COMPONENTS DURING SHIPMENT IN 9975 PACKAGING

    SciTech Connect

    Vormelker, P

    2006-11-14

    Materials Science and Technology has evaluated materials compatibility for the SNAP (Systems for Nuclear Auxiliary Power) fuel for containment within a 9975 packaging assembly for a shipping period of one year. The evaluation included consideration for potential for water within the convenience can, corrosion from water, galvanic corrosion, tape degradation, and thermal expansion risk. Based on a review of existing literature and assumed conditions, corrosion and/or degradation of the 304 stainless steel (SS) Primary Containment Vessel (PCV) and the 304 stainless steel convenience cans containing the SNAP fuel is not significant to cause failure during the 1 year time shipping period in the 9975 packaging assembly. However, storage beyond the 1 year shipping period has not been validated.

  12. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials

  13. Performance Assessment of Internal Quality Control (IQC) Products in Blood Transfusion Compatibility Testing in China

    PubMed Central

    Li, Jing-Jing; Gao, Qi; Liu, Zhi-Dong; Kang, Qiong-Hua; Hou, Yi-Jun; Zhang, Luo-Chuan; Hu, Xiao-Mei; Li, Jie; Zhang, Juan

    2015-01-01

    Internal quality control (IQC) is a critical component of laboratory quality management, and IQC products can determine the reliability of testing results. In China, given the fact that most blood transfusion compatibility laboratories do not employ IQC products or do so minimally, there is a lack of uniform and standardized IQC methods. To explore the reliability of IQC products and methods, we studied 697 results from IQC samples in our laboratory from 2012 to 2014. The results showed that the sensitivity and specificity of the IQCs in anti-B testing were 100% and 99.7%, respectively. The sensitivity and specificity of the IQCs in forward blood typing, anti-A testing, irregular antibody screening, and cross-matching were all 100%. The reliability analysis indicated that 97% of anti-B testing results were at a 99% confidence level, and 99.9% of forward blood typing, anti-A testing, irregular antibody screening, and cross-matching results were at a 99% confidence level. Therefore, our IQC products and methods are highly sensitive, specific, and reliable. Our study paves the way for the establishment of a uniform and standardized IQC method for pre-transfusion compatibility testing in China and other parts of the world. PMID:26488582

  14. Design and development of a space station hazardous material system for assessing chemical compatibility

    NASA Technical Reports Server (NTRS)

    Congo, Richard T.

    1990-01-01

    As the Space Station nears reality in funding support from Congress, NASA plans to perform over a hundred different missions in the coming decade. Incrementally deployed, the Space Station will evolve into modules linked to an integral structure. Each module will have characteristic functions, such as logistics, habitation, and materials processing. Because the Space Station is to be user friendly for experimenters, NASA is anticipating that a variety of different chemicals will be taken on-board. Accidental release of these potentially toxic chemicals and their chemical compatibility is the focus of this discourse. The Microgravity Manufacturing Processing Facility (MMPF) will contain the various facilities within the U.S. Laboratory (USL). Each facility will have a characteristic purpose, such as alloy solidification or vapor crystal growth. By examining the proposed experiments for each facility, identifying the chemical constituents, their physical state and/or changes, byproducts and effluents, those payloads can be identified which may contain toxic, explosive, or reactive compounds that require processing or containment in mission peculiar waste management systems. Synergistic reactions from mixed effluent streams is of major concern. Each experiment will have it own data file, complete with schematic, chemical listing, physical data, etc. Chemical compatibility information from various databases will provide assistance in the analysis of alternate disposal techniques (pretreatment, separate storage, etc.). Along with data from the Risk Analysis of the Proposed USL Waste Management System, accidental release of potentially toxic and catastrophic chemicals would be eliminated or reduced.

  15. Testing of Replacement Bag Material

    SciTech Connect

    Laurinat, J.E.

    1998-11-03

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties.

  16. Surface modification of polymeric materials and its effect on blood compatibility

    SciTech Connect

    Wrobleski, D.A.; Cash, D.L.; Archuleta, T.; Barthell, B.L.; Kossowsky, R.; London, J.E.; Lehnert, B.E.; Duchane, D.V.

    1987-01-01

    The surfaces of commercially available polymeric materials have been modified through the chemical infusion process and physical vapor deposition. The surfaces of poly(methylmethacrylate) (PMMA) have been modified through a chemical infusion process by treatment of the sample with a solution containing varying amounts of titanium(IV)isopropoxide and polyvinylpyrrolidone (PVP). The surfaces of silicone rubber samples have been coated with a thin coating of titanium dioxide with an ion beam sputtering technique. The treated samples were characterized by scanning electron microscopy, optical microscopy, and neutron activation analysis. The infused samples were evaluated for blood compatibility using two biological assays: an adherence assay in which the adherence of human polymorphonuclear leukocytes to the samples was determined, and a hemolysis assay using rat blood erythrocytes to determine the hemolytic activity of the samples. Based on the results of these assays, the PMMA samples treated with PVP alone resulted in an improvement in reactivity with the blood cells. 16 refs., 4 figs.

  17. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    NASA Technical Reports Server (NTRS)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  18. Compatibility Study of Dihydroxylammonium 5,5'-Bistetrazole-1,1'-diolate (TKX-50) with Some Energetic Materials and Inert Materials

    NASA Astrophysics Data System (ADS)

    Huang, Haifeng; Shi, Yameng; Yang, Jun; Li, Boping

    2015-01-01

    Dihydroxylammonium 5,5‧-bistetrazole-1,1‧-diolate (TKX-50) emerged as a novel energetic material with low sensitivity and excellent calculated detonation performance. The compatibility of TKX-50 with nitrocellulose (NC), an NC/NG (nitroglycerine) mixture (mass rate: 1.25:1), 2,4-dinitroanisole (DNAN), 2,4,6-trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), ammonium perchlorate (AP), hexanitroethane (HNE), cyclotetramethylenetetranitramine (HMX), hexanitrohexazaisowurtzitane (CL-20), glycidyl azide polymer (GAP), hydroxyl-terminated polybutadiene (HTPB), aluminum powder (Al), boron powder, and centralite was studied by differential scanning calorimetry (DSC). The results show that TKX-50/HNE possesses good compatibility, TKX-50 and HMX have moderate compatibility, and the compatibility of TKX-50 with TNT, CL-20, centralite, NC, AP, Al, and GAP is poor; in addition, TKX-50/RDX, TKX-50/NC + NG, TKX-50/B, and TKX-50/HTPB have poor compatibility.

  19. Hybrid inorganic-organic aqueous base compatible waveguide materials for optical interconnect applications

    NASA Astrophysics Data System (ADS)

    Moynihan, Matthew L.; Allen, Craig; Ho, Tuan; Little, Luke; Pawlowski, Nathan; Pugliano, Nick; Shelnut, James G.; Sicard, Bruno; Zheng, Hai Bin; Khanarian, Garo

    2003-11-01

    There are a number of organic, inorganic, and hybrid inorganic waveguide materials that are currently being used for a wide variety of optical interconnect applications. Depending upon the approach, waveguide formation is performed using a combination of lithographic and/or reactive ion etch (RIE) techniques. Often the processes involved with waveguide formation require unique processing conditions, hazardous process chemicals, and specialized pieces of capital equipment. In addition, many of the materials have been optimized for silicon substrates but are not compatible with printed wire board (PWB) substrates and processes. We have developed compositions and processes suitable for the creation of optical, planar waveguides on both silicon and PWB substrates. Based on silicate technology, these compositions use lithographic techniques to define waveguides, including aqueous, alkaline development. The resulting planar waveguides take advantage of the glass-like nature of silicate chemistry wedded with the simplicity of standard lithographic processes. Attenuation at typical wavelengths has been found to compete well with the non-silicate-based technologies available today. Single-mode (SM) and multi-mode (MM) waveguides with losses ranging from 0.6 dB/cm @ 1550nm, 0.2 dB/cm @1320nm, and <0.1 @ 850nm are feasible. Composition, process, and physical properties such as optical, thermal and mechanical properties will be discussed.

  20. European tests on materials outgassing

    NASA Technical Reports Server (NTRS)

    Zwaal, A.

    1977-01-01

    With a view to international coordination of spacecraft materials, a number of European firms and institutes performed outgassing tests on identical materials at 125 C in high vacuum. The outgassing data obtained with the different types of equipment is presented and both the results and the critical parameters are discussed.

  1. A Large Hemi-Anechoic Enclosure for Community-Compatible Aeroacoustic Testing of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1993-01-01

    A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.

  2. Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations.

    PubMed

    Martínez Santiesteban, Francisco M; Swanson, Scott D; Noll, Douglas C; Anderson, David J

    2006-03-01

    Magnetic resonance (MR) compatibility of biomedical implants and devices represents a challenge for designers and potential risks for users. This paper addresses these problems and presents the first MR-compatible multichannel silicon chronic microelectrode system, used for recording and electrical stimulation of the central nervous system for animal models. A standard chronic assembly, from the Center for Neural Communication Technology at the University of Michigan, was tested on a 2 Tesla magnet to detect forces, heating, and image distortions, and modified to minimize or eliminate susceptibility artifacts, tissue damage, and electrode displacement, maintaining good image quality and safety to the animals. Multiple commercial connectors were tested for MR compatibility and several options for the reference electrode were also tested to minimize image artifacts and provide a stable biocompatible reference for shortand long-term neural recordings. Different holding screws were tested to anchor the microelectrode assembly on the top of the skull. The final selection of this part was based on MR-compatibility, biocompatibility, durability, and mechanical and chemical stability. The required adaptor to interconnect the MR-compatible microelectrode with standard data acquisition systems was also designed and fabricated. The final design is fully MR-compatible and has been successfully tested on guinea pigs. PMID:16532782

  3. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W,; Montgomery, Eliza M.

    2012-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1 G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  4. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2011-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  5. Testing Requirements for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.; Montgomery, Eliza M.

    2010-01-01

    Launch Pads 39A and 39B currently use refractory material (Fondu Fyre) in the flame trenches. This material was initially approved for the Saturn program. This material had a lifetime of 10 years according to the manufacturer, and it has been used for over 40 years. As a consequence, the Fondu Fyre at Launch Complex 39 requires repair subsequent to almost every launch. A review of the literature indicates that the gunned Fondu Fyre refractory product (WA-1G) was never tested prior to use. With the recent severe damage to the flame trenches, a new refractory material is sought to replace Fondu Fyre. In order to replace Fondu Fyre, a methodology to test and evaluate refractory products was developed. This paper outlines this methodology and discusses current testing requirements, as well as the laboratory testing that might be required. Furthermore, this report points out the necessity for subscale testing, the locations where this testing can be performed, and the parameters that will be necessary to qualify a product. The goal is to identify a more durable refractory material that has physical, chemical, and thermal properties suitable to withstand the harsh environment of the launch pads at KSC.

  6. Composite materials: Testing and design

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D. (Editor)

    1988-01-01

    The present conference discusses topics in the analysis of composite structures, composite materials' impact and compression behavior, composite materials characterization methods, composite failure mechanisms, NDE methods for composites, and filament-wound and woven composite materials' fabrication. Attention is given to the automated design of a composite plate for damage tolerance, the effects of adhesive layers on composite laminate impact damage, instability-related delamination growth in thermoset and thermoplastic composites, a simple shear fatigue test for unidirectional E-glass epoxy, the growth of elliptic delaminations in laminates under cyclic transverse shear, and the mechanical behavior of braided composite materials.

  7. Propellant/material compatibility program and results: Ten-year milestones

    NASA Technical Reports Server (NTRS)

    Moran, C.; Bjorkland, R.

    1982-01-01

    The analyses and results of a test program to establish the effects of long term (10 years or more) contact of materials with earth-storable propellants for the purpose of designing chemical propulsion system components which are used for current as well as future planetary spacecraft are described. The period from the publication of JPL TM 33-779 IN 1976 through the testing accomplished in 1981 is covered. The following propellants are reported herein: hydrazine, monomethylhydrazine and nitrogen tetroxide. Materials included the following: aluminum alloys, corrosion resistant steels and a titanium alloy. The results of the testing of more than 80 specimens are included. Material ratings relative to the ten year milepost were assigned. Some evidence of propellant decomposition was found. Titanium is rated as acceptable for ten year applications. Aluminum and stainless steel alloys are also rated as acceptable with few restrictions.

  8. Docmentation of newly developed methods to assess material compatibility in refrigeration and air-conditioning applications. Final report, 1 October 1993--31 August 1994

    SciTech Connect

    Hawley, M.

    1994-08-01

    This document summarizes the experimental methods used during the materials compatibility and lubricants research program (MCLR). The MCLR program was jointly sponsored by the U.S. Department of Energy and the air-conditioning and refrigeration industry. The individual projects were managed by the Air-Conditioning and Refrigeration Technology Institute. The projects presented in this report are: Chemical and Thermal Stability of Refrigerant/Lubricant Mixtures with Metals, Miscibility of Lubricants with Refrigerants, Compatibility of Refrigerants and Lubricants with Motor Materials, Compatibility of Refrigerants and Lubricants with Elastomers, Compatibility of Refrigerants and Lubricants with Engineering Plastics and Sealed Tube Comparisons of the Compatibility of Desiccants with Refrigerants and Lubricants.

  9. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    Szymurski, S.R.

    1996-02-01

    The quarterly status report for the Materials Compatibility and Lubricants Research Program is presented. Objectives for 1 October 1995--31 December 1995 include completion of contract negotiations for Study of Foaming Characteristics project, and finalizing Phase IV and Phase V projects.

  10. Material compatibility issues in EU fusion fuel cycle R&D and design

    NASA Astrophysics Data System (ADS)

    Murdoch, D. K.; Cristescu, I.; Day, C.; Glugla, M.; Lässer, R.; Mack, A.

    2007-08-01

    Many material selections for fusion Fuel Cycle systems are determined by the properties of tritium, including its behaviour as a hydrogen isotope, and its decay product, 3He. Within the EU R&D program, the following issues related to tritium service have been addressed. The mechanical integrity and longevity of the sorbent/bonding agent/substrate system used for cryosorption pumping have been extensively tested under tritium exposure. Extended testing of palladium/silver membranes used for separation of elemental hydrogens from impurities has been carried out to confirm longevity in tritium service. For all high temperature (˜150 °C) components, tritium permeation through primary containments must be confined by outer (low temperature) jackets, and designs have been developed to achieve this. For wetproof catalysts and solid polymer electrolysers used for water detritiation, tests are in progress to determine the operating life. Testing of the ITER reference tritium storage getter material is under way.

  11. Does the compatibility effect in the race Implicit Association Test reflect familiarity or affect?

    PubMed

    Kinoshita, Sachiko; Peek-O'Leary, Marie

    2005-06-01

    In the Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) involving race classification (white vs. black), an apparent compatibility effect is found between the "pleasant" attribute and the "white" category. This race IAT effect has been interpreted in terms of "implicit prejudice"--that is, more positive evaluation of whites than of blacks that is not open to consciousness. We suggested instead that the race IAT effect is better interpreted in terms of the salience asymmetry account proposed by Rothermund and Wentura (2004), whereby greater familiarity with the white category makes it more salient. Evidence that has been presented against the familiarity interpretation is considered, and alternative interpretations of findings related to the race IAT effect are discussed. PMID:16235627

  12. Compatibility of meteorological rocketsonde data as indicated by international comparison tests

    NASA Technical Reports Server (NTRS)

    Finger, F. G.; Gelman, M. E.; Schmidlin, F. J.; Leviton, R.; Kennedy, B. W.

    1975-01-01

    Results of two experiments involving intercomparisons of rocketsonde measurements of temperature and wind data in the 25 to 80 km altitude region in the CIMO (Commission for Instruments and Methods of Observations) program during September 1973 are reported. Rocketsonde systems used by France, the USSR, the UK, the U.S., and Japan in the two parts of the program (one series of tests at Wallops Island, Va., the other in French Guiana) are described. Wind data were derived from radar tracking of retardation devices and payloads in descent. Day and night temperature differences were examined. The intercomparisons revealed excellent compatibility of the rocketsonde data up to 60 km in wind observations. Some outstanding problems are pointed out.

  13. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    SciTech Connect

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and

  14. Electromagnetic Compatibility Testing for Conducted Susceptibility Along Interconnecting Signal Lines. Final report

    SciTech Connect

    Ewing, P. D.; Wood, R. T.; Korsah, K.; Shourbaji, A. A.; Wilson, T. L.; Beets, B. M.

    2002-07-31

    This document presents recommendations and the associated technical basis for addressing the effects of conducted electromagnetic interference (EMI) and radio-frequency interference (RFI) along interconnecting signal lines in safety-related instrumentation and control (I&C) systems. Oak Ridge National Laboratory has been engaged in assisting the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research in developing the technical basis for regulatory guidance on EMIIRFI immunity and power surge withstand capability (SWC). Previous research efforts have provided recommendations on (1) electromagnetic compatibility design and installation practices, (2) the endorsement of EMI/RFI and SWC test criteria and test methods, (3) the determination of ambient electromagnetic conditions at nuclear power plants, and (4) the development of recommended electromagnetic operating envelopes applicable to locations where safety-related I&C systems will be installed. The current research focuses on the susceptibility of l&C systems to conducted EMIIRFI along interconnecting signal lines. Coverage of signal line susceptibility was identified as an open issue in previous research on establishing the technical basis for EMIIRFI and SWC in safety-related I&C systems. Research results provided in this report will be used to establish the technical basis for endorsing U.S. Department of Defense and European Committee for Electrotechnical Standardization test criteria and test methods that address signal-line susceptibility. In addition, recommendations on operating envelopes are presented based on available technical information.

