Science.gov

Sample records for materials crystal structure

  1. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  2. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  3. Materials for Alternative Energies: Computational Materials Discovery and Crystal Structure Prediction

    NASA Astrophysics Data System (ADS)

    Wolverton, Chris

    2013-03-01

    Many of the key technological problems associated with alternative energies may be traced back to the lack of suitable materials. The materials discovery process may be greatly aided by the use of computational methods, particular those atomistic methods based on density functional theory. In this talk, we present an overview of recent work on energy-related materials from density-functional based approaches. We have developed novel computational tools which enable accurate prediction of crystal structures for new materials (using both Monte Carlo and Genetic Algorithm based approaches), materials discovery via high-throughput, data mining techniques, and automated phase diagram calculations. We highlight applications in the area of Li battery materials and hydrogen storage materials.

  4. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.

    PubMed

    Nguyen, Anh Tuan; Huang, Qiao-Ling; Yang, Zhen; Lin, Naibo; Xu, Gangqin; Liu, Xiang Yang

    2015-03-01

    This review provides a comprehensive survey of the structural characteristics of crystal networks of silk soft fibrous materials in correlation with the macroscopic properties/performance and the network formation mechanisms. The correlation between the hierarchical mesoscopic structures and the mechanical properties of silk soft fibrous materials including silk fibroin hydrogels and naturally spun silk fibers are addressed based on the hierarchical crystal network models. Namely, two types of hierarchical networks are identified: the weak nanofibril-nanofibril interaction case (i.e., silk fibroin hydrogels), and the strong nanofibril-nanofibril interaction case (i.e., silk fibers). The macroscopic properties, i.e., the rheological/mechanical properties, can be controlled in terms of tuning different levels of hierarchical network structures by ultrasonication-induced gelation, introducing the initial nucleation centers, etc. Such controls take effect by different mesoscale assembly pathways, which are found to occur via different routes of the nucleation and growth processes. Furthermore, the hierarchical network model of soft fibrous materials can be applied to explain the superior mechanical properties and the unique strain-hardening behaviors of spider silk fibers within the framework of hierarchical breaking mechanism. Obviously, a knowledge of crystal networks will allow the prediction of the performance and engineering strategy of silk fibrous materials in generals. PMID:25510895

  5. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    SciTech Connect

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials research. Because of the large amount of work accomplished, a diverse class of materials covered and the desire for an easier reporting process, this report will list six categories (A to F) of major accomplishments and findings under the following headings with references to the published papers under DOE support. These six categories obviously have heavy overlaps. A complete list of published papers follows the brief description on each category. Each paper also indicates to which of the six categories the main accomplishment it belongs to. A. Electronic structure of complex and novel crystals B. Impurities, surfaces, interfaces and microstructures in ceramics C. Structures and properties of complex bioceramics D. Soft condensed matters E. Spectroscopic characterizations, XANES and ELNES spectroscopy F. Large-scale simulations

  6. Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.

  7. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.

    PubMed

    Lin, Naibo; Liu, Xiang Yang

    2015-11-01

    This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase. PMID:26214062

  8. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  9. Crystal Structure Prediction and its Application in Earth and Materials Sciences

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang

    First of all, we describe how to predict crystal structure by evolutionary approach, and extend this method to study the packing of organic molecules, by our specially designed constrained evolutionary algorithm. The main feature of this new approach is that each unit or molecule is treated as a whole body, which drastically reduces the search space and improves the efficiency. The improved method is possibly to be applied in the fields of (1) high pressure phase of simple molecules (H2O, NH3, CH4, etc); (2) pharmaceutical molecules (glycine, aspirin, etc); (3) complex inorganic crystals containing cluster or molecular unit, (Mg(BH4)2, Ca(BH4)2, etc). One application of the constrained evolutionary algorithm is given by the study of (Mg(BH4)2, which is a promising materials for hydrogen storage. Our prediction does not only reproduce the previous work on Mg(BH4)2 at ambient condition, but also yields two new tetragonal structures at high pressure, with space groups P4 and I41/acd are predicted to be lower in enthalpy, by 15.4 kJ/mol and 21.2 kJ/mol, respectively, than the earlier proposed P42nm phase. We have simulated X-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and the simulated XRD patterns of P4 and I41/acd structures are in excellent agreement with the experimental results. Two kinds of oxides (Xe-O and Mg-O) have been studied under megabar pressures. For XeO, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures of 83, 102 and 114 GPa, respectively). For Mg-O, our calculations find that two extraordinary compounds MgO2 and Mg3O 2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Our calculations indicate large charge transfer in these oxides for both systems, suggesting that large electronegativity difference and pressure are the key factors favouring their formations. We also discuss if these oxides might exist at earth and planetary conditions. If the target properties are set as the global fitness functions while structure relaxations are energy/enthalpy minimization, such hybrid optimization technique could effectively explore the landscape of properties for the given systems. Here we illustrate this function by the case of searching for superdense carbon allotropes. We find three structures (hP3, tI12, and tP12) that have significantly greater density. Furthermore, we find a collection of other superdense structures based on different ways of packing carbon tetrahedral. Superdense carbon allotropes are predicted to have remarkably high refractive indices and strong dispersion of light. Apart from evolutionary approach, there also exist some other methods for structural prediction. One can also combine the features from different methods. We develop a novel method for crystal structure prediction, based on metadynamics and evolutionary algorithms. This technique can be used to produce efficiently both the ground state and metastable states easily reachable from a reasonable initial structure. We use the cell shape as collective variable and evolutionary variation operators developed in the context of the USPEX method to equilibrate the system as a function of the collective variables. We illustrate how this approach helps one to find stable and metastable states for Al2SiO5, SiO2, MgSiO3. Apart from predicting crystal structures, the new method can also provide insight into mechanisms of phase transitions. This method is especially powerful in sampling the metastable structures from a given configuration. Experiments on cold compression indicated the existence of a new superhard carbon allotrope. Numerous metastable candidate structures featuring different topologies have been proposed for this allotrope. We use evolutionary metadynamics to systematically search for possible candidates which could be accessible from graphite. (Abstract shortened by UMI.)

  10. Crystal structure and prediction.

    PubMed

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape. PMID:25422850

  11. Nondestructive optical testing of the materials surface structure based on liquid crystals

    NASA Astrophysics Data System (ADS)

    Tomilin, M. G.; Stafeev, S. K.

    2011-08-01

    Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.

  12. Material-binding peptide application--ZnO crystal structure control by means of a ZnO-binding peptide.

    PubMed

    Togashi, Takanari; Yokoo, Nozomi; Umetsu, Mitsuo; Ohara, Satoshi; Naka, Takashi; Takami, Seiichi; Abe, Hiroya; Kumagai, Izumi; Adschiri, Tadafumi

    2011-02-01

    Recently, a zinc oxide (ZnO)-binding peptide (ZnOBP) has been identified and has been used to assist the synthesis of unique crystalline ZnO particles. We analyzed the influence of ZnOBP on the crystal growth of ZnO structures formed from zinc hydroxide. The addition of ZnOBP in the hydrothermal synthesis of ZnO suppressed [0001] crystal growth in the ZnO particles, indicating that the specificity of the material-binding peptide for specific inorganic crystal faces controlled the crystal growth. Furthermore, the dipeptides with a partial sequence of ZnO-binding "hot spot" in ZnOBP were used to synthesize ZnO particles, and we found that the presence of these dipeptides more strictly suppressed (0001) growth in ZnO crystals than did the complete ZnOBP sequence. These results demonstrate the applicability of dipeptides selected from material-binding peptides to control inorganic crystal growth. PMID:20947422

  13. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOEpatents

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  14. Photonic Crystal Laser Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  15. A novel dispersion flattened and single-mode terahertz photonic crystal fiber with material-filled structure

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Wang, Jingyuan; Xu, Zhiyong; Wu, Chuanxin; Wang, Huali; Zhang, Baofu

    2015-10-01

    A novel kind of terahertz (THz) photonic crystal fibers (PCFs) based on the material-filled structure is proposed in this paper. Different materials can be selectively filled into parts of air-holes in the designed THz PCFs, and then perfect features such as single-mode transmission and ultra-flattened dispersion are obtained easily in large frequency ranges near 1THz. Employing full-vectorial finite element method (FEM) and plane wave expansion method (PWE), confinement losses and modal dispersion with different structural parameters and diverse refractive indices of the filled materials are investigated respectively. Numerical results show that the proposed PCFs have acceptable confinement losses, low and flattened dispersions whose absolute values are lower than 1ps/nm*km. Moreover, its structure is simple and its feature is insensitive to variations of parameters. It is helpful for PCFs design and real fabrication in the potential THz applications.

  16. Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.

    PubMed

    Baias, Maria; Widdifield, Cory M; Dumez, Jean-Nicolas; Thompson, Hugh P G; Cooper, Timothy G; Salager, Elodie; Bassil, Sirena; Stein, Robin S; Lesage, Anne; Day, Graeme M; Emsley, Lyndon

    2013-06-01

    A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid, we find that the assigned (1)H isotropic chemical shifts provide sufficient discrimination to determine the correct structures from a set of predicted structures using the root-mean-square deviation (rmsd) between experimentally determined and calculated chemical shifts. In most cases unassigned shifts could not be used to determine the structures. This method requires no prior knowledge of the crystal structure, and was used to determine the correct crystal structure to within an atomic rmsd of less than 0.12 with respect to the known reference structure. For theophylline, the NMR spectra are too simple to allow for unambiguous structure selection. PMID:23503809

  17. Computerized crystal-chemical classification of silicates and related materials with CRYSTANA and formula notation for classified structures

    NASA Astrophysics Data System (ADS)

    Klein, Hans-Joachim; Liebau, Friedrich

    2008-09-01

    The computer program CRYSTANA is described which implements a method for the crystal-chemical classification of silicates and related materials. This method is mainly based upon the topological structure of the connected units of a compound and can be applied when the units are built from tetrahedra as coordination polyhedra. The classification parameters and the rules which have to be applied for their determination are summarized and a formalization of the method is provided based upon a finite graph representation of the units. A description of how CRYSTANA can be used and which kind of output it produces is included. From this output crystal-chemical formulas can be derived, which differ slightly from an existing notation in order to meet recommendations of the International Union of Crystallography.

  18. Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties

    NASA Astrophysics Data System (ADS)

    Nie, Shanshan; Zhang, Yaobin; Liu, Bin; Li, Zuoxi; Hu, Huaiming; Xue, Ganglin; Fu, Feng; Wang, Jiwu

    2010-12-01

    Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C 22H 18N 3S] 2Mo 6O 19 2DMF (1) and [C 22H 18N 3S] 2W 6O 19 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1. Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong ?? stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials.

  19. Crystal Structure of New Carbon-Nitride-Related Material C2N2(CH2)

    NASA Astrophysics Data System (ADS)

    Sougawa, Masaya; Sumiya, Takahiro; Takarabe, Kenichi; Mori, Yoshihisa; Okada, Taku; Gotou, Hirotada; Yagi, Takehiko; Yamazaki, Daisuke; Tomioka, Naotaka; Katsura, Tomoo; Kariyazaki, Hiroaki; Sueoka, Koji; Kunitsugu, Shinsuke

    2011-09-01

    A new carbon-nitride-related C2N2(CH2) nanoplatelet was synthesized by subjecting a precursor C3N4HxOy nanoparticle in a laser-heating diamond anvil cell to the pressure of 40 GPa and temperature of 1200-2000 K. The C and N composition of the quenched sample was determined to be C3N2 by using an energy dispersive X-ray spectroscope attached to a transmission electron microscope. The crystal structure and atomic positions of this C3N2 were obtained through Rietveld analysis of the X-ray diffraction pattern measured using synchrotron radiation. The hydrogen composition was difficult to determine experimentally because of the several-hundred-nanometer dimensions of the sample. First-principles calculation was alternatively used to discover the hydrogen composition. The synthesized C2N2(CH2) was accordingly found to be an orthorhombic unit cell of the space group Cmc21 with lattice constants a = 7.625 Å, b = 4.490 Å, and c = 4.047 Å. If the CH2 atomic unit is replaced with the CN2 atomic unit and the bonding rearranged, the C2N2(CH2) becomes the expected superhard C3N4.

  20. Crystal growth, structure and characterizations of a new semiorganic nonlinear optical material-{beta}-Alanine zinc chloride

    SciTech Connect

    Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Sivakumar, K.

    2010-08-15

    The title compound, {beta}-alanine zinc chloride-a new semiorganic nonlinear optical crystal was grown by slow evaporation technique. Single crystals of {beta}-alanine zinc chloride have been subjected to X-ray diffraction analysis to determine the crystal structure. The powder X-ray diffractogram of the crystal has also been recorded. The amount of carbon, nitrogen and hydrogen in the crystals was also estimated. Fourier Transform Infrared and Raman spectral measurements have been carried out on the grown crystals in order to identify the functional groups. The presence of hydrogen and carbon in the {beta}-alanine zinc chloride was confirmed by using proton and carbon nuclear magnetic resonance spectral analyses. The percentage of zinc in the crystal was determined by atomic absorption spectroscopy. Optical behavior such as ultraviolet-vis-near infrared transmittance spectrum and second harmonic generation has been investigated. The mechanical strength and thermal behavior of the grown crystal have been analyzed.

  1. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  2. Four-material one dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Scotognella, Francesco

    2012-07-01

    Photonic crystals made with more than two materials have been attracting increasing attention due to their peculiar optical properties. In this work, we present a theoretical analysis, by using the transfer matrix method, of one dimensional photonic crystals made of four different materials. A new photonic band gap is observed with respect to conventional one dimensional photonic crystals. Furthermore, we discuss the strong influence that the material permutations plays on the intensity and the shape of the photonic band gaps of the proposed structure.

  3. Materials and structures

    NASA Technical Reports Server (NTRS)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-01-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  4. Crystal structure of the high-energy-density material guanylurea dipicryl­amide

    PubMed Central

    Deblitz, Raik; Hrib, Cristian G.; Hilfert, Liane; Edelmann, Frank T.

    2014-01-01

    The title compound, 1-carbamoylguanidinium bis­(2,4,6-tri­nitro­phen­yl)amide [H2NC(=O)NHC(NH2)2]+[N{C6H2(NO2)3-2,4,6}2]− (= guanylurea dipicryl­amide), was prepared as dark-red block-like crystals in 70% yield by salt-metathesis reaction between guanylurea sulfate and sodium dipicryl­amide. In the solid state, the new compound builds up an array of mutually linked guanylurea cations and dipicryl­amide anions. The crystal packing is dominated by an extensive network of N—H⋯O hydrogen bonds, resulting in a high density of 1.795 Mg m−3, which makes the title compound a potential secondary explosive. PMID:25249869

  5. Structure, crystal growth, optical and mechanical studies of poly bis (thiourea) silver (I) nitrate single crystal: a new semi organic NLO material.

    PubMed

    Sivakumar, N; Kanagathara, N; Varghese, B; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G

    2014-01-24

    A new semi organic non linear optical polymeric crystal, bis (thiourea) silver (I) nitrate (TuAgN) with dimension 871.5 mm(3) has been successfully grown from aqueous solution by slow evaporation solution technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non centrosymmetric space group C2221. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Functional groups present in the crystal were analyzed qualitatively by infrared and Confocal Raman spectral analysis. Effects due to coordination of thiourea with metal ions were also discussed. Optical absorption study on TuAgN crystal shows the minimum absorption in the entire UV-Vis region and the lower cut off wavelength of TuAgN is found to be 318 nm. Thermal analysis shows that the material is thermally stable up to 180C. The mechanical strength and its parameters of the grown crystal were estimated by Vicker's microhardness test. The second harmonic generation (SHG) efficiency of the crystal was measured by Kurtz's powder technique infers that the crystal has nonlinear optical (NLO) efficiency 0.85 times that of KDP. PMID:24091346

  6. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.

    2011-12-01

    Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.

  7. Simulations of Photonic Crystal and Dielectric Structures

    SciTech Connect

    Werner, G. R.

    2010-11-04

    Dielectric materials and photonic crystal structures have electromagnetic properties that could potentially offer great benefits for accelerators. Computer simulation plays a critical role in designing, understanding, and optimizing these structures, especially the non-intuitive photonic crystal structures for which there is no relevant zeroth-order analytic model.

  8. Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): a potential NLO material.

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-07-01

    4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6×2×3 mm(3)) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and (1)H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV). PMID:23624038

  9. Interface structure between titania and perovskite materials observed by quartz crystal microbalance system

    NASA Astrophysics Data System (ADS)

    Nakayashiki, Soya; Daisuke, Hirotani; Ogomi, Yuhei; Hayase, Shuzi

    2015-01-01

    Adsorption of PbI2 onto a titania layer was monitored by a quartz crystal microbalance system in solution. The amount of PbI2 adsorbed on the titania layer increased with an increase in the PbI2 concentration in dimethylformamide (DMF). However, PbI2 remained after being rinsed with DMF, suggesting that PbI2 is rigidly bonded to the surface of the titania. The x-ray photoelectron spectroscopy measurement of PbI2 adsorbed on the titania substrate showed that the Pb compound has a composition of PbI0.33, not PbI2, suggesting that part of the Pb-I reacts with the HO-Ti moieties of titania to form Pb-O-Ti linkages. Trap density as measured by the thermally stimulated current method decreased after PbI2 passivation. Perovskite solar cells consisting of porous titania passivated with PbI2 had a higher efficiency than those without the passivation. It was concluded that PbI2 passivation of porous titania surfaces is one of the crucial approaches for enhancing the efficiency of perovskite solar cells with a scaffold layer of porous titania.

  10. The loss function of complex materials: Interplay between localized orbitals and crystal structure (*)

    NASA Astrophysics Data System (ADS)

    Eguiluz, A. G.; Restrepo, O. D.

    2004-03-01

    The loss function (imaginary part of the dynamical density response function) of a large class of materials is shown to feature sharp electronic collective modes whose existence is determined by a novel interplay between the availability of localized states and the periodic environment in which the excitations are realized. A new energy scale determines the location of the collective mode; the same corresponds, approximately, to the upper edge of the "upper Hubbard band complex". We introduce an "effective dielectric function," whose role is similar to that of its scalar counterpart in the case of simple materials; this "observable" allows a visualization of the physics of the collective mode. We present results for some transition metal oxides, cobaltates, and also MgB_2. (*) Supported by NSF-DMR 0219332 (**) Managed by UT-Battelle for the U.S. DOE under contract DE-AC05-00OR22725.

  11. Crystal and electronic structures of nitridophosphate compounds as cathode materials for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Lebgue, S.

    2015-08-01

    Using density-functional theory, we have studied the electronic and magnetic properties of two promising compounds that can be used as cathode materials, namely, Na2Fe2P3O9N and Na3TiP3O9N . When Na is extracted, we found the volume change to be quite small, with values of -0.6 % for Na3TiP3O9N and -5 % for Na2Fe2P3O9N . Our calculated voltages with the Hubbard-type correction (GGA+U) approximation are 2.93 V for Na3TiP3O9N /Na2TiP3O9N and 2.68 V for Na2Fe2P3O9N /NaFe2P3O9N , in good agreement with the experimental data. Our results confirm that these compounds are very promising for rechargeable Na-ion batteries.

  12. Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-Histidinium maleate 1.5-hydrate

    SciTech Connect

    Gonsago, C. Alosious; Albert, Helen Merina; Karthikeyan, J.; Sagayaraj, P.; Pragasam, A. Joseph Arul

    2012-07-15

    Highlights: ? L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ? The crystal structure is reported for the first time (CCDC 845975). ? The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) ?, b = 8.0530(5) ?, c = 14.9705(9) ? and ? = 101.657(2). ? The optical absorption study substantiates the complete transparency of the crystal. ? Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{sub 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H?O and O-H?O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UVvisible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 2801300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.

  13. Station for X-ray structural analysis of materials and single crystals (including nanocrystals) on a synchrotron radiation beam from the wiggler at the Siberia-2 storage ring

    SciTech Connect

    Kheiker, D. M. Kovalchuk, M. V.; Korchuganov, V. N.; Shilin, Yu. N.; Shishkov, V. A.; Sulyanov, S. N.; Dorovatovskii, P. V.; Rubinsky, S. V.; Rusakov, A. A.

    2007-11-15

    The design of the station for structural analysis of polycrystalline materials and single crystals (including nanoobjects and macromolecular crystals) on a synchrotron radiation beam from the superconducting wiggler of the Siberia-2 storage ring is described. The wiggler is constructed at the Budker Institute of Nuclear Physics of the Siberian Division of the Russian Academy of Sciences. The X-ray optical scheme of the station involves a (1, -1) double-crystal monochromator with a fixed position of the monochromatic beam and a sagittal bending of the second crystal, segmented mirrors bent by piezoelectric motors, and a (2{theta}, {omega}, {phi}) three-circle goniometer with a fixed tilt angle. Almost all devices of the station are designed and fabricated at the Shubnikov Institute of Crystallography of the Russian Academy of Sciences. The Bruker APEX11 two-dimensional CCD detector will serve as a detector in the station.

  14. Crystal growth of drug materials by spherical crystallization

    NASA Astrophysics Data System (ADS)

    Szab-Rvsz, P.; Hasznos-Nezdei, M.; Farkas, B.; Gcz?, H.; Pintye-Hdi, K.; Er?s, I.

    2002-04-01

    One of the crystal growth processes is the production of crystal agglomerates by spherical crystallization. Agglomerates of drug materials were developed by means of non-typical (magnesium aspartate) and typical (acetylsalicylic acid) spherical crystallization techniques. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good bulk density, flow, compactibility and cohesivity properties. The crystal agglomerates were developed for direct capsule-filling and tablet-making.

  15. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  16. Crystal structure of propaquizafop

    PubMed Central

    Jeon, Youngeun; Kim, Jineun; Lee, Sangjin; Kim, Tae Ho

    2014-01-01

    The title compound, C22H22ClN3O5 {systematic name: 2-(propan-2-ylideneaminooxy)ethyl (R)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate}, is a herbicide. The asymmetric unit comprises two independent molecules in which the dihedral angles between the phenyl ring and the quinoxaline ring plane are 75.93?(7) and 82.77?(8). The crystal structure features CH?O, CH?N, and CH?Cl hydrogen bonds, as well as weak ?? interactions [ring-centroid separation = 3.782?(2) and 3.5952?(19)?], resulting in a three-dimensional architecture. PMID:25553037

  17. Crystal Structures of Phosphoketolase

    PubMed Central

    Suzuki, Ryuichiro; Katayama, Takane; Kim, Byung-Jun; Wakagi, Takayoshi; Shoun, Hirofumi; Ashida, Hisashi; Yamamoto, Kenji; Fushinobu, Shinya

    2010-01-01

    Thiamine diphosphate (ThDP)-dependent enzymes are ubiquitously present in all organisms and catalyze essential reactions in various metabolic pathways. ThDP-dependent phosphoketolase plays key roles in the central metabolism of heterofermentative bacteria and in the pentose catabolism of various microbes. In particular, bifidobacteria, representatives of beneficial commensal bacteria, have an effective glycolytic pathway called bifid shunt in which 2.5 mol of ATP are produced per glucose. Phosphoketolase catalyzes two steps in the bifid shunt because of its dual-substrate specificity; they are phosphorolytic cleavage of fructose 6-phosphate or xylulose 5-phosphate to produce aldose phosphate, acetyl phosphate, and H2O. The phosphoketolase reaction is different from other well studied ThDP-dependent enzymes because it involves a dehydration step. Although phosphoketolase was discovered more than 50 years ago, its three-dimensional structure remains unclear. In this study we report the crystal structures of xylulose 5-phosphate/fructose 6-phosphate phosphoketolase from Bifidobacterium breve. The structures of the two intermediates before and after dehydration (α,β-dihydroxyethyl ThDP and 2-acetyl-ThDP) and complex with inorganic phosphate give an insight into the mechanism of each step of the enzymatic reaction. PMID:20739284

  18. Semiorganic nonlinear optical material: Crystal growth, structure and optical properties of NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2}

    SciTech Connect

    Huang, Hongwei; Yao, Wenjiao; He, Ying; Tian, Na; Chen, Chuangtian; Zhang, Yihe

    2013-09-01

    Graphical abstract: - Highlights: Semiorganic NLO material NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2} has been grown with sizes up to 8 5 2 mm{sup 3}. It crystallizes in the noncentrosymmetric Monoclinic space group P2. Thermal analysis demonstrated NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2} are thermally stable up to 280. NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2} has an absorption edge about 220 nm in the UV region. It exhibits a NLO efficiency of about two times that of KDP (KH{sub 2}PO{sub 4}) standard. - Abstract: Single crystal of the semiorganic NLO material NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2} has been grown with sizes up to 8 5 2 mm{sup 3} by the slow evaporation method. The crystal structure of this compound was determined by single crystal X-ray diffraction. It crystallizes in the Monoclinic space group P2 with lattice parameters a = 5.4045(11) ?, b = 11.692(2) ?, c = 9.4773(19) ? and Z = 2. Thermal analysis demonstrated NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2} are thermally stable up to 280 C. NaB(L-C{sub 4}H{sub 4}O{sub 5}){sub 2} exhibits an absorption edge about 220 nm in the UV region. The powder second-harmonic generation (SHG) measurement performed on the ground crystal indicates that it has a NLO efficiency of about 2 times that of KDP (KH{sub 2}PO{sub 4}) standard. In addition, the origin of stronger SHG effect was discussed.

  19. Automating the application of smart materials for protein crystallization

    PubMed Central

    Khurshid, Sahir; Govada, Lata; EL-Sharif, Hazim F.; Reddy, Subrayal M.; Chayen, Naomi E.

    2015-01-01

    The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as smart materials) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials. PMID:25760603

  20. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  1. Crystal structure determination of Efavirenz

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria; Dumitru, Ristoiu

    2015-12-01

    Needle-shaped single crystals of the title compound, C14H9ClF3NO2, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  2. Design of tunable transmission filter using one-dimensional defective photonic crystal structure containing electro-optic material

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rajorshi; Chakraborty, Rajib

    2015-11-01

    A narrowband tunable transmission filter suitable for wavelength division multiplexing is designed. The basic structure is a one-dimensional Fabry-Perot structure formed by layers of dielectric magnesium fluoride and electro-optic lithium niobate, which act as low and high refractive index material layers, respectively. A narrowband phase shifted transmission peak occurs within the stopband of the reflectance spectra of the structure by introducing the defect of a low-index material at a suitable position in the structure. The bandwidth of the peak depends on the number of bilayers and also on the operating wavelength. The phase shift of the transmission peak is linearly related to the wavelength under consideration. By adjusting the defect layer width, this shift of the transmission peak from the operating wavelength can be avoided. The device dimensions are so chosen that such a structure can be fabricated and used with presently available technology. A linear transmission peak tunability of 4 nm/10 V is achieved for this device by varying the refractive index of the electro-optic lithium niobate layer with externally applied voltage along its z axis. All the simulations have been carried out using the finite difference time domain method in a MATLAB® environment.

  3. Crystal growth of organic energetic materials: pentaerythritol tetranitrate

    NASA Astrophysics Data System (ADS)

    Zhang, Gengxin; Weeks, Brandon; Zhang, Xin

    2012-09-01

    The energy output performance and thermal stability of organic energetic materials have a strong dependence on the porosity, particle morphology, and micro-scale crystal structure. This paper reviews the growth habit of pure pentaerythritol tetranitrate (PETN) crystals and the effect of metal impurities on microcrystal morphology of PETN films. The pure crystal growth shows that PETN molecules diffuse on the surface and nucleate in a two-dimensional layer-by-layer fashion; the final structure is controlled by the deposition flux. Also, the effect of metal cation impurities has a strong impact on the thermal stability and crystal structure, and is dependent on the doping level.

  4. Na/sub 4/Nb(PO/sub 4/)/sub 3/, a material with a reversible crystal-glass transformation: structural and optical comparison

    SciTech Connect

    El Jazouli, A.; Parent, C.; Dance, J.M.; Le Flem, G.; Hagenmuller, P.; Viala, J.C.

    1988-06-01

    The phosphate Na/sub 4/Nb(PO/sub 4/)/sub 3/ exhibits a reversible crystal-phase change. Raman and optical investigations give evidence of the similarity between the covalent skeleton of the Nasicon-like crystalline phosphate and the network of the glass. Both types of materials contain octahedral NbO/sub 6/ groups with various Nb-O lengths. It is shown for the neodymium-doped glasses that these structural features induce a strong self concentration quenching of the Nd/sup 3 +/ emission.

  5. Crystallization and functionality of inorganic materials

    SciTech Connect

    Xue, Dongfeng; School of Chemical Engineering, Dalian University of Technology, Dalian 116024 ; Li, Keyan; Liu, Jun; Sun, Congting; Chen, Kunfeng; School of Chemical Engineering, Dalian University of Technology, Dalian 116024

    2012-10-15

    In this article, we briefly summarized our recent work on the studies of crystallization and functionality of inorganic materials. On the basis of the chemical bonding theory of single crystal growth, we can quantitatively simulate Cu{sub 2}O crystallization processes in solution system. We also kinetically controlled Cu{sub 2}O crystallization process in the reduction solution route. Lithium ion battery and supercapacitor performances of some oxides such as Co{sub 3}O{sub 4} and MnO{sub 2} were shown to elucidate the important effect of crystallization on functionality of inorganic materials. This work encourages us to create novel functionalities through the study of crystallization of inorganic materials, which warrants more chances in the field of functional materials.

  6. Data mining chemistry and crystal structure

    NASA Astrophysics Data System (ADS)

    Yang, Lusann W.

    The availability of large amounts of data generated by high-throughput computing and experimentation has generated interest in the application of machine learning techniques to materials science. Machine learning of materials behavior requires the use of feature vectors that capture compositional or structural information influence a target property. We present methods for assessing the similarity of compositions, substructures, and crystal structures. Similarity measures are important for the classification and clustering of data points, allowing for the organization of data and the prediction of materials properties. The similarity functions between ions, compositions, substructures and crystal structure are based upon a data-mined probability with which two ions will substitute for each other within the same structure prototype. The composition similarity is validated via the prediction of crystal structure prototypes for oxides from the Inorganic Crystal Structure Database. It performs particularly well on the quaternary oxides, predicting the correct prototype within 5 guesses 90% of the time. The sustructural similarity is validated via the prediction of Li insertion sites in the oxides; it finds all of the Li sites with less than 8 incorrect guesses 90% of the time.

  7. Materials and structures

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.

    1988-01-01

    Information on materials and structures for use in space is given in viewgraph form. Information is given on the Materials and Structures Division of NASA's Office of Aeronautics and Space Technology. The Division's space research and development budget is given. Further information is given on space materials and structures, space environmental effects, radiation effects, high temperature materials research, metal matrix composites, SiC fiber reinforced titanium alloys, structural dynamics, and control of flexible structures.

  8. Crystal structure of oryzalin

    PubMed Central

    Kang, Gihaeng; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2015-01-01

    The title compound, C12H18N4O6S (systematic name: 4-di­propyl­amino-3,5-di­nitro­benzene­sulfonamide), is a sulfonamide with herbicidal properties marketed as oryzalin. The dihedral angles between the benzene ring and the mean planes of the nitro groups are 26.15 (11) and 54.80 (9)°. The propyl arms of the di­propyl­amino substituent lie on opposite sides of this ring plane. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds generate a three-dimensional network. PMID:26090208

  9. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    PubMed Central

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-01-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu–Sn alloys as anode materials for Li-ion batteries. PMID:25473128

  10. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    PubMed

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR 2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR 2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries. PMID:25473128

  11. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-12-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  12. Phototropic liquid crystal materials containing naphthopyran dopants

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; Bunning, Timothy; White, Timothy

    2015-03-01

    Dopant molecules dispersed in a liquid crystalline material usually affects the order of the system and the transition temperature between various phases. If the dopants undergo photoisomerization between conformers with different shapes, the interactions with the liquid crystal molecules can be different for the material in the dark and during exposure to light of appropriate wavelength. This can be used to achieve isothermal photoinduced phase transitions (phototropism). With proper selection of materials components, both order-to-disorder and disorder-to-order photoinduced transition have been demonstrated. Isothermal order-increasing transitions have been observed recently using naphthopyran derivatives as dopants. We are investigating the changes in order parameter and transition temperature of liquid crystal mixtures containing naphthopyrans and how they are related to exposure conditions and to the concentration and molecular structure of the dopants. We are also studying the nature of the photoinduced phase transitions, and comparing the behavior with that of azobenzene-doped mixtures, in which exposure to light leads to a decrease, instead of an increase, in the order of the system.

  13. Crystal structure of pyriproxyfen.

    PubMed

    Kang, Gihaeng; Kim, Jineun; Park, Hyunjin; Kim, Tae Ho

    2015-08-01

    In the title compound {systematic name: 4-phen-oxy-phenyl (RS)-2-[(pyridin-2-yl)-oxy]propyl ether}, C20H19NO3, which is a juvenile hormone mimic and insecticide, the dihedral angles between the plane of the central benene ring and those of the pendant pyridine ring and phenyl ring are 78.09?(6) and 82.14?(8), respectively. The conformation of the O-C-C-O linkage is gauche [torsion angle = -75.0?(2)]. In the crystal, weak aromatic ?-? stacking inter-actions [centroid-centroid separation = 3.8436?(13)?] and C-H?? inter-actions link adjacent mol-ecules, forming a three-dimensional network. PMID:26396811

  14. Crystal structure of pyriproxyfen

    PubMed Central

    Kang, Gihaeng; Kim, Jineun; Park, Hyunjin; Kim, Tae Ho

    2015-01-01

    In the title compound {systematic name: 4-phenoxyphenyl (RS)-2-[(pyridin-2-yl)oxy]propyl ether}, C20H19NO3, which is a juvenile hormone mimic and insecticide, the dihedral angles between the plane of the central benene ring and those of the pendant pyridine ring and phenyl ring are 78.09?(6) and 82.14?(8), respectively. The conformation of the OCCO linkage is gauche [torsion angle = ?75.0?(2)]. In the crystal, weak aromatic ?? stacking interactions [centroidcentroid separation = 3.8436?(13)?] and CH?? interactions link adjacent molecules, forming a three-dimensional network. PMID:26396811

  15. Crystal structure of mandipropamid

    PubMed Central

    Park, Hyunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-01-01

    In the title compound, C23H22ClNO4 (systematic name: (RS)-2-(4-chlorophenyl)-N-{2-[3-methoxy-4-(prop-2-yn-1-yloxy)phenyl]ethyl}-2-(prop-2-ynyloxy)acetamide), an amide fungicide, the dihedral angle between the chlorobenzene and benzene rings is 65.36?(6). In the crystal, NH?O hydrogen bonds lead to zigzag supramolecular chains along the c axis (glide symmetry). These are connected into layers by CH?O and CH?? interactions; the layers stack along the a axis with no specific intermolecular interactions between them. PMID:26594445

  16. Crystal structure of mandipropamid.

    PubMed

    Park, Hyunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-10-01

    In the title compound, C23H22ClNO4 (systematic name: (RS)-2-(4-chloro-phen-yl)-N-{2-[3-meth-oxy-4-(prop-2-yn-1-yl-oxy)phen-yl]eth-yl}-2-(prop-2-yn-yloxy)acetamide), an amide fungicide, the dihedral angle between the chloro-benzene and benzene rings is 65.36?(6). In the crystal, N-H?O hydrogen bonds lead to zigzag supra-molecular chains along the c axis (glide symmetry). These are connected into layers by C-H?O and C-H?? inter-actions; the layers stack along the a axis with no specific inter-molecular inter-actions between them. PMID:26594445

  17. Crystal structure of cyproconazole

    PubMed Central

    Kang, Gihaeng; Kim, Jineun; Kwon, Eunjin; Kim, Tae Ho

    2015-01-01

    The title compound [systematic name: 2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol], C15H18ClN3O, is a conazole fungicide. The asymmetric unit comprises two enantiomeric pairs (molecules A and B) in which the dihedral angles between the chlorophenyl and triazole rings are 46.54?(9) (molecule A) and 67.03?(8) (molecule B). In the crystal, CH?O, OH?N and CH?Cl hydrogen bonds and weak CH?? interactions [3.473?(2)?] link adjacent molecules, forming columns along the a axis. PMID:26870467

  18. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  19. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1983-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  20. Crystal Growth and Intergrowth Structure of the New Heavy Fermion Materials CeIrIn 5 and CeRhIn 5

    NASA Astrophysics Data System (ADS)

    Moshopoulou, E. G.; Fisk, Z.; Sarrao, J. L.; Thompson, J. D.

    2001-04-01

    The structures of the new heavy fermion materials CeIrIn5 and CeRhIn5 have been determined by single-crystal neutron (R(F)=0.051) and X-ray (R(F)=0.056) diffraction, respectively. Both compounds adopt tetragonal structure, space group P4/mmm (No. 123), Z=1, a=b=4.674(1) , and c=7.501(5) for CeIrIn5, and a=b=4.656(2) , and c=7.542(1) for CeRhIn5. The possible presence of antisite disorder, a long-standing question on this type of structure, was excluded by both electron and-neutron or X-ray diffraction. The compounds are built by monolayers of face-sharing distorted cuboctahedra [CeIn3] and monolayers of edge-sharing rectangular parallelepipeds [RhIn2] or [IrIn2], stacked alternatively in the [001] direction. Therefore, they are new members of the inhomogeneous linear homologous series MmTnT?3m+2n. Because of their ordered intergrowth structure, the physical properties of the quasi-two-dimensional heavy electron systems CeIrIn5 and CeRhIn5 can be directly compared with the corresponding ones of their parent compound, the three-dimensional heavy fermion material CeIn3.

  1. Crystal structure refinement with SHELXL.

    PubMed

    Sheldrick, George M

    2015-01-01

    The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and MacOSX operating systems, and is particularly suitable for multiple-core processors. PMID:25567568

  2. Crystal structure refinement with SHELXL

    PubMed Central

    Sheldrick, George M.

    2015-01-01

    The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as a CIF) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and MacOSX operating systems, and is particularly suitable for multiple-core processors. PMID:25567568

  3. Crystal structure refinement with SHELXL

    SciTech Connect

    Sheldrick, George M.

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  4. Automating the application of smart materials for protein crystallization

    SciTech Connect

    Khurshid, Sahir; Govada, Lata; EL-Sharif, Hazim F.; Reddy, Subrayal M.; Chayen, Naomi E.

    2015-03-01

    The first semi-liquid, non-protein nucleating agent for automated protein crystallization trials is described. This ‘smart material’ is demonstrated to induce crystal growth and will provide a simple, cost-effective tool for scientists in academia and industry. The fabrication and validation of the first semi-liquid nonprotein nucleating agent to be administered automatically to crystallization trials is reported. This research builds upon prior demonstration of the suitability of molecularly imprinted polymers (MIPs; known as ‘smart materials’) for inducing protein crystal growth. Modified MIPs of altered texture suitable for high-throughput trials are demonstrated to improve crystal quality and to increase the probability of success when screening for suitable crystallization conditions. The application of these materials is simple, time-efficient and will provide a potent tool for structural biologists embarking on crystallization trials.

