Science.gov

Sample records for materials program

  1. Programs, Materials and Techniques

    ERIC Educational Resources Information Center

    Bannatyne, Alex, Ed.

    1973-01-01

    Favorably reviewed are a prescriptive program model, a handbook containing educational therapy materials, a collection of large type books, and a psychophysical development program to be used with learning disabled children. (MC)

  2. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  3. Recology: Material Conservation Program Fieldbook.

    ERIC Educational Resources Information Center

    Stanwood, Bill

    Recology is the combination of teaching and learning through the interaction of conservation (waste management and recycling) and ecology. This fieldbook is designed to provide an overview of the development of a Recology environmental education program. The program facilitates infusion of material conservation education into existing curriculum.…

  4. NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1998-01-01

    Materials Science research programs are funded by NASA through the Microgravity Research Division. Such programs are normally designated as flight definition or ground based and can be awarded initially for up to four years. Selection is through a peer review process in response to a biennial NASA Research Announcement (NRA). The next announcement is due in November 1998 with proposals due in March 1999. Topics of special interest to NASA are described in the guidelines for proposal writing within the NRA. NASA's interest in materials is wide and covers a range which includes metals and alloys, ceramics, glasses, polymers, non-linear optics, aerogels and nanostructures. With increasing interest in the Human Exploration and Development of Space (HEDS) program, the materials research funded will not be exclusively devoted to processes dependent on microgravity, but will also support materials of strategic interest in meeting NASA's long range plans of interplanetary travel.

  5. NASA's Microgravity Materials Science Program

    NASA Astrophysics Data System (ADS)

    Gillies, Donald C.

    1997-07-01

    The Microgravity Research Division of NASA funds materials science research through biannual research programs known as NASA Research Announcements (NRA). Selection is via external peer review with proposals being categorized for ground based research or flight definition status. Topics of special interest to NASA are described in the NRAs and guidelines for successful proposals are outlined. The procedure for progressing from selection to a manifested flight experiment will involve further reviews of the science and also of the engineering needed to complete the experiment successfully. The topics of interest to NASA within the NRAs cover a comprehensive range of subjects, but with the common denominator that the proposed work must necessitate access to the microgravity environment for successful completion. Understanding of the fundamental nature of microstructure and its effects on properties is a major part of the program because it applies to almost all fields of materials science. Other important aspects of the program include non-linear optical materials, glasses and ceramics, metal and alloys and the need to develop materials science specifically to support NASA's Human Exploration and Development of Space (HEDS) enterprise. The transition to the International Space Station (ISS) represents the next stage of the Materials Science program.

  6. Conductive spacecraft materials development program

    NASA Technical Reports Server (NTRS)

    Lehn, W. L.

    1977-01-01

    The objectives of this program are to provide design criteria, techniques, materials, and test methods to ensure control of absolute and differential charging of spacecraft surfaces. The control of absolute and differential charging of spacecraft cannot be effected without the development of new and improved or modified materials or techniques that will provide electrical continuity over the surface of the spacecraft. The materials' photoemission, secondary emission, thermooptical, physical, and electrical properties in the space vacuum environment both in the presence and absence of electrical stress and ultraviolet, electron, and particulate radiation, are important to the achievement of charge control. The materials must be stable or have predictable response to exposure to the space environment for long periods of time. The materials of interest include conductive polymers, paints, transparent films and coatings as well as fabric coating interweaves.

  7. DEVELOPING PROGRAMMED INSTRUCTIONAL MATERIALS, A HANDBOOK FOR PROGRAM WRITERS.

    ERIC Educational Resources Information Center

    ESPICH, JAMES E.; WILLIAMS, BILL

    THEORIES BEHIND PROGRAMED INSTRUCTION, STEPS REQUIRED FOR PROGRAMING, AND THE MAJOR PROGRAMING TECHNIQUES OF EDITING, TESTING, AND ANALYSIS ARE DISCUSSED. TOPICS INCLUDE--HOW TO ANALYZE MATERIAL TO BE PROGRAMED, HOW TO DIAGRAM MATERIAL, AND HOW TO USE VARIOUS CONSTRUCTION TECHNIQUES--DISCRIMINATION, CONSTRUCTED RESPONSE, BRANCHING, BABOON…

  8. Hazardous Materials Management Program Report- 2005.

    SciTech Connect

    Brynildson, Mark E.

    2005-06-01

    The annual program report provides detailed information about all aspects of the SNL/CA Hazardous Materials Management Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2005 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  9. Material Management Program Can Attract Local Industry

    ERIC Educational Resources Information Center

    Magad, Eugene L.

    1978-01-01

    Describes the material management certificate and the associate in applied science degree programs at William Rainey Harper College, Palatine, Illinois. Material management functions include purchasing, production control, inventory control, material handling, warehousing, packaging, computer applications, and transportation. (MF)

  10. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  11. Mast material test program (MAMATEP)

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The Mast Material Test Program (MAMATEP) at NASA Lewis is discussed. Objectives include verifying the need for, and evaluating the performance of, various protection techniques for the Solar Array Assembly mast of the Space Station Photovoltaic Power Module. Mast material samples were evaluated in terms of mass and bending modulus, measured before and after environmental exposure. Test environments included atomic oxygen exposure (RF plasma asher), thermal cycling, and mechanical flexing. Protective coatings included CV-1144 silicon, a Ni/Au/InSn eutectic, and an open weave, Al braid. Results indicate that unprotected samples degrade in an atomic oxygen environment at a steady rate. Open weave, Al braid offers little protection for the fiberglass-epoxy sample in an asher environment. Ni/Au/InSn eutectic offers excellent protection in an asher environment prior to thermal cycling and mechanical flexing. Long duration asher results from unprotected samples indicate that, even though the fiberglass-epoxy degrades, a protection technique may not be necessary to ensure structural integrity. However, a protection technique may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  12. Catalog of Programmed Instructional Material, Supplement.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Personnel and Training Branch.

    A supplement to the NavPers 93826 Catalog of Programed Instructional Material provides a full description of instructional material programed within the Navy since April, 1967. Summaries are given of all courses, including information on the specific learners for whom the course's instruction is intended, the type of program, the projected time…

  13. Toward a space materials systems program

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1981-01-01

    A program implementation model is presented which covers the early stages of space material processing and manufacturing. The model includes descriptions of major program elements, development and experiment requirements in space materials processing and manufacturing, and an integration of the model into NASA's long range plans as well as its evolution from present Materials Processing in Space plans.

  14. The Current Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    A description will be made of the current materials science program within the microgravity research division. This presentation will be made at a plenary session of the biennial materials Science Conference.

  15. Materials Characterization Center program plan

    SciTech Connect

    Nelson, R.D.; Ross, W.A.; Hill, O.F.; Mendel, J.E.; Merz, M.D.; Turcotte, R.P.

    1980-03-01

    The Materials Characterization Center (MCC) has been established at Pacific Northwest Laboratory as part of the Materials Characterization Organization for providing an authoritative, referenceable basis for establishing nuclear waste material properties and test methods. The MCC will provide a data base that will include information on the components of the waste emplacement package - the spent fuel or processed waste form and the engineered barriers - and their interaction with each other and as affected by the environment. The MCC will plan materials testing, develop and document procedures, collect and analyze existing materials data, and conduct tests as necessary.

  16. FOREIGN LANGUAGE PROGRAMMED MATERIALS--1966.

    ERIC Educational Resources Information Center

    FIKS, ALFRED I.

    A LIST OF 26 FOREIGN LANGUAGE PROGRAMS IS PRESENTED. THE LIST INCLUDES SUCH INFORMATION AS PRICE, COMPLETION TIME, STUDENT LEVEL AND FORMAT OF EACH PROGRAM AND AN "ATOMY" INDEX. "ATOMY" IS DEFINED AS THE NUMBER OF FRAMES PER HOUR AND THE INDEX IS USED TO PROVIDE SOME INDICATION OF THE DEGREE OF FRACTIONATION OR ATOMIZATION OF THE COURSE CONTENT.…

  17. Advanced Industrial Materials (AIM) fellowship program

    SciTech Connect

    McCleary, D.D.

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  18. Alternate nozzle ablative materials program

    NASA Technical Reports Server (NTRS)

    Kimmel, N. A.

    1984-01-01

    Four subscale solid rocket motor tests were conducted successfully to evaluate alternate nozzle liner, insulation, and exit cone structural overwrap components for possible application to the Space Shuttle Solid Rocket Motor (SRM) nozzle asasembly. The 10,000 lb propellant motor tests were simulated, as close as practical, the configuration and operational environment of the full scale SRM. Fifteen PAN based and three pitch based materials had no filler in the phenolic resin, four PAN based materials had carbon microballoons in the resin, and the rest of the materials had carbon powder in the resin. Three nozzle insulation materials were evaluated; an aluminum oxide silicon oxide ceramic fiber mat phenolic material with no resin filler and two E-glass fiber mat phenolic materials with no resin filler. It was concluded by MTI/WD (the fabricator and evaluator of the test nozzles) and NASA-MSFC that it was possible to design an alternate material full scale SRM nozzle assembly, which could provide an estimated 360 lb increased payload capability for Space Shuttle launches over that obtainable with the current qualified SRM design.

  19. Materials sciences programs, Fiscal year 1997

    SciTech Connect

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  20. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  1. Bibliography of Ethnic Heritage Studies Program Materials.

    ERIC Educational Resources Information Center

    Kotler, Greta; And Others

    The Ethnic Heritage Studies Program was designed to teach students about the nature of their heritage and to study the contributions of the cultural heritage of other ethnic groups. This is a bibliography of materials developed by projects which received Federal Ethnic Heritage Studies Program grants during fiscal year 1974-75 and 1975-76.…

  2. PROGRAMMED LEARNING MATERIALS FOR THE BLIND.

    ERIC Educational Resources Information Center

    MALLINSON, GEORGE G.

    THIS STUDY WAS DESIGNED AS A PRELIMINARY INVESTIGATION TO DETERMINE THE FEASIBILITY OF USING PROGRAMED LEARNING MATERIALS WITH BLIND STUDENTS. FOUR TYPES OF STIMULUS-REPONSE MODES FOR PROGRAMED INSTRUCTION WERE DEVELOPED--AUDIO STIMULUS-AUDIO RESPONSE, AUDIO STIMULUS-BRAILLE RESPONSE, BRAILLE STIMULUS-AUDIO RESPONSE, BRAILLE STIMULUS-BRAILLE…

  3. Lightweight materials for transportation: Program plan

    SciTech Connect

    Not Available

    1993-07-01

    This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

  4. Materials processing in space program support

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James M.

    1987-01-01

    Activities in support of NASA's Materials Processing in Space (MPS) program are reported. The overall task of the MPS project support contract was to provide the organization and administration of colloquiums, science reviews, workshops, technical meetings, bibliographic services, and visiting scientist programs. The research objectives and accomplishments of the University Space Research Association visiting scientist team are also summarized.

  5. Fossil Energy Materials Program conference proceedings

    SciTech Connect

    Judkins, R.R.

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  6. Curriculum Materials in the Hawaii English Program.

    ERIC Educational Resources Information Center

    Cooper, Nancy M.

    Contrary to the usual design of curriculum materials, those of the Hawaii English Program (H.E.P.) are not handbooks for teachers. The H.E.P. materials--literature, in this case--consist of booklets for students who thus bear the responsibility for setting their own pace according to their interests, needs, and abilities. The total classroom…

  7. Materials sciences programs, fiscal year 1994

    SciTech Connect

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  8. Nuclear Materials Management Program at the NNSS

    SciTech Connect

    ,

    2012-06-08

    The Nevada National Security Site (NNSS), formerly the Nevada Test Site, was established in 1951 mainly for weapons testing; because special nuclear materials (SNM) were expended during the tests, a nuclear material management program was not required. That changed in December 2004 with the receipt of Category I SNM for purposes other than weapons testing. At that time, Material Control and Accountability and Nuclear Material Management were a joint laboratory (Los Alamos and Lawrence Livermore) effort with nuclear material management being performed at the laboratories. That changed in March 2006 when the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office appointed sole responsibility to the Management and Operations (M&O) contractor, National Security Technologies, LLC (NSTec). Since 2006 the basic nuclear material management work was completed by a combination of M&O employees and subcontractors, but a true Nuclear Material Management (NMM) Program was not determined to be necessary until recently. With expanding missions and more nuclear material (NM) coming to the NNSS, it became imperative to have an organization to manage these materials; therefore, an NMM Manager was officially appointed by NSTec in 2012. In June 2011 a Gap Analysis and white paper was completed by a subcontractor; this presentation will include highlights from those documents along with our plans to resolve the “gaps” and stand up a functional and compliant NMM Program at the NNSS.

  9. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  10. Long-Term Materials Test Program: materials exposure test plan

    SciTech Connect

    1981-12-01

    The Long Term Materials Test Program is designed to identify promising corrosion resistant materials for coal-fired gas turbine applications. Resistance of materials to long term accelerated corrosion will be determined through realistic PFB environmental exposure of candidate turbine materials for up to 14,000 hours. Selected materials also will be evaluated for their ability to withstand the combined erosive and corrosive aspects of the PFB effluent. A pressurized fluidized bed combustor facility has been constructed at the General Electric Coal Utilization Research Laboratory at Malta, New York. The 12-inch diameter combustor will burn high sulfur coal with moderate-to-high chlorine and alkali levels and utilize dolomite as the sulfur sorbent. Hot gas cleanup is achieved using three stages of cyclone separators. Downstream of the cylone separators, a low velocity test section (approx. 30 ft/s) capable of housing 180 pin specimens 1/4'' diameter has been installed to assess the corrosion resistance of the various materials at three different temperatures ranging from 1300 to 1600/sup 0/F. Following the low velocity test section is a high velocity test section consisting of four cascades of airfoil shaped specimens, six specimens per cascade. This high velocity test section is being used to evaluate the combined effects of erosion and corrosion on the degradation of gas turbine materials at gas velocities of 800 to 1400 ft/s. This report summarizes the materials selection and materials exposure test plan for the Long Term Materials Test.

  11. Materials sciences programs fiscal year 1996

    SciTech Connect

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  12. Materials sciences programs: Fiscal year 1995

    SciTech Connect

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  13. LANL material control indicator analysis program

    SciTech Connect

    Roybal, G. S.

    2001-01-01

    The possibility of SNM diversion/theft is a major concern to organizations charged with control of Special Nuclear Material (SNM). Several methods have been put in place to deter and or detect losses of SNM. These include inventory, material control physical barriers and the use of material control indicators (MCI). This paper will discuss the multi-tier LANL review mechanism for detecting and isolating missing SNM by the use of Material Control Indicators. Los Alamos MCI include daily analysis and review of item adjustments, weekly review of item adjustments, monthly analysis and review of inventory differences by Process Status and by Material Balance Areas, and quarterly analysis and review of Propagation of Variance. This paper, by providing an introduction to a site-specific application of MCI's, assists safeguards professionals in understanding the importance of an MCI Program in detecting accumulation for subsequent diversion/theft of special nuclear material.

  14. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C. (Editor)

    1978-01-01

    A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.

  15. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Naumann, R. J. (Editor)

    1980-01-01

    The history, strategy, and overall goal of NASA's Office of Space and Terrestrial Applications program for materials processing in space are described as well as the organizational structures and personnel involved. An overview of each research task is presented and recent publications are listed.

  16. Environmental Education Programs and Materials. PREP-33.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; And Others

    Information concerning programs and materials for environmental education is provided. In the report, environmental education is defined as: ". . . the educational process dealing with man's relationship with his natural and manmade surroundings, and including the relation of population, pollution, resource allocation and depletion, conservation,…

  17. Materials Sciences programs, Fiscal year 1993

    SciTech Connect

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  18. Navy Shipboard Hazardous Material Minimization Program

    SciTech Connect

    Bieberich, M.J.; Robinson, P.; Chastain, B.

    1994-12-31

    The use of hazardous (and potentially hazardous) materials in shipboard cleaning applications has proliferated as new systems and equipments have entered the fleet to reside alongside existing equipments. With the growing environmental awareness (and additional, more restrictive regulations) at all levels/echelon commands of the DoD, the Navy has initiated a proactive program to undertake the minimization/elimination of these hazardous materials in order to eliminate HMs at the source. This paper will focus on the current Shipboard Hazardous Materials Minimization Program initiatives including the identification of authorized HM currently used onboard, identification of potential substitute materials for HM replacement, identification of new cleaning technologies and processes/procedures, and identification of technical documents which will require revision to eliminate the procurement of HMs into the federal supply system. Also discussed will be the anticipated path required to implement the changes into the fleet and automated decision processes (substitution algorithm) currently employed. The paper will also present the most recent technologies identified for approval or additional testing and analysis including: supercritical CO{sub 2} cleaning, high pressure blasting (H{sub 2}O + baking soda), aqueous and semi-aqueous cleaning materials and processes, solvent replacements and dedicated parts washing systems with internal filtering capabilities, automated software for solvent/cleaning process substitute selection. Along with these technological advances, data availability (from on-line databases and CDROM Database libraries) will be identified and discussed.

  19. Coal Ash Corrosion Resistant Materials Testing Program

    SciTech Connect

    McDonald, D K

    2003-04-22

    The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles' Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

  20. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.

  1. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  2. Thin film phase transition materials development program

    NASA Astrophysics Data System (ADS)

    Case, W. E.

    1985-04-01

    A number of application concepts have emerged based on the idea that a phase transition thin film such as vanadium dioxide provides a high resolution, two-dimensional format for switching, recording, and processing optical signals. These applications range from high density optical disk recording systems and optical data processing to laser protection devices, infrared FLIRS and seekers, laser radar systems and IR scene simulators. All application candidates have a potential for providing either a totally new capability, an improved performance, a lower cost, or combinations of the three. Probably of greatest significance is the emergence of agile sensor concepts arising out of some of the film's special properties. These are represented by the above FLIRs, seekers and laser radar systems. A three year research program has been completed to advance the state-of-the-art in the preparation and characterization of selected thin film phase transition materials. The objectives of the program were: (1) to expand the data base and improve operational characteristics of Vought prepared vanadium dioxide thin films, (2) to evolve process chemistry and subsequently characterize several new program materials, including rare-earth chalcogenides, organic semiconductor charge complexes, alloys of transition metal oxides, and metal-insulator cermets, and (3) to spin-off new applications and concepts.

  3. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  4. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  5. [Alcohol and Drug Education Program Materials.

    ERIC Educational Resources Information Center

    Massachusetts Univ., Amherst.

    This group of documents describe the University of Massachusetts/Amherst's (UMA) drug and alcohol prevention program. The Alcohol Education Program sheet describes the program's goal and objectives, lists educational programs, media efforts, community development projects and discusses assistance and referral policy. Another document states the…

  6. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    NASA Astrophysics Data System (ADS)

    Abe, K.; Kohyama, A.; Namba, C.; Wiffen, F. W.; Jones, R. H.

    1998-10-01

    A Japan-USA Program of irradiation experiments for fusion research, "JUPITER", has been established as a 6 year program from 1995 to 2000. The goal is to study "the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment". This is phase-three of the collaborative program, which follows RTNS-II Program (Phase-1: 1982-1986) and FFTF/MOTA Program (Phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA Program, JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects.

  7. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect

    Stooksbury, F.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  8. Audiovisual Materials and Programming for Children: A Long Tradition.

    ERIC Educational Resources Information Center

    Doll, Carol A.

    1992-01-01

    Explores the use of audiovisual materials in children's programing at the Seattle Public Library prior to 1920. Kinds of materials discussed include pictures, reflectoscopes, films, sound recordings, lantern slides, and stereographs. (17 references) (MES)

  9. Chemical Fingerprinting Program for RSRM Critical Materials

    NASA Technical Reports Server (NTRS)

    McClennen, William H.; Fife, Dennis J.; Killpack, Michael O.; Golde, Rick P.; Cash, Steve (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the chemical fingerprinting of RSRM (Reusable Sold Rocket Motor) components. A chemical fingerprint can be used to identify a material, to differentiate it from similar looking materials, or lead to its source. It can also identify unexpected changes to a vendor or supplier's material, and monitor aging.

  10. Materials Compatibility and Lubricants Research (MCLR) Program

    SciTech Connect

    Szymurski, S.R.

    1994-12-01

    Objective is to accelerate phaseout of CFC refrigerants. Since its start in 1991, the MCLR program has initiated twenty-five research projects and the ARTI Refrigerant Database. The MCLR program is now entering its final phase. This phase will include over a dozen new research projects which will be completed in the next two years. This presentation highlights accomplishments of the MCLR program and outlines new projects to be conducted in the final phase.

  11. Characterization of reference materials for the Barrier Materials Test Program

    SciTech Connect

    Palmer, R.A.; Aden, G.D.; Johnston, R.G.; Jones, T.E.; Lane, D.L.; Noonan, A.F.

    1982-06-01

    Initial characterization of the geologic and engineered barrier materials for a nuclear waste repository in basalt has been completed. Data have been obtained on the characteristics of the reference waste forms which are being studied for eventual disposal in such a repository. Reference basalt entablature, colonnade, and flow top specimens have been selected from the Umtanum flow, which is the primary basalt flow under consideration for repository siting. Material from the Mabton Interbed Stratum, Pomona Flow basalt, smectite clay from the Pomona Flow, a potassium clinoptilolite, Beverly sandstone and tuff, and Grande Ronde groundwater are also included in the suite of reference geologic materials. Reference engineered barrier materials include sodium bentonite and canister metals such as carbon steel, cupronickel, Hastelloy and Inconel alloys. Spent fuel, borosilicate glass, and supercalcine ceramic comprise the reference waste forms. Analyses were made for physical, chemical, and morphological characteristics using techniques ranging from simple observations of color to sophisticated ultrastructural analysis in the electron microscope. Analyses of the elemental and phase chemistries for most of the reference materials have been completed on typical samples. Determinations of material homogeneity are currently being performed.

  12. Materials Preparation for Use in Bilingual Programs.

    ERIC Educational Resources Information Center

    Liebe-Harkort, Marie-Louise

    1981-01-01

    For many White Mountain Apache children, their first contact with the English language occurs in Head Start and day care programs, thus forcing them to learn to read and write a language they seldom use. This situation led the tribe to develop an Apache bilingual/bicultural program in which an orthography based on the letters of the English…

  13. Material evaluation program, high-temperature nitriding environment

    NASA Technical Reports Server (NTRS)

    Marcy, R. D.

    1973-01-01

    Results of a program conducted to evaluate materials for construction of a space shuttle hydrazine monopropellant gas generator are presented. The program was designed to select those materials that maintain the properties of strength and ductility after exposure to an 1800 F nitriding environment for 1000 hours.

  14. National solar optical materials program plan: an overview

    SciTech Connect

    Masterson, K.D.

    1980-03-01

    A coordinated national program is being formulated to adapt and develop optical materials to support a goal of meeting 20% of our national energy needs with solar by the year 2000. The program contains elements covering absorber, reflector, and transmitter materials but no photovoltaic materials. These elements include research on glass and polymer materials for glazing and reflector components, environmental testing, and long-term reliability modeling. Program subelements that support R and D and encourage commercialization of new products are also discussed. An overview of the proposed funding levels is presented.

  15. Materials Processing in Space (MPS) program description

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Insight is provided into the scientific rotationale for materials processing in space (MPS), and a comprehensive and cohesive approach for implementation and integration of the many, diverse aspects of MPS is described. The programmatic and management functions apply to all projects and activities implemented under MPS. It is intended that specific project plans, providing project unique details, will be appended to this document for endeavors such as the Space Processing Applications Rocket (SPAR) Project, the Materials Experiment Assembly (MEA) Project, the MPS/Spacelab (MPS/SL) Project, and the Materials Experiment Carrier (MEC) Payloads.

  16. 7 CFR 3406.17 - Program application materials-research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-research. 3406.17... RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application...

  17. Graphics and composite material computer program enhancements for SPAR

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  18. Propellant material compatibility program and results

    NASA Technical Reports Server (NTRS)

    Toth, L. R.; Cannon, W. A.; Coulbert, C. D.; Long, H. R.

    1976-01-01

    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned.

  19. Hazardous materials transportation and emergency response programs

    SciTech Connect

    Joy, D.S.; Fore, C.S.

    1983-01-01

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

  20. SRM propellant and polymer materials structural test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1988-01-01

    The SRM propellant and polymer materials structural test program has potentially wide application to the testing and structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. The test program will provide a basis for characterization of the dynamic failure criteria for Solid Rocket Motor (SRM) propellant, insulation, inhibitor and liners. This experimental investigation will also endeavor to obtain a consistent complete set of materials test data. This test will be used to improve and revise the presently used theoretical math models for SRM propellant, insulators, inhibitor, liners, and O-ring seals.

  1. INSTRUCTIONAL PROGRAMMING PROCEDURES, A PROGRAMED COURSE IN THE BASIC METHODS AND TECHNIQUES OF PREPARING PROGRAMED INSTRUCTIONAL MATERIALS.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.

    A PROGRAMED COURSE IN METHODS AND TECHNIQUES OF PREPARING PROGRAMED INSTRUCTIONAL MATERIALS WAS PRESENTED IN THIS DOCUMENT. AN ATTEMPT WAS MADE TO TEACH BASIC PROCEDURES WELL ENOUGH TO PRODUCE AN EMBRYO PROGRAMER AND TO PROVIDE HIM WITH REFERENCES HE WOULD NEED IN ORDER TO PRODUCE PROGRAMS. INCLUDED WERE PROGRAMED INSTRUCTIONS ON PREPARATORY…

  2. Aviation Career Awareness Program [and Related Materials].

    ERIC Educational Resources Information Center

    Petrie, Edwin T.