  15. Design of ground testing systems which are compatible with two kinds of communication terminals

    NASA Astrophysics Data System (ADS)

    Jia, Jian-jun; Yang, Ming-dong; Zhang, Liang; Wu, Jin-cai

    2013-08-01

    Space laser communication and space quantum communication are all space optical communication, they are similar in communication links, high accuracy tracking and pointing, ground testing etc. The characters of space optical communication determine the necessity of testing and verifying communication terminals, for example, the laser beam reach diffraction limit in space laser communication, weak light detection or single photon detection should be carried out in space quantum communication, communication terminals are relatively moving refer to the ground station, and the terminals should have high quality in tracking target and pointing laser beam, so good system should be used in testing and verifying communication terminals. In this paper we did research on ground testing and verifying systems, we developed optical paths and two ground testing and verifying systems which are compatible with space laser communication and space quantum communication, the two systems contain one laboratory used system and one portable outfield used system. The laboratory used system mainly contains optical communication terminal, two dimensional (2D) simulation turntable, collimator and rear optical path, it can simulate the moving environment, transmission channel and relative motion of the satellite to ground or inter-satellite optical communication, it can also fully test the condition and performance of the optical communication terminals. The portable outfield used system mainly contains opto-mechanical subsystem, 2D turntable, electronic cabinet. The opto-mechanical subsystem is installed on the 2D turntable, it contains front and rear optical path. Electronic cabinet contains industry computer, turntable controller, GPS radio and optical controller, it mainly executes data acquisition, receiving and transmitting command. The portable outfield used system can be used in outfield, to help testing and verifying space-borne equipment. The design breaks through several

  16. Electroabsorption modulators for CMOS compatible optical interconnects in III-V and group IV materials

    NASA Astrophysics Data System (ADS)

    Roth, Jonathan Edgar

    While electrical systems excel at information processing, photonics is useful in systems for high-bandwidth, low-loss signal transmission. As photonics technology has become increasingly widespread and has been deployed at shorter distance scales than traditional long-haul networks, it has become important to efficiently integrate photonics components with electrical integrated circuits. Optoelectronic modulators used as transmitters are an important class of device for use in optical interconnects. Many optoelectronic modulator designs use waveguides. Coupling light into waveguides requires a difficult alignment step. This dissertation will describe a number of optoelectronic modulators that do not have the tight alignment constraints associated with waveguide-based modulators. The eased alignment constraints may be important for the practical manufacturing and packaging of systems using optical interconnects. Most currently deployed photonics technologies also use substrates other than silicon and materials incompatible with CMOS manufacturing. Recently we discovered a strong quantum-confined Stark effect in Ge/SiGe quantum well structures that can be used to create efficient optoelectronic modulators on silicon substrates. Optoelectronic modulators using this technology can be fabricated with conventional CMOS foundry processes, possibly on the same chips as CMOS circuits. In this dissertation, an optical interconnect operating in the C-band will be presented. We believe this is the first such device employing an optical transmitter flip-chip bonded to silicon CMOS. A number of novel modulators will be presented, which are fabricated on silicon substrates, and employ Ge/SiGe quantum well structures. These modulators include a novel architecture known as the side-entry modulator, which is designed for monolithic integration with electronics. One side-entry modulator achieved over 3 dB of contrast in the telecommunications C-band for a voltage swing of 1V. Such a

  17. Physical and chemical test results of electrostatic safe flooring materials

    NASA Technical Reports Server (NTRS)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  18. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and...

  19. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and...

  20. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and...

  1. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and...

  2. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and...

  3. Development of Design Standards and Guidelines for Electromagnetic Compatibility and Lightning Protection for Spacecraft Utilizing Composite Materials

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Preliminary design guidelines necessary to assure electromagnetic compatibility (EMC) of spacecraft using composite materials, are presented. A database of electrical properties of composite materials which may have an effect on EMC is established. The guidelines concentrate on the composites that are conductive but may require enhancement to be adequate for EMC purposes. These composites are represented by graphite reinforced polymers. Methods for determining adequate conductivity levels for various EMC purposes are defined, along with the methods of design which increase conductivity of composite materials and joints to adequate levels.

  4. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to

  5. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  6. Radioactive material packaging performance testing

    SciTech Connect

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation`s hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation`s system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations.

  7. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  8. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  9. Evaluation of surface detail reproduction, dimensional stability and gypsum compatibility of monophase polyvinyl-siloxane and polyether elastomeric impression materials under dry and moist conditions

    PubMed Central

    Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad

    2016-01-01

    Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry

  10. Development of reactive artificial liner using recycled materials. 1. Mechanical properties and chemical compatibility.

    PubMed

    Chin, Johnnie Y; Moon, Kyong-Whan; Park, Jae K; Park, Daniel J

    2013-07-01

    There have been several studies showing that volatile organic compounds (VOCs) can diffuse a geomembrane within days and migrate to groundwater and the surrounding environment. To ease the concern of potential pollution of the surrounding environment, an alternative artificial liner consisting of recycled materials is proposed. This composite liner consisted of recycled crumb rubber, organo-clay, silica fume, and epoxy binder. Dimethyl sulfoxide, an environmentally-friendly solvent recycled from paper pulp, was used as a plasticizer. The objective of this study was to determine the best combination of ingredients used at the initial stage and to develop artificial liners suitable for containing VOCs in leachate by comparing various physical properties. A series of screening tests including bending, tearing and elongating was performed to determine the most suitable mixture ratios. Then, more intensive tests were performed with the specimens that had the best physical properties. The new artificial liner demonstrated satisfactory mechanical properties with the minimum elongation and maximum strength after 40 years. Both artificial liners and high-density polyethylene (HDPE) specimens had ~136 kg cm(-2) after 4 months of thermal stress while the artificial liner had 40% less elongation at break than HDPE. The artificial liner's fully developed strength was about ten times stronger than HDPE. This new type of composite material that can be applied on site may provide a new perspective in liner design and alleviate the issue of potential groundwater pollution caused by landfill leachate and highly mobile VOCs which is a matter of much concern. PMID:23585500

  11. High environmental compatibility photopolymers compared to PVA/AA based materials at zero spatial frequency limit

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Márquez, A.; Ortuño, M.; Marini, S.; Francés, J.

    2011-01-01

    In holographic applications the direct parameters determination of photopolymers as optical recording media is a very difficult task due to the presence of two different phenomena: polymer formation and monomer diffusion. We propose a direct method based on zero spatial frequency recording, to eliminate the diffusion influence, and on interferometric techniques, both in transmission and in reflection, to obtain quantitative values of: shrinkage, polymerization rate, polymer refractive index and relation between polymerization and recording intensity. Recent investigations confirm the toxic potential of acrylamide. Starting from polyvinylalcohol/acrylamide photopolymer we have proposed different compositions of new competitive photopolymers with high environmental compatibility. We have studied the ways to optimize the optical behavior and the environmental compatibility. Parameters comparison with the polyvinylalcohol/acrylamide photopolymers shows significant differences.

  12. Mast material test program (MAMATEP)

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The Mast Material Test Program (MAMATEP) at NASA Lewis is discussed. Objectives include verifying the need for, and evaluating the performance of, various protection techniques for the Solar Array Assembly mast of the Space Station Photovoltaic Power Module. Mast material samples were evaluated in terms of mass and bending modulus, measured before and after environmental exposure. Test environments included atomic oxygen exposure (RF plasma asher), thermal cycling, and mechanical flexing. Protective coatings included CV-1144 silicon, a Ni/Au/InSn eutectic, and an open weave, Al braid. Results indicate that unprotected samples degrade in an atomic oxygen environment at a steady rate. Open weave, Al braid offers little protection for the fiberglass-epoxy sample in an asher environment. Ni/Au/InSn eutectic offers excellent protection in an asher environment prior to thermal cycling and mechanical flexing. Long duration asher results from unprotected samples indicate that, even though the fiberglass-epoxy degrades, a protection technique may not be necessary to ensure structural integrity. However, a protection technique may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  13. Study on the compatibility of insulation materials for hermetic motor under alternative refrigerants and new lubricants atmosphere

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takeshi; Takahashi, Yasuki

    HFC407C and HFC410A were introduced as the alternative refrigerants for HCFC22 in air conditioner to follow the Motreal protocol. But HFCs were also regulated by the Kyoto protocol and natural refrigerants like hydrocarbon (HC) and CO2 are researched and introduced in the market. Under these circumstances the compatibility of motor insulation materials for hermetic motor under alternative refrigerants and lubricants become important. In this paper we discuss the compatibility of magnet wires and films of hermetic motor for air conditioner under atmosphere of HFC407C and HFC410A with POE and PVE lubricants and also discuss it under atmosphere of R600a with mineral oil and CO2 with PAG lubricant in comparison of conventional atmosphere.

  14. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  15. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  16. Magnetic resonance imaging compatibility testing of intracranial pressure probes. Technical note.

    PubMed

    Williams, E J; Bunch, C S; Carpenter, T A; Downey, S P; Kendall, I V; Czosnyka, M; Pickard, J D; Martin, J; Menon, D K

    1999-10-01

    There is increasing recognition that magnetic resonance (MR) imaging and spectroscopy may provide important information in the assessment of patients with acute brain injury. However, optimum care of the acutely head injured patient requires monitoring of intracranial pressure (ICP). Although many monitoring modalities have been integrated into commercially available MR-compatible systems, there have been no reports of commonly used intraparenchymal ICP sensors in an MR environment. The authors describe the use of an ICP micromanometer probe in an MR environment, with a fiberoptic connection that interfaces the probe with a commercially available MR-compatible monitoring system. Phantom studies were performed to demonstrate the safety and compatibility of the modified MR system at 0.5 tesla. The safety of the device was assessed in relation to its interaction with the static, gradient, and radiofrequency fields used in MR imaging. The MR compatibility was documented by demonstrating that its performance was unaffected by the operation of imaging sequences and by showing that there was no degradation of the diagnostic quality of imaging data obtained during ICP monitoring. PMID:10507397

  17. DMA Modulus as a Screening Parameter for Compatibility of Polymeric Containment Materials with Various Solutions for use in Space Shuttle Microgravity Protein Crystal Growth (PCG) Experiments

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Protein crystals are grown in microgravity experiments inside the Space Shuttle during orbit. Such crystals are basically grown in a five-component system containing a salt, buffer, polymer, organic and water. During these experiments, a number of different polymeric containment materials must be compatible with up to hundreds of different PCG solutions in various concentrations for durations up to 180 days. When such compatibility experiments are performed at NASA/MSFC (Marshall Space Flight Center) simultaneously on containment material samples immersed in various solutions in vials, the samples are rather small out of necessity. DMA4 modulus was often used as the primary screening parameter for such small samples as a pass/fail criterion for incompatibility issues. In particular, the TA Instruments DMA 2980 film tension clamp was used to test rubber O-rings as small in I.D. as 0.091 in. by cutting through the cross-section at one place, then clamping the stretched linear cord stock at each end. The film tension clamp was also used to successfully test short length samples of medical/surgical grade tubing with an O.D. of 0.125 in.

  18. Compatibility of RPECVD silicon dioxide with depletion gate materials for silicon-based nanostructures

    NASA Astrophysics Data System (ADS)

    Rack, Mary Jo

    The focus of this work has been upon deposited oxide and gate materials suitable for use in silicon-based nanostructures. The latter use e-beam patterned depletion gates in order to create three-dimensional confinement of electrons in the 2-dimensional electron gas of a metal-oxide-semiconductor field effect transistor (MOSFET) inversion layer. Remote Plasma Enhanced chemical Vapor Deposition (RPECVD) silicon dioxide was selected as the deposited oxide. The deposition process was optimized using statistical techniques. Typically, low temperature deposited oxide is annealed in order to achieve device quality. The behavior of the oxide as a function of deposition and annealing temperature was characterized in order to understand the advantages of the anneal and the thermal budget required to accomplish the objectives of the MOSFET gate oxide quality oxide. Bulk oxide was assessed using etch rates in HF containing solutions, infrared absorption data, refractive index, and AFM measurements of surface roughness. The interface quality was examined using C-V measurements. Breakdown measurements were performed. The impact of the oxide deposition process on a thermally established Si/SiOsb2 interface was explored. Three materials were investigated for the role of depletion gates that might tolerate a high temperature aneal: cobalt silicide, cobalt and chrome. Their thermal stability was tested, sandwiched between a thermal oxide and a deposited oxide, for annealing temperatures of 700, 800 and 900 C by Auger electron spectroscopy and cross-sectional transmission electron spectroscopy. The impact of the oxide deposition process on the depletion gates was significant and so this has been studied as well.

  19. Towards a four technique GGOS site: VLBI - DORIS compatibility tests at Wettzell

    NASA Astrophysics Data System (ADS)

    Klügel, Thomas; Didelot, Francois; Kodet, Jan; Kronschnabl, Gerhard; Mähler, Swetlana; Neidhardt, Alexander; Plötz, Christian; Saunier, Jérôme; Schüler, Torben; Walter, Jean-Marc

    2016-04-01

    Within the framework of a Global Geodetic Observing System (GGOS), co-location sites are of special importance for the evaluation and mutual control of the individual geodetic space techniques. At the Geodetic Observatory Wettzell a DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacon could complete the geodetic instrumentation consisting of three Very Long Baseline Interferometry (VLBI) telescopes, two Laser Ranging (LR) systems and a number of multi- Global Navigation Satellite System (GNSS) stations. Integrating all fourth geodetic instrumentation into one site generates new problems with Electromagnetic Compatibility (EMC). While the VLBI system is designed to receive very weak signals from quasars, the DORIS beacon emits strong signals in the UHF frequency band at 401.25 MHz and in the S band at 2036.25 MHz. During the observation of quasars with VLBI there is a high risk of coupling DORIS S band signals into the VLBI receiving chain generating spurious signal and, in the worst case, overloading receiving chain electronics and risking its damage. Before a DORIS beacon is operated at the Geodetic Observatory Wettzell, it must be ensured that it can be operated alongside the VLBI system without any risk of damage or degradation of the measurement. Field tests under different setups were performed to assess the impact of the DORIS signal on the classical geodetic VLBI 20-m and the VGOS 13-m radio telescopes. Different locations on the observatory each at a distance of more than 100 m were occupied by the DORIS antenna. It has been shown that obstacles like buildings or earth mounds attenuate the signal up to 20 dB. However the power received at the input of the Low Noise Amplifiers (LNA) is still at a critical level when the radio telescope points towards the DORIS beacon. The quality of the correlated signals is not or barely affected at long baselines. At local baselines however, the DORIS emission as a common mode signal degrades

  20. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  1. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  2. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  3. 76 FR 50331 - Hazardous Materials Regulations; Compatibility With the Regulations of the International Atomic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...PHMSA, in coordination with the Nuclear Regulatory Commission (NRC), is proposing to amend requirements in the Hazardous Materials Regulations (HMR) governing the transportation of Class 7 (radioactive) materials based on recent changes contained in the International Atomic Energy Agency (IAEA) publication ``Regulations for the Safe Transport of Radioactive Material, 2009 Edition, IAEA Safety......

  4. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grande

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  5. Thermal Systems and Materials Testing

    NASA Technical Reports Server (NTRS)

    Aguirre, Nathan

    2010-01-01

    During my internship, I was involved in Boeing Thermal System/M&P, which handles maintenance and repairs of shuttle tiles, blankets, gap fillers, etc. One project I took part in was the revision of TPS-227, a repair process to tiles that entailed drilling out tile damage and using a cylindrical insert to fill the hole. The previous specification used minimal adhesive for application and when the adhesive cured, there would be several voids in the adhered material, causing an unsatisfactory bond. The testing compared several new methods and I analyzed the number of voids produced by each method to determine which one was most effective at eliminating void space. We revised the original process to apply a light adhesive coat to the top 25% of the borehole and a heavy coat to 100% of the insert. I was also responsible for maintaining the subnominal bond database, which records all unsatisfactory SIP (Strain Isolator Pad) bonds. I then archived each SIP physically for future referral data and statistics. In addition, I performed post-flight tile inspections for damages and wrote dispositions to have these tiles repaired. This also included writing a post-flight damage report for a section of Atlantis and creating summarized repair process guidelines for orbiter technicians.

  6. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  7. Design and testing of an MRI-compatible cycle ergometer for non-invasive cardiac assessments during exercise

    PubMed Central

    2012-01-01

    Background Magnetic resonance imaging (MRI) is an important tool for cardiac research, and it is frequently used for resting cardiac assessments. However, research into non-pharmacological stress cardiac evaluation is limited. Methods We aimed to design a portable and relatively inexpensive MRI cycle ergometer capable of continuously measuring pedalling workload while patients exercise to maintain target heart rates. Results We constructed and tested an MRI-compatible cycle ergometer for a 1.5 T MRI scanner. Resting and sub-maximal exercise images (at 110 beats per minute) were successfully obtained in 8 healthy adults. Conclusions The MRI-compatible cycle ergometer constructed by our research group enabled cardiac assessments at fixed heart rates, while continuously recording power output by directly measuring pedal force and crank rotation. PMID:22423637

  8. Electrical Arc Ignition Testing of Spacesuit Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold

    2006-01-01

    A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.