  5. Crystal structure of pyrazoxyfen.

    PubMed

    Kwon, Eunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-12-01

    The title compound, C20H16Cl2N2O3 (systematic name: 2-{[4-(2,4-di-chloro-benzo-yl)-1,3-di-methyl-pyrazol-5-yl}-oxy}-1-phenyl-ethan-1-one), is the benzoyl-pyrazole herbicide pyrazoxyfen. The asymmetric unit comprises two independent mol-ecules, A and B, in which the pyrazole ring makes dihedral angles of 80.29?(10) and 61.70?(10) and 87.60?(10) and 63.92?(8), respectively, with the di-chloro-phenyl and phenyl rings. In the crystal, C-H?O and C-H?N hydrogen bonds, and C-H?? and ?-? [3.646?(2)?] inter-actions link adjacent mol-ecules, forming a two-dimensional network parellel to (011). In addition, the networks are linked by weak inter-molecular C-Cl?? [3.356?(2), 3.950?(2), 3.250?(2) and 3.575?(2)?] inter-actions, resulting in a three-dimensional architecture. PMID:26870483

  6. Crystal structure of difenoconazole

    PubMed Central

    Cho, Seonghwa; Kang, Gihaeng; Lee, Sangjin; Kim, Tae Ho

    2014-01-01

    In the title compound difenoconazole [systematic name: 1-({2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-yl}methyl)-1H-1,2,4-triazole], C19H17Cl2N3O3, the dihedral angle between the planes of the 4-chlorophenyl and 2-chlorophenyl rings is 79.34?(9), while the dihedral angle between the planes of the triazole ring and the dioxolanyl group is 59.45?(19). In the crystal, pairs of CH?N hydrogen bonds link adjacent molecules, forming dimers with R 2 2(6) loops. In addition, the dimers are linked by CH?O hydrogen bonds, resulting in a three-dimensional architecture. Disorder was modeled for one C atom of the dioxolanyl group over two sets of sites with an occupancy ratio of 0.566?(17):0.434?(17). PMID:25484812

  7. Crystal structure of chlorfluazuron

    PubMed Central

    Cho, Seonghwa; Kim, Jineun; Lee, Sangjin; Kim, Tae Ho

    2015-01-01

    The title compound (systematic name: 1-{3,5-dichloro-4-[3-chloro-5-(trifluoromethyl)pyridin-2-yloxy]phenyl}-3-(2,6-difluorobenzoyl)urea), C20H9Cl3F5N3O3, is a benzoylphenylurea insecticide. The dihedral angles between the planes of the central dichlorophenyl and the terminal difluorophenyl and chloropyridyl rings are 79.51?(6) and 78.84 6), respectively. In the crystal, pairs of NH?O hydrogen bonds link adjacent molecules, forming R 2 2(8) inversion dimers. In addition, the dimers are linked by short F?Cl [3.1060?(16)?] and Cl?Cl [3.2837?(7)?] contacts, as well as weak intermolecular ?? interactions [ring centroid separation = 3.6100?(11) and 3.7764?(13)?], resulting in a two-dimensional architecture parallel to (111). PMID:25705506

  8. Crystal structure of pyrazoxyfen

    PubMed Central

    Kwon, Eunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-01-01

    The title compound, C20H16Cl2N2O3 (systematic name: 2-{[4-(2,4-di­chloro­benzo­yl)-1,3-di­methyl­pyrazol-5-yl}­oxy}-1-phenyl­ethan-1-one), is the benzoyl­pyrazole herbicide pyrazoxyfen. The asymmetric unit comprises two independent mol­ecules, A and B, in which the pyrazole ring makes dihedral angles of 80.29 (10) and 61.70 (10)° and 87.60 (10) and 63.92 (8)°, respectively, with the di­chloro­phenyl and phenyl rings. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π and π–π [3.646 (2) Å] inter­actions link adjacent mol­ecules, forming a two-dimensional network parellel to (011). In addition, the networks are linked by weak inter­molecular C—Cl⋯π [3.356 (2), 3.950 (2), 3.250 (2) and 3.575 (2) Å] inter­actions, resulting in a three-dimensional architecture. PMID:26870483

  9. Growth, structural, optical and mechanical studies on acid mixed glycine metal salt (GABN) crystal as potential NLO material

    NASA Astrophysics Data System (ADS)

    Khandpekar, Mahendra M.; Dongare, Shailesh S.; Patil, Shirish B.; Pati, Shankar P.

    2012-03-01

    Transparent crystals of ?-glycine with ammonium nitrate and barium nitrate (GABN) have been grown from aqueous solution by slow evaporation technique at room temperature. Crystals of size 11 7 4 mm 3 have been obtained in about 3-4 weeks time. The solubility of GABN has been determined in water. The grown crystal belongs to orthorhombic system with cell parameters a = 7.317 A.U, b = 12.154 A.U and c = 5.468 A.U with a unit cell volume 486.35 (A.U) 3. The presence of chemical components/groups has been identified by CHN, EDAX and NMR analysis. Comparative IR and Raman studies indicate a molecule with a lack of centre of symmetry. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. Using a Nd-YAG laser (1064 nm), the optical second harmonic generation (SHG) conversion efficiency of GABN is found to be 1.406 times of that of standard KDP. On exposure to light the GABN crystals are found to exhibit negative photoconductivity. I-V characteristics, SEM studies, dielectrics studies, and Vickers micro hardness measurement have been carried out.

  10. An insight into crystal, electronic, and local structures of lithium iron silicate (Li2FeSiO4) materials upon lithium extraction

    NASA Astrophysics Data System (ADS)

    Kamon-in, O.; Klysubun, W.; Limphirat, W.; Srilomsak, S.; Meethong, N.

    2013-05-01

    Recently, orthosilicate, Li2MSiO4 (where M=transition metal) materials have been attracting considerable attention for potential use as a new generation cathode for Li-ion batteries due to their safety, low toxicity, and low cost characteristics. In addition, the presence of two Li+ ions in the molecule offers a multiple electron-charge transfer (M2+/M3+ and M3+/M4+ redox couples), thus allowing a high achievable capacity of more than 320 mA h/g per M unit. Good electrochemical properties of Li2FeSiO4 have been reported through several approaches such as downsizing of the particles, carbon-coating, etc. However, in addition to electrochemical performance, fundamental understanding regarding crystal, electronic and local structure changes during charge/discharge processes is also important and needs more rigorous investigation. In this work, lithium iron silicates (Li2FeSiO4/C) in space group of Pnma: a=10.6671(3) , b=6.2689(2) , and c=5.0042(2) have been prepared by solid-state reaction. The synthesized as well as chemical delithiated samples have been characterized by XRD, HRTEM, AAS and XAS techniques. We will show the results focusing on Fe K-edge XANES, EXAFS, HRTEM and XRD of the Li2-xFeSiO4 samples and discuss how the crystal, electronic, and local structure changes upon Li+ de-intercalation.

  11. Materials with structural hierarchy

    NASA Technical Reports Server (NTRS)

    Lakes, Roderic

    1993-01-01

    The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.

  12. Interpreting intensities from white beam single-crystal Laue diffraction: A tool for structural characterization of Earth materials at extreme conditions.

    NASA Astrophysics Data System (ADS)

    Kunz, M.; Tamura, N.; Dejoie, C.; Baerlocher, C.; McCusker, L.

    2012-12-01

    Monochromatic X-ray powder diffraction is the traditional method of choice for structural characterization of Earth material at extreme conditions of pressure and temperature. This method is intrinsically limited for such conditions due to the requirement for small sample volumes in order to attain very high pressure on the one hand and recrystallization at high temperature on the other hand, both of which are detrimental to powder statistics. The use of well established monochromatic single crystal diffraction as an alternative in such cases is often hampered by the lack of mobility and/or access of crystals within pressure devices. White beam Laue diffraction on static samples may offer a solution to this problem. This technique has already been exploited by the protein community mostly for time resolved measurements. It's application to small unit-cell inorganic materials is however complicated by the lack of data redundancy. The combination of white beam Laue diffraction with a micro-focused beam allows selectively probing individual crystallites within a diamond anvil cell (DAC) without the need to move the sample in the beam. However, to make this method a valid tool, a number of specific problems inherent to Laue diffraction have to be addressed. 1) Experimental geometry: Due to the nature of Laue diffraction, reciprocal space is covered mostly at high diffraction angles. This requires either a DAC with very wide opening or a set-up involving X-ray transparent gaskets. 2) energy specific absorption and Lorentz corrections: These can be done analytically and do not pose any serious problems. 3) harmonic overlap: Independent of symmetry and unit cell size, a significant fraction of observed reflections consist of two or more harmonic reflections, whose intensities need to be deconvoluted. This can be in principle solved using a lower energy threshold as offered by the Pilatus detector. Alternatives are deconvolution during refinement starting from non overlapped peaks, analogous to the Rietveld method in powder diffraction or - in the future - fully energy discriminating area detectors. A third alternative currently explored on the high-pressure beamline of the Advanced Light Source is step-scanning the monochromator across the available energy spectrum. 4) incident spectrum normalization: This is not straight forward since it is usually convoluted with detector response and cannot be easily measured. We found that comparing the measured intensities of a structurally well characterized crystal (e.g. calcite) with the calculated structure factor allows to establish a very satisfactory correction curve that includes both the variation in the flux and in the detector response. We will present details of procedures developed, together with examples of first structure solutions and refinements.

  13. Synthetic thermoelectric materials comprising phononic crystals

    DOEpatents

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  14. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  15. Crystal structure of guggulsterone Z

    SciTech Connect

    Gupta, V. K. Bandhoria, P.; Gupta, B. D.; Gupta, K. K.

    2006-03-15

    The crystal structure of the title compound (4,17(20)-trans-pregnadiene-3,16-dione, C{sub 21}H{sub 28}O{sub 2}) has been determined by direct methods using single-crystal X-ray diffraction data. The compound crystallizes into the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with the unit cell parameters a = 7.908(2) A, b = 13.611(3) A, c = 16.309(4) A, and Z = 4. The structure has been refined to R = 0.058 for 3667 observed reflections. The bond distances and angles are in good agreement with guggulsterone E and other related steroid molecules. Ring A exists in the distorted sofa conformation, while rings B and C adopt the distorted chair conformation. Five-membered ring D is intermediate between the half-chair and envelope conformations. The A/B ring junction is quasi-trans, while ring systems B/C and C/D are trans fused about the C(8)-C(9) and C(13)-C(14) bonds, respectively. The steroid nucleus has a small twist, as shown by the C(19)-C(10)...C(13)-C(18) pseudo-torsion angle of 7.2{sup o}. The crystal structure is stabilized by intra-and intermolecular C-H...O hydrogen bonds.

  16. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  17. Diamond-structured photonic crystals.

    PubMed

    Maldovan, Martin; Thomas, Edwin L

    2004-09-01

    Certain periodic dielectric structures can prohibit the propagation of light for all directions within a frequency range. These 'photonic crystals' allow researchers to modify the interaction between electromagnetic fields and dielectric media from radio to optical wavelengths. Their technological potential, such as the inhibition of spontaneous emission, enhancement of semiconductor lasers, and integration and miniaturization of optical components, makes the search for an easy-to-craft photonic crystal with a large bandgap a major field of study. This progress article surveys a collection of robust complete three-dimensional dielectric photonic-bandgap structures for the visible and near-infrared regimes based on the diamond morphology together with their specific fabrication techniques. The basic origin of the complete photonic bandgap for the 'champion' diamond morphology is described in terms of dielectric modulations along principal directions. Progress in three-dimensional interference lithography for fabrication of near-champion diamond-based structures is also discussed. PMID:15343291

  18. An Example of Body-Centered Cubic Crystal Structure: The Atomium in Brussels as an Educative Tool for Introductory Materials Chemistry

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2012-01-01

    When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in

  19. An Example of Body-Centered Cubic Crystal Structure: The Atomium in Brussels as an Educative Tool for Introductory Materials Chemistry

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2012-01-01

    When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in…

  20. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.

    2003-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.

  1. The crystal structure and crystal chemistry of fernandinite and corvusite

    USGS Publications Warehouse

    Evans, H.T., Jr.; Post, J.E.; Ross, D.R.; Nelen, J.A.

    1994-01-01

    Using type material of fernandinite from Minasragra, Peru, and corvusite from the Jack Claim, La Sal Mountains, Utah, the properties and crystal chemistry of these minerals have been determined by Rietveld analysis of the powder X-ray-diffraction patterns. The crystal structure of both species is isotypic with the V2O5 -type layer first found for ??-Ag0.68V2O5; it consists of chains of VO6 octahedra linked by opposite corners (parallel to b) condensed by edge-sharing to form the layer. The vanadium has average valence 4.8, and the resulting layer-charge is balanced by varying amounts of Ca, Na, and K in the interlayer region accompanied by labile water. This study has confirmed the validity of fernandinite as a unique mineral species. It is closely related to corvusite, from which it is distinguished on the basis of the dominant interlayer cation: Ca for fernandinite, Na for curvusite. -Authors

  2. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    NASA Astrophysics Data System (ADS)

    Wang, Zhixun; Cheng, Yongzhi; Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-08-01

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3-5 μm and 8-14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3-5 μm and 8-12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  3. Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications

    SciTech Connect

    Wang, Zhixun; Cheng, Yongzhi Nie, Yan; Wang, Xian; Gong, Rongzhou

    2014-08-07

    In this paper, a new type one-dimensional (1D) double hetero-structure composite photonic crystal (CPC) for infrared-radar stealth-compatible materials applications was proposed and studied numerically and experimentally. First, based on transfer matrix method of thin-film optical theory, the propagation characteristics of the proposed structure comprising a stack of different alternating micrometer-thick layers of germanium and zinc sulfide were investigated numerically. Calculation results exhibit that this 1D single hetero-structure PC could achieve a flat high reflectivity gradually with increasing the number of the alternating media layers in a single broadband range. Then, based on principles of distributed Bragg reflector micro-cavity, a 1D double hetero-structure CPC comprising four PCs with thickness of 0.797 μm, 0.592 μm, 1.480 μm, and 2.114 μm, respectively, was proposed. Calculation results exhibit that this CPC could achieve a high reflectance of greater than 0.99 in the wavelength ranges of 3–5 μm and 8–14 μm and agreed well with experiment. Further experiments exhibit that the infrared emissivity of the proposed CPC is as low as 0.073 and 0.042 in the wavelength ranges of 3–5 μm and 8–12 μm, respectively. In addition, the proposed CPC can be used to construct infrared-radar stealth-compatible materials due to its high transmittance in radar wave band.

  4. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  5. Crystal structure and chemistry of a complex indium phosphate framework material, (ethylenediammonium)In{sub 3}P{sub 3}O{sub 12}(OH){sub 2}

    SciTech Connect

    Broach, Robert W.; Bedard, Robert L.; King, Lisa M.; Pluth, Joseph J.; Smith, Joseph V.; Kirchner, Richard M.

    2012-12-15

    The chemistry and structure of a novel indium phosphate material (RIPS-4), (H{sub 3}NCH{sub 2}CH{sub 2}NH{sub 3})In{sub 3}-P{sub 3}O{sub 12}(OH){sub 2}, are described. RIPS-4 was synthesized using ethylene diamine as a structure-directing organic agent. The X-ray crystal structure was determined from a 12 Multiplication-Sign 12 Multiplication-Sign 42 {mu}m{sup 3} crystal in space group C2/m with a=18.662(4) A, b=6.600(2) A, c=12.573(3) A and {beta}=120.92(1) Degree-Sign . The structure consists of a complex edge- and vertex-shared open framework of InO{sub 6} octahedra and PO{sub 4} tetrahedra enclosing cavities occupied by ethylenediamonium ions. One set of octahedra share opposing edges to form chains along the b-axis matching the structural unit in rutile (TiO{sub 2}). This rutile edge-shared chain has its projecting oxygen atoms shared with the vertexes of either a PO{sub 4} tetrahedron or a second type of InO{sub 6} octahedron. The O atoms are 2-connected, each to one In and one P, except for two protonated O atoms (hydroxyl groups) that connect to two and three In atoms, giving three- and four-coordinate O atoms, respectively. - Graphical abstract: The unique topology contains an unusual 4-connected oxygen atom (O{sub 1}) in a complex edge- and vertex-shared open framework of InO{sub 6} octahedra (blue) and PO{sub 4} tetrahedra (yellow) that encloses cavities occupied by ethylenediammonium ions. Highlights: Black-Right-Pointing-Pointer The structure has a unique open-framework topology. Black-Right-Pointing-Pointer The framework contains an unusual 4-connected oxygen atom. Black-Right-Pointing-Pointer Hydrogen bonds hold the ethylenediammonium ions in the cavities.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  7. The effects of Co doping on the crystal structure and electrochemical performance of Mg(Mn2 - xCox)O4 negative materials for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhao, Hu; Liu, Lei; Xiao, Xiaoling; Hu, Zhongbo; Han, Songbai; Liu, Yuntao; Chen, Dongfeng; Liu, Xiangfeng

    2015-01-01

    MgMn2O4 and Co doped Mg(Mn2 - xCox)O4 (x = 0.5, 1.0 and 2.0) compounds have been successfully synthesized and studied as negative materials for lithium ion battery for the first time. Co doping induced a phase transition of MgMn2O4 from a tetragonal spinel-structure with a space group of I41/amd to a cubic spinel structure with a space group of Fd-3m. Electrochemical measurements indicate that the reversible capacity and cyclability of Mg(Mn2 - xCox)O4 first increases and then decreases with increasing Co content indicating that Co content has a significant effect on the electrochemical performance. MgMn1.5Co0.5O4 shows the best electrochemical performance compared to the other three samples. This might be largely attributed to the phase transition and anti-sites defects of spinel crystal cell resulting from the Co substitution for Mn, which was further confirmed by Rietveld refinement of neutron diffraction.

  8. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  9. Structural, optical, thermal, photoconductivity, laser damage threshold and fluorescence analysis of an organic material: β-P-amino benzoic acid single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, SenthilKumar; Paulraj, Rajesh; Ramasamy, P.

    2016-02-01

    β-P-amino benzoic acid, an organic single crystal was grown by slow evaporation technique. Single crystal X-ray diffraction studies show that the grown crystal has β-polymorph of P-amino benzoic acid [β-PABA] form and the lattice parameters are a = 6.30 Å, b = 8.61 Å, c = 12.43 Å α = γ = 90° and β = 100.20°. FTIR analysis confirms that bands at 1588 cm-1, 1415 cm-1 are assigned to ring skeletal vibrations of title compound. The molecular structure of the grown crystal has been identified by Nuclear Magnetic Resonance spectral study. The optical absorbance spectrum from 200 to 1100 nm shows that there is an edge absorbance in UV region. Optical band gap of the crystal has been assessed from the absorbance spectrum. The thermal properties of crystals were evaluated from TG-DTA analysis, it exhibits that there is no weight loss up to 187 °C. Laser damage threshold indicates that the grown crystal has no surface damage up to 35 mJ. Photoconductivity and fluorescence spectral experiments are also carried out and the results are discussed.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  11. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2006-09-07

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

  12. Crystal structure of lignin peroxidase

    SciTech Connect

    Edwards, S.L. National Institutes of Health, Bethesda, MD ); Raag, R. ); Wariishi, Hiroyuki; Gold, M.H. ); Poulos, T.L. Univ. of California, Irvine )

    1993-01-15

    The crystal structure of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium has been determined to 2.6 [Angstrom] resolution by using multiple isomorphous replacement methods and simulated annealing refinement. Of the 343 residues, residues 3-335 have been accounted for in the electron density map, including four disulfide bonds. The overall three-dimensional structure is very similar to the only other peroxidase in this group for which a high-resolution crystal structure is available, cytochrome c peroxidase, despite the fact that the sequence identity is only [approx]20%, LiP has four disulfide bonds, while cytochrome c peroxidase has none, and Lip is larger (343 vs. 294 residues). The basic helical fold and connectivity defined by 11 helical segments with the heme sandwiched between the distal and proximal helices found in cytochrome c peroxidase is maintained in LiP. Both enzymes have a histidine as a proximal heme ligand, which is hydrogen bonded to a buried aspartic acid side chain. The distal or peroxide binding pocket also is similar, including the distal arginine and histidine. The most striking difference is that, whereas cytochrome c peroxidase has tryptophans contacting the distal and proximal heme surfaces, LiP has phenylalanines. This in part explains why, in the reaction with peroxides, cytochrome c peroxidase forms an amino acid-centered free radical, whereas LiP forms a porphyrin [pi] cation radical. 42 refs., 4 figs., 2 tabs.

  13. Crystal structure of lignin peroxidase.

    PubMed Central

    Edwards, S L; Raag, R; Wariishi, H; Gold, M H; Poulos, T L

    1993-01-01

    The crystal structure of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium has been determined to 2.6 A resolution by usine multiple isomorphous replacement methods and simulated annealing refinement. Of the 343 residues, residues 3-335 have been accounted for in the electron density map, including four disulfide bonds. The overall three-dimensional structure is very similar to the only other peroxidase in this group for which a high-resolution crystal structure is available, cytochrome c peroxidase, despite the fact that the sequence identity is only approximately 20%, LiP has four disulfide bonds, while cytochrome c peroxidase has none, and LiP is larger (343 vs. 294 residues). The basic helical fold and connectivity defined by 11 helical segments with the heme sandwiched between the distal and proximal helices found in cytochrome c peroxidase is maintained in LiP. Both enzymes have a histidine as a proximal heme ligand, which is hydrogen bonded to a buried aspartic acid side chain. The distal or peroxide binding pocket also is similar, including the distal arginine and histidine. The most striking difference is that, whereas cytochrome c peroxidase has tryptophans contacting the distal and proximal heme surfaces, LiP has phenylalanines. This in part explains why, in the reaction with peroxides, cytochrome c peroxidase forms an amino acid-centered free radical, whereas LiP forms a porphyrin pi cation radical. Images PMID:11607355

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  15. Preparation of porous polymer materials for bulky liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Nose, T.; Ito, T.; Watanabe, T.; Ito, K.; Yanagihara, S.; Ito, R.; Honma, M.

    2012-03-01

    Polymer dispersed liquid crystal (PDLC) type of liquid crystal (LC) cell structure is investigated to attain extremely large size LC layer for the millimeter waves (MMW) and/or terahertz (THz) LC device applications. It is known that the porous PMMA material (PMMA monolith) is easy to fabricate from the PMMA ethanol/water solution, and we try to use the monolith as a polymer matrix of the PDLC type LC devices. It may be possible to make arbitrary bulky structure by using suitable container for the initial solution such as Fresnel zone shape, grating shape and so on, where the thickness of the LC layer can be several millimeters.

  16. Real Time Crystal Axis Measurements Of Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Weiser, Sidney

    1989-12-01

    Since 1912 X-ray diffraction has been the principal method for determining the crystal axis orientation of materials. This test is generally time consuming and must be done in a shielded location. A new real time method has been developed using a rapidly scanned laser beam to analyze the surface morphology of the crystal. By relating the minute facets in the surface to the underlying lattice structure, the crystal axis orientation can be quantitatively determined. The laser beam rapidly rotates about the axis of the instrument projecting a narrow beam at a small point on the surface of the crystal. This scan illuminates the crystal from all azimuth angles while the angle of incidence is varied in successive incre-ments. The laser light reflected from the facets is detected by a centrally located sensor and correlated with a precise clock signal to determine its angular position. The accumulated data is then processed by appropriate algorithms to determine the crystal axis orientation. Then with the aid of individual solid geometry algo-rithms, the deviation of the crystal axis is calculated. This is accomplished in one second and the results are displayed on the monitor in degrees and tenths of a degree. The laser scanner is fully controlled by a computer which is also used to reduce the raw data. The data display is presented on the monitor screen in sufficient detail to determine subtle differences in crystal structure and orientation. Measurements have been made on face centered cubic single crystals of semiconductor materials such as gallium arsenide, cadmium telluride and silicon in 1,0,0; 1,1,0; and 1,1,1 orientations.

  17. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  18. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  19. Bone as a Structural Material.

    PubMed

    Zimmermann, Elizabeth A; Ritchie, Robert O

    2015-06-24

    As one of the most important natural materials, cortical bone is a composite material comprising assemblies of tropocollagen molecules and nanoscale hydroxyapatite mineral crystals, forming an extremely tough, yet lightweight, adaptive and multi-functional material. Bone has evolved to provide structural support to organisms, and therefore its mechanical properties are vital physiologically. Like many mineralized tissues, bone can resist deformation and fracture from the nature of its hierarchical structure, which spans molecular to macroscopic length-scales. In fact, bone derives its fracture resistance with a multitude of deformation and toughening mechanisms that are active at most of these dimensions. It is shown that bone's strength and ductility originate primarily at the scale of the nano to submicrometer structure of its mineralized collagen fibrils and fibers, whereas bone toughness is additionally generated at much larger, micro- to near-millimeter, scales from crack-tip shielding associated with interactions between the crack path and the microstructure. It is further shown how the effectiveness with which bone's structural features can resist fracture at small to large length-scales can become degraded by biological factors such as aging and disease, which affect such features as the collagen cross-linking environment, the homogeneity of mineralization, and the density of the osteonal structures. PMID:25865873

  20. Structural Materials: 95. Concrete

    SciTech Connect

    Naus, Dan J

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  3. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  4. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  6. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    NASA Technical Reports Server (NTRS)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  7. Actuating materials. Voxelated liquid crystal elastomers.

    PubMed

    Ware, Taylor H; McConney, Michael E; Wie, Jeong Jae; Tondiglia, Vincent P; White, Timothy J

    2015-02-27

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods. PMID:25722408

  8. Crystal structure analysis of intermetallic compounds

    NASA Technical Reports Server (NTRS)

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

    1968-01-01

    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  9. Portlandite crystal: Bulk, bilayer, and monolayer structures

    NASA Astrophysics Data System (ADS)

    Aierken, Y.; Sahin, H.; Iyikanat, F.; Horzum, S.; Suslu, A.; Chen, B.; Senger, R. T.; Tongay, S.; Peeters, F. M.

    2015-06-01

    Ca(OH)2 crystals, well known as portlandite, are grown in layered form, and we found that they can be exfoliated on different substrates. We performed first principles calculations to investigate the structural, electronic, vibrational, and mechanical properties of bulk, bilayer, and monolayer structures of this material. Different from other lamellar structures such as graphite and transition-metal dichalcogenides, intralayer bonding in Ca(OH)2 is mainly ionic, while the interlayer interaction remains a weak dispersion-type force. Unlike well-known transition-metal dichalcogenides that exhibit an indirect-to-direct band gap crossover when going from bulk to a single layer, Ca(OH)2 is a direct band gap semiconductor independent of the number layers. The in-plane Young's modulus and the in-plane shear modulus of monolayer Ca(OH)2 are predicted to be quite low while the in-plane Poisson ratio is larger in comparison to those in the monolayer of ionic crystal BN. We measured the Raman spectrum of bulk Ca(OH)2 and identified the high-frequency OH stretching mode A1 g at 3620 cm-1 . In this study, bilayer and monolayer portlandite [Ca(OH)2 ] are predicted to be stable and their characteristics are analyzed in detail. Our results can guide further research on ultrathin hydroxites.

  10. Materials/structures testing

    NASA Astrophysics Data System (ADS)

    Matthews, R. K.

    An overview of the materials/structures test methodology used in the development of hypersonic vehicle components is presented. Focus is on aerothermal methodology and weather/erosion testing. For the latter, testing techniques which evaluate particle impact effects on vehicles operating at supersonic through hypersonic speeds in particle laden environments are described. Such facilities for increasing velocities are: wind tunnels/sleds; arc facilities; aeroballistic ranges. It is noted that it is of particular importance to demonstrate that flight components such as leading edges, cowl lips, and structural panels will survive the aerothermal flight environment. Specific components can experience very high heating rates and surface temperatures from 1100 to 1950 C.

  11. Synthesis, crystal structure, physico-chemical characterization and dielectric properties of a new hybrid material, 1-Ethylpiperazine-1,4-diium tetrachlorocadmate

    NASA Astrophysics Data System (ADS)

    Dhieb, A. C.; Valkonen, A.; Rzaigui, M.; Smirani, W.

    2015-12-01

    A new organic-inorganic hybrid metal complex, 1-Ethylpiperazine-1,4-diium tetrachlorocadmate was synthesized and the structure is determined by single crystal X-Ray diffraction analyses. The title compound crystallizes in the orthorhombic system with space group Pbca. The unit cell parameters are a = 11.5129 (2) Å, b = 9.7801 (2) Å, c = 23.8599 (4) Å with Z = 8 and V = 2686.56 (8) Å3. The examination of the structure shows that Cd(II) is coordinated by 4 chlorine atoms and adopt a tetrahedral geometry. Three-dimensional frameworks of the title compound are produced by N-H⋯Cl and C-H⋯Cl hydrogen bonding. IR, Raman and UV-Visible spectroscopies were also used to characterize this complex. Moreover, the fluorescent properties of the compound have been investigated in the solid state at room temperature. Solid state 13C MAS NMR spectroscopy results are in agreement with the X-ray structure. Differential scanning calorimetry (DSC) has revealed a structural phase transition of the order-disorder type around 373 K, and dielectric measurements were performed to discuss the mechanism of this phase transition. The evolution of dielectric constant as a function of temperature of the sample has been investigated in order to determine some related parameters.

  12. Crystal structure of benzimidazolium salicylate.

    PubMed

    Amudha, M; Kumar, P Praveen; Chakkaravarthi, G

    2015-10-01

    In the anion of the title mol-ecular salt, C7H7N2 (+)C7H5O3 (-) (systematic name: 1H-benzimidazol-3-ium 2-hy-droxy-ben-zo-ate), there is an intra-molecular O-H?O hydrogen bond that generates an S(6) ring motif. The CO2 group makes a dihedral angle of 5.33?(15) with its attached ring. In the crystal, the dihedral angle between the benzimidazolium ring and the anion benzene ring is 75.88?(5). Two cations bridge two anions via two pairs of N-H?O hydrogen bonds, enclosing an R (4) 4(16) ring motif, forming a four-membered centrosymmetric arrangement. These units are linked via C-H?O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C-H?? and ?-? inter-actions [inter-centroid distances = 3.4156?(7) and 3.8196?(8)?], forming a three-dimensional structure. PMID:26594483

  13. Crystal structure transfer in core/shell nanowires.

    PubMed

    Algra, Rienk E; Hocevar, Mora; Verheijen, Marcel A; Zardo, Ilaria; Immink, George G W; van Enckevort, Willem J P; Abstreiter, Gerhard; Kouwenhoven, Leo P; Vlieg, Elias; Bakkers, Erik P A M

    2011-04-13

    Structure engineering is an emerging tool to control opto-electronic properties of semiconductors. Recently, control of crystal structure and the formation of a twinning superlattice have been shown for III-V nanowires. This level of control has not been obtained for Si nanowires, the most relevant material for the semiconductor industry. Here, we present an approach, in which a designed twinning superlattice with the zinc blende crystal structure or the wurtzite crystal structure is transferred from a gallium phosphide core wire to an epitaxially grown silicon shell. These materials have a difference in lattice constants of only 0.4%, which allows for structure transfer without introducing extra defects. The twinning superlattices, periodicity, and shell thickness can be tuned with great precision. Arrays of free-standing Si nanotubes are obtained by a selective wet-chemical etch of the core wire. PMID:21417242

  14. Liquid-crystal materials find a new order in biomedical applications

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.; Jay, Gregory D.; Crawford, Gregory P.

    2007-12-01

    With the maturation of the information display field, liquid-crystal materials research is undergoing a modern-day renaissance. Devices and configurations based on liquid-crystal materials are being developed for spectroscopy, imaging and microscopy, leading to new techniques for optically probing biological systems. Biosensors fabricated with liquid-crystal materials can allow label-free observations of biological phenomena. Liquid-crystal polymers are starting to be used in biomimicking colour-producing structures, lenses and muscle-like actuators. New areas of application in the realms of biology and medicine are stimulating innovation in basic and applied research into these materials.

  15. Dopant control over the crystal morphology of ceramic materials

    NASA Astrophysics Data System (ADS)

    Alfredsson, Maria; Cor, Furio; Dobson, David P.; Davy, James; Brodholt, John P.; Parker, Steve C.; Price, G. David

    2007-11-01

    Doping is a common way to activate the behavior of ceramics. Its effect is not limited to the bulk: segregation of dopants to the surfaces also yields a way to modify, and ultimately control the crystal morphology. We propose a model that allows us to calculate the surface energy beyond the Langmuir isotherm for doped and defective surfaces from atomic-level simulations. The model also allows us to account for different compositions between the bulk and surface. Computational materials design can thus be applied to optimize simultaneously the crystal behavior at the atomic (surface structure and composition) and mesoscopic (crystal size and shape) length scales. We exemplify the model with orthorhombic CaTiO 3 perovskite doped with Mg 2+, Fe 2+, Ni 2+, Sr 2+, Ba 2+ and Cd 2+ ions, by predicting the effect that different dopants and dopant concentrations have on the crystal morphology. We find that a higher proportion of reactive {0 2 1} and {1 1 1} surfaces are exposed with the presence of divalent Mg 2+, Fe 2+ and Ni 2+ ions than in the undoped material and in perovskite doped with Ba 2+ and Sr 2+. Cd 2+ has only minor effects on crystal morphologies. These findings have important implications for predicting the reactivity of crystals doped with different ions and we show how this can be related to a simple parameter such as the ionic radius. We have tested our newly derived model by comparison with laboratory flux grown single crystals of CaTiO 3, (Ni, Ca)TiO 3 and (Ba, Ca)TiO 3 and find excellent agreement between theory and experiment.

  16. Inorganic chiral 3-D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales.

    PubMed

    Mille, Christian; Tyrode, Eric C; Corkery, Robert W

    2011-09-21

    Three dimensional silica photonic crystals with the gyroid minimal surface structure have been synthesized. The butterfly Callophrys rubi was used as a biotemplate. This material represents a significant addition to the small family of synthetic bicontinuous photonic crystals. PMID:21818463

  17. Defect structures in metallic photonic crystals

    SciTech Connect

    Oezbay, E.; Temelkuran, B.; Sigalas, M.; Tuttle, G.; Soukoulis, C.M.; Ho, K.M.

    1996-12-01

    We have investigated metallic photonic crystals built around a layer-by-layer geometry. Two different crystal structures (face-centered-tetragonal and tetragonal) were built and their properties were compared. We obtained rejection rates of 7{endash}8 dB per layer from both metallic crystals. Defect modes created by removing rods resulted in high peak transmission (80{percent}), and high quality factors (1740). Our measurements were in good agreement with theoretical simulations. {copyright} {ital 1996 American Institute of Physics.}

  18. Synthesis, crystal structure and optical properties of a novel organic-inorganic hybrid materials (C 9H 14N) 2PbCl 4

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Yang, Peipei; Meng, Jian

    2011-05-01

    A novel organic-inorganic hybrid compound (C 9H 14N) 2PbCl 4 was grown via a solution-cooling process by employing the organic cation-2,4,6-trimethylaniline to control the hybrid compound and the structure was determined by single-crystal X-ray diffraction to be monoclinic, P2(1)/c with a = 24.350(0) , b = 25.167(0) , c = 7.694(0) , ? = 95.77(9), and Z = 8. The compound adopted an unprecedented structure, which was built with the staircase-like 1-D chains of PbCl 4 octahedra sandwiched with the square pyramids of PbCl 5. Raman and infrared spectra were used to gain more information of the title compound. The hybrid compound showed the photoluminescence emission at 424 nm.

  19. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  20. Artificially structured magnetic materials

    SciTech Connect

    Falco, C.M.

    1990-09-28

    This document reports the progress made during the first six months of the current three-year DOE grant on Artificially Structured Magnetic Materials.'' However, because some of the results of our previous three-year DOE grant on Artificially Structured Superconductors'' continue to emerge, both topics are addressed in this Progress Report. This report describes progress with DOE funding during the current calendar year; description of the research to be conducted during the remaining six months of the current grant year; a description of the status of the graduate students working on this research; lists of the invited talks, seminars and colloquia, of other recognition of our research, and of the publications crediting DOE sponsorship; and a summary of current and pending federal support. Since the research proposed to be conducted during the next 2 1/2 years is described in detail in our DOE proposal, it is only briefly reviewed here.

  1. Beyond crystals: the dialectic of materials and information.

    PubMed

    Cartwright, Julyan H E; Mackay, Alan L

    2012-06-28

    We argue for a convergence of crystallography, materials science and biology, that will come about through asking materials questions about biology and biological questions about materials, illuminated by considerations of information. The complex structures now being studied in biology and produced in nanotechnology have outstripped the framework of classical crystallography, and a variety of organizing concepts are now taking shape into a more modern and dynamic science of structure, form and function. Absolute stability and equilibrium are replaced by metastable structures existing in a flux of energy-carrying information and moving within an energy landscape of complex topology. Structures give place to processes and processes to systems. The fundamental level is that of atoms. As smaller and smaller groups of atoms are used for their physical properties, quantum effects become important; already we see quantum computation taking shape. Concepts move towards those in life with the emergence of specifically informational structures. We now see the possibility of the artificial construction of a synthetic living system, different from biological life, but having many or all of the same properties. Interactions are essentially nonlinear and collective. Structures begin to have an evolutionary history with episodes of symbiosis. Underlying all the structures are constraints of time and space. Through hierarchization, a more general principle than the periodicity of crystals, structures may be found within structures on different scales. We must integrate unifying concepts from dynamical systems and information theory to form a coherent language and science of shape and structure beyond crystals. To this end, we discuss the idea of categorizing structures based on information according to the algorithmic complexity of their assembly. PMID:22615461

  2. Beyond crystals: the dialectic of materials and information

    PubMed Central

    Cartwright, Julyan H. E.; Mackay, Alan L.

    2012-01-01

    We argue for a convergence of crystallography, materials science and biology, that will come about through asking materials questions about biology and biological questions about materials, illuminated by considerations of information. The complex structures now being studied in biology and produced in nanotechnology have outstripped the framework of classical crystallography, and a variety of organizing concepts are now taking shape into a more modern and dynamic science of structure, form and function. Absolute stability and equilibrium are replaced by metastable structures existing in a flux of energy-carrying information and moving within an energy landscape of complex topology. Structures give place to processes and processes to systems. The fundamental level is that of atoms. As smaller and smaller groups of atoms are used for their physical properties, quantum effects become important; already we see quantum computation taking shape. Concepts move towards those in life with the emergence of specifically informational structures. We now see the possibility of the artificial construction of a synthetic living system, different from biological life, but having many or all of the same properties. Interactions are essentially nonlinear and collective. Structures begin to have an evolutionary history with episodes of symbiosis. Underlying all the structures are constraints of time and space. Through hierarchization, a more general principle than the periodicity of crystals, structures may be found within structures on different scales. We must integrate unifying concepts from dynamical systems and information theory to form a coherent language and science of shape and structure beyond crystals. To this end, we discuss the idea of categorizing structures based on information according to the algorithmic complexity of their assembly. PMID:22615461

  3. Crystal structures of MBP fusion proteins.

    PubMed

    Waugh, David S

    2016-03-01

    Although chaperone-assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose-binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter-domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP-mediated structural distortions are very rare. PMID:26682969

  4. Crystal structure and morphology of syndiotactic polypropylene single crystals

    SciTech Connect

    Bu, J.Z.; Cheng, S.Z.D.

    1996-12-31

    In the past several years there have been an increased interest in the crystal structure and morphology of s-PP due to the new development of homogeneous metallocene catalysts which can produce s-PP having a high stereoregularity. In this research, the crystal structure and morphology of s-PP single crystals grown from the melt were investigated. A series of ten fractions of s-PP was studied with different molecular weights ranging from 10,300 to 234,000 (g/mol). These fractions all possess narrow molecular weight distributions (around 1.1-1.2) and high syndiotacticities ([r]{approximately}95%). The main techniques employed including transmission electron microscopy (TEM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS).

  5. Photonic crystal aqueous metal cation sensing materials.

    PubMed

    Asher, Sanford A; Sharma, Anjal C; Goponenko, Alexander V; Ward, Michelle M

    2003-04-01

    We developed a polymerized crystalline colloidal array photonic material that senses metal cations in water at low concentrations (PCCACS). Metal cations such as Cu2+, Co2+, Ni2+, and Zn2+ bind to 8-hydroxyquinoline groups covalently attached to the PCCACS. At low metal concentrations (crystal diffraction. These bisliganded cross-links break at higher cation concentrations due to the formation of monoliganded cation complexes. This red shifts the diffraction. We have extended hydrogel volume phase transition theory in order to quantitatively model the diffraction dependence upon metal concentration. These materials can be used as a dosimeter to sense extremely low metal cation concentrations or as a sensor material for concentrations greater than 1 microM. Metal cation concentrations can be determined visually from the color of the diffracted light or can be determined by reflectance measurements using a spectrophotometer. This sensing material could be used in the field to visually determine metal cation concentrations in drinking water. A color chart would be used to relate the diffracted color to the metal cation concentration. PMID:12705602

  6. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  7. Synthesis, crystal structure and characterization of a new organic-inorganic hybrid material: [C6H16N2O]SbCl5

    NASA Astrophysics Data System (ADS)

    Aloui, Z.; Ferretti, V.; Abid, S.; Rzaigui, M.; Lefebvre, F.; Ben Nasr, C.