    The learning packet focuses on general aviation and is to be used in career awareness programs at the elementary level. It includes a document which presents a group of units on general aviation and its related careers. The units include the following: (1) aircraft manufacturing, (2) instruments and controls, (3) how airplanes fly, (4) flight…

  3. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect

    D. Ray Johnson; Sidney Diamond

    2000-06-19

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  4. Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Stropki, M.; Cleyrat, D.; Stucke, B.; Phillips, S.; Reed, B.

    2001-01-01

    In this viewgraph presentation, IMWG (IHPRPT Materials Working Group) government and industry members, together with the IHPRPT (Integrated High Payoff Rocket Propulsion Technologies Program Material Development Plan) National Component Leads, have developed a materials plan to address the critical needs of the IHPRPT community: (1) liquids boost and orbit transfer; (2) solids boost and orbit transfer; (3) tactical propulsion; and (4) spacecraft propulsion. Criticality of materials' role in achieving IHPRPT goals is evidenced by the significant investment over the next five years.

  5. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  6. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  7. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  8. How Does the Secondary School Library Become an Instructional Materials Center? Personnel, Program, Materials, Housing.

    ERIC Educational Resources Information Center

    Rogers, Margaret

    1968-01-01

    Objectives of this paper are: (1) to provide a practical point of view, based on experience of library and audiovisual practitioners, for expanding secondary school library programs into instructional materials center programs as demanded by instructional programs involving flexible scheduling, inquiry, and independent study; (2) to provide an…

  9. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  10. MPSim: A Massively Parallel General Simulation Program for Materials

    NASA Astrophysics Data System (ADS)

    Iotov, Mihail; Gao, Guanghua; Vaidehi, Nagarajan; Cagin, Tahir; Goddard, William A., III

    1997-08-01

    In this talk, we describe a general purpose Massively Parallel Simulation (MPSim) program used for computational materials science and life sciences. We also will present scaling aspects of the program along with several case studies. The program incorporates highly efficient CMM method to accurately calculate the interactions. For studying bulk materials, the program uses the Reduced CMM to account for infinite range sums. The software embodies various advanced molecular dynamics algorithms, energy and structure optimization techniques with a set of analysis tools suitable for large scale structures. The applications using the program range amorphous polymers, liquid-polymer interfaces, large viruses, million atom clusters, surfaces, gas diffusion in polymers. Program is originally developed on KSR in an object oriented fashion and is ported to SGI-PC, and HP-Examplar. Message Passing version is originally implemented on Intel Paragon using NX, then MPI and later tested on Cray T3D, and IBM SP2 platforms.

  11. 7 CFR 3405.10 - Program application materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Program application materials. 3405.10 Section 3405.10 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Preparation of a Proposal § 3405.10...

  12. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  13. 7 CFR 3406.12 - Program application materials-teaching.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-teaching. 3406.12 Section 3406.12 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a...

  14. Reactor Material Program Fracture Toughness of Type 304 Stainless Steel

    SciTech Connect

    Awadalla, N.G.

    2001-03-28

    This report describes the experimental procedure for Type 304 Stainless Steel fracture toughness measurements and the application of results. Typical toughness values are given based on the completed test program for the Reactor Materials Program (RMP). Test specimen size effects and limitations of the applicability in the fracture mechanics methodology are outlined as well as a brief discussion on irradiation effects.

  15. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  16. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  17. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  18. 7 CFR 2903.8 - Program application materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Program application materials. 2903.8 Section 2903.8 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Preparation of an Application § 2903.8...

  19. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  20. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  1. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  2. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  3. Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Meinhold, Anne

    2013-01-01

    The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

  4. Materials/manufacturing element of the Advanced Turbine System Program

    SciTech Connect

    Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

    1994-08-01

    One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

  5. Research Update: ARTI Materials Compatibility and Lubricant Research (MCLR) program

    SciTech Connect

    Szymurski, S.R.

    1993-10-01

    Since September 1991, the Air-Conditioning and Refrigeration Technology Institute (ARTI) has been conducting materials compatibility and lubricants research on chlorfluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC) refrigerant alternatives. During the first two years of this program, ARTI has subcontracted and managed sixteen research projects totaling over $4 million. This research has included materials compatibility tests, refrigerant-lubricant interaction studies, measurement of thermophysical properties, and development of accelerated test methods. This paper summarizes results to date and discusses plans for future research for the Materials Compatibility and Lubricants Research (MCLR) program.

  6. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  7. SB 1082 -- Unified hazardous materials/waste program: Local implementation

    SciTech Connect

    Jones, W.

    1995-12-31

    California Senate Bill 1082 was signed into law in the fall of 1993 because business and industry believed there were too many hazardous materials inspectors asking the same questions, looking at the same items and requiring similar information on several variations of the same form. Industry was not happy with the large diversity of programs, each with its own inspectors, permits and fees, essentially doing what industry believed was the same inspection. SB 1082 will allow local city and county agencies to apply to the California Environmental Protection Agency to become a Certified Unified Program Agency (CUPA) or work with a CUPA as a Participating Agency (PA) to manage specific program elements. The CUPA will unify six regulatory programs including hazardous waste/tiered permitting, aboveground storage tanks, underground storage tanks, business and area plans/inventory or disclosure, acutely hazardous materials/risk management prevention and Uniform Fire Code programs related to hazardous materials inventory/plan requirements. The bill requires the CUPA to (1) implement a permit consolidation program; (2) implement a single fee system with a state surcharge; (3) consolidate, coordinate and make consistent any local or regional requirements or guidance documents; and (4) implement a single unified inspection and enforcement program.

  8. The NSF Condensed Matter and Materials Theory Program

    NASA Astrophysics Data System (ADS)

    Hess, Daryl

    The Condensed Matter and Materials Theory (CMMT) Program in the Division of Materials Research is the home of condensed matter theory at the National Science Foundation. CMMT awards reflect a vibrant community with expanding scientific horizons and opportunities. I will present an overview of the CMMT program. Opportunities for theory and computation to open new directions and stimulate emerging frontiers will be discussed. Engaging research across disciplinary boundaries maintains the vitality of the field, leads to an agile next generation of theoretical and computational condensed matter physicists, and advances understanding of the world on the scale of life.

  9. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  10. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  11. Catalog of programs, activities, assistance, and materials for young inventors

    SciTech Connect

    Collins, N.E. . Environmental Assessment and Information Sciences Div.)

    1990-01-01

    An important issue to Americans during the 1990s will be improving the country's economic health by nurturing creative problem-solving in today's youth. The Energy-Related Inventions Program (ERIP) at the US Department of Energy is contributing to this important effort by funding the development and annual revision of this catalog. The purpose of the catalog is to act as a springboard for involving educators and inventor organizations in programs for young inventors by describing existing programs in the US and Canada, including names, addresses, and telephone numbers. We especially encourage collaboration between educators and inventors in developing local programs. The first part of the catalog describes how 39 inventor organizations have acted as catalysts in statewide programs, developed special programs for young inventors outside the classroom, and written curriculum materials. The second part of the catalog describes local, statewide, and national programs and contests developed by a variety of organizations, individuals, and school systems. Program types are located by geographic region, and entries are indexed by state/province, program name, and grade level. 1 fig.

  12. European Fusion Materials Research Program - Recent Results and Future Strategy

    SciTech Connect

    Diegele, E.; Andreani, R.; Laesser, R.; Schaaf, B. van der

    2005-05-15

    The paper reviews the objectives and the status of the current EU long-term materials program. It highlights recent results, discusses some of the key issues and major existing problems to be resolved and presents an outlook on the R and D planned for the next few years. The main objectives of the Materials Development program are the development and qualification of reduced activation structural materials for the Test Blanket Modules (TBMs) in ITER and of low activation structural materials resistant to high fluence neutron irradiation for in-vessel components such as breeding blanket, divertor and first wall in DEMO. The EU strategy assumes: (i) ITER operation starting in 2015 with DEMO relevant Test Blanket Modules to be installed from day one of operation, (ii) IFMIF operation in 2017 and (iii) DEMO final design activities in 2022 to 2025. The EU candidate structural material EUROFER for TBMs has to be fully code qualified for licensing well before 2015. In parallel, research on materials for operation at higher temperatures is conducted following a logical sequence, by supplementing EUROFER with the oxide dispersion strengthened ferritic steels and, thereafter, with fibre-reinforced Silicon Carbide (SiC{sub f}/SiC). Complementary, tungsten alloys are developed as structural material for high temperature applications such as gas-cooled divertors.

  13. Cooperative Programs in Residential Outdoor Environmental Education: Teacher's Materials Packet.

    ERIC Educational Resources Information Center

    Marin County Superintendent of Schools, Corte Madera, CA.

    Serving as teacher orientation materials for the cooperative programs in residential outdoor education located in Marin County, California, this guide includes the following: (1) "This I Believe" (a philosophical statement on outdoor environmental education); (2) "Outdoor Science and Conservation Education Report" (a brief history of outdoor…

  14. Standards for Evaluations of Educational Programs, Projects, and Materials.

    ERIC Educational Resources Information Center

    Stufflebeam, Daniel L.

    Thirty specific standards developed as guiding principles to maintain the utility, feasibility, propriety and accuracy of evaluations in educational programs, projects and materials are presented. Utility Standards include Audience Identification, Evaluator Credibility, Information Scope and Selection, Valuational Interpretation, Report Clarity,…

  15. 7 CFR 3405.10 - Program application materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials. 3405.10 Section 3405.10 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS...

  16. Microanalytical Efforts in Support of NASA's Materials Science Programs

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2004-01-01

    Following a brief overview of NASA s Microgravity Materials Science programs, specific examples will be given showing electron beam and optical microscopic applications to two-phase glass structures, dendrite tip radii, solid solution semiconductors, undercooled two-phase stainless steels and meteorites.

  17. The materials processing program of NASA - An overview

    NASA Technical Reports Server (NTRS)

    Halpern, R. E.

    1983-01-01

    The current and future NASA programs on materials processing in the microgravity environment of space are discussed. Work is now being done on convection in closed tube vapor crystal growth, solidification of monotectic alloys, levitation technology, and continuous flow electrophoresis. Experimental projects being performed aboard the Space Shuttle are mentioned, and general priorities for future microgravity research are stated.

  18. Developing Promotional Materials for Adult Literacy Programs. Practitioner Perspective

    ERIC Educational Resources Information Center

    Jae, Haeran

    2014-01-01

    This article reports on a specific case of the READ Center--a community-based literacy organization (CBLO) in Richmond, Virginia--and its attempt to develop promotional materials that will encourage low-literate adults to enroll in literacy programs. The article also offers insight on how literacy organizations may utilize the practical experience…

  19. Status of coal ash corrosion resistant materials test program

    SciTech Connect

    McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

    1999-07-01

    In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for three and

  20. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  1. Research update: Materials compatibility and lubricant research (MCLR) program

    SciTech Connect

    Szymurski, S.R.

    1994-04-01

    Since September 1991, the Air-Conditioning and Refrigeration Technology Institute (ARTI) has been conducting materials compatibility and lubricants research on CFC and HCFC refrigerant alternatives. This work has been supported by a grant from the US Department of Energy, Office of Building Technology, with co-funding from the Air-Conditioning and Refrigeration Technology Institute (ARI). During the first two and one-half years of this program, ARTI has subcontracted and managed twenty-one research projects totaling over $5.2 million. This research has included materials compatibility tests, refrigerant-lubricant interaction studies, measurement of thermophysical properties, and development of accelerated test methods. This paper summarizes results to date and discusses plans for future research for the Materials Compatibility and Lubricants Research (MCLR) program.

  2. Multiyear Program Plan for the High Temperature Materials Laboratory

    SciTech Connect

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  3. Radiation damage calculations for the APT materials test program

    SciTech Connect

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-09-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons ({approximately}1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV.

  4. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  5. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  6. Material transfer system in support of the plutonium immobilization program

    SciTech Connect

    Pak, D

    2000-12-20

    The Plutonium Immobilization Program requires development of the process and plant prototypic equipment to immobilize surplus plutonium in ceramic for long-term storage. Because of the hazardous nature of plutonium, it was necessary to develop a remotely operable materials transfer system which can function within the confines of a glovebox. In support of this work at LLNL, such a material transfer system (MTS) was developed. This paper presents both the mechanical and controls parts making up this system, and includes photographs of the key components and diagrams of their assemblies, as well as a description of the control sequence used to validate the MTS capabilities.

  7. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  8. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect

    Lessard, P.C.

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  9. U. S. fast reactor materials and structures program

    SciTech Connect

    Harms, W.O.; Purdy, C.M.

    1984-01-01

    The U.S. DOE has sponsored a vigorous breeder reactor materials and structures program for 15 years. Important contributions have resulted from this effort in the areas of design (inelastic rules, verified methods, seismic criteria, mechanical properties data); resolution of licensing issues (technical witnessing, confirmatory testing); construction (fabrication/welding procedures, nondestructive testing techniques); and operation (sodium purification, instrumentation and chemical analysis, radioactivity control, and in-service inspection. The national LMFBR program currently is being restructured. The Materials and Structures Program will focus its efforts in the following areas: (1) removal of anticipated licensing impediments through confirmation of the adequacy of structural design methods and criteria for components containing welds and geometric discontinuities, the generation of mechanical properties for stainless steel castings and weldments, and the evaluation of irradiation effects; (2) qualification of modified 9 Cr-1 Mo steel and tribological coatings for design flexibility; (3) development of improved inelastic design guidelines and procedures; (4) reform of design codes and standards and engineering practices, leading to simpler, less conservative rules and to simplified design analysis methods; and (5) incorporation of information from foreign program.

  10. Unified hazardous waste and hazardous materials management regulatory program

    SciTech Connect

    Neese, K.J. )

    1994-04-01

    The administration and regulation of hazardous wastes and materials in the state of California has for many years been overseen by a number of regulatory agencies that have jurisdiction to undertake or compel cleanup. The jurisdiction and authority of each of these agencies differ, as do their philosophical underpinnings, in terms of protection of human health and the environment versus protection of groundwater resources. In 1993, Senate Bill 1082 was enacted to require the Secretary for Environmental Protection, by January 1, 1996, to adopt implementing regulations and implement a unified hazardous materials management regulatory program to consolidate the administration of specific statutory requirements for the regulation of hazardous wastes and minerals. All aspects of the unified program related to the adoption and interpretation of statewide standards and requirements will be the responsibility under existing law. For example, for underground storage tanks, that agency shall be the state Water Resources Control Board. The Department of Toxic Substances Control shall have the sole responsibility for the determination of whether a waste is hazardous or nonhazardous. Those aspects of the unified program related to the application of statewide standards to particular facilities, including the grant of authorizations, the issuance of permits, the review of reports and plans, and the enforcement of those standards and requirements against particular facilities, will be the responsibility of the certified unified program agency.

  11. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  12. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  13. 22 CFR 502.3 - Availability of program materials on public Web sites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Availability of program materials on public Web... BROADCASTING BOARD OF GOVERNORS PROGRAM MATERIALS § 502.3 Availability of program materials on public Web sites... information Web sites designed for foreign audiences. To access currently-available Agency program...

  14. Materials Issues for Micromachines Development - ASCI Program Plan

    SciTech Connect

    FANG,HUEI ELIOT; BATTAILE,CORBETT C.; BENAVIDES,GILBERT L.; ENSZ,MARK T.; BUCHHEIT,THOMAS E.; LAVAN,DAVID A.; CHEN,ER-PING; CHRISTENSON,TODD R.; DE BOER,MAARTEN P.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; PRASAD,SOMURI V.; REEDY JR.,EARL DAVID; THOMPSON,AIDAN P.; WONG,CHUNGNIN C.; YANG,PIN

    2000-05-01

    This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

  15. HFIR Pressure Vessel and Structural Components Materials Surveillance Program

    SciTech Connect

    Blakeman, E.D.; Cheverton, R.D.; Nanstad, R.K.

    1999-08-01

    A proposal has been made to increase the size of the HFIR HB-2 and HB-4 beam tubes and to extend the life of the vessel to 50 EFPY(100 MW). Studies indicate that the increase in radiation-induced embrittlement of the vessel can be tolerated, and an appropriate expanded vessel-materials surveillance program has been devised. This program, which is the subject of this report, includes additional beam-tube nozzle-material surveillance specimens, relocation of existing specimens of all materials, and additional dosimetry. As an aid in the placement of specimens and dosimeters, extensive two- and three-dimensional neutron and gamma flux/dpa transport calculations were made. Surveillance data will be added to the HFIR vessel (delta)NDTT vs dpa data base, and dosimetry will be used to normalize the calculated fluxes. The updated (delta)NDTT vs dpa correlation and the normalized dpa values will be used in the calculation of the probability of vessel failure. This procedure, in conjunction with periodic hydrostatic proof testing, is used to determine the useful life of the vessel.

  16. Science: Promising and Exemplary Programs and Materials in Elementary and Secondary Schools. [Science Education Information Report.

    ERIC Educational Resources Information Center

    Helgeson, Stanley L.; And Others

    This document contains 36 programs and/or material listings that were nominated by at least three persons and for which there was evidence of the quality of the program or materials. Reviewers looked for positive evaluation data on the impact of the materials on students, or other information that assessed the quality of the program or materials,…

  17. TRANSTRAIN: A program to compute strain transformations in composite materials

    SciTech Connect

    Ahmed, R.

    1990-07-01

    Over the years, the solid rocket motor community has made increasing use of composite materials for thermal and structural applications. This is particularly true of solid rocket nozzles, which have used carbon phenolic and, increasingly, carbon-carbon materials to provide structural integrity and thermal protection at the high temperatures encountered during motor burn. To evaluate the degree of structural performance of nozzles and their materials and to verify analysis models, many subscale and full-scale tests are run. These provide engineers with valuable data needed to optimize design and to analyze nozzle hardware. Included among these data are strains, pressures, thrust, temperatures, and displacements. Recent nozzle test hardware has made increasing use of strain gauges embedded in the carbon composite material to measure internal strains. In order to evaluate strength, these data must be transformed into strains along the fiber directions. The fiber-direction stresses can then be calculated. A computer program written to help engineers correctly manipulate the strain data into a form that can be used to evaluate structural integrity of the nozzle is examined.

  18. Reactor materials program process water component failure probability

    SciTech Connect

    Daugherty, W. L.

    1988-04-12

    The maximum rate loss of coolant accident for the Savannah River Production Reactors is presently specified as the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping materials. The Reactor Materials Program was initiated to provide the technical basis for an alternate, credible maximum rate LOCA. The major thrust of this program is to develop an alternate worst case accident scenario by deterministic means. In addition, the probability of a DEGB is also being determined; to show that in addition to being mechanistically incredible, it is also highly improbable. The probability of a DEGB of the process water piping is evaluated in two parts: failure by direct means, and indirectly-induced failure. These two areas have been discussed in other reports. In addition, the frequency of a large bread (equivalent to a DEGB) in other process water system components is assessed. This report reviews the large break frequency for each component as well as the overall large break frequency for the reactor system.

  19. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels

  20. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  1. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect

    Not Available

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  2. Program to investigate advanced laser processing of materials

    NASA Astrophysics Data System (ADS)

    Breinan, E. M.; Snow, D. B.; Brown, C. O.

    1981-01-01

    This program included two major areas of research. In the processing area, a LAYERGLAZE (trade name) apparatus using a powder feed was developed and used to produce a 13.2 cm diameter by 3 cm thick cylindrical blank which was used as a preform for a scale model gas turbine disk. In addition to demonstrating that the process was capable of fabricating model size parts, mechanical testing and microstructural analysis of LAYERGLAZED material indicated that LAYERGLAZED parts exhibit good structural integrity and that the process produces no sizable or serious fabrication flaws provided that the alloy has adequate 'weldability' at high cooling rates. In a second major area, design of a LAYERGLAZE-processable superalloy was undertaken. With the system Ni-Al-Mo - X, numerous processable compositions were found, however, these compositions were characterized by embrittling phase transformations in the 600-800 deg temperature range. The research efforts in the alloy design area aimed at understanding and controlling this instability produced several alloys in the Ni-Al-Mo + X family which appeared to demonstrate the necessary characteristics of processability and phase stability. The mechanical properties of these alloys are being evaluated under an additional program. In addition to alloys from the above system, a number of additional alloys with high strength potentials have been developed based on other systems.

  3. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect

    Not Available

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  4. Towards the Automatic Generation of Programmed Foreign-Language Instructional Materials.

    ERIC Educational Resources Information Center

    Van Campen, Joseph A.

    The purpose of this report is to describe a set of programs which either perform certain tasks useful in the generation of programed foreign-language instructional material or facilitate the writing of such task-oriented programs by other researchers. The programs described are these: (1) a PDP-10 assembly language program for the selection from a…

  5. The Effects of Linear and Modified Linear Programed Materials on the Achievement of Slow Learners in Tenth Grade BSCS Special Materials Biology.

    ERIC Educational Resources Information Center

    Moody, John Charles

    Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…

  6. Implementation of solar-reflective surfaces: Materials and utility programs

    SciTech Connect

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  7. HIGH-TEMPEPATURE OXIDATION AND CORROSION OF MATERIALS PROGRAM

    SciTech Connect

    Whittle, D.P.

    1980-03-01

    The objective of this program is to gain an understanding of the corrosion chemistry and materials behavior in high temperature environments. Of particular interest are the mechanisms of attack in environments containing more than one reactive species, for example sulfur and oxygen. Sulfur is a critical impurity in almost all energy sources and leads to accelerated, and often unacceptable rates of metal degradation. In addition, the competitive formation of potentially more than one phase as a reaction product is an important fundamental problem, and can only be truly understood if the underlying thermodynamic and transport properties of the systems, and their interrelation, are identified. Sulfur can appear in a number of forms. In entirely gaseous environments it can appear as H{sub Z}S when the oxidizing potential of the atmosphere is low, such as might exist in energy conversion systems, or as SO{sub 2}/SO{sub 3} at higher oxygen potentials, such as those produced by fuel combustion. It may also appear in sulfatic deposits, either as a solid, such as CaSO{sub 4} in fluidized bed combustion systems, as inorganic and organic sulfur compounds in coal char, or as a liquid alkali-metal sulfate in coal-ash, or turbine-blade deposits. This last year has been spent primarily in establishing the typical behavioral patterns of common materials in these types of environments, and identifying the common mechanisms. In addition, development of definitive models of alloy reactions with single oxidants has continued. The individual projects are described.

  8. Advanced Research and Technology Development Fossil Energy Materials Program. Quarterly progress report ending June 30, 1984

    SciTech Connect

    Not Available

    1984-08-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating subcontractor organizations. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986, in which projects are organized according to fossil energy technologies. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  9. Integrating Existing Material Into Educational Television Programming. Satellite Technology Demonstration, Technical Report No. 0502.

    ERIC Educational Resources Information Center

    Beard, Karen L.; Lonsdale, Helen C.

    The Satellite Technology Demonstration (STD) produced a series of 81 television programs called the "J-series" for junior high school students. This material was used to illustrate real life situations for a career development program. Because materials were expensive, the decision was made to produce "in-house" programs and use preproduced…

  10. The Nuclear Fuel Services, Inc. program to support disposition of enriched uranium-bearing materials

    SciTech Connect

    Schutt, Stephen M.; Jacob, Norman P.

    2007-07-01

    The disposition of surplus nuclear materials has become one of the most pressing issues of our time. Numerous agencies have invoked programs with the purpose of removing such materials from various international venues and disposing these materials in a manner that achieves non-proliferability. This paper describes the Nuclear Fuel Services, Inc (NFS) Nuclear Material Disposition Program, which to date has focused on a variety of Special Nuclear Material (SNM), in particular uranium of various enrichments. The major components of this program are discussed, with emphasis on recycle and return of material to the nuclear fuel cycle. (authors)

  11. RECOMMENDATIONS FOR REPORTING THE EFFECTIVENESS OF PROGRAMMED INSTRUCTION MATERIALS.

    ERIC Educational Resources Information Center

    American Educational Research Association, Washington, DC.

    BASIC PREMISE OF THIS REPORT IS THAT INSTRUCTIONAL EFFECTIVENESS MUST BE JUDGED FOR EACH PROGRAM ACCORDING TO ITS DEMONSTRATED MERITS. GENERAL AND SPECIFIC RECOMMENDATIONS ARE LISTED FOR POTENTIAL PROGRAM USERS AND PUBLISHERS. SUPPLEMENTS CONTAIN INFORMATION ON PROGRAM MANUALS AND TECHNICAL DOCUMENTATION. THIS REPORT WAS PREPARED BY THE JOINT…

  12. Materials and Area of Study for Advanced Placement Program in American History.

    ERIC Educational Resources Information Center

    Santos, Peter A.

    This paper describes and evaluates benefits of advanced placement programs and identifies materials which can help high school history classroom teachers develop effective advanced placement programs. An advanced placement program is defined as a program which requires a student to do extensive research and writing throughout the school year.…

  13. ENVIRONMENTAL, ECONOMIC AND ENERGY IMPACTS OF MATERIAL RECOVERY FACILITIES - A MITE PROGRAM EVALUATION

    EPA Science Inventory

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFS) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. he MITE Program is sponsored by the U.S. Environmental Protecti...

  14. Surface Gasification Materials Program. Semiannual progress report for the period ending September 30, 1982

    SciTech Connect

    Not Available

    1982-12-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. The Program is divided into two subprograms: (1) the Gasification Systems Fabrication Technology Program and (2) the Materials Application and Development Program. The purpose of the Gasification Systems Fabrication Technology Program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. The purpose of the Materials Application and Development Program is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and future large-scale plants can be properly selected and specified. The Morgantown Energy Technology Center (METC), in its lead role for gasification projects, is responsible for ensuring that the Surface Gasification Materials Program is responsive to the needs for gasification systems. Under its lead role for fossil energy materials, the Oak Ridge Operations Office (ORO), is responsible for the planning, implementation, and management of the program in accordance with guidance received from METC. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating organizations.