  9. Role of Fabrication on Materials Compatibility in APT Target/Blanket

    SciTech Connect

    Iyer, N.; Louthan, M.R. Jr.; Dunn, K.; Fisher, D.L.

    1998-09-01

    This paper summarizes several of the options associated with the fabrication of selected target/blanket components. In addition, the materials characterization technologies required to validate these components performance is presented.

  10. TESTS OF FABRIC FILTRATION MATERIALS

    EPA Science Inventory

    The report describes laboratory and pilot scale testing of filter fabrics. Tests were made on flat specimens and on bags. Fifteen styles of fabrics (made from cotton, polyester, aramid, or glass) were tested, using cement, coal, or talc dusts. Collection efficiencies and pressure...

  11. Feasibility results of an electromagnetic compatibility test protocol to evaluate medical devices to radio frequency identification exposure

    PubMed Central

    2014-01-01

    Background The use of radio frequency identification (RFID) systems in healthcare is increasing, and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have demonstrated that RFID systems can interfere with medical devices; however, the majority of past studies relied on time-consuming and burdensome test schemes based on ad hoc test methods applied to individual RFID systems. Methods This paper presents the results of using an RFID simulator that allows for faster evaluation of RFID-medical device EMC against a library of RFID test signals at various field strengths. Results The results of these tests demonstrate the feasibility and adequacy of simulator testing and can be used to support its incorporation into applicable consensus standards. Conclusions This work can aid the medical device community in better assessing the risks associated with medical device exposure to RFID. PMID:25086451

  12. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a...

  13. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of materials that withstand the combined strains calculated under § 154.429(c). (b) Analyzed data of a...

  14. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    NASA Astrophysics Data System (ADS)

    Mancini, Alessandro; Felice, Valeria; Natali Sora, Isabella; Malavasi, Lorenzo; Tealdi, Cristina

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3-d and La0.8Sr0.2Fe0.8Cu0.2O3-d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system.

  15. Nondestructive ultrasonic testing of materials

    DOEpatents

    Hildebrand, B.P.

    1994-08-02

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  16. Nondestructive ultrasonic testing of materials

    DOEpatents

    Hildebrand, Bernard P.

    1994-01-01

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  17. Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials

    SciTech Connect

    Soong, Ken

    2011-05-20

    The accelerating gradient in a laser-driven dielectric accelerating structure is often limited by the laser damage threshold of the structure. For a given laser-driven dielectric accelerator design, we can maximize the accelerating gradient by choosing the best combination of the accelerator's constituent material and operating wavelength. We present here a model of the damage mechanism from ultrafast infrared pulses and compare that model with experimental measurements of the damage threshold of bulk silicon. Additionally, we present experimental measurements of a variety of candidate materials, thin films, and nanofabricated accelerating structures.

  18. SNLL materials testing compression facility

    SciTech Connect

    Kawahara, W.A.; Brandon, S.L.; Korellis, J.S.

    1986-04-01

    This report explains software enhancements and fixture modifications which expand the capabilities of a servo-hydraulic test system to include static computer-controlled ''constant true strain rate'' compression testing on cylindrical specimens. True strains in excess of -1.0 are accessible. Special software features include schemes to correct for system compliance and the ability to perform strain-rate changes; all software for test control and data acquisition/reduction is documented.

  19. Compatibility Studies of Various Refractory Materials in Contact with Molten Silicon

    NASA Technical Reports Server (NTRS)

    Odonnell, T.; Leipold, M. H.; Hagan, M.

    1978-01-01

    The production of low cost, efficient solar cells for terrestrial electric power generation involves the manipulation of molten silicon with a present need for noncontaminating, high temperature refractories to be used as containment vessels, ribbon-production dies, and dip-coated substrates. Studies were conducted on the wetting behavior and chemical/physical interactions between molten silicon and various refractory materials.

  20. Compatibility of materials for use in liquid-metal blankets of fusion reactors

    SciTech Connect

    Chopra, O.K.; Tortorelli, P.F.

    1983-11-01

    A review of corrosion and environmental effects on the mechanical properties of austenitic and ferritic steels for use with liquid metals in fusion reactors is presented. The mechanisms and kinetics of the corrosion processes in liquid lithium and Pb-17Li systems are examined and their influence on degradation of structural material is discussed. Requirements for additional data are identified.

  1. TEST OF FABRIC FILTRATION MATERIALS

    EPA Science Inventory

    The report describes pilot scale and laboratory tests of U.S. and Polish woven baghouse fabrics. Cotton, polyester, aramid, and glass fabrics were tested using cement, flyash, coal, and talc dusts at loadings of about 10 g/cu m, filtration velocities of 60 and 80 cu m/sq m, and a...

  2. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant...

  3. Usability testing and requirements derivation for EMU-compatible electrical connectors

    NASA Technical Reports Server (NTRS)

    Reaux, Ray A.; Griffin, Thomas J.; Lewis, Ruthan

    1989-01-01

    On-orbit servicing of payloads is simplified when a spacecraft has been designed for serviceability. A key design criterion for a serviceable spaceraft is standardization of electrical connectors. This paper investigates the effects of extravehicular mobility unit (EMU) glove size, connector size, and connector type on usability of electrical connectors. An experiment was conducted exploring participants' ability to mate and demate connectors in an evacuated glovebox. Independent variables were two EMU glove-sizes, five connector size groups, and seven connector types. Significant differences in performance times and heart rate changes during mate and demate operations were found. Subjective assessments of connectors were collected from participants with a usability questionnaire. The data were used to derive design recommendations for a NASA-recommended EMU-compatible electrical connector.

  4. Fully compatible magneto-optical sol-gel material with glass waveguides technologies: application to mode converters

    NASA Astrophysics Data System (ADS)

    Royer, François; Jamon, Damien; Broquin, Jean-Emmanuel; Amata, Hadi; Kekesi, Renata; Neveu, Sophie; Blanc-Mignon, Marie-Françoise; Ghibaudo, Elise

    2011-01-01

    To overcome the difficult problem of the integration of magneto-optical materials with classical technologies, our group has developped a composite magneto-optical material made of a hybrid organic-inorganic silica type matrix doped by magnetic nanoparticles. Thin films of this material are obtained through a soft chemistry sol-gel process which gives a full compatibility with an integration on glass substarte. Due to an interesting magneto optical activity (Faraday rotation of 310°/cm) several magneto-optical functionnalities have been realized. A thin film of such composite material coated on a pyrex™ substrate acts as non-reciprocal TE/TM mode converter. An hybrid stucture made of a composite film coated on an ion-exchanged glass waveguide has been realized with a good propagation of light through a hybrid mode. Finally, the sol gel process has been adapted in order to obtain 3D inverse opals which should behave as magnetophotonic crystals. Transmittance curves reveal the photonic band gap of such opals doped with magnetic nanoparticles.

  5. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  6. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H. )

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable.

  7. An Overview of Demise Calculations, Conceptual Design Studies, and Hydrazine Compatibility Testing for the GPM Core Spacecraft Propellant Tank

    NASA Technical Reports Server (NTRS)

    Estes, Robert H.; Moore, N. R.

    2007-01-01

    NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys.

  8. Isothermal Calorimetric Observations of the Effect of Welding on Compatibility of Stainless Steels with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) is receiving renewed interest as a monopropellant and as the oxidizer for bipropellant systems. HTP is hydrogen peroxide having concentrations ranging from 70 to 98%. In these applications the energy and oxygen released during decomposition of HTP is used for propulsion. In propulsion systems components must be fabricated and connected using available joining processes. Welding is a common joining method for metallic components. The goal of this study was to compare the HTP compatibility of welded vs. unwelded stainless steel.

  9. Space Systems - Safety and Compatibility of Materials - Method to Determine the Ignition Susceptibility of Materials or Components to Particle Impact

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2011-01-01

    The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.

  10. Unmanned Vehicle Material Flammability Test

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Rouvreau, Sebastien; Jomaas, Grunde

    2012-01-01

    Microgravity fire behaviour remains poorly understood and a significant risk for spaceflight An experiment is under development that will provide the first real opportunity to examine this issue focussing on two objectives: a) Flame Spread. b) Material Flammability. This experiment has been shown to be feasible on both ESA's ATV and Orbital Science's Cygnus vehicles with the Cygnus as the current base-line carrier. An international topical team has been formed to develop concepts for that experiment and support its implementation: a) Pressure Rise prediction. b) Sample Material Selection. This experiment would be a landmark for spacecraft fire safety with the data and subsequent analysis providing much needed verification of spacecraft fire safety protocols for the crews of future exploration vehicles and habitats.

  11. Cibachrome testing. [photographic processing and printing materials

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1974-01-01

    The use of Cibachrome products as a solution to problems encountered when contact printing Kodak film type SO-397 onto Kodak Ektrachrome color reversal paper type 1993 is investigated. A roll of aerial imagery consisting of Kodak film types SO-397 and 2443 was contact printed onto Cibachrome and Kodak materials and compared in terms of color quality, resolution, cost, and compatibility with existing equipment and techniques. Objective measurements are given in terms of resolution and sensitometric response. Comparison prints and transparencies were viewed and ranked according to overall quality and aesthetic appeal. It is recommended that Cibachrome Print material be used in place of Kodak Ektachrome paper because it is more easily processed, the cost is equivalent, and it provides improved resolution, color quality, and image fade resistance.

  12. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  13. Recent advances in the study of structural materials compatibility with hydrogen.

    PubMed

    Dadfarnia, M; Novak, P; Ahn, D C; Liu, J B; Sofronis, P; Johnson, D D; Robertson, I M

    2010-03-12

    Hydrogen is a ubiquitous element that enters materials from many different sources. It almost always has a deleterious effect on mechanical properties. In non-hydride-forming systems, research to date has identified hydrogen-enhanced localized plasticity and hydrogen-induced decohesion as two viable mechanisms for embrittlement. However, a fracture prediction methodology that associates macroscopic parameters with the degradation mechanisms at the microscale has not been established, as of yet. In this article, we report recent work on modeling and simulation of hydrogen-induced crack initiation and growth. Our goal is to develop methodologies to relate characteristics of the degradation mechanisms from microscopic observations and first-principles calculations with macroscopic indices of embrittlement. The approach we use involves finite element analysis of the coupled hydrogen transport problem with hydrogen-assisted elastoplastic deformation, thermodynamic theories of decohesion, and ab initio density functional theory calculations of the hydrogen effect on grain boundaries. PMID:20217854

  14. TEST METHODS FOR DETERMINING THE CHEMICAL WASTE COMPATIBILITY OF SYNTHETIC LINERS

    EPA Science Inventory

    A search was made for test methods for the chemical resistance of membrane liners (geomembranes). Disclosed methods and procedures were examined and compared. Two tests being promoted for general acceptance are NSF Standard No. 54 (a voluntary industry-generated test) and the pro...

  15. Advanced Compatibility Characterization Of AF-M315E With Spacecraft Propulsion System Materials Project

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2014-01-01

    All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.

  16. Ceramic materials testing and modeling

    SciTech Connect

    Wilfinger, K. R., LLNL

    1998-04-30

    corrosion by limiting the transport of water and oxygen to the ceramic-metal interface. Thermal spray techniques for ceramic coating metallic structures are currently being explored. The mechanics of thermal spray resembles spray painting in many respects, allowing large surfaces and contours to be covered smoothly. All of the relevant thermal spray processes use a high energy input to melt or partially melt a powdered oxide material, along with a high velocity gas to impinge the molten droplets onto a substrate where they conform, quench, solidify and adhere mechanically. The energy input can be an arc generated plasma, an oxy-fuel flame or an explosion. The appropriate feed material and the resulting coating morphologies vary with technique as well as with application parameters. To date on this project, several versions of arc plasma systems, a detonation coating system and two variations of high velocity oxy-fuel (HVOF) fired processes have been investigated, operating on several different ceramic materials.

  17. Quarantine testing and biocharacterization of lunar materials

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Mieszkuc, B. J.; Simmonds, R. C.; Walkinshaw, C. H.

    1975-01-01

    Quarantine testing was conducted to ensure the safety of all life on earth. The plants and animals which were exposed to lunar material were carefully observed for prolonged periods to determine if any mutation or changes in growing characteristics and behavior occurred. The quarantine testing was terminated after the Apollo 14 flight when it became apparent that previously returned lunar material contained no potentially harmful agents. Further biological experimentation with the lunar material was conducted to determine its chemical, physical, and nutritional qualities.

  18. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  19. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800[degree]C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280[degree]F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

  20. Thermal testing of solid neutron shielding materials

    SciTech Connect

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800{degree}C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280{degree}F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found.

  1. Methods and instruments for materials testing

    NASA Technical Reports Server (NTRS)

    Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)

    2011-01-01

    Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.

  2. U.S. Contribution 1994 Summary Report Task T12: Compatibility and irradiation testing of vanadium alloys

    SciTech Connect

    Smith, D.L.

    1995-03-01

    Vanadium alloys exhibit important advantages as a candidate structural material for fusion first wall/blanket applications. These advantages include fabricability, favorable safety and environmental features, high temperature and high wall load capability, and long lifetime under irradiation. Vanadium alloys with (3-5)% chromium and (3-5)% titanium appear to offer the best combination of properties for first wall/blanket applications. A V-4Cr-4Ti alloy is recommended as the reference composition for the ITER application. This report provides a summary of the R&D conducted during 1994 in support of the ITER Engineering Design Activity. Progress is reported for Vanadium Alloy Production, Welding, Physical Properties, Baseline Mechanical Properties, Corrosion/Compatibility, Neutron Irradiation Effects, Helium Transmutation Effects on Irradiated Alloys, and the Status of Irradiation Experiments. Separate abstracts have been prepared for individual reports from this publication.

  3. Material testing of silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Palusinski, Iwona A.

    2009-08-01

    The Aerospace Corporation is developing a space qualification method for silicon carbide optical systems that covers material verification through system development. One of the initial efforts has been to establish testing protocols for material properties. Three different tests have been performed to determine mechanical properties of SiC: modulus of rupture, equibiaxial flexural strength and fracture toughness. Testing materials and methods have been in accordance with the respective ASTM standards. Material from four vendors has been tested to date, as part of the MISSE flight program and other programs. Data analysis has focused on the types of issues that are important when building actual components- statistical modeling of test results, understanding batch-to-batch or other source material variations, and relating mechanical properties to microstructures. Mechanical properties are needed as inputs to design trade studies and development and analysis of proof tests, and to confirm or understand the results of non-destructive evaluations of the source materials. Measuring these properties using standardized tests on a statistically valid number of samples is intended to increase confidence for purchasers of SiC spacecraft components that materials and structures will perform as intended at the highest level of reliability.

  4. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  5. Development of Design Standards and Guidelines for Electromagnetic Compatibility and Lightning Protection for Spacecraft Utilizing Composite Materials

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W.

    1997-01-01

    This final report presents information concerning technical accomplishments by Tec-Masters, Inc. (TMI) for this contract effort. This effort included the accomplishment and/or submission by TMI of the following items: (1) Literature Survey Report, Electrical Properties of Non-Metallic Composites by Mr. Hugh W. Denny; (2) Interim Report, Composite Materials - Conductivity, Shielding Effectiveness, and Current Carrying Capability by Mr. Ross W. Evans; (3) Fault Current Test Plan by Mr. Ross W. Evans (4) Fault Current Test Procedure by Mr. Ross W. Evans (5) Test Report, Fault Current Through Graphite Filament Reinforced Plastic, NASA CR-4774, Marshall Space Flight Center, Alabama, September 1996, by Mr. Ross W. Evans; (6) Test Plan, Lightning Effects on Composite Materials by Mr. Ross W. Evans; (7) Test Report, Lightning Effects on Composite Materials, NASA CR-4783, Marshall Space Flight Center, Alabama, February 1997, by Mr. Ross W. Evans; (8) Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials, NASA CR-4784, Marshall Space Flight Center, Alabama, September 1996, by Mr. Ross W. Evans. These items are not attached but are considered to be a part of this final report. Efforts on two additional items were accomplished at no increase in cost to NASA/MSFC. These items consisted of updating the 'MSFC EMC Design and Interference Control Handbook,' and revising the 'Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials.'

  6. Testing the compatibility of constraints for parameters of a geodetic adjustment model

    NASA Astrophysics Data System (ADS)

    Lehmann, Rüdiger; Neitzel, Frank

    2013-06-01

    Geodetic adjustment models are often set up in a way that the model parameters need to fulfil certain constraints. The normalized Lagrange multipliers have been used as a measure of the strength of constraint in such a way that if one of them exceeds in magnitude a certain threshold then the corresponding constraint is likely to be incompatible with the observations and the rest of the constraints. We show that these and similar measures can be deduced as test statistics of a likelihood ratio test of the statistical hypothesis that some constraints are incompatible in the same sense. This has been done before only for special constraints (Teunissen in Optimization and Design of Geodetic Networks, pp. 526-547, 1985). We start from the simplest case, that the full set of constraints is to be tested, and arrive at the advanced case, that each constraint is to be tested individually. Every test is worked out both for a known as well as for an unknown prior variance factor. The corresponding distributions under null and alternative hypotheses are derived. The theory is illustrated by the example of a double levelled line.

  7. Software For Uniaxial Mechanical Testing Of Materials

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.; Pech, D. K.