    2015-05-01

    The present paper undertakes the study of [C6H16N2O]SbCl5 which is a new hybrid compound. It is synthesized and characterized by single-crystal X-ray diffraction, thermal analysis, IR and solid state NMR spectroscopies. The centrosymmetric compound crystallizes in the monoclinic space group P21/n, with the following unit cell parameters: a = 9.8519(2), b = 8.8345(2), c = 17.3087(4) , ? = 102.3(1) and Z = 4. The atomic arrangement shows an alternation of organic and inorganic entities. The cohesion between these entities is performed via N-H⋯Cl and O-H⋯Cl hydrogen bonding to form a three-dimensional network. The 13C CP-MAS NMR spectrum is in agreement with the X-ray structure. Infrared and Raman spectra at room temperature are recorded in the 4000-400 and 500-100 cm-1 frequency regions respectively. This study confirms the presence of the organic cation [C6H16N2]2+ and of the [SbCl5]2- anion. DFT calculations allow the attribution of the carbon peaks to the different atoms.

  8. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  9. CuLi{sub 2}Sn and Cu{sub 2}LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    SciTech Connect

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-12-15

    The stannides CuLi{sub 2}Sn (CSD-427095) and Cu{sub 2}LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu{sub 2}Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi{sub 2}Sn, the space group F-43m. was verified (structure type CuHg{sub 2}Ti; a=6.295(2) Å; wR{sub 2}(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu{sub 2}LiSn, the space group P6{sub 3}/mmc was confirmed (structure type InPt{sub 2}Gd; a=4.3022(15) Å, c=7.618(3) Å; wR{sub 2}(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu–Sn alloys as anode materials for Li-ion batteries. - Highlights: • First single crystal investigation of CuLi{sub 2}Sn and Cu{sub 2}LiSn clarifies contradictions from literature. • Lithium atoms are ordered in channels, which is interesting for application as anode materials for lithium ion batteries. • Structural relationships to binary Cu–Sn-phases are shown. • Close structural relationship between both ternary phases exists.

  10. Liquid crystal light valve structures

    NASA Technical Reports Server (NTRS)

    Koda, N. J. (inventor)

    1985-01-01

    An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

  11. Polymer Stabilized Liquid Crystals: Materials, Physics and Applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rishi; Raina, K. K.

    2011-12-01

    Polymer dispersed liquid crystal (PDLC) are a novel class of optical composite materials. They offer varied range of applications in optical devices as device materials. The polymer stabilized liquid crystals (PSLC), have improved upon some of the device characteristics. The presence of a polymer network formed at low polymer concentrations provides similar advantages in enhancing the stability of the structure, aiding the re-orientation of liquid crystal director to the desired stable configuration, reducing the switching time, and improving the optical contrast in the devices. Electro-optic switching behavior with variation in voltage and temperature is studied for application in switchable display devices. The color response (RGB) of textures is calibrated against temperature by suitable polynomial fitting. The variation in R, G and B intensities of PSLC film with temperature is used to determine hue, saturation and intensity corresponds to HSI model. We shall present interesting results on these materials and discuss how performance of devices can be improved by tailoring some functional groups in polymer networks to control some physical parameters.

  12. Discrete structures in continuum descriptions of defective crystals.

    PubMed

    Parry, G P

    2016-04-28

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. PMID:27002070

  13. Structure of the liquid and the crystal of the phase-change material SnSe2 : First-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Micoulaut, M.; We?nic, W.; Wuttig, M.

    2008-12-01

    First-principles molecular dynamics simulations are used to study the structural properties of liquid and crystalline SnSe2 . We reproduce the experimental structure factor with confidence and fully describe the pair-correlation functions and the local structure of the liquid. It is shown that, unlike other group IV chalcogenides such as GeSe2 , SnSe2 does not display tetrahedral ordering in the liquid and contains a large amount of fivefold tin atoms with selenium atoms lying in an equatorial plane and at the edges of the polyhedra. A certain number of homopolar defects are found whose rate is substantially lower however than in GeSe2 . Compared to the crystalline system the density in the liquid decreases by 8.5%, which is accompanied by a decrease in the atomic coordination. Local distortions as found in typical phase-change materials are present in SnSe2 .

  14. Crystal structure and characterization of a novel organic optical crystal: 2-Aminopyridinium trichloroacetate

    SciTech Connect

    Dhanaraj, P.V.; Rajesh, N.P.; Vinitha, G.; Bhagavannarayana, G.

    2011-05-15

    Research highlights: {yields} Good quality crystals of 2-aminopyridinium trichloroacetate were grown for first time. {yields} 2-Aminopyridinium trichloroacetate crystal belongs to monoclinic crystal system with space group P21/c. {yields} 2-Aminopyridinium trichloroacetate crystal exhibits third order nonlinear optical properties. {yields} 2-Aminopyridinium trichloroacetate is a low dielectric constant material. -- Abstract: 2-Aminopyridinium trichloroacetate, a novel organic optical material has been synthesized and crystals were grown from aqueous solution employing the technique of controlled evaporation. 2-Aminopyridinium trichloroacetate crystallizes in monoclinic system with space group P2{sub 1}/c and the lattice parameters are a = 8.598(5) A, b = 11.336(2) A, c = 11.023(2) A, {beta} = 102.83(1){sup o} and volume = 1047.5(3) A{sup 3}. High-resolution X-ray diffraction measurements were performed to analyze the structural perfection of the grown crystals. Thermal analysis shows a sharp endothermic peak at 124 {sup o}C due to melting reaction of 2-aminopyridinium trichloroacetate. UV-vis-NIR studies reveal that 2-aminopyridinium trichloroacetate has UV cutoff wavelength at 354 nm. Dielectric studies show that dielectric constant and dielectric loss decreases with increasing frequency and finally it becomes almost a constant at higher frequencies for all temperatures. The negative nonlinear optical parameters of 2-aminopyridinium trichloroacetate were derived by the Z-scan technique.

  15. Crystal Structure Studies of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Thorup, N.; Rindorf, G.; Soling, H.

    1982-06-01

    X-ray crystal structure determinations have been carried out on (TMTSF)2X, where TMTSF = tetramethyltetraselenafulvalene and X = PF6-, ClO4-, ReO4-. These solids exhibit superconductivity at low temperature (~ 1 K); for PF6- and ReO4- hydrostatic pressure of the order 10 kbar is also required. This paper deals with a description and a comparison of the crystal structures, which have been determined at ambient temperature and pressure. Possible relationships between structural features and physical properties are discussed.

  16. Smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.

    1993-01-01

    Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.

  17. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  18. Microscopic characterization of defect structure in RDX crystals.

    PubMed

    Bouma, R H B; Duvalois, W; Van der Heijden, A E D M

    2013-12-01

    Three batches of the commercial energetic material RDX, as received from various production locations and differing in sensitivity towards shock initiation, have been characterized with different microscopic techniques in order to visualize the defect content in these crystals. The RDX crystals are embedded in an epoxy matrix and cross-sectioned. By a treatment of grinding and polishing of the crystals, the internal defect structure of a multitude of energetic crystals can be visualized using optical microscopy, scanning electron microscopy and confocal scanning laser microscopy. Earlier optical micrographs of the same crystals immersed in a refractive index matched liquid could visualize internal defects, only not in the required detail. The combination of different microscopic techniques allows for a better characterization of the internal defects, down to inclusions of approximately 0.5 μm in size. The defect structure can be correlated to the sensitivity towards a high-amplitude shock wave of the RDX crystals embedded in a polymer bonded explosive. The obtained experimental results comprise details on the size, type and quantity of the defects. These details should provide modellers with relevant and realistic information for modelling defects in energetic materials and their effect on the initiation and propagation of shock waves in PBX formulations. PMID:24117989

  19. Crystal structure of 9-methacryloylanthracene

    PubMed Central

    Agrahari, Aditya; Wagers, Patrick O.; Schildcrout, Steven M.; Masnovi, John; Youngs, Wiley J.

    2015-01-01

    In the title compound, C18H14O, with systematic name 1-(anthracen-9-yl)-2-methylprop-2-en-1-one, the ketonic C atom lies 0.2030?(16)? out of the anthryl-ring-system plane. The dihedral angle between the planes of the anthryl and methacryloyl moieties is 88.30?(3) and the stereochemistry about the Csp 2Csp 2 bond in the side chain is transoid. In the crystal, the end rings of the anthryl units in adjacent molecules associate in parallelplanar orientations [shortest centroidcentroid distance = 3.6320?(7)?]. A weak hydrogen bond is observed between an aromatic H atom and the O atom of a molecule displaced by translation in the a-axis direction, forming sheets of parallel-planar anthryl groups packing in this direction. PMID:26029389

  20. Free-Standing Photonic Crystal Films with Gradient Structural Colors.

    PubMed

    Ding, Haibo; Liu, Cihui; Ye, Baofen; Fu, Fanfan; Wang, Huan; Zhao, Yuanjin; Gu, Zhongze

    2016-03-23

    Hydrogel colloidal crystal composite materials have a demonstrated value in responsive photonic crystals (PhCs) via controllable stimuli. Although they have been successfully exploited to generate a gradient of color distribution, the soft hydrogels have limitations in terms of stability and storage caused by dependence on environment. Here, we present a practical strategy to fabricate free-standing PhC films with a stable gradient of structural colors using binary polymer networks. A colloidal crystal hydrogel film was prepared for this purpose, with continuously varying photonic band gaps corresponding to the gradient of the press. Then, a second polymer network was used to lock the inside non-close-packed PhC structures and color distribution of the hydrogel film. It was demonstrated that our strategy could bring about a solution to the angle-dependent structural colors of the PhC films by coating the surface with special microstructures. PMID:26962967

  1. A terminally protected dipeptide: from crystal structure and self-assembly, through co-assembly with carbon-based materials, to a ternary catalyst for reduction chemistry in water.

    PubMed

    Mazzier, Daniela; Carraro, Francesco; Crisma, Marco; Rancan, Marzio; Toniolo, Claudio; Moretto, Alessandro

    2015-12-16

    A terminally protected, hydrophobic dipeptide Boc-l-Cys(Me)-l-Leu-OMe () was synthesized and its 3D-structure was determined by single crystal X-ray diffraction analysis. This peptide is able to hierarchically self-assemble in a variety of superstructures, including hollow rods, ranging from the nano- to the macroscale, and organogels. In addition, is able to drive fullerene (C60) or multiwalled carbon nanotubes (MWCNTs) in an organogel by co-assembling with them. A hybrid -C60-MWCNT organogel was prepared and converted (through a high vacuum-drying process) into a robust, high-volume, water insoluble, solid material where C60 is well dispersed over the entire superstructure. This ternary material was successfully tested as a catalyst for: (i) the reduction reaction of water-soluble azo compounds mediated by NaBH4 and UV-light with an overall performance remarkably better than that provided by C60 alone, and (ii) the NaBH4-mediated reduction of benzoic acid to benzyl alcohol. Our results suggest that the self-assembly properties of might be related to the occurrence in its single crystal structure of a sixfold screw axis, a feature shared by most of the linear peptides known so far to give rise to nanotubes. PMID:26463728

  2. Crystal structure and chirality of natural floridoside.

    PubMed

    Simon-Colin, Christelle; Michaud, Franois; Lger, Jean-Michel; Deslandes, Eric

    2003-10-31

    The crystal structure and absolute configuration of natural floridoside (2-O-alpha-D-galactopyranosylglycerol) were determined by single-crystal X-ray diffraction analysis. The space group is orthorhombic P2(1)2(1)2(1) with Z=4, a=4.885(1), b=9.734(1), c=23.886(2) A at 296 +/- 2 K. The structure was solved by a direct method and refined to R=0.0351 from 1914 reflections of Cu Kalpha radiation. PMID:14572727

  3. Crystal structure of potassium sodium tartrate trihydrate

    SciTech Connect

    Egorova, A. E. Ivanov, V. A.; Somov, N. V.; Portnov, V. N.; Chuprunov, E. V.

    2011-11-15

    Crystals of potassium sodium tartrate trihydrate (dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 3H{sub 2}O) were obtained from an aqueous solution. The crystal shape was described. The atomic structure of the compound was determined and compared with the known structures of dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O and l-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O.

  4. Photonic crystal structures with tunable structure color as colorimetric sensors.

    PubMed

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  5. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    PubMed Central

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  6. Computing stoichiometric molecular composition from crystal structures

    PubMed Central

    Graulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Okuli?-Kazarinas, Mykolas

    2015-01-01

    Crystallographic investigations deliver high-accuracy information about positions of atoms in crystal unit cells. For chemists, however, the structure of a molecule is most often of interest. The structure must thus be reconstructed from crystallographic files using symmetry information and chemical properties of atoms. Most existing algorithms faithfully reconstruct separate molecules but not the overall stoichiometry of the complex present in a crystal. Here, an algorithm that can reconstruct stoichiometrically correct multimolecular ensembles is described. This algorithm uses only the crystal symmetry information for determining molecule numbers and their stoichiometric ratios. The algorithm can be used by chemists and crystallographers as a standalone implementation for investigating above-molecular ensembles or as a function implemented in graphical crystal analysis software. The greatest envisaged benefit of the algorithm, however, is for the users of large crystallographic and chemical databases, since it will permit database maintainers to generate stoichiometrically correct chemical representations of crystal structures automatically and to match them against chemical databases, enabling multidisciplinary searches across multiple databases. PMID:26089747

  7. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  8. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based code (LabVIEW(TM) 7.1) in real time. The SALS apparatus was custom built for ExxonMobil Research in Clinton NJ.

  9. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  10. Structural engineering of three-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea

    2016-02-01

    Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.

  11. Phase-Field Crystal Modeling of Polycrystalline Materials

    NASA Astrophysics Data System (ADS)

    Adland, Ari Joel

    In this thesis, we use and further develop the phase-field crystal (PFC) method derived from classical density functional theory to investigate polycyrstalline materials. The PFC method resolves atomistic scale processes by tracking the evolution of the local time averaged crystal density field, thereby naturally describing dislocations and grian boundaries (GBs), but with a phenomenological incorporation of vacancy diffusion that accesses long diffusive time scales beyond the reach of MD simulations. We use the PFC method to investigate two technologically important classes of polycrystalline materials whose properties are strongly influenced by GB equilibrium and non-equilibrium properties. The first are structural polycyrstalline materials such as nickel based superalloys used for turbine blades. Those alloys can develop large defects known as "hot tears'' due to the lack of complete crystal cohesion and strain localization during the late stages of solidification. We investigate the equilibrium structure of symmetric tilt GBs at high homologous temperatures and identify a wide range of misorientation that leads to the formation of nanometer-thick intergranular films with liquid like properties. The phase transition character of this "GB premelting'' phenomenon is investigated through the quantitative computation of a disjoining thermodynamic potential in both pure materials and alloys, using body-centered-cubic Fe as a model system. The analysis of this potential sheds light on the physical origin of attractive and repulsive forces that promote and suppress crystal cohesion, respectively, and are found to be strongly affected by solute addition. Our equilibrium studies also reveal the existence of novel structural transitions of low angle GBs driven by the pairing of dislocations with both screw and edge character. Non-equilibrium PFC simulations in turn characterize the response of GBs to an applied shear stress, showing that intergranular liquid-like films promote GB sliding and strain localization underlying hot tearing. The second class of polycrystalline materials investigated are nanocrystalline materials with a grain size less than a few hundred nanometers. Those materials exhibit desirable properties that include high strength and corrosion resistance. In order to understand basic mechanisms that control the thermal and mechanical stability of nanocrystalline materials, we investigate the stress-driven motion of GBs over a complete range of GB bicrystallography, which includes asymmetrical tilt boundaries with non-vanishing misorientation and inclination angles. We show that asymmetrical GBs exhibit coupled motion to a shear stress parallel to the GB plane and identify a wealth of different dislocation mechanisms mediated by glide, climb, and dislocation reactions, which underlie this coupled motion. We also show that asymmetrical GBs exhibit sliding due to the existence of discontinuous transitions between different coupling modes. Importantly, unlike sliding of symmetrical GBs promoted by GB premelting, sliding of asymmetrical GBs can exist at low temperature, thereby providing an important mechanism for the stress-driven evolution of nanocrystalline structures. In addition to the above studies of polycrystalline materials, we also use the PFC method as a theoretical framework for investigating the grain coarsening dynamics of polycrystalline structures in a broad class of systems that form crystal lattices through self-organization or self-assembly, including driven non-equilibrium systems, modulated phases of macromolecular systems such as diblock copolymers, and colloidal crystals. Our studies reveal that grain growth in those systems is governed by an entirely different dissipation mechanism than in polycrystalline materials. While the rate of curvature-driven grain growth in polycrystalline materials is well-known to be limited by interface dissipation, we find that bulk dissipation associated with lattice translation dramatically slows down grain coarsening in self- organized or assembled lattice forming systems. We also show that bulk dissipation is reduced by thermal noise so that those systems exhibit faster coarsening behavior dominated by interface dissipation for high Peierls barrier and high noise. Those results provide a unified theoretical framework for understanding and modeling polycrystalline pattern evolution in diverse systems over a broad range of length and time scales. They also provide the basis for extending the PFC methodology to model more quantitatively and faithfully the dynamics of polycrystalline materials. This extension forms an important part of PFC model development in this thesis together with the development of free-energy functionals for different crystal structures. (Abstract shortened by UMI.)

  12. Dendritic crystal growth in pure materials

    NASA Astrophysics Data System (ADS)

    Glicksman, M. E.; Lupulescu, A. O.

    2004-03-01

    Dendritic growth is a fundamental crystal growth phenomenon accompanying most casting and solidification processes, and, occasionally, occurring during the growth of single crystals, where it is detrimental to crystalline quality. Dendrites are the ubiquitous crystal form in freezing alloys and supercooled melts, because their shapes are most suited for efficient heat and mass transfer at small scales. Dendritic scales are typically the smallest length scales of interest in ingots and castings, typically associated with: (1) chemical processes, such as microsegregation, (2) thermal processes, for example, latent heat release, and (3) mechanical processes, for instance, the volume change during phase transformation. All of these processes operate at the dendritic solid-melt interface. Understanding dendritic growth is therefore considered essential for controlling basic solidification and crystal growth processes. A brief history of dendrites will be sketched, showing how the subject of dendritic solidification evolved to its present status as a modern sub-field of general crystal growth. The comprehensive understanding of dendrites and developing a predictive capability of practical utility to the crystal grower, however, remain as works in progress. The subject of dendritic growth will be presented on the basis of heat and mass transfer, capillarity effects at the solid-melt interface, and interfacial dynamics, including morphological stability, and side-branching dynamics. Experimental verification of dendritic scaling laws using microgravity experimentation is included as a brief attempt to encapsulate this important subject within crystal growth science.

  13. Requirements for structure determination of aperiodic crystals

    SciTech Connect

    Li, X.; Stern, E.A.; Ma, Y. )

    1991-01-15

    Using computer simulation, we compared the Patterson functions of one-dimensional (1D) randomly packed and quasiperiodic Fibonacci lattices with or without disorder, and a 2D Penrose lattice and random packing of pentagons (icosahedral glass model). Based on these comparisons, we derived some empirical guidelines for distinguishing ideal quasicrystals from aperiodic crystals with disorder using diffraction data. In contrast to periodic crystals, it is essential to include the background to obtain correct Patterson functions of the average structure since the background contains unresolved peaks. In particular, a Bragg peak scattering measurement {ital cannot}, in general, determine the structure of aperiodic crystals. Instead, a diffuse scattering measurement is required, which determines the absolute value of the diffraction background, in addition to the Bragg peaks. We further estimate that, dependent upon the disorder present, it is necessary to include up to 75% of the total diffracted intensity in any analysis.

  14. Crystal structure and density of helium to 232 kbar

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.

    1988-01-01

    The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.

  15. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials.

    PubMed

    Chun, Hyungphil; Dybtsev, Danil N; Kim, Hyunuk; Kim, Kimoon

    2005-06-01

    A systematic modulation of organic ligands connecting dinuclear paddle-wheel motifs leads to a series of isomorphous metal-organic porous materials that have a three-dimensional connectivity and interconnected pores. Aromatic dicarboxylates such as 1,4-benzenedicarboxylate (1,4-bdc), tetramethylterephthalate (tmbdc), 1,4-naphthalenedicarboxylate (1,4-ndc), tetrafluoroterephthalate (tfbdc), or 2,6-naphthalenedicarboxylate (2,6-ndc) are linear linkers that form two-dimensional layers, and diamine ligands, 4-diazabicyclo[2.2.2]octane (dabco) or 4,4'-dipyridyl (bpy), coordinate at both sides of Zn(2) paddle-wheel units to bridge the layers vertically. The resulting open frameworks [Zn(2)(1,4-bdc)(2)(dabco)] (1), [Zn(2)(1,4-bdc)(tmbdc)(dabco)] (2), [Zn(2)(tmbdc)(2)(dabco)] (3), [Zn(2)(1,4-ndc)(2)(dabco)] (4), [Zn(2)(tfbdc)(2)(dabco)] (5), and [Zn(2)(tmbdc)(2)(bpy)] (8) possess varying size of pores and free apertures originating from the side groups of the 1,4-bdc derivatives. [Zn(2)(1,4-bdc)(2)(bpy)] (6) and [Zn(2)(2,6-ndc)(2)(bpy)] (7) have two- and threefold interpenetrating structures, respectively. The non-interpenetrating frameworks (1-5 and 8) possess surface areas in the range of 1450-2090 m(2)g(-1) and hydrogen sorption capacities of 1.7-2.1 wt % at 78 K and 1 atm. A detailed analysis of the sorption data in conjunction with structural similarities and differences concludes that porous materials with straight channels and large openings do not perform better than those with wavy channels and small openings in terms of hydrogen storage through physisorption. PMID:15761853

  16. Shear induced structures in crystallizing cocoa butter

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  17. Architecture of crystal structures from square planes.

    PubMed

    Hauck, J; Mika, K

    2000-10-01

    The crystal structures of ordered b.c.c. (body-centered cubic), f.c. c. (face-centered cubic) or primitive cubic alloys AxBy and related NaCl, ZnS or CaF(2) derivative structures are characterized by the self-coordination numbers T(1), T(2) of the A atoms with A atoms. Structures with identical T(1) and T(2) values for all A atoms are at the corners of T(1) and T(2) structure maps, and can be analyzed for attractive or repulsive interactions of A atoms. Most observed structures are at the borders of the structure map and can be obtained by approximately 10 different combinations of structural units. The different combination mechanisms explain e.g. the shear structures of CuAu II or Nb(2)O(5) and the occurrence of vacancies in NaCl-related structures like NbO. PMID:11006550

  18. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  19. Crystal structure of a plectonemic RNA supercoil

    SciTech Connect

    Stagno, Jason R.; Ma, Buyong; Li, Jess; Altieri, Amanda S.; Byrd, R. Andrew; Ji, Xinhua

    2012-12-14

    Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.

  20. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  2. Crystal Structure of Human Enterovirus 71

    SciTech Connect

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G.

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  3. Crystal structure of zwitterionic bisimidazolium sulfonates

    NASA Astrophysics Data System (ADS)

    Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao

    2012-05-01

    Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.

  4. Structural, magnetic and optical properties of two concomitant molecular crystals

    NASA Astrophysics Data System (ADS)

    Silva, Manuela Ramos; Milne, Bruce; Coutinho, Joana T.; Pereira, Laura C. J.; Martín-Ramos, Pablo; Pereira da Silva, Pedro S.; Martín-Gil, Jesús

    2016-03-01

    A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Cu(II) ions assemble in alternating chains with Cu … Cu distances of 2.5685(4) and 3.1760(4) Å. The temperature dependence of the magnetic susceptibility reveals an antiferromagnetic interaction between the paddle-wheel copper centers with an exchange of -300 cm-1. The exchange integral was also determined by quantum chemical ab-initio calculations, using polarised and unpolarised basis sets reproducing well the experimental value. The second harmonic generation efficiency of a concomitantly crystallized material was evaluated and was found to be comparable to urea.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  6. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  7. Study on a Photonic Crystal Hydrogel Material for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jia-Yu; Yan, Chun-Xiao; Hu, Xiao-Chun; Liu, Chao; Tang, Hua-Min; Zhou, Chao-Hua; Xue, Fei

    2014-01-01

    There is intense interest in the applications of photonic crystal hydrogel materials for the detection of glucose, metal ions, organophosphates and so on. In this paper, monodisperse polystyrene spheres with diameters between 100 440 nm were synthesized by emulsion polymerization. Highly charged polystyrene spheres readily self-assembled into crystalline colloidal array because of electrostatic interactions. Photonic crystal hydrogel materials were formed by polymerization of acrylamide hydrogel around the crystalline colloidal arrays of polystyrene spheres. After chemical modification of hydrogel backbone with carboxyl groups, our photonic crystals hydrogel materials are demonstrated to be excellent in response to pH and ionic strength changes.

  8. Thermoelectric Materials With the Skutterudite Structure: New Results

    NASA Technical Reports Server (NTRS)

    Fleurial, J. -P.; Caillat, T.; Borshchevsky, A.

    1995-01-01

    New experimental findings on semiconductors with the relatively complex 32 atom unit cell skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values larger than for state-of- the-art thermoelectric materials. An overview of recent results is provided, and current approaches to experimentally achieving high ZT in skutterudite materials are discussed.

  9. Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: L-lysine hydrochloride dihydrate

    SciTech Connect

    Kalaiselvi, D.; Mohan Kumar, R.; Jayavel, R.

    2008-07-01

    Single crystals of L-lysine hydrochloride dihydrate (LLHCD), a nonlinear optical material, have been grown by slow cooling technique from its aqueous solution. LLHCD was found to be highly soluble in water. The grown crystals have been subjected to single crystal X-ray diffraction to confirm the structure and to estimate the lattice parameters. The vibrational structure of the molecule is elucidated from FTIR spectra. Thermal analysis revealed the thermal stability of the grown crystals. The optical transmittance spectrum shows that the material possesses good optical transparency in the entire visible region with a UV cut-off wavelength at 228 nm. The mechanical properties of the grown crystal have been studied using Vicker's microhardness test. The laser damage threshold of 52.25 MW/cm{sup 2} has been measured by irradiating Q-switched Nd:YAG laser (1064 nm)

  10. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  12. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal

    NASA Astrophysics Data System (ADS)

    Sudhahar, S.; Krishna Kumar, M.; Sornamurthy, B. M.; Mohan Kumar, R.

    2014-01-01

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications.

  13. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. PMID:24184578

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  15. The Incorporation of C in the Crystal Lattice of Metals; Its Role on the Structure and Properties of these New Materials Called Covetics

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Isaacs, Romaine; Forrest, David; Mansour, Azzam; Herzing, Andrew; Lemieux, Melburne; Shugart, Jason

    2013-03-01

    Nanocarbon has been successfully incorporated in molten metals and metal alloys using a new method of manufacturing in which the molten metal (or metal alloy) acts as ionizing medium causing nanocarbon structures to form in-situ. C in concentrations up to ~10% weight was incorporated in Ag, Al and Cu. The bonding between the carbon and the metal is very strong and persists after re-melting and resolidification. These materials, called ``covetics,'' show improved properties over those of the host metal. For example, the thermal conductivity of Cu covetic is higher than pure Cu. The electrical conductivity of Al covetic is higher than for pure Al. The yield strength of Al and Cu covetics is higher than the pure metals. We have used X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy to investigate the incorporation of C in the metal. Scanning and transmission electron microscopy (TEM) were also employed along with energy dispersive X-ray spectroscopy and electron energy loss spectroscopy (EELS). The nanocarbons in the covetics are in the form of, graphene nanoribbons, and amorphous nanocarbon, and all are bonded to the metal. The C-K edge in the EELS, and the Raman spectra from these samples show signals characteristic of graphitic sp2 bonding. Supported in part by NSF MRSEC DMR 0520471 and ONR Code 332 # N0001410WX20992.

  16. Can antimonide-based nanowires form wurtzite crystal structure?

    NASA Astrophysics Data System (ADS)

    Gorji Ghalamestani, Sepideh; Lehmann, Sebastian; Dick, Kimberly A.

    2016-01-01

    The epitaxial growth of antimonide-based nanowires has become an attractive subject due to their interesting properties required for various applications such as long-wavelength IR detectors. The studies conducted on antimonide-based nanowires indicate that they preferentially crystallize in the zinc blende (ZB) crystal structure rather than wurtzite (WZ), which is common in other III-V nanowire materials. Also, with the addition of small amounts of antimony to arsenide- and phosphide-based nanowires grown under conditions otherwise leading to WZ structure, the crystal structure of the resulting ternary nanowires favors the ZB phase. Therefore, the formation of antimonide-based nanowires with the WZ phase presents fundamental challenges and is yet to be explored, but is particularly interesting for understanding the nanowire crystal phase in general. In this study, we examine the formation of Au-seeded InSb and GaSb nanowires under various growth conditions using metalorganic vapor phase epitaxy. We address the possibility of forming other phases than ZB such as WZ and 4H in binary nanowires and demonstrate the controlled formation of WZ InSb nanowires. We further discuss the fundamental aspects of WZ growth in Au-seeded antimonide-based nanowires.The epitaxial growth of antimonide-based nanowires has become an attractive subject due to their interesting properties required for various applications such as long-wavelength IR detectors. The studies conducted on antimonide-based nanowires indicate that they preferentially crystallize in the zinc blende (ZB) crystal structure rather than wurtzite (WZ), which is common in other III-V nanowire materials. Also, with the addition of small amounts of antimony to arsenide- and phosphide-based nanowires grown under conditions otherwise leading to WZ structure, the crystal structure of the resulting ternary nanowires favors the ZB phase. Therefore, the formation of antimonide-based nanowires with the WZ phase presents fundamental challenges and is yet to be explored, but is particularly interesting for understanding the nanowire crystal phase in general. In this study, we examine the formation of Au-seeded InSb and GaSb nanowires under various growth conditions using metalorganic vapor phase epitaxy. We address the possibility of forming other phases than ZB such as WZ and 4H in binary nanowires and demonstrate the controlled formation of WZ InSb nanowires. We further discuss the fundamental aspects of WZ growth in Au-seeded antimonide-based nanowires. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07362f

  17. Impacts of Crystallization on Protein Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Kelemen, Lorand; Nie, Beining; Xie, Aihua; Anderson, Spencer; Philip, Andrew; Hoff, Wouter D.

    2005-10-01

    X-ray crystallographic technique is a powerful technique for structural determination of steady state proteins. Now this technique has been further developed to determine the structures of transient states of proteins during their functional processes. Can a protein function in the crystalline state? It is often assumed but untested that the functionally important structural dynamics of a protein are preserved in the crystalline state. This lack of test is largely due to the fact that major structural determination techniques, x-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, can only be applied to either crystalline state or solution state, not both. Here we report our direct study on the impacts of protein crystallization on the structural dynamics of a blue light photoreceptor protein using time-resolved Fourier transform infrared (FTIR) difference spectroscopic techniques. We found that proteins in crystalline state experience suppressed conformational changes, accelerated kinetics, and altered proton transfer pathway upon light activation. Furthermore, we show that crystallization salt itself has profound impacts on structural dynamics and proton transfer pathway. These results strongly demonstrate that it is necessary and crucial to test and determine whether transient/cold-trapped x-ray crystallography can resolve the protein structures of intermediate states that reflect the natural protein structural dynamics.

  18. Visible stealth materials based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Yao, Guozheng; Liu, Ying

    2014-08-01

    Optical thin film can be used for invisible cloak. As a kind of low-dimension photonic crystal, it is a candidate for metamaterial with designed ? and ?. As a coating, it is convenient to be stacked to mimic continuous changing of electromagnetic media. Anti-reflection film is suitable for matching coating between layers of media.

  19. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    SciTech Connect

    Thirumurugan, R. Anitha, K.

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UVvis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  20. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  1. Method and apparatus for nucleating the crystallization of undercooled materials

    DOEpatents

    Benson, David K. (Golden, CO); Barret, Peter F. (Peterbourgh, CA)

    1989-01-01

    A method of storing and controlling a release of latent heat of transition of a phase-change material is disclosed. The method comprises trapping a crystallite of the material between two solid objects and retaining it there under high pressure by applying a force to press the two solid objects tightly together. A crystallite of the material is exposed to a quantity of the material that is in a supercooled condition to nucleate the crystallization of the supercooled material.

  2. Propagation through complex structured liquid crystal optical fibers

    NASA Astrophysics Data System (ADS)

    Ghasemi, Masih; Choudhury, Pankaj K.

    2014-01-01

    Wave propagation in optical mediums greatly depends on the materials of which the guides are composed. Among the other forms of optical mediums, liquid crystals are both inhomogeneous and optically anisotropic in nature, and exhibit strong electro-optic behavior, which allows alternation in their optical properties under the influence of external electrical fields. These features make optical fibers containing liquid crystals greatly useful for fabricating many optical devices for practical applications. As such, the analytical investigation of wave propagation through liquid crystal optical fibers, particularly a three-layer fiber with radially anisotropic liquid crystal material in the outermost clad section, remains interesting. The power confinement in the liquid crystal section of such fibers can be enhanced for these to be efficiently used in optical coupling and/or sensing applications. Furthermore, a control over the dispersion characteristics, and, hence, the confinement of power, in such fibers may be imposed by making the guide even more complex in the form of introducing a conducting sheath helix structure at the core-inner clad interface.

  3. Crystal structures of two orthorhombic zirconias

    SciTech Connect

    Howard, C.J. ); Kisi, E.H. ); Ohtaka, O. )

    1991-09-01

    The crystal structures of orthorhombic zirconias formed by cooling magnesia-partially-stabilized zirconia (Mg-PSZ) (space group Pbc2{sub 1}) and by quenching zirconia powder from 600{degrees} C and 6 GPa (space group Pbca) are compared and contrasted. It is demonstrated that the two structures are easily distinguished by the neutron powder diffraction techniques used to establish them. The occurrence of two distinct phases is hence proved. Structural relationships between these two phases and also with the in situ high-pressure structure proposed from x-ray diffraction (XRD) are discussed. In this paper the three structures are virtually indistinguishable by XRD and so the structure of the high-pressure form in situ is considered to remain unknown.

  4. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.

    PubMed

    Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U

    2015-01-25

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. PMID:25168233

  5. Structural phase transitions in layered perovskitelike crystals

    SciTech Connect

    Aleksandrov, K.S.

    1995-03-01

    Possible symmetry changes due to small tilts of octahedra are considered for layered perovskite-like crystals containing slabs of several ({ell}) layers of comer-sharing octahedra. In the crystals with {ell} > 1, four types of distortions are possible; as a rule, these distortions correspond to the librational modes of the parent lattice. Condensation of these soft modes is the reason for structural phase transitions or sequences of phase transitions. The results obtained are compared with the known experimental data for a number of layered ferroelectric and ferroelastic perovskite-like compounds. An application of the results to the initial stage of determining unknown structures is discussed with particular attention paid to high-temperature superconductors. 76 refs., 9 figs., 7 tabs.

  6. Crystal structure of sodium cyclodinitridoimidodisulfophosphate dihydrate

    SciTech Connect

    Sokol, V.I.; Porai-Koshits, M.A.; Kop'eva, M.A.; Rozanov, I.A.; Beresnev, E.N.

    1987-04-01

    An x-ray structural investigation of the sodium salt with a heterocyclic anion containing P, N, and S atoms Na3HN3S2PO6 x 2H2O has been carried out (lambdaMo, 2485 reflections, anisotropic least-squares method to R = 0.043). The crystals are monoclinic: a = 7.832(2), b = 9.954(3), c = 13.281(4) A, US = 91.06, Z = 4, space group P21/n. The structure is built up from cyclic (H3S2PO4)T anions, Na cations, and molecules of water of crystallization. The heterocycle has a chair conformation and exists in the dinitridoimido tautomeric form, and the proton is located at a nitrogen atom positioned between a sulfur atom and the phosphorus atom.

  7. Amine free crystal structure: The crystal structure of d(CGCGCG){sub 2} and methylamine complex crystal

    SciTech Connect

    Ohishi, Hirofumi . E-mail: ohishi@gly.oups.ac.jp; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-09-29

    We succeeded in the crystallization of d(CGCGCG){sub 2} and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F {sub o} - F {sub c} map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG){sub 2}. However, methylamine was not found from the complex crystal of d(CGCGCG){sub 2} and methylamine. Five Mg ions were found around d(CGCGCG){sub 2} molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg{sup 2+}. DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG){sub 2} and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this.

  8. Confined Crystals of the Smallest Phase-Change Material

    PubMed Central

    2013-01-01

    The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales. PMID:23984706

  9. Structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Baluc, N.; Sptig, P.

    2001-08-01

    In order to preserve the conditions for an environmentally safe machine, at present the selection of materials for the structural components of fusion reactors is made not only on the basis of adequate mechanical properties, behaviour under irradiation, and compatibility with other materials and cooling media, but also on their radiological properties, i.e. radioactivity, decay heat and radiotoxicity. These conditions strongly limit the number of suitable materials to a few families of alloys, generically known as low activation materials. The criteria for making decisions about such materials, the alloys resulting from the application of these ideas and the main issues and problems with their use in a fusion environment are discussed.

  10. Structural studies on ferroelectric and ferrodistortive materials

    NASA Astrophysics Data System (ADS)

    Zou, Mingqin

    The structure of the piezoelectric material 0.68PbMg1/3Nb 2/3O3-0.32PbTiO3 have been studied by single crystal, powder x-ray diffraction techniques over the temperature range from 25C to 200C. The existence of twinned structures or coexistence of rhombohedral and tetragonal phases has been shown by the peak distortion of Bragg reflections. Superlattice structure was observed for all experimental PMN-PT crystals. Refinement results showed that the 2 x 2 x 2 superlattice resulted from anti-parallel displacement of oxygen in the adjacent conventional perovskite unit cells. No cation displacement in the paraelectric phase and little in the ferroelectric phase were shown by the refinement results. This unique feature associated with the ferroelectric mechanism of the material was explained by comparison with PbMg1/3Nb2/3O3. The crystals were extensively characterized by using powder x-ray diffraction, Laue back-reflection and electron backscatter diffraction (EBSD) techniques. The detailed orientation information such as misorientation of grains, location of grain boundaries and the orientation distribution was obtained from the automatic orientation mapping with the EBSD technique. The uniform orientation was confirmed for crystals with a "cellular-like" structure. A crystal growth model, the two-dimensional layer mechanism, was proposed by orientation analysis. Based on the model, some important comments were made on orientation problems under general growth conditions. The ferrodistortive phase transitions of tertramethylphosphonium tetrabromozincate [P(CH3)4]2ZnBr4 and tertramethylphosphonium tetraiodonzincate [P(CH3)4]2ZnI4 were thoroughly studied by a single crystal x-ray diffraction technique. An order parameter analysis by application of Landau theory showed that the two compounds undergo first-order phase transitions near a tricritical Lifshitz point. Transitions for both compounds appear to be first order, but with the iodo salt the transition is nearly second order. The driving force for the transitions was found to be the uniaxial anion displacement with respect to the mirror plane in Pmcn phase, coupled with the rotation of the cation and anions. The abnormal thermal behaviors, such as thermal contraction of a-axis, non-linear behavior of thermal parameters versus temperature in both compounds and superheating of [P(CH3)4]2ZnBr4 , were explained by observing the Lifshitz point. The results from theoretical analysis of the free energy are consistent with all features of the phase transitions.

  11. Observations on the crystal structures of lueshite

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Burns, Peter C.; Knight, Kevin S.; Howard, Christopher J.; Chakhmouradian, Anton R.

    2014-06-01

    Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11-1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 C demonstrate phase transitions above 550 C from Cmcm through P4 /mbm to above 650 C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO3, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm.

  12. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1?) forms hydrogen-bonded ribbons of anions which accept weak CH?N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  13. Synthesis, crystal growth and characterization of an organic material: 2-Aminopyridinium succinate succinic acid single crystal.