  15. Materials Science and Engineering Laboratory, Materials Reliability Division, FY 2002 Programs and Accomplishments

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The Materials Reliability Division mission is to develop and disseminate measurement methods and standards enhancing the quality and reliability of materials for industry. Our focus in FY02 continues development of measurements for materials evaluation in micro- and optoelectronics.

  16. Material transfer system in support of the plutonium immobilization program

    SciTech Connect

    Pak, D

    2000-02-23

    The Plutonium Immobilization Project is currently undertaking formulation and process development to demonstrate the immobilization of surplus plutonium in a titanate-based ceramic. These ceramic forms will be encapsulated within canisters containing high level waste glass for geologic disposal. Process development work is being conducted with sub-scale, process prototypic equipment. Final validation of the process will be done using actual plutonium material and functionally prototypic equipment within a glovebox. Due to the radioactive nature of the material, remote material handling is necessary to reduce the radiation exposure to the operators. A remote operated Material Transfer System to interface with process equipment has been developed.

  17. State Education Department: Security over Pupil Evaluation Program and Program Evaluation Test Materials Needs Improvement. Report 91-S-2.

    ERIC Educational Resources Information Center

    New York State Office of the Comptroller, Albany.

    Findings of an audit of the New York State Education Department's procedures to maintain security over Pupil Evaluation Program (PEP) and Program Evaluation Test (PET) examination materials are presented in this report. The audit sought to determine whether the department's security procedures adequately prevented unauthorized access to exam…

  18. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Access to instructional material used in a research or... RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.3 Access to instructional material used in a research or experimentation program. (a) All instructional material—including teachers' manuals,...

  19. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Access to instructional material used in a research or... RIGHTS IN RESEARCH, EXPERIMENTAL PROGRAMS, AND TESTING § 98.3 Access to instructional material used in a research or experimentation program. (a) All instructional material—including teachers' manuals,...

  20. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reactor Vessel Material Surveillance Program Requirements H Appendix H to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. H Appendix H to Part 50—Reactor Vessel Material Surveillance Program Requirements I. Introduction II....

  1. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reactor Vessel Material Surveillance Program Requirements H Appendix H to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. H Appendix H to Part 50—Reactor Vessel Material Surveillance Program Requirements I. Introduction II....

  2. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reactor Vessel Material Surveillance Program Requirements H Appendix H to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. H Appendix H to Part 50—Reactor Vessel Material Surveillance Program Requirements I. Introduction II....

  3. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Reactor Vessel Material Surveillance Program Requirements H Appendix H to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. H Appendix H to Part 50—Reactor Vessel Material Surveillance Program Requirements I. Introduction II....

  4. 10 CFR Appendix H to Part 50 - Reactor Vessel Material Surveillance Program Requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reactor Vessel Material Surveillance Program Requirements H Appendix H to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. H Appendix H to Part 50—Reactor Vessel Material Surveillance Program Requirements I. Introduction II....

  5. Nine Model Programs for Young Children: Appendix of Supplementary Materials. Volume II.

    ERIC Educational Resources Information Center

    Quillian, Benjamin F., Jr.; Rogers, Kathryn S.

    This appendix to the National Program on Early Childhood Education (NPECE) Survey contains materials intended to provide additional information about six of the nine programs described in the survey. The materials include: (1) narrative descriptions of cooking and reading experiences for the Tucson Early Education Model; (2) information on…

  6. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    SciTech Connect

    Liby, Alan L; Rogers, Hiram

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  7. Surface-gasification materials program. Semiannual progress report for the period ending March 31, 1982

    SciTech Connect

    Not Available

    1982-08-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. The Program is divided into two subprograms: (1) the Gasification Systems Fabrication Technology Program and (2) the Materials Application and Development Program. The purpose of the Gasification Systems Fabrication Technology Program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. The purpose of the Materials Application and Development Program is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and future large-scale plants can be properly selected and specified. The management of materials projects in support of surface gasification sponsored by the Headquarters DOE Gasification Division has been defined in an April 16, 1982 METC-sponsored agreement transmitted to DOE field offices and performing contractors. This agreement recognizes the lead role in fossil energy materials delegated by METC to the DOE Oak Ridge Operations Office and the Oak Ridge National Laboratory. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating organizations. Distribution is as shown on pages 59 to 63. Future reports will be issued on a semiannual basis to a similar distribution.

  8. Cell-based composite materials with programmed structures and functions

    DOEpatents

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  9. Abstracts: Eighth Annual Conference on Fossil Energy Materials. Fossil Energy Program

    SciTech Connect

    Not Available

    1994-07-01

    Abstracts are presented for about 40 papers. The Fossil Energy Advanced Research and Technology Development Materials program is an integrated materials research activity of the fossil energy coal program, whose objective is to conduct R and D for all advanced coal conversion and utilization technologies. The program is aimed at understanding materials behavior in coal system environments and the development of new materials for improving plant operations and reliability. A generic approach is used for addressing multiple coal technologies; for example, the hot-gas particulate filter development is applicable to pressurized fluidized bed combustion, integrated coal gasification combined-cycle, coal combustion, and indirectly fired combined-cycle systems.

  10. Fossil Energy Materials Program implementation plan for fiscal years 1985 through 1989

    SciTech Connect

    Bradley, R.A.; Carlson, P.T.

    1985-02-01

    This program implementation plan for the Department of Energy Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program reviews the background, technical issues, and research and development needs for materials of construction for fossil energy systems. The status and plans for research and development activities in the AR and TD Fossil Energy Materials Program are then discussed for various materials disciplines. Detailed information about these plans is provided for FY 1985 through FY 1987, and long-range plans are described for FY 1988 and FY 1989. In addition to descriptions of planned research activities, this plan provides levels of effort required for the various activities.

  11. Program to develop sprayed, plastically deformable compressor shroud seal materials

    NASA Technical Reports Server (NTRS)

    Schwab, R. C.

    1979-01-01

    A study of fundamental rub behavior for ten dense sprayed materials and eight current compressor clearance materials has been conducted. A literature survey of a wide variety of metallurgical and thermophysical properties was conducted and correlated to rub behavior. Based on these results, the most promising dense rub material was Cu-9Al. Additional studies on the effects of porosity, incursion rate, blade solidity and ambient temperature were carried out on aluminum bronze (Cu-9Al-1Fe) with and without a 515B Feltmetal underlayer.

  12. Program to develop sprayed, plastically deformable compressor shroud seal materials

    NASA Technical Reports Server (NTRS)

    Schell, J. D.; Schell, J. D.

    1980-01-01

    A study of fundamental rub behavior for 10 dense, sprayed materials and eight current compressor clearance materials was conducted. A literature survey of a wide variety of metallurgical and thermophysical properties was conducted and correlated to rub behavior. Based on the results, the most promising dense rub material was Cu-9A1. Additional studies on the effects of porosity, incursion rate, blade solidity, and ambient temperature were carried out on aluminum bronze (Cu-9Al-1Fe) with and without a 515B Feltmetal underlayer. A further development effort was conducted to assess the property requirements of a porous, aluminum bronze, seal material. Strength, thermal cycle capabilities, erosion and oxidation resistance, machinability, and abradability at several porosity levels were examined.

  13. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  14. EPA's Program for Asbestos Containing Materials in School Buildings.

    ERIC Educational Resources Information Center

    Johnson, Kirk A.

    1979-01-01

    Comments from the Environmental Protection Agency (EPA) concerning three recommendations (in an article in a previous issue of this journal about inspecting schools for asbestos-containing materials) that are in direct conflict with those offered by EPA. (MLF)

  15. Fossil-Energy-Materials Program. Quarterly progress report for the period ending June 30, 1983

    SciTech Connect

    Not Available

    1983-08-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982-86 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  16. Environmental test program for superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1991-01-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.

  17. Materials processing in space program tasks-supplement

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1983-01-01

    An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.

  18. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  19. 10 CFR 1.41 - Office of Federal and State Materials and Environmental Management Programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Environmental Management Programs. (a) The Office of Federal and State Materials and Environmental Management...) The Office of Federal and State Materials and Environmental Management Programs— (1) Plans and directs... 10 Energy 1 2011-01-01 2011-01-01 false Office of Federal and State Materials and...

  20. 78 FR 19637 - National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ...) Bulletin on Agency Good Guidance Practices (GGPs) (January 25, 2007, 72 FR 3432-3440). The purpose of GGPs... on Classification of Materials and Materials for Organic Crop Production AGENCY: Agricultural... materials used for organic crop production, livestock production, and handling. The second set of...

  1. All Indian Pueblo Council, Inc. Vocational Education Program Curriculum Materials.

    ERIC Educational Resources Information Center

    Edmo, Kesley, Jr.

    The All Indian Pueblo Council, Inc., Vocational Education Program provides its student participants with the opportunity to attain an associate degree along with concurrent and related on-the-job training (OJT). Job site training is intended to enable students to learn both basic job skills and the work ethics required in the real-world job…

  2. THE EFFECTIVENESS OF FOUR VARIATIONS OF PROGRAMED SCIENCE MATERIALS.

    ERIC Educational Resources Information Center

    GORDON, JOHN M.

    INVESTIGATED WERE CHANGES IN THE PERFORMANCE OF SEVENTH GRADE STUDENTS AS A RESULT OF EXPOSURE TO A SYMBOLIC SCIENCE PROGRAM IN ELECTRICITY MODIFIED BY THE ADDITION OF SEVERAL TYPES OF CONCRETE EXPERIENCES. POSSIBLE RELATIONSHIPS BETWEEN THE DIFFERENT TYPES OF EXPERIENCES AND CHANGES IN HIGHER LEVELS OF COGNITIVE FUNCTIONING AND LINGUISTIC AND…

  3. Current status of JAERI spallation target material program

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Sasa, T.; Ishikura, S.; Mukugi, K.; Kai, T.; Ouchi, N.; Ioka, I.

    2001-07-01

    In the joint project of spallation neutron source between JAERI and KEK, material technology has been developed for the mercury target in the neutron source facility, the lead-bismuth target in the transmutation test facility, superconducting accelerator, post-irradiation examination and the ion beam test. Design of target system is progressing for the mercury spallation target: a pressure test of moderator, an impacting test in mercury and a corrosion test have been carried out. For nuclear transmutation with ADS an engineering facility is proposed. A material corrosion test loop is built-up and SS316 and F82H steels are to be tested in a flowing Pb-Bi. Fracture toughness of superconducting cavity material was found to be considerably large at 4 K. Irradiated samples at SINQ are to be transported to JAERI Hot Laboratory. For simulating radiation damage small disk specimens were irradiated in single, dual and triple ion beam modes.

  4. Experimental and Analytical Studies for a Computational Materials Program

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1999-01-01

    The studies supported by Grant NAG1-1780 were directed at providing physical data on polymer behavior that would form the basis for computationally modeling these types of materials. Because of ongoing work in polymer characterization this grant supported part of a larger picture in this regard. Efforts went into two combined areas of their time dependent mechanical response characteristics: Creep properties on the one hand, subject to different volumetric changes (nonlinearly viscoelastic behavior) and time or frequency dependence of dilatational material behavior. The details of these endeavors are outlined sufficiently in the two appended publications, so that no further description of the effort is necessary.

  5. Uses of Computed Tomography in the NASA Materials Science Program

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter; Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used to characterize materials in preparation for flight, to determine thermal expansion values, and to examine long duration space grown materials, i.e. meteorites. The work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure of high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enable length changes to be determined. Prior to melting the sample is small than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed for engineering purposes to aid

  6. Gas turbine materials evaluation program utilizing coal derived gaseous fuel

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Yates, C. C.; Manning, G. B.; Peterson, R. R.

    1981-03-01

    A gas turbine materials evaluation test facility under the sponsorship of the U.S. Department of Energy is described. The objective of the mobile test facility is to obtain dynamic and static test data on the erosion/corrosion characteristics of materials exposed to the hot products of the combustion of coal-derived fuels. The engine being utilized for the tests is the WR 24-7 aircraft turbojet unit reconfigurated to burn coke oven gas. Approximately 100 hours of engine operating time have been logged to date.

  7. Uses of Compted Tomography in the NASA Materials Science Program

    NASA Astrophysics Data System (ADS)

    Engel, H. Peter; Gillies, Donald C.

    2002-01-01

    Computed Tomography (CT) has proved to be of inestimable use in providing a rapid evaluation of a variety of samples from Mechanics of Granular Materials (MGM) to electronic materials (Ge-Si alloys) to space grown materials such as meteorites. The system at Kennedy Space Center (KSC), because of its convenient geographical location, is ideal for examining samples before launch and immediately after returning to Earth. It also has the advantage of the choice of fluxes, and in particular the use of a radioactive cobalt source, which is basically monochromatic. This permits a reasonable measurement of density to be made from which chemical composition can be determined. Due to the current dearth of long duration space grown materials, the CT instrument has been used (1) to characterize materials in preparation for flight, (2) to determine thermal expansion values, and (3) to examine long duration space grown materials, i.e. meteorites. This work will first describe the establishment of the protocol for obtaining the optimum density readings for any material. This will include both the effects of the hardware or instrumental parameters that can be controlled, and the techniques used to process the CT data. Examples will be given of the compositional variation along single crystals of germanium-silicon alloys. Density variation with temperature has been measured in preparation for future materials science experiments; this involved the fabrication and installation of a single zone furnace incorporating a heat pipe to ensure high temperature uniformity. At the time of writing the thermal expansion of lead has been measured from room temperature to 900 C. Three methods are available. Digital radiography enables length changes to be determined. Prior to melting the sample is smaller than the container and the diameter change can be measured. Most critical, however, is the density change in solid, through the melting region, and in the liquid state. These data are needed

  8. Orbit transfer rocket engine technology program: Oxygen materials compatibility testing

    NASA Technical Reports Server (NTRS)

    Schoenman, Leonard

    1989-01-01

    Particle impact and frictional heating tests of metals in high pressure oxygen, are conducted in support of the design of an advanced rocket engine oxygen turbopump. Materials having a wide range of thermodynamic properties including heat of combustion and thermal diffusivity were compared in their resistance to ignition and sustained burning. Copper, nickel and their alloys were found superior to iron based and stainless steel alloys. Some materials became more difficult to ignite as oxygen pressure was increased from 7 to 21 MPa (1000 to 3000 psia).

  9. Proceedings of the Seventh Annual Conference on Fossil Energy Materials. Fossil Energy AR and TD Materials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1993-07-01

    Objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The 37 papers are arranged into 3 sessions: ceramics, new alloys/intermetallics, and new alloys/advanced austenitics. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Textbooks and Learning Materials Program: Zambia. Final Report

    ERIC Educational Resources Information Center

    US Agency for International Development, 2009

    2009-01-01

    The Mississippi Consortium for International Development's (MCID's) intervention involved the development, publication and distribution of an Integrated Foundations of Learning Kit, focused on numeracy. This intervention was aligned with Zambia's priorities and strategies and matched the requirements of the Textbooks and Learning Materials Program…

  11. Oregon Custodial Training Program. Housekeeping Methods and Materials. (Revised 1978).

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    Designed as an instructional aid in teaching about custodian housekeeping methods and materials, this booklet contains information on the school custodian's responsibilities and methods for maintaining the building inside and outside, including the cleaning and sanitation of classrooms, restrooms, showerrooms, lunchrooms, corridors, and special…

  12. Core IV Materials for Metropolitan Agriculture/Horticulture Programs.

    ERIC Educational Resources Information Center

    Hemp, Paul; And Others

    This core curriculum guide consists of materials for use in presenting a 13-unit vocational agriculture course geared toward high school students living in metropolitan areas. Addressed in the individual units of the course are the following topics: employment in agricultural occupations, supervised occupational experience, leadership in…

  13. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  14. Environmental test program for superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1992-01-01

    A systematic approach to obtaining real time, superconducting YBa2Cu30(7-x) materials is presented. The work was carried out under the overall direction of Clemson University with tasks being performed at both Clemson and Westinghouse (Aiken, SC). Clemson prepared the tapecast superconducting 123 material and fabricated in into substrate-supported, environmentally-protected conducting links. Following this, all of the elements were individually tested for resistance vs. temperature and Tc; and then a portion of them were kept at Clemson for further testing while a randomly selected group was delivered to Westinghouse for specialized testing and evaluation in their low temperature/high vacuum and radiation facilities. In addition, a number of control samples (12 ea.) were put on the shelf at Clemson for further reference at the end of the testing period. The specific tests conducted at Clemson and Westinghouse/SRC are presented with a summary of the results.

  15. Integrating electron microscopy into nanoscience and materials engineering programs

    NASA Astrophysics Data System (ADS)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  16. Materials with engineered mesoporosity for programmed mass transport

    NASA Astrophysics Data System (ADS)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  17. AR and TD Fossil-Energy Materials Program. Quarterly progress report, March 31, 1982

    SciTech Connect

    Bradley, R.A.

    1982-07-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. All subcontractor work is technically monitored by Program staff members at ORNL and Argonne National Laboratory (ANL). The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. Distribution is as shown on pages 397-403. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-86 (Ref. 1) in which projects are organized according to fossil energy technologies.

  18. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  19. Fissile material disposition program final immobilization form assessment and recommendation

    SciTech Connect

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-10-03

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

  20. RETRAC: A program for the analysis of materials test reactors

    SciTech Connect

    Baggoura, B.; Hamidouche, T.; Bousbia-Salah, A. . Lab. des Analyses de Surete)

    1994-09-01

    REactor TRansient Analysis Code (RETRAC) is a computer code specially developed for the analysis of materials test reactor (MTR) cores. The RETRAC code uses a set of coupled neutron point-kinetics equations and thermal-hydraulic conservation laws to simulate nuclear reactor core behavior under transient or accident conditions. The reactor core is represented by a single equivalent unit cell composed of three regions: fuel, clad, and moderator (coolant). Validation tests of the RETRAC code were performed by using the International Atomic Energy Agency 10-MW benchmark cores, for protected transients. Further assessment studies are in progress using experimental data. The code was developed on a VAX-4000 working station.

  1. A Program to Calculate Fast Neutron Data for Structural Materials.

    Energy Science and Technology Software Center (ESTSC)

    1990-11-09

    Version 00 Based on the unified model the UNIFY code is used for the calculation of the fast neutron data for structural materials, which involves: (1) cross section- total cross section, all kinds of reactions channels, the cross section of the discrete levels and continuum emission, (2) angular distribution- elastic scattering angular distribution and its Legendre coefficients and transition matrix elements,the Legendre coefficients of the discrete levels in the inelastic scattering channels, (3) energy spectra,more » (4) double differential cross section of the inelastic channel and of the neutron outgoing channels.« less

  2. Results and recommendations from the reactor chemistry and corrosion tasks of the reactor materials program

    SciTech Connect

    Baumann, E.W.; Ondrejcin, R.S.

    1990-11-01

    Within the general context of extended service life, the Reactor Materials Program was initiated in 1984. This comprehensive program addressed material performance in SRS reactor tanks and the primary coolant or Process Water System (PWS) piping. Three of the eleven tasks concerned moderator quality and corrosion mitigation. Definition and control of the stainless steel aqueous environment is a key factor in corrosion mitigation. The Reactor Materials Program systematically investigated the SRS environment and its effect on crack initiation and propagation in stainless steel, with the objective of improving this environment. The purpose of this report is to summarize the contributions of Tasks 6, 7 and 10 of the Reactor Materials Program to the understanding and control of moderator quality and its relationship to mitigation of stress corrosion cracking.

  3. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  4. High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006

    SciTech Connect

    Pasto, Arvid

    2007-08-01

    Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

  5. Introduction of Materials Science and Engineering to High School Students through Science Partnership Program

    NASA Astrophysics Data System (ADS)

    Usami, Hatsuhiko; Adachi, Satoshi; Yasuda, Ken-Ichi; Kaneko, Kei-Ichi; Iwasaki, Masaji

    The present paper describes the introduction of materials science and engineering to high school students through the science partnership program (SPP) planed by the ministry of education and science. Four educational topics of material science and engineering, namely, light emitting diodes (LED), carbon nano-tubes, bio-materials and traditional structural materials were selected for the program. Successive lectures were given on all the topics and practical experiments were carried out on the fabrication of an electrical circuit for LED and manufacturing of silver rings. In order to investigate the outcome of the program, a questionnaire and hearings were conducted. The opinions reflect the effectiveness of young teaching assistants in motivating and alleviating the interest of the students in the SPP program.

  6. NASA's Advanced Space Transportation Program: A Materials Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    1999-01-01

    The realization of low-cost assess to space is one of NASA's three principal goals or "pillars" under the Office of Aero-Space Technology. In accordance with the goals of this pillar, NASA's primary space transportation technology role is to develop and demonstrate next-generation technologies to enable the commercial launch industry to develop full-scale, low cost, highly reliable space launchers. The approach involves both ground-based technology demonstrations and flight demonstrators, including the X-33, X-34, Bantam, Reusable Launch Vehicle (RLV), and future experimental vehicles. Next generation space transportation vehicles and propulsion systems will require the development and implementation of advanced materials and processes. This presentation will provide an overview of advanced materials efforts which are focused on the needs of next generation space transportation systems. Applications described will include ceramic matrix composite (CMC) integrally bladed turbine disk (blisk); actively cooled CMC nozzle ramp for the aerospike engine; ablative thrust chamber/nozzle; and metal matrix composite turbomachinery housings.

  7. Nuclear-Fuel-Cycle Research Program: availability of geotoxic material

    SciTech Connect

    Wachter, B.G.; Kresan, P.L.

    1982-09-01

    This report represents an analog approach to the characterization of the environmental behavior of geotoxic waste materials (toxic material emplaced in the earth's crust) as drawn from literature on the Oklo natural fission reactors and uranium ore deposits relative to radioactive wastes, and hydrothermal metal ore deposits relative to stable toxic wastes. The natural analog data were examined in terms of mobility and immobility of selected radioactive or stable waste elements and are presented in matrix relationship with their prime geochemical variables. A numerical system of ranking those relationships for purposes of hazard-indexing is proposed. Geochemical parameters (especially oxidation/reduction potential) are apparently more potent mobilizers/immobilizers than geological or hydrological conditions in many, if not most, geologic environments for most radioactive waste elements. Heavy metal wastes, by analogy to hydrothermal ore systems and geothermal systems, are less clear in their behavior but similar geochemical patterns do apply. Depth relationships between geochemical variables and waste element behavior show some surprises. It is significantly indicated that for waste isolation, deeper is not necessarily better geochemically. Relatively shallow isolation in host rocks such as shale could offer maximum immobility. This paper provides a geochemical outline for examining analog models as well as a departure point for improved quantification of geological and geochemical indexing of toxic waste hazards.

  8. Borehole-plugging-materials development program report 3

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A.; Buck, A.D.

    1982-03-01

    This report gives data for up to 4 yr of durability studies of grout mixtures developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP). Samples from field plugging oprations for the Bell Canyon Test and ERDA-10 drill hole are included in the durability studies. Specimens of all mixtures had phase compositions and microstructures that were considered normal for these mixtures at these ages. All of the specimens of the various grout mixtures (including fresh and salt water) have maintained acceptable physical properties as measured by compressive strength, compressional wave velocity, dynamic modulus of elasticity, and permeability to water. Porosity and expansion data under differing exposure conditions have been collected for continuing study evaluation. The work was performed and is continuing at the Structures Laboratory of the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi.

  9. 22 CFR 502.4 - Media or organization one-time requests for broadcast quality agency program materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... broadcast-quality copies of Voice of America program materials; and (b) The TV Marti Division of the Office of Cuba Broadcasting for broadcast-quality copies of TV or Radio Marti program materials....

  10. Development of Teaching Material on the Web for Programming Education and its Evaluation

    NASA Astrophysics Data System (ADS)

    Matsuyama, Chieko; Nakashima, Toyoshiro; Ishii, Naohiro

    In authors programming practice class, students create animation as programming practice because this type of practice will make students interested in learning programming. This type of animation creation practice is well received by students. For the animation creation, we provide students with material such as fundamentals for creating basic animation, explanations, there of usage of the information, basic animation creation method, its application and its programming example in printed form (black and white). However, it is difficult for students to see the actual color or motion in printed material, because some of the animation is only shown on the screen and it is difficult for the students to actually reproduce the motion or examine the source program by themselves. In order to overcome those problems, we have developed teaching material on the web and actually used them in programming practice class. In this paper, we give the general description of programming practice, the objective of developing the teaching material on the web and guidelines, for it, a general description of the material, their its effectiveness.

  11. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  12. In-space production of large space systems from extraterrestrial materials: A program implementation model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1977-01-01

    A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.

  13. Programs for English Language Learners: Resource Materials for Planning and Self-Assessments.

    ERIC Educational Resources Information Center

    Office for Civil Rights (ED), Washington, DC.

    These resource materials were developed in response to requests from school districts for a reference tool to assist them through the process of developing a comprehensive English language learners (ELL) program. The districts desired a program that would be in compliance with Title VI of the Civil Rights Act of 1964. Title VI was passed in the…

  14. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1994-01-01

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  15. Foreign Language Programmed Materials: 1969. ERIC Focus Reports on the Teaching of Foreign Languages, Number 7.

    ERIC Educational Resources Information Center

    Fiks, Alfred I.

    This annotated bibliography of programed language instruction materials lists forty-eight programs by language; including French (17), Spanish (15), German (6), Russian (3), Latin (3), and other languages (4). Information is provided on title, publisher, or supplier, author, price, student level, course objectives, mode of student response,…

  16. Bleed water testing program for controlled low strength material

    SciTech Connect

    Langton, C.A.

    1996-11-12

    Bleed water measurements for two Controlled Low Strength Material (CLSM) mixes were conducted to provide engineering data for the Tank 20F closure activities. CLSM Mix 1 contained 150 pounds of cement per cubic yard whereas CLSM Mix 2 contained 50 pounds per cub yard. SRS currently used CLSM Mix 2 for various applications. Bleed water percentages and generation rates were measured along with flow and compressive strength. This information will be used to select a mix design for the Tank 20F closure activities and to establish the engineering requirements, such as, lift height, time required between lifts and quantity of bleed water to be removed from the tank during the placement activities. Mix 1 is recommended for placement within Tank 20F because it has better flow characteristics, less segregation, lower percentage of bleed water and slightly higher strength. Optimization of Mix 1 was beyond the scope of this study. However, further testing of thickening additives, such as clays (bentonite), sodium silicate or fine silicas maybe useful for decreasing or eliminating bleed water.

  17. Training Materials for Research, Development and Diffusion Training Programs. Final Report.

    ERIC Educational Resources Information Center

    Guba, Egon G.; Gephart, William J.

    The first 80 pages of this report describe procedures used in assembling, cataloging, and annotating a large group of instructional materials used in educational research, development, and diffusion training programs. This section also compares the characteristics of the materials and outlines procedures used in improving four of them which were…

  18. Industry to Education Technology Transfer Program. Composite Materials--Personnel Development. Final Report.

    ERIC Educational Resources Information Center

    Tomezsko, Edward S. J.

    A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…

  19. Spanish Language and Culture: 9- Year Program Classroom Assessment Materials, Grade 4

    ERIC Educational Resources Information Center

    Alberta Education, 2008

    2008-01-01

    This document is designed to provide assessment materials for specific Grade 4 outcomes in the Spanish Language and Culture Nine-year Program, Grades 4-5-6. The assessment materials are designed for the beginner level in the context of teaching for communicative competence. Grade 4 learning outcomes from the Spanish Language and Culture Nine-year…

  20. ENERGY: Selected Resource Materials for Developing Energy Education/Conservation Programs. Revised Edition.

    ERIC Educational Resources Information Center

    Wert, Jonathan M.; Worthington, Barry K.

    This annotated bibliography presents resource materials for energy education programs. The materials are listed by the agency from which they are available. The agencies are alphabetized and, for each agency, a mailing address is given. Fifty given agencies are included, many of which have several references listed under them. For each reference,…

  1. 10 CFR 1.41 - Office of Federal and State Materials and Environmental Management Programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintain a current level of knowledge of the status of the Agreement State programs; (12) Provides training... 10 Energy 1 2013-01-01 2013-01-01 false Office of Federal and State Materials and Environmental... GENERAL INFORMATION Headquarters Staff Offices § 1.41 Office of Federal and State Materials...

  2. 10 CFR 1.41 - Office of Federal and State Materials and Environmental Management Programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintain a current level of knowledge of the status of the Agreement State programs; (12) Provides training... 10 Energy 1 2012-01-01 2012-01-01 false Office of Federal and State Materials and Environmental... GENERAL INFORMATION Headquarters Staff Offices § 1.41 Office of Federal and State Materials...

  3. 10 CFR 1.41 - Office of Federal and State Materials and Environmental Management Programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintain a current level of knowledge of the status of the Agreement State programs; (12) Provides training... 10 Energy 1 2014-01-01 2014-01-01 false Office of Federal and State Materials and Environmental... GENERAL INFORMATION Headquarters Staff Offices § 1.41 Office of Federal and State Materials...

  4. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  5. A review of Boeing interior materials and fire test methods development programs

    NASA Technical Reports Server (NTRS)

    Bara, E.

    1979-01-01

    Total materials systems requirements, and government and industry programs are outlined along with a new fire test methodology, and the potential decrease in post crash fire hazards. The flammability, smoke and toxicity goals, and the scope of materials systems are tabulated.

  6. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  7. 75 FR 39923 - Office of Postsecondary Education; Overview Information; Pilot Program for Course Material Rental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Office of Postsecondary Education; Overview Information; Pilot Program for Course Material Rental; Notice... that expand the services of bookstores to provide the option for students to rent course materials...

  8. German Language and Culture: 9-Year Program Classroom Assessment Materials, Grade 4

    ERIC Educational Resources Information Center

    Alberta Education, 2008

    2008-01-01

    This document is designed to provide assessment materials for specific Grade 4 outcomes in the German Language and Culture Nine-year Program, Grades 4-5-6. The assessment materials are designed for the beginner level in the context of teaching for communicative competence. Grade 4 learning outcomes from the German Language and Culture Nine-year…

  9. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  10. 34 CFR 429.1 - What is the Bilingual Vocational Materials, Methods, and Techniques Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Bilingual Vocational Materials, Methods, and Techniques Program? 429.1 Section 429.1 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION BILINGUAL VOCATIONAL MATERIALS, METHODS, AND...

  11. Marine Education. A Bibliography of Educational Materials Available from the Nation's Sea Grant College Programs.

    ERIC Educational Resources Information Center

    Mississippi-Alabama Sea Grant Consortium, Ocean Springs, MS.

    This bibliography was published as a result of a cooperative education effort of the United States Sea Grant programs and the staff of the Living Seas pavilion presented by United Technologies at EPCOT Center in Orlando, Florida. It is a compilation of the textbooks, curricula materials, and other marine education resource materials developed by…

  12. A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area

    SciTech Connect

    B. Kenley; B. Scott; B. Seidel; D. Knecht; F. Southworth; K. Osborne; N. Chipman; T. Creque

    1999-03-01

    This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

  13. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  14. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  15. Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials

    SciTech Connect

    Gray, L.W.

    1996-01-08

    With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

  16. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect

    1998-05-01

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  17. Designing and Evaluating a Scientific Training Program and Virtual Learning Materials.

    PubMed

    van Raalte, Lisa; Boulay, Rachel

    2013-01-01

    The University of Hawaii's John A. Burns School of Medicine developed a professional development program and virtual learning materials to assist high school science teachers become familiar with laboratory techniques prior to engaging in authentic molecular biology research. The purpose of this paper is to provide an evaluative overview of the program with emphasis on the virtual materials that were designed to employ a blended learning approach to augment offline classroom learning. The virtual learning materials provide a unique sphere for scientific learning in which skills can be reproduced in an offline environment. Twelve high school science teachers participated in the training program and were given full access to the online materials. After participation in the program, teachers filled out a final survey and completed a final written reflective statement as a form of evaluating the program and online materials. Thematic analysis was used to code participants' responses. Results showed that teachers recounted meeting the scientists as a valuable experience, teachers were grateful to learn real-world application of current research, and teachers described the importance of learning skills to prepare students to succeed in higher education. Additionally, results showed teacher's intent to use the virtual learning materials as homework tools and in classroom lessons. PMID:24524091

  18. Designing and Evaluating a Scientific Training Program and Virtual Learning Materials

    PubMed Central

    van Raalte, Lisa; Boulay, Rachel

    2014-01-01

    The University of Hawaii's John A. Burns School of Medicine developed a professional development program and virtual learning materials to assist high school science teachers become familiar with laboratory techniques prior to engaging in authentic molecular biology research. The purpose of this paper is to provide an evaluative overview of the program with emphasis on the virtual materials that were designed to employ a blended learning approach to augment offline classroom learning. The virtual learning materials provide a unique sphere for scientific learning in which skills can be reproduced in an offline environment. Twelve high school science teachers participated in the training program and were given full access to the online materials. After participation in the program, teachers filled out a final survey and completed a final written reflective statement as a form of evaluating the program and online materials. Thematic analysis was used to code participants' responses. Results showed that teachers recounted meeting the scientists as a valuable experience, teachers were grateful to learn real-world application of current research, and teachers described the importance of learning skills to prepare students to succeed in higher education. Additionally, results showed teacher's intent to use the virtual learning materials as homework tools and in classroom lessons. PMID:24524091

  19. Hazardous materials management and control program at Oak Ridge National Laboratory--environmental protection.

    PubMed

    Eisenhower, B M; Oakes, T W; Braunstein, H M

    1984-04-01

    At a large research laboratory facility the management and control of hazardous materials, and their subsequent wastes can be an unmanageable task. Environmental regulations, mandated by the Resource Conservation and Recovery Act of 1976, established a Federal program to provide comprehensive regulation of hazardous solid waste materials from their generation time to their disposal. In an effort to comply with these regulations, a Hazardous Materials Management and Control Program was created at Oak Ridge National Laboratory. The program provides personnel with specific guidelines for the procurement, use, storage, transportation and disposal of hazardous materials/wastes, and ensures that they are managed in a manner which adequately protects all personnel, the general public, and the environment. PMID:6720584

  20. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  1. An outdoor exposure testing program for optical materials used in solar thermal electric technologies

    SciTech Connect

    Wendelin, T.; Jorgensen, G.

    1994-01-01

    Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

  2. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. [Process Water System

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125[degrees]C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  3. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  4. Surface Gasification Materials Program: Semiannual progress report for the period ending September 30, 1986. [Iron aluminide

    SciTech Connect

    Not Available

    1987-01-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. One of the goals of the program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. Another goal is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and future large-scale plants can be properly selected and specified. This semiannual progress report covers: (1) protective coatings and claddings - application/evaluation; (2) electroslag component casting; (3) materials development for solid oxide oxygen production unit; and (4) development of iron aluminides.

  5. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.; Walker, K. P.

    1992-01-01

    This report presents a summary of results from a 7 year program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program was composed of a base program and an optional program. The base program addressed the high temperature coated single crystal regime above the airfoil root platform. The optional program investigated the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involved experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material formed the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: group of zone axes (001), group of zone axes (011), group of zone axes (111), and group of zone axes (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal materials were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were developed for TMF crack initiation of coated PWA 1480. A life model was developed for smooth and notched fatigue in the option program. Finally, computer software incorporating the overlay coating and PWA 1480 constitutive and life models was developed.

  6. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.

    1992-01-01

    This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.

  7. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  8. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  9. Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines

    SciTech Connect

    Not Available

    1992-08-01

    This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

  10. Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines

    SciTech Connect

    Not Available

    1992-08-01

    This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

  11. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  12. International Test Program for Synergistic Atomic Oxygen and VUV Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon; Banks, Bruce; Dever, Joyce; Savage, William

    2000-01-01

    Spacecraft in low Earth orbit (LEO) are subject to degradation in thermal and optical performance of components and materials through interaction with atomic oxygen and vacuum ultraviolet radiation which are predominant in LEO. Due to the importance of LEO durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests consisted of exposure of samples representing a variety of thermal control paints and multilayer insulation materials that have been used in space. Materials donated from various international sources were tested alongside a material whose performance is well known such as Teflon FEP or Kapton H for multilayer insulation, or Z-93-P for white thermal control paints. The optical, thermal or mass loss data generated during the test was then provided to the participating material supplier. Data was not published unless the participant donating the material consented to publication. This paper presents a description of the types of tests and facilities that have been used for the test program as well as some examples of data that have been generated. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects to enable improved prediction of spacecraft performance.

  13. At the Edge of Translation – Materials to Program Cells for Directed Differentiation

    PubMed Central

    Arany, Praveen R; Mooney, David J

    2010-01-01

    The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763

  14. Safeguards Measurement Evaluation Program nuclear materials measurement data: Phase 1: Final report, 1985 through 1986

    SciTech Connect

    Cacic, C.G.

    1988-08-01

    The New Brunswick Laboratory has been tasked by the US Department of Energy Office of Safeguards and Security to assess and evaluate the adequacy of measurement technology as applied to materials accounting in US Department of Energy nuclear facilities. The Safeguards Measurement Evaluation Program was developed as a means to monitor and evaluate the quality and effectiveness of accounting measurements by site, material balance area, or unit process. Phase 1 of the Safeguards Measurement Evaluation Program, initiated during 1985, involved evaluation of the primary accountability measurement methods at six US Department of Energy Defense Programs facilities. Resulting data are presented and evaluated as indicators of current state-of-the-practice accountability measurement methodology, deficiencies in materials accounting practices, and areas for possible assistance in upgrading measurement capabilities. 22 figs., 5 tabs.

  15. The SWT Materials Physics Program: Linking Physics Curriculum with Industry Needs

    NASA Astrophysics Data System (ADS)

    Gutierrez, C. J.

    1998-03-01

    As recently as five years ago, the undergraduate physics curriculum at Southwest Texas State University (SWT) resembled that of many other typical baccalaureate degree physics programs. As an improvement to our program, we recently assessed the state of relevant major regional industries and initiated the development of an alternative curriculum path for physics undergraduates who wish to expand their marketability in today's "high tech" economy. "To take physics local", we learned that our new curriculum would have to create new opportunities for our physics students in the lucrative semiconductor industry in nearby Austin, TX. As a first step towards developing the Materials Physics program, we chose to cultivate a new faculty expertise in thin film materials physics. This would be crucial for developing new curriculum facilitating our graduates' exposure to marketable techniques critical for the 200 billion semiconductor device industry and the 80 billion magnetic device industry. The crucial involvement of interested industry alumni and representatives towards actualizing this initiative will also be discussed. The curriculum content of the new Materials Physics program will be compared to our traditional physics program to show how a few well-chosen modifications in the curriculum can vastly improve the marketability of our students. We will describe how these changes are expected to develop a vibrant and well-attended Physics program with great relevance to local industry. (* CJG acknowledges the support of the NSF-CAREER program for the freedom to pursue these curriculum changes, and the NSF-ILI program for the creation of the SWT Materials Physics Lab (DUE 9552338).)

  16. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    SciTech Connect

    Not Available

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  17. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    SciTech Connect

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  18. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    SciTech Connect

    Johnson, D.R.

    2000-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  19. Update to the Fissile Materials Disposition program SST/SGT transportation estimation

    SciTech Connect

    John Didlake

    1999-11-15

    This report is an update to ``Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS).

  20. Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities

    SciTech Connect

    Talukdar, B.K.; Kennedy, W.N.

    1991-12-31

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

  1. Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities

    SciTech Connect

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

  2. High School Visitation Program in New York City for Materials Science and Engineering Outreach

    NASA Astrophysics Data System (ADS)

    Chan, Siu-Wai; Herman, Irving; Herrera, Justine

    2006-03-01

    We report on a school science outreach program that we have carried out since 1999 under the National Science Foundation funded Materials Research Science and Engineering Center (MRSEC) at Columbia University. Under this program, we have made 34 visits to twenty New York City public high schools and middle schools and have reached over three thousand students. The demographic of the schools are around 81% historically underrepresented minorities (37% African Americans and 44% Hispanic Americans) and around 55% female. This report shows how a similar program can be set up in an urban area, which can directly address the vital shortage of youths going into science, engineering and mathematics (SEM) careers. Logistics and experiences of running the program are described. Lessons learned and certain important issues of the program are addressed for an easy adaptation in a new city.

  3. National Summary of Aquatic Education Materials Developed by, or Adapted for Use with, State and Territorial Programs.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Natural Resources, Des Moines.

    This document summarizes materials on aquatic education used by state programs. Emphasis is on materials developed by, or adapted for use with, programs in various states and territories. The 234 entries are categorized as activity books, brochures, newsletters, posters, videos, and other materials. Major subjects include fishing, boating and…

  4. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 1

    SciTech Connect

    Not Available

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.

  5. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  6. Surface Gasification Materials Program. Semiannual progress report for the period ending September 30, 1985

    SciTech Connect

    Not Available

    1985-12-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. One of the goals of the program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. Another goal is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and furture large-scale plants can be properly selected and specified. Contents of this report include: (1) corrosion studies of plant materials surveillance tests; (2) slagging gasifier refractories - application/evaluation; (3) protective coatings and claddings - application/evaluation; (4) corrosion of structural ceramics in coal gasification environments; (5) advanced pressure vessel materials technology; (6) electroslag component casting; (7) production and evaluation of electroslag casting; and (8) materials review and component failure analysis in support of coal gasification processes and plants.

  7. Surface Gasification Materials Program. Semiannual progress report for the period ending March 31, 1984

    SciTech Connect

    Bradley, R.A.

    1984-06-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. One of the goals of the program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. Another goal is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and future large-scale plants can be properly selected and specified. Contents of this report include the following: (1) plant materials surveillance tests; (2) slagging gasifier refractories; (3) protective coatings and claddings; (4) ceramic fabrication/application technology; (5) advanced pressure vessel materials technology; (6) electroslag component casting; (7) production and evaluation of electroslag castings; (8) cost reduction of the electroslag casting manufacturing process; (9) quantitative microstructural characterization of steel casting; and (10) materials review and component failure analysis in support of coal gasification processes and plants.

  8. Experiment in Materials Processing Engineering Education: The Industrial Internship Program. Summary Report on Task "A".

    ERIC Educational Resources Information Center

    Weinmann, K. J.; And Others

    The final report on a program to encourage industry-university interaction in the materials processing industries presents the findings of various proposed activities, establishes some conclusions, and provides suggestions and recommendations for extending the task to the actual design and conduct of the project. The background in which the…

  9. Supplemental Driver Safety Program Development Volume II--Pilot and Field Test Module Materials. Final Report.

    ERIC Educational Resources Information Center

    McPherson, Kenard; Weidman, James R.

    This volume contains materials to supplement existing driver education programming offered by high schools to youthful (16- to 18-year old) drivers. Section I contains three drinking/driving modules: an information-only module, a self-image module, and a three-unit peer intervention module. An instructor's guide provided for each module includes…

  10. Foothill-De Anza Community College District Hazardous Materials Program Review and Future Direction.

    ERIC Educational Resources Information Center

    Foothill-De Anza Community Coll. District, Los Altos Hills, CA.

    This document provides a historical perspective on the Foothill-De Anza Community College District Hazardous Materials Program. Prior to the 1990's, the State College and Community College system were basically exempted from nearly all local regulatory compliance efforts. State enforcement of environmental regulations at the community college…

  11. Core IV Materials for Rural Agriculture Programs. Units A-G.

    ERIC Educational Resources Information Center

    Courson, Roger; And Others

    This curriculum guide, the first part of a core curriculum for a rural agriculture program, consists of materials for use in presenting the first seven units of a nine-unit course for high school vocational agriculture students living in rural areas. Addressed in the individual units of the guide are the following topics: educational and…

  12. The Effect of the CAREY Program on the Students' Reading Attitude Towards Reading English Materials

    ERIC Educational Resources Information Center

    Al-Shawesh, Marwan Yahya; Hussin, Supyan

    2015-01-01

    Reading is one of language learning skills which has a great significance for the role it plays in the second language acquisition (SLA) process. The aim of this paper was to examine the extent to which the CAREY (Computer-Assisted Reading Yemen) program affects the Yemeni EFL students' reading attitude towards reading English materials. To…

  13. Selected Resource Materials for Developing Energy Conservation Programs in the Government Sector.

    ERIC Educational Resources Information Center

    Lengyel, Dorothy L.; And Others

    This annotated bibliography is a selected listing of reference materials for use by local government officials in the development of energy conservation programs. The references are listed under the agency through which they are available. Agency listings are alphabetized and include complete mailing addresses. There are 46 agency listings, many…

  14. Core IV Materials for Rural Agriculture Programs. Units H-I.

    ERIC Educational Resources Information Center

    Courson, Roger; And Others

    This curriculum guide, the second part of a core curriculum for a rural agriculture program, consists of materials for use in presenting the final two units in a nine-unit course for high school vocational agriculture students living in rural areas. Addressed in the first unit are the following aspects of agricultural mechanics: selecting and…

  15. Perspectives on Influencing Aspects for Students' Acceptance of Multimedia Materials in Training Programs

    ERIC Educational Resources Information Center

    Córdova, Mayra Lucía González; Zermeño, Marcela Georgina Gómez; Mejía, Irma Antonia García

    2015-01-01

    This study was carried out in order to improve the understanding and learning of participants enrolled in face-to-face training programs, and to enhance their learning and retention of content through multimedia materials. A qualitative study was conducted to inquire about the perception of the participants and instructors of an Administrative…

  16. The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory

    SciTech Connect

    Steiner, S.D.

    1987-07-01

    This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

  17. 75 FR 15613 - Hazardous Materials Transportation; Registration and Fee Assessment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...PHMSA is amending the statutorily mandated registration and fee assessment program for persons who transport, or offer for transportation, certain categories and quantities of hazardous materials. For those registrants not qualifying as a small business or not-for-profit organization, PHMSA is increasing the annual fee from $975 (plus a $25 administrative fee) to $2,575 (plus a $25......

  18. Core I Materials for Rural Agricultural Programs. Units F-H.

    ERIC Educational Resources Information Center

    Ethridge, Jim; And Others

    These units of instructional materials and teaching aids are the final three of a series of eight designed for use in rural agriculture programs for students in grades 9 and 10. Covered in the unit on soil science and conservation of natural resources are collecting soil samples and applying soil sample test results. Growing vegetables and…

  19. Core I Materials for Rural Agricultural Programs. Units D-E.

    ERIC Educational Resources Information Center

    Ethridge, Jim; And Others

    These units of instructional materials and teaching aids are part of a series of eight designed for use in rural agriculture programs for students in grades 9 and 10. Covered in the unit on livestock science are understanding the livestock industry, identifying breeds of livestock and poultry, selecting livestock, and feeding livestock.…

  20. The Galaxy Plan in Industrial Education. [Materials] Developed in The Experienced Teacher Fellowship Program.

    ERIC Educational Resources Information Center

    McClea, Kenneth R., Ed.; And Others

    These materials inform school administrators of the rationale of the Detroit Galaxy Plan and provide procedures for implementing the Plan. This program of occupational education for secondary Grades 7 through 12 is planned for students who intend to enter college, apprenticeships, or employment after high school. The Plan, developed by 24…

  1. Applicability of Standards for Evaluations of Educational Programs, Projects and Materials in an International Setting.

    ERIC Educational Resources Information Center

    Marklund, Sixten

    1984-01-01

    While the "Standards for Evaluations of Educational Programs, Projects and Materials" provides a good checklist of prerequisites, such standards do not guarantee indisputable outcomes. Reanalysis of reading comprehension and mathematics mean achievement data from an international evaluation study illustrates how political bias can complicate…

  2. The Preservation Program Blueprint. Frontiers of Access to Library Materials, No. 6.

    ERIC Educational Resources Information Center

    Higginbotham, Barbra Buckner; Wild, Judith W.

    A complete guide to developing a library-wide preservation program, this book can help library staff to map out a system that is both preventative and curative. By decentralizing preservation activities and integrating them into ongoing library functions, libraries can preserve materials effectively, efficiently, and with buy-in from staff. The…

  3. Core I Materials for Metropolitan Agriculture/Horticulture Programs. Units G-J.

    ERIC Educational Resources Information Center

    Ethridge, Jim; And Others

    These units of instructional materials and teaching aids are the final four of a series of 10 designed for use in metropolitan agriculture/horticulture programs for students in grades 9 and 10. Covered in the unit on growing and managing horticultural crops are watering plants; pruning, pinching, and planting plants; using plant production…

  4. Programs, Services, Materials of the New York State Education Department for Black and Puerto Rican Studies.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This booklet provides a brief descriptive listing of programs and services, and materials and resources for black and Puerto Rican studies available at present, to be available in 1970-71, and in the planning stage. The services described are those of research, advisory, consulting, funding, and supportive categories. Part of the research services…

  5. Evaluation of the Selective Dissemination of Information (SDI) Program for the Aerospace Materials Information Center.

    ERIC Educational Resources Information Center

    Scheffler, F. L.; March, J. F.

    The Aerospace Materials Information Center (AMIC) Selective Dissemination of Information (SDI) program was evaluated by an interview technique after one year of operation. The data base for the SDI consists of the periodic document index records input to the AMIC system. The users are 63 engineers, scientists, and technical administrators at the…

  6. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  7. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  8. Survey of the US materials processing and manufacturing in space program

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  9. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    SciTech Connect

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  10. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    SciTech Connect

    Das, S.

    2003-01-23

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal

  11. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1984

    SciTech Connect

    Not Available

    1985-02-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1984 to 1988. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  12. Advanced Research and Technology Development Fossil Energy Materials Program. Quarterly progress report for the period ending September 30, 1983

    SciTech Connect

    Not Available

    1983-11-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986 in which projects are organized according to fossil energy technologies. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  13. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect

    Johnson, R.D.

    1999-06-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and

  14. Surface Gasification Materials Program. Semiannual progress report for the period ending March 31, 1985

    SciTech Connect

    Bradley, R.A.

    1985-06-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. One of the goals of the program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. Another goal is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and future large-scale plants can be properly selected and specified. Contents of this semiannual progress report include: (1) corrosion studies of plant materials surveillance tests; (2) slagging gasifier refractories - application/evaluation; (3) protective coatings and claddings - application/evaluation; (4) corrosion of structural ceramics in coal gasification environments; (5) advanced pressure vessel materials technology; (6) electroslag component casting; (7) production and evaluation of electroslag castings; (8) cost reduction of electroslag casting manufacturing process; and (9) quantitative microstructural characterization of steel casting.

  15. Influence of material removal programming on ion beam figuring of high-precision optical surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-09-01

    Ion beam figuring (IBF) provides a nanometer/subnanometer precision fabrication technology for optical components, where the surface materials on highlands are gradually removed by the physical sputtering effect. In this deterministic method, the figuring process is usually divided into several iterations and the sum of the removed material in each iteration is expected to approach the ideally removed material as nearly as possible. However, we find that the material removal programming in each iteration would influence the surface error convergence of the figuring process. The influence of material removal programming on the surface error evolution is investigated through the comparative study of the contour removal method (CRM) and the geometric proportion removal method (PRM). The research results indicate that the PRM can maintenance the smoothness of the surface topography during the whole figuring process, which would benefit the stable operation of the machine tool and avoid the production of mid-to-high spatial frequency surface errors. Additionally, the CRM only has the corrective effect on the area above the contour line in each iteration, which would result in the nonuniform convergence of the surface errors in various areas. All these advantages distinguish PRM as an appropriate material removal method for ultraprecision optical surfaces.

  16. The DARPA HUMS program: revolutionizing magnetic field sensors using multiferroic materials and atomic gas vapor cells

    NASA Astrophysics Data System (ADS)

    Coblenz, William S.; Wartenberg, Scott A.

    2012-06-01

    The Heterostructural Uncooled Magnetic Sensors (HUMS) program sponsored by the Defense Advanced Research Projects Agency (DARPA/DSO) is focused on developing magnetic field sensors that operate at room temperature with an ultra-sensitivity to enable applications such as through-wall imaging, perimeter fences, tagging/tracking, and other man-portable operations. Four teams of researchers are participating in the program, with Virginia Tech and University of Maryland leading multiferroic heterostructural materials development and Princeton University and the National Institute of Standards and Technology (NIST) leading atomic vapor cell development. Leveraging the strengths of these two technologies, each team has made advancements towards the program goal of ground-breaking sensitivity, reduced noise, and portability while operating under room temperature conditions. This paper summarizes the program's achievements so far and highlights the accomplishments made by each team.

  17. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    SciTech Connect

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`

  18. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    SciTech Connect

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  19. Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials

    SciTech Connect

    Trahey, N.M.; Smith, M.M.; Voeks, A.M.; Bracey, J.T.

    1986-12-01

    The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program. Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.

  20. Materials management FY 1995 site support program plan WBS 6.10.7

    SciTech Connect

    Dahlin, E.C.

    1994-09-01

    The Work Breakdown Structure is tabulated for the six main activities within the materials management site support program. Materials Management involves the receipt, storage, issuance, management and disposition of the government`s physical assets. Property Management involves maintaining acceptable levels of property accountability and proper utilization of government owned property. Warehousing involves the shipping, receiving, storage, issuance, and distribution of materials, parts, components and equipment required to support the ongoing operation of the Hanford Site. Inventory Management maintains appropriate levels of general supplies, spare parts, and essential materials to ensure availability of items required to support site operations is timely and provided at the lowest possible cost. Investment Recovery involves the identification and disposition of assets excess to the needs of the site through redeployment, recycling initiatives, and public sale of surplus property. Property Systems operate, maintain and enhance the development of cost effective data systems to control and administer multi-contractor personal property assets.

  1. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending September 30, 1984

    SciTech Connect

    Bradley, R.A.

    1984-11-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Progam has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1983 to 1987. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  2. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    SciTech Connect

    Kim, D.; Ghanem, R.

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  3. Department of Energy nuclear material physical protection program in the Republic of Kazakstan

    SciTech Connect

    Eras, A.; Berry, R.B.; Case, R.S.

    1997-09-01

    As part of the joint U.S. and Republic of Kazakstan nuclear Material Protection, Control, and Accounting (MPC{ampersand}A) program, the U.S. Department of Energy (DOE) is providing assistance at four nuclear facilities in Kazakstan. These facilities are the Ulba Metallurgical Plant, the National Nuclear Center (NNC) Institute of Atomic Energy at Kurchatov (IAE-K), the Mangyshlak Atomic Energy Complex (BN-350) Reactor, and the NNC Institute of Atomic Energy at Almaty (IAE-A). This paper describes the DOE MPC{ampersand}A physical protection program at each of the facilities.

  4. Materials science on parabolic aircraft: The FY 1987-1989 KC-135 microgravity test program

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Editor)

    1993-01-01

    This document covers research results from the KC-135 Materials Science Program managed by MSFC for the period FY87 through FY89. It follows the previous NASA Technical Memorandum for FY84-86 published in August 1988. This volume contains over 30 reports grouped into eight subject areas covering acceleration levels, space flight hardware, transport and interfacial studies, thermodynamics, containerless processing, welding, melt/crucible interactions, and directional solidification. The KC-135 materials science experiments during FY87-89 accomplished direct science, preparation for space flight experiments, and justification for new experiments in orbit.

  5. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    SciTech Connect

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and

  6. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    SciTech Connect

    1997-07-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  7. Publications of the Oak Ridge National Laboratory Fossil Energy Program and the AR and TD Materials Program, April 1, 1995--March 31, 1997

    SciTech Connect

    Carlson, P.T.

    1997-07-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of April 1, 1995, through March 31, 1997, and is a supplement to the earlier bibliographies in this series. The publications listed in this document have been limited to topical reports, open literature publications, full-length papers in published proceedings of conferences, and books and book articles. A major activity of the Fossil Energy Program is the Advanced Research and Technology Development (AR and TD) Materials Program. The objective of the AR and TD Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. Beginning with this report, publications of the AR and TD Materials Program, previously compiled in separate reports, and publications from non-materials activities of the Fossil Energy Program will be combined in a single report.

  8. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  9. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  10. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  11. A Weibull brittle material failure model for the ABAQUS computer program

    SciTech Connect

    Bennett, J.

    1991-08-01

    A statistical failure theory for brittle materials that traces its origins to the Weibull distribution function is developed for use in the general purpose ABAQUS finite element computer program. One of the fundamental assumptions for this development is that Mode 1 microfractures perpendicular to the direction of the principal stress contribute independently to the fast fracture. The theory is implemented by a user subroutine for ABAQUS. Example problems illustrating the capability and accuracy of the model are given. 24 refs., 12 figs.

  12. 22 CFR 9a.1 - Security of certain information and material related to the International Energy Program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... related to the International Energy Program. 9a.1 Section 9a.1 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS APPLICABLE TO CERTAIN INTERNATIONAL ENERGY PROGRAMS; RELATED MATERIAL § 9a.1 Security of certain information and material related to the International Energy...

  13. 22 CFR 9a.1 - Security of certain information and material related to the International Energy Program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... related to the International Energy Program. 9a.1 Section 9a.1 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS APPLICABLE TO CERTAIN INTERNATIONAL ENERGY PROGRAMS; RELATED MATERIAL § 9a.1 Security of certain information and material related to the International Energy...

  14. 22 CFR 9a.1 - Security of certain information and material related to the International Energy Program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... related to the International Energy Program. 9a.1 Section 9a.1 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS APPLICABLE TO CERTAIN INTERNATIONAL ENERGY PROGRAMS; RELATED MATERIAL § 9a.1 Security of certain information and material related to the International Energy...

  15. 22 CFR 9a.1 - Security of certain information and material related to the International Energy Program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... related to the International Energy Program. 9a.1 Section 9a.1 Foreign Relations DEPARTMENT OF STATE GENERAL SECURITY INFORMATION REGULATIONS APPLICABLE TO CERTAIN INTERNATIONAL ENERGY PROGRAMS; RELATED MATERIAL § 9a.1 Security of certain information and material related to the International Energy...

  16. Propulsion System Materials Program semiannual progress report for April 1995 through September 1995

    SciTech Connect

    1996-04-01

    Significant accomplishments in fabricating ceramic components for the DOE, NASA, and DOD advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a 5-year program plan was developed with extensive input from private industry. During the course of the Propulsion System Materials Program, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. To this end, the direction of the Propulsion System Materials Program is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported to include near-term (5--10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  17. Proactive Management of Materials Degradation - A Review of Principles and Programs

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

    2008-08-28

    The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

  18. Propulsion system materials program. Semiannual progress report, October 1995--March 1996

    SciTech Connect

    Johnson, D.R.

    1996-07-01

    This portion of the program is identified as program element 1.0 within the work breakdown structure (WBS). It contains five subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, (4) Joining, and (5) Ceramic Machining. Ceramic research conducted within the Monolithics subelement currently includes work activities on low Cost Si{sub 3}N{sub 4} powder, green state ceramic fabrication, characterization, and densification, and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon nitride and oxide-based composites, and low expansion materials. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-based coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong, stable joints between zirconia ceramics and iron-base alloys. As part of an expanded effort to reduce the cost of ceramic components, a new initiative in cost effective machining has been started. A major objective of the research in the Materials and Processing program element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide U.S. companies with new or improved ways for producing economical, highly reliable ceramic components for advanced heat engines.

  19. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    SciTech Connect

    Das, S.

    2002-01-11

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percent of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.

  20. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    SciTech Connect

    Not Available

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  1. Propellant/material compatibility program and results: Ten-year milestones

    NASA Technical Reports Server (NTRS)

    Moran, C.; Bjorkland, R.

    1982-01-01

    The analyses and results of a test program to establish the effects of long term (10 years or more) contact of materials with earth-storable propellants for the purpose of designing chemical propulsion system components which are used for current as well as future planetary spacecraft are described. The period from the publication of JPL TM 33-779 IN 1976 through the testing accomplished in 1981 is covered. The following propellants are reported herein: hydrazine, monomethylhydrazine and nitrogen tetroxide. Materials included the following: aluminum alloys, corrosion resistant steels and a titanium alloy. The results of the testing of more than 80 specimens are included. Material ratings relative to the ten year milepost were assigned. Some evidence of propellant decomposition was found. Titanium is rated as acceptable for ten year applications. Aluminum and stainless steel alloys are also rated as acceptable with few restrictions.

  2. Geochemistry and materials studies in support of the Magma Energy Extraction Program

    SciTech Connect

    Westrich, H.R.; Weirick, L.J.

    1986-01-01

    Geochemistry and materials studies are being performed in support of the Magma Energy Extraction Program. The scope of the studies is dictated by the sites under consideration and the designs of the drilling and energy extraction systems. The work has been largely restricted to characterizing magmatic environments at sites of interest and testing engineering materials in laboratory simulated rhyolite magmatic environments. The behavior of 17 commercially available materials has been examined at magmatic conditions. Analysis of reaction products reveal that oxidation, and not sulfidation, is the main corrosion problem for most alloys in rhyolite, and that reaction with other magmatic components is limited. Considerations of corrosion resistance, high-temperature strength, and cost indicate nickel-base superalloys offer the most promise as candidates for use in rhyolitic magma.

  3. Status of U.S. programs for material protection, control & accounting assistance to Ukraine and Kazakstan

    SciTech Connect

    Roche, C.T.; Zinneman, T.E.; Rudolph, R.R.

    1995-12-01

    The United States is one of several donor states providing technical assistance to the Newly Independent States (NIS) of the Former Soviet Union (FSU) for improving their systems for control of nuclear materials. Ukraine and Kazakstan have significant nuclear energy programs. Both countries have committed to nonproliferation of nuclear weapons. They have signed the NPT and have safeguards agreements with the U.S. concerning development of state systems of control, accounting and physical protection of nuclear materials. As directed by the DOE - International Safeguards Division (now the DOE - Russia/NIS Nuclear Materials Security Task Force), technical specialists from several national laboratories, including Argonne, Los Alamos, Oak Ridge, Pacific Northwest and Sandia, as well as representatives of other U.S. Government organizations, such as the NRC, DOD/DNA and the New Brunswick Laboratory, are interacting with government regulatory and facility personnel of Ukraine and Kazakstan. Argonne has program coordination responsibilities for both countries. In support of agreements between the U.S. and Ukraine and the U.S. and Kazakstan, the DOE is responsible for providing technical assistance and training to aid in the evaluation, design, development, and implementation of nuclear material safeguards. This assistance includes: (1) information systems for tracking and reporting the location of nuclear materials, (2) application of nuclear measurement techniques for verifying inventories, (3) material control and accounting (MC&A) systems, and (4) physical protection (PP) systems. Site survey teams, including both MC&A and PP experts from several national labs, have visited Ukraine and Kazakstan. This paper summarizes activities to date and future plans.

  4. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    SciTech Connect

    Judkins, R.R.; Cole, N.C.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  5. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1983

    SciTech Connect

    Bradley, R.A.

    1984-03-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct reseach and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982 to 1986 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  6. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending March 31, 1984

    SciTech Connect

    Not Available

    1984-05-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating subcontractor organizations (technically monitored by Program staff members at ORNL and Argonne National Laboratory (ANL)). The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. Distribution is as shown on pages 467-475. Future reports will be issued on a quarterly basis to a similar distribution. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FYs 1982-86 (Ref. 1) in which projects are organized according to fossil energy technologies. A schematic summary of this organization is provided in Fig. 2. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  7. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1982

    SciTech Connect

    Not Available

    1983-02-01

    The objective of the AR and TD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. It is the intent of the AR and TD Fossil Energy Materials Program to sponsor materials research which is generic to a number of fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  8. Pilot program to assess proposed basic quality assurance requirements in the medical use of byproduct materials

    SciTech Connect

    Kaplan, E.; Nelson, K.; Meinhold, C.B. )

    1991-10-01

    In January 1990, the Nuclear Regulatory Commission (NRC) proposed amendments to 10 CFR Part 35 that would require medical licensees using byproduct material to establish and implement a basic quality assurance program. A 60-day real-world trial of the proposed rules was initiated to obtain information beyond that generally found through standard public comment procedures. Volunteers from randomly selected institutions had opportunities to review the details of the proposed regulations and to implement these rules on a daily basis during the trial. The participating institutions were then asked to evaluate the proposed regulations based on their personal experiences. The pilot project sought to determine whether medical institutions could develop written quality assurance programs that would meet the eight performance-based objectives of proposed Section 35.35. In addition, the NRC wanted to learn from these volunteers if they had any recommendations on how the rule could be revised to minimized its cost and to clarify its objectives without decreasing its effectiveness. It was found that licensees could develop acceptable QA programs under a performance-based approach, that most licensee programs did meet the proposed objectives, and that most written QA plans would require consultations with NRC or Agreement State personnel before they would fully meet all objectives of proposed Section 35.35. This report describes the overall pilot program. The methodology used to select and assemble the group of participating licensees is presented. The various workshops and evaluation questionnaires are discussed, and detailed findings are presented. 7 refs.

  9. 22 CFR 9a.1 - Security of certain information and material related to the International Energy Program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Security of certain information and material... GENERAL SECURITY INFORMATION REGULATIONS APPLICABLE TO CERTAIN INTERNATIONAL ENERGY PROGRAMS; RELATED MATERIAL § 9a.1 Security of certain information and material related to the International Energy...

  10. Beyond Coordination: Joint Planning and Program Execution. The IHPRPT Materials Working Group

    NASA Technical Reports Server (NTRS)

    Stropki, Michael A.; Cleyrat, Danial A.; Clinton, Raymond G., Jr.; Rogacki, John R. (Technical Monitor)

    2000-01-01

    "Partnership is more than just coordination," stated then-Commander of the Air Force Research Laboratory (AFRL), Major General Dick Paul (USAF-Ret), at this year's National Space and Missile Materials Symposium. His comment referred to the example of the joint planning and program execution provided by the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Materials Working Group (IMWG). Most people agree that fiscal pressures imposed by shrinking budgets have made it extremely difficult to build upon our existing technical capabilities. In times of sufficient budgets, building advanced systems poses no major difficulties. However, with today's budgets, realizing enhanced capabilities and developing advanced systems often comes at an unaffordable cost. Overcoming this problem represents both a challenge and an opportunity to develop new business practices that allow us to develop advanced technologies within the restrictions imposed by current funding levels. Coordination of technology developments between different government agencies and organizations is a valuable tool for technology transfer. However, rarely do the newly developed technologies have direct applicability to other ongoing programs. Technology requirements are typically determined up-front during the program planning stage so that schedule risk can be minimized. The problem with this process is that the costs associated with the technology development are often borne by a single program. Additionally, the potential exists for duplication of technical effort. Changing this paradigm is a difficult process but one that can be extremely worthwhile should the right opportunity arise. The IMWG is one such example where NASA, the DoD, and industry have developed joint requirements that are intended to satisfy multiple program needs. More than mere coordination, the organizations comprising the group come together as partners, sharing information and resources, proceeding from a joint roadmap.

  11. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  12. Laboratory-scale testing of non-consumable anode materials: Inert Electrodes Program

    SciTech Connect

    Marschman, S.C.

    1989-03-01

    Development of inert anode materials for use in the electrolytic production of aluminum is one of the major goals of the Inert Electrodes Program sponsored by the US Department of Energy, Office of Industrial Programs, at Pacific Northwest Laboratory. The objectives of the Materials Development and Testing Task include the selection, fabrication, and evaluation of candidate non-consumable anode materials. Research performed in FY 1987 focused primarily on the development and evaluation of cermets that are based on the two-phase oxide system NiO/endash/NiFe/sub 2/O/sub 4/ and contain a third, electrically conductive metal phase composed primarily of copper and nickel. The efforts of this task were focused on three areas: materials fabrication, small-scale materials testing, and laboratory-scale testing. This report summarizes the development and testing results of the laboratory-scale testing effort during FY 1987. The laboratory-scale electrolysis testing effort was instrumental in partially determining electrolysis cell operating parameters. Although not optimized, NiO/endash/NiFe/sub 2/O/sub 4//endash/Cu-based cermets were successfully operated for 20 h in cryolite-based electrolytes ranging in bath ratios from 1.1 to 1.35, in electrolytes that contained 1.5 wt % LiF, and at conditions slightly less than Al/sub 2/O/sub 3/ saturation. The operating conditions that lead to anode degradation have been partly identified, and rudimentary control methods have been developed to ensure proper operation of small electrolysis cells using nonconsumable anodes. 11 figs., 1 tab.

  13. Progress report on the accelerator production of tritium materials irradiation program

    SciTech Connect

    Maloy, S.A.; Sommer, W.F.; Brown, R.D.; Roberts, J.E.

    1997-05-01

    The Accelerator Production of Tritium (APT) project is developing an accelerator and a spoliation neutron source capable of producing tritium through neutron capture on He-3. A high atomic weight target is used to produce neutrons that are then multiplied and moderated in a blanket prior to capture. Materials used in the target and blanket region of an APT facility will be subjected to several different and mixed particle radiation environments; high energy protons (1-2 GeV), protons in the 20 MeV range, high energy neutrons, and low energy neutrons, depending on position in the target and blanket. Flux levels exceed 10{sup 14}/cm{sup 2}s in some areas. The APT project is sponsoring an irradiation damage effects program that will generate the first data-base for materials exposed to high energy particles typical of spallation neutron sources. The program includes a number of candidate materials in small specimen and model component form and uses the Los Alamos Spallation Radiation Effects Facility (LASREF) at the 800 MeV, Los Alamos Neutron Science Center (LANSCE) accelerator.

  14. Overview of demonstrator program of Japanese Smart Materials and Structure System project

    NASA Astrophysics Data System (ADS)

    Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo

    2003-08-01

    The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of

  15. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect

    1995-12-01

    materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  16. Fuzzy multi-objective chance-constrained programming model for hazardous materials transportation

    NASA Astrophysics Data System (ADS)

    Du, Jiaoman; Yu, Lean; Li, Xiang

    2016-04-01

    Hazardous materials transportation is an important and hot issue of public safety. Based on the shortest path model, this paper presents a fuzzy multi-objective programming model that minimizes the transportation risk to life, travel time and fuel consumption. First, we present the risk model, travel time model and fuel consumption model. Furthermore, we formulate a chance-constrained programming model within the framework of credibility theory, in which the lengths of arcs in the transportation network are assumed to be fuzzy variables. A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is designed for finding a satisfactory solution. Finally, some numerical examples are given to demonstrate the efficiency of the proposed model and algorithm.

  17. A carbon-carbon composite materials development program for fusion energy applications

    SciTech Connect

    Burchell, T.D.; Eatherly, W.P. ); Engle, G.B. ); Hollenberg, G.W. )

    1992-10-01

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible.

  18. Long term materials test program. Quarterly report, April-June 1983

    SciTech Connect

    Not Available

    1984-01-01

    Corrosion and erosion/corrosion testing of gas turbine materials in the effluent from a pressurized fluidized bed coal combustor continues under the Long Term Materials Test program. Two 1000-hour erosion/corrosion screening tests of twelve candidate gas turbine vane and blade base alloys and a variety of protective coating systems have been completed. Test conditions included 1350/sup 0/F, 800 to 900 ft/s and particulate loadings of 30 to 90 ppM. Erosion/corrosion degradation rates of 1 to 4 mils/1000 hours were observed with corrosion predominant in areas of particle impaction. FeCrAlY, CoCrAlY and rhodium aluminide coatings show significantly better resistance to degradation than unprotected base alloys, aluminide or platinum-aluminide diffusion coatings.

  19. PISCES Program: Plasma-materials interactions and edge-plasma physics research

    SciTech Connect

    Conn, R.W.; Hirooka, Y.

    1992-07-01

    This program investigates and characterizes the behavior of materials under plasma bombordment, in divertor regions. The PISCES facility is used to study divertor and plasma edge management concepts (in particular gas target divertors), as well as edge plasma turbulence and transport. The plasma source consists of a hot LaB[sub 6] cathode with an annular, water-cooled anode and attached drift tube. This cross sectional area of the plasma can be adjusted between 3 and 10 cm. A fast scanning diagnostic probe system was used for mapping plasma density profiles during biased limiter and divertor simulation experiments. Some experimental data are given on: (1) materials and surface physics, (2) edge plasma physics, and (3) a theoretical analysis of edge plasma modelling.

  20. The EBR-II materials-surveillance program. 5: Results of SURV-5.

    SciTech Connect

    Ruther, W.E.; Staffon, J.D.; Carlson, B.G.; Allen, T.R.

    1998-01-01

    In March of 1965, a set of surveillance (SURV) samples was placed in the EBR-II reactor to determine the effect of irradiation, thermal aging, and sodium corrosion on reactor materials. Eight subassemblies were placed into row 12 positions of EBR-II to determine the effect of irradiation at 370 C. Two subassemblies were placed into the primary sodium basket to determine the effect of thermal aging at 370 C. One half of all samples were exposed to primary system sodium while one half were sealed in capsules with a helium atmosphere. Fifteen different structural materials were tested in the SURV program. In this work, the properties of these materials irradiated at 370 C to a total fluence of 3.2 {times} 10{sup 22} n/cm{sup 2} were determined. These materials are the fifth set of irradiated subassemblies to be examined as part of the SURV program (SURV-5). The properties analyzed were weight, density, microstructure, hardness, tensile and yield strength, and fracture resistance. Of all the alloys examined in SURV-5, only Berylco-25 showed any significant weight loss. Stainless steel (both 304 and 347) had the largest density decrease, although the density decrease from irradiation for all alloys was less than 0.4 percent. The microstructure of both Berylco-25 and the aluminum-bronze alloy was altered significantly. Iron- and nickel-base alloys showed little change in microstructure. Austenitic steels (304 and 347) harden with irradiation. The hardness of Inconel X750 did not change significantly with irradiation. The ultimate tensile strength of Inconel X750, 304 stainless steel, 420 stainless steel and welded 304 changed little due to a fluence increase from 2.2 {times} 10{sup 22} n/cm{sup 2} (the maximum fluence of the SURV-4 samples) to 3.2 {times} 10{sup 22} n/cm{sup 2}.

  1. Helium embrittlement model and program plan for weldability of ITER materials

    SciTech Connect

    Louthan, M.R. Jr.; Kanne, W.R. Jr.; Tosten, M.H.; Rankin, D.T.; Cross, B.J.

    1997-02-01

    This report presents a refined model of how helium embrittles irradiated stainless steel during welding. The model was developed based on experimental observations drawn from experience at the Savannah River Site and from an extensive literature search. The model shows how helium content, stress, and temperature interact to produce embrittlement. The model takes into account defect structure, time, and gradients in stress, temperature and composition. The report also proposes an experimental program based on the refined helium embrittlement model. A parametric study of the effect of initial defect density on the resulting helium bubble distribution and weldability of tritium aged material is proposed to demonstrate the roll that defects play in embrittlement. This study should include samples charged using vastly different aging times to obtain equivalent helium contents. Additionally, studies to establish the minimal sample thickness and size are needed for extrapolation to real structural materials. The results of these studies should provide a technical basis for the use of tritium aged materials to predict the weldability of irradiated structures. Use of tritium charged and aged material would provide a cost effective approach to developing weld repair techniques for ITER components.

  2. Integrated design and synthesis of smart material systems: an overview of the ARPA SPICES program

    NASA Astrophysics Data System (ADS)

    Jacobs, Jack H.

    1995-05-01

    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) program is comprised of a consortium of industrial, academic and government labs to develop cost effective material processing and synthesis technologies to enable new products using active vibration suppression and control devices to be brought to market. Each team member possesses a specialty in the area of smart structures which has been focused towards the development of several actively controlled smart material systems. Since smart structures involve the integration of multiple engineering disciplines, it is the objective of the consortium to establish cost effective design processes between this multiorganizational team for future incorporation of this new technology into each members respective product lines. To accomplish this task, the disciplines of materials, manufacturing, analytical modeling, actuation, sensing, signal processing, and control had to be synthesized into a unified approach between all ten consortium members. The process developed for intelligent structural systems can truly be classified as multiorganization/multidiciplined Integrated Product Development. This process is described in detail as it applies to the SPICES development articles and smart material fabrication in general.

  3. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  4. 76 FR 72005 - NUREG-1556, Volume 2, Revision 1, “Consolidated Guidance About Materials Licenses Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...-Specific Guidance About Industrial Radiography Licenses;'' Draft Guidance for Comment AGENCY: Nuclear... Regulatory Commission (NRC) is revising its licensing guidance for industrial radiography licensees. The NRC... Guidance About Materials Licenses: Program- Specific Guidance About Industrial Radiography Licenses,...

  5. Reactor materials program process water piping: K Reactor indirect failure probability

    SciTech Connect

    Daugherty, W.L.

    1988-05-09

    The hypothetical maximum rate loss of coolant accident (LOCA) for the Savannah River Production Reactors is the abrupt double-ended guillotine break (DEGB) of a large process water pipe. This accident is not considered credible in light of the low applied stresses and the inherent ductility of the piping material. The Reactor Materials Program was initiated to provide the technical basis for an alternate, credible design basis accident. The major thrust of this program is to develop an alternate maximum rate LOCA by deterministic means. Additionally, the probability of a DEGB is being determined; to show that in addition to being mechanistically implausible, a DEGB is also highly improbable. The probability of a DEGB of the piping has been evaluated in two parts: failure by direct means, and indirectly-induced failure. Failure by direct means can be credibly postulated to occur as an undetected crack grows to the point of instability, causing a large pipe break. Indirect failure of the piping can be triggered by an earthquake which causes other reactor components or the reactor building to fall on the piping or pull it from its anchor points. The indirect failure of the piping in K reactor is the subject of this report. 5 refs.

  6. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  7. Implementing an operational program for determining the radiological status of material and equipment.

    PubMed

    Dillon, Jon T

    2013-06-01

    The National Ignition Facility at the Lawrence Livermore National Laboratory has implemented a protocol for evaluating and releasing material and equipment that is potentially "volumetrically contaminated" as a result of neutron activation and shown not to be "distinguishable from background." This protocol is an important element of the National Ignition Facility's operational program as the U.S. Department of Energy's (DOE) Order 458.1, Radiation Protection of the Public and the Environment, requires DOE approval of the process used to release volumetrically contaminated personal property and establishes a dose constraint of 10 µSv y(-1) (1 mrem y(-1)) for clearance of such items. The protocol uses process and historical knowledge to determine when material and equipment may be potentially impacted and field measurements to verify it has been impacted (i.e., is distinguishable from background). Material and equipment that do not meet the distinguishable-from-background criterion are considered to be non-impacted and outside the scope of the Order and may be released from radiological control. This paper provides the technical basis and methodology for determining whether or not there is radioactivity distinguishable from background in the evaluated material and equipment and documents that the measurement sensitivity exceeds the unrestricted release criteria specified in the American National Standards Institute report N13.12-1999, Surface and Volume Radioactivity Standards for Clearance. Pending DOE approval, this protocol could be used as the basis for releasing materials and equipment that exceed the distinguishable-from-background criterion and are below the specified threshold for unrestricted release. PMID:23629068

  8. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect

    Carlson, P.T.

    1993-01-01

    Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  9. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect

    Carlson, P.T.

    1993-05-01

    Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  10. AR and TD Fossil-Energy Materials Program. Quarterly progress report for the period ending March 31, 1983

    SciTech Connect

    Not Available

    1983-05-01

    The objective of the AR and TD Fossil-Energy Materials Program is to conduct research and developmet on materials for fossil-energy applications with a focus on the longer-term and generic needs of the various fossil-fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil-energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The management of the Program has been decentralized to DOE Oak Ridge Operations Office (ORO) and the Oak Ridge National Laboratory (ORNL) as technical support contractor. The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. Distribution is as shown on pages 439-446. Future reports will be issued on a quarterly basis to a similar distribution. We hope thie series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  11. The East Asian Resource & Education Program at Yale. A Catalogue of A.V. Materials, Resources, and Organizations.

    ERIC Educational Resources Information Center

    White, Caryn

    This document consists of an annotated bibliography of publications, audio visual materials, and other items available through Yale University's East Asian Resource and Education Program. The document begins with a discussion of the program, its goals and objectives, teacher and school projects, publications, and special events. There is also a…

  12. Radiation shielding materials characterization in the MoMa-Count program and further evolutions

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare

    In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.

  13. Instruction in the responsible conduct of research: an inventory of programs and materials within CTSAs.

    PubMed

    DuBois, James M; Schilling, Debie A; Heitman, Elizabeth; Steneck, Nicholas H; Kon, Alexander A

    2010-06-01

    The National Institutes of Health (NIH) require instruction in the responsible conduct of research (RCR) as a component of any Clinical and Translational Science Award (CTSA). The Educational Materials Group of the NIH CTSA Consortium's Clinical Research Ethics Key Function Committee (CRE-KFC) conducted a survey of the 38 institutions that held CTSA funding as of January 2009 to determine how they satisfy RCR training requirements. An 8-item questionnaire was sent by email to directors of the Clinical Research Ethics, the Educational and Career Development, and the Regulatory Knowledge cores. We received 78 completed surveys from 38 CTSAs (100%). We found that there is no unified approach to RCR training across CTSAs, many programs lack a coherent plan for RCR instruction, and most CTSAs have not developed unique instructional materials tailored to the needs of clinical and translational scientists. We recommend collaboration among CTSAs and across CTSA key function committees to address these weaknesses. We also requested that institutions send electronic copies of original RCR training materials to share among CTSAs via the CTSpedia website. Twenty institutions submitted at least one educational product. The CTSpedia now contains more than 90 RCR resources. PMID:20590680

  14. Marine Education: A Bibliography of Educational Materials Available from the Nation's Sea Grant College Programs. Fifth Edition.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Sea Grant Coll. Program.

    This bibliography features a compilation of textbooks, curricular materials, and other marine education resource materials developed by individual Sea Grant programs throughout the Unites States. The listing is intended to be used as a tool for teachers and other individuals interested in helping students explore and understand our oceans and…

  15. Core materials development for the fuel cycle R&D program

    NASA Astrophysics Data System (ADS)

    Maloy, S. A.; Toloczko, M.; Cole, J.; Byun, T. S.

    2011-08-01

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels' fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 °C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 °C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (˜400 MPa) and a large increase in DBTT (up to 230 °C) for specimens irradiated at 383 °C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 °C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide

  16. Core Materials Development for the Fuel Cycle R&D Program

    SciTech Connect

    S. A. Maloy; M. Toloczko; J. Cole; T. S. Byun

    2011-08-01

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (greater than 300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress ({approx}400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous

  17. Core materials development for the fuel cycle R&D program

    SciTech Connect

    Toloczko, M; Maloy, S; Cole, James I.; Byun, Thak Sang

    2011-01-01

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350 750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions.

  18. Core materials development for the fuel cycle R&D program

    SciTech Connect

    Maloy, S. A.; Toloczko, Mychailo B.; Cole, J. I.; Byun, Thak Sang

    2011-12-31

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels’ fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350– 750 °C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 °C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (~400 MPa) and a large increase in DBTT (up to 230 °C) for specimens irradiated at 383 °C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 °C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous

  19. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  20. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  1. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    SciTech Connect

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  2. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-25

    Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

  3. COMGEN: A computer program for generating finite element models of composite materials at the micro level

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    1990-01-01

    COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.

  4. Mast material test program (MAMATEP). [for Solar Array Assembly of Space Station Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The MAMATEP program, which is aimed at verifying the need for and evaluating the performance of various protection techniques for the solar array assembly mast of the Space Station photovoltaic power module, is discussed. Coated and uncoated mast material samples have been environmentally tested and evaluated, before and after testing, in terms of mass and bending modulus. The protective coatings include CV-1144 silicone, a Ni/Al/InSn eutectic, and an open-weave Al braid. Long-term plasma asher results from unprotected samples indicate that, even though fiberglass-epoxy samples degrade, a protection technique may not be necessary to ensure structural integrity. A protection technique, however, may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  5. GAMIDEN: a program to aid in the identification of unknown materials by gamma-ray spectroscopy

    SciTech Connect

    Howerton, R.J.

    1983-05-10

    The intent of the computer code GAMIDEN is to help identify isotopes by their gamma-ray emissions and thus to assist in the nondestructive assay of unknown materials. From both radioactive decays and neutron captures, GAMIDEN searches GAMTOT83, a file of gamma-ray spectra, for matches with observed photon energies. This report describes the search procedure, outlines the use of the code, and gives an example. The code is designed to operate on the CRAY 1 computer at Lawrence Livermore National Laboratory (LLNL). It is written in standard Fortran (ANSI) for the most part but contains some LRLTRAN instructions to make use of the Livermore time-sharing system (LTSS). The code uses about 545,000 words of memory. Typical problems run in about 45 s. The source program and the data file are available on request.

  6. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    SciTech Connect

    Carlson, P.T.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  7. Long-term materials test program. Quarterly report, January-March 1983

    SciTech Connect

    1984-03-01

    Exposure of gas turbine materials to a PFBC effluent under the Long-Term Materials Test Program has reached 1507 hours. Unprotected nickel and cobalt base blade and vane alloys show susceptibility to hot corrosion at 1500/sup 0/F (gas temperature), 1300/sup 0/F, and 1100/sup 0/F (air-cooled pins). Precious metal aluminide and M (Co,Fe) CrAlY overlay coatings continue to show good resistance to corrosion above 1450/sup 0/F, but are susceptible to varying degrees of pitting attack between 1050 and 1300/sup 0/F. Significant erosion/corrosion degradation of both base alloys and protective coatings/claddings has been observed on airfoil specimens exposed at 1350/sup 0/F, 800 to 900 fps and dust loadings less than 100 ppM for 1085 hours. Corrosion predominately occurred in areas of direct particle impaction; i.e., leading edge and pressure surface, indicating an erosion/corrosion synergism. At gas velocities of 1200 to 1400 fps, a platinum-aluminide coated IN-738 pin experienced a metal recession rate of 8 mils/1000-hours. The PFBC facility continues to show excellent operational reliability, accumulating over 1100 test hours this quarter. The only concern from an operations standpoint is the gradual thinning of the in-bed heat exchanger tubing at a rate of about 5 mils/100 hours off the diameter.

  8. Safeguards Material Control and Accounting Program. Quarterly report, April-June 1980

    SciTech Connect

    Poggio, A.J.; Dunn, D.R.

    1980-12-01

    This report summarizes the April-June 1980 activities of the Safeguards Material and Accounting Program sponsored by the US Nuclear Regulatory Commission (NRC) at the Lawrence Livermore National Laboratory. Progress is described on the application and further development of computer-based methodologies for assessing the vulnerabilities of MC and A systems in nuclear fuel-cycle facilities. The application effort involved an assessment of a scrap processing facility with the Structured Assessment Approach (SAA) methodology. The development effort concentrated on making the SAA more user-oriented. Work continued in providing technical analyses to assist the NRC in its development of the forthcoming MC and A upgrade rule. The technical analyses have involved value-impact studies on the draft MC and A upgrade rule using the LLNL Aggregrated Systems Model; specifically, progress has been made on the development of five MC and A performance measures. Other work has included the development of four protection principles for protecting MC and A data from falsification. We also describe progress in analyzing the actual and potential value of an NRC interfacility material accounting system for detecting data falsification.

  9. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  10. US/Russian program in materials protection, control and accounting at the RRC Kurchatov Institute: 1997--1998

    SciTech Connect

    Sukhoruchkin, V.; Rumyantsev, A.; Shmelev, V.

    1998-12-31

    Six US Department of Energy Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute to improve nuclear material protection, control and accounting (MPC and A) at Kurchatov. In 1997--1998 the primary thrust of this program has been directed to Building 106, which houses a number of test reactors and critical facilities. Substantial improvements in physical protection, upgrades in the physical inventory taking procedures, installation of equipment for the computerized materials accounting system, and installation of nuclear material portal monitors and neutron-based measurement equipment are being carried out at this facility. Software for the computerized accounting system, named KI-MACS, has been developed at Kurchatov and the system has been fully integrated with the bar code printing and reading equipment, electronic scales, and nondestructive assay equipment provided under this program. Additional 1997--1998 activities at Kurchatov include continuation of a tamper indicating device program, vulnerability assessments of several facilities, hosting of a Russian-American Workshop on Fissile Material Control and Accountability at Critical Facilities, and the development of accounting procedures for transfers of nuclear materials between material balance areas.

  11. AR and TD Fossil Energy Materials Program. Quarterly progress report for the period ending December 31, 1981

    SciTech Connect

    Not Available

    1982-04-01

    The ORNL Fossil Energy Materials Program Office compiles and issues this combined quarterly progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1982-1986 in which projects are organized according to fossil energy technologies. This report is divided into parts and chapters with each part describing projects related to a particular fossil energy technology. Chapters within a part provide details of the various projects associated with that technology. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program. Plans for the program will be issued annually. A draft of the program plan for FY 1982 to 1986 has been prepared and is in the review process. The implementation of these plans will be reflected by these quarterly progress reports, and this dissemination of information will bw augmented by topical or final reports as appropriate.

  12. Surface gasification materials program. Semiannual progress report for the period ending September 30, 1983. [Mountain fuel resources

    SciTech Connect

    Bradley, R.A.

    1983-11-01

    The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. One of the goals of the program is to evaluate innovative fabrication methods which have the potential to lower costs and improve reliability and safety for gasifier vessels and components. Another goal is to conduct engineering-scale development and application of materials for coal gasification systems to ensure that the materials of construction for pilot plants and future large-scale plants can be properly selected and specified. Contents of this report are: (1) plant materials surveillance tests; (2) slagging gasifier refractories; (3) protective coatings and claddings; (4) ceramic fabrication/application technology; (5) ceramic application technology - brittle material design; (6) advanced pressure vessel materials technology; (7) electroslag component casting; (8) production and evaluation of electroslag castings; (9) cost reduction of the electroslag casting manufacturing process; (10) quantitative microstructural characterization of steel castings; (11) materials review and component failure analysis in support of coal gasification process and plants; and (12) process plant materials review, evaluation, and support.

  13. The Infrastructure Necessary to Support a Sustainable Material Protection, Control and Accounting (MPC&A) Program in Russia

    SciTech Connect

    Bachner, Katherine M.; Mladineo, Stephen V.

    2011-07-20

    The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support the Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.

  14. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1979-June 30, 1979

    SciTech Connect

    Not Available

    1980-01-25

    The results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  15. Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979

    SciTech Connect

    Not Available

    1980-03-07

    The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

  16. U.S. program on materials technology for ultra-supercritical coal power plants

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Henry, J. F.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R.

    2005-06-01

    The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide, since the energy crisis in the 1970s. The need to reduce CO2 emissions has recently provided an additional incentive to increase efficiency. More recently, interest has been evinced in advanced combustion technologies utilizing oxygen instead of air for combustion. The main enabling technology in achieving the above goals is the development of stronger high temperature materials. Extensive research-and-development programs have resulted in numerous high-strength alloys for heavy section piping and for tubing needed to build boilers. The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760 °C (1400 °F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650 °C (1200 °F) and 800 °C (1475 °F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project.

  17. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  18. The MIRTE Experimental Program: An Opportunity to Test Structural Materials in Various Configurations in Thermal Energy Spectrum

    SciTech Connect

    Leclaire, Nicolas; Le Dauphin, Francois-Xavier; Duhamel, Isabelle; Briggs, Blair; Piot, Jerome; Rennesson, Malvina; Laville, Arnaud

    2014-11-04

    The MIRTE (Materials in Interacting and Reflecting configurations, all Thicknesses) program was established to answer the needs of criticality safety practitioners in terms of experimental validation of structural materials and to possibly contribute to nuclear data improvement, which ultimately supports reactor safety analysis as well. MIRTE took the shape of a collaboration between the AREVA and ANDRA French industrialists and a noncommercial international funding partner such as the U.S. Department of Energy. The aim of this paper is to present the configurations of the MIRTE 1 and MIRTE 2 programs and to highlight the results of the titanium experiments recently published in the International Handbook of Evaluated Criticality Safety Benchmark Experiments.

  19. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    SciTech Connect

    Myers, B. R.; Brummond, W.; Armantrout, G.; Shaw, H.; Jantzen, C. M.; Jostons, A.; McKibben, M.; Strachan, D.; Vienna, J. D.

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between the forms

  20. Phase 2 STS new user development program. Volume 5: Informational materials

    NASA Technical Reports Server (NTRS)

    Mcdowell, J. R.

    1976-01-01

    The informational material which should be provided to the user is described. Recommendations are made as to how the informational material should be derived and maintained, the timeliness or phasing of its use, and the applicability of existing informational material.

  1. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    SciTech Connect

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  2. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. PMID:26301463

  3. Long Term Materials Test Program. Quarterly report, July-September 1983

    SciTech Connect

    Not Available

    1984-04-01

    Corrosion and erosion/corrosion testing of gas turbine vane and blade base alloys and a variety of protective coating systems under the Long Term Materials Test program has surpassed 3400 hours. The PFBC facility at Malta, New York continues to show an exceptionally high degree of reliability and consistency in performance. Operating conditions include a 1650/sup 0/F bed temperature at 10 atmospheres pressures utilizing Pittsburgh No. 8 coal and a low alkali dolomite sulfur sorbent. After 2687 hours, unprotected nickel and cobalt base vane and blade alloys generally experienced corrosion rates of 1 to 2 mils/1000 hours at metal temperatures of 1100, 1300, and 1500/sup 0/F. Precious metal aluminide and MCrAlY coatings continue to show excellent corrosion resistance (<0.5 mils/1000 hrs) at 1500/sup 0/F, but are susceptible to varying degrees of pitting attack at 1100/sup 0/ and 1300/sup 0/F. Erosion/corrosion degradation rates at 800 to 900 fps., 1350/sup 0/F and less than 100 ppM dust loading ranged from 1 to 4 mils/1000 hours with corrosion predominately concentrated in areas of particle impaction indicating an erosion/corrosion synergism.

  4. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.; Linask, I.; Nissley, D. M.; Norris, P. P.; Meyer, T. G.; Walker, K. P.

    1986-01-01

    This report presents the results of the first year of a program designed to develop life prediction and constitutive models for two coated single crystal alloys used in gas turbine airfoils. The two alloys are PWA 1480 and Alloy 185. The two oxidation resistant coatings are PWA 273, an aluminide coating, and PWA 286, an overlay NiCoCrAlY coating. To obtain constitutive and/or fatigue data, tests were conducted on coated and uncoated PWA 1480 specimens tensilely loaded in the 100 , 110 , 111 , and 123 directions. A literature survey of constitutive models was completed for both single crystal alloys and metallic coating materials; candidate models were selected. One constitutive model under consideration for single crystal alloys applies Walker's micromechanical viscoplastic formulation to all slip systems participating in the single crystal deformation. The constitutive models for the overlay coating correlate the viscoplastic data well. For the aluminide coating, a unique test method is under development. LCF and TMF tests are underway. The two coatings caused a significant drop in fatigue life, and each produced a much different failure mechanism.

  5. Transportation of hazardous materials in Arizona. Volume 2. Hazardous materials data base management system: development and programs

    SciTech Connect

    Pijawka, K.D.; Radwan, A.E.; Shieh, F.Y.; Soesilo, J.A.

    1986-01-01

    The document describes the steps undertaken to develop the Data Base Management Systems (DBMS) for the transportation of hazardous materials and hazardous wastes in Arizona. It includes the selection of computer hardware and software, the design of the data base input and output form, the development of the necessary command procedures to produce statistical relationships, the step-by-step procedure to access and operate the DBMS, and, finally, the listing of command procedures.

  6. Reactor Materials Program -- weldment component toughness of SRS PWS piping materials. Task number: 89-023-1

    SciTech Connect

    Sindelar, R.L.

    1993-02-01

    The mechanical properties of austenitic stainless steel materials from the reactor systems in the unirradiated (baseline) and the irradiated conditions have been developed previously for structural and fracture analyses of the pressure boundary of the SRS reactor Process Water System (PWS) components. Individual mechanical specimen test results were compiled into three separate weldment components or regions, namely, the base, weld, and weld heat-affected-zone (HAZ), for two orientations (L-C and C-L) with respect to the pipe axis of the source materials and for two test temperatures of 25 and 125{degrees}C. Twelve separate categories were thus defined to assess the effect of test conditions on the mechanical properties and to facilitate selection of properties for structural and fracture analyses. The testing results show high fracture toughness of the materials and support the demonstration of PWS pressure boundary structural integrity under all conditions of reactor operation. The fracture toughness of a fourth weldment component, namely, the weld fusion line region, has been measured to evaluate the potential for a region of low toughness in the interface between the Type 308 stainless steel weld metal and the Type 304 stainless steel pipe. The testing details and results of the weld fusion line toughness are contained in this report.

  7. DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials

    SciTech Connect

    Marsha Keister

    2001-02-01

    DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM: PROTOCOL FOR THE VERIFICATION OF GROUTING MATERIALS FOR INFRASTRUCTURE REHABILITATION AT THE UNIVERSITY OF HOUSTON - CIGMAT

    EPA Science Inventory

    This protocol was developed under the Environmental Protection Agency's Environmental Technology Verification (ETV) Program, and is intended to be used as a guide in preparing laboratory test plans for the purpose of verifying the performance of grouting materials used for infra...

  9. Effectiveness of Written Materials in a Rehabilitative Program for Female Offenders: A Case Study at the Montana Women's Prison

    ERIC Educational Resources Information Center

    Dillon, Laura; Colling, Kyle

    2010-01-01

    This case study of the Therapeutic Community Program at Montana Women's Prison investigates the relationship between inmate reading levels and the self-help materials used for rehabilitative purposes within prison settings. The Therapeutic Community Handbook, published by the Montana Department of Corrections, is used as the primary method of…

  10. 22 CFR 502.6 - Terms of use for accessing program materials available on agency Web sites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... available on agency Web sites. 502.6 Section 502.6 Foreign Relations BROADCASTING BOARD OF GOVERNORS... program materials available on agency Web sites. (a) By accessing Agency Web sites, Requestors agree to all the Terms of Use available on those Web sites. (b) All Requestors are advised that Agency...

  11. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    SciTech Connect

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technical support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.

  12. Applicability of Standards for Evaluation of Educational Programs Projects and Materials in an International Setting: Qualitative Research.

    ERIC Educational Resources Information Center

    Dockrell, W. B.

    1984-01-01

    This article responds to the "Standards for Evaluation of Educational Programs, Projects and Materials" by addressing three issues in qualitative research: (1) data quality; (2) data verification; and (3) collusion between evaluators and their sponsors. To be of maximum international value, the standards report needs more emphasis on qualitative…

  13. Hearing-Impaired Formal Inservice (HI-FI) Program. Description of Teacher Inservice Education Materials.

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.

    The described inservice teacher education program is designed for elementary school teachers who wish to develop skills in handling hearing impaired students who are mainstreamed into their classroom. The scope and sequencing of program topics is outlined. Activities and resources involved in the program are described. Ordering information for…

  14. Coordinating Federal Assistance Programs for the Economically Disadvantaged: Recommendations and Background Materials. Special Report No. 31.

    ERIC Educational Resources Information Center

    National Commission for Employment Policy (DOL), Washington, DC.

    This special report from the National Commission for Employment Policy on coordinating federal assistance programs for the economically disadvantaged contains two parts. Part 1 includes recommendations for improving public assistance coordination programs in general and employment and training programs in particular. Eight recommendations focus on…

  15. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  16. International Low-Earth-Orbit Spacecraft Materials Test Program Initiated for Better Prediction of Durability and Performance

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1999-01-01

    Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet

  17. Development and Exchange of Instructional Resources in Water Quality Control Programs, II: Instructional Materials Available.

    ERIC Educational Resources Information Center

    Austin, John H.

    This document is one in a series of reports which reviews instructional materials and equipment for water and wastewater treatment plant personnel. Approximately 900 items are listed in this document along with guidelines for the production of instructional materials. Information is provided regarding the source, type of material, intended…

  18. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... regulations for the packaging and transportation of radioactive material. The NRC is issuing for public...), that would amend its regulations for the packaging and transportation of radioactive material in Part... requirements for the packaging and transportation of radioactive material. III. Draft Regulatory Guide The...

  19. Surface-Gasification Materials Program. Semiannual progress report for the period ending March 31, 1983

    SciTech Connect

    Bradley, R.A.

    1983-05-01

    Contents of this semiannual report include the following: introduction; (1) plant materials surveillance tests (Illinois Institute of Technology); (2) slagging gasifier refractories - appliction/evaluation (Argonne National Laboratory); (3) protective clothing and claddings - application/evaluation (ANL); (4) ceramic application technology - brittle material design (LANL); (5) advanced pressure vessel materials technology (ORNL); (6) electroslag component casting (ORNL); (7) cost reduction of the electroslag casting manufacturing process (CMU); (8) materials review and component failure analysis in support of coal gasification processes and plants (ANL); (9) process plant materials review, evaluation, and support (ORNL).

  20. FY 1984 and FY 1985 geochemistry and materials studies in support of the Magma Energy Extraction Program

    SciTech Connect

    Westrich, H.R.; Weirick, L.J.; Cygan, R.T.; Reece, M.; Hlava, P.F.; Stockman, H.W.; Gerlach, T.M.

    1986-04-01

    Geochemistry and materials studies are being performed in support of the Magma Energy Extraction Program. The work is largely restricted to: (1) characterizing magmatic environments at sites of interest, (2) testing engineering materials in laboratory simulated magmatic environments, (3) investigating chemical mass transport effects inherent in designs for direct contact heat exchangers, and (4) evaluating degassing hazards associated with drilling into and extracting energy from shallow magma. Magma characterization studies have been completed for shallow magma at Long Valley, Coso volcanic field, and Kilauea volcano. The behavior of 17 commercially available materials has been examined in rhyolite magma at 850/sup 0/C and 200 MPa for periods up to seven days. Analysis of reaction products from materials tests to date indicate that oxidation is the main corrosion problem for most alloys in rhyolitic magma. Considerations of corrosion resistance, high-temperature strength, and cost indicate nickel-base superalloys offer the most promise as candidates for use in rhyolitic magma.

  1. ARTEMIS Program : Investigation of MCCI by Means of Simulating Material Experiments

    SciTech Connect

    Veteau, J.M.

    2006-07-01

    In the frame work of R and D on Severe Accidents in PWR plants, an estimation by codes of time of basemat melt-through by corium is required. For this, the heat flux distribution along the cavity wall must be properly modelled. Hence the knowledge of the heat transfer coefficient as well as the temperature at the interface between the melt and the solid become key issues. The phase diagram of the melt and composition governs the interface temperature which controls, at least partly, the thickness of the corium crust formed on the molten concrete. Crust behaviour (time evolution of thickness, mechanical interaction with gas) implies a release mode of molten concrete in Corium which in turn alters the melt composition. Clearly, the molten corium-concrete interaction (MCCI) phenomenon is the result of a strong coupling between physico-chemistry and thermal-hydraulics. The main goal of the first test series of the ARTEMIS program, essentially sponsored by the Institut de Radioprotection et de Surete Nucleaire (IRSN) is to make a link between the interface temperature and the physico-chemistry of the melt (phase diagram) through tests conducted with simulating materials and to provide an insight on the existence, the behaviour and the composition of the crust. This test series considers 1D MCCI using a non eutectic LiCl-BaCl{sub 2} mixture poured at 1000 deg C in a cylindrical test section (internal diameter 0.3 m) to interact with the 0.35 m deep basemat made of the same salt mixture at the eutectic composition. This 'concrete' was especially manufactured with sintered granulates to allow gas flow from the bottom (argon), then simulating gas released by concrete in the reactor case. Constant power is applied in the pool with a helical coil and 1D MCCI is ensured by counterbalancing heat losses by controlled heating at the lateral walls and at the top of the test section. Concrete ablation is followed from the output of 45 0.5 mm diameter thermocouples. An instrumented

  2. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    NASA Technical Reports Server (NTRS)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  3. 45 CFR 4.6 - Materials related to petitions under the National Vaccine Injury Compensation Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Vaccine Injury Compensation Program. 4.6 Section 4.6 Public Welfare Department of Health and Human... Vaccine Injury Compensation Program. Notwithstanding the provisions of §§ 4.1, 4.2, and 4.3, service of..., shall be served upon the Director, Division of Vaccine Injury Compensation, Office of Special...

  4. 45 CFR 4.6 - Materials related to petitions under the National Vaccine Injury Compensation Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Vaccine Injury Compensation Program. 4.6 Section 4.6 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... Vaccine Injury Compensation Program. Notwithstanding the provisions of §§ 4.1, 4.2, and 4.3, service of..., shall be served upon the Director, Division of Vaccine Injury Compensation, Office of Special...

  5. 45 CFR 4.6 - Materials related to petitions under the National Vaccine Injury Compensation Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Vaccine Injury Compensation Program. 4.6 Section 4.6 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... Vaccine Injury Compensation Program. Notwithstanding the provisions of §§ 4.1, 4.2, and 4.3, service of..., shall be served upon the Director, Division of Vaccine Injury Compensation, Office of Special...

  6. 45 CFR 4.6 - Materials related to petitions under the National Vaccine Injury Compensation Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Vaccine Injury Compensation Program. 4.6 Section 4.6 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... Vaccine Injury Compensation Program. Notwithstanding the provisions of §§ 4.1, 4.2, and 4.3, service of..., shall be served upon the Director, Division of Vaccine Injury Compensation, Office of Special...

  7. 45 CFR 4.6 - Materials related to petitions under the National Vaccine Injury Compensation Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Vaccine Injury Compensation Program. 4.6 Section 4.6 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... Vaccine Injury Compensation Program. Notwithstanding the provisions of §§ 4.1, 4.2, and 4.3, service of..., shall be served upon the Director, Division of Vaccine Injury Compensation, Office of Special...

  8. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    SciTech Connect

    Stoner, K.J.

    1999-11-05

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  9. Integrated Data Collection Analysis (IDCA) Program - Mixing Procedures and Materials Compatibility

    SciTech Connect

    Olinger, Becky D.; Sandstrom, Mary M.; Warner, Kirstin F.; Sorensen, Daniel N.; Remmers, Daniel L.; Moran, Jesse S.; Shelley, Timothy J.; Whinnery, LeRoy L.; Hsu, Peter C.; Whipple, Richard E.; Kashgarian, Michaele; Reynolds, John G.

    2011-01-14

    Three mixing procedures have been standardized for the IDCA proficiency test—solid-solid, solid-liquid, and liquid-liquid. Due to the variety of precursors used in formulating the materials for the test, these three mixing methods have been designed to address all combinations of materials. Hand mixing is recommended for quantities less than 10 grams and Jar Mill mixing is recommended for quantities over 10 grams. Consideration must also be given to the type of container used for the mixing due to the wide range of chemical reactivity of the precursors and mixtures. Eight web site sources from container and chemical manufacturers have been consulted. Compatible materials have been compiled as a resource for selecting containers made of materials stable to the mixtures. In addition, container materials used in practice by the participating laboratories are discussed. Consulting chemical compatibility tables is highly recommended for each operation by each individual engaged in testing the materials in this proficiency test.

  10. Non-proliferation, safeguards, and security for the fissile materials disposition program immobilization alternatives

    SciTech Connect

    Duggan, R.A.; Jaeger, C.D.; Tolk, K.M.; Moore, L.R.

    1996-05-01

    The Department of Energy is analyzing long-term storage and disposition alternatives for surplus weapons-usable fissile materials. A number of different disposition alternatives are being considered. These include facilities for storage, conversion and stabilization of fissile materials, immobilization in glass or ceramic material, fabrication of fissile material into mixed oxide (MOX) fuel for reactors, use of reactor based technologies to convert material into spent fuel, and disposal of fissile material using geologic alternatives. This paper will focus on how the objectives of reducing security and proliferation risks are being considered, and the possible facility impacts. Some of the areas discussed in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threats, and (4) potential proliferation, safeguards, and security issues and impacts on the facilities. Issues applicable to all of the possible disposition alternatives will be discussed in this paper. However, particular attention is given to the plutonium immobilization alternatives.

  11. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  12. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Swanson, G. A.

    1985-01-01

    The purpose is to develop life prediction models for coated anisotropic materials used in gas temperature airfoils. Two single crystal alloys and two coatings are now being tested. These include PWA 1480; Alloy 185; overlay coating, PWA 286; and aluminide coating, PWA 273. Constitutive models are also being developed for these materials to predict the plastic and creep strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularily important for high temperature gas turbine applications and is basic to any life prediction system.

  13. Program for the development of high temperature electrical materials and components

    NASA Technical Reports Server (NTRS)

    Neff, W. S.; Lowry, L. R.

    1972-01-01

    Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.

  14. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  15. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  16. Programs.

    ERIC Educational Resources Information Center

    Community College Journal, 1996

    1996-01-01

    Includes a collection of eight short articles describing model community college programs. Discusses a literacy program, a mobile computer classroom, a support program for at-risk students, a timber-harvesting program, a multimedia presentation on successful women graduates, a career center, a collaboration with NASA, and an Israeli engineering…

  17. Report on the program of 4 K irradiation of insulating materials for the Superconducting Super Collider

    SciTech Connect

    Spindel, A.

    1993-07-01

    This report is intended to serve as an aid to material selection. The results reported herein are the product of a careful investigation and can be used with confidence in their validity. The selection of materials based on this data, however, is not the responsibility of the author. This report will not approve or disapprove any specific material for use in the Super Collider. The author of this report does not assume any design responsibility or responsibility for material selection for any application. It is, therefore, very important that those with design responsibility use this report wisely. For this reason, the following informational guide to the material selection process has been provided. There are several issues to take into account when evaluating a material for radiation resistance. It is very important that the design criteria and operating loads for the application be known. For many applications the actual loading, and therefore required properties, are unknown. Certain materials have empirically been used successfully in a similar application and those materials have often been selected on that basis. Both percent degradation and the magnitude of the actual properties after irradiation need to be considered. Consider the scenario where two materials are being compared that both have acceptable properties after exposure to 10{sup 9} rads. It is preferable to choose the material with less degradation because degradation tends to be a threshold phenomena with properties declining rapidly with dose after a certain threshold dose. The properties of the initially strong material, therefore, will be extremely sensitive to dose in that dose range and slight magnet-to-magnet differences in dose may, depending on the application, lead to performance variations.

  18. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  19. A status review of NASA's COSAM (Conservation Of Strategic Aerospace Materials) program

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1982-01-01

    The use and supply of strategic elements in nickel base superalloys for gas turbine engines are reviewed. Substitution of strategic elements, advanced processing concepts, and the identification of alternate materials are considered. Cobalt, tantalum, columbium, and chromium, the supplies of which are 91-100% imported, are the materials of major concern.

  20. A Bibliography of Library Materials for Vocational-Technical Programs in Community Colleges.

    ERIC Educational Resources Information Center

    Sullivan, Peggy, Ed.

    Compiled at a 1-week institute held at Oregon State University in June 1969, this bibliography has four major sections: (1) an alphabetized listing of sources of materials including the names and addresses of the organizations and the major subject areas of concern, (2) an alphabetized listing of materials arranged by title and including source or…

  1. Multi-Media Instructional Materials for Child Development/Parent Education Programs.

    ERIC Educational Resources Information Center

    Bjorklund, Gail; Briggs, Anne

    Multi-media materials were used in a federally funded project, Facilitative Environment Encouraging Development (FEED), to teach child development and parenting skills to junior high students. Six criteria were used in material selection: (1) Content reflects a developmental approach; (2) Learning is characterized by an active, doing approach; (3)…

  2. Instructional Materials Development (IMD): A Review of the IMD Program, Past, Present, and Future.

    ERIC Educational Resources Information Center

    Cozzens, Margaret B.

    Instructional materials influence what students are taught and how teachers teach. An innovative, comprehensive, and diverse portfolio of instructional materials that implement standards-based reform in mathematics, the natural and social sciences, and technology education is required for preK-12+ education. This paper discusses the history of the…

  3. Nutrition Education Resource Guide: An Annotated Bibliography of Educational Materials for the WIC and CSF Programs. Bibliographies and Literature of Agriculture Number 24.

    ERIC Educational Resources Information Center

    McLaughlin, Elaine Casserly, Comp.; And Others

    This resource guide to evaluated print and audiovisual nutrition materials has been developed to assist state and local staff of the Special Supplemental Program for Women, Infants and Children (WIC) and the Commodity Supplemental Foods Program (CSFP), in selecting, acquiring, and developing accurate and appropriate materials for nutrition…

  4. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    SciTech Connect

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-02-17

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it provides an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability

  5. Authentic Cultural Materials: The Case of Television Programs Received via Satellite.

    ERIC Educational Resources Information Center

    Narvaez, Leon

    1992-01-01

    Discusses how satellite technology offers the opportunity to use foreign television programs for teaching purposes as they were broadcast or on videotape. Cost factors are highlighted, and classroom activities are suggested.(LB)

  6. Status and plans of NASA's Materials Science and Manufacturing in Space (MS/MS) program

    NASA Technical Reports Server (NTRS)

    Armstrong, W. O.; Bredt, J. H.

    1972-01-01

    A description is given of a research and development program on the space shuttle mission designed to prepare the way for possible commercial manufacturing operations on permanently orbiting space stations.

  7. Ceramic material life prediction: A program to translate ANSYS results to CARES/LIFE reliability analysis

    NASA Technical Reports Server (NTRS)

    Vonhermann, Pieter; Pintz, Adam

    1994-01-01

    This manual describes the use of the ANSCARES program to prepare a neutral file of FEM stress results taken from ANSYS Release 5.0, in the format needed by CARES/LIFE ceramics reliability program. It is intended for use by experienced users of ANSYS and CARES. Knowledge of compiling and linking FORTRAN programs is also required. Maximum use is made of existing routines (from other CARES interface programs and ANSYS routines) to extract the finite element results and prepare the neutral file for input to the reliability analysis. FORTRAN and machine language routines as described are used to read the ANSYS results file. Sub-element stresses are computed and written to a neutral file using FORTRAN subroutines which are nearly identical to those used in the NASCARES (MSC/NASTRAN to CARES) interface.

  8. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or experimentation program or project shall be available for inspection by the parents or guardians... designed to explore or develop new or unproven teaching methods or techniques. (c) For the purpose of...

  9. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or experimentation program or project shall be available for inspection by the parents or guardians... designed to explore or develop new or unproven teaching methods or techniques. (c) For the purpose of...

  10. 34 CFR 98.3 - Access to instructional material used in a research or experimentation program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or experimentation program or project shall be available for inspection by the parents or guardians... designed to explore or develop new or unproven teaching methods or techniques. (c) For the purpose of...

  11. Material fatigue data obtained by card-programmed hydraulic loading system

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1967-01-01

    Fatigue tests using load distributions from actual loading histories encountered in flight are programmed on punched electronic accounting machine cards. With this hydraulic loading system, airframe designers can apply up to 55 load levels to a test specimen.

  12. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1980-September 30, 1980

    SciTech Connect

    Not Available

    1980-12-12

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, 950 and 1050/sup 0/C. Initiation of controlled purity helium creep-rupture testing in the intensive screening test program is discussed. In addition, the results of 1000-hour exposures at 750 and 850/sup 0/C on several experimental alloys are discussed.

  13. Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    Not Available

    1980-11-14

    Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

  14. Test program on the contamination of ultraviolet region mirrors by Apollo Telescope Mount materials

    NASA Technical Reports Server (NTRS)

    Austin, J. D.

    1974-01-01

    Results are presented of testing performed to measure the effects of material outgas products on the reflectances of ultraviolet-region mirrors. These tests were to provide data on changes of ultraviolet reflectances of first-surface mirrors which had been exposed to the outgas products of selected materials under specific time and thermal-vacuum conditions. The requirement for such data was based on the extreme sensitivity of the sophisticated optical instruments in the Skylab mission's Apollo Telescope Mount (ATM) to condensed outgas products from materials, and on the desire to insure that no serious hazard of contaminating these instruments existed.

  15. Materials flight experiment carrier capability and future flight experiments on Hitchhiker-M carrier program

    NASA Technical Reports Server (NTRS)

    Davis, D.

    1993-01-01

    The CMSS has designed, fabricated, and qualified a unique Materials FLight EXperiment (MFLEX) carrier. The MFLEX is a reusable materials experiment carrier designed to support a wide array of sensors that measure synergistic effects on candidate space materials in Low Earth Orbit (LEO). The MFLEX can be integrated on a variety of launch vehicles/carriers and multiple units can be networked to optimize the surface area of carriers such as the Hitchhiker-M currently being built by the Goddard Space Flight Center (GSFC).

  16. Surface Gasification Materials Program. Semiannual progress report for the period ending September 30, 1984

    SciTech Connect

    Bradley, R.A.

    1984-12-01

    Reported are: corrosion studies of plant materials surveillance tests (MPC/IITRI; slagging gasifier refractories: application/evaluation (ANL); protective coatings and claddings: application/evaluation (ANL); corrosion of structural ceramics in coal gasification environments (ANL); advanced pressure vessel materials technology (ORNL); electroslag component casting (ORNL); production and evaluation of electroslag castings (CIW); cost reduction of the electroslag casting manufacturing process (CMU); quantitative microstructural characterization of steel castings (UAB); and materials review and component failure analysis in support of coal gasification processes and plants (ANL).

  17. Cooperative efforts of the materials protection control and accounting program at the electrochemical plant (Krasnoyarsk-45) in Russia-011

    SciTech Connect

    Moore, L.

    1998-07-22

    The USDOE Material Protection Control and Accountability Program (MPC&A) has established a Project Team with the goal of providing the Russian Electrochemical Plant (ECP) with equipment and training to enable ECP to evaluate, develop, and implement a comprehensive plan and systems for physical protection, material controls, and accountancy upgrades. The MPC&A project will provide for improvements such as risk assessments, access control upgrades, computerized MC&A, communications systems upgrades, building perimeter surveillance and intrusion detection upgrades, vault upgrades, metal and nuclear material detection upgrades, along with mass measurement and non- destructive analysis (NDA) instrumentation. This paper outlines the overall objectives of the MPC&A project at the Electrochemical Plant.

  18. Descriptions of experiments selected for the Space Transportation System (STS) materials processing in space program

    NASA Technical Reports Server (NTRS)

    Naumann, R. J. (Editor)

    1978-01-01

    Summaries are presented for the first group of materials processing experiments planned for a shuttle mission. Outlined are the objectives, the approach, the rationale for the use of space, and the anticipated results for each experiment.

  19. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  20. The Ural Electrochemical Integrated Plant Sustainability Program of Nuclear Material Protection, Control and Accounting System Upgrades

    SciTech Connect

    Vakhonin, Alexander; Yuldashev, Rashid; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Eshter M.

    2009-09-30

    UEIP has been working on a comprehensive sustainability program that includes establishing a site sustainability working group, information gathering, planning, organizing, developing schedule and estimated costs, trhough joint UEIP-US DOE/NNSA National Laboratory sustainability contracts. Considerable efforts have been necessary in the sustainability planning, monitoring, and control of the scope of work using tools such as Microsoft Excel, Microsoft Project and SAP R/3. While information interchanges within the sustainability program provides adequate US assurances that US funds are well spent through its quarterly reporting methodology, proper information security and protection measures are taken throughout the process. Decommissioning of outdated equipment has also become part of determining sustainability requirements and processes. The site’s sustainability program has facilitated the development of a transition plan toward eventual full Russian funding of sustaining nuclear security upgrades.

  1. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    SciTech Connect

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2007-07-01

    The world’s first master’s degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5½ year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, included students who started the program in their third year of studies, as the first 2½ years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program’s specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training.

  2. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  3. Leukopak PBMC Sample Processing for Preparing Quality Control Material to Support Proficiency Testing Programs

    PubMed Central

    Garcia, Ambrosia; Keinonen, Sarah; Sanchez, Ana M.; Ferrari, Guido; Denny, Thomas N.; Moody, M. Anthony

    2014-01-01

    External proficiency testing programs designed to evaluate the performance of end-point laboratories involved in vaccine and therapeutic clinical trials form an important part of clinical trial quality assurance. Good Clinical Laboratory Practice (GCLP) guidelines recommend both assay validation and proficiency testing for assays being used in clinical trials, and such testing is facilitated by the availability of large numbers of well-characterized test samples. These samples can be distributed to laboratories participating in these programs and allow monitoring of laboratory performance over time and among participating sites when results are obtained with samples derived from a large master set. The leukapheresis procedure provides an ideal way to collect samples from participants that can meet the required number of cells to support these activities. The collection and processing of leukapheresis samples requires tight coordination between the clinical and laboratory teams to collect, process, and cryopreserve large number of samples within the established ideal time of ≤8 hours. Here, we describe our experience with a leukapheresis cryopreseration program that has been able to preserve the functionality of cellular subsets and that provides the sample numbers necessary to run an external proficiency testing program. PMID:24928650

  4. Computer Assisted Teaching Materials Preparation in the Inter-University Program.

    ERIC Educational Resources Information Center

    Dew, James Erwin

    1988-01-01

    Describes how the Inter-University Program for Chinese Language Studies in Taipei has used computers: 1) to select new vocabulary from texts for glossing; 2) to sort vocabulary for index listings; and 3) to print portions of textbooks. Problems with phonetic transcriptions and quality of print for Chinese characters are discussed. Samples are…

  5. Influence of Materials on Teacher Adoption of Abstinence-Only-Until-Marriage Programs

    ERIC Educational Resources Information Center

    Wilson, Kelly L.; Wiley, David C.

    2009-01-01

    Background: Given the growing scientific evidence against abstinence-only-until-marriage education, health educators are supporting an evidence-based approach to teaching sexuality education. However, there is still an abundance of federal support and funding streams allocated to sustain abstinence-only programs. This study assessed indicators…

  6. Agricultural Resources Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains four units with relevant problem areas and is intended as a source unit for agricultural education. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. Each problem area includes some or all of the…

  7. Lecturers' Attitudes on Electronically Supported Pre-Lecturing Material for Intensive Programs: A Case Study

    ERIC Educational Resources Information Center

    Kozaris, Ioannis; Varella, Evangelia A.

    2010-01-01

    In 2006 and 2008, two large trans-national residential summer schools on conservation science were organized as intensive programs. Learners were not only second/third cycle students in both exact sciences and humanities, but further practicing restorers; consequently their educational background, and even their way of approaching scientific…

  8. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    NASA Technical Reports Server (NTRS)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  9. Core II Materials for Metropolitan Agriculture/Horticulture Programs. Units G-L.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This second volume of a 2-volume curriculum guide contains 12 problem areas selected as suggested areas of study to be included in a core curriculum for 10th-grade or second-year students enrolled in a metropolitan agriculture program. The 12 problem areas are divided into 5 units: Growing and Managing Horticultural Crops (4 problem areas),…

  10. Core II Materials for Rural Agriculture Programs. Units E-H.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are crop science (harvesting farm crops and growing small grains); soil science and conservation of natural resources…

  11. Agricultural Business and Management Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains 5 teaching units for 44 agricultural business and management cluster problem areas. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. The five units are as follows: (1) agribusiness operation and…

  12. Core III Materials for Rural Agriculture Programs. Units A-G.

    ERIC Educational Resources Information Center

    Courson, Roger L.; And Others

    This curriculum guide includes teaching packets for 12 areas of study to be included in a core curriculum for 11th-grade or third-year students enrolled in rural agricultural programs in Illinois. Each problem area includes some or all of the following components: suggestions to the teacher, teacher guide, competency inventory, information sheet,…

  13. Horticulture Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains five units with relevant problem areas for horticulture. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. Each problem area includes some or all of the following components: related problem…

  14. Core III Materials for Metropolitan Agriculture/Horticulture Programs. Units A-I.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This first volume of a two-volume curriculum guide contains 11 problem areas selected for study to be included in a core curriculum for 11th-grade or third-year students enrolled in a metropolitan agricultural program. The 11 problem areas are divided into eight units: Orientation to Agricultural Occupations (Gaining Employment), Supervised…

  15. Core II Materials for Rural Agricultural Programs. Units A-D.

    ERIC Educational Resources Information Center

    Biondo, Ron; And Others

    This curriculum guide includes teaching packets for 21 problem areas to be included in a core curriculum for 10th-grade students enrolled in a rural agricultural program. Covered in the four units included in this volume are orientation to agricultural occupations (orientation to vocational agricultural course and developing effective study…

  16. XCHEM-1D: A Heat Transfer/Chemical Kinetics Computer Program for multilayered reactive materials

    SciTech Connect

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.

    1993-10-01

    An eXplosive CHEMical kinetics code, XCHEM, has been developed to solve the reactive diffusion equations associated with thermal ignition of energetic materials. This method-of-lines code uses stiff numerical methods and adaptive meshing to resolve relevant combustion physics. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties have been incorporated and the modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties, including high pressure corrections, have also been included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances have also been implemented.

  17. Designing and Developing Online Materials for Molecular Biology: Building Online Programs for Science

    PubMed Central

    Boulay, Rachel

    2013-01-01

    A well-accepted form of educational training offered in molecular biology is internships in research laboratories. However, the number of available research laboratories severely limits access by most students. Addressing this need, the University of Hawaii launched a project to expand this model to include newly developed online training materials in addition to a hands-on laboratory experience. This paper explores the design and development process of the online learning materials. This case study looks at the roles of the instructional designer, multimedia specialist, and research faculty who were the subject matter experts. The experiences of the design teams are shared in an effort to gain insight on how the collaborative efforts of the project group led to a successful deployment of the online learning materials. PMID:24319699

  18. Teaching material. Ways to enhance visual aids in staff development programs.

    PubMed

    Kuhn, M E

    1990-02-01

    Most nurse educators incorporate some kind of media into their teaching strategies. The widespread availability of professionally developed media resources, however, does not guarantee effectiveness. The ASSURE model was presented as one method of selecting these materials on the basis of their suitability for the subject, the adult learner, and the instructor in achieving the desired educational outcomes. Furthermore, it offers guidelines for modifying or designing materials to be used in settings where media resources may be limited. The ASSURE model can help staff development educators provide effective instruction by making the best use of available media through the use of systematic instructional design principles. PMID:1689561

  19. Materials technology programs in support of a mercury Rankine space power system

    NASA Technical Reports Server (NTRS)

    Stone, P. L.

    1973-01-01

    A large portion of the materials technology is summarized that was generated in support of the development of a mercury-rankine space power system (SNAP-8). The primary areas of investigation are: (1) the compatibility of various construction materials with the liquid metals mercury and NaK, (2) the mechanical properties of unalloyed tantalum, and (3) the development of refractory metal/austenitic stainless steel tubing and transition joints. The primary results, conclusions, and state of technology at the completion of this effort for each of these areas are summarized. Results of possible significance to other applications are highlighted.

  20. Thermomechanical theory of materials undergoing large elastic and viscoplastic deformation (AWBA development program)

    SciTech Connect

    Martin, S.E.; Newman, J.B.

    1980-11-01

    A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference.

  1. The Musculoskeletal System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the musculoskeletal system. Its purpose is to introduce the student to the structures and functions of the human musculoskeletal system--and the interrelationships of the two--and to familiarize the student with some…

  2. Individualized Instructional Materials for Special Needs Students in Junior High School Home Economics Programs.

    ERIC Educational Resources Information Center

    Whiteford, Emma B.

    As a part of the general project investigating how home economics teachers can adapt their teaching methods and materials to the special needs students, this individualized instructional guide is designed to provide practical information, suggestions, and guidance for the classroom teacher. Following a brief description of special needs students,…

  3. Hazardous Materials Management Technology Programs. National Voluntary Skills Standard. Implementation Guide.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This implementation guide is intended to help educators use the Skills Standard for Hazardous Materials Management Technology (HMMT). It begins with a description of HMMT and a summary of the 13 job functions of the standard. Within each job function are supporting skills and knowledge that an HMMT worker must possess to be able to accomplish the…

  4. THE ENGLISH PROGRAM OF THE USOE CURRICULUM STUDY AND DEMONSTRATION CENTER MATERIALS CURRENTLY AVAILABLE.

    ERIC Educational Resources Information Center

    1967

    AFTER FIVE YEARS OF FEDERALLY-SUPPORTED CURRICULUM RESEARCH IN ENGLISH, 14 STUDY CENTERS AND FIVE DEMONSTRATION CENTERS ARE NOW MAKING THE RESULTS OF THEIR WORK AVAILABLE TO THE PUBLIC. THIS PAMPHLET LISTS TITLES OF REPORTS AND INSTRUCTIONAL MATERIALS PREPARED BY THE FOLLOWING CENTERS--(1) CARNEGIE-MELLON UNIVERSITY, (2) TEACHERS COLLEGE, COLUMBIA…

  5. Study program for encapsulation materials interface for low-cost solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.

    1981-01-01

    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.

  6. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a)(1), use the following clause: Balance of Payments...

  7. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a)(1), use the following clause: Balance of Payments...

  8. 48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (MAY 2012)...

  9. 48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (NOV 2009)...

  10. 48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (JUN 2011)...

  11. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a)(1), use the following clause: Balance of Payments...

  12. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a)(1), use the following clause: Balance of Payments...

  13. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a), use the following clause: Balance of Payments...

  14. 48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (OCT 2013)...

  15. 48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (AUG 2013)...

  16. The Circulatory System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the circulatory system. Its purpose is to introduce the student to the structures and functions of the human circulatory system--and the interrelationships of the two--and to familiarize the student with some of the…

  17. Learning Effectiveness and Cognitive Loads in Instructional Materials of Programming Language on Single and Dual Screens

    ERIC Educational Resources Information Center

    Hsu, Jenq-Muh; Chang, Ting-Wen; Yu, Pao-Ta

    2012-01-01

    The teaching and learning environment in a traditional classroom typically includes a projection screen, a projector, and a computer within a digital interactive table. Instructors may apply multimedia learning materials using various information communication technologies to increase interaction effects. However, a single screen only displays a…

  18. The Respiratory System. Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This instructional modular unit with instructor's guide provides materials on aspects of one of the major systems of the human body--the respiratory system. Its purpose is to introduce the student to the structures and functions of the human respiratory system--and the interrelationships of the two--and to famlliarize the student with some of the…

  19. Improvement of program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.; Abdelhakiem, Wafaa

    1991-01-01

    The program was improved by reprogramming it so it will run on both a SUN and a VAX. Also it is easily transportable as it is on a disk for use on a SUN. A computer literature search resulted in some improved parameters for Hg(1-x)Cd(x)Te and a table of parameters for Hg(1-x)Zn(x)Te. The effects of neutral defects were added to the program, and it was found, as expected, that they contribute very little to the mobility at temperatures of interest. The effect were added of varying the following parameters: dielectric constants, screening parameters, disorder energies, donor and acceptor concentrations, momentum matrix element, different expressions for energy gap, and transverse effective charge.

  20. Proposed program for and present status of the Geological Survey's investigation of domestic resources of radioactive raw materials

    USGS Publications Warehouse

    Bulter, A.P., Jr.; Killeen, P.L.; Page, G.B.; Rubey, W.W.

    1983-01-01

    This interim report is designed to show the present status of the Geological Survey's information and the parts of a comprehensive program necessary to improve our information about the raw material resources of uranium and thorium. Rarely in geologic work has it been necessary. to determine so completely a nation's resources of useful minerals in so brief a span of time. Ordinarily, information on mineral resources Is accumulated during a long period of years. However, uranium and thorium were suddenly thrust from a position of subsidiary economic interest into one of great strategic importance. Information concerning their occurrence must, therefore, be obtained as rapidly as reliable methods of investigation will permit. Accordingly the program must be at once comprehensive and carried out over an area more extensive than is usual in the search for and appraisal of most other mineral resources.

  1. Material science experience gained from the space nuclear rocket program: Insulators

    SciTech Connect

    Wagner, P.

    1992-07-01

    Although Rover reactors are viewed as the ultimate in high-temperature operating systems, many of the materials used in these reactors (for example, support rods, control drums, and the reflector) have to be held at relatively low temperatures while the reactor operates, in order to maintain their structural integrity. Thus the insulators needed to separate these temperature domains are crucial to the reactor's ultimate operating times and temperatures. All of the reactors that were tested used pyrolytic graphite as the primary insulator. However, it had been long planned to replace the graphite with zirconium carbide and a lengthy and intensive effort to develop the zirconium carbide insulators had been made at the time Rover was terminated. This report details research and development and the experience we gained with both these insulator materials.

  2. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    SciTech Connect

    Turner, D.A.; Miron, Y.

    1994-01-01

    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  3. Radiative property investigation. [digital computer programs for determining bidirectional reflectance of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1974-01-01

    A detailed formulation of radiative heat transfer problems involving the use of bidirectional reflectance is discussed. Except for very simple systems this formulation is very intricate. For this reason and the fact that bidirectional data are scarce, such a formulation is not in common use. However, with the development of the digital computer there have been numerical methods developed for detailed radiative investigations using the bidirectional reflectance. Since computations using bidirectional reflectance are coming into use for spacecraft radiative studies, it is necessary to have reflectance data on the materials involved. Materials that are frequently studied are coatings which are used in controlling the thermal environment of spacecrafts. This study is primarily concerned with the bidirectional reflectance of zinc oxide which is one constituent commonly used for coatings.

  4. Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979

    SciTech Connect

    Not Available

    1980-04-18

    This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

  5. Final Report on Materials Characterization for the Wetted Cathodes for Low-Temperature Aluminum Smelting Program

    SciTech Connect

    Windisch, Charles F.

    2002-10-30

    This report is a summary of materials characterization results on twenty cathode samples that were used in a novel aluminum reduction cell at the Northwest Aluminum Technologies laboratory. Most of these cathodes were based on the TiB2 composition and showed very little corrosion as a result of testing. Most of the samples also showed good wetting by Al metal that formed during cell operation.

  6. LANL's Role in the U.S. Fissile Material Disposition Program

    SciTech Connect

    Whitworth, Julia; Kay, Virginia

    2015-02-18

    The process of Fissile Material Disposition is in part a result of the Advanced Recovery and Integrated Extraction System (ARIES), which is an agreement between the U.S. and Russia to dispose of excess plutonium used to make weapons. LANL is one sight that aides in the process of dismantling, storage and repurposing of the plutonium gathered from dismantled weapons. Some uses for the repurposed plutonium is fuel for commercial nuclear reactors which will provide energy for citizens.

  7. PISCES Program: Plasma-materials interactions and edge-plasma physics research. Progress report, 1991--1992

    SciTech Connect

    Conn, R.W.; Hirooka, Y.

    1992-07-01

    This program investigates and characterizes the behavior of materials under plasma bombordment, in divertor regions. The PISCES facility is used to study divertor and plasma edge management concepts (in particular gas target divertors), as well as edge plasma turbulence and transport. The plasma source consists of a hot LaB{sub 6} cathode with an annular, water-cooled anode and attached drift tube. This cross sectional area of the plasma can be adjusted between 3 and 10 cm. A fast scanning diagnostic probe system was used for mapping plasma density profiles during biased limiter and divertor simulation experiments. Some experimental data are given on: (1) materials and surface physics, (2) edge plasma physics, and (3) a theoretical analysis of edge plasma modelling.

  8. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  9. Algorithms and theory for the design and programming of industrial control systems materialized with PLC's

    NASA Astrophysics Data System (ADS)

    Montoya Villena, Rafael

    According to its title, the general objective of the Thesis consists in developing a clear, simple and systematic methodology for programming type PLC devices. With this aim in mind, we will use the following elements: Codification of all variables types. This section is very important since it allows us working with little information. The necessary rules are given to codify all type of phrases produced in industrial processes. An algorithm that describes process evolution and that has been called process D.F. This is one of the most important contributions, since it will allow us, together with information codification, representing the process evolution in a graphic way and with any design theory used. Theory selection. Evidently, the use of some kind of design method is necessary to obtain logic equations. For this particular case, we will use binodal theory, an ideal theory for wired technologies, since it can obtain highly reduced schemas for relatively simple automatisms, which means a minimum number of components used. User program outline algorithm (D.F.P.). This is another necessary contribution and perhaps the most important one, since logic equations resulting from binodal theory are compatible with process evolution if wired technology is used, whether it is electric, electronic, pneumatic, etc. On the other hand, PLC devices performance characteristics force the program instructions order to validate or not the automatism, as we have proven in different articles and lectures at congresses both national and international. Therefore, we will codify any information concerning the automating process, graphically represent its temporal evolution and, applying binodal theory and D.F.P (previously adapted), succeed in making logic equations compatible with the process to be automated and the device in which they will be implemented (PLC in our case)

  10. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    SciTech Connect

    Judkins, R.R.; Cole, N.C.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  11. Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2006-01-01

    A computer program called TRACK_TEST for calculating parameters (lengths of the major and minor axes) and plotting profiles in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching is described. The programming steps are outlined, including calculations of alpha-particle ranges, determination of the distance along the particle trajectory penetrated by the chemical etchant, calculations of track coordinates, determination of the lengths of the major and minor axes and determination of the contour of the track opening. Descriptions of the program are given, including the built-in V functions for the two commonly employed nuclear track materials commercially known as LR 115 (cellulose nitrate) and CR-39 (poly allyl diglycol carbonate) irradiated by alpha particles. Program summaryTitle of the program:TRACK_TEST Catalogue identifier:ADWT Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWT Computer:Pentium PC Operating systems:Windows 95+ Programming language:Fortran 90 Memory required to execute with typical data:256 MB No. of lines in distributed program, including test data, etc.: 2739 No. of bytes in distributed program, including test data, etc.:204 526 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MSFLIB library Nature of problem: Fast heavy charged particles (like alpha particles and other light ions etc.) create latent tracks in some dielectric materials. After chemical etching in aqueous NaOH or KOH solutions, these tracks become visible under an optical microscope. The growth of a track is based on the simultaneous actions of the etchant on undamaged regions (with the bulk etch rate V) and along the particle track (with the track etch rate V). Growth of the track is described satisfactorily by these two parameters ( V and V). Several models have been presented in the past describing

  12. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  13. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Astrophysics Data System (ADS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  14. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  15. Fin-buffet alleviation via distributed piezoelectric actuators: materials qualification program

    NASA Astrophysics Data System (ADS)

    Zaglauer, Helmut W.; Duerr, Johannes K.; Floeth, Erik; Ihler, Elmar; Herold-Schmidt, Ursula; Dittrich, Kay W.; Simpson, John; Becker, Juergen

    1999-07-01

    One of the most innovative concepts for active fin-buffet alleviation in vertical tail aircraft is the use of piezoelectric patch actuators distributed across the tail surface to actively induce a counter-strain into the structure. This concept involves the development of a novel material compound structure consisting of a fiber-composite aircraft skin, a ceramic patch actuator and the bonding layer between both components. This actively controllable structure has to provide enough authority to dampen the fin- buffet vibrations. It also has to function reliably during long-term aircraft operation under severe mechanical and environmental load conditions.

  16. Study Program to Develop and Evaluate Die and Container Materials for the Growth of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Ounby, P. D.; Yu, B. B.; Barsoum, M. W.

    1979-01-01

    The completion of a major hardware delivery milestone was accomplished with the delivery of three CNTD Si3N4 coated hot pressed Si3N4 crucibles. A limited characterization of the coating was performed at MRL prior to delivery. The coatings were fine grained alpha - Si3N4. It was determined that a two piece die design is required. The importance of the role of oxygen in influencing the attack of the CNTD materials by molten silicon was demonstrated. The stability is greatly enhanced by maintaining the oxygen partial pressure near or below the Si + O2 = SiO2 equilibrium.

  17. Studies of Matrix/Fiber Reinforced Composite Materials for the High Speed Research (HSR) Program

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1998-01-01

    The research on the curing mechanism of the phenylethynyl terminated imide matrix resins was the primary focus of this research. The ability to process high performance polymers into useful adhesives and high quality composites has been significantly advanced by synthetic techniques in which oligomers terminated with reactive groups cure or crosslink at elevated temperature after the article has been fabricated. The research used a variety of analytical techniques. Many stable products were isolated, and attempts at identification were made. This research was intended to provide fundamental insight into the molecular structure of these new engineering materials.

  18. Permeability testing of composite material and adhesive bonds for the DC-XA composite feedline program

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1995-01-01

    Hercules IM7/8552 carbon/epoxy and Hysol EA 9394 epoxy adhesive bonded between composite/titanium were tested for permeability after various numbers of thermal cycles between 100 C and liquid nitrogen (-196 C). The specimens were quenched from the 100 C temperature into liquid nitrogen to induce thermal shock into the material. Results showed that the carbon/epoxy system was practically impermeable even after 12 thermal cycles. The EA 9394 adhesive bondline was more permeable than the carbon/epoxy, but vacuum mixing minimized the permeability and kept it within allowable limits. Thermal cycling had little effect on the permeability values of the bondline specimens.

  19. Long term materials test program. Quarterly report, October-December 1983

    SciTech Connect

    Not Available

    1984-01-01

    The long-term exposure of gas turbine vane and blade base alloys and a variety of protective coating systems to the effluent from a pressurized fluidized bed coal combustor has reached 4398 hours. After 4053 hours, FeCrAlY overlay coatings and platinum/rhodium-aluminide pack diffusion coatings show excellent resistance to corrosion attack at 1500/sup 0/F. Cobalt-base coatings are somewhat more susceptible to hot corrosion, and the unprotected nickel and cobalt-base alloys are most susceptible to corrosion, although corrosion rates have decreased to less than 1 mil/1000 hours for all materials at 1500/sup 0/F; i.e., corrosion penetration data is evolving parabolically. The three-stage cyclone cleanup system became severely distorted after approximately 5600 hours total service life. Distortion of the cyclones contributed to an increased dust loading to the material test sections, 110 to 250 ppM versus normal loadings of 30 to 90 ppM, for a period of about 75 hours. This increase in dust loading caused severe erosion of the airfoils in the high-velocity test section. Metal recession ranged 4 to 18 mils of leading edge loss on the impulse airfoils, and 11 to 27 mils of leading edge loss on the reaction airfoils. A new three-stage cyclone system was installed and dust loadings now range from 15 to 45 ppM.

  20. Speech recognition materials and ceiling effects: considerations for cochlear implant programs.

    PubMed

    Gifford, René H; Shallop, Jon K; Peterson, Anna Mary

    2008-01-01

    Cochlear implant recipients have demonstrated remarkable increases in speech perception since US FDA approval was granted in 1984. Improved performance is due to a number of factors including improved cochlear implant technology, evolving speech coding strategies, and individuals with increasingly more residual hearing receiving implants. Despite this evolution, the same recommendations for pre- and postimplant speech recognition testing have been in place for over 10 years in the United States. To determine whether new recommendations are warranted, speech perception performance was assessed for 156 adult, postlingually deafened implant recipients as well as 50 hearing aid users on monosyllabic word recognition (CNC) and sentence recognition in quiet (HINT and AzBio sentences) and in noise (BKB-SIN). Results demonstrated that for HINT sentences in quiet, 28% of the subjects tested achieved maximum performance of 100% correct and that scores did not agree well with monosyllables (CNC) or sentence recognition in noise (BKB-SIN). For a more difficult sentence recognition material (AzBio), only 0.7% of the subjects achieved 100% performance and scores were in much better agreement with monosyllables and sentence recognition in noise. These results suggest that more difficult materials are needed to assess speech perception performance of postimplant patients - and perhaps also for determining implant candidacy. PMID:18212519

  1. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  2. LOCA simulation in NRU program: data report for the fourth materials experiment (MT-4)

    SciTech Connect

    Wilson, C.L.; Mohr, C.L.; Hesson, G.M.; Wildung, N.J.; Russcher, G.E.; Webb, B.J.; Freshley, M.D.

    1983-07-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program by Pacific Northwest Laboratory (PNL). This experiment (MT-4) was funded by the US Nuclear Regulatory Commission (NRC) to evaluate ballooning and rupture during adiabatic heatup in the temperature range of 1033 to 1200K (1400 to 1700/sup 0/F). The 12 rest rods in the center of the 32-rod bundle were initially pressurized to 4.62 MPa (670 psia) to insure rupture in the correct temperature range. All 12 test rods ruptured with an average strain of 43.7% at the maximum flow blockage elevation of 2.68 m (105.4 in.). Experimental data for the MT-4 transient experiment and post-test measurements and photographs of the fuel are presented in this report.

  3. Ten-year ground exposure of composite materials used on the Bell Model 206L helicopter flight service program

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1994-01-01

    Residual strength results are presented for four composite material systems that have been exposed for up to 10 years to the environment at five different locations on the North American continent. The exposure locations are near where the Bell Model 206L helicopters, which participated in a flight service program sponsored by NASA Langley Research Center and the U.S. Army, were flying in daily commercial service. The composite material systems are (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 graphite/E-788 epoxy. Six replicates of each material were removed and tested after 1, 3, 5, 7, and 10 years of exposure. The average baseline strength was determined from testing six as-fabricated specimens. More than 1700 specimens have been tested. All specimens that were tested to determine their strength were painted with a polyurethane paint. Each set of specimens also included an unpainted panel for observing the weathering effects on the composite materials. A statistically based procedure has been used to determine the strength value above which at least 90 percent of the population is expected to fall with a 95-percent confidence level. The computed compression strengths are 80 to 90 percent of the baseline (no-exposure) strengths. The resulting compression strengths are approximately 8 percent below the population mean strengths. The computed short-beam-shear strengths are 83 to 92 percent of the baseline (no-exposure) strengths. The computed tension strength of all materials is 93 to 97 percent of the baseline (no-exposure) strengths.

  4. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  5. Study program to develop and evaluate die and container materials for the growth of silicon ribbons

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Initial sessile drop experiments on SiC, Si3N4 and A1N were conducted. Very promising results were achieved on both SiC and Si3N4 where minimal penetration of these CNTD coatings by molten silicon was observed. More detailed characterization of the CNTD microstructures was accomplished as well as X-ray characterization of the third and fourth candidate materials system sets (i.e. A1N and altered Si3N4). Polished sections of post sessile drop specimens were also prepared and evaluated. The techniques of full scale crucible hot pressing were developed and die grinding development was initiated. The apparatus for measurement of oxygen partial pressure was reconstructed and calibrated. The sessile drop temperature measurement procedure was calibrated for absorption by the pyrex view-port and additional Auger electron analysis was performed at the interface of molten silicon with CNTD Si3N4 and A1N.

  6. Ferrocyanide safety program: Final report on adiabatic calorimetry and tube propagation tests with synthetic ferrocyanide materials

    SciTech Connect

    Fauske, H.F.; Meacham, J.E.; Cash, R.J.

    1995-09-29

    Based on Fauske and Associates, Inc. Reactive System Screening Tool tests, the onset or initiation temperature for a ferrocyanide-nitrate propagating reaction is about 250 degrees Celcius. This is at about 200 degrees Celcius higher than current waste temperatures in the highest temperature ferrocyanide tanks. Furthermore, for current ambient waste temperatures, the tube propagation tests show that a ferrocyanide concentration of 15.5 wt% or more is required to sustain a propagation reaction in the complete absence of free water. Ignoring the presence of free water, this finding rules out propagating reactions for all the Hanford flowsheet materials with the exception of the ferrocyanide waste produced by the original In Farm flowsheet

  7. Bed material characteristics of the Mississippi river within pool 19. Long term resource monitoring program

    SciTech Connect

    Bhowmik, N.G.; Miller, A.C.; Payne, B.S.

    1993-01-01

    The construction of a relatively high (38-ft, or 11.6-m) hydropower dam with crest gates across the Mississippi River between Keokuk, Iowa, and Hamilton, Illinois, has resulted in the deposition of large amounts of sediment in the downstream one-half of the pool formed by the dam. Most obvious has been the deposition in the stump fields, which were inundated by the raised water level, and in two broad channel border areas near the upper end of the Des Moines Rapids, Montrose Flats and Nauvoo Point. The sediment deposition has reduced the water depth and induced a succession of changes in the biota inhabiting these areas. The report addresses the nature of the surficial bed materials, or substrates, in Pool 19. Special emphasis is given to the area immediately upstream from the dam, the Nauvoo-Montrose reach, and the Burlington Island reach, which has a large and important side channel.

  8. US program on materials technology for ultra-supercritical coal power plants

    SciTech Connect

    Viswanathan, R.; Henry, J.F.; Tanzosh, J.; Stanko, G.; Shingledecker, J.; Vitalis, B.; Purgert, R.

    2005-06-01

    The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760{sup o}C (1400{sup o}F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650{sup o}C (1200{sup o}F) and 800{sup o}C (1475 {sup o}F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project.

  9. COMGEN - A PROGRAM FOR GENERATING FINITE ELEMENT MODELS OF COMPOSITE MATERIALS AT THE MICRO LEVEL (DEC VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1994-01-01

    A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is

  10. COMGEN - A PROGRAM FOR GENERATING FINITE ELEMENT MODELS OF COMPOSITE MATERIALS AT THE MICRO LEVEL (SGI IRIS VERSION)

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1994-01-01

    A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is

  11. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes; Quarterly MCLR program technical progress report, 1 October 1993--31 December 1993

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1994-01-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The AirConditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  12. Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly MCLR program technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

    1995-04-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

  13. MCNP-to-TORT Radiation Transport Calculations in Support of Mixed Oxide Fuels Testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V.

    1999-11-01

    The United States (US) Department of Energy Fissile Materials Disposition Program (FMDP) began studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium-plutonium oxide (@40X) fuel for commercial light-water reactors(LWRS). As a first step in this program, a test of the utilization of WG-Pu in a LWR environment is being conducted in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power-density spots in the specimens. Therefore, INEEL produced an MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory (ORNL) transformed this boundary source into a discrete -ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code to pinpoint spatial detail. Agreement with average MCNP results were within 5%.

  14. Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program

    SciTech Connect

    Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

    1997-12-01

    This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

  15. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    SciTech Connect

    Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H.; Collins, D.J.; Santiago, P.A.; Tingle, W.

    1997-05-01

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ``Applications for the Use of Sealed Sources in Portable Gauging Devices,`` and in NMSs Policy and guidance Directive 2-07, ``Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.`` This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications.

  16. Development of the Intervention Materials for the HomeStyles Obesity Prevention Program for Parents of Preschoolers

    PubMed Central

    Martin-Biggers, Jennifer; Spaccarotella, Kim; Delaney, Colleen; Koenings, Mallory; Alleman, Gayle; Hongu, Nobuko; Worobey, John; Byrd-Bredbenner, Carol

    2015-01-01

    Home environment is key to the development of obesity-preventing behaviors during childhood, yet few resources help preschool parents address factors at home associated with obesity risk. This paper describes creation of materials for an in-home intervention (HomeStyles) with this population. An advisory group of stakeholders and target audience members determined salient factors affecting childhood obesity to address in-home and developed program materials. The Social Cognitive Theory, Faith’s Core Behavior Change Strategies to Treat Childhood Obesity, Adult Learning Theory and motivational interviewing techniques guided development of 12 guides targeting strategies parents can use to shape the home environment. Interviews were conducted to determine effectiveness of the guides. Cognitive testing of guide design (n = 251) and content (n = 261) occurred in English and Spanish in New Jersey and Arizona with parents and home visitation staff who would present the guides. Interviews investigated perceptions of content usefulness and parent comprehension. Findings were also examined in light of theoretical underpinnings. Both home visitation staff and parents felt the guides were very readable and useful. Parents appreciated use of motivational interviewing techniques and Adult Learning Theory. Current research is testing these guides through an in-home, randomized control trial. PMID:26266419

  17. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000

    SciTech Connect

    Moore, J.P.

    2000-10-23

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

  18. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    SciTech Connect

    Moore, J.P.

    2000-08-18

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

  19. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    PubMed

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  20. The Scientific and Technological area of the Programs of Curricular Diversification. Critical analysis of the available materials and a case study in Segovia province

    NASA Astrophysics Data System (ADS)

    Leal Insua, Maria Pilar

    This thesis is focused on the Scientific area of the Programs of Curricular Diversification, one of the Government actions for the attention to diversity in compulsory Secondary Education, established in the General Education Law (LOGSE: Ley de Ordenacion General del Sistema Educativo) of 1990. It has been carried out in Spain. In the thesis two different lines of work can be distinguished: (A) The analysis of material elaborated specifically for the mentioned area. We intent to know what materials have been elaborated and to analyze them; to this purpose we study the material spread in Congresses or Conferences, and also the articles published in magazines or specifically designed to be used in the Scientific area of the Programs of Curricular Diversification until year 2003. The analysis is made after classifying the material according to the format in which it appears (books, CDs, "Didactic Units"). (B) Two case studies, of evaluative character, carried out in two Secondary Schools in the province of Segovia (Spain), one of them in the city and another one in a rural population. The case studies are centered in the Scientific Area of the Programs of Curricular Diversification that last for two years. In the first of these Centers eight students took part in the Program; in the second, a total of seven. Throughout the investigation we observed that students who took part in the Programs obtained good academic results. Programs are proved to be effective in generating processes of academic success in pupils who were previously in situation of school failure and at risk of social exclusion. The success of these programs is fundamentally due to the following reasons: the low number of students involved, the fact that they are focused on basic knowledge, the reduced number of subjects studied. Besides, to offer the students the chance of a closer relationship with a few teachers increases their motivation and involvement in the programs. Key words: Attention to