    1995-01-01

    Materials Testing Software system designed to simplify and automate both routine and not-so-routine materials-testing tasks encountered in laboratory. Supports plan/test/analyze cycle through collection of programs, each optimized to specific task. Gives precise control over nature of command waveforms and acquisition of data, including dynamically variable waveform types, sets of data-acquisition channels, and data rates. Differing command and data-acquisition rates required for exploring creep and fatigue material behavior easily accommodated. Written in Modula-2.

  8. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  9. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  10. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  11. Ares I-X USS Material Testing

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.

  12. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  13. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  14. CANMET Gasifier Liner Coupon Material Test Report

    SciTech Connect

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  15. Penetrometer compatible, fiber-optic sensor for continuous monitoring of chlorinated hydrocarbons -- field test results

    SciTech Connect

    Milanovich, F.P.; Brown, S.B.; Colston, B.W. Jr.

    1993-04-01

    We have developed and field tested a fiber optic chemical sensor for use in environmental monitoring and remediation. The principle of detection is colorimetric and is based on an irreversible chemical reaction between a specific reagent and the target compound. The formation of reaction products are monitored remotely with optical fibers. Successive or on-demand measurements are made possible with a reagent reservoir and a miniature pumping system. The sensor has been evaluated against gas chromatography standards and has demonstrated accuracy and sensitivity (>5ppb w/w) sufficient for the environmental monitoring of the contaminants triceoroethlyene (TCE) and chloroform. The sensor system can be used for bench-top analyses or for in-situ measurements such as groundwater and vadose monitoring wells or in Penetrometry mediated placements.

  16. Electrostatic testing of thin plastic materials

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1988-01-01

    Ten thin plastic materials (Velostat, RCAS 1200, Llumalloy, Herculite 80, RCAS 2400, Wrightlon 7000, PVC, Aclar 22A, Mylar, and Polyethylene) were tested for electrostatic properties by four different devices: (1) The static decay meter, (2) the manual triboelectric testing device, (3) the robotic triboelectric testing device, and (4) the resistivity measurement adapter device. The static decay meter measured the electrostatic decay rates in accordance with the Federal Test Method Standard 101B, Method 4046. The manual and the robotic triboelectric devices measured the triboelectric generated peak voltages and the five-second decay voltages in accordance with the criteria for acceptance standards at Kennedy Space Center. The resistivity measurement adapter measured the surface resistivity of each material. An analysis was made to correlate the data among the four testing devices. For the material tested the pass/fail results were compared for the 4046 method and the triboelectric testing devices. For the limited number of materials tested, the relationship between decay rate and surface resistivity was investigated as well as the relationship between triboelectric peak voltage and surface resistivity.

  17. 46 CFR 154.430 - Material test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Membrane Tanks § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant...

  18. IHE material qualification tests description and criteria

    SciTech Connect

    Slape, R J

    1984-06-01

    This report describes the qualification tests presently being used at Pantex Plant, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory that are required by the Department of Energy prior to the approval for an explosive as an Insensitive High Explosive (IHE) material. The acceptance criteria of each test for IHE qualification is also discussed. 5 references, 10 figures.

  19. Isothermal Calorimetric Observations of the Affect of Welding on Compatibility of Stainless Steels with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy C.

    2002-01-01

    Compatibility is determined by the surface area, the chemical constituency and the surface finish of a material. In this investigation exposed area is obviously not a factor as the welded samples had a slightly smaller surface than the unwelded, but were more reactive. The chemical makeup of welded CRES 316L and welded CRES 304L have been observed in the literature to change from the parent material as chromium and iron are segregated in zones. In particular, the ratio of chromium to iron in CRES 316L increased from 0.260 to 0.79 in the heat affected zone (HAZ) of the weld and to 1.52 in the weld bead itself. In CRES 304L the ratio of chromium to iron increased from 0.280 to 0.44 in the HAZ and to 0.33 in the weld bead. It is possible that the increased reactivity of the welded samples and of those welded without purge gas is due to this segregation phenomenon. Likewise the reactivity increased in keeping with the greater roughness of the welded and welded without purge gas samples. Therefore enhanced roughness may also be responsible for the increased reactivity.

  20. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  1. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  2. Comparison of Environmentally Friendly Space Compatible Grease to its Predecessor in a Space Mechanism Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Jett, T. R.; Baker, M. A.; Thom, R. L.

    1997-01-01

    Perfluoroakylpolyether (PFPE) greases are used extensively in critical flight hardware in a space environment. In the past, these greases have been processed using chlorofluorocarbon (CFC) based solvents. In response to the recent ban of CFC's, new formulations of environmentally friendly PFPE greases that are not processed with CFC based solvents were developed. The purpose of this study was to compare the performance of a new environmentally friendly formulation PFPE grease to a previously proven space compatible formulation PFPE grease. A one year test using 20 small electrical motors (two bearings per motor) was conducted in a high vacuum environment(2.0 x 10(exp 4)) Torr at a temperature of 90 C. Twenty bearings were lubricated with a new environmentally friendly formulation, and twenty bearings were lubricated with an old formulation. The mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace was taken to measure post test wear of the bearings. In addition the bearings were visually examined and analyzed using an optical microscope.

  3. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  4. Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

    NASA Astrophysics Data System (ADS)

    Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.

    2016-05-01

    Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

  5. Short and long-term tests of elastomers with hot hostile fluids. Environmental Compatibility Test Program final report

    SciTech Connect

    Friese, G.J.

    1982-12-30

    Equipment manufacturers and elastomer houses were called to find the best currently available high-temperature elastomers. Tensile specimens of 46 such compounds were immersion tested for five days in six 190C fluids of interest: isobutane, brine, ASTM No. 1 oil, ASTM No. 3 oil, Pacer DHT-185M synthetic oil, and Chevron Cylinder Grade 460X oil. The best eight were selected based upon the least change in mechanical properties. These eight were then simultaneously tested (a) by immersion in five 190C fluids for six months and (b) as 0-rings for 46 hours at 190C, 230C, and 265C (accelerated ageing) in three fluids and at a differential pressure of 21 MPa. Based upon these 0-ring tests, four compounds were selected for testing as 0-rings in three 204C fluids at 21 MPa differential pressure. The data were evaluated and conclusions were drawn. Conclusions and recommendations are provided. There was immersion testing of primarily L'Garde compounds in brine and CL3 mineral oil for 6 months at 190C. L'Garde had formulated several compounds specifically for 260C brine, and their applicability to a specific problem was assessed early in the program.

  6. Erosion testing of hard materials and coatings

    SciTech Connect

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  7. SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS

    SciTech Connect

    Klein, J; Jeffrey Holder, J

    2007-07-16

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

  8. Principles for supplying virus-tested material.

    PubMed

    Varveri, Christina; Maliogka, Varvara I; Kapari-Isaia, Theodora

    2015-01-01

    Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world. PMID:25591875

  9. Environmentally compatible hand wipe cleaning solvents

    NASA Technical Reports Server (NTRS)

    Clayton, Catherine P.; Kovach, Michael P.

    1995-01-01

    Several solvents of environmental concern have previously been used for hand wipe cleaning of SRB surfaces, including 1,1,1-trichloroethane, perchloroethylene, toluene, xylene, and MEK. USBI determined the major types of surfaces involved, and qualification requirements of replacement cleaning agents. Nineteen environmentally compatible candidates were tested on 33 material substrates with 26 types of potential surface contaminants, involving over 7,000 individual evaluations. In addition to the cleaning performance evaluation, bonding, compatibility, and corrosion tests were conducted. Results showed that one cleaner was not optimum for all surfaces. In most instances, some of the candidates cleaned better than the 1,1,1-trichloroethane baseline control. Aqueous cleaners generally cleaned better, and were more compatible with nonmetallic materials, such as paints, plastics, and elastomers. Organic base cleaners were better on metal surfaces. Five cleaners have been qualified and are now being implemented in SRB hand wipe cleaning operations.

  10. Offgassing test methodology for composite materials

    NASA Technical Reports Server (NTRS)

    Scheer, Dale A.

    1994-01-01

    A significant increase in the use of composite materials has occurred during the past 20 years. Associated with this increased use is the potential for employees to be exposed to offgassing components from composite systems. Various components in composite systems, particularly residual solvents, offgas under various conditions. The potential for offgassing to occur increases as a composite material is heated either during cure or during lay-up operations. Various techniques can be employed to evaluate the offgassing characteristics of a composite system. A joint effort between AIA and SACMA resulted in the drafting of a proposed test method for evaluating the offgassing potential of composite materials. The purpose of testing composite materials for offgassing is to provide the industrial hygienist with information which can be used to assess the safety of the workplace. This paper outlines the proposed test method and presents round robin testing data associated with the test method. Also in this presentation is a discussion of classes of compounds which require specialized sampling techniques.

  11. Durability Testing of Commercial Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Schienle, J. L.

    1996-01-01

    Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.

  12. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  13. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  14. Recent developments in dynamic testing of materials

    NASA Astrophysics Data System (ADS)

    Gilat, Amos; Seidt, Jeremy D.

    2015-09-01

    New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012), and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC) is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  15. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  16. MISSE 6-Testing Materials in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S; Kinard, William H.

    2008-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.

  17. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  18. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  19. Compatible solutes

    PubMed Central

    Hill, Colin

    2010-01-01

    Recently we reported a role for compatible solute uptake in mediating bile tolerance and increased gastrointestinal persistence in the foodborne pathogen Listeria monocytogenes.1 Herein, we review the evolution in our understanding of how these low molecular weight molecules contribute to growth and survival of the pathogen both inside and outside the body, and how this stress survival mechanism may ultimately be used to target and kill the pathogen. PMID:21326913

  20. The compatibility of various polymeric liner and pipe materials with simulated double-shell slurry feed at 90/degree/C: Hanford Grout Technology Program

    SciTech Connect

    Farnsworth, R.K.; Hymas, C.R.

    1989-08-01

    The purpose of this study was to evaluate the compatibility of various polymeric liner and pipe materials with a low-level radioactive waste slurry called double-shell slurry feed (DSSF). The evaluation was necessary as part of the permitting process authorized by the Resource Conservation and Recovery Act (RCRA), PL-94-580. Materials that were examined included five flexible membrane liners (Hytrel/reg sign/ polyester, polyurethane, 8130 XR5/reg sign/, polypropylene, and high-density polyethylene) and high-density polyethylene (HDPE) pipe. The liner and pipe samples were immersed for 120 days in the synthetic DSSE at 90/degree/C, the maximum expected temperature in the waste disposal scenario. Physical properties of the liner and pipe samples were measured before immersion and every 30 days after immersion, in accordance with EPA Method 9090. In addition, some of the materials were exposed to four different radiation doses after 30 days of immersion. Physical properties of these materials were measured immediately after exposure and after an additional 90 days of immersion to determine each material's response to radiation, and whether radiation exposure affected the chemical compatibility of the material. 20 refs., 41 figs., 13 tabs.

  1. Arc jet tests of metallic TPS materials.

    NASA Technical Reports Server (NTRS)

    Centolanzi, F. J.; Zimmerman, N. B.; Probst, H. B.; Lowell, C. E.

    1971-01-01

    Seven thoria dispersed nickel base alloys and one cobalt base alloy, candidates for the Metallic Thermal Protection System for the Space Shuttle Vehicle, were tested simultaneously in an arc jet at a nominal test temperature of 1366 deg K (2000 deg F) and pressure of 0.01 atmospheres. The degradation of the materials after 50 one half-hour cycles in the arc jet simulating Space Shuttle entry conditions was determined utilizing techniques including X-ray diffraction, metallography, and electron beam microprobe.

  2. Apparatus Tests Peeling Of Bonded Rubbery Material

    NASA Technical Reports Server (NTRS)

    Crook, Russell A.; Graham, Robert

    1996-01-01

    Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.

  3. Test System for Thermoelectric Modules and Materials

    NASA Astrophysics Data System (ADS)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot < 450°C) and mechanical loading ( P = 0 N to 104 N). The proposed instrument is able to monitor the temperature and electrical output of the TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  4. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the compressed sand column with the protective water jacket removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  5. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is tested for long-term storage with water in the system as plarned for STS-107. This view shows the top of the sand column with the metal platten removed. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that cannot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: University of Colorado at Boulder

  6. Irradiation Environment of the Materials Test Station

    SciTech Connect

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  7. Compatibility of segmented thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Ursell, T.

    2002-01-01

    It is well known that power generation efficiency improves when materials with appropriate properties are combined either in a cascaded or segmented fashion across a temperature gradient. Past methods for determining materials used in segmentation weremainly concerned with materials that have the highest figure of merit in the temperature range. However, the example of SiGe segmented with Bi2Te3 and/or various skutterudites shows a marked decline in device efficiency even though SiGe has the highest figure of merit in the temperature range. The origin of the incompatibility of SiGe with other thermoelectric materials leads to a general definition of compatibility and intrinsic efficiency. The compatibility factor derived as = (Jl+zr - 1) a is a function of only intrinsic material properties and temperature, which is represented by a ratio of current to conduction heat. For maximum efficiency the compatibility factor should not change with temperature both within a single material, and in the segmented leg as a whole. This leads to a measure of compatibility not only between segments, but also within a segment. General temperature trends show that materials are more self compatible at higher temperatures, and segmentation is more difficult across a larger -T. The compatibility factor can be used as a quantitative guide for deciding whether a material is better suited for segmentation orcascading. Analysis of compatibility factors and intrinsic efficiency for optimal segmentation are discussed, with intent to predict optimal material properties, temperature interfaces, and/or currentheat ratios.

  8. A Rapid Survey of the Compatibility of Selected Seal Materials with Conventional and Semi-Synthetic JP-8

    NASA Technical Reports Server (NTRS)

    Graham, John L.; Striebich, Richard C.; Minus, Donald K.; Harrison, William E., III

    2007-01-01

    Since the synthesis of a liquid hydrocarbon fuel from coal by Franz Fischer and Hans Tropsch in 1923, there has been cyclic interest in developing this fuel for military and commercial applications. In recent years the U.S. Department of Defense has taken interest in producing a unified battlespace fuel using the Fischer Tropsch (FT) process for a variety of reasons including cost, quality, and logistics. In the past year there has been a particular emphasis on moving quickly to demonstrate that an FT fuel can be used in the form of a blend with conventional petroleum-derived jet fuel. The initial objective is to employ this semi-synthetic fuel with blend ratios as high as 50 percent FT with longer range goals to use even high blend ratios and ultimately a fully synthetic jet fuel. A significant concern associated with the use of a semi-synthetic jet fuel with high FT blend ratios is the effect these low aromatic fuels will have on fuel-wetted polymeric materials, most notably seals and sealants. These materials typically swell and soften to some degree when exposed to jet fuel and the aromatic content of these fuels contribute to this effect. Semi-synthetic jet fuels with very low aromatic contents may cause seals and sealants to shrink and harden leading to acute or chronic failure. Unfortunately, most of the material qualification tests are more concerned with excessive swelling than shrinkage and there is little guidance offered as to an acceptable level of shrinkage or other changes in physical properties related to low aromatic content. Given the pressing need for guidance data, a program was developed to rapidly survey the volume swell of selected fuel-wetted materials in a range of conventional and semi-synthetic jet fuels and through a statistical analysis to make a determination as to whether there was a basis to be concerned about using fuels with FT blend ratios as high as 50 percent. Concurrent with this analysis data was obtained as to the composition

  9. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown approximately 20 and 60 minutes after the start of an experiment on STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  10. Mechanics of Granular Materials Test Cell

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A test cell for Mechanics of Granular Materials (MGM) experiment is shown from all three sides by its video camera during STS-89. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: NASA/Marshall Space Flight Center (MSFC)

  11. Material Testing for Robotic Omnidirectional Anchor

    NASA Technical Reports Server (NTRS)

    Witkoe, Kevin S.

    2012-01-01

    To successfully explore near-Earth Asteroids the question of mobility emerges as the key issue for any robotic mission. When small bodies have extremely low escape velocities, traditional methods, such as wheels, would send the robot hurtling off of the asteroid's surface. To solve this problem, JPL has developed an omni-directional anchoring mechanism for use in microgravity that utilizes microspine technology. These microspines are placed in circular arrays with 16 independent carriages biasing the surface of the rock. The asperities in the surface allow the gripper to hold nearly 150N in all directions. While the gripper has been proven successful on consolidated rocks, it had yet to be tested on a variety of other surfaces that are suspected to separate the large boulders on an asteroid. Since asteroid surfaces vary widely, from friable rocks to lose ponds of regolith, the gripper was tested in a large variety of materials such as, bonded pumice, sand, gravel, and loose rocks. The forces are applied tangent, at 45 degrees, and normal to the surface of the material. The immediate results from this experiment will give insight into the gripper's effectiveness across the wide spectrum of materials found on asteroids.

  12. High-temperature compatibility study of iridium (DOP-26 alloy) with graphite and plutonia

    SciTech Connect

    Axler, K.M.; Eash, D.T.

    1987-12-01

    This report outlines the materials compatibility tests conducted on DOP-26 iridium alloy and carbon. The carbon used was in the form of woven graphite as present in the impact shell used to encase plutonia in nuclear heat sources. In addition, compatibility tests of the DOP-26 alloy with plutonia are described. The reactivity observed in both systems is discussed. 4 refs., 6 figs.