    PubMed

    Magesh, M; Bhagavannarayana, G; Ramasamy, P

    2015-11-01

    The 2-aminopyridinium succinate succinic acid (2APS) single crystal was synthesized and grown by slow evaporation method. The crystal structure has been confirmed by powder X-ray diffraction as well as single crystal X-ray diffraction analysis. The crystal perfection has been evaluated by high resolution X-ray diffraction (HRXRD). The grown crystal is transparent in the visible and near infrared region. The optical absorption edge was found to be 348 nm. The fluorescence study was carried out by spectrofluorophotometer. The thermal stability of grown crystal was analyzed by thermal gravimetric and differential thermal gravimetric (TG-DTA) analysis. Vicker's hardness study carried out at room temperature shows increased hardness while increasing the load. Laser damage threshold value was determined by Nd:YAG laser operating at 1064 nm. The grown 2APS crystal was characterized by etching studies using water as etchant. PMID:26099828

  14. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2.

    PubMed

    Ben Ahmed, A; Feki, H; Abid, Y

    2014-12-10

    A new organic-inorganic hybrid material, [((CH3)2NH2)(+)]6·[(BiBr6)(3-)]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1¯ with the following parameters: a=8.4749(6)(Å), b=17.1392(12)(Å), c=17.1392(12)(Å), α=117.339(0)°, β=99.487(0)°, γ=99.487(0)° and Z=2. The crystal lattice is composed of a two discrete (BiBr6)(3-) anions surrounded by six ((CH3)2NH2)(+) cations. Complex hydrogen bonding interactions between (BiBr6)(3-) and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary. PMID:24967541

  15. Synthesis, crystal structure, vibrational spectroscopy, optical properties and theoretical studies of a new organic-inorganic hybrid material: [((CH3)2NH2)+]6[(BiBr6)3-]2

    NASA Astrophysics Data System (ADS)

    Ben Ahmed, A.; Feki, H.; Abid, Y.

    2014-12-01

    A new organic-inorganic hybrid material, [((CH3)2NH2)+]6[(BiBr6)3-]2, has been synthesized and characterized by X-ray diffraction, FT-IR, Raman spectroscopy and UV-Visible absorption. The studied compound crystallizes in the triclinic system, space group P1bar with the following parameters: a=8.4749(6)(), b=17.1392(12)(), c=17.1392(12)(), ? = 117.339(0), ? = 99.487(0), ? = 99.487(0) and Z = 2. The crystal lattice is composed of a two discrete (BiBr6)3- anions surrounded by six ((CH3)2NH2)+ cations. Complex hydrogen bonding interactions between (BiBr6)3- and organic cations from a three-dimensional network. Theoretical calculations were performed using density functional theory (DFT) for studying the molecular structure, vibrational spectra and optical properties of the investigated molecule in the ground state. The full geometry optimization of designed system is performed using DFT method at B3LYP/LanL2DZ level of theory using the Gaussian03. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from FT-IR and Raman spectra are assigned based on the results of the theoretical calculations. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental UV-Visible spectrum. The results show good consistent with the experiment and confirm the contribution of metal orbital to the HOMO-LUMO boundary.

  16. ORTEP2. Crystal Structure Illustration Plots

    SciTech Connect

    Johnson, C.K.

    1982-02-17

    ORTEP2 draws crystal structure illustrations using a CalComp plotter. Ball and stick type illustrations of publication quality are produced with either spheres or thermal motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are calculated also as part of the structural study. ORTEP2 includes a hidden line algorithm to eliminate those portions of atoms or bonds behind other atoms or bonds.

  17. Crystal structure and DFT calculations of andrographiside

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Banerjee, Sukdeb; Kar, Tanusree

    2010-02-01

    Crystal and molecular structure of a labdane diterpenoid glucoside, andrographiside ( 1) is determined from 2D-NMR and X-ray diffraction data. The 2D-NMR study indicates that the carbohydrate moiety is in ?-linkage and the sugar moiety is linked to C-19 of the aglycon. These observations are further confirmed from the X-ray diffraction studies. Both the six-membered rings are in chair conformation whereas the glucose ring adopts a twist-boat conformation. The molecular geometries and electronic structure of ( 1) were calculated at the DFT level using the hybrid exchange-correlation functional, BLYP, PW91 and PBE.

  18. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  19. Manganese oxide minerals: Crystal structures and economic and environmental significance

    PubMed Central

    Post, Jeffrey E.

    1999-01-01

    Manganese oxide minerals have been used for thousands of yearsby the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  20. Can antimonide-based nanowires form wurtzite crystal structure?

    PubMed

    Gorji Ghalamestani, Sepideh; Lehmann, Sebastian; Dick, Kimberly A

    2016-01-28

    The epitaxial growth of antimonide-based nanowires has become an attractive subject due to their interesting properties required for various applications such as long-wavelength IR detectors. The studies conducted on antimonide-based nanowires indicate that they preferentially crystallize in the zinc blende (ZB) crystal structure rather than wurtzite (WZ), which is common in other III-V nanowire materials. Also, with the addition of small amounts of antimony to arsenide- and phosphide-based nanowires grown under conditions otherwise leading to WZ structure, the crystal structure of the resulting ternary nanowires favors the ZB phase. Therefore, the formation of antimonide-based nanowires with the WZ phase presents fundamental challenges and is yet to be explored, but is particularly interesting for understanding the nanowire crystal phase in general. In this study, we examine the formation of Au-seeded InSb and GaSb nanowires under various growth conditions using metalorganic vapor phase epitaxy. We address the possibility of forming other phases than ZB such as WZ and 4H in binary nanowires and demonstrate the controlled formation of WZ InSb nanowires. We further discuss the fundamental aspects of WZ growth in Au-seeded antimonide-based nanowires. PMID:26763161

  1. Crystal structure of the eukaryotic ribosome.

    PubMed

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation. PMID:21109664

  2. Crystal structures and freezing of dipolar fluids.

    PubMed

    Groh, B; Dietrich, S

    2001-02-01

    We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar) interaction three phases are found upon increasing the dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential approximately r(-n). A crossover between qualitatively different sequences of phases occurs near the exponent n=12. The results are applicable to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of the Stockmayer fluid by density-functional theory. PMID:11308482

  3. Crystallization-modulated nanoporous polymeric materials with hierarchical patterned surfaces and 3D interpenetrated internal channels.

    PubMed

    Ye, Lijun; Shi, Xianchun; Ye, Cuicui; Chen, Zhouli; Zeng, Mengmeng; You, Jichun; Li, Yongjin

    2015-04-01

    Poly(oxymethylene)/poly(L-lactic acid) (POM/PLLA) blends are typical melt-miscible binary systems. During isothermal crystallization at various temperatures, in the presence of amorphous PLLA chains, POM crystallizes into banded spherulites with different band spaces, which forms a continuous crystalline phase and serves as a sturdy frame in the final porous materials. On the other hand, the amorphous PLLA chains are simultaneously expelled out from POM crystal lamellae to generate the other continuous phase during the crystallization of POM. Consequently, the interpenetration of the POM lamellae and the amorphous PLLA phase construct a cocontinuous phase structure. All the PLLA constituents are fully included in the interlamellar or interfibrillar of POM crystals. Thus, nanoporous POM materials with hierarchical patterned surface and 3D interpenetrated internal channels have been successfully obtained by extracting the amorphous PLLA phase. It is further found that the POM crystal morphologies in the blends are much dependent on the crystallization conditions. Therefore, the hierarchical patterned structure and the size of internal channels (pore size) can be modulated by adjusting the crystallization conditions. PMID:25774433

  4. Crystal structure of MboIIA methyltransferase.

    SciTech Connect

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.; Biosciences Division; Univ. of Gdansk; Medical Research Council France

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  5. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trinco, Jos; Carvalho, Alexandra T. P.; Ramos, Maria Joo; Terao, Mineko; Garattini, Enrico; Leimkhler, Silke; Romo, Maria Joo

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 ?. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  6. Crystal Structure of the Human Primase*

    PubMed Central

    Baranovskiy, Andrey G.; Zhang, Yinbo; Suwa, Yoshiaki; Babayeva, Nigar D.; Gu, Jianyou; Pavlov, Youri I.; Tahirov, Tahir H.

    2015-01-01

    DNA replication in bacteria and eukaryotes requires the activity of DNA primase, a DNA-dependent RNA polymerase that lays short RNA primers for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for RNA primer synthesis. Understanding of RNA synthesis priming in eukaryotes is currently limited due to the lack of crystal structures of the full-length primase and its complexes with substrates in initiation and elongation states. Here we report the crystal structure of the full-length human primase, revealing the precise overall organization of the enzyme, the relative positions of its functional domains, and the mode of its interaction with modeled DNA and RNA. The structure indicates that the dramatic conformational changes in primase are necessary to accomplish the initiation and then elongation of RNA synthesis. The presence of a long linker between the N- and C-terminal domains of p58 provides the structural basis for the bulk of enzyme's conformational flexibility. Deletion of most of this linker affected the initiation and elongation steps of the primer synthesis. PMID:25550159

  7. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 ?m3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

  8. Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals

    NASA Astrophysics Data System (ADS)

    Vimal, G.; Mani, Kamal P.; Biju, P. R.; Joseph, Cyriac; Unnikrishnan, N. V.; Ittyachen, M. A.

    2014-03-01

    Nanostructured samarium oxalate crystals were prepared via microwave assisted co-precipitation method. The crystal structure and morphology of the sample were analyzed using X-ray powder diffraction, Scanning electron microscopy and Transmission electron microscopy. The presence of functional groups is ascertained by Fourier transform infrared spectroscopy. Samarium oxalate nanocrystals of average size 20 nm were aggregated together to form nano-plate structure in sub-microrange. Detailed spectroscopic investigation of the prepared phosphor material was carried out by Judd-Ofelt analysis based on the UV-Visible-NIR absorption spectra and photoluminescence emission spectra. The analysis reveals that the transition from energy level 4G5/2 to 6H7/2 of Sm3+ ion has maximum branching ratio and the corresponding orange emission can be used for display applications.

  9. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    PubMed

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-01

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. PMID:26426723

  10. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination

    SciTech Connect

    Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2009-10-07

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  11. Liquid crystal photoalignment material based on chloromethylated polyimide

    SciTech Connect

    Zhong Zhenxin; Li Xiangdan; Lee, Seung Hee; Lee, Myong-Hoon

    2004-09-27

    We report a liquid crystal photoalignment material with high photosensitivity and excellent thermal stability. The chloromethylated aromatic polyimide exhibited defect-free homogeneous alignment of liquid crystals upon irradiation of polarized deep ultraviolet (UV) for 50 s. The aligning ability of the film was retained up to 210 deg. C, and the cell containing liquid crystals could be stored at 85 deg. C for more than 14 days without any deterioration. FT-IR and UV-vis spectra confirmed that the alignment was induced by photodecomposition of polyimide, drastically accelerated by the introduction of chloromethyl side group.

  12. A dynamic beam splitter using polymer dispersed liquid crystal materials

    NASA Astrophysics Data System (ADS)

    Riquelme, Marina; Ortuo, Manuel; Mrquez, Andrs.; Gallego, Sergi; Pascual, Inmaculada; Belndez, Augusto

    2012-10-01

    We build a dynamic beam splitter with a holographic optical element (HOE). The laser light goes through the HOE and a fraction of intensity diffracted and transmitted could be tuned by an electric signal. We use holographic polymer dispersed liquid crystals materials. It is made by holographic recording in which the liquid crystal molecules diffuse to dark zones in the diffraction grating and they can be oriented by means of an electric field. The orientation of the liquid crystal produces a refraction index variation which changes the diffraction efficiency and therefore the grating has a dynamic behavior.

  13. Crystal structure of the dynein motor domain.

    PubMed

    Carter, Andrew P; Cho, Carol; Jin, Lan; Vale, Ronald D

    2011-03-01

    Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain. PMID:21330489

  14. Crystal structure of plant photosystem I

    NASA Astrophysics Data System (ADS)

    Ben-Shem, Adam; Frolow, Felix; Nelson, Nathan

    2003-12-01

    Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4 resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.

  15. The Crystal Structures of Potentially Tautomeric Compounds

    NASA Astrophysics Data System (ADS)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  16. Crystal structure prediction from first principles: The crystal structures of glycine

    NASA Astrophysics Data System (ADS)

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-04-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

  17. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Hbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8? resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms. PMID:26735012

  18. Temperature dependent spin structures in Hexaferrite crystal

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Lin, J. G.; Chun, S. H.; Kim, K. H.

    2016-01-01

    In this work, the Hexaferrite Ba0.5Sr1.5Zn2Fe12O22 (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state.

  19. Elasticity of some mantle crystal structures. II.

    NASA Technical Reports Server (NTRS)

    Wang, H.; Simmons, G.

    1973-01-01

    The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.

  20. Bio-Inspired Approaches to Crystals with Composite Structures

    NASA Astrophysics Data System (ADS)

    Meldrum, Fiona

    2013-03-01

    Advances in technology demand an ever-increasing degree of control over material structure, properties and function. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is beautifully illustrated by the formation of biominerals where organic macromolecules are combined with brittle minerals such as calcite to create crystals with considerable fracture toughness. This talk will discuss how bio-inspired approaches can be used to generate single crystals with composite crystals through a simple one-pot method. By precipitating calcite crystals in the presence of ``occlusion species'' ranging from latex particles, to organic and inorganic nanoparticles and finally small molecules we demonstrate that high amounts of foreign species can be incorporated through control over the additive surface chemistry, and that this can lead to an enhancement of the mechanical properties of the calcite. Occlusion of 20 nm anionic diblock copolymer micelles was achieved at levels of over 13 wt%, and the properties of the resuktant composite calcite crystals were measured using a range of techniques including IR spectroscopy, high resolution powder XRD and high resolution TEM. Incorporation of these macromolecules leads to crystals with structures and mechanical properties similar to those of biominerals. With sizes in the range of some intracrystalline proteins, the micelles act as ``pseudo-proteins'', thereby providing an excellent model system for investigation of the mechanism of macromolecule insertion within biominerals. Extension of these studies to the incorporation of small molecules (amino acids) again demonstrated high levels of incorporation without any change in the crystal morphology. Further, occlusion of these small molecules within the calcite lattice again resulted in a significant increase in the hardness of the calcite, a result which appears to derive from an increase in lattice strain on molecular occlusion. Finally, the generality of this strategy is demonstrated by its extension to the incorporation of inorganic particles such as magnetite and gold within calcite, leading to the formation of inorganic-inorganic composites. I would like to acknowledge the EPSRC for funding under grants EP/G00868X/1, EP/E037364/1 and EP/K006304/1

  1. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals

    NASA Astrophysics Data System (ADS)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.

    2015-06-01

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  2. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    SciTech Connect

    Wallace, E.; Dranow, D.; Laible, P. D.; Christensen, J.; Nollert, P.

    2011-01-01

    The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase.

  3. Crystal structure of yeast Sco1.

    PubMed

    Abajian, Carnie; Rosenzweig, Amy C

    2006-06-01

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-A resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function. PMID:16570183

  4. Crystal structure of yeast Sco1

    SciTech Connect

    Abajian, Carnie; Rosenzweig, Amy C.

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  5. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  6. The Crystal Structure of Human Argonaute2

    SciTech Connect

    Schirle, Nicole T.; MacRae, Ian J.

    2012-07-18

    Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.

  7. Crystal Structure of Human Nicotinamide Riboside Kinase

    SciTech Connect

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  8. Crystal structure of glucokinase regulatory protein.

    PubMed

    Pautsch, Alexander; Stadler, Nadja; Lhle, Adelheid; Rist, Wolfgang; Berg, Adina; Glocker, Lucia; Nar, Herbert; Reinert, Dirk; Lenter, Martin; Heckel, Armin; Schnapp, Gisela; Kauschke, Stefan G

    2013-05-21

    Glucokinase (GK) plays a major role in the regulation of blood glucose homeostasis in both the liver and the pancreas. In the liver, GK is controlled by the GK regulatory protein (GKRP). GKRP in turn is activated by fructose 6-phosphate (F6P) and inactivated by fructose 1-phosphate (F1P). Disrupting the GK-GKRP complex increases the activity of GK in the cytosol and is considered an attractive concept for the regulation of blood glucose. We have determined the crystal structure of GKRP in its inactive F1P-bound form. The binding site for F1P is located deeply buried at a domain interface, and H-D exchange experiments confirmed that F1P and F6P compete for this site. The structure of the inactive GKRP-F1P complex provides a starting point for understanding the mechanism of fructose phosphate-dependent GK regulation at an atomic level. PMID:23621087

  9. Crystal structure of human nicotinamide riboside kinase.

    PubMed

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations. PMID:17698003

  10. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  11. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. Structural contribution to the roughness of supersmooth crystal surface

    SciTech Connect

    Butashin, A. V.; Muslimov, A. E. Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E.

    2013-05-15

    Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.

  13. Crystal structure of bacterioferritin from Rhodobacter sphaeroides

    SciTech Connect

    Nam, Ki Hyun; Xu, Yongbin; Piao, Shunfu; Priyadarshi, Amit; Lee, Eun Hye; Kim, Hye-Yeon; Jeon, Young Ho; Ha, Nam-Chul; Hwang, Kwang Yeon

    2010-01-01

    Iron is essential for the survival of organisms, but either excess or deficient levels of iron induce oxidative stress, thereby causing cell damage. As a result, iron regulation is essential for proper cell growth and proliferation in most organisms. Bacterioferritin is a ferritin-like family protein that contains a heme molecule and a ferroxidase site at the di-iron center. This protein plays a primary role in intracellular iron storage for iron homeostasis, as well as in the maintenance of iron in a soluble and non-toxic form. Although several bacterioferritin structures have been determined, no structural studies have successfully elucidated the molecular function of the heme molecule and the ferroxidase center. Here, we report the crystal structure of bacterioferritin from Rhodobacter sphaeroides. This protein exists in a roughly spherical configuration via the assembly of 24 subunits. We describe the oligomeric arrangement, ferroxidase center and heme-binding site based on this structure. The protein contains a single iron-binding configuration in the ferroxidase center, which allows for the release of iron by His130 when the protein is in the intermediate state. The heme molecule in RsBfr is stabilized by shifting of the van der Waals interaction center between the porphyrin of the heme and Trp26. We anticipate that further structural analysis will provide a more complete understanding of the molecular mechanisms of members of the ferritin-like family.

  14. Revealing Structural Transformations during Crystallization of DNA-Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Zhang, Yugang; Lu, Fang; van der Lelie, Daniel; Gang, Oleg

    2013-03-01

    Nanoparticle assembly via sequence-specific DNA recognition emerges as a powerful strategy for the fabrication of nanoparticle (NP)-based crystalline materials. Generally, a delicate thermal annealing is essential for the crystallization of NPs from kinetically trapped disordered states. Due to the complex coupling between interactions, entropic and chain effects in these systems, the crystallization pathway remains an intricate and open question. Herein, we present an experimental study of the crystallization process for DNA-directed nanoparticle assembly systems using synchrotron-based small angle x-ray scattering (SAXS). We demonstrated the effects of two crystallization-dominant factors, namely, temperature and volume fraction, on the structural transformation and order development. By combining a single component and binary systems we uncovered the evolution of global and local particle arrangements, such as correlation length, compositional disorder and coordination number, during the phase transformation. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  15. Synthesis, growth, crystal structure and characterization of a new organic NLO crystal: L-Lysine 4-nitrophenolate monohydrate (LLPNP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Magesh, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Hayakawa, Y.

    2014-09-01

    L-Lysine 4-nitrophenolate monohydrate (LLPNP) has been synthesized and grown by solution growth method at room temperature using deionised water as a solvent. The crystal structure of the materials was solved by single crystal X-ray diffraction analysis and it was found that the material has orthorhombic system. The crystallinity of the grown crystals was studied by the powder X-ray diffraction analysis. Molecular structure of the grown crystal was investigated by 1H NMR spectroscopy. The various functional groups of the sample were identified by Fourier transform infrared and Fourier transform-Raman spectroscopic analyses. Thermal stability of the grown crystal has been studied by Thermogravimetric and Differential thermal (TG&DTA) analysis. The optical absorption of the grown crystals has been ascertained by UV-Vis-NIR absorption studies. Second harmonic generation (SHG) efficiency of the material has been determined by Kurtz and Perry technique and the efficiency was found to be 4.45 and 1.4 times greater than that of standard KDP and urea samples, respectively.

  16. Synthesis, growth, crystal structure and characterization of a new organic NLO crystal: L-lysine 4-nitrophenolate monohydrate (LLPNP).

    PubMed

    Mahadevan, M; Magesh, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Hayakawa, Y

    2014-09-15

    L-lysine 4-nitrophenolate monohydrate (LLPNP) has been synthesized and grown by solution growth method at room temperature using deionised water as a solvent. The crystal structure of the materials was solved by single crystal X-ray diffraction analysis and it was found that the material has orthorhombic system. The crystallinity of the grown crystals was studied by the powder X-ray diffraction analysis. Molecular structure of the grown crystal was investigated by 1H NMR spectroscopy. The various functional groups of the sample were identified by Fourier transform infrared and Fourier transform-Raman spectroscopic analyses. Thermal stability of the grown crystal has been studied by Thermogravimetric and Differential thermal (TG&DTA) analysis. The optical absorption of the grown crystals has been ascertained by UV-Vis-NIR absorption studies. Second harmonic generation (SHG) efficiency of the material has been determined by Kurtz and Perry technique and the efficiency was found to be 4.45 and 1.4 times greater than that of standard KDP and urea samples, respectively. PMID:24810028

  17. Crystal structure of strontium dinickel iron orthophosphate.

    PubMed

    Ouaatta, Said; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-10-01

    The title compound, SrNi2Fe(PO4)3, synthesized by solid-state reaction, crystallizes in an ordered variant of the ?-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2), Fe is on 4b (2/m), Ni and the other P atom are on 8g (2), one O atom is on 8h (m) and the other on 8i (m). The three-dimensional framework of the crystal structure is built up by [PO4] tetra-hedra, [FeO6] octa-hedra and [Ni2O10] dimers of edge-sharing octa-hedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octa-hedra ([Ni2O10] dimer) linked to [PO4] tetra-hedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetra-hedra and FeO6 octa-hedra sharing apices. The layers are held together through vertices of [PO4] tetra-hedra and [FeO6] octa-hedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms. PMID:26594419

  18. Crystal structures of five 6-mercaptopurine derivatives.

    PubMed

    Gomes, Lígia R; Low, John Nicolson; Magalhães E Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-03-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(3-meth-oxy-phen-yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-meth-oxy-phen-yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-chloro-phen-yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-bromo-phen-yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth-oxy-phen-yl)-2-[(9H-purin-6-yl)sulfan-yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol-ecular and supra-molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol-ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol-ecules are linked by weak C-H⋯O hydrogen bonds in their crystals. There is π-π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl-ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles. PMID:27006794

  19. Crystal structure of strontium dinickel iron orthophosphate

    PubMed Central

    Ouaatta, Said; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-01-01

    The title compound, SrNi2Fe(PO4)3, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2), Fe is on 4b (2/m), Ni and the other P atom are on 8g (2), one O atom is on 8h (m) and the other on 8i (m). The three-dimensional framework of the crystal structure is built up by [PO4] tetra­hedra, [FeO6] octa­hedra and [Ni2O10] dimers of edge-sharing octa­hedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octa­hedra ([Ni2O10] dimer) linked to [PO4] tetra­hedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetra­hedra and FeO6 octa­hedra sharing apices. The layers are held together through vertices of [PO4] tetra­hedra and [FeO6] octa­hedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms. PMID:26594419

  20. Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures

    NASA Astrophysics Data System (ADS)

    Nakagawa, Junki; Kage, Yuta; Hori, Takuma; Shiomi, Junichiro; Nomura, Masahiro

    2015-07-01

    Thermal phonon transport in square- and triangular-lattice Si phononic crystal (PnC) nanostructures with a period of 300 nm was investigated by measuring the thermal conductivity using micrometer-scale time-domain thermoreflectance. The placement of circular nanoholes has a strong influence on thermal conductivity when the periodicity is within the range of the thermal phonon mean free path. A staggered hole structure, i.e., a triangular lattice, has lower thermal conductivity, where the difference in thermal conductivity depends on the porosity of the structure. The largest difference in conductivity of approximately 20% was observed at a porosity of around 30%. This crystal structure dependent thermal conductivity can be understood by considering the local heat flux disorder created by a staggered hole structure. Numerical simulation using the Monte Carlo technique was also employed and also showed the lower thermal conductivity for a triangular lattice structure. Besides gaining a deeper understanding of nanoscale thermal phonon transport, this information would be useful in the design of highly efficient thermoelectric materials created by nanopatterning.

  1. Acoustic wave velocities in two-dimensional composite structures based on acousto-optical crystals

    NASA Astrophysics Data System (ADS)

    Mal'neva, P. V.; Trushin, A. S.

    2015-04-01

    Sound velocities in two-dimensional composite structures based on isotropic and anisotropic acousto-optical crystals have been determined by numerical simulations. The isotropic materials are represented by fused quartz (SiO2) and flint glass, while anisotropic materials include tetragonal crystals of paratellurite (TeO2) and rutile (TiO2) and a trigonal crystal of tellurium (Te). It is established that the acoustic anisotropy of periodic composite structures strongly depends on both the chemical composition and geometric parameters of components.

  2. Crystal structures of the human adiponectin receptors

    PubMed Central

    Tanabe, Hiroaki; Fujii, Yoshifumi; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-01-01

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases AMPK and PPAR activities, respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G protein-coupled receptor (GPCR)s. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9- and 2.4- resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of GPCRs, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may play a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the C-terminal flexible tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  3. Crystal structures of the human adiponectin receptors.

    PubMed

    Tanabe, Hiroaki; Fujii, Yoshifumi; Okada-Iwabu, Miki; Iwabu, Masato; Nakamura, Yoshihiro; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-04-16

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5'AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather thanthe carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  4. Crystal structures of respiratory pathogen neuraminidases

    PubMed Central

    Hsiao, Yu-Shan; Parker, Dane; Ratner, Adam J.; Prince, Alice; Tong, Liang

    2013-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 Å resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens. PMID:19284989

  5. Crystal Structures of Respiratory Pathogen Neuraminidases

    SciTech Connect

    Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

    2009-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

  6. Crystal structure of natural phaeosphaeride A

    PubMed Central

    Abzianidze, Victoria V.; Poluektova, Ekaterina V.; Bolshakova, Ksenia P.; Panikorovskii, Taras L.; Bogachenkov, Alexander S.; Berestetskiy, Alexander O.

    2015-01-01

    The asymmetric unit of the title compound, C15H23NO5, contains two independent mol­ecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the mol­ecules form layered structures. Nearly planar sheets, parallel to the (001) plane, form bilayers of two-dimensional hydrogen-bonded networks with the hy­droxy groups located on the inter­ior of the bilayer sheets. The network is constructed primarily of four O—H⋯O hydrogen bonds, which form a zigzag pattern in the (001) plane. The butyl chains inter­digitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6):0.282 (6). PMID:26396831

  7. Growth and structure of a new photonic crystal: Chlorine substituted chalcone

    NASA Astrophysics Data System (ADS)

    Sarveshwara, H. P.; Raghavendra, S.; A, Jayarama; Menezes, Anthoni Praveen; Dharmaprakash, S. M.

    2015-06-01

    A new organic photonic material 3-(2, 4-dichlorophenyl)-1-(2,5-dimethylthiophen-3-yl)propan-1-one(DMTP) has been synthesized and crystallised in acetone solution. The functional groups present in the new material were identified by FTIR spectroscopy. The material is optically transparent in the wavelength range of 400-1100 nm. The crystal structure of DMTP was determined by single crystal X-ray diffraction. The title compound crystallizes in monoclinic system with a centrosymmetric space group P21/c. The Z-scan study revealed that the optical limiting property exhibited by the DMTP molecule is based on the reverse saturable absorption phenomena.

  8. Crystal Structure of Uronate Dehydrogenase from Agrobacterium tumefaciens*

    PubMed Central

    Parkkinen, Tarja; Boer, Harry; Jänis, Janne; Andberg, Martina; Penttilä, Merja; Koivula, Anu; Rouvinen, Juha

    2011-01-01

    Uronate dehydrogenase from Agrobacterium tumefaciens (AtUdh) belongs to the short-chain dehydrogenase/reductase superfamily and catalyzes the oxidation of d-galacturonic acid and d-glucuronic acid with NAD+ as a cofactor. We have determined the crystal structures of an apo-form of AtUdh, a ternary form in complex with NADH and product (substrate-soaked structure), and an inactive Y136A mutant in complex with NAD+. The crystal structures suggest AtUdh to be a homohexamer, which has also been observed to be the major form in solution. The monomer contains a Rossmann fold, essential for nucleotide binding and a common feature of the short-chain dehydrogenase/reductase family enzymes. The ternary complex structure reveals a product, d-galactaro-1,5-lactone, which is bound above the nicotinamide ring. This product rearranges in solution to d-galactaro-1,4-lactone as verified by mass spectrometry analysis, which agrees with our previous NMR study. The crystal structure of the mutant with the catalytic residue Tyr-136 substituted with alanine shows changes in the position of Ile-74 and Ser-75. This probably altered the binding of the nicotinamide end of NAD+, which was not visible in the electron density map. The structures presented provide novel insights into cofactor and substrate binding and the reaction mechanism of AtUdh. This information can be applied to the design of efficient microbial conversion of d-galacturonic acid-based waste materials. PMID:21676870

  9. Syntheses, Crystal Structures, and Properties of New Layered Tungsten(VI)-Containing Materials Based on the Hexagonal-WO 3 Structure: M2(WO 3) 3SeO 3 ( M = NH 4, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Harrison, William T. A.; Dussack, Laurie L.; Vogt, Thomas; Jacobson, Allan J.

    1995-11-01

    The hydrothermal syntheses and crystal structures of (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3, two new noncentrosymmetric, layered tungsten(VI)-containing phases are reported. Infrared, Raman, and thermogravimetric data are also presented. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural phases built up from hexagonal-tungsten-oxide-like, anionic layers of vertex-sharing WO6 octahedra, capped on one side by Se atoms (as selenite groups). Interlayer NH+4 or Cs+ cations provide charge balance. The full H-bonding scheme in (NH4)2(WO3)3SeO3 has been elucidated from Rietveld refinement against neutron powder diffraction data. The WO6 octahedra display a 3 short + 3 long W-O bond-distance distribution within the WO6 unit in both these phases. (NH4)2(WO3)3SeO3 and Cs2(WO3)3SeO3 are isostructural with their molybdenum(VI)-containing analogues (NH4)2(MoO3)3SeO3 and Cs2 (MoO3)3SeO3. Crystal data: (NH4)2(WO3)3SeO3, Mr = 858.58, hexagonal, space group P63 (No. 173), a = 7.2291(2) , c = 12.1486(3) , V = 549.82(3) 3, Z = 2, Rp = 1.81%, and Rwp = 2.29% (2938 neutron powder data). Cs2(WO3)3SeO3, Mr = 1088.31, hexagonal, space group P63 (no. 173), a = 7.2615(2) , c = 12.5426(3) , V = 572.75(3) 3, Z = 2, Rp = 4.84%, and Rwp = 5.98% (2588 neutron powder data).

  10. Crystal structure of ruthenocenecarbonitrile

    PubMed Central

    Strehler, Frank; Korb, Marcus; Lang, Heinrich

    2015-01-01

    The molecular structure of ruthenocenecarbonitrile, [Ru(?5-C5H4CN)(?5-C5H5)], exhibits point group symmetry m, with the mirror plane bisecting the molecule through the CN substituent. The RuII atom is slightly shifted from the ?5-C5H4 centroid towards the CN substituent. In the crystal, molecules are arranged in columns parallel to [100]. One-dimensional intermolecular ?? interactions [3.363?(3)?] between the CN carbon atom and one carbon of the cyclopentadienyl ring of the overlaying molecule are present. PMID:26029400

  11. Crystal structure of morpholin-4-ium cinnamate

    PubMed Central

    Smith, Graham

    2015-01-01

    In the anhydrous salt formed from the reaction of morpholine with cinnamic acid, C4H10NO+C9H7O2 ?, the acid side chain in the trans-cinnamate anion is significantly rotated out of the benzene plane [CCC C torsion angle = 158.54?(17)]. In the crystal, one of the the aminium H atoms is involved in an asymmetric three-centre cationanion NH?(O,O?) R 1 2(4) hydrogen-bonding interaction with the two carboxylate O-atom acceptors of the anion. The second aminium-H atom forms an inter-species NH?Ocarboxylate hydrogen bond. The result of the hydrogen bonding is the formation of a chain structure extending along [100]. Chains are linked by CH?O interactions, forming a supramolecular layer parallel to (01-1). PMID:26594560

  12. Exploring structural phase transitions of ion crystals.

    PubMed

    Yan, L L; Wan, W; Chen, L; Zhou, F; Gong, S J; Tong, X; Feng, M

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled (40)Ca(+) ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  13. Crystal structure of oligoacenes under high pressure

    SciTech Connect

    Oehzelt, M.; Aichholzer, A.; Resel, R.; Heimel, G.; Venuti, E.; Della Valle, R. G.

    2006-09-01

    We report crystal structures of anthracene, tetracene, and pentacene under pressure. Energy dispersive x-ray diffraction experiments up to 9 GPa were performed. Quasiharmonic lattice dynamics calculations are compared to the experimental results and show excellent agreement. The results are discussed with particular emphasis on the pressure dependence of the unit cell dimensions and the rearrangement of the molecules. The high pressure data also allow an analysis of the equation of state of these substances as a function of molecular length. We report the bulk modulus of tetracene and pentacene (B{sub 0}=9.0 and 9.6 GPa, respectively) and its pressure derivative (B{sub 0}{sup '}=7.9 and 6.4, respectively). We find that the unit-cell volume and bulk modulus at ambient pressure follow a linear relationship with the molecular length.

  14. Crystal structure of morpholin-4-ium cinnamate.

    PubMed

    Smith, Graham

    2015-11-01

    In the anhydrous salt formed from the reaction of morpholine with cinnamic acid, C4H10NO(+)C9H7O2 (-), the acid side chain in the trans-cinnamate anion is significantly rotated out of the benzene plane [C-C-C- C torsion angle = 158.54?(17)]. In the crystal, one of the the aminium H atoms is involved in an asymmetric three-centre cation-anion N-H?(O,O') R 1 (2)(4) hydrogen-bonding inter-action with the two carboxyl-ate O-atom acceptors of the anion. The second aminium-H atom forms an inter-species N-H?Ocarboxyl-ate hydrogen bond. The result of the hydrogen bonding is the formation of a chain structure extending along [100]. Chains are linked by C-H?O inter-actions, forming a supra-molecular layer parallel to (01-1). PMID:26594560

  15. Crystal structure of betulinic acid methanol monosolvate.

    PubMed

    Tang, Wei; Chen, Neng-Hua; Li, Guo-Qiang; Wang, Guo-Cai; Li, Yao-Lan

    2014-12-01

    The title compound [systematic name: 3β-hy-droxy-lup-20(29)-en-28-oic acid methanol monosolvate], C30H48O3·CH3OH, is a solvent pseudopolymorph of a naturally occurring plant-derived lupane-type penta-cyclic triterpenoid, which was isolated from the traditional Chinese medicinal plant Syzygium jambos (L.) Alston. The dihedral angle between the planes of the carb-oxy-lic acid group and the olefinic group is 12.17 (18)°. The A/B, B/C, C/D and D/E ring junctions are all trans-fused. In the crystal, O-H⋯O hydrogen bonds involving the hy-droxy and carb-oxy-lic acid groups and the methanol solvent mol-ecule give rise to a two-dimensional network structure lying parallel to (001). PMID:25553022

  16. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  17. Crystal structure of a snake venom cardiotoxin

    SciTech Connect

    Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

    1987-05-01

    Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6/sub 1/ (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel ..beta.. sheet, may be functionally relevant.

  18. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  19. Characterisation of zeolitic materials with a HEU-type structure modified by transition metal elements: definition of acid sites in nickel-loaded crystals in the light of experimental and quantum-chemical results.

    PubMed

    Godelitsas, A; Charistos, D; Tsipis, A; Tsipis, C; Filippidis, A; Triantafyllidis, C; Manos, G; Siapkas, D

    2001-09-01

    Nickel-loaded HEU-type zeolite crystals have been obtained by well-known synthetic procedures and characterised by X-ray fluorescence (XRF), scanning-electron microscopy/ energy-dispersive spectroscopy (SEM-EDS), FT-IR, diffuse reflectance UV/ Vis spectroscopy (DR(UV/Vis)S) and X-ray photoelectron spectroscopy (XPS) measurements as non-homoionic and non-stoichiometric substances containing exchangeable hydrated Ni2+ ions in the micropores and nickel hydroxide phases supported on the surface. Thermogravimetric analysis/differential gravimetry (TGA/DTG) and differential thermal analysis (DTA) demonstrated that full dehydration below approximately 400 degrees C follows a clearly endothermic process, whereas at higher temperatures the zeolite is amorphised and finally partially recrystallised to Ni(Al,Si) oxides, detected by powder X-ray powder diffraction (XRD). The solid acidity of NiHEU, initially determined by temperature-programmed desorption (TPD) of ammonia to be 8.93 mgg(-1) NH3, is attributed to the weak acid sites (fundamentally Lewis sites) resolved at approximately 183 degrees C, and to the strong acid sites (essentially Brnsted sites) resolved at approximately 461 degrees C in the TPD pattern. A more sophisticated study based on in situ/ex situ FT-IR with in situ/ex situ 27Al MAS NMR and pyridine (Py) as a probe molecule, revealed that the Lewis acid sites can be attributed primarily to Ni2+ ions, whereas the Brnsted ones can probably be associated with the surface-supported nickel hydroxide phases. The spectroscopic measurements in conjunction with powder XRD and 29Si MAS NMR data strongly suggest that distorted Al tetrahedra are formed during the dehydration process and Py chemisorption/complexation (NiHEU-Py), whereas the crystal structure is remarkably well preserved in the rehydrated material (NiHEU-Py/R). The structural, electronic, energetic and spectroscopic properties of all possible nickel(II) aqua and dihydroxy complexes absorbed in the zeolite micropores or supported on the zeolite surface were studied theoretically by density functional theory (DFT). The computed proton affinity, found to be in the range 182.0-210.0 kcalmol(-1), increases with increasing coordination number of the aqua and dihydroxy nickel(II) complexes. PMID:11575771

  20. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Mller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Mller-Plesset perturbation theory or higher. PMID:24754304

  1. Crystal structure of human GDF11.

    PubMed

    Padyana, Anil K; Vaidialingam, Bhamini; Hayes, David B; Gupta, Priyanka; Franti, Michael; Farrow, Neil A

    2016-03-01

    Members of the TGF-? family of proteins are believed to play critical roles in cellular signaling processes such as those involved in muscle differentiation. The extent to which individual family members have been characterized and linked to biological function varies greatly. The role of myostatin, also known as growth differentiation factor 8 (GDF8), as an inhibitor of muscle differentiation is well understood through genetic linkages. In contrast, the role of growth differentiation factor 11 (GDF11) is much less well understood. In humans, the mature forms of GDF11 and myostatin are over 94% identical. In order to understand the role that the small differences in sequence may play in the differential signaling of these molecules, the crystal structure of GDF11 was determined to a resolution of 1.50?. A comparison of the GDF11 structure with those of other family members reveals that the canonical TGF-? domain fold is conserved. A detailed structural comparison of GDF11 and myostatin shows that several of the differences between these proteins are likely to be localized at interfaces that are critical for the interaction with downstream receptors and inhibitors. PMID:26919518

  2. The crystal structure of a nonstoichiometric nasicon

    SciTech Connect

    Rudolf, F.; Clearfield, A.; Jorgensen, J.D.; Subramanian, M.A.