  13. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    SciTech Connect

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  14. Materials screening chamber for testing materials resistance to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Carruth, Ralph

    1989-01-01

    A unique test chamber for exposing material to a known flux of oxygen atoms is described. The capabilities and operating parameters of the apparatus include production of an oxygen atom flux in excess of 5 x 10 to the 16th atoms/sq cm-sec, controlled heating of the sample specimen, RF circuitry to contain the plasma within a small volume, and long exposure times. Flux measurement capabilities include a calorimetric probe and a light titration system. Accuracy and limitations of these techniques are discussed. An extension to the main chamber to allow simultaneous ultraviolet and atomic oxygen exposure is discussed. The oxygen atoms produced are at thermal energies. Sample specimens are maintained at any selected temperature between ambient and 200 C, to within + or - 2 C. A representative example of measurements made using the chamber is presented.

  15. Asbestos penetration test system for clothing materials

    SciTech Connect

    Bradley, O.D.; Stampfer, J.F.; Sandoval, A.N.; Heath, C.A.; Cooper, M.H.

    1997-04-01

    For hazardous work such as asbestos abatement, there is a need to assess protective clothing fabrics and seam constructions to assure an adequate barrier against hazardous material. The penetration of aerosols through fabrics usually is measured by challenging fabric samples with an aerosol stream at a constant specified airflow. To produce the specified airflow, pressure differentials across the samples often are higher than exist in a work environment. This higher airflow results in higher aerosol velocities through the fabric and, possibly, measured penetration values not representative of those actually experienced in the field. The objective of the reported work was to develop a test method that does not require these higher airflows. The authors have designed and fabricated a new system that tests fabric samples under a low, constant, specified pressure differential across the samples. This differential is adjustable from tenths of a mm Water Gauge (hundredths of an in WG) to over 25-mm WG (1-in WG). The system operates at a pressure slightly lower than its surroundings. Although designed primarily for asbestos, the system is equally applicable to the testing of other aerosols by changing the aerosol generator and detector. Through simple modification of the sample holders, the test apparatus would be capable of evaluating seam and closure constructions.

  16. Test set for materials science and engineering

    NASA Astrophysics Data System (ADS)

    Morshedloo, Toktam; Richter, Norina A.; Mohamed, Fawzi; Ren, Xinguo; Levchenko, Sergey V.; Ghiringhelli, Luca M.; Zhang, Igor Ying; Scheffler, Matthias

    2015-03-01

    Understanding of the applicability and limitations of electronic-structure methods needs detailed comparison with highly accurate data of representative test sets. A variety of highly valuable test sets have been established in quantum chemistry for small molecules. However, for crystalline solids they are still lacking. We present a representative test set for materials science and engineering (MSE) which includes first and second row elements and their binaries, comprising various crystal structures. This allows for unbiased benchmarking for various chemical interactions. In the MSE test set, we consider cohesive energy, lattice constant, bulk modulus, electronic, band structures and phonons etc. A big effort is made to produce systematically converged results with respect to basis set and k mesh for a hierarchy of electronic-structure methods, ranging from the local-density approximation to advanced orbital-dependent functionals implemented in the all-electron, full-potential FHI-aims code. Furthermore, we use incremental schemes to obtain benchmark values calculated with coupled-cluster approaches.

  17. Thermal-Structures and Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Teate, Anthony A.

    1997-01-01

    Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing

  18. Aerothermal Testing of Woven TPS Ablative Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Feldman, Jay; Olson, Michael; Venkatapathy, Ethiraj

    2012-01-01

    Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing a variety of TPS materials capable of wide ranging performances demanded by a spectrum of solar system exploration missions. Currently, missions anticipated to encounter heat fluxes in the range of 1500 4000 Watts per square centimeter are limited to using one proven material fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 Watts per square centimeter, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This poster will summarize some recent arc jet testing to evaluate the performance of WTPS. Both mid density and fully dense WTPS test results will be presented and results compared to heritage carbon phenolic where applicable.

  19. Proficiency Testing for Evaluating Aerospace Materials Test Anomalies

    NASA Technical Reports Server (NTRS)

    Hirsch, D.; Motto, S.; Peyton, S.; Beeson, H.

    2006-01-01

    ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to ignition in liquid and gaseous oxygen systems. However, the methods have been known for their lack of repeatability. The inherent problems identified with the test logic would either not allow precise identification or the magnitude of problems related to running the tests, such as lack of consistency of systems performance, lack of adherence to procedures, etc. Excessive variability leads to increasing instances of accepting the null hypothesis erroneously, and so to the false logical deduction that problems are nonexistent when they really do exist. This paper attempts to develop and recommend an approach that could lead to increased accuracy in problem diagnostics by using the 50% reactivity point, which has been shown to be more repeatable. The initial tests conducted indicate that PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good choices for additional testing and consideration for inter-laboratory evaluations. The approach presented could also be used to evaluate variable effects with increased confidence and tolerance optimization.

  20. Genetic Diversity of Isolates of Glomus mosseae from Different Geographic Areas Detected by Vegetative Compatibility Testing and Biochemical and Molecular Analysis

    PubMed Central

    Giovannetti, Manuela; Sbrana, Cristiana; Strani, Patrizia; Agnolucci, Monica; Rinaudo, Valeria; Avio, Luciano

    2003-01-01

    We detected, for the first time, the occurrence of vegetative incompatibility between different isolates of the arbuscular mycorrhizal fungal species Glomus mosseae. Vegetative compatibility tests performed on germlings belonging to the same isolate showed that six geographically different isolates were capable of self-anastomosing, and that the percentage of hyphal contacts leading to fusions ranged from 60 to 85%. Successful anastomoses were characterized by complete fusion of hyphal walls, protoplasm continuity and occurrence of nuclei in the middle of hyphal bridges. No anastomoses could be detected between hyphae belonging to different isolates, which intersected without any reaction in 49 to 68% of contacts. Microscopic examinations detected hyphal incompatibility responses in diverse pairings, consisting of protoplasm retraction from the tips and septum formation in the approaching hyphae, even before physical contact with neighboring hyphae. Interestingly, many hyphal tips showed precontact tropism, suggesting that specific recognition signals may be involved during this stage. The intraspecific genetic diversity of G. mosseae revealed by vegetative compatibility tests was confirmed by total protein profiles and internal transcribed spacer-restriction fragment length polymorphism profiles, which evidenced a higher level of molecular diversity between the two European isolates IMA1 and BEG25 than between IMA1 and the two American isolates. Since arbuscular mycorrhizal fungi lack a tractable genetic system, vegetative compatibility tests may represent an easy assay for the detection of genetically different mycelia and an additional powerful tool for investigating the population structure and genetics of these obligate symbionts. PMID:12514049

  1. Wiring test program insulation material related properties

    NASA Technical Reports Server (NTRS)

    Reher, Heinz-Josef

    1995-01-01

    This viewgraph presentation provides an overview of activities at DASA-RI concerning the testing of wires for manned spacecraft, including test facilities, arc-tracking tests, flammability tests, microgravity tests, and standardization, and outlines future activities.

  2. Diffractive optical element in materials testing

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik

    1998-09-01

    The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.

  3. Thermoelectric efficiency and compatibility.

    PubMed

    Snyder, G Jeffrey; Ursell, Tristan S

    2003-10-01

    The intensive reduced efficiency eta(r) is derived for thermoelectric power generation (in one dimension) from intensive fields and currents, giving eta(r)=(E x J) divided by (- inverted Delta)T x J(S). The overall efficiency is derivable from a thermodynamic state function, Phi=1 divided by u + alphaT, where we introduce u=J divided by kappa (inverted Delta)T as the relative current density. The method simplifies the computation and clarifies the physics behind thermoelectric devices by revealing a new materials property s=(sqrt[1+zT]-1) divided by (alphaT), which we call the compatibility factor. Materials with dissimilar compatibility factors cannot be combined by segmentation into an efficient thermoelectric generator because of constraints imposed on u. Thus, control of the compatibility factor s is, in addition to z, essential for efficient operation of a thermoelectric device, and thus will facilitate rational materials selection, device design, and the engineering of functionally graded materials. PMID:14611561

  4. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.

  5. Triaxial testing of polymer concrete materials under different temperature

    SciTech Connect

    Salami, M.R.; Zhao, S.

    1995-06-01

    Since polymer mortar materials are used in construction, there is a need for an accurate material model to predict the behavior of the materials under various loading conditions. To make use of a material failure model, it is necessary to determine the material constants by conducting laboratory tests on material specimens. To find the constants for a failure model the material will be subjected to static load testing at different temperatures and loading rates.

  6. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  7. Compatibility of alternative refrigerants with varnished magnet wire

    SciTech Connect

    Doerr, R.; Kujak, S.

    1993-10-01

    The compatibility of 24 motor materials with 11 pure refrigerators and 17 refrigerant-lubricant combinations was determined. This is summary of the effect of refrigerants on varnished magnet wire. Of the refrigerants tested, exposure to HCFC-22 produced the most deleterious effects on the magnet wire insulation and varnishes. Since many of the materials tested have excellent reliability with HCFC-22 in current applications, these materials are expected to be reliable when used with new refrigerants.

  8. Test device for measuring permeability of a barrier material

    DOEpatents

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  9. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  10. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  11. Development of materials screening tests for oxygen-enriched environments

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Pippen, D. L.

    1971-01-01

    The criteria governing materials to be used in an oxygen enriched atmosphere and tests to determine suitability for fireproof considerations in spacecraft design are discussed. The nine tests applied to materials before acceptance in spacecraft construction are presented. The application of the standard tests to determine ranking of materials is included.

  12. Trusted materials using orthogonal testing. 2015 Annual report

    SciTech Connect

    Van Benthem, Mark

    2015-09-01

    The purpose of this project is to prove (or disprove) that a reasonable number of simple tests can be used to provide a unique data signature for materials, changes in which could serve as a harbinger of material deviation, prompting further evaluations. The routine tests are mutually orthogonal to any currently required materials specification tests.

  13. Materials Tested on the International Space Station

    NASA Video Gallery

    Miria Finckenor, a materials engineer, analyzes samples in her laboratory at NASA's Marshall Space Flight Center in Huntsville, Ala. The materials spent several years exposed to the harsh space env...

  14. In vivo red blood cell compatibility testing using indium-113m tropolone-labeled red blood cells

    SciTech Connect

    Morrissey, G.J.; Gravelle, D.; Dietz, G.; Driedger, A.A.; King, M.; Cradduck, T.D.

    1988-05-01

    In vivo radionuclide crossmatch is a method for identifying compatible blood for transfusion when allo- or autoantibodies preclude the use of conventional crossmatching techniques. A technique for labeling small volumes of donor red blood cells with (/sup 113m/In)tropolone is reported. The use of /sup 113m/In minimizes the accumulation of background radioactivity and the radiation dose especially so when multiple crossmatches are performed. Labeling red cells with (/sup 113m/In)tropolone is faster and easier to perform than with other radionuclides. Consistently high labeling efficiencies are obtained and minimal /sup 113m/In activity elutes from the labeled red blood cells. A case study involving 22 crossmatches is presented to demonstrate the technique. The radiation dose equivalent from /sup 113m/In is significantly less than with other radionuclides that may be used to label red cells.

  15. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  16. Relative toxicity testing of spacecraft materials. 2: Aircraft materials

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.

    1980-01-01

    The relative toxicity of thermodegradation (pyrolysis/combustion) products of aircraft materials was studied. Two approaches were taken to assess the biological activity of the pyrolysis/combustion products of these materials: (1) determine the acute lethality to rats from inhalation of these pyrolysates and (2) examine the tendency for sublethal exposure to the pyrolysates to disrupt behavioral (shock avoidance) performance of exposed rats. The ralative importance of lethality vs. behavioral effects in selection of a material may be dictated by whether or not individuals potentially exposed to such products, would have an opportunity to escape if they were behaviorally capable of doing so. If so, the second parameter would assume greater importance, but if not the first parameter may be of much greater importance in selecting materials.

  17. Characterization of reference materials for the Barrier Materials Test Program

    SciTech Connect

    Palmer, R.A.; Aden, G.D.; Johnston, R.G.; Jones, T.E.; Lane, D.L.; Noonan, A.F.

    1982-06-01

    Initial characterization of the geologic and engineered barrier materials for a nuclear waste repository in basalt has been completed. Data have been obtained on the characteristics of the reference waste forms which are being studied for eventual disposal in such a repository. Reference basalt entablature, colonnade, and flow top specimens have been selected from the Umtanum flow, which is the primary basalt flow under consideration for repository siting. Material from the Mabton Interbed Stratum, Pomona Flow basalt, smectite clay from the Pomona Flow, a potassium clinoptilolite, Beverly sandstone and tuff, and Grande Ronde groundwater are also included in the suite of reference geologic materials. Reference engineered barrier materials include sodium bentonite and canister metals such as carbon steel, cupronickel, Hastelloy and Inconel alloys. Spent fuel, borosilicate glass, and supercalcine ceramic comprise the reference waste forms. Analyses were made for physical, chemical, and morphological characteristics using techniques ranging from simple observations of color to sophisticated ultrastructural analysis in the electron microscope. Analyses of the elemental and phase chemistries for most of the reference materials have been completed on typical samples. Determinations of material homogeneity are currently being performed.

  18. SRM propellant and polymer materials structural test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The SRM propellant and polymer materials structural test program has potentially wide application to the testing and structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. The test program will provide a basis for characterization of the dynamic failure criteria for Solid Rocket Motor (SRM) propellant, insulation, inhibitor and liners. This experimental investigation will also endeavor to obtain a consistent complete set of materials test data. This test will be used to improve and revise the presently used theoretical math models for SRM propellant, insulators, inhibitor, liners, and O-ring seals.

  19. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    SciTech Connect

    Wang, Zhixun; Cheng, Yongzhi Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  20. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Richardson, David E. (Inventor); Stratton, Troy C. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  1. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  2. Survey of hazardous materials used in nuclear testing

    SciTech Connect

    Bryant, E.A.; Fabryka-Martin, J.

    1991-02-01

    The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

  3. Europa Missions: Generic Materials Test Methodology

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.

    2006-01-01

    This viewgraph presentation discusses: radiation fundamentals, radiation damage, how radiation dosage is determined, fluence testing approaches, ionization damage exposure, displacement damage exposure, Europa energy "bins", rationale for group flux (energy bins), electron/proton group fluences, electron beam exposure testing, proton sources, reactor exposures, gamma exposures, preliminary exposure findings, testing caveats, preliminary conclusions, internal discharge, and electron dose depth curves.

  4. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  5. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    SciTech Connect

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

  6. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  7. Evaluation of Students' Views about the Use of SCORM (Sharable Content Object Reference Model)-Compatible Materials in Physics Teaching

    ERIC Educational Resources Information Center

    Gonen, Selahattin; Basaran, Bulent

    2013-01-01

    In the present study, a web site including instructional materials such as Whiteboard Movies (WBM), simulations and animations and testing materials such as true-false, fill-in-the-blanks, puzzles, open-ended questions and multiple-choice questions was designed. The study was carried out with 76 students attending Dicle College (DC), Diyarbakir…

  8. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    EPA Science Inventory

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  9. MISSE-X Tests the Materials of Tomorrow's Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) focus on maturing technology for use in future missions. The Materials on International Space Station Experiment-X, MISSE-X, will test numerous materi...

  10. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1986-01-01

    A comprehensive software system for automating much of the experimental process has recently been completed at the Lewis Research Center's high-temperature fatigue and structures laboratory. The system was designed to support experiment definition and conduct, results analysis and archiving, and report generation activities. This was accomplished through the design and construction of several software systems, as well as through the use of several commercially available software products, all operating on a local, distributed minicomputer system. Experimental capabilities currently supported in an automated fashion include both isothermal and thermomechanical fatigue and deformation testing capabilities. The future growth and expansion of this system will be directed toward providing multiaxial test control, enhanced thermomechanical test control, and higher test frequency (hundreds of hertz).

  11. GUIDE TO CURRICULUM MATERIALS AND TESTING INSTRUMENTS.

    ERIC Educational Resources Information Center

    Educational Projects, Inc., Washington, DC.

    THIS BIBLIOGRAPHY WAS PREPARED FOR CONSULTANTS WHO SERVE OEO MIGRANT AND SEASONAL FARM WORKER PROGRAMS. THE FIRST SECTION PERTAINS TO CURRICULUM MATERIALS AND INCLUDES (1) READING AND LANGUAGE, (2) ENGLISH AS A SECOND LANGUAGE, (3) SOCIAL STUDIES, (4) MATHEMATICS, (5) VOCATIONAL, AND (6) CHILDREN'S SERIES. THE SECOND PART IS A LIST OF TESTING…

  12. Inoculation testing of Apollo 12 materials

    NASA Technical Reports Server (NTRS)

    1969-01-01

    E. Landrum Young, Brown and Root Northrop, injects a young Japanese quail with a suspension of pulvarized Apollo 12 lunar material within a quarantine cabinet in the Invertebrate, Aves and Fish Laboratory of the Lunar Receiving Laboratory, bldg 37, Manned Spacecraft Center. The bird is being inoculated in the abdominal cavity.

  13. Partial Testing Can Potentiate Learning of Tested and Untested Material from Multimedia Lessons

    ERIC Educational Resources Information Center

    Yue, Carole L.; Soderstrom, Nicholas C.; Bjork, Elizabeth Ligon

    2015-01-01

    Test-potentiated learning occurs when testing renders a subsequent study period more effective than it would have been without an intervening test. We examined whether testing only a subset of material from a multimedia lesson would potentiate the restudy of both tested and untested material. In Experiments 1a and 1b, participants studied a…

  14. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  15. Aircraft seat cushion materials tests. [flammability

    NASA Technical Reports Server (NTRS)

    Bricker, R. W.

    1975-01-01

    Five component level flammability tests were conducted in a 400 cubic foot chamber to determine the products of combustion and relative destruction of coated (with fire-retardants) and uncoated polyurethane foams during exposure of the foams to a large flaming ignition source for five minutes. The test results indicate that the improved state-of-the-art polyurethane foams without the added fire retardant and coating treatments were not significantly better than untreated older less fire-resistant polyurethane foams. however, by treating and coating the state-of-the-art foams, the production of toxic gases was delayed and the destruction of the foam limited.

  16. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  17. Mechanics of Granular Materials (MGM) Test Cell

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Test cells comprise specimen sand contained in a latex membrane (with a grid pattern for CCD cameras) between metal end plates and housed in a water-filled Lexan jacket. Experiment flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture.

  18. Simple Test For Organic Material In Gas

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Klibanov, Alexander; Karel, Marcus

    1989-01-01

    Dried enzymes and color indicators test sensitively and selectively. Dehydrated enzymes used in convenient method for analyzing gases for specific organic substances, outside laboratory. Method used to detect alcohol in breath or formaldehyde in gas streams. Used for simple semiquantitative detection or for precise quantitative measurement.

  19. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  20. Mixed waste chemical compatibility with packaging components

    SciTech Connect

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-05-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals.

  1. Full-scale aircraft cabin flammability tests of improved fire-resistant materials, test series 2

    NASA Technical Reports Server (NTRS)

    Stuckey, R. N.; Bricker, R. W.; Kuminecz, J. F.; Supkis, D. E.

    1976-01-01

    Full-scale aircraft flammability tests in which the effectiveness of new fire-resistant materials was evaluated by comparing their burning characteristics with those of other fire-resistant aircraft materials were described. New-fire-resistant materials that are more economical and better suited for aircraft use than the previously tested fire-resistant materials were tested. The fuel ignition source for one test was JP-4; a smokeless fuel was used for the other test. Test objectives, methods, materials, and results are presented and discussed. The results indicate that, similar to the fire-resistant materials tested previously, the new materials decompose rather than ignite and do not support fire propagation. Furthermore, the new materials did not produce a flash fire.

  2. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of eleven alloys were evaluated. The eleven alloys studied were three nitriding alloys (Super Nitralloy, Nitralloy 135, and Nitralloy N), four case carburizing alloys (AISI 9310, CBS 600, CBS 1000M and Vasco X-2), and four throughhardening alloys (Vasco Matrix II,AISI W-1, AISI S-2 and AISI O-2). Several different heat treatments and/or melting processes were studied on the three carburizing alloy steels. Metallurgical analyses were made before and after the RC rig tests. Test data were statistically analyzed using the Weibull distribution function. B-10 lives were compared versus VIM-VAR AISI M-50 and carburized VAR AISI 9310, as reference alloys.

  3. Characterization and wall compatibility testing of a 40K pound thrust class swirl-coaxial injector and calorimeter combustion chamber

    NASA Technical Reports Server (NTRS)

    Petersen, E. L.; Rozelle, R.; Borgel, P. J.

    1991-01-01

    Subscale injector-combustor tests under the NASA Space Transportation Engine Thrust Chamber Technology program measured characteristic velocity (c-asterisk) efficiencies and wall heat fluxes for the pressure range 1710 psia to 2360 psia and for the overall O2/H2 mixture ratio range 5.5 to 6.4. Tests involving radially-uniform mixture ratio profiles produced c-asterisk efficiencies above 99 percent; nonuniform profiles associated with wall durability-enhancement schemes resulted in lower efficiencies. Though all three wall protection methods proved successful at reducing wall heat flux, scarfing of the outer-row, swirl-coaxial injection elements was the technique which resulted in the least debit in c-asterisk per unit reduction in heat flux.

  4. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applies to Corps of Engineers Divisions and Districts operating soils, concrete, water quality and... materials testing. 209.340 Section 209.340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... materials testing. (a) Purpose. The purpose of this section is to define and establish policies...

  5. 33 CFR 209.340 - Laboratory investigations and materials testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applies to Corps of Engineers Divisions and Districts operating soils, concrete, water quality and... materials testing. 209.340 Section 209.340 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... materials testing. (a) Purpose. The purpose of this section is to define and establish policies...

  6. Preparation and Use of Polish Mushroom Proficiency Testing Materials

    SciTech Connect

    Polkowska-Motrenko, Halina

    2008-08-14

    Mushroom reference materials have been prepared and characterized for the use in proficiency tests according to a procedure established within the frame of an IAEA Interregional Technical Cooperation Project. The materials were used for conducting the proficiency tests in Poland in 2005-2007. The results obtained by participating laboratories are presented and discussed.

  7. High temperature ultrasonic testing of materials for internal flaws

    SciTech Connect

    Kupperman, D.S.; Linzer, M.

    1990-02-06

    This patent describes an apparatus disclosed for nondestructive evaluation of defects in hot materials, such as metals and ceramics, by sonic signals. It comprises: a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  8. High temperature ultrasonic testing of materials for internal flaws

    SciTech Connect

    Kupperman, D.S.; Linzer, M.

    1988-08-23

    An apparatus is disclosed for nondestructive evaluation of defects in hot materials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, transmitting means mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and receiving means mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer. 2 figs.

  9. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.

  10. Materials compatibility during the chlorination of molten CaCl/sub 2/. CaO salts. [CaCl/sub 2/. CaO salt

    SciTech Connect

    Rense, C.E.C.; Fife, K.W.; Bowersox, D.F.; Ferran, M.D.

    1987-01-01

    As part of our effort to develop a semicontinuous PuO/sub 2/ reduction process, we are investigating promising materials for containing a 900/sup 0/C molten CaCl/sub 2/ . CaO chlorination reaction. We want the material to contain this reaction and to be reusable. We tested candidate materials in a simulated salt (no plutonium) using anhydrous HCl as the chlorinating agent. Data are presented on the performance of 36 metals and alloys, 9 ceramics, and 3 coatings.

  11. Retrieval-Induced Facilitation: Initially Nontested Material Can Benefit from Prior Testing of Related Material

    ERIC Educational Resources Information Center

    Chan, Jason C. K.; McDermott, Kathleen B.; Roediger, Henry L., III

    2006-01-01

    Classroom exams can assess students' knowledge of only a subset of the material taught in a course. What are the implications of this approach for long-term retention? Three experiments (N = 210) examined how taking an initial test affects later memory for prose materials not initially tested. Experiment 1 shows that testing enhanced recall 24 hr…

  12. Handbook of photothermal test data on encapsulant materials

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1983-01-01

    Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.

  13. Correlating Flammability of Materials with FTIR Analysis Test Results

    NASA Technical Reports Server (NTRS)

    Moore, Robin; Whitfield, Steve

    2003-01-01

    The purpose of this experiment was to correlate flammability data with FTIR test results. Kydex 100 is a blend of chlorinated polyvinyl chloride and polymethylmethacrylate, with some filler materials. Samples supplied were 0.125 in. thick. 10 samples were taken from a sheet of Kydex and analyzed for flammability and by FTIR spectroscopy. This material was utilized as a round robin sample for flammability testing. The flammability test results were found to vary across the same sheet.

  14. A new tribological test for candidate brush seal materials evaluation

    SciTech Connect

    Fellenstein, J.A.; DellaCorte, C.

    1994-10-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  15. A New Tribological Test for Candidate Brush Seal Materials Evaluation

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; Dellacorte, Christopher

    1994-01-01

    A new tribological test for candidate brush seal materials evaluation has been developed. The sliding contact between the brush seal wires and their mating counterface journal is simulated by testing a small tuft of wire against the outside diameter of a high speed rotating shaft. The test configuration is similar to a standard block on ring geometry. The new tester provides the capability to measure both the friction and wear of candidate wire and counterface materials under controlled loading conditions in the gram to kilogram range. A wide test condition latitude of speeds (1 to 27 m/s), temperatures (25 to 700 C), and loads (0.5 to 10 N) enables the simulation of many of the important tribological parameters found in turbine engine brush seals. This paper describes the new test rig and specimen configuration and presents initial data for candidate seal materials comparing tuft test results and wear surface morphology to field tested seal components.

  16. Cryogenic Chamber for Servo-Hydraulic Materials Testing

    NASA Technical Reports Server (NTRS)

    Francis, John J.; Tuttle, James

    2009-01-01

    A compact cryogenic test chamber can be cooled to approximately 5 to 6 Kelvin for materials testing. The system includes a temperature controller and multiple sensors to measure specimen temperature at different locations. The testing chamber provides a fast and easy method to perform materials testing at lower than liquid nitrogen temperature (77 K). The purpose of the chamber is to cool a composite lap shear specimen to approximately 20 K so that tensile test force and displacement data may be acquired at this cryogenic temperature range.

  17. Correlation of elastomer material properties from small specimen tests and scale-size bearing tests

    SciTech Connect

    Kulak, R.F.; Hughes, T.H.

    1994-06-01

    Tests were performed on small-size elastomer specimens and scale-size laminated elastomeric bearings to correlate the material properties in shear between the two types of tests. An objective of the tests was to see how well the material properties that were determined from specimen tests could predict the response of scale-size laminated elastomeric bearings. Another objective was to compare the results of specimen test and scale-size bearing test conducted by different testing organizations. A comparison between the test results from different organizations on small specimens showed very good agreement. In contrast, the correlation of scale-size bearing tests showed differences in bearing stiffness.

  18. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  19. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  20. Test plan for the irradiation of nonmetallic materials.

    SciTech Connect

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  1. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  2. Electro-magnetic compatibility

    NASA Astrophysics Data System (ADS)

    Maidment, H.

    1980-05-01

    The historical background to the growth in problems of electromagnetic compatibility (EMC) in UK Military aircraft is reviewed and the present approach for minimizing these problems during development is discussed. The importance of using representative aircraft for final EMC assessments is stressed, and the methods of approach in planning and executing such tests are also outlined. The present equipment qualification procedures are based on assumptions regarding the electromagnetic fields present within the airframe, and the nature of the coupling mechanisms. These cannot be measured with any certainty in representative aircraft. Thus EMC assessments rely on practical tests. Avionics systems critical to flight safety, and systems vital to mission effectiveness require test methods that provide a measure of the safety and performance margins available to account for variations that occur in production and service use. Some proven methods are available, notably for detonator circuits, but in most other areas further work is required. Encouraging process has been made in the use of current probes for the measurement of interfering signals on critical signal lines, in conjunction with complementary test house procedures, as a means for obtaining the safety margins required in flight and engine control systems. Performance margins for mission systems using digital techniques are difficult to determine, and there is a need for improved test techniques. The present EMC qualification tests for equipment in the laboratory do not guarantee freedom from interference when installed, and the results are limited in value for correlating with aircraft tests.

  3. High temperature ultrasonic testing of materials for internal flaws

    DOEpatents

    Kupperman, David S.; Linzer, Melvin

    1990-01-01

    An apparatus is disclosed for nondestructive evaluation of defects in hot terials, such as metals and ceramics, by sonic signals, which includes a zirconia buffer in contact with a hot material being tested, a liquid couplant of borax in contact with the zirconia buffer and the hot material to be tested, a transmitter mounted on the zirconia buffer sending sonic signals through the buffer and couplant into the hot material, and a receiver mounted on the zirconia buffer receiving sonic signals reflected from within the hot material through the couplant and the buffer.

  4. Rubber composition compatible with hydrazine

    NASA Technical Reports Server (NTRS)

    Repar, J.

    1973-01-01

    Formulation improves compatibility of butyl rubbers with hydrazine while reducing permeation to low levels necessary for prolonged storage in space. This is accomplished by replacing carbon-black filler with inert materials such as hydrated silica or clay. Pressure increases suggest that hydrazine is decomposed only slightly by new type of rubber.

  5. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  6. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    SciTech Connect

    DeAnn Long; Michael Murphy

    2008-07-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

  7. TRIAXIAL AND SHEAR TESTING OF SELECTED BACKFILL MATERIALS

    SciTech Connect

    N. E. Kramer

    2000-08-07

    The Subsurface Performance Testing Section is performing tests in the Department of Energy's Atlas Facility to evaluate the performance of various backfill materials. Triaxial and shear tests were conducted on select backfill materials. The specific materials tested were: crushed tuff, overton sand, 4- 10 silica sand, 1/4'' dolostone/marble, and limestone. The objective of this report is to provide an estimated value for Poisson's ratio, determine internal friction angle, and stress-strain modulus of the backfill materials that were tested. These basic parameters are necessary for the selection of a backfill material to be included in the repository. This report transmits the results in both hardcopy and electronic formats plus describes the methodology and interpretation of the results. No conclusions will be drawn about the test results, as this will be the purview of other reports. The scope of this report is to use the triaxial and shear testing information and calculate, the internal friction angle, stress-strain modulus, and provide an estimate of Poisson's ratio (Sowers 1979, p. 199) of the selected backfill materials. Standard laboratory procedures, mentioned in Section 2 of this report, were used.

  8. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    NASA Technical Reports Server (NTRS)

    Savage, M. L.; Kittel, P.; Roellig, T.

    1990-01-01

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  9. Test Report: Direct and Indirect Lightning Effects on Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    Lightning tests were performed on composite materials as a part of an investigation of electromagnetic effects on the materials. Samples were subjected to direct and remote simulated lightning strikes. Samples included various thicknesses of graphite filament reinforced plastic (GFRP), material enhanced by expanded aluminum foil layers, and material with an aluminum honeycomb core. Shielding properties of the material and damage to the sample surfaces and joints were investigated. Adding expanded aluminum foil layers and increasing the thickness of GFRP improves the shielding effectiveness against lightning induced fields and the ability to withstand lightning strikes. A report describing the lightning strike tests performed by the U.S. Army Redstone Technical Test Center, Redstone Arsenal, AL, STERT-TE-E-EM, is included as an appendix.

  10. Status of coal ash corrosion resistant materials test program

    SciTech Connect

    McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

    1999-07-01

    In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for three and

  11. Modern Technologies of Nondestructive Testing of Construction Materials

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Yushin, A.

    2016-06-01

    The article presents the modern methods of research of building materials (such as styrofoam, cement, concrete admixtures, etc.), applied in the Far Eastern Federal University. The latest equipment described for these studies and modern methods of testing.

  12. Damage testing of sapphire and Ti: sapphire laser materials

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Diffusion bonded sapphire and Ti (Titanium). Sapphire laser materials that will be damage tested to determine if there is an increase in damage threshold. Photographed in building 1145, photographic studio.

  13. Using Virtual Testing for Characterization of Composite Materials

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  14. Lining material tests for the AUGER PROJECT surface detector

    NASA Astrophysics Data System (ADS)

    Escobar, C. O.; Fauth, A. C.; Guzzo, M. M.; Shibuya, E. H.

    1999-03-01

    We are trying to obtain a suitable material to compose the lining of a water Cerenkov tank for the surface detector. part of a hybrid detector of the Auger Project. Results of tests were compared with DuPont 1073Tyvek TM and obtained a reasonable performance for (PVC+BaSO 4) material.

  15. The concept verification testing of materials science payloads

    NASA Technical Reports Server (NTRS)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  16. Fuel System Compatibility Issues for Prometheus-1

    SciTech Connect

    DC Noe; KB Gibbard; MH Krohn

    2006-01-20

    Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO{sub 2} as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO{sub 2}-based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined.

  17. Test plan for the selection of the ENRAF gauge wire material

    SciTech Connect

    Anantatmula, R.P.

    1994-11-16

    The measurement of liquid levels is the primary method of early leak detection in some underground waste storage tanks at Hanford, as well as for the detection of intrusion of liquids into the tanks. The gauges used for many years for this purpose are no longer available and are rapidly failing. After extensive evaluation and testing, the ENRAF Series 854 level gauge was selected as the primary instrument for monitoring waste surface levels. The material for the wire from which the displacer of the gauge is suspended was selected to be type 316 stainless steel based upon its excellent corrosion resistance in Hanford tank wastes. After approximately 10 weeks of service, the displacer attached to the gauge installed in tank 241-S-106 separated from the wire. It was determined that the wire failure was due to chloride ion stress corrosion cracking of the 316 wire. Radiation induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the source of the chloride ions. The task team proposed short-term and long-term actions. The short-term actions included evaluating the source of the chloride ions, while continuing to monitor liquid levels. One of the long-term actions is the selection of a wire material that is compatible with the PVC liner and the tank waste environment. This document describes the test plan for the selection of one material, from the list of candidate materials, that is the most suitable material for use in the combined environment of the PVC liner and the tank waste. The candidate materials to be tested are Hastelloy C-22, Pt-10% Rh, Pt-20% Rh, and Pt-20% Ir.

  18. BMDO materials testing in the EOIM-3 experiment

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Liang, Ranty H.