    1985-06-01

    The crystal structure of a nonstoichiometric NASICON prepared from a hydrothermally synthesized precursor phase was solved by means of Xray powder and neutron powder diffraction methods. The NASICON phase is monoclinic with unit cell parameters, from Rietveld refinement of the neutron data, of a = 15.6209(8), b = 9.0326(5), c = 9.2172(5)A, ..beta.. = 123.67(1)A, V = 1082.5A/sup 3/. The space group is C2/c with Z = 4. The structure is essentially that proposed earlier by Hong, but the nonstoichiometry results from replacement of part of the Zr/sup 4 +/ by Na/sup +/. Refinement of site occupancies coupled with the requirement of overall charge balance yields the formula Na /sub 2.88/ (Na /sub 0.32/ Zr /sub 1.68/ )Si /sub 1.84/ P /sub 1.16/ O /sub 11.54/ which also agrees well with analytical data. Only 20% of the Na1 sites are occupied, but 80% of the Na3 sites are filled. This structure provides a framework from which to rationalize the many reports in the literature that NASICON can only be prepared with difficulty by high temperature solid state reactions.

  3. Water structure in cubic insulin crystals.

    PubMed Central

    Badger, J; Caspar, D L

    1991-01-01

    The electron density distribution of the solvent in the cubic insulin crystal structure, which occupies 65% of the volume, has been mapped from 1.7-A resolution diffraction data by an iterative difference Fourier method, using the previously determined protein structure as the refinement restraint. Starting with phases from the protein and a flat solvent model, the difference map calculated from the data was added outside the protein envelope, and the modified map was then used to recalculate phases for the iterative refinement. Tests of the method with model data, with the experimental data and a variant protein model, and by carrying out a partial refinement of the solvent map demonstrate that the refinement algorithm produces reliable values for the solvent density within the noise level of the data. Fluctuations in density are observed throughout the solvent space, demonstrating that nonrandom arrangements of the water molecules extend several layers from the well-ordered hydration shell in contact with the protein surface. Such ordering may account for the hydration force opposing close approach of hydrophilic surfaces and other long-range water-dependent interactions in living structures. Images PMID:1988957

  4. Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals.

    PubMed

    Stein, Andreas; Wilson, Benjamin E; Rudisill, Stephen G

    2013-04-01

    Templating with colloidal crystals composed of monodisperse spheres is a convenient chemical method to obtain porous materials with well-ordered periodicity and interconnected pore systems. The three-dimensionally ordered macroporous (3DOM) products or inverse opals are of interest for numerous applications, both for the optical properties related to structural color of these photonic crystal materials and because of their bicontinuous nanostructure, i.e., a continuous nanostructured skeleton with large interfacial area and a three-dimensionally interconnected pore system with low tortuosity. This review outlines various synthetic methods used to control the morphology of 3DOM materials with different compositions. It highlights aspects of the choice of colloidal particles, assembly of the colloidal crystal template, infiltration and processing, template removal, and other necessary modifications to enhance the functionality of the materials. It also considers syntheses within the confinement of 3DOM materials and summarizes characterization methods that are particularly useful in the analysis of 3DOM materials. The review then discusses chemical applications of 3DOM materials, namely sorption and controlled release, optical and electrochemical sensors, solar cells, lithium ion batteries, supercapacitors, fuel cells, and environmental and chemical fuel catalysis. A focus is on structural features and materials properties that enable these applications. PMID:23079696

  5. Crystal Structure of Homo Sapiens Kynureninase

    PubMed Central

    Lima, Santiago; Kristoforov, Roman; Momany, Cory; Phillips, Robert S.

    2008-01-01

    Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal-5?-phosphate dependent enzymes known as the aspartate aminotransferase superfamily or ?-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-L-kynurenine to produce 3-hydroxyanthranilate and L-alanine, while L-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni-metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km= 28.3 1.9 ?M, and a specific activity of 1.75 ?mol min-1 mg-1 for 3-hydroxy-DL-kynurenine. Crystals of recombinant kynureninase were obtained that diffracted to 2.0 , and the atomic structure of the PLP-bound holoenzyme was solved by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB accession 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the open and closed conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins small domains and reveals a role for Arg-434 similar to that in other AAT ?-family members. Docking of 3-hydroxy-L-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates. PMID:17300176

  6. Crystal Structure of Human Spermine Synthase

    PubMed Central

    Wu, Hong; Min, Jinrong; Zeng, Hong; McCloskey, Diane E.; Ikeguchi, Yoshihiko; Loppnau, Peter; Michael, Anthony J.; Pegg, Anthony E.; Plotnikov, Alexander N.

    2008-01-01

    The crystal structures of two ternary complexes of human spermine synthase (EC 2.5.1.22), one with 5′-methylthioadenosine and spermidine and the other with 5′-methylthioadenosine and spermine, have been solved. They show that the enzyme is a dimer of two identical subunits. Each monomer has three domains: a C-terminal domain, which contains the active site and is similar in structure to spermidine synthase; a central domain made up of four β-strands; and an N-terminal domain with remarkable structural similarity to S-adenosylmethionine decarboxylase, the enzyme that forms the aminopropyl donor substrate. Dimerization occurs mainly through interactions between the N-terminal domains. Deletion of the N-terminal domain led to a complete loss of spermine synthase activity, suggesting that dimerization may be required for activity. The structures provide an outline of the active site and a plausible model for catalysis. The active site is similar to those of spermidine synthases but has a larger substrate-binding pocket able to accommodate longer substrates. Two residues (Asp201 and Asp276) that are conserved in aminopropyltransferases appear to play a key part in the catalytic mechanism, and this role was supported by the results of site-directed mutagenesis. The spermine synthase·5′-methylthioadenosine structure provides a plausible explanation for the potent inhibition of the reaction by this product and the stronger inhibition of spermine synthase compared with spermidine synthase. An analysis to trace possible evolutionary origins of spermine synthase is also described. PMID:18367445

  7. Crystal structure of human nicotinic acid phosphoribosyltransferase

    PubMed Central

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step PreissHandler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent. PMID:26042198

  8. Crystal structure of human nicotinic acid phosphoribosyltransferase.

    PubMed

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss-Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent. PMID:26042198

  9. Memory and topological frustration in nematic liquid crystals confined in porous materials.

    PubMed

    Araki, Takeaki; Buscaglia, Marco; Bellini, Tommaso; Tanaka, Hajime

    2011-04-01

    Orientational ordering is key to functional materials with switching capability, such as nematic liquid crystals and ferromagnetic and ferroelectric materials. We explored the confinement of nematic liquid crystals in bicontinuous porous structures with smooth surfaces that locally impose normal orientational order on the liquid crystal. We find that frustration leads to a high density of topological defect lines permeating the porous structures, and that most defect lines are made stable by looping around solid portions of the confining material. Because many defect trajectories are possible, these systems are highly metastable and efficient in memorizing the alignment forced by external fields. Such memory effects have their origin in the topology of the confining surface and are maximized in a simple periodic bicontinuous cubic structure. We also show that nematic liquid crystals in random porous networks exhibit a disorder-induced slowing-down typical of glasses that originates from activated collisions and rearrangements of defect lines. Our findings offer the possibility to functionalize orientationally ordered materials through topological confinement. PMID:21423186

  10. Memory and topological frustration in nematic liquid crystals confined in porous materials

    NASA Astrophysics Data System (ADS)

    Araki, Takeaki; Buscaglia, Marco; Bellini, Tommaso; Tanaka, Hajime

    2011-04-01

    Orientational ordering is key to functional materials with switching capability, such as nematic liquid crystals and ferromagnetic and ferroelectric materials. We explored the confinement of nematic liquid crystals in bicontinuous porous structures with smooth surfaces that locally impose normal orientational order on the liquid crystal. We find that frustration leads to a high density of topological defect lines permeating the porous structures, and that most defect lines are made stable by looping around solid portions of the confining material. Because many defect trajectories are possible, these systems are highly metastable and efficient in memorizing the alignment forced by external fields. Such memory effects have their origin in the topology of the confining surface and are maximized in a simple periodic bicontinuous cubic structure. We also show that nematic liquid crystals in random porous networks exhibit a disorder-induced slowing-down typical of glasses that originates from activated collisions and rearrangements of defect lines. Our findings offer the possibility to functionalize orientationally ordered materials through topological confinement.

  11. Invited review liquid crystal models of biological materials and silk spinning.

    PubMed

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. PMID:21994072

  12. Scanning probe acoustic microscopy of extruded starch materials: direct visual evidence of starch crystal.

    PubMed

    Liu, Zhongdong; Liu, Boxiang; Li, Mengxing; Wei, Min; Li, Hua; Liu, Peng; Wan, Tuo

    2013-10-15

    Scanning probe acoustic microscopy (SPAM) has been successfully used to study inorganic and keratin biomaterials. However, few studies have attempted to apply SPAM to structural study of non-keratin organic materials such as starch based materials. This study investigated hardness and surface finish to establish sample preparation method suitable for SPAM imaging and acquired clear acoustic images of extruded starch materials. Acquired acoustic images directly exhibited certain structure of starch materials and provided visual evidence of starch material components and aggregates. In addition, through correlating acoustic images with X-ray diffraction data, crystal-structural information in nano-scale was obtained and acoustic image contrast showed a linear relationship with starch amylose content in extruded starch materials. PMID:23987357

  13. Crystal and electronic structure of copper sulfides

    NASA Astrophysics Data System (ADS)

    Lukashev, Pavel

    Copper sulfides with different copper concentration exist in mineral form ranging from CuS to Cu2S. Among these, chalcosite Cu 2S, and digenite Cu1.8S were the subject of extensive research for decades mainly because of their use as the absorber in photovoltaic cells. Yet; their electronic structure is poorly understood because their crystal structure is complex. Most of the results published so far report the semiconducting nature of these compounds with the energy band gap being in the range of 0.84 to 1.9 eV. The crystal structure consists of a close-packed lattice of S with mobile Cu occupying various types of interstitial sites with a statistical distribution depending on temperature. In this thesis we present the first computational study of their electronic band structure. Initially, we investigated the simpler antifluorite structure. Both local density approximation (LDA) and self-consistent quasiparticle GW calculations with the full-potential linearized muffin-tin orbital method give a semimetallic band structure. Inspection of the nature of the bands shows that the lowest conduction band is mainly Cu-s-like except right near the center of the Brillouin zone where a Cu-s-like state lies about 1 eV below the valence band maximum. Significantly, in GW calculations, this state shifts up by several 0.1 eV but not sufficiently to open a gap. A random distortion of the Cu atoms from the perfect antifluorite positions is found to break the degeneracy of the d state at the Gamma-point and thus opens up a small gap of about 0.1 eV in LDA. As our next step we constructed supercell models for the cubic and hexagonal phases with the Cu positions determined by a weighted random number generator. The low temperature monoclinic phase was also studied. The computed total energies of these structures follow the same order as the reported phases with increasing temperatures. All these models gave similar small band gaps of order 0.1-0.2 eV. However, their conduction band is now mainly s-like and addition of an expected Cu-s level shift opens the gap to about 0.5 eV. Some simpler hexagonal model structures gave slightly larger band gap but were found to be unrealistic. The optical absorption data all show a strong intraband absorption with a minimum in absorption at about 1 eV. Our calculations suggest a significantly lower gap of order 0.5 eV with low absorption cross section, the true nature of which is masked by the free carrier absorption. As part of our study of the related Cu-compounds, we analyzed the quasiparticle effects beyond LDA obtained from a GW calculation on the effective masses and Kohn-Luttinger hamiltonian parameters for CuBr.

  14. Synthesis, structure, crystal growth and characterization of a novel semiorganic nonlinear optical L-proline lithium bromide monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Sathiskumar, S.; Balakrishnan, T.; Ramamurthi, K.; Thamotharan, S.

    2015-03-01

    L-Proline lithium bromide monohydrate (LPLBM), a promising semiorganic nonlinear optical material, was synthesized and single crystals of LPLBM were grown from solution by slow evaporation technique. Single crystal X-ray structure solution reveals that the grown crystal belongs to monoclinic system with space group P21. Presence of various functional groups was identified by FT-IR and FT-Raman spectral analyses. UV-Vis-NIR spectroscopic study shows that the LPLBM crystal possesses 90% of transmittance in the range of 250-1100 nm. Vickers microhardness values, the dielectric constant and dielectric loss of the LPLBM crystal were reported. Elemental analysis by energy dispersive X-ray analysis shows the presence of carbon, nitrogen, oxygen and bromine. The surface morphology of the crystal was investigated using scanning electron microscopic study. The thermal stability of the LPLBM crystal was studied from TGA and DSC analysis. Second harmonic generation efficiency of the LPLBM crystal measured by Kurtz and Perry powder technique using Nd:YAG laser is about 0.3 times that of urea.

  15. Synthesis, structure, crystal growth and characterization of a novel semiorganic nonlinear optical l-proline lithium bromide monohydrate single crystal.

    PubMed

    Sathiskumar, S; Balakrishnan, T; Ramamurthi, K; Thamotharan, S

    2015-03-01

    l-Proline lithium bromide monohydrate (LPLBM), a promising semiorganic nonlinear optical material, was synthesized and single crystals of LPLBM were grown from solution by slow evaporation technique. Single crystal X-ray structure solution reveals that the grown crystal belongs to monoclinic system with space group P21. Presence of various functional groups was identified by FT-IR and FT-Raman spectral analyses. UV-Vis-NIR spectroscopic study shows that the LPLBM crystal possesses 90% of transmittance in the range of 250-1100nm. Vickers microhardness values, the dielectric constant and dielectric loss of the LPLBM crystal were reported. Elemental analysis by energy dispersive X-ray analysis shows the presence of carbon, nitrogen, oxygen and bromine. The surface morphology of the crystal was investigated using scanning electron microscopic study. The thermal stability of the LPLBM crystal was studied from TGA and DSC analysis. Second harmonic generation efficiency of the LPLBM crystal measured by Kurtz and Perry powder technique using Nd:YAG laser is about 0.3 times that of urea. PMID:25498813

  16. Crystal structures of five 6-mercaptopurine derivatives

    PubMed Central

    Gomes, Lígia R.; Low, John Nicolson; Magalhães e Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-01-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(3-meth­oxy­phen­yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-meth­oxy­phen­yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-chloro­phen­yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-bromo­phen­yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth­oxy­phen­yl)-2-[(9H-purin-6-yl)sulfan­yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol­ecular and supra­molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol­ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol­ecules are linked by weak C—H⋯O hydrogen bonds in their crystals. There is π–π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl­ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles. PMID:27006794

  17. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  18. Biomolecular crystals for material applications and a mechanistic study of an iron oxide nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Falkner, Joshua Charles

    The three projects within this work address the difficulties of controlling biomolecular crystal formats (i.e. size and shape), producing 3-D ordered composite materials from biomolecular crystal templates, and understanding the mechanism of a practical iron oxide synthesis. The unifying thread consistent throughout these three topics is the development of methods to manipulate nanomaterials using a bottom-up approach. Biomolecular crystals are nanometer to millimeter sized crystals that have well ordered mesoporous solvent channels. The overall physical dimensions of these crystals are highly dependent on crystallization conditions. The controlled growth of micro- and nanoprotein crystals was studied to provide new pathways for creating smaller crystalline protein materials. This method produced tetragonal hen egg-white lysozyme crystals (250--100,000 nm) with near monodisperse size distributions (<15%). With this degree of control, existing protein crystal applications such as drug delivery and analytical sensors can reach their full potential. Applications for larger crystals with inherently ubiquitous pore structures could extend to materials used for membranes or templates. In this work, the porous structure of larger cowpea mosaic virus crystals was used to template metal nanoparticle growth within the body centered cubic crystalline network. The final composite material was found to have long range ordering of palladium and platinum nonocrystal aggregates (10nm) with symmetry consistent to the virus template. Nanoparticle synthesis itself is an immense field of study with an array of diverse applications. The final piece of this work investigates the mechanism behind a previously developed iron oxide synthesis to gain more understanding and direction to future synthesis strategies. The particle growth mechanism was found to proceed by the formation of a solvated iron(III)oleate complex followed by a reduction of iron (III) to iron (II). This unstable iron(II) nucleates to form a wustite (FeO) core which serves as an epitaxial surface for the magnetite (Fe3O4) shell growth. This method produces spherical particles (6-60nm) with relative size distributions of less than 15%.

  19. Crystal structure of the dynamin tetramer.

    PubMed

    Reubold, Thomas F; Faelber, Katja; Plattner, Nuria; Posor, York; Ketel, Katharina; Curth, Ute; Schlegel, Jeanette; Anand, Roopsee; Manstein, Dietmar J; No, Frank; Haucke, Volker; Daumke, Oliver; Eschenburg, Susanne

    2015-09-17

    The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction. PMID:26302298

  20. Crystal Structure of Human Kynurenine Aminotransferase ll*

    SciTech Connect

    Han,Q.; Robinson, H.; Li, J.

    2008-01-01

    Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-d-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 Angstroms crystal structure of hKAT-II and a 1.95 Angstroms structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II.

  1. Reactive liquid crystal materials for optically anisotropic patterned retarders

    NASA Astrophysics Data System (ADS)

    Harding, Richard; Gardiner, Iain; Yoon, Hyun-Jin; Perrett, Tara; Parri, Owain; Skjonnemand, Karl

    2008-11-01

    Merck has developed a range of reactive liquid crystal materials (Reactive Mesogens) that are designed to form thin, birefringent, coatable films for optical applications. Reactive Mesogen (RM) films are typically coated from solution and polymerized in-situ to form thin, optics-grade coatings. Merck RM materials are customized formulations including reactive liquid crystals, surfactants, photoinitiators and other proprietary additives. Merck have optimized the materials to achieve the optimum physical performance in each application. In this paper we focus on the optimization of RM materials to achieve the finest patterning resolution and defined feature shape whilst maintaining good physical properties of the films. Several conventional trade-offs are investigated and circumvented using novel material concepts. Different methods of patterning RM materials are discussed and the merits of each considered. Thermal annealing of non-polymerized regions can create isotropic islands within the polymerized anisotropic matrix. Alternatively, the non polymerized material can be re-dissolved in the coating solvent and rinsed away. Each of these techniques has benefits depending on the processing conditions and these are discussed in depth.

  2. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    PubMed

    Rdstrm, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination. PMID:26676036

  3. Structural materials for space applications

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    1989-01-01

    The long-term performance of structural materials in the space environment is a key research activity within NASA. The primary concerns for materials in low Earth orbit (LEO) are atomic oxygen erosion and space debris impact. Atomic oxygen studies have included both laboratory exposures in atomic oxygen facilities and flight exposures using the Shuttle. Characterization of atomic oxygen interaction with materials has included surface recession rates, residual mechanical properties, optical property measurements, and surface analyses to establish chemical changes. The Long Duration Exposure Facility (LDEF) is scheduled to be retrieved in 1989 and is expected to provide a wealth of data on atomic oxygen erosion in space. Hypervelocity impact studies have been conducted to establish damage mechanisms and changes in mechanical properties. Samples from LDEF will be analyzed to determine the severity of space debris impact on coatings, films, and composites. Spacecraft placed in geosynchronous Earth orbit (GEO) will be subjected to high doses of ionizing radiation which for long term exposures will exceed the damage threshold of many polymeric materials. Radiation interaction with polymers can result in chain scission and/or cross-linking. The formation of low molecular weight products in the epoxy plasticize the matrix at elevated temperatures and embrittle the matrix at low temperatures. This affects both the matrix-dominated mechanical properties and the dimensional stability of the composite. Embrittlement of the matrix at low temperatures results in enhanced matrix microcracking during thermal cycling. Matrix microcracking changes the coefficient of thermal expansion (CTE) of composite laminates and produces permanent length changes. Residual stress calculations were performed to estimate the conditions necessary for microcrack development in unirradiated and irradiated composites. The effects of UV and electron exposure on the optical properties of transparent polymer films were also examined to establish the optimum chemical structure for good radiation resistance. Thoughts on approaches to establishing accelerated testing procedures are discussed.

  4. Selective crystallization with preferred lithium-ion storage capability of inorganic materials

    PubMed Central

    2012-01-01

    Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications. PMID:22353373

  5. Selective crystallization with preferred lithium-ion storage capability of inorganic materials

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Song, Shuyan; Xue, Dongfeng; Zhang, Hongjie

    2012-02-01

    Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications.

  6. Crystal structure and characterization of a novel organic crystal: 4-Dimethylaminobenzophenone

    SciTech Connect

    Anandha babu, G.; Ramasamy, P.; Ravikumar, K.; Sridhar, B.

    2009-06-03

    Single crystals of a novel organic material, dimethylaminobenzophenone were grown from aqueous solution employing the technique of controlled evaporation. Dimethylaminobenzophenone belongs to the monoclinic system, with a = 12.5755(7) A, b = 7.9749(4) A, c = 13.0946(7) A, {alpha} = 90{sup o}, {beta} = 111.6380(10){sup o} and {gamma} = 90{sup o}. Fourier transform infrared study has been performed to identify the functional groups. The transmittance of dimethylaminobenzophenone has been used to calculate the refractive index n; the extinction coefficient K and both the real {epsilon}{sub r} and imaginary {epsilon}{sub i} components of the dielectric constant as functions of photon energy. The optical band gap of dimethylaminobenzophenone is 2.9 eV. The structural prefection of the grown crystals has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Thermo gravimetric analysis and differential thermal analysis have also been carried out, and the thermal behavior of dimethylaminobenzophenone crystal has been studied. The dielectric properties and mechanical properties have been investigated.

  7. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  8. Explosive scabbling of structural materials

    DOEpatents

    Bickes, Jr., Robert W. (Albuquerque, NM); Bonzon, Lloyd L. (Albuquerque, NM)

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  9. Method of binding structural material

    SciTech Connect

    Wagh, Arun S.; Antink, Allison L.

    2007-12-25

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  10. Crystal phase transition to green emission wurtzite AlInP by crystal structure transfer

    NASA Astrophysics Data System (ADS)

    Hiraya, Yoshihiro; Ishizaka, Fumiya; Tomioka, Katsuhiro; Fukui, Takashi

    2016-03-01

    We grew AlInP on two types of GaN substrate in order to transfer the wurtzite (WZ) structure to grown layers. An AlInP epitaxial layer grown on GaN(10\\bar{1}0) with high-density stacking faults was obtained. X-ray diffraction and Raman scattering analyses indicate that the dominant crystal structure of the AlInP layer grown on GaN(10\\bar{1}0) was WZ. Cathode luminescence measurements at 35 K revealed strong green emissions from the WZ AlInP layer, suggesting an energy band gap change from indirect to direct. These results demonstrate the potential of WZ AlInP as a new candidate for high-efficiency green emission material.

  11. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  12. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the

  13. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    SciTech Connect

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-07-15

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  14. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  15. The rheology of structured materials

    NASA Astrophysics Data System (ADS)

    Sun, Ning

    2000-10-01

    In this work, the rheological properties of structured materials are studied via both theoretical (continuum mechanics and molecular theory) and experimental approaches. Through continuum mechanics, a structural model, involving shear-induced structural breakdown and buildup, is extended to model biofluids. In particular, we study the cases of steady shear flow, hysteresis, yield stress, small amplitude oscillatory flow as well as non-linear viscoelasticity. Model predictions are successfully compared with experimental data on complex materials such as blood and a penicillin suspension. Next, modifications are introduced into the network model. A new formulation involving non-affine motion is proposed and its applications are presented. The major improvement is that a finite elongational viscosity is predicted for finite elongational rate, contrary to infinite elongational viscosities existing at some elongational rates predicted by most previous network models. Comparisons with experimental data on shear viscosity, primary normal stress coefficient and elongational viscosity are given, in terms of the same set of model parameters. Model predictions for the stress growth are also shown. The model is successfully tested with data on a polyisobutylene solution (S1), on a polystyrene solution and on a poly-alpha-methylstyrene solution. A further extension of the network model is related to the prediction of the stress jump phenomenon which is defined as the instantaneous gain or loss of stress on startup or cessation of a deformation. It is not predicted by most existing models. In this work, the internal viscosity idea used in the dumbbell model is incorporated into the transient network model. Via appropriate approximations, a closed form constitutive equation, which predicts a stress jump, is obtained. Successful comparisons with the available stress jump measurements are given. In addition, the model yields good quantitative predictions of the standard steady, transient and dynamic material functions, for xanthan solutions and for polyacrylamide solutions. The experimental part on the rheology of structured systems involves yield stress measurement of aqueous TiO2 pigment suspensions (40, 50, 60 and 70 wt.%), using (i) extrapolations, (ii) vane creep testing and stress ramp measurements and (iii) a modified plate technique. The data obtained via the techniques mentioned earlier are critically evaluated. It is established that the perforated plate technique removes the wall slip effect at the plate surface and provides a fast and easy way to evaluate yield stress.

  16. Crystal structure of the Varkud satellite ribozyme.

    PubMed

    Suslov, Nikolai B; DasGupta, Saurja; Huang, Hao; Fuller, James R; Lilley, David M J; Rice, Phoebe A; Piccirilli, Joseph A

    2015-11-01

    The Varkud satellite (VS) ribozyme mediates rolling-circle replication of a plasmid found in the Neurospora mitochondrion. We report crystal structures of this ribozyme from Neurospora intermedia at 3.1 resolution, which revealed an intertwined dimer formed by an exchange of substrate helices. In each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional importance of active-site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution. PMID:26414446

  17. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely. PMID:23938656

  18. A new material for single crystal modulators: BBO

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Schumi, T.; Petkovsek, R.

    2011-06-01

    Single crystal photo-elastic modulators (SCPEM) are based on a single piezo-electric crystal which is electrically excited on a resonance frequency such that the resulting resonant oscillation causes a modulated artificial birefringence due to the photo-elastic effect. Polarized light experience in such a crystal a strong modulation of polarization, which, in connection with a polarizer, can be used for Q-switching of lasers with pulse repetition frequencies in the range of 100- 1000 kHz. A particularly advantageous configuration is possible with crystals from the symmetry class 3m. Besides LiTaO3 and LiNbO3, both already well explored as SCPEM-materials, we introduce now BBO, which offers a very low absorption in the near infrared region and is therefore particularly suited for Q-switching of solid state lasers. We demonstrate first results of such a BBO-modulator with the dimensions 8.6 x 4.05 x 4.5mm in x-, y-, z- direction, which offers a useful resonance and polarization modulation at 131.9 kHz. Since the piezo-electric effect is small, the voltage amplitude for achieving Q-switching for an Nd:YAG-laser is expected to be in the range of 100V. Nevertheless it is a simple and robust device to achieve Q-switching with a high fixed repetition rate for high power solid state lasers.

  19. Structural and photoluminescence studies of Eu3+ doped L-Tartaric single crystal through evaporation technique

    NASA Astrophysics Data System (ADS)

    Prasad, P. V.; Visweswara Rao, T. K.; Satya Kamal, Ch.; Rajya Lakshmi, S.; Ramachandra, R. K.; Sudarsan, V.; Rao, M. C.; SubbaRao, P. S. V.

    2015-04-01

    Europium doped L-Tartaric acid; a non-linear optical single crystal was grown by slow evaporation solution growth method. The grown crystal was characterized by XRD for phase analysis, HRXRD for crystalline perfection, functional group by FTIR spectroscopy and powder SHG measurement for getting an estimate of NLO efficiency. The emission spectrum of Eu3+ doped L-Tartaric acid obtained after excitation at 394 nm and corresponding excitation spectrum by monitoring at 615 nm emissions. The decay curve is recorded corresponding to the 5D0 level of Eu3+ from tartaric acid doped with europium ions. The transparency of the crystal shows >90%, thermal analysis shows that the crystal to be thermally stable up to 189 C and estimated atomic elemental composition in grown crystal with EDAX. L-Tartaric acid with chiral structure acts as a good host material for probing Eu3+ ions in synthesis of luminescent materials.

  20. Crystal structures at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure-induced amorphization of AlPO4 (berlinite) shows that this material, which is a close analog to quartz, shows a rich behavior that is dependent upon the pressure, temperature, stress-state and time-scales of the experimental conditions.

  1. Novel photonic crystal cavities and related structures.

    SciTech Connect

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  2. Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.

    2012-11-01

    Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) , b = 12.995(5) , c = 19.119(3) , and ? = 94.926(3). The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.

  3. Synthesis of rare-earth selenate and selenite materials under 'sol-gel' hydrothermal conditions: crystal structures and characterizations of La(HSeO{sub 3})(SeO{sub 4}) and KNd(SeO{sub 4}){sub 2}

    SciTech Connect

    Liu Wei; Chen Haohong; Yang Xinxin; Li Mangrong; Zhao Jingtai . E-mail: jtzhao@mail.sic.ac.cn

    2004-12-01

    Two rare-earth compounds containing selenium atoms, La(HSeO{sub 3})(SeO{sub 4}) with a new open framework structure and KNd(SeO{sub 4}){sub 2} with a layered structure, have been synthesized under ''sol-gel'' hydrothermal conditions for the first time. Single-crystals of La(HSeO{sub 3})(SeO{sub 4}) crystallize in the monoclinic system (P2{sub 1}, a=8.5905(17)A, b=7.2459(14)A, c=9.5691(19)A, {beta}=104.91(3){sup o}, Z=2, RAll=0.032). The structure contains puckered polyhedral layers made of LaO{sub x} (x=9,10) and SeO{sub 4} groups, which are connected via SeO{sub 3}-uints to the 3D structure. The crytal structure of KNd(SeO{sub 4}){sub 2} (monoclinc, P2{sub 1}/c, a=8.7182(17)A, b=7.3225(15)A, c=11.045(2)A, {beta}=91.38(3){sup o}, Z=4, RAll=0.051) contains honeycomb-like six-ring NdO{sub 9} polyhedra forming layers which are further decorated with SeO{sub 4} tetrahedra. The K{sup +} ions occupy the interspaces of these layers and provide the charge balance.

  4. Cryogenic structural materials for superconducting magnets

    SciTech Connect

    Dalder, E.N.C.; Morris, J.W. Jr.

    1985-02-22

    This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

  5. Synthesis, crystal structure and thermal analysis of a new stilbazolium salt crystal

    NASA Astrophysics Data System (ADS)

    Teng, Bing; Kong, Weijin; Feng, Ke; You, Fei; Cao, Lifeng; Zhong, Degao; Hao, Lun; Sun, Qing; van Smaalen, Sander; Gong, Wenhui

    2015-04-01

    A new organic crystal of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium benzene sulfonate (DASBS) was synthesized and characterized for the first time. It is a derivative of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) with the benzene sulfonate replacing p-toluenesulfonate. Single crystal XRD demonstrated that the crystal structure of DASBSH2O was triclinic. The thermal analysis of this new crystal was also conducted, and the melting point was obtained to be 232C.

  6. Isomorph invariance of the structure and dynamics of classical crystals

    NASA Astrophysics Data System (ADS)

    Albrechtsen, Dan E.; Olsen, Andreas E.; Pedersen, Ulf R.; Schrder, Thomas B.; Dyre, Jeppe C.

    2014-09-01

    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnstrm binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization.

  7. Effect of melt composition on the electrical properties and structure of undoped gallium arsenide single crystals

    SciTech Connect

    Koval'chuk, I.A.; Markov, A.V.; Mil'vidskii, M.G.

    1988-07-01

    We present results on the electrical properties and structure of single crystal GaAs, 40 mm in diameter, obtained by a combined synthesis process and grown by the Czochralski method in an inert gas at high pressure. For crystals of each group the composition of the starting melt was varied during growing between 46-54 at. % As. The intrinsic resistivity of the material was obtained by measuring the Hall effect at room temperature.

  8. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Vivek, Singh; K. Singh, A.

    2013-05-01

    The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters.

  9. Hydroflux synthesis and crystal structure of new lanthanide tungstate oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Smith, Mark D.; Chance, W. Michael; zur Loye, Hans-Conrad

    2015-04-01

    Single crystals of Na5Ln(OH)6WO4 where Ln = Er, Tm, and Yb were grown out of a NaOH hydroflux. The crystals were characterized by single crystal X-ray diffraction and were found to crystallize in the monoclinic space group I2/a. The lattice parameter ranges for the three structures are a = 11.2024(7) Å-11.2412(6) Å, b = 16.1850(10) Å-16.2220(10) Å, and c = 11.9913(7) Å-12.0323(7) Å while the β angle range is 101.999(2)°-102.025(2)°.

  10. Noise control by sonic crystal barriers made of recycled materials.

    PubMed

    Snchez-Dehesa, Jos; Garcia-Chocano, Victor M; Torrent, Daniel; Cervera, Francisco; Cabrera, Suitberto; Simon, Francisco

    2011-03-01

    A systematic study of noise barriers based on sonic crystals made of cylinders that use recycled materials like absorbing component is reported here. The barriers consist of only three rows of perforated metal shells filled with rubber crumb. Measurements of reflectance and transmittance by these barriers are reported. Their attenuation properties result from a combination of sound absorption by the rubber crumb and reflection by the periodic distribution of scatterers. It is concluded that the porous cylinders can be used as building blocks whose physical parameters can be optimized in order to design efficient barriers adapted to different noisy environments. PMID:21428481

  11. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    NASA Technical Reports Server (NTRS)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  12. Magnonic crystalsProspective structures for shaping spin waves in nanoscale

    NASA Astrophysics Data System (ADS)

    Rych?y, J.; Gruszecki, P.; Mruczkiewicz, M.; K?os, J. W.; Mamica, S.; Krawczyk, M.

    2015-10-01

    We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one- (1D), two- (2D) and three-dimensions (3D). We have solved Landau-Lifshitz equation with the use of plane wave method, finite element method in frequency domain and micromagnetic simulations in time domain to find the dynamics of spin waves and spectrum of their eigenmodes. The spin wave spectra were calculated in linear approximation. In this paper we show usefulness of these methods in calculations of various types of spin waves. We demonstrate the surface character of the Damon-Eshbach spin wave in 1D magnonic crystals and change of its surface localization with the band number and wavenumber in the first Brillouin zone. The surface property of the spin wave excitation is further exploited by covering plate of the magnonic crystal with conductor. The band structure in 2D magnonic crystals is complex due to additional spatial inhomogeneity introduced by the demagnetizing field. This modifies spin wave dispersion, makes the band structure of magnonic crystals strongly dependent on shape of the inclusions and type of the lattice. The inhomogeneity of the internal magnetic field becomes unimportant for magnonic crystals with small lattice constant, where exchange interactions dominate. For 3D magnonic crystals, characterized by small lattice constant, wide magnonic band gap is found. We show that the spatial distribution of different materials in magnonic crystals can be explored for tailored effective damping of spin waves.

  13. Structure of cleaved (001) USb2 single crystal

    SciTech Connect

    Chen, Shao-ping; Hawley, Marilyn; Bauer, Eric D; Stockum, Phil B; Manoharan, Hari C

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants, all of which are averaged over when probed in photoemission studies. The quasi two-dimensional USb{sub 2} has a layered tetragonal structure that is easily cleaved and has been extensively studied by a number of different techniques, such as resistivity, Hall effect measurements, photoemission and angle-resolved photoemission spectroscopy, de Haas-van Alphen, neutron diffraction, nuclear magnetic resonance, and U{sup 238} Mossbauer spectroscopy techniques. Here, we provide local information about the surfaces of this interesting compound, which we find to contain a high density of defects.

  14. Analysis of the structure and morphology of fenoxycarb crystals.

    PubMed

    Zeglinski, Jacek; Svrd, Michael; Karpinska, Jolanta; Kuhs, Manuel; Rasmuson, ke C

    2014-09-01

    In this paper, we have explored the relationship between surface structure and crystal growth and morphology of fenoxycarb (FC). Experimental vs. predicted morphologies/face indices of fenoxycarb crystals are presented. Atomic-scale surface structures of the crystalline particles, derived from experimentally indexed single crystals, are also modelled. Single crystals of fenoxycarb exhibit a platelet-like morphology which closely matches predicted morphologies. The solvent choice does not significantly influence either morphology or crystal habit. The crystal morphology is dominated by the {001} faces, featuring weakly interacting aliphatic or aromatic groups at their surfaces. Two distinct modes of interaction of a FC molecule in the crystal can be observed, which appear to be principal factors governing the microscopic shape of the crystal: the relatively strong collateral and the much weaker perpendicular bonding. Both forcefield-based and quantum-chemical calculations predict that the aromatic and aliphatic terminated {001} faces have comparably high stability as a consequence of weak intermolecular bonding. Thus we predict that the most developed {001} surfaces of fenoxycarb crystals should be terminated randomly, favouring neither aliphatic nor aromatic termination. PMID:25089714

  15. DNA variability in five crystal structures of d(CGCAATTGCG).

    PubMed

    Valls, Nria; Wright, Glenford; Steiner, Roberto A; Murshudov, Garib N; Subirana, Juan A

    2004-04-01

    The deoxyoligonucleotide d(CGCAATTGCG) has previously been crystallized in four different space groups. The crystals diffract to moderate resolution (2.3-2.9 A). Here, a fifth crystal form that diffracts to higher resolution (1.6 A) is presented which was obtained thanks to the use of Co2+ and cryogenic temperatures. The availability of five different crystal structures allows a thorough analysis of the conformational variability of this DNA sequence. It is concluded that the central hexamer sequence CAATTG has a practically constant conformation under all conditions, whilst the terminal base pairs at both ends vary considerably as a result of differing interactions in the crystals. The new crystal structure presented here is stabilized by guanine-Co2+-guanine interactions and the formation of C1+ -G8.C3 triplexes between neighbouring duplexes. As a result of the higher resolution of the crystal structure, a more regular structure was obtained and a clear definition of the spine of hydration was observed which was not visible in the four previous structures. PMID:15039556

  16. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, iga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muevi?, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  17. Plastic deformation treated as material flow through adjustable crystal lattice

    NASA Astrophysics Data System (ADS)

    Minakowski, P.; Hron, J.; Kratochvl, J.; Kruk, M.; Mlek, J.

    2014-08-01

    Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.

  18. Poly(vinyl alcohol) Rehydratable Photonic Crystal Sensor Materials**

    PubMed Central

    Muscatello, Michelle M. Ward; Asher, Sanford A.

    2011-01-01

    We developed a new photonic crystal hydrogel material based on the biocompatible polymer poly (vinyl alcohol) (PVA), which can be reversibly dehydrated and rehydrated, without the use of additional fillers, while retaining the diffraction and swelling properties of polymerized crystalline colloidal arrays (PCCA). This chemically modified PVA hydrogel photonic crystal efficiently diffracts light from the embedded crystalline colloidal array. This diffraction optically reports on volume changes occurring in the hydrogel by shifts in the wavelength of the diffracted light. We fabricated a pH sensor, which demonstrates a 350 nm wavelength shift between pH values of 3.3 and 8.5. We have also fabricated a Pb+2 sensor, in which pendant crown ether groups bind lead ions. Immobilization of the ions within the hydrogel increases the osmotic pressure due to the formation of a Donnan potential, swelling the hydrogel and shifting the observed diffraction in proportion to the concentration of bound ions. The sensing responses of rehydrated PVA pH and Pb+2 sensors were similar to that before drying. This reversibility of rehydration enables storage of these hydrogel photonic crystal sensors in the dry state, which makes them much more useful for commercial applications. PMID:21666875

  19. Graphene liquid crystal retarded percolation for new high-k materials.

    PubMed

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Ccile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-01-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed. PMID:26567720

  20. Graphene liquid crystal retarded percolation for new high-k materials

    PubMed Central

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-01-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed. PMID:26567720

  1. Graphene liquid crystal retarded percolation for new high-k materials

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-11-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed.

  2. Growth of mesoporous materials within colloidal crystal films by spin-coating.

    PubMed

    Villaescusa, Luis A; Mihi, Agustn; Rodrguez, Isabel; Garca-Bennett, Alfonso E; Mguez, Hernan

    2005-10-27

    A combination of colloidal crystal planarization, stabilization, and novel infiltration techniques is used to build a bimodal porous silica film showing order at both the micron and the nanometer length scale. An infiltration method based on the spin-coating of the mesophase precursor onto a three-dimensional polystyrene colloidal crystal film allows a nanometer control tuning of the filling fraction of the mesoporous phase while preserving the optical quality of the template. These materials combine a high specific surface arising from the nanopores with increased mass transport and photonic crystal properties provided by the order of the macropores. Optical Bragg diffraction from these type of hierarchically ordered oxides is observed, allowing performing of optical monitoring of the different processes involved in the formation of the bimodal silica structure. PMID:16853540

  3. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T., Jr.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.