    1995-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a testbed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground-based exposure evaluation was conducted using the Fast Atom Sample Tester (FAST) atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 flight materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 20) atoms/sq cm. The ground-based exposure fluence of 2.0 - 2.5 x 10(exp 20) atoms/sq cm permits direct comparison with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground-based exposure are summarized here. A more detailed correlation study is presented in the JPL Publication 93-31 entitled 'Flight-and Ground-Test Correlation Study of BMDO SDS Materials: Phase 1 Report'. In general, the majority of the materials survived the AO environment with their performance tolerances maintained for the duration of the exposure. Optical materials, baffles, and coatings performed extremely well as did most of the thermal coatings and tribological materials. A few of the candidate radiator, threat shielding, and structural materials showed significant degradation. Many of the coatings designed to protect against AO erosion of sensitive materials performed this function well.

  19. High Temperature Ultrasonic Transducers : Material Selection and Testing

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bruno, Alessandro

    2012-01-01

    The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.

  20. Instruments and Supporting Materials for Practical Skills Testing in Science.

    ERIC Educational Resources Information Center

    Kay, Chris; And Others

    1992-01-01

    Student test booklets, equipment and materials lists, directions for set-up, and directions for administration are given in English for the six countries participating in the science practical skills testing portions of the Second International Association for the Evaluation of Educational Improvement Science Study. (SLD)

  1. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  2. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  3. An Approach to the Flammability Testing of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  4. Thermal Testing of Woven TPS Materials in Extreme Entry Environments

    NASA Astrophysics Data System (ADS)

    Gonzales, G.

    2014-06-01

    Some recent thermal tests of woven TPS have been used to help develop and qualify the capabilities of the NASA's IHF and AEDC's H3 arcjet facilities and this woven material. These tests have benefited both the facilities and woven teams.

  5. Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.

    2013-01-01

    There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.

  6. Compatibility and Outgassing Studies for Directed Stockpile Work (FY05)

    SciTech Connect

    Alviso, C; Harvey, C; Vance, A

    2005-11-23

    Compatibility and outgassing studies of non-nuclear materials were carried out in support of the W80 Life Extension Program. These studies included small-scale laboratory experiments as well as participation in Sandia's Materials Aging and Compatibility test (MAC-1). Analysis of the outgassing signature of removable epoxy foam (REF) revealed unusually high levels of volatile organic compounds in the material. REF was replaced with the polyurethane PMDI. Laboratory compatibility tests of high priority materials were performed and revealed incompatibilities between Viton A (LX-07 binder) and syntactic polysulfide as well as Viton A and REF. With the removal of REF from the system, the incompatibility with Viton A is not an issue. In the case of the viton/polysulfide, both of these materials have a history of reliability in the stockpile, and the observed results, while scientifically interesting, appear to be a laboratory anomaly. Participation in the MAC-1 test led to a detailed study of Viton A degradation. At elevated temperatures up to 70 C, the Viton A samples darkened and exhibited increased crosslinking. Laboratory experiments were pursued to correlate the observed changes to exposure to specific compounds that were present in the MAC-1 canister atmospheres. Exposure to siloxanes resulted in changes similar to those seen in the MAC-1 samples. Knowledge gained from the MAC-1 test will be applied to the upcoming MAC-2 test planned for FY06. Finally, the suitability of isotopically labeled nitrogen fill gas ({sup 15}N{sub 2}) was addressed. This gas will behave as standard nitrogen with no compatibility concerns expected.

  7. Determination of contamination character of materials in space technology testing

    NASA Technical Reports Server (NTRS)

    Haynes, D. L.; Coulson, D. M.

    1972-01-01

    The contamination character of selected materials used in space technology testing is presented. Many of these materials contain components that become volatile in a space environment. Most previous data were limited to weight loss or vapor pressure. However, these parameters are not necessarily a direct measure of the contamination character of these materials. Selected materials were exposed to a thermal-vacuum environment, and the degree of contamination was measured by collecting the outgases from these materials on a cold test mirror surface. The degradation of reflectivity of the mirror was measured over a spectral range from 1100 A to 2.5 microns. Half the mirror's surface was also exposed to UV irradiation to determine its effects on the contaminative character of the depositing outgases. The amount of deposit per unit area was measured by microbalances mounted near the mirror; the sensor of one microbalance was UV irradiated. A quadrupole mass spectrometer was used to determine the composition of the outgases.

  8. Design of Material Strength Test in Lead-Bismuth Flow

    SciTech Connect

    Masatoshi Kondo; Minoru Takahashi; Koji Hata

    2002-07-01

    Liquid lead and lead-bismuth have drawn the attention as one of the candidate coolants of the fast breeder reactors (FBRs), and the accelerator driven transmutation systems (ADSs). In order to use the coolant to the systems, the physical and chemical characteristics of the heavy metals are necessary. This plan has been proposed for the strength test of materials in the liquid metal surroundings. The lead-bismuth circulation loop with the strength test has been designed, and the strength test of candidate materials has been planned. (authors)

  9. Cyclic material properties tests supporting elastic-plastic analysis development

    SciTech Connect

    Hodge, S.C.; Minicucci, J.M.

    1996-11-01

    Correlation studies have shown that hardening models currently available in the ABAQUS finite element code (isotropic, kinematic) do not accurately capture the inelastic strain reversals that occur due to structural rebounding from a rapidly applied transient dynamic load. The purpose of the Cyclic Material properties Test program was to obtain response data for the first several cycles of inelastic strain reversal from a cyclic properties test. This data is needed to develop elastic-plastic analysis methods that can accurately predict strains and permanent sets in structures due to rapidly applied transient dynamic loading. Test specimens were cycled at inelastic strain levels typical of rapidly applied transient dynamic analyses (0.5% to 4.0%). In addition to the inelastic response data, cyclic material properties for high yield strength (80 ksi) steel were determined including a cyclic stress-strain curve for a stabilized specimen. Two test methods, the Incremental Step method and the Companion specimen Method, were sued to determine cyclic properties. The incrementally decreasing strain amplitudes in the first loading block of the Incremental Step method test is representative of the response of structures subjected to rapidly applied transient dynamic loads. The inelastic strain history data generated by this test program will be used to support development of a material model that can accurately predict inelastic material behavior including inelastic strain reversals. Additionally, this data can be used to verify material model enhancements to elastic-plastic finite element analysis codes.

  10. A Cryogenic RF Material Testing Facility at SLAC

    SciTech Connect

    Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

    2012-06-22

    The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

  11. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  12. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  13. Temperature controlled material irradiation in the advanced test reactor

    NASA Astrophysics Data System (ADS)

    Ingram, F. W.; Palmer, A. J.; Stites, D. J.

    1998-10-01

    The United States Department of Energy (US DOE) has initiated the development of an Irradiation Test Vehicle (ITV) for fusion materials irradiation at the Advanced Test Reactor (ATR) in Idaho Falls, Idaho, USA. The ITV is capable of providing neutron spectral tailoring and individual temperature control for up to 15 experiment capsules simultaneously. The test vehicle consists of three In-Pile Tubes (IPTs) running the length of the reactor vessel. These IPTs are kept dry and test trains with integral instrumentation are inserted and removed through a transfer shield plate above the reactor vessel head. The test vehicle is designed to irradiate specimens as large as 2.2 cm in diameter, at temperatures of 250-800°C, achieving neutron damage rates as high as 10 displacements per atom per year. The high fast to thermal neutron flux ratio required for fusion materials testing is accomplished by using an aluminum filler to displace as much water as possible from the flux trap and surrounding the filler piece with a ring of replaceable neutron absorbing material. The gas blend temperature control system remains in place from test to test, thus hardware costs for new tests are limited to the experiment capsule train and integral instrumentation.

  14. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  15. [Study on the compatibility of slip casting aluminous ceramic crowns

    PubMed

    Wan, Q B; Xue, M; You, L; Du, C S; Chao, Y L

    1997-03-01

    One of the key factors for a good slip casting aluminous ceramic crown is good compatibility between its core material and the veneering porcelain.The chemical and thermal compatibility of two slip casting aluminous ceramic crown systems(In-Ceram and GI-I) were investigated by means of SEM and EDAX,thermal shock tests were also performed to evaluate the crazing resistance.The results showed: the crazing resistance of In-Ceram was 158 degrees centigrade,and that of GI-I was degrees centigrade;there existed tightly bonded interfaces between the slip casting aluminous ceramic cores and the veneering porcelains in both of the two systems,where ion transferences were found.The results also suggested good compatibility of the two slip casting aluminous ceramic crown systems. PMID:15159959

  16. Radioactive material package testing capabilities at Sandia National Laboratories

    SciTech Connect

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-12-31

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia`s facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns.

  17. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  18. Estimation of uncertain material parameters using modal test data

    SciTech Connect

    Veers, P.S.; Laird, D.L.; Carne, T.G.; Sagartz, M.J.

    1997-11-01

    Analytical models of wind turbine blades have many uncertainties, particularly with composite construction where material properties and cross-sectional dimension may not be known or precisely controllable. In this paper the authors demonstrate how modal testing can be used to estimate important material parameters and to update and improve a finite-element (FE) model of a prototype wind turbine blade. An example of prototype blade is used here to demonstrate how model parameters can be identified. The starting point is an FE model of the blade, using best estimates for the material constants. Frequencies of the lowest fourteen modes are used as the basis for comparisons between model predictions and test data. Natural frequencies and mode shapes calculated with the FE model are used in an optimal test design code to select instrumentation (accelerometer) and excitation locations that capture all the desired mode shapes. The FE model is also used to calculate sensitivities of the modal frequencies to each of the uncertain material parameters. These parameters are estimated, or updated, using a weighted least-squares technique to minimize the difference between test frequencies and predicted results. Updated material properties are determined for axial, transverse, and shear moduli in two separate regions of the blade cross section: in the central box, and in the leading and trailing panels. Static FE analyses are then conducted with the updated material parameters to determine changes in effective beam stiffness and buckling loads.

  19. On Software Compatibility.

    ERIC Educational Resources Information Center

    Ershov, Andrei P.

    The problem of compatibility of software hampers the development of computer application. One solution lies in standardization of languages, terms, peripherais, operating systems and computer characteristics. (AB)

  20. Environmental test program for superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1992-01-01

    A systematic approach to obtaining real time, superconducting YBa2Cu30(7-x) materials is presented. The work was carried out under the overall direction of Clemson University with tasks being performed at both Clemson and Westinghouse (Aiken, SC). Clemson prepared the tapecast superconducting 123 material and fabricated in into substrate-supported, environmentally-protected conducting links. Following this, all of the elements were individually tested for resistance vs. temperature and Tc; and then a portion of them were kept at Clemson for further testing while a randomly selected group was delivered to Westinghouse for specialized testing and evaluation in their low temperature/high vacuum and radiation facilities. In addition, a number of control samples (12 ea.) were put on the shelf at Clemson for further reference at the end of the testing period. The specific tests conducted at Clemson and Westinghouse/SRC are presented with a summary of the results.

  1. Norelgestromin/ethinyl estradiol intravenous infusion formulation optimization, stability and compatibility testing: A case study to overcome polysorbate 80 interference in chromatographic analysis.

    PubMed

    Abdallah, Inas A; Hammell, Dana C; Hassan, Hazem E; Stinchcomb, Audra L

    2016-06-01

    Norelgestromin/ethinyl estradiol is a progestin/estrogen combination hormonal contraceptive indicated for the prevention of pregnancy in women. The very poor solubility and wettability of these drugs, along with their high potency (adsorption issues), give rise to difficulties in designing intravenous (IV) formulations to assess absolute bioavailability of products containing both drugs. The purpose of this study was to develop an IV formulation, evaluate its stability under different conditions and evaluate its compatibility with IV sets for potential use in absolute bioavailability studies in humans. Also, a selective high-performance liquid chromatography (HPLC) method for quantification of ethinyl estradiol and norelgestromin in polysorbate 80 matrix was developed and validated. Norelgestromin/ethinyl estradiol IV solution was prepared using sterile water for injection with 2.5% ethanol and 2.5% polysorbate 80 as a cosolvent/surfactant system to obtain a final drug solution of 25μg ethinyl estradiol and 252μg norelgestromin from a concentrated stock drug solution. The stabilities of the concentrated stock and IV solutions were assessed after storing them in the refrigerator (3.7±0.6°C) and at room temperature (19.5±0.5°C), respectively. Additional studies were conducted to examine the stability of the IV solution using an Alarias(®) low sorbing IV administration set with and without an inline filter. The solution was allowed to drip at 1mL/min over a 60min period. Samples were obtained at the beginning, middle and end of the 60min duration. The chemical stability was evaluated for up to 10 days. Norelgestromin and ethinyl estradiol concentration, purity, and degradant levels were determined using the HPLC method. The norelgestromin/ethinyl estradiol IV formulation met the chemical stability criteria when tested on day 1 through day 9 (216h). Norelgestromin concentrations assayed in stock and IV solutions were in the range of 90.0-98.5% and 90

  2. Test or toy? Materiality and the measurement of infant intelligence.

    PubMed

    Young, Jacy L

    2015-05-01

    Adopting a material culture perspective, this article interrogates the composition of the copy of the Cattell Infant Intelligence Scale housed at the University of Toronto Scientific Instruments Collection. As a deliberately assembled collection of toys, the Cattell Scale makes clear the indefinite boundary between test and toy in 20th-century American psychology. Consideration of the current condition of some of the material constituents of this particular Cattell Scale provides valuable insight into some of the elusive practices of intelligence testers in situ and highlights the dynamic nature of the testing process. At the same time, attending to the materiality of this intelligence test reveals some of the more general assumptions about the nature of intelligence inherent in tests for young children. The scale and others like it, I argue, exposes psychologists' often-uncritical equation of childhood intelligence with appropriate play undertaken with an appropriate toy, an approach complicit in, and fostered by, midcentury efforts to cultivate particular forms of selfhood. This analysis serves as an example of the kind of work that may be done on the history of intelligence testing when the material objects that were (and are) inherently a part of the testing process are included in historical scholarship. PMID:26120915

  3. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    DOEpatents

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  4. Summary of the WIPP materials interface interactions test: Metal corrosion

    SciTech Connect

    Sorensen, N.R.; Molecke, M.A.

    1992-12-31

    Several series of in situ, high-level and transuranic waste form-leaching and waste form-engineered barrier materials interactions tests were conducted at the Waste Isolation Pilot Plant (WIPP) facility, near Carlsbad, New Mexico, in the USA. This multi-national effort, the WIPP Materials Interface Interactions Tests (MIIT), involves the underground testing of about 2000 (nonradioactive) waste form, metal, and geologic samples in the bedded salt at the WIPP. This test program started on July 22, 1986 and has achieved its projected five-year lifetime. All in situ samples have been retrieved and sent to multiple laboratories for posttest analyses. Most of the analyses on metal samples have been completed and the results are summarized in this paper. The tested metal alloys proposed for waste canister or overpack use included titanium alloys (grade-2 and grade-12), Hastelloy C4, Inconel 625, austenitic stainless steels (304L, 316, and NS 24/AISI 309), carbon steels (Belgian C and ASTM A216/WCA), copper, and lead. After five-years of test exposure immersed in WIPP brine A and/or salt at about 90{degree}C, the corrosion-resistant materials (Ti; Inconel, Hastelloy) exhibited very little corrosion. The austenitic stainless steels suffered pitting, crevice corrosion, and some evidence of stress corrosion cracking. The carbon steels, copper, and lead exhibited both extensive general and localized attack. Details of the test, analyses, and results obtained will be discussed.

  5. Summary of the WIPP materials interface interactions test: Metal corrosion

    SciTech Connect

    Sorensen, N.R.; Molecke, M.A.

    1992-01-01

    Several series of in situ, high-level and transuranic waste form-leaching and waste form-engineered barrier materials interactions tests were conducted at the Waste Isolation Pilot Plant (WIPP) facility, near Carlsbad, New Mexico, in the USA. This multi-national effort, the WIPP Materials Interface Interactions Tests (MIIT), involves the underground testing of about 2000 (nonradioactive) waste form, metal, and geologic samples in the bedded salt at the WIPP. This test program started on July 22, 1986 and has achieved its projected five-year lifetime. All in situ samples have been retrieved and sent to multiple laboratories for posttest analyses. Most of the analyses on metal samples have been completed and the results are summarized in this paper. The tested metal alloys proposed for waste canister or overpack use included titanium alloys (grade-2 and grade-12), Hastelloy C4, Inconel 625, austenitic stainless steels (304L, 316, and NS 24/AISI 309), carbon steels (Belgian C and ASTM A216/WCA), copper, and lead. After five-years of test exposure immersed in WIPP brine A and/or salt at about 90[degree]C, the corrosion-resistant materials (Ti; Inconel, Hastelloy) exhibited very little corrosion. The austenitic stainless steels suffered pitting, crevice corrosion, and some evidence of stress corrosion cracking. The carbon steels, copper, and lead exhibited both extensive general and localized attack. Details of the test, analyses, and results obtained will be discussed.

  6. Stand for coating deposition and coating/materials testing

    NASA Astrophysics Data System (ADS)

    Ayrapetov, A. A.; Begrambekov, L. B.; Dyachenko, M. Yu; Evsin, A. E.; Grunin, A. V.; Kalachev, A. M.; Sadovskiy, Ya A.; Shigin, P. A.