  4. Determination of channeling perspectives for complex crystal structures

    SciTech Connect

    Allen, W.R.

    1993-03-01

    Specification of the atomic arrangement for axes and planes of high symmetry is essential for crystal alignment using Rutherford backscattering and for studies of the lattice location of impurities in single crystals. By rotation of an inscribed orthogonal coordinate system, a visual image for a given perspective of a crystal structure can be specified. Knowledge of the atomic arrangement permits qualitative channeling perspectives to be visualized and calculation of continuum potentials for channeling. Channeling angular-yield profiles can then be analytically modeled and, subsequently, shadowing by host atoms of positions within the unit cell predicted. Software to calculate transformed atom positions for a channeling perspective in a single crystal are described and illustrated for the spinel crystal structure.

  5. Crystal structure and physicochemical properties of doped lanthanum manganites

    NASA Astrophysics Data System (ADS)

    Aksenova, T. V.; Gavrilova, L. Ya.; Cherepanov, V. A.

    2012-12-01

    Substituted lanthanum-strontium manganites La0.7Sr0.3Mn0.9Me0.1O3 ? (Me = Ti, Cr, Fe, and Cu) are obtained by standard ceramic and glycerin-nitrate techniques. High-temperature powder X-ray diffraction is employed to study the crystal structure of La0.7Sr0.3Mn0.9Me0.1O3 ? oxides. It is shown that in the range 298-1023 K in air, La0.7Sr0.3Mn0.9Me0.103 ? manganites crystallized in an orthorhombic cell (space group R-3c). The isobaric temperature dependences of unit cell parameters are determined. Thermal expansion coefficients are calculated for La0.7Sr0.3Mn0.9Me0.103 ? oxides. The conductivity of La0.7Sr0.3Mn0.9Me0.103 ? is studied as a function of temperature in the range 500 K ? T ? 1200 K in air. It is shown that substituting 3 d metal for manganese considerably lowers the conductivity of basic La0.7Sr0.3Mn0.9O3 ?. The chemical stability of iron-substituted manganite La0.7Sr0.3Mn0.9Fe0.1O3 ? is studied with respect to the electrolyte material.

  6. Tuning the magnetic anisotropy in single-layer crystal structures

    NASA Astrophysics Data System (ADS)

    Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R. T.; Peeters, F. M.

    2015-09-01

    The effect of an applied electric field and the effect of charging are investigated on the magnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that the magnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuning MA of these compounds. In addition, charging can rotate the easy-axis direction of Co-on-graphene and Os-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.

  7. Crystal structure of a methimazole-based ionic liquid

    PubMed Central

    Gaitor, Jamie C.; Zayas, Manuel Sanchez; Myrthil, Darrel J.; White, Frankie; Hendrich, Jeffrey M.; Sykora, Richard E.; O’Brien, Richard A.; Reilly, John T.; Mirjafari, Arsalan

    2015-01-01

    The structure of 1-methyl-2-(prop-2-en-1-ylsulfan­yl)-1H-imidazol-3-ium bromide, C7H11N2S+·Br−, has monoclinic (P21/c) symmetry. In the crystal, the components are linked by N—H⋯Br and C—H⋯Br hydrogen bonds. The crystal structure of the title compound undeniably proves that methimazole reacts through the thione tautomer, rather than the thiol tautomer in this system. PMID:26870468

  8. Crystal structure of a methimazole-based ionic liquid.

    PubMed

    Gaitor, Jamie C; Zayas, Manuel Sanchez; Myrthil, Darrel J; White, Frankie; Hendrich, Jeffrey M; Sykora, Richard E; O'Brien, Richard A; Reilly, John T; Mirjafari, Arsalan

    2015-12-01

    The structure of 1-methyl-2-(prop-2-en-1-ylsulfan-yl)-1H-imidazol-3-ium bromide, C7H11N2S(+)Br(-), has monoclinic (P21/c) symmetry. In the crystal, the components are linked by N-H?Br and C-H?Br hydrogen bonds. The crystal structure of the title compound undeniably proves that methimazole reacts through the thione tautomer, rather than the thiol tautomer in this system. PMID:26870468

  9. The Crystal and Molecular Structure of Dianhydrogossypol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dianhydrogossypol (4,4'-dihydroxy-5,5'-diisopropyl-7,7'-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR confirmed that complete conversion was achieved over several hours. Single crystals were obtained by slow evaporation of the product from dichl...

  10. Band structure mapping of photonic crystal intersubband detectors

    NASA Astrophysics Data System (ADS)

    Schartner, S.; Golka, S.; Pflgl, C.; Schrenk, W.; Andrews, A. M.; Roch, T.; Strasser, G.

    2006-10-01

    The authors report on a quantum well infrared detector embedded in a surface-plasmon waveguide and processed into a deeply etched photonic crystal structure. The device was characterized by collecting the polarization dependent response spectra at different angles of incidence. With this method it is possible to map the photonic band structure by directly detecting the modes of the photonic crystal. It therefore represents a new and direct characterization procedure for photonic crystals. The device shows a strong mixing between TE and TM polarized modes, which is caused by the asymmetric vertical waveguide design.

  11. Recovery of valuable materials from waste liquid crystal display panel

    SciTech Connect

    Li Jinhui Gao Song; Duan Huabo; Liu Lili

    2009-07-15

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 deg. C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO{sub 3}:H{sub 2}O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 deg. C.

  12. Microscopic structure of molecularly thin confined liquid-crystal films

    NASA Astrophysics Data System (ADS)

    Gruhn, Thomas; Schoen, Martin

    1997-03-01

    The microscopic structure of a molecularly thin liquid-crystal film confined between two plane parallel surfaces (i.e., walls) composed of rigidly fixed atoms is investigated in grand canonical ensemble Monte Carlo simulations in which the temperature T, the chemical potential ?, and the wall separation sz are the relevant thermodynamic state variables. These conditions correspond to those encountered in related experiments employing the surface forces apparatus (SFA). Wall atoms are distributed according to the (100) configuration of a face-centered cubic (fcc) lattice. Film molecules interact with each other via the Gay-Berne potential which may be viewed as a Lennard-Jones (12,6) potential modified to account for the anisotropy of the interaction between two ellipsoidal film molecules. Parameters governing the film-wall interaction are chosen such that molecules tend to arrange their symmetry axes parallel with the plane of a wall (i.e., the x-y plane). The thermodynamic state of a bulk phase in equilibrium with the confined film pertains to the isotropic phase of the Gay-Berne fluid, so that preferred orientations in the film are unambiguously ascribed to confinement (i.e., to the presence of the walls). In general, film structure is characterized by stratification, that is, the tendency of film molecules to arrange their centers of mass in individual strata parallel with the walls. The strata are more diffuse than in films composed of ``simple'' molecules without rotational degrees of freedom due to a larger geometric incompatibility between film and wall structure and to orientability of film molecules in the present model. As sz is increased at fixed T and ?, molecularly thin liquid-crystal films undergo complex structural changes resulting from a competition between wall-induced orientation and lack of space. These effects are analyzed in depth by density-alignment histograms and correlated with variations of the normal stress Tzz exerted by the film on the walls. The normal stress, which is in principle accessible in SFA experiments, depends strongly on sz even in rather thick films, indicating the importance of cooperative wall-induced phenomena for materials properties of confined liquid-crystal films.

  13. Computational study of the structure and mechanical properties of the molecular crystal rdx

    NASA Astrophysics Data System (ADS)

    Munday, Lynn

    Molecular crystals constitute a class of materials commonly used as active pharmaceutical ingredients, energetic and high explosive materials. Like simpler crystalline materials, they possess a repeating lattice structure. However, the complexity of the structure -- due to having several entire molecules instead of atoms at each lattice site -- significantly complicates the relationship between the crystal structure and mechanical properties. Of particular interest to molecular crystals are the mechanically activated processes initiated by large deformations. These include polymorph transitions, slip deformation, cleavage fracture, or the transition to disordered states. Activation of slip systems is generally the preferred mode of deformation in molecular crystals because the long range order of the crystal and its associated properties are maintained. These processes change the crystal structure and affect the physiological absorption of advanced pharmaceutical ingredients and the decomposition of high explosives. This work used molecular dynamics to study the energetic molecule RDX, C3H6N6O6, as a model molecular crystal that is a commonly used military high explosive. Molecular dynamics is used to determine the crystal response to deformation by determination of elastic constants, polymorph transitions, cleavage properties, and energy barriers to slip. The cleavage and the free surface energy are determined through interface decohesion simulations and the attachment energy method. The energy barriers to slip are determined through the generalized stacking fault (GSF) procedure. To account for the steric contributions and elastic shearing due to the presence of flexible molecules, a modified calculation procedure for the GSF energy is proposed that enables the distinction of elastic shear energy from the energy associated with the interfacial displacement discontinuity at the slip plane. The unstable stacking fault energy from the GSF simulations is compared to the free surface energy to differentiate cleavage and slip planes. The results are found to be largely in agreement with available experimental data.

  14. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  15. Crystal structure of a actinide metals at high compression

    SciTech Connect

    Fast, L.; Soederlind, P.

    1996-05-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure. {copyright} {ital 1996 American Institute of Physics.}

  16. Gallium arsenide single crystal solar cell structure and method of making

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  17. Investigation of the La2O3-Nb2O5-WO3 ternary phase diagram: Isolation and crystal structure determination of the original La3NbWO10 material

    NASA Astrophysics Data System (ADS)

    Vu, T. D.; Barre, M.; Adil, K.; Jouanneaux, A.; Suard, E.; Goutenoire, F.

    2015-09-01

    In the course of the exploration of the La2O3-WO3-Nb2O5 ternary phase diagram, a new compound with the formula La3NbWO10 was discovered. Its structure was determined from a combination of powder X-ray and neutron diffraction data. It crystallizes in the tetragonal space group P42/nmc (no. 137) with the lattice parameters: a=10.0807(1) ; c=12.5540(1) . The structure is built up from infinite ribbons of octahedra (W/Nb)O5 which are perpendicular to each other, lanthanum ions being distributed around these ribbons. The electrical properties of this compound were investigated on sintered pellets by means of complex impedance spectroscopy.

  18. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    SciTech Connect

    Karthi, S. Girija, E. K.

    2014-04-24

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - Π - acceptor - Π - donor (D-Π-A-Π-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  19. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Karthi, S.; Girija, E. K.

    2014-04-01

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - ? - acceptor - ? - donor (D-?-A-?-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  20. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals.

    PubMed

    Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R

    2015-06-15

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. PMID:25795607

  1. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures.

    PubMed

    Thomas, Joice; Dobrza?ska, Liliana; Van Meervelt, Luc; Quevedo, Mario Alfredo; Wo?niak, Krzysztof; Stachowicz, Marcin; Smet, Mario; Maes, Wouter; Dehaen, Wim

    2016-01-01

    A synthetic route towards homodiselenacalix[4]arene macrocycles is presented, based on the dynamic covalent chemistry of diselenides. The calixarene inner rim is decorated with either alkoxy or tert-butyl ester groups. Single-crystal X-ray analysis of two THF solvates with methoxy and ethoxy substituents reveals the high similarity of their molecular structures and alterations on the supramolecular level. In both crystal structures, solvent channels are present and differ in both shape and capacity. Furthermore, the methoxy-substituted macrocycle undergoes a single-crystal-to-single-crystal transformation during which the molecular structure changes its conformation from 1,3-alternate (loaded with THF/water) to 1,2-alternate (apohost form). Molecular modelling techniques were applied to explore the conformational and energetic behaviour of the macrocycles. PMID:26639087

  2. New alkali metal diphosphates how materials to preserve the security of the environment: CsNaCu(P2O7), Rb2Cu(P2O7) and CsNaCo(P2O7) synthesis and crystal structure determination

    NASA Astrophysics Data System (ADS)

    Chernyatieva, Anastasiya; Filatova, Alyona; Spiridonova, Dariya; Krivovichev, Sergey

    2013-04-01

    In this work we describe preliminary results of the synthesis and of a crystal-chemical study of synthetic phosphates with transition metals. Due to the increasing requirements for environmental safety specialists from various industries, we are searching for sustainable forms of immobilization of hazardous waste during storage. We are also developing a component-based waste for new materials. In our continued exploratory synthesis of compounds containing transition-metals, we were able to produce the new diphosphate phases CsNaCu(P2O7), Rb2Cu(P2O7) and CsNaCo(P2O7). A crystal chemical study has allowed us to identify new phosphates. Crystals of CsNaCu(P2O7) (Phase 1) is orthorhombic, crystallizes in space group Pmn21, with a = 5.147(8), b = 15.126(2), c = 9.717(2) , V = 756.20 3, R1 = 0.066 and Rb2Cu(P2O7) (Phase 2) is orthorhombic as well, crystallizes in space group Pmcn, with a = 5.183(8), b = 10.096(1), c = 15.146(3) , V = 793.55 3, R1 = 0.063, they have been obtained by high-temperature reaction of RbNO3, CsNO3, Cu(NO3)2, NaOH and (NH4)4P2O7. Synthetic crystals of the phosphate of copper and rubidium were studied in detail by us on the structures of Rb2Cu(P2O7) and Rb2Cu3(P2O7)2 - new alkali metal copper diphosphates (CHERNYATIEVA et al., 2008). Here we report the synthesis, the structure and the properties of the title compounds and we compare these phases with the previously discovered K2CuP2O7 (ELMAADI et al., 1995) and CsNaMnP2O7 (HUANG et al., 1998). These structures crystallize in other space groups, although their structures are also based on 2-D layers, formed by P2O7 groups combined with polyhedra of the transition metals (CHERNYATIEVA et al., 2012). A crystal chemical study has allowed us to identify even new diphosphates CsNaCu(P2O7) (Phase 3). Crystals of CsNaCoP2O7 is monoclinic, space group P 21/n, with a = 7,424(2), b = 7,648(1), c = 12,931(3), ? = 90,71(2) , V = 734.2(3) 3 and R1 = 0.060. The structure is based framework of Co tetrahedra and P2O7 groups. The structure of the [Co(P2O7)]2-framework in more detail. The phosphate groups and tetrahedra coordinate cobalt ions form topology. This is a unique 4-coordination topology, where Co and P2O7 groups in the structure are topologically equivalent. References CHERNYATIEVA, A. P., KRIVOVICHEV, S. V., SPIRIDONOVA, D. V. (2008): International conference Inorganic Materials Dresden (2008) P3 - 143. CHERNYATIEVA, A. P, SPIRIDONOVA, D. V., KRIVOVICHEV, S. V. The crystal structures of two new synthetic compounds CsNaCu(P2O7) and Rb2Cu(P2O7), Acta Mineralogica-Petrographica (2012) Vol.7, p.25 EL MAADI, A., BOUKHARI, A., HOLT, E.M. (1995) Journal of Alloys Compounds, 223: 13-17. HUANG, Q., HWU, S. J., MO, X. H. (2001): Angewandte Chemie - International Edition, 40: 1690-1693.

  3. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    SciTech Connect

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; Greeley, Jeffrey; Curtiss, Larry; Lu, Jun; Amine, Khalil

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.

  4. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    DOE PAGESBeta

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; Greeley, Jeffrey; Curtiss, Larry; Lu, Jun; Amine, Khalil

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of themore » random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.« less

  5. Photonic crystals based on opals and inverse opals: synthesis and structural features

    NASA Astrophysics Data System (ADS)

    Klimonsky, S. O.; Abramova, Vera V.; Sinitskii, Alexander S.; Tretyakov, Yuri D.

    2011-12-01

    Methods of synthesis of photonic crystals based on opals and inverse opals are considered. Their structural features are discussed. Data on different types of structural defects and their influence on the optical properties of opaline materials are systematized. The possibilities of investigation of structural defects by optical spectroscopy, electron microscopy, microradian X-ray diffraction, laser diffraction and using an analysis of Kossel ring patterns are described. The bibliography includes 253 references.

  6. Crystal structure of ?-d,l-fructose.

    PubMed

    Ishii, Tomohiko; Senoo, Tatsuya; Yoshihara, Akihide; Fukada, Kazuhiro; Sakane, Genta

    2015-10-01

    The title compound, C6H12O6, was crystallized from an aqueous solution of equimolar mixture of d- and l-fructose (1,3,4,5,6-penta-hydroxy-hexan-2-one, arabino-hexulose or levu-lose), and it was confirmed that d-fructose (or l-fructose) formed ?-pyran-ose with a (2) C 5 (or (5) C 2) conformation. In the crystal, two O-H?O hydrogen bonds between the hy-droxy groups at the C-1 and C-3 positions, and at the C-4 and C-5 positions connect homochiral mol-ecules into a column along the a axis. The columns are linked by other O-H?O hydrogen bonds between d- and l-fructose mol-ecules, forming a three-dimensional network. PMID:26594441

  7. Structural Materials for Innovative Nuclear Systems

    SciTech Connect

    Yvon, Pascal

    2011-07-01

    This series of slides deal with: the goals for advanced fission reactor systems; the requirements for structural materials; a focus on two important types of materials: ODS and CMC; a focus on materials under irradiation (multiscale modelling, experimental simulation, 'smart' experiments in materials testing reactors); some concluding remarks.

  8. Structural phase field crystal approach for modeling graphene and other two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Seymour, Matthew; Provatas, Nikolas

    2016-01-01

    This paper introduces a new structural phase field crystal (PFC) type model that expands the PFC methodology to a wider class of structurally complex crystal structures than previously possible. Specifically, our approach allows for stabilization of graphene, as well as its coexistence with a disordered phase. It also preserves the ability to model the usual triangular and square lattices previously reported in two-dimensional (2D) PFC studies. Our approach is guided by the formalism of classical field theory, wherein the free-energy functional is expanded to third order in PFC density correlations. It differs from previous PFC approaches in two main features. First, it utilizes a hard-sphere repulsion to describe two-point correlations. Second, and more important, is that it uses a rotationally invariant three-point correlation function that provides a unified way to control the formation of crystalline structures that can be described by a specific bond angle, such as graphene, triangular, or square symmetries. Our approach retains much of the computational simplicity of previous PFC models and allows for efficient simulation of nucleation and growth of polycrystalline 2D materials. In preparation for future applications, this paper details the mathematical derivation of the model and its equilibrium properties and uses dynamical simulations to demonstrate defect structures produced by the model.

  9. Crystal Structure of Bacillus anthracis Transpeptidase Enzyme CapD*?

    PubMed Central

    Wu, Ruiying; Richter, Stefan; Zhang, Rong-guang; Anderson, Valerie J.; Missiakas, Dominique; Joachimiak, Andrzej

    2009-01-01

    Bacillus anthracis elaborates a poly-?-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the ?-glutamyltranspeptidase CapD with and without ?-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-?-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-?-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro427, Gly428, and Gly429 activate the catalytic residue of the enzyme, Thr352, and stabilize an oxyanion hole via main chain amide hydrogen bonds. PMID:19535342

  10. Crystal structure of Bacillus anthracis transpeptidase enzyme CapD.

    SciTech Connect

    Wu, R.; Richter, S.; Zhang, R.; Anderson, V. J.; Missiakas, D.; Joachimiak, A.; Biosciences Division; Univ. of Chicago

    2009-09-04

    Bacillus anthracis elaborates a poly-{gamma}-d-glutamic acid capsule that protects bacilli from phagocytic killing during infection. The enzyme CapD generates amide bonds with peptidoglycan cross-bridges to anchor capsular material within the cell wall envelope of B. anthracis. The capsular biosynthetic pathway is essential for virulence during anthrax infections and can be targeted for anti-infective inhibition with small molecules. Here, we present the crystal structures of the {gamma}-glutamyltranspeptidase CapD with and without {alpha}-l-Glu-l-Glu dipeptide, a non-hydrolyzable analog of poly-{gamma}-d-glutamic acid, in the active site. Purified CapD displays transpeptidation activity in vitro, and its structure reveals an active site broadly accessible for poly-{gamma}-glutamate binding and processing. Using structural and biochemical information, we derive a mechanistic model for CapD catalysis whereby Pro{sup 427}, Gly{sup 428}, and Gly{sup 429} activate the catalytic residue of the enzyme, Thr{sup 352}, and stabilize an oxyanion hole via main chain amide hydrogen bonds.

  11. Structural material irradiations in FFTF

    SciTech Connect

    Not Available

    1985-01-01

    Information is presented concerning the Materials Open Test Assembly (MOTA); instrumentation and control system; MOTA neutronic data; pressurized tube specimens; stress-rupture measurements for reactor materials; miniature specimen design; the Interim Examination and Maintenance (IEM) cell at the FFTF; support services; and general information concerning the FFTF.

  12. Effect of several processing parameters on material removal ratio in the deliquescent polishing of KDP crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Feihu; Guo, Shaolong; Zhang, Yong; Luan, Dianrong

    2009-05-01

    A new ultraprecision machining technology for potassium dihydrogen phosphate (KDP) crystals, deliquescent polishing technology for KDP crystals, which utilizes deliquescent effect for ultraprecision machining KDP crystals, is proposed. The principle and the advantages of technology are introduced. The deliquescent polishing procedure of KDP crystals is given. The deliquescent polishing experiments of KDP crystals are conducted, and the material removal ratios are calculated. Through the experiments, the effect of four processing parameters (velocity of polishing plate, velocity of drip, volume percentage of water in the deliquescent polishing fluid, polishing pressure) on material removal ratio in the deliquescent polishing of KDP crystals is researched. The plot of material removal ratio versus every processing parameter in the deliquescent polishing of KDP crystals is obtained, and the rules of material removal ratio in the deliquescent polishing of KDP crystals are reached.

  13. Crystal growth and materials research in photovoltaics: progress and challenges

    NASA Astrophysics Data System (ADS)

    Surek, Thomas

    2005-02-01

    Photovoltaics (PV) is solar electric power—a semiconductor-based technology that converts sunlight to electricity. Three decades of research has led to the discovery of new materials and devices and new processing techniques for low-cost manufacturing. This has resulted in improved sunlight-to-electricity conversion efficiencies, improved outdoor reliability, and lower module and system costs. The manufacture and sale of PV has grown into a $5 billion industry worldwide, with more than 740 megawatts of PV modules shipped in 2003. This paper reviews the significant progress that has occurred in PV materials and devices research over the past 30 years, focusing on the advances in crystal growth and materials research, and examines the challenges to reaching the ultimate potential of current-generation (crystalline silicon), next-generation (thin films and concentrators), and future-generation PV technologies. The latter includes innovative materials and device concepts that hold the promise of significantly higher conversion efficiencies and/or much lower costs.

  14. Structural integrity of intelligent materials and structures

    NASA Astrophysics Data System (ADS)

    Sullivan, Brian J.; Buesking, Kent W.

    1994-02-01

    This report focuses on the development of micromechanical algorithms for shape memory alloy composite materials. The composite cylinders assemblage algorithm was utilized to determine the effective thermomechanical properties of shape memory alloy composites. The mathematical development based on this micromechanical model was coded and exercised to predict the response of shape memory alloy fiber/elastomer matrix composites to arbitrary mechanical and thermal loadings.

  15. Crystal structure of the co-crystal butyl­paraben–isonicotinamide (1/1)

    PubMed Central

    Bhardwaj, Rajni M.; Yang, Huaiyu; Florence, Alastair J.

    2016-01-01

    The title 1:1 co-crystal, C11H14O3·C6H6N2O [systematic name: butyl 4-hy­droxy­benzoate–isonicotinamide (1/1)], crystallizes with one mol­ecule of butyl­paraben (BPN) and one mol­ecule of isonicotinamide (ISN) in the asymmetric unit. In the crystal, BPN and ISN mol­ecules form hydrogen-bonded (O—H⋯N and N—H⋯O) dimers of paired BPN and ISN mol­ecules. These dimers are further connected to each other via N—H⋯O=C hydrogen bonds, creating ribbons in [011] which further stack along the a axis to form a layered structure with short C⋯C contacts of 3.285 (3) Å. Packing inter­actions within the crystal structure were assessed using PIXEL calculations. PMID:26870584

  16. Crystal structure and thermal behaviour of pyridinium styphnate

    PubMed Central

    Muthulakshmi, Selvarasu; Kalaivani, Doraisamyraja

    2015-01-01

    In the crystal structure of the title mol­ecular salt, C5H6N+·C6H2N3O8 − (systematic name: pyridinium 3-hy­droxy-2,4,6-tri­nitro­phenolate), the pyridin­ium cation and the 3-hy­droxy-2,4,6-tri­nitro­phenolate anion are linked through bifurcated N—H⋯(O,O) hydrogen bonds, forming an R 1 2(6) ring motif. The nitro group para with respect to phenolate ion forms an intra­molecular hydrogen bond with the adjacent phenolic –OH group, which results in an S(6) ring motif. The nitro group flanked by the phenolate ion and the phenolic –OH group deviates noticeably from the benzene ring, subtending a dihedral angle of 89.2 (4)°. The other two nitro groups deviate only slightly from the plane of the benzene ring, making dihedral angles of 2.8 (4) and 3.4 (3)°. In the crystal, the 3-hy­droxy-2,4,6-tri­nitro­phenolate anions are linked through O—H⋯O hydrogen bonds, forming chains along [100]. These anionic chains, to which the cations are attached, are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure. Impact friction sensitivity tests and TGA/DTA studies on the title mol­ecular salt imply that it is an insensitive high-energy-density material. PMID:25878796

  17. On the Use of Dynamical Diffraction Theory To Refine Crystal Structure from Electron Diffraction Data: Application to KLa5O5(VO4)2, a Material with Promising Luminescent Properties.

    PubMed

    Colmont, Marie; Palatinus, Lukas; Huvé, Marielle; Kabbour, Houria; Saitzek, Sébastien; Djelal, Nora; Roussel, Pascal

    2016-03-01

    A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and β = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community. PMID:26901292

  18. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    PubMed

    Aakery, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50?% less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials. PMID:26119478

  19. Crystal structure control in Au-free self-seeded InSb wire growth.

    PubMed

    Mandl, Bernhard; Dick, Kimberly A; Kriegner, Dominik; Keplinger, Mario; Bauer, Gnther; Stangl, Julian; Deppert, Knut

    2011-04-01

    In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well. PMID:21346304

  20. Datamining protein structure databanks for crystallization patterns of proteins.

    PubMed

    Valafar, Homayoun; Prestegard, James H; Valafar, Faramarz

    2002-12-01

    A study of 345 protein structures selected among 1,500 structures determined by nuclear magnetic resonance (NMR) methods, revealed useful correlations between crystallization properties and several parameters for the studied proteins. NMR methods of structure determination do not require the growth of protein crystals, and hence allow comparison of properties of proteins that have or have not been the subject of crystallographic approaches. One- and two-dimensional statistical analyses of the data confirmed a hypothesized relation between the size of the molecule and its crystallization potential. Furthermore, two-dimensional Bayesian analysis revealed a significant relationship between relative ratio of different secondary structures and the likelihood of success for crystallization trials. The most immediate result is an apparent correlation of crystallization potential with protein size. Further analysis of the data revealed a relationship between the unstructured fraction of proteins and the success of its crystallization. Utilization of Bayesian analysis on the latter correlation resulted in a prediction performance of about 64%, whereas a two-dimensional Bayesian analysis succeeded with a performance of about 75%. PMID:12594078

  1. Forced diffusion via electrically induced crystallization for fabricating ZnOTiSi structures

    SciTech Connect

    Chen, Yen-Ting; Hung, Fei-Yi

    2014-11-15

    Highlights: ZnOTiSi system is very important for the structural design. The electrically induced crystallization method is useful to diffusion process. Intermetallic compound characteristics have been presented using electrically induced crystallization. Interface mechanism about diffusion of TZOTiSi{sub x}Si structure is presented. - Abstract: Electrically induced crystallization (EIC) is a recently developed process for material modification. This study is applied to EIC to fabricate ZnOTiSi multi-layer structures of various thicknesses to dope Ti into ZnO thin film and to form TiSi{sub x} intermetallic compound (IMC) in a single step. The IMC layer was confirmed using transmission electron microscopy images. The Ti layer thickness was more than 40 nm, which enhanced electron transmission and decreased the total electrical resistance in the structure. Finally, the diffusion mechanisms of EIC and the annealing process were investigated. This study shows that the EIC process has potential for industrial applications.

  2. Crystal structure of benzobi­cyclon

    PubMed Central

    Kang, Gihaeng; Kim, Jineun; Lim, Hansu; Kim, Tae Ho

    2015-01-01

    In the title compound, C22H19ClO4S2 [systematic name: 3-(2-chloro-4-mesylbenzo­yl)-4-(phenyl­sulfan­yl)bi­cyclo­[3.2.1]oct-3-en-2-one], which is an unclassified herbicide, the dihedral angle between the plane of the phenyl and chloro­benzene rings is 19.9 (2)°. In the crystal, C—H⋯O hydrogen bonds link adjacent mol­ecules, generating two-dimensional networks extending parellel to (011). PMID:26870484

  3. Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore

    NASA Astrophysics Data System (ADS)

    Farsari, M.; Ovsianikov, A.; Vamvakaki, M.; Sakellari, I.; Gray, D.; Chichkov, B. N.; Fotakis, C.

    2008-10-01

    Direct laser writing by two-photon polymerization of photosensitive materials has emerged as a very promising technique for rapid and flexible fabrication of photonic crystals. In this work, a photosensitive silica sol-gel containing the nonlinear optical chromophore Disperse Red 1 is synthesized, and the two-photon polymerization technique is employed to fabricate three-dimensional photonic crystals with stop-gaps in the near-infrared. The composite material exhibits minimal shrinkage during photopolymerization, eliminating the need for shrinkage compensation or the fabrication of support structures.

  4. Structure and local structure of perovskite based materials

    NASA Astrophysics Data System (ADS)

    Rossell Abrodos, Marta Dacil

    Perovskites, with general formula ABX3, where A and B are cations and X is an anion, form a very important class of inorganic crystals whose physical properties are extensively used in many technological applications. The basic, so-called aristotype structure, consists of an infinite array of corner-linked anion octahedra, with the A cations in the spaces between the octahedra and a B cation at the center of each octahedron. Interesting physical properties are often related to the flexibility of the perovskite structure to deform or to form non-stoichiometric compositions. In this thesis, four perovskite-related systems are studied. Transmission electron microscopy (TEM) is of prime interest to analyze the influence of the structure and microstructure on the physical properties of these systems. (1) The anion-deficient Sr4Fe6O12+delta (delta < 1) derivatives. These materials are mixed conducting oxides with high oxygen and electronic conductivity. A complete characterization of the structure of these anion-deficient compounds is deduced from electron diffraction and high-resolution TEM. The presence of anion vacancies in the Sr4Fe6O12+delta (delta < 1) structure is suggested to have an influence on the transport properties. (2) The CaRMnSnO6 (R = La, Pr, Nd, Sm-Dy) double perovskites. A random distribution of the Ca and R cations over the A positions and Mn and Sn cations over the B positions is found. Due to a random distribution of the Mn 3+ and Sn4+ cations, a spin glass behavior was found for CaLaMnSnO6. (3) The K3AlF6 elpasolite-type (or ordered double perovskite) structure. This compound is of high technological importance since it is a basic component of the melts for low temperature electrolysis in aluminum smelting. A sequence of phase transitions at different temperatures in K3AlF6 along with the data on unit cell dimensions and space symmetry of three major polymorphs is reported. (4) Ca 2Fe2O5 brownmillerite-type thin films deposited on three different perovskite-type substrates. TEM allows to demonstrate that minor variations in the lattice mismatch of the Ca2Fe2O 5 film and the three different substrates strongly determine the growth direction of the films. Thus, misfit stress clearly influences the structure and the microstructure of epitaxial films.

  5. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H; Yun, YF; Gandara, F; Duong, A; Zou, XD; Yaghi, OM

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is an important advance in the development of COF chemistry.

  6. Mechanisms of crystal formation in gout-a structural approach.

    PubMed

    Pascual, Eliseo; Addadi, Lia; Andrés, Mariano; Sivera, Francisca

    2015-12-01

    The mechanisms and sites of monosodium urate monohydrate (MSU) crystal deposition in gout have received little attention from the scientific community to date. Formalin fixation of tissues leads to the dissolution of MSU crystals, resulting in their absence from routinely processed pathological samples and hence neglect. However, modern imaging techniques-especially ultrasonography but also conventional CT and dual-energy CT-reveal that MSU crystals form at the cartilage surface as well as inside tendons and ligaments, often at insertion sites. Tophi comprise round white formations of different sizes surrounded by inflammatory tissue. Studies of fibres recovered from gouty synovial fluid indicate that these fibres are likely to be a primary site of crystal formation by templated nucleation, with crystals deposited parallel to the fibres forming transverse bands. In tophi, two areas can be distinguished: one where crystals are formed on cellular tissues and another consisting predominantly of crystals, where secondary nucleation seems to take place; this organization could explain how tophi can grow rapidly. From these observations based on a crystallographic approach, it seems that initial templated nucleation on structural fibres-probably collagen-followed at some sites by secondary nucleation could explain MSU crystal deposition in gout. PMID:26369610

  7. Sapphire: Relation between luminescence of starting materials and luminescence of single crystals

    NASA Astrophysics Data System (ADS)

    Mogilevsky, R.; Nedilko, S.; Sharafutdinova, L.; Burlay, S.; Sherbatskii, V.; Boyko, V.; Mittl, S.

    2009-10-01

    A relation between photoluminescence (PL) characteristics of different starting materials used for crystal growth and un-doped sapphire single crystals manufactured using various methods of crystal growth (Kyropolus, HEM, Czochralski, and EFG) was found. The crystals grown using the Verneuil starting material exhibited significant PL when any method of crystal growth was used. On the contrary, sapphire samples grown by the same technologies wherein the starting material was EMT HPDA R revealed very low PL. (HPDA R is produced by EMT, Inc., with proprietary and patented technology.)

  8. Elastic octopoles and colloidal structures in nematic liquid crystals.

    PubMed

    Chernyshuk, S B; Tovkach, O M; Lev, B I

    2014-03-01

    We propose a simple theoretical model which explains the formation of dipolar two- (2D) and three-dimensional (3D) colloidal structures in nematic liquid crystals. The colloidal particles are treated as effective hard spheres interacting via their elastic dipole, quadrupole, and octopole moments. It is shown that the octopole moment plays an important role in the formation of 2D and 3D nematic colloidal crystals. We generalize this assumption to the case of an external electric field and theoretically explain a giant electrostriction effect in 3D crystals observed recently. PMID:24730862

  9. The different conformations and crystal structures of dihydroergocristine

    NASA Astrophysics Data System (ADS)

    Mönch, B.; Kraus, W.; Köppen, R.; Emmerling, F.

    2016-02-01

    The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs.

  10. Broadband single-polarization single-mode photonic crystal fibers with three different background materials.

    PubMed

    Li, Hui; Li, Shu-guang; Li, Jian-She; Zhang, Wan; An, Guo-Wen

    2015-04-01

    A modified structure of single-polarization single-mode (SPSM) photonic crystal fiber (PCF) with different background materials is presented and analyzed by using the full-vector finite-element method. Simulation results confirmed that the proposed PCF can realize low-loss SPSM on three wavebands with the same structure and different background materials. The wavebands are 1.46-1.60 μm for silica-based fiber, 1.97-2.3 μm for lead silicate glass fiber, and 3.16-3.58 μm for chalcogenide glass fiber. For three PCFs with different background materials, only the slow-axis mode exists and the confinement loss is less than 100 dB/m in the SPSM wavebands. PMID:25967199

  11. Crystal structure of a theta-class glutathione transferase.

    PubMed Central

    Wilce, M C; Board, P G; Feil, S C; Parker, M W

    1995-01-01

    Glutathione S-transferases (GSTs) are a family of enzymes involved in the cellular detoxification of xenotoxins. Cytosolic GSTs have been grouped into four evolutionary classes for which there are representative crystal structures of three of them. Here we report the first crystal structure of a theta-class GST. So far, all available GST crystal structures suggest that a strictly conserved tyrosine near the N-terminus plays a critical role in the reaction mechanism and such a role has been convincingly demonstrated by site-directed mutagenesis. Surprisingly, the equivalent residue in the theta-class structure is not in the active site, but its role appears to have been replaced by either a nearby serine or by another tyrosine residue located in the C-terminal domain of the enzyme. Images PMID:7774571

  12. Crystal field and magnetic structure of UO2

    NASA Astrophysics Data System (ADS)

    Zhou, Fei; Ozoli?, Vidvuds

    2011-02-01

    The properties of UO2 result from rich f-electron physics, including electronic Coulomb interactions, spin-orbit and crystal-field effects, as well as interionic multipolar coupling. We present a comprehensive theoretical study of the electronic structure of UO2 using a combined application of self-consistent DFT+U calculations and a model Hamiltonian. The ?5 ground state of U4+ and the energies of crystal-field excitations ?5??3,4,1 are reproduced in very good agreement with experiment. We also investigate competing noncollinear magnetic structures and confirm 3k as the T=0 K ground-state magnetic structure of UO2.

  13. Salt transport and crystallization in porous building materials.

    PubMed

    Pel, L; Huinink, H; Kopinga, K

    2003-01-01

    Salt weathering is a major cause of deterioration of porous building materials. To obtain information about the mechanisms underlying these damage processes we have studied the moisture and ion transport. We measured the time evolution of NaCl saturated samples of fired-clay brick during one-sided drying using Nuclear Magnetic Resonance. The moisture content and amount of dissolved Na ions could be measured quantitatively as a function of position. The NaCl concentration profiles obtained from these data reflect the competition between advection to the surface and redistribution by diffusion. By representing the measured moisture and NaCl profiles in an efflorescence pathway diagram (EPD) also the crystallization can be taken into account. PMID:12850725

  14. Adaptive Materials with Polydomain Structures

    NASA Astrophysics Data System (ADS)

    Yu, Yongsik

    1995-01-01

    The goal of this study is to carry out the thermodynamic analysis of equilibrium domain evolution in adaptive composites containing active polydomain components (ferroelastic or ferroelectric polydomain phases) under external mechanical and electric fields. Multilayer composites are considered. The stress fields and associated elastic energies as well as the polarizations and associated electrostatic energies for possible domain structures are evaluated. The dependence of the equilibrium domain structures, on the active layer thickness and the relative misfit strain between layers, is described. It is shown that there are structural transitions from one domain structure to another one, when the thickness of an active layer exceeds some critical value. If the mobility of the domain boundaries is high, the polydomain structure changes under external mechanical and electric fields, and therefore it adapts to various external conditions. The domain interface movement, under mechanical and electric fields, determines the superelastic reversible deformation of the adaptive composites. Evolution of domain structures, under uniaxial mechanical stress and different direction of electric fields with respect to the plane of an active layer, are calculated. It is demonstrated that the polydomain component can significantly decrease the effective elastic modulus of the composite. A bias electric field can reduce this superelastic effect. The combination of mechanical stress and electric fields control the evolution of domain structures, therefore, it allows one to govern the mechanical and electrical properties of the adaptive composites.

  15. Structure of Blue Phase III of Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Henrich, O.; Stratford, K.; Cates, M. E.; Marenduzzo, D.

    2011-03-01

    We report large scale simulations of the blue phases of cholesteric liquid crystals. Our results suggest a structure for blue phase III, the blue fog, which has been the subject of a long debate in liquid crystal physics. We propose that blue phase III is an amorphous network of disclination lines, which is thermodynamically and kinetically stabilized over crystalline blue phases at intermediate chiralities. This amorphous network becomes ordered under an applied electric field, as seen in experiments.

  16. Boron-oxygen polyanion in the crystal structure of tunellite

    USGS Publications Warehouse

    Clark, J.R.

    1963-01-01

    The crystal structure of tunellite, SrO??3B2O 3??4H2O, with infinite sheets of composition n[B6O9(OH)2]2-, has cations and water molecules in the spaces within the sheets. Adjacent sheets are held together by hydrogen bonding through the water molecules. The boron-oxygen polyanions provide the first example in hydrated borate crystals of one oxygen linked to three borons.

  17. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  18. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  19. Bulk Crystal Growth of Nonlinear Optical Organic Materials Using Inverted Vertical Gradient Freeze Method

    NASA Technical Reports Server (NTRS)

    Choi, J.; Cruz, Magda; Metzl, R.; Wang, W. S.; Aggarwal, M. D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    A new process for producing large bulk single crystals of benzil (C6H5COCOC6H5) is reported in this paper. Good quality crystals have been successfully grown using this approach to crystal growth. This method seems to be very promising for other thermally stable NLO organic materials also. The entire contents vycor crucible 1.5 inch in diameter and 2 inch deep was converted to single crystal. Purity of the starting growth material is also an important factor in the final quality of the grown crystals. The entire crystal can be very easily taken out of the crucible by simple maneuvering. Initial characterization of the grown crystals indicated that the crystals are as good as other crystals grown by conventional Bridgman Stockbarger technique.

  20. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    PubMed

    Mannstadt, Wolfgang

    2008-02-13

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic abinitio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'abinitio' simulations in the computer. In this presentation results of density functional theory (DFT) calculations of various crystal structures, mainly oxides, are discussed. The focus is on the thermomechanical and optical properties. We present elastic properties and the anisotropic Young's modulus for spinel structures, pyrosilicates and further oxides like rutile. Their influence on the stiffness of a resulting glass ceramic is discussed. The thermal expansion of glass ceramics is an important feature and is strongly dependent on the coefficient of thermal expansion (CTE) of the crystalline phases. For selective oxides the calculation of the CTE in the harmonic approximation is presented and a comparison with experiments is given. Optical devices for microlithography use CaF(2) crystal as a lens material. The optical properties and the influence of certain impurities in CaF(2) are crucial for the performance of such devices. 'Abinitio' simulation helps us here to estimate the formation of defects and color centers. Local density approximation screened exchange calculations for the optical properties of CaF(2) are presented as well as DFT simulation results for impurities and defects. PMID:21693894

  1. Crystal engineering with thioureas: A structure-based inquiry

    NASA Astrophysics Data System (ADS)

    Paisner, Kathryn A.

    2011-12-01

    Structural trends applicable to crystal engineering were studied in three classes of thiourea-based compounds. The aim of the study was to identify, predict, and ultimately design reliable single-molecule structural features, which could then be used to engineer crystals with desirable properties. In one class of compounds, this goal was achieved: N-alkyl and N-aryl derivatives of N,N'-bis(3-thioureidopropyl)piperazine adopted an identical conformation in the solid state, which resulted in near-identical crystal packing. A second class of closely related compounds, N-substituted tris(2-thioureidoethyl)amines, showed no such reliability in the solid state, likely because the parent structure lacked hydrogen-bonding functionalities sufficient to control intramolecular structure. In the third class of compounds that we studied, 1-benzoyl-3-(2-pyridyl)thioureas, substitution patterns were often predictive of molecular conformation; however, these intramolecular trends did not lead to recognizable crystal packing motifs. Nevertheless, certain physical properties observed in this last class of compounds---color, solubility, and often crystallinity---were conformer-specific, interestingly without any apparent relevance to crystal lattice structure. Solution-state and solid-state conformational trends in these 1-benzoyl-3-(2-pyridyl)thioureas have been documented, and speculations as to the source of color in one of the two observed conformations have been noted.

  2. Modulated structures in electroconvection in nematic liquid crystals.

    PubMed

    Komineas, S; Zhao, H; Kramer, L

    2003-03-01

    Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of a weakly damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field. The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal rolls, which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director. We present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter range where the zigzag instability is not relevant these solutions are stable attractors, as observed in experiments. We also present two-dimensionally modulated states with and without defects which result from the destabilization of the one-dimensionally modulated structures. Finally, for no (or very small) damping, and away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of defect chains (or bands of defects) separating homogeneous regions of oblique rolls with very small amplitude. These states may provide a model for a class of poorly understood stationary structures observed in various highly conducting materials ("prechevrons" or "broad domains"). PMID:12689082

  3. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  4. Crystal structure of ammonia dihydrate II

    NASA Astrophysics Data System (ADS)

    Griffiths, Gareth I. G.; Fortes, A. Dominic; Pickard, Chris J.; Needs, R. J.

    2012-05-01

    We have used density-functional-theory (DFT) methods together with a structure searching algorithm to make an experimentally constrained prediction of the structure of ammonia dihydrate II (ADH-II). The DFT structure is in good agreement with neutron diffraction data and verifies the prediction. The structure consists of the same basic structural elements as ADH-I, with a modest alteration to the packing, but a considerable reduction in volume. The phase diagram of the known ADH and ammonia monohydrate + water-ice structures is calculated with the Perdew-Burke-Ernzerhof density functional, and the effects of a semi-empirical dispersion corrected functional are investigated. The results of our DFT calculations of the finite-pressure elastic constants of ADH-II are compared with the available experimental data for the elastic strain coefficients.

  5. Materials and structures/ACEE

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Light weight composites made from graphite fibers, glass, or man made materials held in an epoxy matrix, and their application to airframe design are reviewed. The Aircraft Energy Efficiency program is discussed. Characteristics of composites, acceptable risks, building parts and confidence, and aeroelastic tailoring are considered.

  6. Prediction of Phase Diagrams for Hard Materials: Application to Boron Crystals

    NASA Astrophysics Data System (ADS)

    Shirai, Koun

    2014-10-01

    Hard materials and refractory materials, such as diamond, are generally stable and have high melting points. The phase diagrams of these materials seem to be relatively simple. However, recent progress of high-pressure experiments along with theoretical predictions by density-functional theoretical (DFT) methods has disclosed the richness of new structures, which has attracted the attention of material researchers. An elemental crystal of boron is an extreme case; there are many polymorphic modifications, and it is only recently that the phase diagram has been established. In the course of studying the phase diagram, a new structure of the -phase has been discovered. Now, we have to admit that hard materials are rich sources for materials research. Many metastable phases are hidden behind the widely accepted phase diagrams. How to discover these hidden phases is one of the central issues for materials research. In this paper, experiences with predicting the phase diagram of boron by a theoretical approach are described and impacts on materials research, by taking superconductivity research as a working example, are shown. A combination of the microscopic method of DFT and the macroscopic approach of thermodynamics is an extremely powerful tool.

  7. Silicon dioxide nanoporous structure with liquid crystal for optical sensors

    NASA Astrophysics Data System (ADS)

    Sushynskyi, Orest; Vistak, Maria; Gotra, Zenon; Fechan, Andriy; Mikityuk, Zinoviy

    2013-05-01

    It has been studied the spectral characteristics of the porous silicon dioxide and cholesteric liquid crystal. It has been shown that doping of the EE1 cholesteric liquid crystal with Fe3O4 magnetite nanoparticles doesn't shift significantly the position of the transmittance minimum of the material. It has been found that the deformation of chiral pitch of cholesteric liquid crystal with magnetite is observed in case of doping of porous nanocomposite host with following shifting of minimum of transmittance into short wavelength direction. It has been shown that influence of carbon monoxide on optical characteristics of the cholesteric liquid crystal with magnetite can be explained by the interaction of CARBON MONOXIDE molecules with magnetite nanodopants.

  8. Structural Defects and Instabilities in Freely Suspended Liquid Crystal Films.

    NASA Astrophysics Data System (ADS)

    Pang, Jinzhong

    1995-01-01

    Ultrathin freely suspended liquid crystal films (FSLCFs) are layered two-dimensional (2D) systems which are ideal for the study of 2D physics because of their rich phase and symmetry breaking behavior and almost exclusively internal interactions. We have studied structural defects and instabilities in tilted smectic FSLCFs of many different materials over a wide range of layer numbers. Our observations show that the range of possible phases, structural defects and instabilities in these films is considerably broader than previously realized. Here, we report our studies of string defects, twist-bend instabilities and splay instabilities in FSLCFs. Until now, the defects identified in tilted smectic films are point topological defects of unit topological charge, in which the tilt orientation changes by +/-2pi upon traveling once around the defect point. We have discovered a variety of new defects in 2D tilted smectic systems (the "string" defects) in which there is discontinuity in tilt orientation along a line. We also find associated fractionally charged topological point defect structures. Our observations indicate the presence of additional stabilization mechanisms for 2D line defects and open the way for study of line defects in 2D systems. Some of the most interesting structures in liquid crystals arise as a result of internal frustration. These are situations in which the local energetically ideal configuration cannot be extended to fill space, but must be accommodated by the appearance of defects, often in periodic arrays. We have discovered two new frustrated phases in FSLCFs: the twist-bend stripe phase and the splay stripe phase. The twist-bend stripe phase is formed in an achiral compound with one aliphatic and one perfluoroalkyl chain and is a novel example of spontaneous chiral-symmetry breaking. This phase transition is mainly driven by the interior twist field generated by the steric interaction of molecules in non-polar films. The splay stripe phase, on the other hand, arises as a result of a polar ordering phase separation, and the instability of the ensuing domain boundaries.

  9. How to predict very large and complex crystal structures

    NASA Astrophysics Data System (ADS)

    Lyakhov, Andriy O.; Oganov, Artem R.; Valle, Mario

    2010-09-01

    Evolutionary crystal structure prediction proved to be a powerful approach in discovering new materials. Certain limitations are encountered for systems with a large number of degrees of freedom ("large systems") and complex energy landscapes ("complex systems"). We explore the nature of these limitations and address them with a number of newly developed tools. For large systems a major problem is the lack of diversity: any randomly produced population consists predominantly of high-energy disordered structures, offering virtually no routes toward the ordered ground state. We offer two solutions: first, modified variation operators that favor atoms with higher local order (a function we introduce here), and, second, construction of the first generation non-randomly, using pseudo-subcells with, in general, fractional atomic occupancies. This enhances order and diversity and improves energies of the structures. We introduce an additional variation operator, coordinate mutation, which applies preferentially to low-order ("badly placed") atoms. Biasing other variation operators by local order is also found to produce improved results. One promising version of coordinate mutation, explored here, displaces atoms along the eigenvector of the lowest-frequency vibrational mode. For complex energy landscapes, the key problem is the possible existence of several energy funnels - in this situation it is possible to get trapped in one funnel (not necessarily containing the ground state). To address this problem, we develop an algorithm incorporating the ideas of abstract "distance" between structures. These new ingredients improve the performance of the evolutionary algorithm USPEX, in terms of efficiency and reliability, for large and complex systems.

  10. Structures and materials technology for hypersonic aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mccomb, Harvey G., Jr.; Murrow, Harold N.; Card, Michael F.

    1990-01-01

    Major considerations in structural design of a transatmospheric aerospacecraft are discussed. The general direction of progress in structures and materials technology is indicated, and technical areas in structures and materials where further research and development is necessary are indicated. Various structural concepts under study and materials which appear to be most applicable are discussed. Structural design criteria are discussed with particular attention to the factor-of-safety approach and the probabilistic approach. Structural certification requirements for the aerospacecraft are discussed. The kinds of analyses and tests which would be required to certify the structural integrity, safety, and durability of the aerospacecraft are discussed, and the type of test facility needed to perform structural certification tests is identified.

  11. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    NASA Astrophysics Data System (ADS)

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-07-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib.

  12. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, Stephen A.; Kway, Wayne L.; DeLoach, Laura D.; Krupke, William F.; Chai, Bruce H. T.

    1994-01-01

    Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

  13. Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure

    DOEpatents

    Payne, S.A.; Kway, W.L.; DeLoach, L.D.; Krupke, W.F.; Chai, B.H.T.

    1994-08-23

    Yb[sup 3+] and Nd[sup 3+] doped Sr[sub 5](VO[sub 4])[sub 3]F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr[sub 5](VO[sub 4])[sub 3]F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr[sub 5](VO[sub 4])[sub 3]F, where the Sr[sup 2+] and F[sup [minus

  14. Study of structural and optical properties of YAG and Nd:YAG single crystals

    SciTech Connect

    Kostić, S.; Lazarević, Z.Ž.; Radojević, V.; Milutinović, A.; Romčević, M.; Romčević, N.Ž.; Valčić, A.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  15. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  16. Crystal structures of gold, silver, and sodium chalcogenides: Sphenoidal interpretation

    SciTech Connect

    Bakakin, V. V.

    2011-11-15

    The crystal structures of 13 chalcogenides of Na, Au(I), and Ag(I) in the Na{sub 2-n}(Au,Ag){sub n}(S,Se,Te) series, where 0 {<=} n {<=} 2, are interpreted from unified positions based on the sphenoidal representation. Its essence is in the consideration of the entire crystal space (with packing X atoms in the framework of close-packing, body-centered, or hybrid schemes) as a set of elementary space units (sphenoids). Unified one-dimensional associates of sphenoids, the so-called basic rods, with sets of possible atomic positions in them are selected for all structures. The mutual effect of the dimensional and stoichiometric ratios of all components on the features of filling rod positions is analyzed. New possibilities in the crystallochemical and crystal-geometry analysis of inorganic compounds whose structures are characterized by a relatively uniform distribution of atoms are demonstrated by the example of chalcogenides.

  17. Yolk spherocrystal: the structure, composition and liquid crystal template.

    PubMed

    Tong, Hua; Wan, Peng; Ma, Wentao; Zhong, Guirong; Cao, Lianxin; Hu, Jiming

    2008-07-01

    The structure and composition of the yolk spherocrystal, a biomineral developed in the egg yolk sac during the incubation of a chicken embryo, were investigated through various modern analytical methods. Additionally, inside the yolk sac, yolk liquid crystal, a liquid crystalline phase of lipid developed during the incubation of the embryo, was found and investigated. The spherocrystal was found to be a composite composed of calcium carbonate (vaterite and calcite, primarily the former) and the yolk liquid crystal, which is believed to act as an organic template for spherocrystals mineralization, in a concentric multi-layered sphere structure. Moreover, the yolk liquid crystal was found to have a concentric multi-layered spherical structure and a composition consistent with lecithin. We believed that the spherocrystals function as a reservoir for the storage of calcium in the egg yolk sac during the development of the embryo. PMID:18485735

  18. Crystal structure tuning in GaAs nanowires using HCl.

    PubMed

    Jacobsson, Daniel; Lehmann, Sebastian; Dick, Kimberly A

    2014-07-21

    The use of HCl during growth of nanowires presents new possibilities for controlling the growth dynamics and resulting nanowire properties. In this paper, we investigate the effects of in situ HCl on the growth of Au-seeded GaAs nanowires in a growth regime where both wurtzite and zinc blende crystal structures are possible to achieve. We find that HCl changes the crystal structure of the nanowires from pure wurtzite to defect-free zinc blende. By comparing the growth of wurtzite-zinc blende heterostructures with and without the addition of HCl, it is deduced that HCl mainly interacts with Ga species prior incorporation, reducing the amount of Ga available to contribute to the growth. We conclude that the change in crystal structure is related to the reduction of Ga adatoms, and demonstrate the realization of wurtzite-zinc blende heterostructures with atomically sharp interfaces achieved only by adding HCl. PMID:24931099

  19. Crystal structure tuning in GaAs nanowires using HCl

    NASA Astrophysics Data System (ADS)

    Jacobsson, Daniel; Lehmann, Sebastian; Dick, Kimberly A.

    2014-06-01

    The use of HCl during growth of nanowires presents new possibilities for controlling the growth dynamics and resulting nanowire properties. In this paper, we investigate the effects of in situ HCl on the growth of Au-seeded GaAs nanowires in a growth regime where both wurtzite and zinc blende crystal structures are possible to achieve. We find that HCl changes the crystal structure of the nanowires from pure wurtzite to defect-free zinc blende. By comparing the growth of wurtzite-zinc blende heterostructures with and without the addition of HCl, it is deduced that HCl mainly interacts with Ga species prior incorporation, reducing the amount of Ga available to contribute to the growth. We conclude that the change in crystal structure is related to the reduction of Ga adatoms, and demonstrate the realization of wurtzite-zinc blende heterostructures with atomically sharp interfaces achieved only by adding HCl.

  20. Development of Measurement System for Three-Dimensional Structure of Ice Crystals in Raw Beef Samples

    NASA Astrophysics Data System (ADS)

    Do, Gab-Soo; Sagara, Yasuyuki; Tabata, Mizuho; Kudoh, Ken-Ichi; Higuchi, Toshiro

    Micro-Slicer Image Processing System (MSIPS) has been developed for measuring the three-dimensional(3-D) structure and distribution of ice crystals formed in biological materials. The system has functions to reconstruct the 3-D image based on the image data of exposed cross sections obtained by multi-slicing of a frozen sample with the minimum thickness of 1?m and to display the internal structure as well as an arbitrary cross section of the sample choosing observation angles. The effects of freezing conditions on the morphology and distribl1tion of ice crystals were demonstrated quantitatively from the observations of raw beef stained by fluorescent indicator. The 3-D image of the sample demonstrated that the growth of ice columns was restricted by the intrinsic structure of muscle fibers. The proposed method provided a new tool to investigate the effects of freezing conditions on the size, morphology and distribution of ice crystals.

  1. Crystal structure of simple metals at high pressures

    SciTech Connect

    Degtyareva, Olga

    2010-10-22

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  2. Dislocations and domain structures in layer crystals

    NASA Astrophysics Data System (ADS)

    Manolikas, C.; Amelinckx, S.

    1980-01-01

    The domain configurations in the transition metal dichalcogenides, NbTe 2, ?-MoTe 2, ReSe 2 and ReSe 2 with a deformed cadmium iodide or cadmium chloride structure, are analysed by electron diffraction and imaging techniques. Structural models are proposed for the different types of boundaries. The dislocation fine structure is analysed in detail, in particular in NbTe 2. The peculiar behaviour of dislocations in ?-MoTe 2 is also discussed. The interaction between the dislocation multiribbons and the domain boundaries is studied.

  3. The Crystal Structure of GXGD Membrane Protease FlaK

    SciTech Connect

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  4. The crystal structure of GXGD membrane protease FlaK

    SciTech Connect

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  5. Utilization of Protein Crystal Structures in Industry

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kohki

    In industry, protein crystallography is used in mainly two technologies. One is structure-based drug design, and the other is structure-based enzyme engineering. Some successful cases together with recent advances are presented in this article. The cases include the development of an anti-influenza drug, and the introduction of engineered acid phosphatase to the manufacturing process of nucleotides used as umami seasoning.

  6. Fabrication of large binary colloidal crystals with a NaCl structure.

    PubMed

    Vermolen, E C M; Kuijk, A; Filion, L C; Hermes, M; Thijssen, J H J; Dijkstra, M; van Blaaderen, A

    2009-09-22

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (approximately 0.002 k(B)T). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  7. New crystal structural families of lanthanide chloride alcohol/water complexes

    SciTech Connect

    Chakoumakos, Bryan C; Custelcean, Radu; Ramey, Joanne Oxendine; Boatner, Lynn A

    2012-01-01

    The exploration of lanthanide chloride compounds as possible scintillation materials for gamma ray and neutron detection has led to the discovery of several new families of crystal structures with the general formula LnCl3(CH3OH)x(H2O)y. The specific crystal structure depends on the water/methanol content and lanthanide ion. The coordination of the light (large) lanthanides is the typical value of 8 and reduces to 7 for the heavier (small) lanthanides. The binding energy of water versus alcohol ligands is comparable, so that if water is present in the system, it is typically incorporated as a ligand in the crystal. In these crystals, the molecular adducts occur as monomers, dimers, and dichloro-bridged chains. These, in turn, form 3-D frameworks through H-bonds to the Cl atoms. Other distinct crystal structures are predicted, given the volume changes due to the lanthanide contraction, the water content of the crystal growth solutions, and the specific halide.

  8. Recent global trends in structural materials research

    NASA Astrophysics Data System (ADS)

    Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki

    2013-02-01

    Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural materials and fundamental research on structure-property relationships. We are grateful to the authors who contributed to cover these issues, and sincerely hope that our readers will expand their knowledge of emerging international research within the field of structural materials.

  9. Crystal chemistry and structure refinement of five hydrated calcium borates

    USGS Publications Warehouse

    Clark, J.R.; Appleman, D.E.; Christ, C.L.

    1964-01-01

    The crystal structures of the five known members of the series Ca2B6O11??xH2O (x = 1, 5, 5, 7, 9, and 13) have been refined by full-matrix least-squares techniques, yielding bond distances and angles with standard errors of less than 0??01 A?? and 0??5??, respectively. The results illustrate the crystal chemical principles that govern the structures of hydrated borate compounds. The importance of hydrogen bonding in the ferroelectric transition of colemanite is confirmed by more accurate proton assignments. ?? 1964.

  10. Mechanically switchable photonic crystal structures based on coupled photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Suh, Wonjoo; Yanik, Mehmet F.; Solgaard, Olav; Fan, Shanhui

    2004-07-01

    Using both analytic theory, and first-principles finite-difference time-domain simulations, we introduce several novel mechanically tunable photonic crystal structures consisting of coupled photonic crystal slabs. These structures exploit guided resonance effects which give rise to strong variation of transmission for normally incident light. First, when the two slabs are separated apart by a few wavelengths, such a coupled slab structure behaves as a miniaturized Fabry-Perot cavity with two photonic crystal slabs acting as highly reflecting mirrors. Therefore, the transmission through the structure is highly sensitive to the spacing between the slabs. Second, when the two slabs are in proximity to each other, the evanescent tails of the resonance start to overlap. Exploiting the evanescent tunneling, we introduce a new type of optical all-pass filter. The filter exhibits near complete transmission for both on and off resonant frequencies, and yet generates large resonant group delay. Thus, we expect the coupled photonic crystal slab structures to play important roles in micro-mechanically tunable optical sensors and filters.

  11. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  12. Biomimetic photonic materials with tunable structural colors.

    PubMed

    Xu, Jun; Guo, Zhiguang

    2013-09-15

    Nature is a huge gallery of art involving nearly perfect structures and forms over the millions of years developing. Inspiration from natural structures exhibiting structural colors is first discussed. We give some examples of natural one-, two-, and three-dimensional photonic structures. This review article presents a brief summary of recent progress on bio-inspired photonic materials with variable structural colors, including the different facile and efficient routes to construct the nano-architectures, and the development of the artificial variable structural color photonic materials. Besides the superior optical properties, the excellent functions such as robust mechanical strength, good wettability are also mentioned, as well as the technical importance in various applications. This review will provide significant insight into the fabrication, design and application of the structural color materials. PMID:23816221

  13. Radiation Effects on Spacecraft Structural Materials

    SciTech Connect

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-07-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  14. Crystal Structures of Monomeric Actin Bound to Cytochalasin D

    PubMed Central

    Nair, Usha B.; Joel, Peteranne B.; Wan, Qun; Lowey, Susan; Rould, Mark A.; Trybus, Kathleen M.

    2008-01-01

    The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin has not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD, one obtained by soaking preformed actin crystals with CD, and the other by co-crystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play an equally important role in CD binding, and six hydrogen bonds stabilize the actin-CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft, and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site, and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The co-crystallized actin-CD structure also revealed changes in actin conformation. A rotation of ~6° of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure, instead of being disordered as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament. PMID:18938176

  15. Effect of crystallization time on the physico-chemical and catalytic properties of the hierarchical porous materials

    SciTech Connect

    Xu, Ling; College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 ; Ma, Yuanyuan; Ding, Wenli; Guan, Jingqi; Wu, Shujie; Kan, Qiubin

    2010-09-15

    A series of hierarchical porous materials were prepared by a dual template method. The effect of different crystallization time on the channel architecture, morphology, acid performance of the hierarchical porous materials was investigated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption and {sup 27}Al nuclear magnetic resonance were performed to obtain information on the physico-chemical properties of the materials. It was shown that the change in crystallization time could influence the structure/texture and surface acid properties of the hierarchical porous materials. In addition, alkylation of phenol with tert-butanol reaction was carried out to investigate the catalytic performance of the hierarchical porous materials. The results showed that the catalytic activity of the hierarchical porous materials and the selectivity to the bulkly product 2,4-di-tert-butyl-phenol decreased with processing time.

  16. Conical photonic crystals for enhancing light extraction efficiency from high refractive index materials.

    PubMed

    Kim, Jeong-Gil; Hsieh, Chih-Hung; Choi, Hyungryul J; Gardener, Jules; Singh, Bipin; Knapitsch, Arno; Lecoq, Paul; Barbastathis, George

    2015-08-24

    We propose, analyze and optimize a two-dimensional conical photonic crystal geometry to enhance light extraction from a high refractive index material, such as an inorganic scintillator. The conical geometry suppresses Fresnel reflections at an optical interface due to adiabatic impedance matching from a gradient index effect. The periodic array of cone structures with a pitch larger than the wavelength of light diffracts light into higher-order modes with different propagating angles, enabling certain photons to overcome total internal reflection (TIR). The numerical simulation shows simultaneous light yield gains relative to a flat surface both below and above the critical angle and how key parameters affect the light extraction efficiency. Our optimized design provides a 46% gain in light yield when the conical photonic crystals are coated on an LSO (cerium-doped lutetium oxyorthosilicate) scintillator. PMID:26368241

  17. Formation of the structure of gold nanoclusters during crystallization

    SciTech Connect

    Gafner, Yu. Ya. Goloven'ko, Zh. V.; Gafner, S. L.

    2013-02-15

    The structure formation in gold nanoparticles 1.6-5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.

  18. Space structures concepts and materials

    NASA Technical Reports Server (NTRS)

    Nowitzky, A. M.; Supan, E. C.

    1988-01-01

    An extension is preseted of the evaluation of graphite/aluminum metal matrix composites (MMC) for space structures application. A tubular DWG graphite/aluminum truss assembly was fabricated having the structural integrity and thermal stability needed for space application. DWG is a proprietary thin ply continuous graphite reinforced aluminum composite. The truss end fittings were constructed using the discontinuous ceramic particulate reinforced MMC DWAl 20 (trademark). Thermal stability was incorporated in the truss by utilizing high stiffness, negative coefficient of thermal expansion (CTE) P100 graphite fibers in a 6061 aluminum matrix, crossplied to provide minimized CTE in the assembled truss. Tube CTE was designed to be slightly negative to offset the effects of the end fitting and sleeve, CTE values of which are approx. 1/2 that of aluminum. In the design of the truss configuration, the CTE contribution of each component was evaluated to establish the component dimension and layup configuration required to provide a net zero CTE in the subassemblies which would then translate to a zero CTE for the entire truss bay produced.

  19. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    SciTech Connect

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  20. The crystal structure of aluminum doped ?-rhombohedral boron

    NASA Astrophysics Data System (ADS)

    Bykova, Elena; Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid

    2012-10-01

    A crystal structure of aluminum doped ?-rhombohedral boron was studied by single-crystal X-ray diffraction at 80 K. The crystals were synthesized using high-pressure high temperature technique at 3 GPa and 2100 K. The structure is based on three-dimensional framework made of B12 icosahedra with voids occupied by the B28-B-B28 units, it has the R-3m space group with a=10.9014(3), c=23.7225(7) lattice dimensions in hexagonal setting. Aluminum atoms are located in A1 and D special positions of the ?-B structure with occupancies of 82.7(6)% and 11.3(4)%, respectively. Additional boron atoms are located near the D-site. Their possible distribution is discussed. Finally we have found two appropriate structural models whose refinement suggests two possible chemical compositions, AlB44.8(5) and AlB37.8(5), which are in a good agreement with the chemical analysis data obtained from EDX. The crystal structure of AlB44.8(5) is described in detail.

  1. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  2. Crystal structure of HINT from Helicobacter pylori.

    PubMed

    Tarique, K F; Devi, S; Abdul Rehman, S A; Gourinath, S

    2016-01-01

    Proteins belonging to the histidine triad (HIT) superfamily bind nucleotides and use the histidine triad motif to carry out dinucleotidyl hydrolase, nucleotidyltransferase and phosphoramidite hydrolase activities. Five different branches of this superfamily are known to exist. Defects in these proteins in humans are linked to many diseases such as ataxia, diseases of RNA metabolism and cell-cycle regulation, and various types of cancer. The histidine triad nucleotide protein (HINT) is nearly identical to proteins that have been classified as protein kinase C-interacting proteins (PKCIs), which also have the ability to bind and inhibit protein kinase C. The structure of HINT, which exists as a homodimer, is highly conserved from humans to bacteria and shares homology with the product of fragile histidine triad protein (FHit), a tumour suppressor gene of this superfamily. Here, the structure of HINT from Helicobacter pylori (HpHINT) in complex with AMP is reported at a resolution of 3?. The final model has R and Rfree values of 26 and 28%, respectively, with good electron density. Structural comparison with previously reported homologues and phylogenetic analysis shows H. pylori HINT to be the smallest among them, and suggests that it branched out separately during the course of evolution. Overall, this structure has contributed to a better understanding of this protein across the animal kingdom. PMID:26750483

  3. Energy absorption of composite material and structure

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

  4. Pericentriolar material structure and dynamics

    PubMed Central

    Woodruff, Jeffrey B.; Wueseke, Oliver; Hyman, Anthony A.

    2014-01-01

    A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions ( table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub. PMID:25047613

  5. Crystal structure of advanced lithium titanate with lithium oxide additives

    NASA Astrophysics Data System (ADS)

    Hoshino, Tsuyoshi; Sasaki, Kazuya; Tsuchiya, Kunihiko; Hayashi, Kimio; Suzuki, Akihiro; Hashimoto, Takuya; Terai, Takayuki

    2009-04-01

    Li 2TiO 3 is one of the most promising candidates among solid breeder materials proposed for fusion reactors. However, the mass of Li 2TiO 3 was found to decrease with time in the sweep gas mixed with hydrogen. This mass change indicates that the oxygen content of the sample decreased, suggesting the change from Ti 4+ to Ti 3+. In the present paper, the crystal structure and the non-stoichiometry of Li 2TiO 3 added with Li 2O have been extensively investigated by means of X-ray diffraction (XRD) and thermogravimetry. In the case of the Li 2TiO 3 samples used in the present study, LiO-C 2H 5 or LiO-i-C 3H 7 and Ti(O-i-C 3H 7) 4 were mixed in the proportion corresponding to the molar ratio Li 2O/TiO 2 of either 2.00 or 1.00. In thermogravimetry, the mass of this sample decreased with time due to lithium deficiency, where no presence of oxygen deficiency was indicated.

  6. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    PubMed

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) < U < 10(-1) m/s) spanning a wide temperature range (415 < T < 580 K). We also observed direct evidence of non-Arrhenius crystallization behavior in programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices. PMID:24798660

  7. In situ studies of a platform for metastable inorganic crystal growth and materials discovery

    PubMed Central

    Shoemaker, Daniel P.; Hu, Yung-Jin; Chung, Duck Young; Halder, Gregory J.; Chupas, Peter J.; Soderholm, L.; Mitchell, J. F.; Kanatzidis, Mercouri G.

    2014-01-01

    Rapid shifts in the energy, technological, and environmental demands of materials science call for focused and efficient expansion of the library of functional inorganic compounds. To achieve the requisite efficiency, we need a materials discovery and optimization paradigm that can rapidly reveal all possible compounds for a given reaction and composition space. Here we provide such a paradigm via in situ X-ray diffraction measurements spanning solid, liquid flux, and recrystallization processes. We identify four new ternary sulfides from reactive salt fluxes in a matter of hours, simultaneously revealing routes for ex situ synthesis and crystal growth. Changing the flux chemistry, here accomplished by increasing sulfur content, permits comparison of the allowable crystalline building blocks in each reaction space. The speed and structural information inherent to this method of in situ synthesis provide an experimental complement to computational efforts to predict new compounds and uncover routes to targeted materials by design. PMID:25024201

  8. Effects of the Coordinates Planes Crystal Orientation on the Structural Strength of Single-Crystal Turbine Vanes and Blades

    NASA Astrophysics Data System (ADS)

    Chen, Jinxiang; Hashimoto, Ryosaku; Fukuyama, Yoshitaka; Matsushita, Masahiro; Ogawa, Akinori; Osawa, Makoto; Yokokawa, Tadaharu; Harada, Hiroshi

    The effects of crystal orientation (θ) on the structural strength of single crystal turbine vanes and blades calculated with the finite element method (FEM) are discussed in this paper. TMS-75, a 3rd generation single-crystal Ni-base superalloy, is chosen as the model material for turbine vanes and blades. It became clear that, (1) the elastic constant matrix changes were equivalence for each of three coordinate due to the orientation variation (0° < θ < 90°), and the strength of the turbine vane and blade were strongly related to θ, and also depended on the load and model shape. (2) The strength dependence of the turbine vane on the crystal orientation was depended on coordinate plane: there are lower Mises stress in XY plane and maximum Mises stress in near the θ=45° at both YZ and ZX Planes. (3) In the case of a blade, the influence is similar to the vane on blade tip, but the converse holds for the blade root. It is clear that the creep rupture time can be extended, when the <100> crystallographic axes is the Y or X axis of the blade under higher rotation speed.

  9. Crystal structure of fully oxidized human thioredoxin.

    PubMed

    Hwang, Jungwon; Nguyen, Loi T; Jeon, Young Ho; Lee, Chan Yong; Kim, Myung Hee

    2015-11-13

    In addition to the active cysteines located at positions 32 and 35 in humans, mammalian cytosolic thioredoxin (TRX) possesses additional conserved cysteine residues at positions 62, 69, and 73. These non-canonical cysteine residues, that are distinct from prokaryotic TRX and also not found in mammalian mitochondrial TRX, have been implicated in biological functions regulating signal transduction pathways via their post-translational modifications. Here, we describe for the first time the structure of a fully oxidized TRX. The structure shows a non-active Cys62-Cys69 disulfide bond in addition to the active Cys32-Cys35 disulfide. The non-active disulfide switches the ?3-helix of TRX, composed of residues Cys62 to Glu70, to a bulging loop and dramatically changes the environment of the TRX residues involved in the interaction with its reductase and other cellular substrates. This structural modification may have implications for a number of potential functions of TRX including the regulation of redox-dependent signaling pathways. PMID:26453009

  10. Effect of crystal structure on magnetic-field-induced strain in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Sozinov, Alexei; Likhachev, Alexander A.; Lanska, Nataliya; Soderberg, Outi; Ullakko, Kari; Lindroos, Veikko K.

    2003-08-01

    Magnetic shape memory materials are expected to have a high potential in practical applications. Several ferromagnetic materials exhibiting the large magnetic-field-induced strain have been found in recent years. The largest field-induced strain is observed in Ni-Mn-Ga system. The most important experimental results on crystal structure, magnetic anisotropy and twinning stress of martensitic phases in Ni-Mn-Ga having tetragonal five-layered, orthorhombic seven-layered and tetragonal non-layered crystal structures are reported. Depending on the martensite crystal structure Ni-Mn-Ga alloys are able to show a really giant strain response (approximately 6% in tetragonal five-layered or 10% in orthorhombic seven-layered martensitic phase) in a magnetic field less than 1 T. Contrary to these two phases, a detectable field-induced strain is not observed in non-layered tetragonal martensitic phase in Ni-Mn-Ga system. Effect of crystal structure is in a good agreement with calculation of the magnetic-field-induced strain based on the model developed by authors. The effect of composition on appearance of undesirable non-layered tetragonal martensitic phase in Ni-Mn-Ga system is discussed based on the new experimental results.

  11. Electroresponsive Structurally Colored Materials: A Combination of Structural and Electrochromic Effects.

    PubMed

    Kuno, Tomoya; Matsumura, Yoshimasa; Nakabayashi, Koji; Atobe, Mahito

    2016-02-01

    Electroresponsive structurally colored materials composed of ordered arrays of polyaniline@poly(methyl methacrylate) (PANI@PMMA) core-shell nanoparticles have been successfully prepared. The core-shell nanoparticles were synthesized by deposition of PANI shells on the surfaces of the PMMA cores by the oxidative polymerization of anilinium chloride. Ordered arrays were then fabricated by using the fluidic cell method. Because the ordered arrays and the PANI shells generate structural and electrochromic colors, respectively, these core-shell colloidal crystals exhibited colors resulting from the combined effects of these materials. The crystal colors depended greatly on the size of PANI@PMMA particles and could also be varied by the application of a voltage. The electrochromic colors of these arrays were found to be quite different from those exhibited by pure PANI films prepared by electrochemical oxidation. PMID:26756200

  12. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    ERIC Educational Resources Information Center

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.

  13. Crystal structures and morphologies of fractionated milk fat in nanoemulsions.

    PubMed

    Truong, Tuyen; Morgan, Garry P; Bansal, Nidhi; Palmer, Martin; Bhandari, Bhesh

    2015-03-15

    The triacylglycerol (TAG) crystal structures and morphologies of fractionated milk lipids in nanoemulsions were investigated at 4C. Droplet size (0.17 versus 1.20 ?m), lipid composition (stearin versus olein) and cooling rate (1 versus 10C min(-1)) had an influence on the structural properties. Five crystal polymorphs (?, ?'1, ?'2, ?1, and ?2) were formed with either triple and/or double chain length structures in the solid phases of the emulsified systems. X-ray scattering peak intensities were reduced with the nanoemulsion particles. The internal structure of TAG exhibited stacking of individual lamellar layers (3.8-4.2 nm). Various anisometric shapes of fat nanoparticles were formed due to a highly sharp curvature of the nano-size droplets. The shape of olein nanoparticles was more polyhedral compared to the stearin. TAG crystals arranged in a planar-layered organisation at the slower cooling rate. These differences imply that the nanometric confinement of oil droplets modifies the fat crystal habit. PMID:25308656

  14. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    ERIC Educational Resources Information Center

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  15. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  16. Revolutionary opportunities for materials and structures study

    SciTech Connect

    Schweiger, F.A.

    1987-02-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  17. Microstructure of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} cathode material for lithium ion battery: Dependence of crystal structure on calcination and heat-treatment temperature

    SciTech Connect

    Kabi, S.; Ghosh, A.

    2013-09-01

    Graphical abstract: TEM micrograph of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} compound calcined at 900 C. - Highlights: Synthesis condition of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} compound was optimized. Effect of calcination and heat treatment on the structure was investigated. Controlled heat-treatment reduced cation mixing and improved structural ordering. Calcination and heat-treatment condition affected distribution of particle size. - Abstract: Cathode compounds of composition Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} have been prepared by calcination of the precursor materials at 700, 800, 900 and 1000 C for 24 h and by subsequent heat-treatments at 1100 C for 46 h. It has been observed that the structural ordering and particle size increase with increasing calcination temperature. The compounds calcined at 700 C and 800 C are not well-crystallized, but the distribution of particles is uniform. However, the compounds calcined at 900 C and 1000 C are well-crystallized with a non-uniform distribution of particles. The compounds calcined at 900 C are well-crystallized with a well-ordered hexagonal structure. The samples calcined at 800 C and heat treated at 1100 C for 4 h also show same structure. They have smooth surface morphology with uniform distribution of particles in the sub-micron (0.150.40 ?m) range and less amount of cation mixing.

  18. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  19. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  20. Crystal Structure of the Bacillus subtilis Superoxide Dismutase

    SciTech Connect

    Liu, Ping; Ewis, H.E.; Huang, Y.-J; Lu, C.-D.; Tai, P.C.; Weber, Irene T.

    2008-06-01

    The sodA gene of Bacillus subtilis was expressed in Escherichia coli, purified and crystallized. The crystal structure of MnSOD was solved by molecular replacement with four dimers per asymmetric unit and refined to an R factor of 21.1% at 1.8 {angstrom} resolution. The dimer structure is very similar to that of the related enzyme from B. anthracis. Larger structural differences were observed with the human MnSOD, which has one less helix in the helical domain and a longer loop between two -strands and also showed differences in three amino acids at the intersubunit interface in the dimer compared with the two bacterial MnSODs. These structural differences can be exploited in the design of drugs that selectively target the Bacillus enzymes.

  1. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    SciTech Connect

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michal

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. The electronic structure and progressive nature of the structural phase transition were investigated. A weak coupling between structural and electronic phase transitions was identified. Different crystallite morphologies were discussed in relation with growth mechanisms.

  2. Crystal structure of new AsS2 compound

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

    2013-01-01

    AsS2 single crystals have been obtained for the first time from an As2S3 melt at pressures above 6 GPa and temperatures above 800 K in the As2S3 ? AsS + AsS2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

  3. Solvent-controlled assembly of crystal structures: From centrosymmetric structure to noncentrosymmetric structure

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Dang, Lilong; Luo, Feng; Feng, Xuefeng

    2016-02-01

    Reported here are two isomeric organic crystals and two HgI2-based coordination compounds by solvo(hydro)thermal method: [(TPTA)·H2O]n (1, Cc), [(TPTA)·H2O]n (2, Pbca), [Hg1.5I3(TPTA)0.5(CH3CN)·(H2O)0.5]n (3, P21) and [HgI2(TPTA)·H2O]n (4, P21/c) (TPTA = N,N‧,N″-tris(3-pyridyl)trimesic amide). Single crystal X-ray diffraction show that they afford noncentrosymmetric and centrosymmetric structures, respectively. Note that this kind of formations can be precisely controlled by changing the reaction solvent, thus indicating a facile method towards generating noncentrosymmetric structure.

  4. Structural evolution in the crystallization of rapid cooling silver melt

    SciTech Connect

    Tian, Z.A.; Dong, K.J.; Yu, A.B.

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  5. Plastics as structural materials for aircraft

    NASA Technical Reports Server (NTRS)

    Kline, G M

    1937-01-01

    The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.

  6. Crystal structure of interleukin 8: Symbiosis of NMR and crystallography

    SciTech Connect

    Baldwin, E.T.; Weber, I.T.; St. Charles, R.; Xuan, Jiancheng; Matsushima, Kouji; Wlodawer, A. ); Appella, E.; Clore, G.M.; Gronenborn, A.M. ); Yamada, Masaki ); Edwards, B.F.P. )

    1991-01-15

    The crystal structure of a host defense system chemotactic factor, interleukin 8, has been solved by molecular replacement using as a model the solution structure derived from nuclear magnetic resonance experiments. The structure was refined with 2 {angstrom} x-ray data to an R factor of 0.817. A comparison indicates some potential differences between the structure in solution and in the crystalline state. The analysis also predicts that residues 4 through 9 on the amino terminus and the {beta}-bend, which includes His-33, may be important for receptor binding.

  7. Crystal structure of the ?-racemate of methohexital

    PubMed Central

    Gelbrich, Thomas; Griesser, Ulrich J.

    2015-01-01

    Molecules of the title compound, C14H18N2O3 [systematic name: 5-allyl-5-(hex-3-yn-2-yl)-1-methylpyrimidine-2,4,6(1H,3H,5H)-trione in the (RbSh)/(SbRh) racemic form], are connected by mutual NH?O=C hydrogen bonds in which the carbonyl group at the 2-position of the pyrimidinetrione ring is employed. These interactions result in an inversion dimer which displays a central R 2 2(8) ring motif. This dimer is topologically distinct from that of the previously reported (SbRh) form, which is, however, also based on an R 2 2(8) motif. The methyl group at the 1-position of the pyrimidinetrione ring in the title structure is disordered over two sets of sites in a 0.57?(2):0.43?(2) ratio. PMID:25878820

  8. Growth, optical and structural reports on new glycine D-tartaric acid complex crystal

    NASA Astrophysics Data System (ADS)

    Inbaseelan, C. Ranjith Dev; Saravanan, S.

    2013-06-01

    A new organic complex crystal of glycine D-tartaric acid (GDT) has been grown from combination of amino acid glycine and D-tartaric acid by slow evaporation method under ambient temperature. The Solubility, Optical parameters, and structural studies were carried out. The solubility of the material was measured at various temperatures in de-ionized water. The UV-vis spectrum of GDT crystal shows less optical absorption and good transparency above 96% in the entire visible region enabling its use in optical application and the band gap was calculated as 3.08 eV.

  9. Crystal structures of Ziegler-Natta catalyst supports.

    PubMed

    Malizia, Federica; Fait, Anna; Cruciani, Giuseppe

    2011-12-01

    The crystal structures of three MgCl(2)·nEtOH complexes with n=1.5, 2.8, and 3.3 have been fully determined. Such complexes are the fundamental precursors for Ziegler-Natta polymerization catalysts used to produce polyolefins on a multimillion-ton scale worldwide. The ab initio structure solution showed that the structure of MgCl(2)·nEtOH complexes with n=1.5 and 2.8 are based on ribbons of metal-centered octahedra, whereas for n=3.3 this chainlike arrangement breaks into a threadlike structure of isolated octahedra linked by hydrogen bonds. A clear correlation between catalyst performance and the crystal structure of precursors has been found, and reveals the fundamental role of the latter in determining catalyst properties. The direct knowledge of building blocks in the precursor structures will help to develop more accurate models for activated catalysts. These models will not require the arbitrary and oversimplified assumption of locating the catalyst active sites on selected cut surfaces of the α-MgCl(2) crystal lattice. PMID:22052708

  10. Crystal growth, spectral, structural and optical studies of ?-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-01

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (?) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. PMID:24531108

  11. Crystal growth, spectral, structural and optical studies of ?-conjugated stilbazolium crystal: 4-Bromobenzaldehyde-4?-N?-methylstilbazolium tosylate

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, M.; Sudhahar, S.; Bhagavannarayana, G.; Mohan Kumar, R.

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4?-N?-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from 1H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (0 0 1) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (?) and energy band gap (Eg) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser.

  12. Structural analysis of three-dimenstionl photonic crystals in nature

    NASA Astrophysics Data System (ADS)

    Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2012-02-01

    We studied the structural origin of the color and photonic band structure in exoskeletons of Eupholus weevils and dorsal wings of lycaenids butterflies. The internal structures of the insects were systematically investigated using focused ion beam (FIB) milling, and the optical response of the insects was observed by optical microscopy and a microspectrophotometer. A series of sequential SEM images were obtained during the FIB milling process and 3D structures were reconstructed by image processing. The correlation of the structures and the optical responses were studied by theoretical modeling. Diamond-based 3D photonic crystal lattice existed in Eupholus weevils, while gyroid structure was in lycaenids butterflies. The calculated photonic band structures matched the measured optical response. Aluminum oxide and titanium oxide were deposited on the weevils and the butterflies in order to study the effect of refractive index contrast to the photonic band structure and the optical response.

  13. Structural and thermal properties of MnSi single crystal

    NASA Astrophysics Data System (ADS)

    Tite, T.; Shu, G. J.; Chou, F. C.; Chang, Y.-M.

    2010-07-01

    Polarized Raman spectroscopy of MnSi single crystal was carried out to characterize its phonons, crystal structure, and thermal stability. The Raman spectra show correct Raman selection rules and consistence with those of the other transition metal silicide compounds. The MnSi thermal stability and phase transformation is investigated by monitoring the evolution of Raman spectrum as a function of the laser intensity, in which three compositions, MnSi, MnSiO3, and Mn5Si3, can be identified. The involved oxidation reaction is then proposed and verified by performing the thermogravimetric and x-ray diffraction analysis.

  14. Crystal structure of alpha poly-p-xylylene.

    NASA Technical Reports Server (NTRS)

    Kubo, S.; Wunderlich, B.

    1971-01-01

    A crystal structure of alpha poly-p-xylylene is proposed with the help of data of oriented crystals grown during polymerization. The unit cell is monoclinic with the parameters a = 8.57 A, b = 10.62 A, c = 6.54 A (chain axis), and beta = 101.3 deg. Four repeating units per cell lead to a calculated density of 1.185 g/cu cm and a packing density of 0.71. The probable space group is P2 sub 1/m.

  15. Crystal structure, physical properties and superconductivity in AxFe2Se2 single crystals

    NASA Astrophysics Data System (ADS)

    Luo, X. G.; Wang, X. F.; Ying, J. J.; Yan, Y. J.; Li, Z. Y.; Zhang, M.; Wang, A. F.; Cheng, P.; Xiang, Z. J.; Ye, G. J.; Liu, R. H.; Chen, X. H.

    2011-05-01

    We studied the correlation among structure, transport properties and superconductivity in different AxFe2Se2 single crystals (A=K, Rb and Cs). Two sets of (00l) reflections are observed in the x-ray single-crystal diffraction patterns, and they arise from the intrinsic inhomogeneous distribution of the intercalated alkali atoms. The occurrence of superconductivity is closely related to the c-axis lattice constant, and the A content is crucial to superconductivity. The hump observed in resistivity seems to be irrelevant to the superconductivity. There exist many deficiencies within the FeSe layers in AxFe2Se2, although their Tc does not change so much. In this sense, superconductivity is robust to the vacancies within the FeSe layers. Very high resistivity in the normal state should be ascribed to such defects in the conducting FeSe layers. AxFe2Se2 (A=K, Rb and Cs) single crystals show the same susceptibility behavior in the normal state, and no anomaly is observed in susceptibility at the hump temperature in resistivity. The clear jump in specific heat for RbxFe2Se2 and KxFe2Se2 single crystals indicates the good bulk superconductivity of these crystals.

  16. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  17. Computational Models for Crystal Growth of Radiation Detector Materials: Growth of CZT by the EDG Method

    SciTech Connect

    Derby, Jeffrey J.; Gasperino, David

    2008-07-01

    Crystals are the central materials element of most gamma radiation detection systems, yet there remains surprisingly little fundamental understanding about how these crystals grow, how growth conditions affect crystal properties, and, ultimately, how detector performance is affected. Without this understanding, the prospect for significant materials improvement, i.e., growing larger crystals with superior quality and at a lower cost, remains a difficult and expensive exercise involving exhaustive trial-and-error experimentation in the laboratory. Thus, the overall goal of this research is to develop and apply computational modeling to better understand the processes used to grow bulk crystals employed in radiation detectors. Specifically, the work discussed here aims at understanding the growth of cadmium zinc telluride (CZT), a material of long interest to the detector community. We consider the growth of CZT via gradient freeze processes in electrodynamic multi-zone furnaces and show how crucible mounting and design are predicted to affect conditions for crystal growth. (authors)

  18. Influence law of structural characteristics on the surface roughness of a magnetorheological-finished KDP crystal.

    PubMed

    Chen, Shaoshan; Li, Shengyi; Hu, Hao; Li, Qi; Tie, Guipeng

    2014-11-01

    A new nonaqueous and abrasive-free magnetorheological finishing (MRF) method is adopted for processing potassium dihydrogen phosphate (KDP) crystal due to its low hardness, high brittleness, temperature sensitivity, and water solubility. This paper researches the influence of structural characteristics on the surface roughness of MRF-finished KDP crystal. The material removal by dissolution is uniform layer by layer when the polishing parameters are stable. The angle between the direction of the polishing wheel's linear velocity and the initial turning lines will affect the surface roughness. If the direction is perpendicular to the initial turning lines, the polishing can remove the lines. If the direction is parallel to the initial turning lines, the polishing can achieve better surface roughness. The structural characteristic of KDP crystal is related to its internal chemical bonds due to its anisotropy. During the MRF finishing process, surface roughness will be improved if the structural characteristics of the KDP crystal are the same on both sides of the wheel. The processing results of (001) plane crystal show we can get the best surface roughness (RMS of 0.809nm) if the directions of cutting and MRF polishing are along the (110) direction. PMID:25402879

  19. Structures and properties of materials recovered from high shock pressures

    SciTech Connect

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be compared with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.

  20. Anisole at 100 K: the first crystal structure determination.

    PubMed

    Seidel, Rüdiger W; Goddard, Richard

    2015-08-01

    The simplest alkyl aryl ether, anisole (methoxybenzene), C7H8O, is a feedstock chemical and is widely used in the pharmaceutical industry. The structure of anisole at 100 K, as determined by single-crystal X-ray analysis, is reported. A crystal (m.p. 236 K) suitable for X-ray diffraction was obtained from the melt. The title compound crystallizes in the centrosymmetric space group P2(1)/c with two molecules in the asymmetric unit (Z' = 2). Both crystallographically distinct molecules adopt a virtually flat (Cs-symmetric) conformation. The arrangement of the molecules in the solid state appears to be governed by close packing. No face-to-face π-π stacking of the molecules is observed, but rather edge-to-face interactions result in a herringbone packing motif. PMID:26243411

  1. Structure and melting behavior of classical bilayer crystals of dipoles

    SciTech Connect

    Lu Xin; Wu Changqin; Micheli, Andrea; Pupillo, Guido

    2008-07-01

    We study the structure and melting of a classical bilayer system of dipoles in a setup where the dipoles are oriented perpendicular to the planes of the layers and the density of dipoles is the same in each layer. Due to the anisotropic character of the dipole-dipole interactions, we find that the ground-state configuration is given by two hexagonal crystals positioned on top of each other, independent of the interlayer spacing and dipolar density. For large interlayer distances these crystals are independent, while in the opposite limit of small interlayer distances the system behaves as a two-dimensional crystal of paired dipoles. Within the harmonic approximation for the phonon excitations, the melting temperature of these crystalline configurations displays a nonmonotonic dependence on the interlayer distance, which is associated with a re-entrant melting behavior in the form of solid-liquid-solid-liquid transitions at fixed temperature.

  2. Crystal structure and mechanistic investigation of the twister ribozyme.

    PubMed

    Liu, Yijin; Wilson, Timothy J; McPhee, Scott A; Lilley, David M J

    2014-09-01

    We present a crystal structure at 2.3- resolution of the recently described nucleolytic ribozyme twister. The RNA adopts a previously uncharacterized compact fold based on a double-pseudoknot structure, with the active site at its center. Eight highly conserved nucleobases stabilize the core of the ribozyme through the formation of one Watson-Crick and three noncanonical base pairs, and the highly conserved adenine 3' of the scissile phosphate is bound in the major groove of an adjacent pseudoknot. A strongly conserved guanine nucleobase directs its Watson-Crick edge toward the scissile phosphate in the crystal structure, and mechanistic evidence supports a role for this guanine as either a general base or acid in a concerted, general acid-base-catalyzed cleavage reaction. PMID:25038788

  3. GPCR crystal structures: Medicinal chemistry in the pocket.

    PubMed

    Shonberg, Jeremy; Kling, Ralf C; Gmeiner, Peter; Lber, Stefan

    2015-07-15

    Recent breakthroughs in GPCR structural biology have significantly increased our understanding of drug action at these therapeutically relevant receptors, and this will undoubtedly lead to the design of better therapeutics. In recent years, crystal structures of GPCRs from classes A, B, C and F have been solved, unveiling a precise snapshot of ligand-receptor interactions. Furthermore, some receptors have been crystallized in different functional states in complex with antagonists, partial agonists, full agonists, biased agonists and allosteric modulators, providing further insight into the mechanisms of ligand-induced GPCR activation. It is now obvious that there is enormous diversity in the size, shape and position of the ligand binding pockets in GPCRs. In this review, we summarise the current state of solved GPCR structures, with a particular focus on ligand-receptor interactions in the binding pocket, and how this can contribute to the design of GPCR ligands with better affinity, subtype selectivity or efficacy. PMID:25638496

  4. Myelin structures formed by thermotropic smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Peddireddy, Karthik Reddy; Kumar, Pramoda; Thutupalli, Shashi; Herminghaus, Stephan; Bahr, Christian

    2014-03-01

    We report on transient structures, formed by thermotropic smectic-A liquid crystals, resembling the myelin figures of lyotropic lamellar liquid crystals. The thermotropic myelin structures form during the solubilization of a smectic-A droplet in an aqueous phase containing a cationic surfactant at concentrations above the critical micelle concentration. Similar to the lyotropic myelin figures, the thermotropic myelins appear in an optical microscope as flexible tube-like structures growing at the smectic/aqueous interface. Polarizing microscopy and confocal fluorescence microscopy show that the smectic layers are parallel to the tube surface and form a cylindrically bent arrangement around a central line defect in the tube. We study the growth behavior of this new type of myelins and discuss similarities and differences to the classical lyotropic myelin figures.

  5. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    PubMed Central

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-01-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals. PMID:26984298

  6. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction.

    PubMed

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-01-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals. PMID:26984298

  7. Crystal structure of a symbiosis-related lectin from octocoral.

    PubMed

    Kita, Akiko; Jimbo, Mitsuru; Sakai, Ryuichi; Morimoto, Yukio; Miki, Kunio

    2015-09-01

    D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)?1-3GalNAc?1-3Gal?1-4Gal?1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed. Here we report the crystal structures of SLL-2 and its GalNAc complex as the first crystal structures of a lectin involved in the symbiosis between coral and dinoflagellate. N-Linked sugar chains and a galactose derivative binding site common to H-type lectins were observed in each monomer of the hexameric SLL-2 crystal structure. In addition, unique sugar-binding site-like regions were identified at the top and bottom of the hexameric SLL-2 structure. These structural features suggest a possible binding mode between SLL-2 and Forssman antigen-like pentasaccharide. PMID:26022515

  8. Optical Spectroscopy of Nano Materials and Structures

    NASA Astrophysics Data System (ADS)

    Guo, Wenhao

    In this thesis, nanostructures and nanomaterials ranging from 3D to OD will be studied compresively, by using optical methods. Firstly, for 3D and 2D nanomaterials, nanoporous zeolite crystals, such as AFI and AEL are introduced as host materials to accommodate diatomic iodine molecules. Polarized Raman spectroscopy is utilized to identify the two configurations of iodine molecules to stay in the channels of AEL: the lying mode (the bond of the two atoms is parallel to the direction of the channels) and the standing mode (the bond is perpendicular to the direction of the channels). The lying mode and standing mode are switchable and can be well controlled by the amount of water molecules inside the crystal, revealed by both molecule dynamics simulation and experiment observation. With more water molecules inside, iodine molecules choose to stay in the standing mode, while with less water molecules, iodine molecules prefer to lie along the channel. Therefore, the configurations of molecules could be precisely controlled, globally by the surrounding pressure and temperature, and locally by the laser light. Ii is believed that this easy and reversible control of single molecule will be valuable in nanostructured devices, such as molecular sieving or molecular detection. Secondly, for 1D case, the PL spectrum of ZnO nanowire under uniaxial strain is studied. When a ZnO nanowire is bent, besides the lattice constant induced bandgap change on the tensile and compressive sides, there is a piezoelectric field generated along the cross section. This piezoelectric potential, together with the bandgap changes induced by the deformation, will redistribute the electrons excited by incident photons from valence band to conduction band. As a result, the electrons occupying the states at the tensile side will largely outnumbered the ones at the compressive side. Therefore, the PL spectrum we collected at the whole cross section will manifest a redshift, other than the peak broadening which is caused by the bandgap change. The experimental results confirm our speculation. When we make the nanowire straight again, the redshift disappears. It is believed that this piezoelectric effect is very important to the application of nanowires, and it would benefit the actual design and fabrication for the electronic devices for the next generation. Lastly, as for the OD case, the charge transfer mechanism occurring at the interface between graphene and ZnO QDs is investigated. We fabricate a hybrid structure by placing ZnO QDs on top of graphene. With UV light illumination on this device, it will generate electron-hole pairs inside QDs. Before they recombine, the holes will be separated and trapped into the surface states, and discharge the oxygen ions adsorbed on the surface of QDs. The unpaired electrons are then transferred to the graphene layer with a relative long lifetime. After the UV light is switched off, the oxygen molecules will re-adsorb to the QDs surface, capture electrons and recover the graphene's transport properties. Therefore, this hybrid device shows an ultrasensitive response to on-off of the UV laser, with a photoconductive gain as high as 10 7, which can be utilized for practical graphene-based UV sensors and detectors with very high responsivity. This gain can be further enhanced by another 2-3 orders by increasing source-drain voltage, shortening the sample's length, etc. It is believed that optical spectroscopy provides a convenient, efficient and useful method to study the nanomaterials and nanostructures. It is easy to set up, has no harm or degradation to the sample, and could go beyond the diffraction limit. With appropriate design and creative ideas, optical spectroscopy can be further explored, and will boost the development of nanoscience and technology. (Abstract shortened by UMI.).

  9. Structural features of ?2 adrenergic receptor: crystal structures and beyond.

    PubMed

    Bang, Injin; Choi, Hee-Jung

    2015-01-01

    The beta2-adrenergic receptor (?2AR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ?2AR in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ?2AR is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ?2AR. In this review, structural features of inactive and active states of ?2AR, the interaction of ?2AR with heterotrimeric G protein, and the comparison with ?1AR will be discussed. PMID:25537861

  10. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  11. New 2-methylimidazole-dicarboxylic acid molecular crystals: crystal structure and proton conductivity

    NASA Astrophysics Data System (ADS)

    ?awniczak, P.; Pogorzelec-Glaser, K.; Pawlaczyk, Cz; Pietraszko, A.; Szcze?niak, L.

    2009-08-01

    Three new proton conducting molecular crystals, 2-methylimidazole glutarate, 2-methylimidazole suberate and 2-methylimidazole azelate, were obtained and their structure was determined by the x-ray diffraction method. The structure of the crystals was found to be of layer-type. A hydrogen bond network between the heterocycle, glutaric acid and water molecules was apparent in a single layer of 2-methylimidazole glutarate, whereas chains consisting of two heterocyclic molecules linked with hydrogen bonds with dicarboxylic acid were distinguished in a single layer of 2-methylimidazole suberate and azelate crystals. Thermal stability of the crystals was characterized by differential scanning calorimetry and the electrical conductivity was studied by the impedance spectroscopy method. The maximum conductivity of 2-methylimidazole glutarate pellets amounts to 3.3 10-2 S m-1 at 325 K, in the case of 2-methylimidazole suberate pellets the maximum conductivity is 2.4 10-4 S m-1 at 348 K and for 2-methylimidazole azelate pellets the maximum conductivity reaches 6.9 10-4 S m-1 at 353 K.

  12. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    PubMed

    Bacchi, A; Pelagatti, P

    2016-01-14

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes. PMID:26673552

  13. Structural Organization of {pi} Conjugated Highly Luminescent Molecular Material

    SciTech Connect

    Toudic, B.; Limelette, P.; Le Gac, F.; Moreac, A.; Rabiller, P.; Froyer, G.

    2005-11-18

    We report on striking evidence for a room temperature structural phase instability in p-hexaphenyl, inducing a nonplanar conformation of the molecules. Solid state proton NMR and single crystal x-ray diffraction allow the analysis of the organization, the individual dynamics and the involved symmetry breaking. The analysis of Raman spectra above and below room temperature reveals a singular behavior suggesting a modification of the overlap between the electronic wave function induced by the nonplanarity. These results provide a new basis to answer fundamental issues related to molecular and electronic materials and, in particular, luminescent organic devices.

  14. Crystal and molecular structure of N-methylpiperidine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Szafran, M.; Dulewicz, E.; Addlagatta, A.; Jaskólski, M.

    2003-06-01

    A 1:1 complex between N-methylpiperidine betaine and hydrochloric acid, MPBH·Cl, has been characterized by single crystal X-ray analysis, FTIR spectroscopy, and DFT calculations. The crystals are monoclinic, space group P2 1/ n, with a=6.0644(3), b=13.0220(6), c=12.7653(7) Å, β=101.925(5)°. The piperidine ring adopts a chair conformation with the -CH 2COOH group in an axial and the-CH 3 group in an equatorial position. In the crystal, the Cl -anion is engaged in a medium-strong hydrogen bond with the COOH group (O-H⋯Cl -=2.9503(7) Å), in several C-H⋯Cl - contacts and, additionally, in three N +⋯Cl -intermolecular interactions. Four conformations (axial and equatorial, both protonated and unprotonated) of MPBHCl were examined by the B3LYP/6-31G(d,p) method. The calculated structure of MPBH·Cl(ax) is very similar to that in the crystal, except the N(1)-C(8)-C(9)-O(1) and N(1)-C(8)-C(9)-O(2) units, which are planar in the crystal but nonplanar in the isolated molecule. Powder FTIR spectra of MPBH·Cl and its deuterated analogue (MPBD·Cl) were measured and assignments of the observed bands to vibrations of the hydrogen bond and to internal vibrations are proposed.

  15. The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Gillies, D. C.; Szofran, F. R.; Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed.

  16. Graphene as a protein crystal mounting material to reduce background scatter

    PubMed Central

    Wierman, Jennifer L.; Alden, Jonathan S.; Kim, Chae Un; McEuen, Paul L.; Gruner, Sol M.

    2013-01-01

    The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects. PMID:24068843

  17. Synthesis of Two-Photon Materials and Two-Photon Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija

    2001-01-01

    The duration of the grant was interrupted by two major accidents that the PI met with-- an auto accident in Pasadena, CA during her second summer at JPL which took almost eight months for recovery and a second accident during Fall 2000 that left her in crutches for the entire semester. Further, the time released agreed by the University was not given in a timely fashion. The candidate has been given post-grant expire time off. In spite of all these problems, the PI synthesized a number of new two-photon materials and studied the structure-activity correlation to arrive at the best-optimized structure. The PI's design proved to be one of the best in the sense that these materials has a hitherto unreported two-photon absorption cross section. Many materials based on PI's design was later made by the NASA colleague. This is Phase 1. Phase II of this grant is to orate liquid crystalline nature into this potentially useful materials and is currently in progress. Recent observations of nano- and pico-second response time of homeotropically aligned liquid crystals suggest their inherent potentials to act as laser hardening materials, i.e., as protective devices against short laser pulses. The objective of the current project is to exploit this potential by the synthesis of liquid crystals with high optical nonlinearity and optimizing their performance. The PI is trying structural variations to bring in liquid crystalline nature without losing the high two-photon cross section. Both Phase I and Phase II led to many invited presentations and publications in reputed journals like 'Science' and 'Molecular Crystals'. The list of presentations and reprints are enclosed. Another important and satisfying outcome of this grant is the opportunity that this grant offered to the budding undergraduate scientists to get involved in a visible research of international importance. All the students had a chance to learn a lot during research, had the opportunity to present their work at the National level conferences. They continue to retain their interest in their research and went on to accomplish further laurels.

  18. Crystal structure of inactive form of Rab3B

    SciTech Connect

    Zhang, Wei; Shen, Yang; Jiao, Ronghong; Liu, Yanli; Deng, Lingfu; Qi, Chao

    2012-06-28

    Rab proteins are the largest family of ras-related GTPases in eukaryotic cells. They act as directional molecular switches at membrane trafficking, including vesicle budding, cargo sorting, transport, tethering, and fusion. Here, we generated and crystallized the Rab3B:GDP complex. The structure of the complex was solved to 1.9 {angstrom} resolution and the structural base comparison with other Rab3 members provides a structural basis for the GDP/GTP switch in controlling the activity of small GTPase. The comparison of charge distribution among the members of Rab3 also indicates their different roles in vesicular trafficking.

  19. The crystal structure of GROEL at 2.8 {angstrom}.

    SciTech Connect

    Braig, K.; Otwinowski, Z.; Hegde, R.; Boisvert, D.; Joachimiak, A.; Horwich, A. L.; Sigler, P. B.; Center for Mechanistic Biology and Biotechnology; Yale Univ. School of Medicine; Yale Univ. School of Medicine

    1995-01-01

    The crystal structure of Escherichia coli GroEL shows a porous cylinder of 14 subunits made of two nearly 7-fold rotationally symmetrical rings stacked back-to-back with dyad symmetry. The subunits consist of three domains: a large equatorial domain that forms the foundation of the assembly at its waist and holds the rings together; a large loosely structured apical domain that forms the ends of the cylinder; and a small slender intermediate domain that connects the two, creating side windows. The three-dimensional structure places most of the mutationally defined functional sites on the channel walls and its outward invaginations, and at the ends of the cylinder.

  20. Crystal structure of four-stranded Oxytricha telomeric DNA

    NASA Technical Reports Server (NTRS)

    Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

    1992-01-01

    The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

  1. The Rapid Crystallization Strategy for Structure-Based Inhibitor Design

    NASA Astrophysics Data System (ADS)

    Bergfors, Terese

    RAPID (Rapid Approaches to Pathogen Inhibitor Discovery) is an integrated center for structural biology, computational chemistry, and medicinal chemistry at Uppsala University, Sweden. The main target of the structural biology section is Mycobacterium tuberculosis. Key concepts in the crystallization strategy include minimal screening and buffer optimization. Examples are presented showing how these concepts have been successful in RAPID projects. Three screening methods are used: vapor-diffusion, micro-batch, and microfluidics. Our experiences may be relevant for other small, academic laboratories involved in structure-based inhibitor design.

  2. Predicting different losses of photonic crystal fibers in material and hetero-core domain

    NASA Astrophysics Data System (ADS)

    Paul, Dimpi; Biswas, Rajib; Bhattacharyya, N. S.

    2015-10-01

    In order to develop the effective transmission in photonic crystal fiber (PCF), the (realizable fiber i.e.,) losses arising from bending as well as splicing are very vital issues. We report here macrobending loss of PCFs in different material composites. Further, we make comprehensive numerical analysis related to splice loss issues arising from joining PCF with PCF and single mode fiber as well. We additionally investigate dependence of all these losses with respect to structural parameters of PCF. Hetero core systems are found to yield lower losses as compared to their identical counterpart. The numerical estimates reported here will provide a base for engineering effective communication guides in the context of material and hybrid core domain.

  3. Computational chemistry modeling and design of photoswitchable alignment materials for optically addressable liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Marshall, K. L.; Sekera, E. R.; Xiao, K.

    2015-09-01

    Photoalignment technology based on optically switchable "command surfaces" has been receiving increasing interest for liquid crystal optics and photonics device applications. Azobenzene compounds in the form of low-molar-mass, watersoluble salts deposited either directly on the substrate surface or after dispersion in a polymer binder have been almost exclusively employed for these applications, and ongoing research in the area follows a largely empirical materials design and development approach. Recent computational chemistry advances now afford unprecedented opportunities to develop predictive capabilities that will lead to new photoswitchable alignment layer materials with low switching energies, enhanced bistability, write/erase fatigue resistance, and high laser-damage thresholds. In the work described here, computational methods based on the density functional theory and time-dependent density functional theory were employed to study the impact of molecular structure on optical switching properties in photoswitchable methacrylate and acrylamide polymers functionalized with azobenzene and spiropyran pendants.

  4. Crystal structure optimisation using an auxiliary equation of state.

    PubMed

    Jackson, Adam J; Skelton, Jonathan M; Hendon, Christopher H; Butler, Keith T; Walsh, Aron

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1. PMID:26567640

  5. Structural evolution in the crystallization of rapid cooling silver melt

    NASA Astrophysics Data System (ADS)

    Tian, Z. A.; Dong, K. J.; Yu, A. B.

    2015-03-01

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald's rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid-solid phase transition.

  6. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  7. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Haschke, Jan; Amkreutz, Daniel; Rech, Bernd

    2016-04-01

    Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.

  8. EVOEvolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Bahmann, Silvia; Kortus, Jens

    2013-06-01

    We present EVOan evolution strategy designed for crystal structure search and prediction. The concept and main features of biological evolution such as creation of diversity and survival of the fittest have been transferred to crystal structure prediction. EVO successfully demonstrates its applicability to find crystal structures of the elements of the 3rd main group with their different spacegroups. For this we used the number of atoms in the conventional cell and multiples of it. Running EVO with different numbers of carbon atoms per unit cell yields graphite as the lowest energy structure as well as a diamond-like structure, both in one run. Our implementation also supports the search for 2D structures and was able to find a boron sheet with structural features so far not considered in literature. Program summaryProgram title: EVO Catalogue identifier: AEOZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 23488 No. of bytes in distributed program, including test data, etc.: 1830122 Distribution format: tar.gz Programming language: Python. Computer: No limitations known. Operating system: Linux. RAM: Negligible compared to the requirements of the electronic structure programs used Classification: 7.8. External routines: Quantum ESPRESSO (http://www.quantum-espresso.org/), GULP (https://projects.ivec.org/gulp/) Nature of problem: Crystal structure search is a global optimisation problem in 3N+3 dimensions where N is the number of atoms in the unit cell. The high dimensional search space is accompanied by an unknown energy landscape. Solution method: Evolutionary algorithms transfer the main features of biological evolution to use them in global searches. The combination of the "survival of the fittest" (deterministic) and the randomised choice of the parents and normally distributed mutation steps (non-deterministic) provides a thorough search. Restrictions: The algorithm is in principle only restricted by a huge search space and simultaneously increasing calculation time (memory, etc.), which is not a problem for our piece of code but for the used electronic structure programs. Running time: The simplest provided case runs serially and takes 30 minutes to one hour. All other calculations run for significantly longer time depending on the parameters like the number and sort of atoms and the electronic structure program in use as well as the level of parallelism included.

  9. Dynamic and structural control utilizing smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogers, C. A.; Robertshaw, H. H.

    1989-01-01

    An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.

  10. Crystal structure of bis(pyridine betaine) hydrochloride monohydrate

    NASA Astrophysics Data System (ADS)

    Xiao-Ming, Chen; Mak, Thomas C. W.

    1990-04-01

    Bis(pyridine betaine) hydrochloride monohydrate, 2C 5H 5NCH 2COOHClH 2O, crystallizes in space group Pnna (No. 52), with a=15.623(3), b=19.707(3), c=5.069(1) , and Z=4. The structure has been refined to RF=0.067 for 1207 observed (| F0|>6?| F0|) Mo K? data. The carboxylate groups of a pair of pyridine betaine molecules are bridged by a proton to form a centrosymmetric dimer featuring a very strong hydrogen bond of length 2.436(6) . The crystal structure comprises a packing of such [(C 5H 5NCH 2COO) 2H] + moieties and hydrogen-bonded (Cl -{dH 2O} ?) zigzag chains running parallel to the c axis.

  11. Crystal structure of tris­(hydroxyl­ammonium) orthophosphate

    PubMed Central

    Leinemann, Malte; Jess, Inke; Boeckmann, Jan; Näther, Christian

    2015-01-01

    The crystal structure of the title salt, ([H3NOH]+)3·[PO4]3−, consists of discrete hydroxyl­ammonium cations and ortho­phos­phate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phospho­rus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H⋯O, two N—H⋯O hydrogen bonds of medium strength and two weaker bifurcated N—H⋯O inter­actions are observed. PMID:26594525

  12. Crystal structure of naturally occurring mercury(II) amidonitrate

    NASA Astrophysics Data System (ADS)

    Randall, Charles J.; Peacor, Donald R.; Rouse, Roland C.; Dunn, Pete J.

    1982-05-01

    A naturally-occurring mercuroammonium compound from Pitkin County, Colorado, is shown to be the natural analog of synthetic HgNH 2NO 3. The crystals are isometric, P4 132 or P4 332, with a = 10.254(1) and twelve formula weights per cell. Using 437 symmetry-independent reflections, the crystal structure was partially determined and refined to a residual of 0.090. The positions of the Hg atoms and the N and O atoms of the nitrate group were determined, but the amide ion could not be located, probably due to positional disorder. The structure contains mercury atoms arranged in equilateral triangles 3.421(1) on a side. These triangles are linked through shared vertices into helical chains wound around the fourfold screw axes. Similar triangular units occur in other inorganic Hg(II) compounds. The distortion of the nitrate ion from trigonal planar symmetry is also discussed.

  13. Crystal structures and properties of nylon polymers from theory

    SciTech Connect

    Dasgupta, S.; Goddard, W.A. III; Hammond, W.B.

    1996-12-11

    A complete force field (MSXX) for simulation of all nylon polymers is derived from ab initio quantum calculations. Special emphasis is given to the accuracy of the hydrogen bond potential for the amide unit and the torsional potential between the peptide and alkane fragments. The MSXX force field was used to predict the structures, moduli, and detailed geometries of all nine nylons for which there are experimental crystal data plus one other. For nylon-(2n) with 2n = 6, the {alpha} crystal structure (with all-trans CH{sub 2} chains nearly coplanar with the hydrogen bonding plane) is more stable, while for 2n > 6, {gamma} (with the alkane plane twisted by 70{degree}) is more stable. This change results from the increased importance of methylene packing interactions over H bonds for larger 2n. We find the highest Young`s modulus for nylon-7. 51 refs., 6 figs., 7 tabs.

  14. Crystal structure of tris-(hydroxyl-ammonium) orthophosphate.

    PubMed

    Leinemann, Malte; Jess, Inke; Boeckmann, Jan; Nther, Christian

    2015-11-01

    The crystal structure of the title salt, ([H3NOH](+))3[PO4](3-), consists of discrete hydroxyl-ammonium cations and ortho-phos-phate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phospho-rus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by inter-molecular O-H?O and N-H?O hydrogen bonds into a three-dimensional network. Altogether, one very strong O-H?O, two N-H?O hydrogen bonds of medium strength and two weaker bifurcated N-H?O inter-actions are observed. PMID:26594525

  15. Coloumb driven phase transitions in a single crystal quasi-1-D electronic material

    SciTech Connect

    Swanson, B.I.; Strouse, G.F.

    1997-12-31

    The MX materials [Pt(en)212][Pt(en)2](CLO4)4, where en is per-deuterated ethylenediamine, represents a new structural type for the MX family. The material, which crystallizes in the C2/m monoclinic space group, forms sheets of ordered and disordered 1-D chains. The material has two observable phase transitions at 160K and 120K, which results in a 3-D ordered material in an acentric C2 space group at 4K. The phase transitions are driven by changes in the coloumbic and hydrogen bonding interactions in the disordered sheet, resulting in re-organization of the ordered sheet. By comparison of the crystallographic, vibrational, and acoustic data, the phase transitions can be structural interpreted as arising from a discommensurate to commensurate phase transition at 120K, and an ordering transition resulting in the loss of the mirror plane at 160K. A theoretical model supporting the coloumbic model for the phase transitions is proposed.

  16. Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

    SciTech Connect

    Wang, Wenyi; Klots, Andrey; Bolotin, Kirill I.; Yang, Yuanmu; Li, Wei; Valentine, Jason; Kravchenko, Ivan I.; Briggs, Dayrl P.

    2015-05-04

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS{sub 2} and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.

  17. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    SciTech Connect

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  18. Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Geernaert, Thomas; Sulejmani, Sanne; Sonnenfeld, Camille; Chah, Karima; Luyckx, Geert; Lammens, Nicolas; Voet, Eli; Becker, Martin; Thienpont, Hugo; Berghmans, Francis

    2014-09-01

    The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 ?strain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures.

  19. Structured materials for catalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have been synthesized and characterized to establish the effects of nanoparticle size on catalytic activity in methanol decomposition. The physicochemical properties of the synthesized palladium-nickel nanoparticles will be discussed, as a function of the synthesis parameters. The optical characteristics of the Ag and Pd nanoparticles will be determined, with a view toward tuning the response of the nanoparticles for incorporation in sensors. Analysis of the monometallic palladium particles revealed a dependence of syngas production on nanoparticle size. The peak and steady state TOFs increased roughly linearly with the average nanoparticle diameter. The amount of coke deposited on the particle surfaces was found to be independent on the size of the nanoparticles. Shape control of the nickel-palladium nanoparticles with a high selectivity for (100) and (110) facets (? 80%) has been demonstrated. The resulting alloy nanoparticles were found to have homogeneous composition throughout their volume and maintain FCC crystal structure. Substitution of Ni atoms in the Pd lattice at a 1:3 molar ratio was found to induce lattice strains of ~1%. The Ag nanocubes synthesized exhibited behavior very similar to literature values, when taken on their own, exhibiting a pair of distinct absorbance peaks at 350 nm and 455 nm. In physical mixtures with the Pd nanoparticles synthesized, their behavior showed that the peak position of the Ag nanocubes' absorbance in UV-Vis could be tuned based on the relative proportions of the Ag and Pd nanoparticles present in the suspension analysed. The Ag polyhedra synthesized for comparison showed a broad doublet peak throughout the majority of the visible range before testing as a component in a physical mixture with the Pd nanoparticles. The addition of Pd nanoparticles to form a physical mixture resulted in some damping of the doublet peak observed as well as a corresponding shift in the baseline absorbance proportional to the amount of Pd added to the mixture.

  20. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone

    SciTech Connect

    Boal, Amie K.; Rosenzweig, Amy C.

    2010-08-16

    Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.