    2016-03-01

    The paper describes a new laboratory stand constructed for film deposition and for testing of deposited films and materials under pulsed and continuous heat load, ion and electron irradiation. The films are formed on substrates by atoms of target materials as a result of their sputtering by ions of argon plasma. The ion energy and ion flux can be varied independently. This enables the deposition of coatings with variable composition over thickness or of multi-layer coatings. Testing of materials is carried out in plasma under ion or electron irradiation by biasing the tested sample negatively or positively, respectively. The energies of ions or electrons can be varied up to 25 keV. The applied power can reach 4000 W (40 MW/m2 power density in the case of a 1-cm2 sample) in both continuous and pulsed regimes. In pulsed regime, pulses of 1 – 99% duty cycle at 0 – 500 Hz can be applied to the sample. The pulsed particle load can be combined with a continuous load. The size of the tested sample must not exceed 100 mm in diameter. The heat flux can irradiate the whole sample or be focused at its center (minimum spot of ~ 4mm2). Heating of the samples up to 2800 K is possible. At the same time, the backside of the tested sample could be actively cooled. This paper presents the results of deposition and testing of a B4C coating on tungsten and tungsten testing.

  7. Testing of felt-ceramic materials for combustor applications

    NASA Technical Reports Server (NTRS)

    Venkat, R. S.; Roffe, G.

    1983-01-01

    The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.

  8. Erosion tests of materials by energetic particle beams

    SciTech Connect

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  9. DOE/MSU composite material fatigue database: Test methods, materials, and analysis

    SciTech Connect

    Mandell, J.F.; Samborsky, D.D.

    1997-12-01

    This report presents a detailed analysis of the results from fatigue studies of wind turbine blade composite materials carried out at Montana State University (MSU) over the last seven years. It is intended to be used in conjunction with the DOE/MSU composite Materials Fatigue Database. The fatigue testing of composite materials requires the adaptation of standard test methods to the particular composite structure of concern. The stranded fabric E-glass reinforcement used by many blade manufacturers has required the development of several test modifications to obtain valid test data for materials with particular reinforcement details, over the required range of tensile and compressive loadings. Additionally, a novel testing approach to high frequency (100 Hz) testing for high cycle fatigue using minicoupons has been developed and validated. The database for standard coupon tests now includes over 4,100 data points for over 110 materials systems. The report analyzes the database for trends and transitions in static and fatigue behavior with various materials parameters. Parameters explored are reinforcement fabric architecture, fiber content, content of fibers oriented in the load direction, matrix material, and loading parameters (tension, compression, and reversed loading). Significant transitions from good fatigue resistance to poor fatigue resistance are evident in the range of materials currently used in many blades. A preliminary evaluation of knockdowns for selected structural details is also presented. The high frequency database provides a significant set of data for various loading conditions in the longitudinal and transverse directions of unidirectional composites out to 10{sup 8} cycles. The results are expressed in stress and strain based Goodman Diagrams suitable for design. A discussion is provided to guide the user of the database in its application to blade design.

  10. Impact Testing of Orbiter Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  11. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-01-01

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program initiated this quarter, provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principle activity during this first reporting period were preparing for and conducting a project kick-off meeting, working through plans for the project implementation, and beginning the conceptual design of the test section.

  12. Testing of SRS and RFETS Nylon Bag Material

    SciTech Connect

    Laurinat, J.E.

    1998-11-03

    This report compares the effects of radiation and heating on nylon bagout materials used at the Savannah River Site (SRS) and the Rocky Flats Environmental Technology Site (RFETS). Recently, to simplify the processing of sand, slag, and crucible (SS and C), FB-Line has replaced the low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bags normally used to package cans of plutonium-bearing material with nylon bags. LDPE and PVC are not soluble in the nitric acid dissolver solution used in F-Canyon, so cans bagged using these materials had to be repackaged before they were added to the dissolver. Because nylon dissolves in nitric acid, cans bagged in nylon can be charged to the F-Canyon dissolvers without repackaging, thereby reducing handling requirements and personnel exposure. As part of a program to process RFETS SS and C at SRS, RFETS has also begun to use a nylon bagout material. The RFETS bag materials is made from a copolymer of nylon 6 and nylon 6.9, while the SRS material is made from a nylon 6 monomer. In addition, the SRS nylon has an anti-static agent added. The RFETS nylon is slightly softer than the SRS nylon, but does not appear to be as resistant to flex cracks initiated by contact with sharp corners of the inner can containing the SS and C.2 FB-Line Operations has asked for measurement of the effects of radiation and heating on these materials. Specifically, they have requested a comparison of the material properties of the plastics before and after irradiation, a measurement of the amount of outgassing when the plastics are heated, and a calculation of the amount of radiolytic gas generation. Testing was performed on samples taken from material that is currently used in FB-Line (color coded orange) and at RFETS. The requested tests are the same tests previously performed on the original and replacement nylon and LDPE bag materials.3,4,5. To evaluate the effect of irradiation on material properties, tensile stresses and elongations to break

  13. The Iosipescu shear test method as used for testing polymers and composite materials

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.

    1990-01-01

    This paper describes a shear test method for polymers and composite materials, based on the Iosipescu (1967) shear test which was originally developed for use with homogeneous isotropic metals. Special attention is given to the loading fixture for the test, the standard specimen design and shear stress measurements. The range of the test applications is indicated. The method is in the final stages of being accepted as an ASTM standard.

  14. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  15. The Testing Effect Is Alive and Well with Complex Materials

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Aue, William R.

    2015-01-01

    Van Gog and Sweller (2015) claim that there is no testing effect--no benefit of practicing retrieval--for complex materials. We show that this claim is incorrect on several grounds. First, Van Gog and Sweller's idea of "element interactivity" is not defined in a quantitative, measurable way. As a consequence, the idea is applied…

  16. Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1977-01-01

    Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.

  17. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  18. Testing the flammability of materials exposed to arcs

    NASA Technical Reports Server (NTRS)

    Hamlett, B. J.; Krupski, A. L.

    1969-01-01

    Apparatus tests flammability and ignition characteristics of materials in close proximity to incandescent metal fragments or spalls ejected from intermittent short circuit arcs in air or oxygen rich atmospheres. It simulates a situation where an exposed live wire makes contact with a grounded member in areas containing organic matter.

  19. Using Students' Work as Teaching and Testing Materials.

    ERIC Educational Resources Information Center

    McDevitt, Damien

    1988-01-01

    One teacher's experience using student-written texts as a basis for testing other students has become a good way of integrating the four language skills in a natural progression and in pinpointing students' language weaknesses. Using students' texts has also reinforced the importance of choosing visual materials carefully. (MSE)

  20. PERFORMANCE TESTING OF SPILL CONTROL DEVICES ON FLOATABLE HAZARDOUS MATERIALS

    EPA Science Inventory

    At the U.S. EPA's Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) in Leonardo, New Jersey, from September 1975 through November 1975, the U.S. Environmental Protection Agency (US EPA) and the U.S. Coast Guard evaluated selected oil-spill control equipment ...

  1. Thermocouple Calibration and Accuracy in a Materials Testing Laboratory

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Nathal, M. V.; Keller, D. J.

    2002-01-01

    A consolidation of information has been provided that can be used to define procedures for enhancing and maintaining accuracy in temperature measurements in materials testing laboratories. These studies were restricted to type R and K thermocouples (TCs) tested in air. Thermocouple accuracies, as influenced by calibration methods, thermocouple stability, and manufacturer's tolerances were all quantified in terms of statistical confidence intervals. By calibrating specific TCs the benefits in accuracy can be as great as 6 C or 5X better compared to relying on manufacturer's tolerances. The results emphasize strict reliance on the defined testing protocol and on the need to establish recalibration frequencies in order to maintain these levels of accuracy.

  2. Testing of Alternative Materials for Advanced Suit Bladders

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Orndoff, Evelyne; Makinen, Janice; Tang, Henry

    2011-01-01

    Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.

  3. Materials evaluations with the pulsed black liquor burner test facility

    SciTech Connect

    Stein, A.

    1997-08-01

    A pulsed burner was designed to provide sufficient heat to convert a fluidized bed of black Kraft liquor into combustible gas which would be used to produce process steam. The pulsed burner design provides a significant increase in the heat transfer capability and consequently significantly increases the efficiency of the conversion process. High temperature corrosion tests were performed in a fluidized bed of black Kraft liquor using a pulsed burner process to determine the optimum materials for use in a commercial application. The materials tested included three different austenitic stainless steels, Type 446 martensitic stainless steel, a high temperature carbon steel, 153MA, and four nickel base alloys. All materials performed well with no corrosion attributed to the environment created by the decomposition of a black Kraft liquor. This behavior was contrary to what was expected due to the high concentration of H{sub 2}S present in the high temperature, 562 C, atmosphere.

  4. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    NASA Technical Reports Server (NTRS)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  5. Corrosion testing of urea-formaldehyde foam insulating material

    SciTech Connect

    Weil, R.; Graviano, A.; Sheppard, K.

    1980-09-01

    Two tests of the corrosiveness of urea-formaldehyde (UF) foam insulating materials were compared. One test, the Timm test, had test coupons foamed in place. In the second, the Canadian test, blocks of foam already set were placed in contact with test coupons. The Timm test uses 10 gage thick coupons, while the Canadian test specifies 3 mil thick ones. Two samples of UF foam were tested by the Timm and the Canadian tests. The electrical-resistance probes showed that the corrosion rate against steel was initially quite high, of the order of 12 to 20 mpy (mils per year). After about 20 days, the rate was almost zero. In the Timm test, the corrosion rates of steel coupons were of the order to 0.5 to 2 mpy when averaged over the 28 or 56 day test period. The greater corrosion rate of the thick coupons in the Canadian test as well as poor reproducibility of the corrosion rates was attributed primarily to variations in the contact areas between the sample and the UF foam. The corrosion rates of galvanized steel coupons in the Canadian test in several cases exceeded the failure value. In the Timm test, the corrosion rates averaged over the whole test period were quite low. The corrosion rates of copper and aluminum in both tests were quite low. On the basis of the results of this study the following recommendations for a corrosion-test procedure for UF foam were made: two corrosion tests should be conducted, one for foam while curing and one after it has stabilized; the Timm test for corrosiveness while curing should be used, but for only 1 to 2 days; the test for corrosiveness after stabilizing should be of the accelerated type such as the Canadian one. To insure a constant-contact area, thicker coupons should be used; and the coupons for both tests should have a controlled part of the area not in contact with the foam to simulate field conditions.

  6. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    SciTech Connect

    Mike Murphy

    2008-03-01

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC&A) Manager at the time decided that the program needed to be strengthened and MC&A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program.

  7. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  8. Application & testing of high temperature materials for solenoid coils

    SciTech Connect

    Sanchez, R.O.; Archer, W.E.; Zich, J.L.

    1997-08-01

    Sandia National Laboratories has designed and proven-in two new Solenoid coils for a highly-reliable electromechanical switch. Mil-Spec Magnetics Inc., Walnut CA manufactured the coils. The new design utilizes two new materials: Liquid Crystal Polymer (Vectra C130) for the bobbin and Thermal Barrier Silicone (VI-SIL V-658) for the encapsulant. The use of these two new materials solved most of the manufacturing problems inherent in the old Sandia design. The coils are easier to precision wind and more robust for handling, testing, and storage. The coils have some unique weapon related safety requirements. The most severe of these requirements is the 400{degrees}C, 1600 V test. The coils must not, and did not, produce any outgassing products to affect the voltage breakdown between contacts in the switch at these temperatures and voltages. Actual coils in switches were tested under these conditions. This paper covers the prove-in of this new coil design.

  9. Materials characterization of cermet anodes tested in a pilot cell

    SciTech Connect

    Windisch, C.F. Jr.; Strachan, D.M.; Henager, C.H. Jr. ); Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. . Mfg. Technology Lab.)

    1993-02-01

    Cermet anodes were evaluated as nonconsumable substitutes for carbon anodes using a pilot-scale reduction cell at the Reynolds Manufacturing Technology Laboratory. After pilot cell testing, tile anodes were subjected to extensive materials characterization and physical properties measurements at the Pacific Northwest Laboratory. Significant changes in the composition of the cermet anodes were observed including the growth of a reaction layer and penetration of electrolyte deep into the cermet matrix. Fracture strength and toughness were measured as a function of temperature and the ductile-brittle transition wasreduced by 500C following pilot cell testing. These results imply difficulties with anode material and control of operating conditions in the pilot cell, and suggest that additional development work be performed before the cermet anodes are used in commercial reduction cells. The results also highlight specific fabrication and operational considerations that should be addressed in future testing.

  10. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  11. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2004-10-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  12. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    SciTech Connect

    Grover, S.B.

    2004-10-06

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations.

  13. Effects of Introduced Materials in the Drift Scale Test

    SciTech Connect

    DeLoach, L; Jones, RL

    2002-01-11

    Water samples previously acquired from superheated (>140 C) zones within hydrological test boreholes of the Drift Scale Test (DST) show relatively high fluoride concentrations (5-66 ppm) and low pH (3.1-3.5) values. In these high temperature regions of the rock, water is present superheated vapor only--liquid water for sampling purposes is obtained during the sampling process by cooling. Based on data collected to date, it is evident that the source of the fluoride and low pH is from introduced man-made materials (Teflon{trademark} and/or Viton{trademark} fluoroelastomer) used in the test. The test materials may contribute fluoride either by degassing hydrogen fluoride (HF) directly to produce trace concentrations of HF gas ({approx}0.1 ppm) in the high temperature steam, or by leaching fluoride in the sampling tubes after condensation of the superheated steam. HF gas is known to be released from Viton{trademark} at high temperatures (Dupont Dow Elastomers L.L.C., Elkton, MD, personal communication) and the sample water compositions indicate near stoichiometric balance of hydrogen ion and fluoride ion, indicating dissolution of HF gas into the aqueous phase. These conclusions are based on a series of water samples collected to determine if the source of the fluoride is from the degradation of materials originally installed to facilitate measurements. Analyses of these water samples show that the source of the fluoride is the introduced materials, that is the Viton{trademark} packers used to isolate test zones and/or Teflon{trademark} tubing used to draw water and steam from the test zones. In particular, water samples collected from borehole (BH) 72 high temperatures ({approx} 170 C) prior to introduction of any Viton{trademark} or Teflon{trademark} show pH Values (4.8 to 5.5) and fluoride concentrations well below 1 ppm over a period of six months. These characteristics are typical of condensing DST steam that contains only some dissolved carbon dioxide generated

  14. Type of Speech Material Affects Acceptable Noise Level Test Outcome.

    PubMed

    Koch, Xaver; Dingemanse, Gertjan; Goedegebure, André; Janse, Esther

    2016-01-01

    The acceptable noise level (ANL) test, in which individuals indicate what level of noise they are willing to put up with while following speech, has been used to guide hearing aid fitting decisions and has been found to relate to prospective hearing aid use. Unlike objective measures of speech perception ability, ANL outcome is not related to individual hearing loss or age, but rather reflects an individual's inherent acceptance of competing noise while listening to speech. As such, the measure may predict aspects of hearing aid success. Crucially, however, recent studies have questioned its repeatability (test-retest reliability). The first question for this study was whether the inconsistent results regarding the repeatability of the ANL test may be due to differences in speech material types used in previous studies. Second, it is unclear whether meaningfulness and semantic coherence of the speech modify ANL outcome. To investigate these questions, we compared ANLs obtained with three types of materials: the International Speech Test Signal (ISTS), which is non-meaningful and semantically non-coherent by definition, passages consisting of concatenated meaningful standard audiology sentences, and longer fragments taken from conversational speech. We included conversational speech as this type of speech material is most representative of everyday listening. Additionally, we investigated whether ANL outcomes, obtained with these three different speech materials, were associated with self-reported limitations due to hearing problems and listening effort in everyday life, as assessed by a questionnaire. ANL data were collected for 57 relatively good-hearing adult participants with an age range representative for hearing aid users. Results showed that meaningfulness, but not semantic coherence of the speech material affected ANL. Less noise was accepted for the non-meaningful ISTS signal than for the meaningful speech materials. ANL repeatability was comparable across

  15. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  16. The Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Marshall, J. R.

    2000-01-01

    Originally selected for the HEDS dust & soil payload for the 2001 Mars Surveyor Lander, The Mars Environmental Compatibility Assessment (MECA) has now been completed, tested, and is ready for flight. This paper will review the four MECA instruments.

  17. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  18. Ground Deployment Demonstration and Material Testing for Solar Sail

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li

    2016-07-01

    Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.

  19. The development and testing of asbestos-free gasket materials

    SciTech Connect

    Mallow, W.A. )

    1992-01-01

    Of the 27 vendors contacted, 11 submitted asbestos-free gasket materials for thermal analysis followed by hydrostatic pressure testing, steam pressure testing, and fire testing. Virtually all were acceptable up to 400 C (air-free), and most were stable to 700 C. Several can be used to over 900 C in air or gases, since they are ceramic. Several graphitic gaskets are serviceable to 900 C in absence of air. Several performed well in steam pressure testing to 315 C, requiring a single adjustment in bolt/flange pressure after pressurization. Many acquired a compression set and consequent slight pressure loss, but responded well to bolt tightening. All except one are made of compressed ceramic or graphite fiber with 0-35 wt% binder, hence was inelastic but malleable/compressible. The large number of ceramic-and graphitic-based gasket materials obviated the need for further development; efforts were concentrated on critical evaluation of the off-the-shelf available materials, in comparison with asbestos.

  20. Radiation damage calculations for the APT materials test program

    SciTech Connect

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-09-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons ({approximately}1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV.