Science.gov

Sample records for maternal endothelial progenitor

  1. Endothelial progenitor cells: identity defined?

    PubMed Central

    Timmermans, Frank; Plum, Jean; Yöder, Mervin C; Ingram, David A; Vandekerckhove, Bart; Case, Jamie

    2009-01-01

    Abstract In the past decade, researchers have gained important insights on the role of bone marrow (BM)-derived cells in adult neovascularization. A subset of BM-derived cells, called endothelial progenitor cells (EPCs), has been of particular interest, as these cells were suggested to home to sites of neovascularization and neoendothelialization and differentiate into endothelial cells (ECs) in situ, a process referred to as postnatal vasculogenesis. Therefore, EPCs were proposed as a potential regenerative tool for treating human vascular disease and a possible target to restrict vessel growth in tumour pathology. However, conflicting results have been reported in the field, and the identification, characterization, and exact role of EPCs in vascular biology is still a subject of much discussion. The focus of this review is on the controversial issues in the field of EPCs which are related to the lack of a unique EPC marker, identification challenges related to the paucity of EPCs in the circulation, and the important phenotypical and functional overlap between EPCs, haematopoietic cells and mature ECs. We also discuss our recent findings on the origin of endothelial outgrowth cells (EOCs), showing that this in vitro defined EC population does not originate from circulating CD133+ cells or CD45+ haematopoietic cells. PMID:19067770

  2. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  3. Endothelial progenitor cells in hematologic malignancies

    PubMed Central

    Saulle, Ernestina; Castelli, Germana; Pelosi, Elvira

    2016-01-01

    Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets. PMID:27583252

  4. Endothelial progenitor cells in hematologic malignancies.

    PubMed

    Testa, Ugo; Saulle, Ernestina; Castelli, Germana; Pelosi, Elvira

    2016-01-01

    Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets. PMID:27583252

  5. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    PubMed Central

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  6. Endothelial Progenitor Cells in Diabetic Retinopathy

    PubMed Central

    Lois, Noemi; McCarter, Rachel V.; O’Neill, Christina; Medina, Reinhold J.; Stitt, Alan W.

    2014-01-01

    Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40–50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication. PMID:24782825

  7. Endothelial progenitor cells in acute ischemic stroke

    PubMed Central

    Martí-Fàbregas, Joan; Crespo, Javier; Delgado-Mederos, Raquel; Martínez-Ramírez, Sergi; Peña, Esther; Marín, Rebeca; Dinia, Lavinia; Jiménez-Xarrié, Elena; Fernández-Arcos, Ana; Pérez-Pérez, Jesús; Querol, Luis; Suárez-Calvet, Marc; Badimon, Lina

    2013-01-01

    Objectives The levels of circulating endothelial progenitor cells (EPCs) in ischemic stroke have not been studied extensively and reported results are inconsistent. We aimed to investigate the time course, the prognostic relevance, and the variables associated with EPC counts in patients with ischemic stroke at different time points. Material and methods We studied prospectively 146 consecutive patients with ischemic stroke within the first 48 h from the onset of symptoms (baseline). We evaluated demographic data, classical vascular risk factors, treatment with thrombolysis and statins, stroke etiology, National Institute of Health and Stroke Scale score and outcome (favorable when Rankin scale score 0–2). Blood samples were collected at baseline, at day 7 after stroke (n = 121) and at 3 months (n = 92). The EPC were measured by flow cytometry. Results We included 146 patients with a mean age of 70.8 ± 12.2 years. The circulating EPC levels were higher on day 7 than at baseline or at 3 months (P = 0.045). Pretreatment with statins (odds ratio [OR] 3.11, P = 0.008) and stroke etiology (P = 0.032) were predictive of EPC counts in the baseline sample. EPC counts were not associated with stroke severity or functional outcome in all the patients. However, using multivariate analyses, a better functional outcome was found in patients with higher EPC counts in large-artery atherosclerosis and small-vessel disease etiologic subtypes. Conclusions After acute ischemic stroke, circulating EPC counts peaked at day 7. Pretreatment with statins increased the levels of EPC. In patients with large-artery atherosclerosis and small-vessel disease subtypes, higher counts were related to better outcome at 3 months. PMID:24363968

  8. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  9. Endothelial progenitor cells and burn injury - exploring the relationship.

    PubMed

    Banyard, Derek A; Adnani, Blake O; Melkumyan, Satenik; Araniego, Cheryl Ann; Widgerow, Alan D

    2016-01-01

    Burn wounds result in varying degrees of soft tissue damage that are typically graded clinically. Recently a key participant in neovascularization, the endothelial progenitor cell, has been the subject of intense cardiovascular research to explore whether it can serve as a biomarker for vascular injury. In this review, we examine the identity of the endothelial progenitor cell as well as the evidence that support its role as a key responder after burn insult. While there is conflicting evidence with regards to the delta of endothelial progenitor cell mobilization and burn severity, it is clear that they play an important role in wound healing. Systematic and controlled studies are needed to clarify this relationship, and whether this population can serve as a biomarker for burn severity. PMID:27574674

  10. Endothelial progenitors in sepsis: vox clamantis in deserto?

    PubMed

    Goligorsky, Michael S

    2011-01-01

    In this issue of Critical Care, Patschan and colleagues present a study of endothelial progenitor cells (EPCs) in patients with sepsis. The importance of this study is in focusing attention on several frequently ignored aspects of sepsis. Among those are the phenomenon of microvascular dysfunction, which is potentially responsible for profound metabolic perturbations at the tissue level, and the role of endothelial progenitors in repair processes. Other important aspects of the study are the regenerative capacity of mobilized EPCs and the dissociation between the numerical value and clonogenic competence. Attempting to restore the competence to EPCs should be a priority in the future. PMID:21489327

  11. Aberrant Lymphatic Endothelial Progenitors in Lymphatic Malformation Development

    PubMed Central

    Wu, June K.; Kitajewski, Christopher; Reiley, Maia; Keung, Connie H.; Monteagudo, Julie; Andrews, John P.; Liou, Peter; Thirumoorthi, Arul; Wong, Alvin

    2015-01-01

    Lymphatic malformations (LMs) are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial protein, podoplanin. Isolated patient-derived CD133+ LM cells expressed stem cell genes (NANOG, Oct4), circulating endothelial cell precursor proteins (CD90, CD146, c-Kit, VEGFR-2), and lymphatic endothelial proteins (podoplanin, VEGFR-3). Consistent with a progenitor cell identity, CD133+ LM cells were multipotent and could be differentiated into fat, bone, smooth muscle, and lymphatic endothelial cells in vitro. CD133+ cells were compared to CD133− cells isolated from LM fluids. CD133− LM cells had lower expression of stem cell genes, but expressed circulating endothelial precursor proteins and high levels of lymphatic endothelial proteins, VE-cadherin, CD31, podoplanin, VEGFR-3 and Prox1. CD133− LM cells were not multipotent, consistent with a differentiated lymphatic endothelial cell phenotype. In a mouse xenograft model, CD133+ LM cells differentiated into lymphatic endothelial cells that formed irregularly dilated lymphatic channels, phenocopying human LMs. In vivo, CD133+ LM cells acquired expression of differentiated lymphatic endothelial cell proteins, podoplanin, LYVE1, Prox1, and VEGFR-3, comparable to expression found in LM patient tissues. Taken together, these data identify a novel LM progenitor cell population that differentiates to form the abnormal lymphatic structures characteristic of these lesions, recapitulating the human LM phenotype. This LM progenitor cell population may contribute to the clinically refractory behavior of LMs. PMID:25719418

  12. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis.

    PubMed

    Li, Wen-Dong; Li, Xiao-Qiang

    2016-08-01

    Deep vein thrombosis (DVT) causes high morbidity and mortality. Successful resolution of DVT-related thrombi is the key point in the treatment of DVT. Recently, endothelial progenitor cells (EPCs) which are multipotent progenitor cells mainly residing in human bone marrow have emerged as a promising therapeutic choice for DVT-related thrombus resolution. In this review, we discussed the mobilization and homing property of EPCs into the sites of thrombosis, mechanisms of EPCs in DVT-related thrombus resolution from the aspects of promoting endothelial regeneration, revascularization, vasoactive and angiogenic factor secretion, proteinase generation, thrombus propagation and recurrence prevention, and vein wall remodeling. In addition, we also provide suggestions on EPCs as a therapeutic choice for thrombus resolution. PMID:26187355

  13. Effects of physical activity on endothelial progenitor cells (EPCs)

    PubMed Central

    De Biase, Chiara; De Rosa, Roberta; Luciano, Rossella; De Luca, Stefania; Capuano, Ernesto; Trimarco, Bruno; Galasso, Gennaro

    2014-01-01

    Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD. PMID:24550833

  14. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells

    PubMed Central

    Yang, Guanghua; Kramer, M. Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P.; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-01-01

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties. PMID:26612671

  15. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    PubMed

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-01-01

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties. PMID:26612671

  16. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals

    PubMed Central

    Mead, Laura E.; Prater, Daniel; Krier, Theresa R.; Mroueh, Karim N.; Li, Fang; Krasich, Rachel; Temm, Constance J.; Prchal, Josef T.

    2007-01-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies “endothelial cell colony-forming units” (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  17. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.

    PubMed

    Yoder, Mervin C; Mead, Laura E; Prater, Daniel; Krier, Theresa R; Mroueh, Karim N; Li, Fang; Krasich, Rachel; Temm, Constance J; Prchal, Josef T; Ingram, David A

    2007-03-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  18. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    PubMed Central

    Cairo, Valentina; D'Ascola, Angela; Scuruchi, Michele; Basile, Giorgio; Mandraffino, Giuseppe

    2016-01-01

    Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717. PMID:26839569

  19. The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD

    PubMed Central

    Watt, Jonathan; Kennedy, Simon; Ahmed, Nadeem; Hayhurst, James; McClure, John D; Berry, Colin; Wadsworth, Roger M; Oldroyd, Keith G

    2016-01-01

    Objective The balance between coronary endothelial dysfunction and repair is influenced by many protective and deleterious factors circulating in the blood. We studied the relationship between oxidised low-density lipoprotein (oxLDL), circulating endothelial progenitor cells (EPCs) and coronary endothelial function in patients with stable coronary heart disease (CHD). Methods 33 patients with stable CHD were studied. Plasma oxLDL was measured using ELISA, coronary endothelial function was assessed using intracoronary acetylcholine infusion and EPCs were quantified using flow cytometry for CD34+/KDR+ cells. Results Plasma oxLDL correlated positively with the number of EPCs in the blood (r=0.46, p=0.02). There was a positive correlation between the number of circulating EPCs and coronary endothelial function (r=0.42, p=0.04). There was no significant correlation between oxLDL and coronary endothelial function. Conclusions Plasma levels of oxLDL are associated with increased circulating EPCs in the blood of patients with CHD, which may reflect a host-repair response to endothelial injury. Patients with stable CHD had a high prevalence of coronary endothelial dysfunction, which was associated with lower numbers of circulating EPCs, suggesting a mechanistic link between endothelial dysfunction and the pathogenesis of atherosclerosis. PMID:26848395

  20. Effects of shear stress on endothelial progenitor cells.

    PubMed

    Obi, Syotaro; Yamamoto, Kimiko; Ando, Joji

    2014-10-01

    Endothelial progenitor cells (EPCs) are adult stem cells that play a central role in neovascularization. EPCs are mobilized from bone marrow into peripheral blood, attach to existing endothelial cells, and then transmigrate across the endothelium into tissues, where they proliferate, differentiate, and form new blood vessels. In the process, EPCs are exposed to shear stress, a biomechanical force generated by flowing blood and tissue fluid flow. When cultured EPCs are exposed to controlled levels of shear stress in a flow-loading device, their bioactivities in terms of proliferation, anti-apoptosis, migration, production of bioactive substances, anti-thrombosis, and tube formation increase markedly. Expression of endothelial marker genes and proteins by EPCs also increases in response to shear stress, and they differentiate into mature endothelial cells. Great advances have been made in elucidating the mechanisms by which mature endothelial cells sense and respond to shear stress, but not in EPCs. Further study of EPC responses to shear stress will be necessary to better understand the physiological and pathophysiological roles of EPCs and to apply EPCs to new therapies in the field of regenerative medicine. PMID:25992410

  1. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia

    PubMed Central

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  2. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia.

    PubMed

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  3. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites.

    PubMed

    Hung, Huey-Shan; Yang, Yi-Chun; Lin, Yu-Chun; Lin, Shinn-Zong; Kao, Wei-Chien; Hsieh, Hsien-Hsu; Chu, Mei-Yun; Fu, Ru-Huei; Hsu, Shan-hui

    2014-08-01

    The mobilization and homing of endothelial progenitor cells (EPCs) are critical to the development of an antithrombotic cardiovascular prosthesis. Polyurethane (PU) with superior elasticity may provide a mechanical environment resembling that of the natural vascular tissues. The topographical cues of PU were maximized by making nanocomposites with a small amount of gold nanoparticles (AuNPs). The nanocomposites of PU-AuNPs ("PU-Au") with a favorable response of endothelial cells were previously established. In the current study, the effect of PU and PU-Au nanocomposites on the behavior of human peripheral blood EPCs was investigated in vitro and in vivo. It was found that PU-Au promoted EPCs to become differentiated endothelial cells in vitro, confirmed by the increased expressions of CD31 and VEGF-R2 surface markers. The increased maturation of EPCs was significantly more remarkable on PU-Au, probably through the stromal derived factor 1α (SDF-1α)/CXCR4 signaling pathway. In vivo experiments showed that EPCs seeded on PU-Au coated catheters effectively reduced thrombosis by differentiation into endothelial cells. Surface endothelialization with CD31 and CD34 expression as well as intimal formation with α-SMA expression was significantly accelerated in the group receiving EPC-seeded PU-Au catheters. Moreover, the analysis of collagen deposition revealed a reduction of fibrosis in the group receiving EPC-seeded PU-Au catheters as compared to the other groups. These results suggest that EPCs engineered with a proper elastic substrate may provide unique endothelialization and antithrombogenic properties that benefit vascular tissue regeneration. PMID:24836305

  4. Circulating Progenitor and Mature Endothelial Cells in Deep Vein Thrombosis

    PubMed Central

    Alessio, Aline M; Beltrame, Miriam P; Nascimento, Mariane C Flores; Vicente, Cristina P; de Godoy, Juliana AP; Silva, Junia CR Santos; Bittar, Luis Fernando; Lorand-Metze, Irene; de Paula, Erich V; Annichino-Bizzacchi, Joyce M

    2013-01-01

    Introduction: Mature circulating endothelial cells (CEC) and circulating endothelial progenitor cells (EPC) have been described in several conditions associated with endothelial injury. Their role in deep vein thrombosis (DVT) has not been previously evaluated. Patients and Methods: In this pilot study we evaluated the time course of CEC and EPC release after vena cava experimental DVT in mice, using the FeCl3 model. We also evaluated their presence in patients with DVT at different phases of the disease (acute and chronic phase). CEC and EPC were evaluated by Flow Cytometry. Results: In mice, both CEC and EPC were increased 24 hours after DVT induction, peaking 48 hours thereafter. After 72 hours, CEC counts decreased sharply, whereas EPC counts decreased less substantially. In DVT patients we observed a significant increase in CEC counts immediately after DVT compared to healthy individuals. Patients with chronic disease also presented a significant elevation of these cell count. In a subgroup of patients for whom serial samples were available, CEC counts decreased significantly after 9-15 months of the acute event. Conclusions: Our results suggest the participation of these cells in the reparative processes that follows DVT, both at immediate and late time-points. The different kinetics of CEC and EPC release in experimental DVT suggests a heterogeneous role for these cells in the reparative events after DVT. PMID:24155660

  5. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    PubMed

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis. PMID:26321757

  6. ECM-Dependence of Endothelial Progenitor Cell Features.

    PubMed

    Siavashi, Vahid; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Vafaei, Rana; Sariri, Reyhaneh

    2016-08-01

    Preserving self-renewal, multipotent capacity, and large-scale expansion of highly functional progenitor cells, including endothelial progenitor cells (EPCs), is a controversial issue. These current limitations, therefore, raise the need of developing promising in vitro conditions for prolonged expansion of EPCs without loss of their stemness feature. In the current study, the possible role of three different natural extracellular substrates, including collagen, gelatin, and fibronectin, on multiple parameters of EPCs such as cell morphology, phenotype, clonogenic, and vasculogenic properties was scrutinized. Next, EPCs from GFP-positive mice were pre-expanded on each of these ECM substrates and then systemically transplanted into sublethaly irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed considerable promise for fibronectin for EPC expansion with maintenance of stemness characteristics, whereas gelatin and collagen matrices directed the cells toward a mature endothelial phenotype. Transplantation of EPCs pre-expanded on fibronectin resulted in widespread distribution and appropriate engraftment to various tissues with habitation in close association with the microvasculature. In addition, fibronectin pre-expanded cells were gradually enriched in the bone marrow after transplantation, resulting in marrow repopulation and hematologic recovery, leading to improved survival of recipient mice whereas gelatin- and collagen-expanded cells failed to reconstitute the bone marrow. This study demonstrated that, cell characteristics of in vitro expanded EPCs are determined by the subjacent matrix. Fibronectin-expanded EPCs are heralded as a source of great promise for bone marrow reconstitution and neo-angiogenesis in therapeutic bone marrow transplantation. J. Cell. Biochem. 117: 1934-1946, 2016. © 2016 Wiley Periodicals, Inc. PMID:26756870

  7. Circulating endothelial cells and their progenitors in acute myeloid leukemia

    PubMed Central

    Zahran, Asmaa Mohammed; Aly, Sanaa Shaker; Altayeb, Hanan Ahmed; Ali, Arwa Mohammed

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by the accumulation of immature myeloid progenitor cells in the bone marrow. Studies are required to investigate the prognostic and predictive value of surrogate biomarkers. Given the importance of angiogenesis in oncology in terms of pathogenesis as well as being a target for treatment, circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising candidates to serve as such markers. The aim of the present study was to quantify CECs and EPCs in patients with AML at initial diagnosis and following induction chemotherapy, and to correlate these findings with the response to treatment in AML patients. The present study included 40 patients with de novo AML and 20 age- and gender-matched healthy controls. CECs and EPCs were evaluated by flow cytometry at initial diagnosis and after induction chemotherapy (3+7 protocol for AML other than M3 and all-trans-retinoic acid plus anthracycline for M3 disease). CECs and EPCs were significantly higher in AML patients at diagnosis and after induction chemotherapy than in controls. After induction chemotherapy, CECs and EPCs were significantly decreased compared with the levels at initial diagnosis. Patients who achieved complete response (n=28) had lower initial CEC and EPC levels compared with patients who did not respond to treatment. These results suggest that CEC levels are higher in AML patients and may correlate with disease status and treatment response. Further investigations are required to better determine the predictive value and implication of these cells in AML management. PMID:27602121

  8. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed Central

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics. PMID:27313624

  9. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics. PMID:27313624

  10. Endothelial progenitor cell recruitment in a microfluidic vascular model.

    PubMed

    Lewis, Daniel M; Abaci, Hasan E; Xu, Yu; Gerecht, Sharon

    2015-12-01

    During vessel injury, endothelial progenitors cells (EPCs) are recruited from bone marrow and directed to the hypoxic injury site. The hypoxic conditions in the damaged blood vessel promote TNF-α, which upregulates intercellular adhesion molecule-1 (ICAM-1). EPCs attach to endothelial cell lining using ICAM-1. Here we aimed to examine EPC attachment to ECs in an injured-blood vessel conditions. We first determined ICAM-1 expression in stimulated HUVECs. We stimulated HUVECs with 21% oxygen (atmospheric), atmospheric with TNF-α-supplemented media, 1% oxygen (hypoxia), and hypoxia with TNF-α-supplemented media and found the highest ECFC attachment on HUVECs stimulated with TNF-α and hypoxia, correlating with the highest ICAM-1 expression. We next designed, fabricated and tested a three-dimensional microbioreactor (3D MBR) system with precise control and monitoring of dissolve oxygen and media flow rate in the cellular environment. We utilized a step-wise seeding approach, producing monolayer of HUVECs on all four walls. When stimulated with both TNF-α and hypoxia, ECFC retention on HUVECs was significantly increased under low shear stress compared to static controls. Overall, the 3D MBR system mimics the pathological oxygen tension and shear stress in the damaged vasculature, providing a platform to model vascular-related disorders. PMID:26693599

  11. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.

    PubMed

    Bao, Xiaoping; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development, disease modeling, drug discovery, and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined, growth factor- and serum-free system by temporal modulation of Wnt/β-catenin signaling via small molecules. We demonstrate a 10-day, two-stage process that recapitulates endothelial cell development, in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described. PMID:27590162

  12. Ca(2+) Signalling in Endothelial Progenitor Cells: Friend or Foe?

    PubMed

    Moccia, Francesco; Guerra, Germano

    2016-02-01

    Endothelial progenitor cells (EPCs) are mobilized either from the bone marrow and/or the arterial to replace dysfunctional endothelial cells and rescue blood perfusion in ischemic tissues. In addition, they may contribute to the angiogenic switch, thereby sustaining tumour growth and metastatization. Understanding the molecular mechanisms utilized by vascular endothelial growth factor (VEGF) to stimulate EPCs might unveil novel targets to enhance their clinical outcome in regenerative medicine and to adverse tumour vascularisation. VEGF stimulates peripheral blood-derived EPCs to undergo repetitive Ca(2+) oscillations shaped by the interaction between inositol-1,4,5-trisphosphate (InsP3 )-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). However, the Ca(2+) machinery underlying VEGF-induced Ca(2+) spikes changes in umbilical cord blood-derived EPCs, which require TRPC3-mediated Ca(2+) entry to trigger the interplay between InsP3 and SOCE. Surprisingly, VEGF fails to elicit pro-angiogenic Ca(2+) signals when EPCs derive from renal cellular carcinoma patients, thus questioning the suitability of VEGFR-2 as a target for anti-angiogenic treatments in these individuals. The lack of response to VEGF is likely due to the dramatic rearrangement of the Ca(2+) toolkit occurring in RCC-derived EPCs. Finally, primary myelofibrosis-derived EPCs display a further pattern of reorganization of the Ca(2+) machinery and proliferate independently of SOCE. Thus, the Ca(2+) machinery in human ECFCs is extremely plastic and may change depending on the physio-pathological background of the donor. As a consequence, the Ca(2+) toolkit could properly be used to enhance the regenerative outcome of cell-based therapy or adverse tumor vascularisation. PMID:26247172

  13. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin

    PubMed Central

    Yu, Young; Wise, Steven G.; Michael, Praveesuda L.; Bax, Daniel V.; Yuen, Gloria S. C.; Hiob, Matti A.; Yeo, Giselle C.; Filipe, Elysse C.; Dunn, Louise L.; Chan, Kim H.; Hajian, Hamid; Celermajer, David S.; Weiss, Anthony S.; Ng, Martin K. C.

    2015-01-01

    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants. PMID:26115013

  14. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin.

    PubMed

    Yu, Young; Wise, Steven G; Michael, Praveesuda L; Bax, Daniel V; Yuen, Gloria S C; Hiob, Matti A; Yeo, Giselle C; Filipe, Elysse C; Dunn, Louise L; Chan, Kim H; Hajian, Hamid; Celermajer, David S; Weiss, Anthony S; Ng, Martin K C

    2015-01-01

    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants. PMID:26115013

  15. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells

    PubMed Central

    Rong, Qifei; Huang, Jun; Su, Enben; Li, Jun; Li, Jianyong; Zhang, Lili; Cao, Kejiang

    2007-01-01

    Background Hepatitis B virus (HBV) replication has been reported to be involved in many extrahepatic viral disorders; however, the mechanism by which HBV is trans-infected into extrahepatic tissues such as HBV associated myocarditis remains largely unknown. Results In this study, we showed that human cord blood endothelial progenitor cells (EPCs), but not human umbilical vein endothelial cells (HUVECs) could be effectively infected by uptake of HBV in vitro. Exposure of EPCs with HBV resulted in HBV DNA and viral particles were detected in EPCs at day 3 after HBV challenge, which were peaked around day 7 and declined in 3 weeks. Consistently, HBV envelope surface and core antigens were first detected in EPCs at day 3 after virus challenge and were retained to be detectable for 3 weeks. In contrast, HBV covalently closed circular DNA was not detected in EPCs at any time after virus challenge. Intravenous transplantation of HBV-treated EPCs into myocardial infarction and acute renal ischemia mouse model resulted in incorporation of HBV into injured heart, lung, and renal capillary endothelial tissues. Conclusion These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured endothelial tissues. The findings might provide a novel mechanism for HBV-associated myocarditis and other HBV-related extrahepatic diseases as well. PMID:17407553

  16. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells.

    PubMed

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial-mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  17. Dextran induces differentiation of circulating endothelial progenitor cells

    PubMed Central

    Obi, Syotaro; Masuda, Haruchika; Akimaru, Hiroshi; Shizuno, Tomoko; Yamamoto, Kimiko; Ando, Joji; Asahara, Takayuki

    2014-01-01

    Abstract Endothelial progenitor cells (EPCs) have been demonstrated to be effective for the treatment of cardiovascular diseases. However, the differentiation process from circulation to adhesion has not been clarified because circulating EPCs rarely attached to dishes in EPC cultures previously. Here we investigated whether immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran. When floating‐circulating EPCs derived from ex vivo expanded human cord blood were cultured with 5% and 10% dextran, they attached to fibronectin‐coated dishes and grew exponentially. The bioactivities of adhesion, proliferation, migration, tube formation, and differentiated type of EPC colony formation increased in EPCs exposed to dextran. The surface protein expression rate of the endothelial markers vascular endothelial growth factor (VEGF)‐R1/2, VE‐cadherin, Tie2, ICAM1, VCAM1, and integrin αv/β3 increased in EPCs exposed to dextran. The mRNA levels of VEGF‐R1/2, VE‐cadherin, Tie2, endothelial nitric oxide synthase, MMP9, and VEGF increased in EPCs treated with dextran. Those of endothelium‐related transcription factors ID1/2, FOXM1, HEY1, SMAD1, FOSL1, NFkB1, NRF2, HIF1A, EPAS1 increased in dextran‐treated EPCs; however, those of hematopoietic‐ and antiangiogenic‐related transcription factors TAL1, RUNX1, c‐MYB, GATA1/2, ERG, FOXH1, HHEX, SMAD2/3 decreased in dextran‐exposed EPCs. Inhibitor analysis showed that PI3K/Akt, ERK1/2, JNK, and p38 signal transduction pathways are involved in the differentiation in response to dextran. In conclusion, dextran induces differentiation of circulating EPCs in terms of adhesion, migration, proliferation, and vasculogenesis. The differentiation mechanism in response to dextran is regulated by multiple signal transductions including PI3K/Akt, ERK1/2, JNK, and p38. These findings indicate that dextran is an effective treatment for EPCs in regenerative medicines. PMID:24760515

  18. Reduced circulating endothelial progenitor cells in reversible cerebral vasoconstriction syndrome

    PubMed Central

    2014-01-01

    Background The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) remains elusive. Endothelial dysfunction might play a role, but direct evidence is lacking. This study aimed to explore whether patients with RCVS have a reduced level of circulating circulating endothelial progenitor cells (EPCs) to repair the dysfunctional endothelial vasomotor control. Methods We prospectively recruited 24 patients with RCVS within one month of disease onset and 24 healthy age- and sex-matched controls. Flow cytometry was used to quantify the numbers of circulating EPCs, defined as KDR+CD133+, CD34+CD133+, and CD34+KDR+ double-positive mononuclear cells. The Lindegaard index, an index of vasoconstriction, was calculated by measuring the mean flow velocity of middle cerebral arteries and distal extracranial internal carotid arteries via color-coded sonography on the same day as blood drawing. A Lindegaard index of 2 was chosen as the cutoff value for significant vasoconstriction of middle cerebral arteries based on our previous study. Results Patients with RCVS had a reduced number of CD34+KDR+ cells (0.009 ± 0.006% vs. 0.014 ± 0.010%, p = 0.031) but not KDR+CD133+ cells or CD34+CD133+ EPCs, in comparison with controls. The number of CD34+KDR+ cells was inversely correlated with the Lindegaard index (rs = -0.418, p = 0.047). Of note, compared to controls, patients with a Lindegaard index > 2 (n = 13) had a reduced number of CD34+KDR+ cells (0.007 ± 0.005% vs. 0.014 ± 0.010%, p = 0.010), but those with a Lindegaard index ≤ 2 did not. Conclusions Patients with RCVS had reduced circulating CD34+KDR+ EPCs, which were correlated with the severity of vasoconstriction. Endothelial dysfunction might contribute to the pathogenesis of RCVS. PMID:25466718

  19. The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development.

    PubMed

    Eliades, Alexia; Wareing, Sarah; Marinopoulou, Elli; Fadlullah, Muhammad Z H; Patel, Rahima; Grabarek, Joanna B; Plusa, Berenika; Lacaud, Georges; Kouskoff, Valerie

    2016-06-01

    It is now well-established that hematopoietic stem cells (HSCs) and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE), via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. Using an ETV2::GFP reporter mouse to isolate emerging endothelial progenitors, we observed a dramatic decrease in hemogenic potential between embryonic day (E)7.5 and E8.5. At the molecular level, Runx1 is expressed at much lower levels in E8.5 intra-embryonic progenitors, while Bmi1 expression is increased. Remarkably, the ectopic expression of Runx1 in these progenitors fully restores their hemogenic potential, as does the suppression of BMI1 function. Altogether, our data demonstrate that hemogenic competency in recently specified endothelial progenitors is restrained through the active silencing of Runx1 expression. PMID:27239041

  20. CD133 positive progenitor endothelial cell lines from human cord blood.

    PubMed

    Paprocka, Maria; Krawczenko, Agnieszka; Dus, Danuta; Kantor, Aneta; Carreau, Aude; Grillon, Catherine; Kieda, Claudine

    2011-08-01

    Endothelial progenitor cells (EPCs) modulate postnatal vascularization and contribute to vessel regeneration in adults. Stem cells and progenitor cells were found in umbilical cord blood, bone marrow, and mobilized peripheral blood cells, from where they were isolated and cultured. However, the yield of progenitor cells is usually not sufficient for clinical application and the quality of progenitor cells varies. The aim of the study was the immortalization of early progenitor cells with high proliferative potential, capable to differentiate to EPCs and, further, toward endothelial cells. Two cell lines, namely HEPC-CB.1 and HEPC-CB.2 (human endothelial progenitor cells-cord blood) were isolated. As assessed by specific antibody labeling and flow cytometric analysis, they express a panel of stem cell markers: CD133, CD13, CD271, CD90 and also endothelial cell markers: CD202b, CD309 (VEGFR2), CD146, CD105, and CD143 but they do not present markers of finally differentiated endothelial cells: CD31, vWf, nor CD45 which is a specific hematopoietic cell marker. Using the multiplex Cytometric Bead Assay, the simultaneous production of proangiogenic cytokines IL8, angiogenin, and VEGF was demonstrated in normoxia and was shown to be increased by hypoxia. Both cell lines, similarly as mature endothelial cells, underwent in vitro pre-angiogenic process, formed pseudovessel structures and present an accelerated angiogenesis in hypoxic conditions. To date, these are the first CD133 positive established cell lines from human cord blood cells. PMID:21710642

  1. Differential Effects of Isoxazole-9 on Neural Stem/Progenitor Cells, Oligodendrocyte Precursor Cells, and Endothelial Progenitor Cells

    PubMed Central

    Maki, Takakuni; Shindo, Akihiro; Osumi, Noriko; Zhao, Jing; Lin, Hong; Holder, Julie C.; Chuang, Tsu Tshen; McNeish, John D.; Arai, Ken; Lo, Eng H.

    2015-01-01

    Adult mammalian brain can be plastic after injury and disease. Therefore, boosting endogenous repair mechanisms would be a useful therapeutic approach for neurological disorders. Isoxazole-9 (Isx-9) has been reported to enhance neurogenesis from neural stem/progenitor cells (NSPCs). However, the effects of Isx-9 on other types of progenitor/precursor cells remain mostly unknown. In this study, we investigated the effects of Isx-9 on the three major populations of progenitor/precursor cells in brain: NSPCs, oligodendrocyte precursor cells (OPCs), and endothelial progenitor cells (EPCs). Cultured primary NSPCs, OPCs, or EPCs were treated with various concentrations of Isx-9 (6.25, 12.5, 25, 50 μM), and their cell numbers were counted in a blinded manner. Isx-9 slightly increased the number of NSPCs and effectively induced neuronal differentiation of NSPCs. However, Isx-9 significantly decreased OPC number in a concentration-dependent manner, suggesting cytotoxicity. Isx-9 did not affect EPC cell number. But in a matrigel assay of angiogenesis, Isx-9 significantly inhibited tube formation in outgrowth endothelial cells derived from EPCs. This potential anti-tube-formation effect of Isx-9 was confirmed in a brain endothelial cell line. Taken together, our data suggest that mechanisms and targets for promoting stem/progenitor cells in the central nervous system may significantly differ between cell types. PMID:26407349

  2. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction. PMID:26874281

  3. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development.

    PubMed

    Abd El Aziz, M T; Abd El Nabi, E A; Abd El Hamid, M; Sabry, D; Atta, H M; Rahed, L A; Shamaa, A; Mahfouz, S; Taha, F M; Elrefaay, S; Gharib, D M; Elsetohy, Khaled A

    2015-03-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI. PMID:25750747

  4. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development☆

    PubMed Central

    Abd El Aziz, M.T.; Abd El Nabi, E.A.; Abd El Hamid, M.; Sabry, D.; Atta, H.M.; Rahed, L.A.; Shamaa, A.; Mahfouz, S.; Taha, F.M.; Elrefaay, S.; Gharib, D.M.; Elsetohy, Khaled A.

    2013-01-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI. PMID:25750747

  5. Hyperoxia, Endothelial Progenitor Cell Mobilization, and Diabetic Wound Healing

    PubMed Central

    Liu, Zhao-Jun

    2008-01-01

    Abstract Diabetic foot disease is a major health problem, which affects 15% of the 200 million patients with diabetes worldwide. Diminished peripheral blood flow and decreased local neovascularization are critical factors that contribute to the delayed or nonhealing wounds in these patients. The correction of impaired local angiogenesis may be a key component in developing therapeutic protocols for treating chronic wounds of the lower extremity and diabetic foot ulcers. Endothelial progenitor cells (EPCs) are the key cellular effectors of postnatal neovascularization and play a central role in wound healing, but their circulating and wound-level numbers are decreased in diabetes, implicating an abnormality in EPC mobilization and homing mechanisms. The deficiency in EPC mobilization is presumably due to impairment of eNOS-NO cascade in bone marrow (BM). Hyperoxia, induced by a clinically relevant hyperbaric oxygen therapy (HBO) protocol, can significantly enhance the mobilization of EPCs from the BM into peripheral blood. However, increased circulating EPCs failed to reach to wound tissues. This is partly a result of downregulated production of SDF-1α in local wound lesions with diabetes. Administration of exogenous SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, neovascularization, and wound healing. Antioxid. Redox Signal. 10, 1869–1882. PMID:18627349

  6. Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions.

    PubMed

    Rudzitis-Auth, Jeannette; Nenicu, Anca; Nickels, Ruth M; Menger, Michael D; Laschke, Matthias W

    2016-08-01

    The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis. PMID:27315780

  7. Rapamycin inhibits re-endothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells.

    PubMed

    Liu, Hai-Tao; Li, Fei; Wang, Wen-Yong; Li, Xiao-Jing; Liu, Yi-Meng; Wang, Rui-An; Guo, Wen-Yi; Wang, Hai-Chang

    2010-01-01

    Endothelial-cell function is important in the healing of damaged endothelium after percutaneous coronary artery damage. In 3 different animal models, we sought to determine whether rapamycin (sirolimus) affects the proliferation and migration of endothelial cells and endothelial progenitor cells. First, after we implanted stents in dogs, we found that re-endothelialization was impeded more by drug-eluting stents than by bare-metal stents, 30 days after percutaneous coronary intervention. Second, in vitro in rats, we found that 1-100 ng/mL of rapamycin time- and dose-dependently inhibited proliferation over 72 hr (with effects evident as early as 24 hr) and also dose-dependently induced endothelial progenitor-cell apoptosis. Finally, in vivo in rats, we observed that vascular endothelial growth factor expression was decreased after 5 days of rapamycin treatment. We conclude that rapamycin impedes re-endothelialization after drug-eluting stent implantation by inhibiting the proliferation and migration of coronary endothelial cells, inducing endothelial progenitor-cell apoptosis, and decreasing vascular endothelial growth factor expression in the circulation. PMID:20401293

  8. Neutrophil Elastase-Generated Fragment of Vascular Endothelial Growth Factor-A Stimulates Macrophage and Endothelial Progenitor Cell Migration

    PubMed Central

    Kurtagic, Elma; Rich, Celeste B.; Buczek-Thomas, Jo Ann; Nugent, Matthew A.

    2015-01-01

    Elastase released from neutrophils as part of the innate immune system has been implicated in chronic diseases such as emphysema and cardiovascular disease. We have previously shown that neutrophil elastase targets vascular endothelial growth factor-A (VEGF) for partial degradation to generate a fragment of VEGF (VEGFf) that has distinct activities. Namely, VEGFf binds to VEGF receptor 1 but not to VEGF receptor 2 and shows altered signaling compared to intact VEGF. In the present study we investigated the chemotactic function of VEGF and VEGFf released from cells by neutrophil elastase. We found that endothelial cells migrated in response to intact VEGF but not VEGFf whereas RAW 264.7 macrophages/monocytes and embryonic endothelial progenitor cells were stimulated to migrate by either VEGF or VEGFf. To investigate the role of elastase-mediated release of VEGF from cells/extracellular matrices, a co-culture system was established. High or low VEGF producing cells were co-cultured with macrophages, endothelial or endothelial progenitor cells and treated with neutrophil elastase. Elastase treatment stimulated macrophage and endothelial progenitor cell migration with the response being greater with the high VEGF expressing cells. However, elastase treatment led to decreased endothelial cell migration due to VEGF cleavage to VEGF fragment. These findings suggest that the tissue response to NE-mediated injury might involve the generation of diffusible VEGF fragments that stimulate inflammatory cell recruitment. PMID:26672607

  9. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  10. Endothelial progenitor cells and asymmetric dimethylarginine after renal transplantation.

    PubMed

    Teplan, Vladimír; Mahrová, Andrea; Králová-Lesná, Ivana; Racek, Jaroslav; Valkovský, Ivo; Štollová, Milena

    2015-03-01

    Levels of the endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) are elevated and endothelial progenitor cells (EPCs) decreased in patients undergoing renal transplantation (Tx) and may contribute to cardiovascular complications. In this study, we tested the hypothesis that elevated ADMA and decreased EPC can be positively influenced with regular physical exercise early after Tx. Blood samples for analysis of ADMA and EPC were obtained from randomly selected 64 patients after Tx who agreed to participate in a supervised aerobic exercise program for 6 months (group I). Samples were collected before the training began, 1 month after surgery (with stabilized renal function), and at 6 months after initiation. Sixty-two age, sex, human leukocyte antigens (HLA) typing, duration of previous dialysis, history of cardiovascular disease, and immunosupression regimen-matched transplant patients who did not exercise regularly were examined as controls (group II). There were no differences in ADMA levels and EPC count between both groups before the training program began. After 6 months of exercise, ADMA concentration in the group I decreased (3.50 ± 0.45 vs. 2.11 ± 0.35 μmol/L; P < .01) and was also lower comparing with group II (2.11 ± 0.23 vs. 3.25 ± 0.35 μmol/L; P < .01). In the same period, EPC cells increased from 2.085 ± 650 cells/mL versus 3.991 ± 560 cells/mL, P < .01 in group I; but in group II, changes were nonsignificant (P = .11). Blood lipids, HbA1c, insulin, and systolic blood pressure were also affected by the training program. Elevated ADMA level and decreased EPC count were significantly influenced by early regular exercise in patients after Tx. PMID:25576240

  11. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    PubMed Central

    Wang, Jinju; Guo, Runmin; Yang, Yi; Jacobs, Bradley; Chen, Suhong; Iwuchukwu, Ifeanyi; Gaines, Kenneth J.; Chen, Yanfang; Simman, Richard; Lv, Guiyuan; Wu, Keng; Bihl, Ji C.

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA) system. The sensitivities of the cell origin markers for ECs (CD105, CD144) and EPCs (CD34, KDR) were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63), platelets (CD41), erythrocytes (CD235a), and microvesicles (Annexin V). Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery. PMID:27118976

  12. Maternal Body-Mass Index and Cord Blood Circulating Endothelial Colony-Forming Cells

    PubMed Central

    Lin, Ruei-Zeng; Miranda, Maria L.; Vallejo-Vaz, Antonio J.; Stiefel, Pablo; Praena-Fernández, Juan M.; Bernal-Bermejo, Jose; Jimenez-Jimenez, Luis M.; Villar, Jose; Melero-Martin, Juan M.

    2013-01-01

    Objective Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in non-pathological pregnancies. Study design We measured the level of ECFCs in the cord blood of neonates (n=27) born from non-obese healthy mothers with non-pathological pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. Results We observed variation in ECFC abundance among subjects and found a positive correlation between pre-pregnancy maternal BMI and ECFC content (r=0.51, P=0.007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m2 and BMI between 25–30 kg/m2, including the ability to form vascular networks in vivo. Conclusions This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathological pregnancies. Endothelial colony-forming cells (ECFCs) are a subset of progenitor cells that circulate in peripheral blood and can give rise to endothelial cells (1,2), contributing to the formation of new vasculature and the maintenance of vascular integrity (3–5). The mechanisms that regulate the abundance of these cells in vivo remain poorly understood. ECFCs are rare in adult peripheral blood (1,2,10). In contrast, there is an elevated number of these cells in fetal blood during the third trimester of pregnancy (11–13). Emerging evidence indicates that deleterious conditions during fetal life can impair ECFC content and function. For instance, offspring of diabetic mothers have been shown to have

  13. Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans

    PubMed Central

    Thum, Thomas; Schmitter, Kerstin; Fleissner, Felix; Wiebking, Volker; Dietrich, Bernd; Widder, Julian D.; Jazbutyte, Virginija; Hahner, Stefanie; Ertl, Georg; Bauersachs, Johann

    2011-01-01

    Aims Hyperaldosteronism is associated with vascular injury and increased cardiovascular events. Bone marrow-derived endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular homeostasis. We hypothesized that hyperaldosteronism impairs EPC function and vascularization capacity in mice and humans. Methods and results We characterized the effects of aldosterone and mineralocorticoid receptor (MR) blockade on EPC number and function as well as vascularization capacity and endothelial function. Treatment of human EPC with aldosterone induced translocation of the MR and impaired multiple cellular functions of EPC, such as differentiation, migration, and proliferation in vitro. Impaired EPC function was rescued by pharmacological blockade or genetic ablation of the MR. Aldosterone protein kinase A (PKA) dependently increased reactive oxygen species formation in EPC. Aldosterone infusion in mice impaired EPC function, EPC homing to vascular structures and vascularization capacity in a MR-dependent but blood pressure-independent manner. Endothelial progenitor cells from patients with primary hyperaldosteronism compared with controls of similar age displayed reduced migratory potential. Impaired EPC function was associated with endothelial dysfunction. MR blockade in patients with hyperaldosteronism improved EPC function and arterial stiffness. Conclusion Endothelial progenitor cells express a MR that mediates functional impairment by PKA-dependent increase of reactive oxygen species. Normalization of EPC function may represent a novel mechanism contributing to the beneficial effects of MR blockade in cardiovascular disease prevention and treatment. PMID:20926363

  14. Vitamin D Prevents Endothelial Progenitor Cell Dysfunction Induced by Sera from Women with Preeclampsia or Conditioned Media from Hypoxic Placenta

    PubMed Central

    Myerski, Ashley C.; von Kaisenberg, Constantin S.; Grundmann, Magdalena; Hubel, Carl A.; von Versen-Höynck, Frauke

    2014-01-01

    Context Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors–preeclampsia serum or hypoxic placental conditioned medium– in a fashion reversed by vitamin D. Design, Setting, Patients ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. PMID:24887145

  15. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    SciTech Connect

    Joo, Hyung Joon; Seo, Ha-Rim; Jeong, Hyo Eun; Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  16. The Acute Exposure Effects of Inhaled Nickel Nanoparticles on Murine Endothelial Progenitor Cells

    PubMed Central

    Liberda, Eric N; Cuevas, Azita K; Qu, Qingshan; Chen, Lung Chi

    2014-01-01

    Introduction The discovery of endothelial progenitor cells (EPCs) may help to explain observed cardiovascular effects associated with inhaled nickel nanoparticle exposures such as increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiated atherosclerosis in murine species. Methods Following an acute whole body inhalation exposure to 500μg/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells (CEPCs), circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the exposure. Results and Conclusions Acute exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation (CEPCs). CECs were significantly elevated indicating that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. These results coincided with a decrease in the mRNA of receptors involved in EPC mobilization and homing. This data provides new insight into how an acute nickel nanoparticle exposure to half of the current Occupational Safety & Health Administration permissible exposure limit may adversely affect EPCs. PMID:25144474

  17. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation.

    PubMed

    Lan, Hualin; Wang, Yi; Yin, Tieyin; Wang, Yazhou; Liu, Wanqian; Zhang, Xiaojuan; Yu, Qinsong; Wang, Zhaoxu; Wang, Guixue

    2016-08-01

    Drug-eluting stents (DES) have been widely used to treat coronary artery disease (CAD) since their clinical use has significantly reduced the occurrence of in-stent restenosis (ISR) as compared with the initially applied bare-metal stents (BMS). However, analyses of long-term clinical outcome have raised concerns about the serious safety problem of DES, such as ISR caused by late or very late thrombosis. Various studies showed that those complications were associated with vascular endothelial injury/dysfunction or endothelialization delaying. Recently, through biological characterization of endothelial progenitor cells (EPCs), mechanistic understanding of rapid re-endothelialization of the vascular injury sites after coronary stenting has become possible and is a new research hotspot in the prevention of ISR and late/very late stent thrombosis. It has been well recognized that the formation of a functional endothelial layer from EPCs requires a coordinated sequence of multistep and signaling events, which includes cell mobilization, adhesion, migration and finally the differentiation to vascular endothelial cells (VECs). In this review, we summarize and discuss the currently relevant information about EPCs, the mechanism of DES interfering with the natural vascular healing process in preventing or delaying the formation of a functional endothelial layer, and EPCs-mediated acceleration of re-endothelialization at vascular injury sites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1237-1247, 2016. PMID:26059710

  18. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    PubMed Central

    Ye, Yizhou; Li, Xizhe; Zhang, You; Shen, Zhenya; Yang, Junjie

    2016-01-01

    Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs) as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT) and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process. PMID:26697079

  19. Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD

    PubMed Central

    Salter, Brittany M.; Manzoor, Fizza; Beaudin, Suzanne; Kjarsgaard, Melanie; Nair, Parameswaran; Gauvreau, Gail M.; Sehmi, Roma

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs) are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs) and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α) compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis. PMID:27445517

  20. Hydrogel Surfaces to Promote Attachment and Spreading of Endothelial Progenitor Cells

    PubMed Central

    Camci-Unal, Gulden; Nichol, Jason William; Bae, Hojae; Tekin, Halil; Bischoff, Joyce; Khademhosseini, Ali

    2011-01-01

    Endothelialization of artificial vascular grafts is a challenging process in cardiovascular tissue engineering. Functionalized biomaterials could be promising candidates to promote endothelialization in repair of cardiovascular injuries. The purpose of this study was to synthesize hyaluronic acid (HA) and heparin based hydrogels that could promote adhesion and spreading of endothelial progenitor cells (EPCs). We report that the addition of heparin into HA-based hydrogels provides an attractive surface for EPCs promoting spreading and the formation of an endothelial monolayer on the hydrogel surface. To increase EPC adhesion and spreading, we covalently immobilized CD34 antibody (Ab) on HA-heparin hydrogels using standard EDC/NHS amine coupling strategies. We found that EPC adhesion and spreading on CD34 Ab immobilized HA-heparin hydrogels was significantly higher than their nonmodified analogs. Once adhered, EPCs spread and formed an endothelial layer on both nonmodified and CD34 Ab modified HA-heparin hydrogels after 3 days of culture. We did not observe significant adhesion and spreading when heparin was not included in the control hydrogels. In addition to EPCs, we also used human umbilical cord vein endothelial cells (HUVECs), which adhered and spread on HA-heparin hydrogels. Macrophages exhibited significantly less adhesion compared to EPCs on the same hydrogels. This composite material could possibly be used to develop surface coatings for artificial cardiovascular implants, due to its specificity for EPC and endothelial cells on an otherwise non-thrombogenic surface. PMID:22223475

  1. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells.

    PubMed

    Camci-Unal, Gulden; Nichol, Jason William; Bae, Hojae; Tekin, Halil; Bischoff, Joyce; Khademhosseini, Ali

    2013-05-01

    Endothelialization of artificial vascular grafts is a challenging process in cardiovascular tissue engineering. Functionalized biomaterials could be promising candidates to promote endothelialization in repair of cardiovascular injuries. The purpose of this study was to synthesize hyaluronic acid (HA) and heparin-based hydrogels that could promote adhesion and spreading of endothelial progenitor cells (EPCs). We report that the addition of heparin into HA-based hydrogels provides an attractive surface for EPCs promoting spreading and the formation of an endothelial monolayer on the hydrogel surface. To increase EPC adhesion and spreading, we covalently immobilized CD34 antibody (Ab) on HA-heparin hydrogels, using standard EDC/NHS amine-coupling strategies. We found that EPC adhesion and spreading on CD34 Ab-immobilized HA-heparin hydrogels was significantly higher than their non-modified analogues. Once adhered, EPCs spread and formed an endothelial layer on both non-modified and CD34 Ab-modified HA-heparin hydrogels after 3 days of culture. We did not observe significant adhesion and spreading when heparin was not included in the control hydrogels. In addition to EPCs, we also used human umbilical cord vein endothelial cells (HUVECs), which adhered and spread on HA-heparin hydrogels. Macrophages exhibited significantly less adhesion compared to EPCs on the same hydrogels. This composite material could possibly be used to develop surface coatings for artificial cardiovascular implants, due to its specificity for EPC and endothelial cells on an otherwise non-thrombogenic surface. PMID:22223475

  2. Comparative Evaluation for Potential Differentiation of Endothelial Progenitor Cells and Mesenchymal Stem Cells into Endothelial-Like Cells

    PubMed Central

    Sabry, Dina; Noh, Olfat; Samir, Mai

    2016-01-01

    Understanding the mechanisms of vascular remodeling could lead to more effective treatments for ischemic conditions. We aimed to compare between the abilities of both human Wharton jelly derived mesenchymal stem cells (hMSCs) and human cord blood endothelial progenitor cells (hEPCs) and CD34+ to induce angiogenesis in vitro. hMSCs, hEPCs, and CD34+ were isolated from human umbilical cord blood using microbead (MiniMacs). The cells characterization was assessed by flow cytometry following culture and real-time PCR for vascular endothelial growth factor receptor 2 (VEGFR2) and von Willebrand factor (vWF) to prove stem cells differentiation. The study revealed successful isolation of hEPCs, CD34+, and hMSCs. The hMSCs were identified by gaining CD29+ and CD44+ using FACS analysis. The hEPCs were identified by having CD133+, CD34+, and KDR. The potential ability of hEPCs and CD34+ to differentiate into endothelial-like cells was more than hMSCs. This finding was assessed morphologically in culture and by higher significant VEGFR2 and vWF genes expression (p<0.05) in differentiated hEPCs and CD34+ compared to differentiated hMSCs. hEPCs and CD34+ differentiation into endothelial-like cells were much better than that of hMSCs. PMID:27426085

  3. Recent Progress in Endothelial Progenitor Cell Culture Systems: Potential for Stroke Therapy

    PubMed Central

    TAKIZAWA, Shunya; NAGATA, Eiichiro; NAKAYAMA, Taira; MASUDA, Haruchika; ASAHARA, Takayuki

    2016-01-01

    Endothelial progenitor cells (EPCs) participate in endothelial repair and angiogenesis due to their abilities to differentiate into endothelial cells and to secrete protective cytokines and growth factors. Consequently, there is considerable interest in cell therapy with EPCs isolated from peripheral blood to treat various ischemic injuries. Quality and quantity-controlled culture systems to obtain mononuclear cells enriched in EPCs with well-defined angiogenic and anti-inflammatory phenotypes have recently been developed, and increasing evidence from animal models and clinical trials supports the idea that transplantation of EPCs contributes to the regenerative process in ischemic organs and is effective for the therapy of ischemic cerebral injury. Here, we briefly describe the general characteristics of EPCs, and we review recent developments in culture systems and applications of EPCs and EPC-enriched cell populations to treat ischemic stroke. PMID:27041632

  4. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress.

    PubMed

    Hoffmann, Brian R; Wagner, Jordan R; Prisco, Anthony R; Janiak, Agnieszka; Greene, Andrew S

    2013-11-01

    Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration. PMID:24022223

  5. Vascular endothelial growth factor-A signaling in bone marrow-derived endothelial progenitor cells exposed to hypoxic stress

    PubMed Central

    Hoffmann, Brian R.; Wagner, Jordan R.; Prisco, Anthony R.; Janiak, Agnieszka

    2013-01-01

    Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration. PMID:24022223

  6. Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation.

    PubMed

    Ikpeazu, C; Davidson, M K; Halteman, D; Browning, P J; Brandt, S J

    2000-01-01

    Endothelial cell precursors circulate in blood and express antigens found on hematopoietic stem cells, suggesting that such precursors might be subject to transplantation. To investigate, we obtained adherence-depleted peripheral blood mononuclear cells from 3 individuals who had received a sex-mismatched allogeneic bone marrow transplant (BMT) and cultured the cells on fibronectin-coated plates with endothelial growth factors. The phenotype of the spindle-shaped cells that emerged in culture was characterized by immunofluorescent staining, and the origin of the cells was determined using a polymerase chain reaction (PCR)-based assay for polymorphic short tandem repeats (STRs). The cells manifested a number of endothelial characteristics-such as von Wlllebrand factor, CD31, and Flk-1/KDR expression; Bandeiraea simplicifolia lectin 1 binding; and acetylated low-density lipoprotein uptake-but lacked expression of certain markers of activation or differentiation, including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and the epitope for the anti-endothelial cell antibody P1H12. For each patient and at all time points studied (ranging from 5 to 52 months after transplantation), STR-PCR analysis showed that cultured cells and nucleated blood cells came exclusively from the bone marrow donor. These results demonstrate that circulating endothelial progenitors are both transplantable and capable of long-term repopulation of human allogeneic BMT recipients. PMID:10905767

  7. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells.

    PubMed

    Yamazaki, Madoka; Nakamura, Kazumasa; Mizukami, Yusuke; Ii, Masaaki; Sasajima, Junpei; Sugiyama, Yoshiaki; Nishikawa, Tomoya; Nakano, Yasuhiro; Yanagawa, Nobuyuki; Sato, Kazuya; Maemoto, Atsuo; Tanno, Satoshi; Okumura, Toshikatsu; Karasaki, Hidenori; Kono, Toru; Fujiya, Mikihiro; Ashida, Toshifumi; Chung, Daniel C; Kohgo, Yutaka

    2008-06-01

    Hedgehog signaling is important in the pathogenesis of pancreatic cancer. Several recent observations suggest the involvement of sonic hedgehog (SHH) in postnatal neovascularization. We identified a novel role for SHH in tumor-associated angiogenesis in pancreatic cancer. Immunohistochemical analysis revealed that patched homolog 1 (PTCH1), both a receptor for and transcriptional target of hedgehog signaling, was expressed in a small fraction of endothelial cells within pancreatic cancer, but not in normal pancreatic tissue. When endothelial progenitor cells (EPC) isolated from human peripheral blood were cultured with supernatant from SHH-transfected 293 cells or pancreatic cancer cells, mRNA levels of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 and angiopoietin-1 were significantly increased, whereas no such induction was observed in human umbilical vein endothelial cell (HUVEC) and human dermal microvascular endothelial cell (HMVEC). HUVEC tube formation was stimulated when cocultured with EPC, and preconditioning EPC with supernatant from KP-1 N pancreatic cancer cells highly expressing SHH significantly enhanced the effect. The effect was partially attenuated by specific inhibition of SHH with cyclopamine or a neutralizing antibody. These findings suggest that tumor-derived SHH can induce angiogenesis, and this is mediated by its effects on EPC specifically. Targeting SHH would be a novel therapeutic approach that can inhibit not only proliferation of cancer cells but also EPC-mediated angiogenesis. PMID:18422746

  8. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro.

    PubMed

    Sermsathanasawadi, Nuttawut; Ishii, Hideto; Igarashi, Kaori; Miura, Masahiko; Yoshida, Masayuki; Inoue, Yoshinori; Iwai, Takehisa

    2009-09-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. PMID:19628926

  9. Lineage tracking of mesenchymal and endothelial progenitors in BMP-induced bone formation.

    PubMed

    Kolind, Mille; Bobyn, Justin D; Matthews, Brya G; Mikulec, Kathy; Aiken, Alastair; Little, David G; Kalajzic, Ivo; Schindeler, Aaron

    2015-12-01

    To better understand the relative contributions of mesenchymal and endothelial progenitor cells to rhBMP-2 induced bone formation, we examined the distribution of lineage-labeled cells in Tie2-Cre:Ai9 and αSMA-creERT2:Col2.3-GFP:Ai9 reporter mice. Established orthopedic models of ectopic bone formation in the hind limb and spine fusion were employed. Tie2-lineage cells were found extensively in the ectopic bone and spine fusion masses, but co-staining was only seen with tartrate-resistant acid phosphatase (TRAP) activity (osteoclasts) and CD31 immunohistochemistry (vascular endothelial cells), and not alkaline phosphatase (AP) activity (osteoblasts). To further confirm the lack of a functional contribution of Tie2-lineage cells to BMP-induced bone, we developed conditional knockout mice where Tie2-lineage cells are rendered null for key bone transcription factor osterix (Tie2-cre:Osx(fx/fx) mice). Conditional knockout mice showed no difference in BMP-induced bone formation compared to littermate controls. Pulse labeling of mesenchymal cells with Tamoxifen in mice undergoing spine fusion revealed that αSMA-lineage cells contributed to the osteoblastic lineage (Col2.3-GFP), but not to endothelial cells or osteoclast populations. These data indicate that the αSMA+ and Tie2+ progenitor lineages make distinct cellular contributions to bone formation, angiogenesis, and resorption/remodeling. PMID:26141839

  10. The Effects of Inhaled Nickel Nanoparticles on Murine Endothelial Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Liberda, Eric N.

    Introduction. Particulate air pollution, specifically nickel found on or in particulate matter, has been associated with an increased risk of mortality in human population studies and can cause increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiate atherosclerosis in murine exposures. With the discovery of endothelial progenitor cells (EPCs), a door has been opened which may explain these observed cardiovascular effects associated with inhaled air particles and nickel exposure. In order to further quantify the effects of inhaled nickel nanoparticles and attempt to elucidate how the observed findings from other studies may occur, several whole body inhalation exposure experiments to nickel nanoparticles were performed. Methods. Following whole body exposure to approximately 500mug/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells, circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the inhalation exposure. Plasma proteins were assessed using the 2D DIGE proteomic approach and commercially available ELISAs. Results and Conclusions. Exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation. CECs were significantly upregulated suggesting that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. This decrease in EPC function

  11. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities

    PubMed Central

    2010-01-01

    Background The term endothelial progenitor cells (EPCs) is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs) and outgrowth endothelial cells (OECs). Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN) with links to immunity and inflammation (TLRs, CD14, HLAs), whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins) are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature. PMID:20465783

  12. Role of endothelial nitric oxide in bone marrow-derived progenitor cell mobilization.

    PubMed

    de Resende, M Monterio; Huw, L-Y; Qian, H-S; Kauser, K

    2007-01-01

    Mobilization and recruitment of bone marrow-derived progenitor cells (BMDPCs) play an important role in postischemic tissue repair. Patients with coronary artery disease (CAD) or peripheral vascular disease (PVD) exhibit endothelial dysfunction, and as a result are likely to have a reduced number of progenitor cells mobilized in their peripheral circulation following ischemic injury. Identification of eNOS independent pathways for BMDPC mobilization may have important therapeutic value in this patient population. To identify such mechanisms we investigated the effect of granulocyte-colony stimulating factor (GCSF) and stem cell factor (SCF) in eNOS-KO mice with and without surgical hind-limb ischemia. Our results suggest that BMDPC mobilization can be achieved via activation of NO-independent pathways. PMID:17554503

  13. Resident Endothelial Progenitor Cells From Human Placenta Have Greater Vasculogenic Potential Than Circulating Endothelial Progenitor Cells From Umbilical Cord Blood

    PubMed Central

    Rapp, Brian M.; Saadatzedeh, M. Reza; Ofstein, Richard H.; Bhavsar, Janak R.; Tempel, Zachary S.; Moreno, Oscar; Morone, Peter; Booth, Dana A.; Traktuev, Dmitry O.; Dalsing, Michael C.; Ingram, David A.; Yoder, Mervin C.; March, Keith L.; Murphy, Michael P.

    2012-01-01

    Endothelial colony-forming cells (ECFCs) isolated from umbilical cord blood (CBECFCs) are highly proliferative and form blood vessels in vivo. The purpose of this investigation was to isolate and characterize a population of resident ECFCs from the chorionic villi of term human placenta and provide a comparative analysis of their proliferative and vasculogenic potential with CBECFCs. ECFCs were isolated from umbilical cord blood and chorionic villi from placentas obtained by caesarean deliveries. Placental ECFCs (PECFCs) expressed CD144, CD31, CD105, and KDR and were negative for CD45 and CD34, consistent with other ECFC phenotypes. PECFCs were capable of 28.6 ± 6.0 population doublings before reaching senescence (vs. 47.4 ± 3.2 for CBECFCs, p < 0.05, n = 4). In single cell assays, 46.5 ± 1.2% underwent at least one division (vs. 51.0 ± 1.8% of CBECFCs, p = 0.07, n = 6), and of those dividing PECFCs, 71.8 ± 0.9% gave rise to colonies of >500 cells (highly proliferative potential clones) over 14 days (vs. 69.4 ± 0.7% of CBECFCs, p = 0.07, n = 9). PECFCs formed 5.2 ± 0.8 vessels/mm2 in collagen/fibronectin plugs implanted into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice, whereas CBECFCs formed only 1.7 ± 1.0 vessels/mm2 (p < 0.05, n = 4). This study demonstrates that circulating CBECFCs and resident PECFCs are identical phenotypically and contain equivalent quantities of high proliferative potential clones. However, PECFCs formed significantly more blood vessels in vivo than CBECFCs, indicating that differences in vasculogenic potential between circulating and resident ECFCs exist. PMID:27004134

  14. Functional characterization of late outgrowth endothelial progenitor cells in patients with end-stage renal failure

    PubMed Central

    Zhao, Jing; Bolton, Eleanor M; Randle, Lucy; Bradley, John Andrew; Lever, Andrew M L

    2014-01-01

    Renal transplantation is potentially curative in renal failure, but long-term efficacy is limited by untreatable chronic rejection. Endothelial damage contributes to chronic rejection and is potentially repairable by circulating endothelial progenitor cells (EPC). The frequency and function of EPC are variably influenced by end-stage renal failure (ESRF). Here, we isolated and functionally characterized the late outgrowth EPC (LO-EPC) from ESRF patients to investigate their potential for endothelial repair. Patients with ESRF generated more LO-EPC colonies than healthy controls and had higher plasma levels of IL-1rα, IL-16, IL-6, MIF, VEGF, Prolactin, and PLGF. Patients' LO-EPC displayed normal endothelial cell morphology, increased secretion of PLGF, MCP-1, and IL-1β, and normal network formation in vitro and in vivo. They demonstrated decreased adhesion to extracellular matrix. Integrin gene profiles and protein expression were comparable in patients and healthy volunteers. In some patients, mesenchymal stem cells (MSC) were co-isolated and could be differentiated into adipocytes and osteocytes in vitro. This is the first study to characterize LO-EPC from patients with ESRF. Their behavior in vitro reflects the presence of elevated trophic factors; their ability to proliferate in vitro and angiogenic function makes them candidates for prevention of chronic rejection. Their impaired adhesion and the presence of MSC are areas for potential therapeutic intervention. PMID:24471420

  15. Protective effects of tanshinone IIA on endothelial progenitor cells injured by tumor necrosis factor-α

    PubMed Central

    WANG, XING-XIANG; YANG, JIN-XIU; PAN, YAN-YUN; ZHANG, YE-FEI

    2015-01-01

    Tanshinone IIA (Tan IIA) is a Traditional Chinese Medicine commonly used in Asian and Western countries for the prevention and treatment of cardiovascular disorders, such as atherosclerosis. Endothelial dysfunction and associated inflammatory processes have a critical role in the development of atherosclerosis. Endothelial progenitor cells (EPCs) have been demonstrated to be involved in certain aspects of the endothelial repair process. The present study aimed to investigate the putative protective effects of Tan IIA on EPCs injured by tumor necrosis factor-α (TNF-α). The potential effects of Tan IIA on TNF-α-stimulated EPC proliferation, migration, adhesion, in vitro tube formation ability and paracrine activity were investigated in the current study. The results indicated that TNF-α impaired EPC proliferation, migration, adhesion capacity and vasculogenesis ability in vitro as well as promoted EPC secretion of inflammatory cytokines, including monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and soluble CD40 ligand (sCD40L). However, Tan IIA was able to reverse these effects. In conclusion, these findings demonstrated that Tan IIA may have the potential to protect EPCs against damage induced by TNF-α. Therefore, these results may provide evidence for the pharmacological basis of Tan IIA and its potential use in the prevention and treatment of early atherosclerosis associated with EPC and endothelial damage. PMID:26095681

  16. TNFα-Damaged-HUVECs Microparticles Modify Endothelial Progenitor Cell Functional Activity

    PubMed Central

    Luna, Carlos; Carmona, Andrés; Alique, Matilde; Carracedo, Julia; Ramirez, Rafael

    2015-01-01

    Endothelial progenitor cells (EPCs) have an important role in the maintenance of vascular integrity and homeostasis. While there are many studies that explain EPCs mechanisms action, there are few studies that demonstrate how they interact with other emerging physiological elements such as Endothelial Microparticles (EMPs). EMPs are membranous structures with a size between 100 and 1000 nm that act as molecular information transporter in biological systems and are known as an important elements in develop different pathologies; moreover a lot of works explains that are novel biomarkers. To elucidate these interactions, we proposed an in vitro model of endothelial damage mediated by TNFalpha, in which damaged EMPs and EPCs are in contact to assess EPCs functional effects. We have observed that damaged EMPs can modulate several EPCs classic factors as colony forming units (CFUs), contribution to repair a physically damaged endothelium (wound healing), binding to mature endothelium, and co-adjuvants to the formation of new vessels in vitro (angiogenesis). All of these in a dose-dependent manner. Damaged EMPs at a concentration of 103 MPs/ml have an activating effect of these capabilities, while at concentrations of 105 MPs/ml these effects are attenuated or reduced. This in vitro model helps explain that in diseases where there is an imbalance between these two elements (EPCs and damaged EMPs), the key cellular elements in the regeneration and maintenance of vascular homeostasis (EPCs) are not fully functional, and could explain, at least in part, endothelial dysfunction associated in various pathologies. PMID:26733886

  17. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells

    PubMed Central

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L.; Morrell, Nicholas W.; Lever, Andrew M. L.

    2016-01-01

    Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm2. The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair. PMID:27413378

  18. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells.

    PubMed

    Zhao, Jing; Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Morrell, Nicholas W; Lever, Andrew M L

    2016-01-01

    Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm(2). The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair. PMID:27413378

  19. Endothelial Progenitor Cells Combined with Cytosine Deaminase-Endostatin for Suppression of Liver Carcinoma.

    PubMed

    Chen, Rong; Yu, Hui; An, Yan-Li; Chen, Hua-Jun; Jia, ZhenYu; Teng, Gao-Jun

    2016-06-01

    Transplantation of gene transfected endothelial progenitor cells (EPCs) provides a novel method for treatment of human tumors. To study treatment of hepatocellular carcinoma using cytosine deaminase (CD)- and endostatin (ES)-transfected endothelial progenitor cells (EPCs), mouse bone marrow-derived EPCs were cultured and transfected with Lenti6.3-CD-EGFP and Lenti6.3-ES-Monomer-DsRed labeled with superparamagnetic iron oxide (SPIO) nanoparticles. DiD (lipophilic fluorescent dye)-labeled EPCs were injected into normal mice and mice with liver carcinoma. The EPCs loaded with CD-ES were infused into the mice through caudal veins and tumor volumes were measured. The tumor volumes in the EPC + SPIO + CD/5-Fc + ES group were found to be smaller as a result and grew more slowly than those from the EPC + SPIO + LV (lentivirus, empty vector control) group. Survival times were also measured after infusion of the cells into the mice. The median survival time was found to be longer in the EPC + SPIO + CD/5-Fc + ES group than in the others. In conclusion, the EPCs transfected with CD-ES suppressed the liver carcinoma cells in vitro, migrated primarily to the carcinoma, inhibited tumor growth, and also extended the median survival time for the mice with liver carcinoma. PMID:27319212

  20. Cathepsin L is required for endothelial progenitor cell-induced neovascularization

    SciTech Connect

    Urbich, Carmen; Heeschen, Christopher; Aicher, Alexandra; Sasaki, Ken-ichiro; Bruhl, Thomas; Hofmann, Wolf K.; Peters, Christoph; Reinheckel, Thomas; Pennacchio, Len A.; Abolmaali, Nasreddin D.; Chavakis, Emmanouil; Zeiher, Andreas M.; Dimmeler, Stefanie

    2004-01-15

    Infusion of endothelial progenitor cells (EPCs), but not of mature endothelial cells (ECs), promotes neovascularization after ischemia. We performed a gene expression profiling of EPCs and ECs to identify genes, which might be important for the neovascularization capacity of EPCs. Intriguingly, the protease cathepsin L (CathL) was highly expressed in EPCs as opposed to ECs and is essential for matrix degradation and invasion by EPCs in vitro. CathL deficient mice showed impaired functional recovery after hind limb ischemia supporting the concept for an important role of CathL in postnatal neovascularization. Infused CathL deficient progenitor cells failed to home to sites of ischemia and to augment neovascularization. In contrast, over expression of CathL in mature ECs significantly enhanced their invasive activity and induced their neovascularization capacity in vivo. Taken together, CathL plays a crucial role for the integration of circulating EPCs into the ischemic tissue and is required for neovascularization mediated by EPCs.

  1. Endothelial Progenitor Cells Predict Long-Term Mortality in Hemodialysis Patients

    PubMed Central

    Lu, Chien-Lin; Leu, Jyh-Gang; Liu, Wen-Chih; Zheng, Cai-Mei; Lin, Yuh-Feng; Shyu, Jia-Fwu; Wu, Chia-Chao; Lu, Kuo-Cheng

    2016-01-01

    Background: The endothelial progenitor cells (EPCs) dysfunction is a critical event in the initiation of atherosclerotic plaque development and the level of circulating EPCs can be considered a biomarker of cardiovascular events. The level and functional change in EPCs has been investigated in hemodialysis patients, but the effect of absolute number of EPCs on risk of death has not yet been explored. We hypothesized that the number of EPCs predicted death from cardiovascular and all-cause mortality in hemodialysis patients. Methods: We evaluate the association between endothelial progenitor cells and clinical outcome in 154 patients on maintenance hemodialysis. The blood sample was drawn at the time of patient enrollment and EPCs were identified by flow cytometry using triple staining for CD34/CD133/KDR. Results: The median duration of follow-up was 4.19 years. There were 79 (51.3%) deaths during the follow-up period, 41 of whom died due to a confirmed cardiovascular cause. The cumulative survival was greater in the high-EPC group than the low-EPC group for all-cause and cardiovascular mortality. Decreased EPCs levels were associated with a significant increase in the risk of cardiovascular and all-cause mortality after adjusting for age, gender, current smokers, diabetes mellitus, and hypertension. Conclusions: The level of circulating EPCs independently predicts the clinical outcome in patients on maintenance hemodialysis. Thus, the EPCs levels may be a useful predictive tool for evaluating the risk of death in maintenance hemodialysis patients. PMID:26941585

  2. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: A critical evaluation

    PubMed Central

    DANOVA, MARCO; COMOLLI, GIUDITTA; MANZONI, MARIANGELA; TORCHIO, MARTINA; MAZZINI, GIULIANO

    2016-01-01

    Malignant tumors are characterized by uncontrolled cell growth and metastatic spread, with a pivotal importance of the phenomenon of angiogenesis. For this reason, research has focused on the development of agents targeting the vascular component of the tumor microenvironment and regulating the angiogenic switch. As a result, the therapeutic inhibition of angiogenesis has become an important component of anticancer treatment, however, its utility is partly limited by the lack of an established methodology to assess its efficacy in vivo. Circulating endothelial cells (CECs), which are rare in healthy subjects and significantly increased in different tumor types, represent a promising tool for monitoring the tumor clinical outcome and the treatment response. A cell population circulating into the blood also able to form endothelial colonies in vitro and to promote vasculogenesis is represented by endothelial progenitor cells (EPCs). The number of both of these cell types is extremely low and they cannot be identified using a single marker, therefore, in absence of a definite consensus on their phenotype, require discrimination using combinations of antigens. Multiparameter flow cytometry (FCM) is ideal for rapid processing of high numbers of cells per second and is commonly utilized to quantify CECs and EPCs, however, remains technically challenging since there is as yet no standardized protocol for the identification and enumeration of these rare events. Methodology in studies on CECs and/or EPCs as clinical biomarkers in oncology is heterogeneous and data have been obtained from different studies leading to conflicting conclusions. The present review presented a critical review of the issues that limit the comparability of results of the most significant studies employing FCM for CEC and/or EPC detection in patients with cancer. PMID:27284422

  3. Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells

    PubMed Central

    Ashpole, Nicole M.; Warrington, Junie P.; Mitschelen, Matthew C.; Yan, Han; Sosnowska, Danuta; Gautam, Tripti; Farley, Julie A.; Csiszar, Anna; Ungvari, Zoltan

    2014-01-01

    Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT. PMID:25038144

  4. The angiogenic gene profile of circulating endothelial progenitor cells from ischemic stroke patients

    PubMed Central

    2013-01-01

    Background The identification of circulating endothelial progenitor cells (EPCs) has introduced new possibilities for cell-based treatments for stroke. We tested the angiogenic gene expression of outgrowth endothelial cells (OECs), an EPC subtype capable to shape vessel structures. Methods OECs (at colony or mature stages) from ischemic stroke patients (n=8) were characterized using the RT2 ProfilerTM human angiogenesis PCR Array, and human microvascular endothelial cells (hCMEC/D3) were used as an expression reference of endothelial cells. Results Colony-OECs showed higher expression of CCL2, ID3, IGF-1, MMP9, TGFBR1, TNFAIP2, TNF and TGFB1. However, BAI-1, NRP2, THBS1, MMP2 and VEGFC expression was increased in mature-OECs (p<0.05). ID3 (p=0.008) and TGFBR1 (p=0.03) genes remained significantly overexpressed in colony-OECs compared to mature-OECs or hCMEC/D3. MMP9 levels were significantly increased in colony-OECs (p=0.025) compared to mature-OECs. Moreover, MMP-2, VEGF-C, THBS1 and NRP-2 gene expression was also significantly increased in mature-OECs compared to hCMEC/D3 (p<0.05). Some of these genes were positively validated by RT-PCR. Conclusion Our study shows that OECs from stroke patients present higher levels of pro-angiogenic factors at early stages, decreasing in mature OECs when they become more similar to mature microvascular endothelial cells. PMID:23388410

  5. [Roles of aberrant endothelial progenitor cells in pathogenesis of systemic sclerosis].

    PubMed

    Kuwana, Masataka

    2013-01-01

    Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. The maintenance of the postnatal vascular system requires constant remodeling through vasculogenesis, which is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). However, a great deal of controversy about EPCs and their roles in postnatal vascular formation has arisen because of discrepancies in how EPCs are defined. The current consensus is that EPCs are heterogeneous cell population containing an extremely small count of "true EPCs", and pro-angiogenic hematopoietic cells (PHCs) that promotes vascular formation and repair through secretion of pro-angiogenic factors, and differentiation into endothelial cells and mural cells. In 2004, we reported a reduced number and impaired function of circulating CD34(+)CD133(+)CD309(+)CD45(dim)CD14(-) EPCs, which are now regarded as an immature subset of PHCs, in patients with SSc, and proposed a theory that defective vascular repair machinery as one of important mechanisms contributing to SSc vasculopathy. In addition, we showed that in SSc patients, circulating monocytic PHCs were increased and have enhanced angiogenic potency and differentiation potential to fibroblast-like cells. In summary, EPCs are involved in the pathogenesis of SSc by participating in two major pathological features, microvasculopathy and excessive fibrosis. Understanding the roles of EPCs in disease process of SSc may be key to dissecting its pathogenesis and to developing novel therapeutic strategies for this intractable condition. PMID:23445728

  6. Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells.

    PubMed

    Camci-Unal, Gulden; Aubin, Hug; Ahari, Amirhossein Farajzadeh; Bae, Hojae; Nichol, Jason William; Khademhosseini, Ali

    2010-10-21

    A major challenge to the effective treatment of injured cardiovascular tissues is the promotion of endothelialization of damaged tissues and implanted devices. For this reason, there is a need for new biomaterials that promote endothelialization to enhance vascular repair. The goal of this work was to develop antibody-modified polysaccharide-based hydrogels that could selectively capture endothelial progenitor cells (EPCs). We showed that CD34 antibody immobilization on hyaluronic acid (HA) hydrogels provides a suitable surface to capture EPCs. The effect of CD34 antibody immobilization on EPC adhesion was found to be dependent on antibody concentration. The highest level of EPC attachment was found to be 52.2 cells per mm(2) on 1% HA gels modified with 25 μg mL(-1) antibody concentration. Macrophages did not exhibit significant attachment on these modified hydrogel surfaces compared to the EPCs, demonstrating the selectivity of the system. Hydrogels containing only HA, with or without immobilized CD34, did not allow for spreading of EPCs 48 h after cell seeding, even though the cells were adhered to the hydrogel surface. To promote spreading of EPCs, 2% (w/v) gelatin methacrylate (GelMA) containing HA hydrogels were synthesized and shown to improve cell spreading and elongation. This strategy could potentially be useful to enhance the biocompatibility of implants such as artificial heart valves or in other tissue engineering applications where formation of vascular structures is required. PMID:22368689

  7. Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

    PubMed Central

    Choi, Jin-Hwa; Nguyen, Minh-Phuong; Lee, Dongjin; Oh, Goo-Taeg; Lee, You-Mie

    2014-01-01

    Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis. PMID:24938229

  8. Regular Exercise Training Increases the Number of Endothelial Progenitor Cells and Decreases Homocysteine Levels in Healthy Peripheral Blood

    PubMed Central

    Choi, Jeong Kyu; Moon, Ki Myung; Jung, Seok Yun; Kim, Ji Yong; Choi, Sung Hyun; Kim, Da Yeon; Kang, Songhwa; Chu, Chong Woo

    2014-01-01

    Endothelial progenitor cells (EPCs) are known to play an important role in the repair of damaged blood vessels. We used an endothelial progenitor cell colony-forming assay (EPC-CFA) to determine whether EPC numbers could be increased in healthy individuals through regular exercise training. The number of functional EPCs obtained from human peripheral blood-derived AC133 stem cells was measured after a 28-day regular exercise training program. The number of total endothelial progenitor cell colony-forming units (EPC-CFU) was significantly increased compared to that in the control group (p=0.02, n=5). In addition, we observed a significant decrease in homocysteine levels followed by an increase in the number of EPC-CFUs (p=0.04, n=5), indicating that the 28-day regular exercise training could increase the number of EPC colonies and decrease homocysteine levels. Moreover, an inverse correlation was observed between small-endothelial progenitor cell colony-forming units (small-EPC-CFUs) and plasma homocysteine levels in healthy men (r=-0.8125, p=0.047). We found that regular exercise training could increase the number of EPC-CFUs and decrease homocysteine levels, thus decreasing the cardiovascular disease risk in men. PMID:24757379

  9. Circulating Endothelial Progenitor Cells and Clinical Outcome in Patients with Aortic Stenosis

    PubMed Central

    Shimoni, Sara; Bar, Iris; Meledin, Valery; Derazne, Estela; Gandelman, Gera; George, Jacob

    2016-01-01

    Background Aortic stenosis (AS) is the most common valvular disease. Endothelial progenitor cells (EPCs) have a role in the repair of endothelial surfaces after injury. Reduced numbers of EPCs are associated with endothelial dysfunction and adverse clinical events, suggesting that endothelial injury in the absence of sufficient repair by circulating EPCs promotes the progression of vascular and possibly valvular disorders. The aim of this study was to assess EPC number in patients with AS and to study the predictive value of their circulating levels on prognosis. Methods The number of EPCs was determined by flow cytometry in 241 patients with AS and a control group of 73 pts. Thirty-eight, 52 and 151 patients had mild, moderate and severe AS, respectively. We evaluated the association between baseline levels of EPCs and death from cardiovascular causes during follow up. Results EPC level was significantly higher in patients with AS compared to the control group (p = 0.017). Two hundred and three patients with moderate and severe AS were followed for a median of 20 months. One hundred and twenty patients underwent an intervention. Thirty four patients died during follow up, 20 patients died due to cardiac causes. Advanced age, the presence of coronary artery disease, AS severity index (combination of high NYHA class, smaller aortic valve area and elevated pulmonary artery pressure) and a low EPC number were predictors of cardiac death in the univariate analysis. Multivariate logistic regression model identified low EPCs number and AS severity index as associated with cardiac death during follow up (p = 0.026 and p = 0.037, respectively). Conclusions EPC number is increased in patients with AS. However, in patients with moderate or severe AS a relatively low number of EPCs is associated with cardiac death at follow up. These results may help to identify AS patients at increased cardiovascular risk. PMID:26913741

  10. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow

    PubMed Central

    Yang, Junjie; Ii, Masaaki; Kamei, Naosuke; Alev, Cantas; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Masuda, Haruchika; Sawa, Yoshiki; Asahara, Takayuki

    2011-01-01

    Background Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. Methodology/Principal Findings CD34+ cells, c-Kit+/Sca-1+/Lin− (KSL) cells, c-Kit+/Lin− (KL) cells and Sca-1+/Lin− (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. Conclusion These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology. PMID:21655289

  11. Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus

    PubMed Central

    De Falco, Elena; Avitabile, Daniele; Totta, Pierangela; Straino, Stefania; Spallotta, Francesco; Cencioni, Chiara; Torella, Anna Rita; Rizzi, Roberto; Porcelli, Daniele; Zacheo, Antonella; Vito, Luca Di; Pompilio, Giulio; Napolitano, Monica; Melillo, Guido; Capogrossi, Maurizio C; Pesce, Maurizio

    2009-01-01

    In diabetic patients and animal models of diabetes mellitus (DM), circulating endothelial progenitor cell (EPC) number is lower than in normoglycaemic conditions and EPC angiogenic properties are inhibited. Stromal cell derived factor-1 (SDF-1) plays a key role in bone marrow (BM) c-kit+ stem cell mobilization into peripheral blood (PB), recruitment from PB into ischemic tissues and differentiation into endothelial cells. The aim of the present study was to examine the effect of DM in vivo and in vitro, on murine BM-derived c-kit+ cells and on their response to SDF-1. Acute hindlimb ischemia was induced in streptozotocin-treated DM and control mice; circulating c-kit+ cells exhibited a rapid increase followed by a return to control levels which was significantly faster in DM than in control mice. CXCR4 expression by BM c-kit+ cells as well as SDF-1 protein levels in the plasma and in the skeletal muscle, both before and after the induction of ischemia, were similar between normoglycaemic and DM mice. However, BM-derived c-kit+ cells from DM mice exhibited an impaired differentiation towards the endothelial phenotype in response to SDF-1; this effect was associated with diminished protein kinase phosphorylation. Interestingly, SDF-1 ability to induce differentiation of c-kit+ cells from DM mice was restored when cells were cultured under normoglycaemic conditions whereas c-kit+ cells from normoglycaemic mice failed to differentiate in response to SDF-1 when they were cultured in hyperglycaemic conditions. These results show that DM diminishes circulating c-kit+ cell number following hindlimb ischemia and inhibits SDF-1-mediated AKT phosphorylation and differentiation towards the endothelial phenotype of BM-derived c-kit+ cells. PMID:20196780

  12. Transplantation of vascular endothelial growth factor 165-transfected endothelial progenitor cells for the treatment of limb ischemia

    PubMed Central

    WANG, SHENG; CHEN, ZHONG; TANG, XIAOBIN; LIU, HUI; YANG, LIAO; WANG, YANYANG

    2015-01-01

    The present study aimed to investigate the effects of neovascularization in rabbits with limb ischemia transplanted with vascular endothelial growth factor (VEGF)165-transfected endothelial progenitor cells (EPC). Bone marrow mononuclear cells were isolated by gradient centrifugation, cultured in M199 culture medium and induced into EPCs using VEGF, basic fibroblast growth factor, and insulin-like growth factor-1, and subsequently identified. The EPCs were transfected with Adv-green fluorescent protein-VEGF165 and the proliferation potential of the cells was determined using an MTT assay. The protein expression levels of VEGF were measured by detecting its concentration levels in the supernatant using an ABC-ELISA assay. A rabbit hind limb ischemic model was established and randomly divided into three groups: (A) Control group, (B) EPC-transplanted group, and (C) Ad-VEGF165/EPCs-transplanted group. The effects of transplantation and the levels of recanalization were detected. Incorporation of the transplanted cells into the ischemic region was confirmed by 5-bromodeoxyuridine staining, and the levels of recanalization were measured by computer tomography ateriography and immunohistochemical staining. Bone marrow-derived EPCs were induced, cultivated, and successfully identified. The results of the present study determined the optimum transfection ratio that promoted the growth of EPCs. The EPCs were successfully transfected with VEGF165, and EPC proliferation was not affected by the transfection. The supernatant protein concentration levels of VEGF were markedly higher in the VEGF165-transfected group, as compared with those of the control group. Introduction of the transplanted cells into the ischemic region of group C occurred more efficiently, as compared with groups A and B. The recanalization capillary density in group C was significantly higher, as compared with groups A and B. VEGF gene transfection was able to improve the quality of EPCs, and the response

  13. Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives

    PubMed Central

    Balistreri, Carmela R.; Buffa, Silvio; Pisano, Calogera; Lio, Domenico; Ruvolo, Giovanni; Mazzesi, Giuseppe

    2015-01-01

    Advanced knowledge in the field of stem cell biology and their ability to provide a cue for counteracting several diseases are leading numerous researchers to focus their attention on “regenerative medicine” as possible solutions for cardiovascular diseases (CVDs). However, the lack of consistent evidence in this arena has hampered the clinical application. The same condition affects the research on endothelial progenitor cells (EPCs), creating more confusion than comprehension. In this review, this aspect is discussed with particular emphasis. In particular, we describe biology and physiology of EPCs, outline their clinical relevance as both new predictive, diagnostic, and prognostic CVD biomarkers and therapeutic agents, discuss advantages, disadvantages, and conflicting data about their use as possible solutions for vascular impairment and clinical applications, and finally underline a very crucial aspect of EPCs “characterization and definition,” which seems to be the real cause of large heterogeneity existing in literature data on this topic. PMID:26509164

  14. Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives.

    PubMed

    Balistreri, Carmela R; Buffa, Silvio; Pisano, Calogera; Lio, Domenico; Ruvolo, Giovanni; Mazzesi, Giuseppe

    2015-01-01

    Advanced knowledge in the field of stem cell biology and their ability to provide a cue for counteracting several diseases are leading numerous researchers to focus their attention on "regenerative medicine" as possible solutions for cardiovascular diseases (CVDs). However, the lack of consistent evidence in this arena has hampered the clinical application. The same condition affects the research on endothelial progenitor cells (EPCs), creating more confusion than comprehension. In this review, this aspect is discussed with particular emphasis. In particular, we describe biology and physiology of EPCs, outline their clinical relevance as both new predictive, diagnostic, and prognostic CVD biomarkers and therapeutic agents, discuss advantages, disadvantages, and conflicting data about their use as possible solutions for vascular impairment and clinical applications, and finally underline a very crucial aspect of EPCs "characterization and definition," which seems to be the real cause of large heterogeneity existing in literature data on this topic. PMID:26509164

  15. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    PubMed

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis. PMID:26771151

  16. Particle Radiation-Induced Nontargeted Effects in Bone-Marrow-Derived Endothelial Progenitor Cells.

    PubMed

    Sasi, Sharath P; Park, Daniel; Muralidharan, Sujatha; Wage, Justin; Kiladjian, Albert; Onufrak, Jillian; Enderling, Heiko; Yan, Xinhua; Goukassian, David A

    2015-01-01

    Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons ((1)H) and high charge and energy (HZE) nuclei (e.g., iron-(56)Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experiments in vitro we studied nontargeted effects induced by (1)H- and (56)Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2-15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-EPCs from single, low-dose, full-body (1)H- and (56)Fe-IR mice demonstrated a cyclical (early 5-24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu. PMID:26074973

  17. Reactive astrocytes promote adhesive interactions between brain endothelium and endothelial progenitor cells via HMGB1 and beta-2 integrin signaling

    PubMed Central

    Hayakawa, Kazuhide; Pham, Loc-Duyen D.; Arai, Ken; Lo, Eng H.

    2014-01-01

    Endothelial progenitor cells (EPCs) may contribute to neurovascular repair after stroke and neurodegeneration. A key step in this process should involve adhesive interactions between EPCs and the targeted cerebral endothelium. Here, we tested the hypothesis that reactive astrocytes may play a critical role in enhancing adhesive interactions and transmigration of EPCs across cerebral endothelial cells. Transiently seeding EPCs onto a monolayer of RBE.4 rat brain endothelial cells resulted in a time-dependent adherence between the two cell types. Blocking β2 integrins on EPCs or blocking the receptor for advanced glycation endproducts (RAGE) on endothelial cells significantly decreased EPC-endothelial adherence. Next, we tested whether reactive astrocytes can enhance this process by growing EPCs, brain endothelial cells and astrocytes together in a transwell co-culture system. The presence of reactive astrocytes in the lower chamber significantly promoted adherence between EPCs and endothelial cells in the upper chamber. This process involved the release of soluble HMGB1 from reactive astrocytes that then upregulated endothelial expression of RAGE via Egr1 signaling. Directly adding HMGB1 to the transwell system also promoted EPC-endothelial adhesion and accelerated EPC transmigration into the lower chamber. These initial findings provide proof-of-concept that reactive astrocytes promote crosstalk between cerebral endothelium and EPCs. Further investigation of this phenomenon may lead to a better understanding of cell-cell interactions required for neurovascular recovery after stroke. PMID:24480450

  18. Bone marrow-derived endothelial progenitor cells are involved in aneurysm repair in rabbits.

    PubMed

    Fang, Xinggen; Zhao, Rui; Wang, Kuizhong; Li, Zifu; Yang, Penfei; Huang, Qinghai; Xu, Yi; Hong, Bo; Liu, Jianmin

    2012-09-01

    Endothelial progenitor cells (EPC) are believed to be involved in aneurysmal repair and remodeling. The aim of this study was to test this hypothesis and, if true, explore how EPC contribute to aneurysm repair in a rabbit model of elastase-induced carotid aneurysm. Rabbits were divided randomly into an in situ carotid EPC transfusion group (ISCT group, n=5), and an intravenous EPC transfusion group (IVT group, n=5). Autologous EPC were double-labeled with Hoechst 33342 and 5,6-carboxyfluorescein diacetate succinimidyl ester before injection into the animals in either the carotid artery (ISCT group) or marginal ear veins (IVT group). Three weeks later, labeled cells in the aneurysms were observed with respect to location, adhesion, and growth to detect signs of aneurysm repair. Labeled EPC were detected within the neointima in all five aneurysms in the ISCT group and in three of the five aneurysms in the IVT group, but there was no endothelial growth in the aneurysmal neointima in either group. These results show that bone marrow-derived EPC are involved in the process of aneurysm repair in this rabbit model. PMID:22789632

  19. Correlation between increased circulating endothelial progenitor cells and stage of non-Hodgkin lymphoma.

    PubMed

    Yu, Dan-dan; Liu, Hong-li; Bai, Yun-lin; Wu, Bian; Chen, Wei-hong; Ren, Jing-hua; Zhang, Tao; Yang, Kun-yu; Wu, Gang

    2013-04-01

    This study aims to examine the levels of circulating endothelial progenitor cells (cEPCs) in the peripheral blood of patients with non-Hodgkin lymphoma (NHL) and their correlation with the tumor stage. Forty-one patients with biopsy-proven NHL and 16 healthy individuals were recruited. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation, and cEPCs were characterized by triple staining using antibodies against CD133, CD34 and vascular endothelial growth factor receptor-2 (VEGFR-2, CD309) and quantified by flow cytometry. In NHL patients, the number of cEPCs was significantly greater than in control group (P=0.000). The cEPCs counts in patients with NHL of stage III-IV were significantly greater than in stage I-II (P=0.010). FACS analysis revealed that the number of cEPCs in NHL patients had no correlation with the gender (P=0.401) or the pathological category (P=0.852). It was suggested that the over-expression of cEPCs in NHL patients may serve as a novel biomarker for disease progression in NHL. PMID:23592145

  20. Endothelial Progenitor Cells in Tumor Angiogenesis: Another Brick in the Wall

    PubMed Central

    Marçola, Marina; Rodrigues, Camila Eleuterio

    2015-01-01

    Until 15 years ago, vasculogenesis, the formation of new blood vessels from undifferentiated cells, was thought to occur only during embryonic development. The discovery of circulating cells that are able to promote vascular regeneration and repair—the so-called endothelial progenitor cells (EPCs)—changed that, and EPCs have since been studied extensively. It is already known that EPCs include many subtypes of cells that play a variety of roles in promoting vascular growth. Some EPCs are destined to differentiate into endothelial cells, whereas others are capable of promoting and sustaining angiogenesis through paracrine mechanisms. Vasculogenesis and angiogenesis might constitute complementary mechanisms for postnatal neovascularization, and EPCs could be at the core of this process. Although the formation of new blood vessels from preexisting vasculature plays a beneficial role in many physiological processes, such as wound healing, it also contributes to tumor growth and metastasis. However, many aspects of the role played by EPCs in tumor angiogenesis remain unclear. This review aims to address the main aspects of EPCs differentiation and certain characteristics of their main function, especially in tumor angiogenesis, as well as the potential clinical applications. PMID:26000021

  1. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall.

    PubMed

    Marçola, Marina; Rodrigues, Camila Eleuterio

    2015-01-01

    Until 15 years ago, vasculogenesis, the formation of new blood vessels from undifferentiated cells, was thought to occur only during embryonic development. The discovery of circulating cells that are able to promote vascular regeneration and repair-the so-called endothelial progenitor cells (EPCs)-changed that, and EPCs have since been studied extensively. It is already known that EPCs include many subtypes of cells that play a variety of roles in promoting vascular growth. Some EPCs are destined to differentiate into endothelial cells, whereas others are capable of promoting and sustaining angiogenesis through paracrine mechanisms. Vasculogenesis and angiogenesis might constitute complementary mechanisms for postnatal neovascularization, and EPCs could be at the core of this process. Although the formation of new blood vessels from preexisting vasculature plays a beneficial role in many physiological processes, such as wound healing, it also contributes to tumor growth and metastasis. However, many aspects of the role played by EPCs in tumor angiogenesis remain unclear. This review aims to address the main aspects of EPCs differentiation and certain characteristics of their main function, especially in tumor angiogenesis, as well as the potential clinical applications. PMID:26000021

  2. A Pilot Study of Circulating Endothelial and Hematopoietic Progenitor Cells in Children With Sarcomas.

    PubMed

    Pradhan, Kamnesh R; Mund, Julie A; Claussen, Heather L; Gosiengfiao, Yasmin C; Radulescu, Vlad C; Ballard, Jennifer J; Liu, Ziyue; Vik, Terry A; Case, Jamie

    2015-08-01

    Utilizing a multiparametric flow cytometry protocol, we assessed various cell types implicated in tumor angiogenesis that were found circulating in the peripheral blood of children with sarcomas (cases) based on their cell surface antigen expression. Circulating endothelial cells (CECs), endothelial colony-forming cells (ECFCs), and the ratio of 2 distinct populations of circulating hematopoietic stem and progenitor cells (CHSPCs), the proangiogenic CHSPCs (pCHSPCs) and nonangiogenic CHSPCs (nCHSPCs) were enumerated. Multiparametric flow cytometry was analyzed in cases at baseline and at 4 additional timepoints until the end of treatment and levels compared with each other and with healthy controls. At all timepoints, cases had significantly lower levels of CECs, but elevated ECFCs and a pCHSPC:nCHSPC ratio compared with controls (all P-values <0.05). There was no significant difference in any of the cell types analyzed based on tumor histology, stage (localized vs. metastatic), or tumor size. After treatment, only the CECs among the complete responders were significantly lower at end of therapy (P<0.01) compared with nonresponders, whereas the ECFCs among all cases significantly increased (P<0.05) compared with baseline. No decline in the pCHSPC:nCHSPC ratio was observed despite tumor response. On the basis of these results, a validation of CECs as prognostic biomarker is now warranted. PMID:26115508

  3. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    PubMed Central

    Chung, Ching-Hu; Chang, Chien-Hsin; Chen, Shiou-Sheng; Wang, Hsueh-Hsiao; Yen, Juei-Yu; Hsiao, Che-Jen; Wu, Nan-Lin; Chen, Yen-Ling; Huang, Tur-Fu; Wang, Po-Chuan; Yeh, Hung-I; Wang, Shih-Wei

    2013-01-01

    Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs) can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF-) induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases. PMID:23840271

  4. Irisin Increased the Number and Improved the Function of Endothelial Progenitor Cells in Diabetes Mellitus Mice

    PubMed Central

    Wang, Jinxiang; Song, Mingbao; Zhou, Fang; Fu, Dagan; Ruan, Guangping; Zhu, Xiangqing; Bai, Yinyin; Huang, Lan; Pang, Rongqing; Kang, Huali

    2016-01-01

    Abstract: The dysfunction of endothelial progenitor cells (EPCs) was found to be associated with vascular complications in diabetes mellitus (DM) patients. Previous studies found that regular exercise could improve the function of EPCs in DM patients, but the underling mechanism was unclear. Irisin, a newly identified myokine, was induced by exercise and has been demonstrated to mediate some of the positive effects of exercise. In this study, we hypothesize that irisin may have direct effects on EPC function in DM mice. These data showed for the first time that irisin increased the number of EPCs in peripheral blood of DM mice and improved the function of EPCs derived from DM mice bone marrow. The mechanism for the effect of irisin is related to the PI3K/Akt/eNOS pathway. Furthermore, irisin was demonstrated to improve endothelial repair in DM mice that received EPC transplants after carotid artery injury. The results of this study indicate a novel effect of irisin in regulating the number and function of EPCs via the PI3K/Akt/eNOS pathway, suggesting a potential for the administration of exogenous irisin as a succedaneum to improve EPC function in diabetic patients who fail to achieve such improvements through regular exercise. PMID:27002278

  5. Immortalized Functional Endothelial Progenitor Cell Lines from Umbilical Cord Blood for Vascular Tissue Engineering

    PubMed Central

    Sobhan, Praveen K.; Seervi, Mahendra; Joseph, Jeena; Varghese, Saneesh; Pillai, Prakash Rajappan; Sivaraman, Divya Mundackal; James, Jackson; George, Roshin Elizabeth; Elizabeth, K.E.; Pillai, M. Radhakrishna

    2012-01-01

    Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial–cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell–biomaterial interactions, as well as a variety of tissue-engineering applications. PMID:22889128

  6. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells.

    PubMed

    Zhao, Li-Rong; Du, Yu-Jun; Chen, Lei; Liu, Zhi-Gang; Pan, Yue-Hai; Liu, Jian-Feng; Liu, Bin

    2014-10-01

    Endothelial progenitor cells (EPCs), a group of bone marrow-derived pro-angiogenic cells, contribute to vascular repair after damage. EPC dysfunction exists in diabetes and results in poor wound healing in diabetic patients with trauma or surgery. The aim of the present study was to determine the effect of quercetin, a natural flavonoid on high glucose‑induced damage in EPCs. Treatment with high glucose (40 mM) decreased cell viability and migration, and increased oxidant stress, as was evidenced by the elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase in bone marrow-derived EPCs. Moreover, high glucose reduced the levels of endothelial nitric oxide synthase (eNOS) phosphorylation, nitric oxide (NO) production and intracellular cyclic guanosine monophosphate (cGMP). Quercetin supplement protected against high glucose‑induced impairment in cell viability, migration, oxidant stress, eNOS phosphorylation, NO production and cGMP levels. Quercetin also increased Sirt1 expression in EPCs. Inhibition of Sirt1 by a chemical antagonist sirtinol abolished the protective effect of quercetin on eNOS phosphorylation, NO production and cGMP levels following high glucose stress. To the best of our knowledge, the results provide the first evidence that quercetin protects against high glucose‑induced damage by inducing Sirt1-dependent eNOS upregulation in EPCs, and suggest that quercetin is a promising therapeutic agent for diabetic patients undergoing surgery or other invasive procedures. PMID:25197782

  7. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity

    PubMed Central

    Pascaud, Juliette; Driancourt, Catherine; Boyer-Di-Ponio, Julie; Uzan, Georges

    2016-01-01

    Endothelial Colony Forming Cells (ECFCs), a distinct population of Endothelial Progenitor Cells (EPCs) progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs) have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs) more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile. PMID:27043207

  8. Absence of Correlation between Changes in the Number of Endothelial Progenitor Cell Subsets

    PubMed Central

    Attar, Armin; Parsanezhad, Mohammad Ebrahim; Namavar Jahromi, Bahia; Habibagahi, Mojtaba

    2015-01-01

    Background and Objectives Previously, various methodologies were used to enumerate the endothelial progenitor cells (EPCs). We now know that these methodologies enumerate at least three different EPC subsets: circulating angiogenic cells (CACs), colony-forming unit endothelial cells (CFU-ECs), and endothelial colony-forming cells (ECFCs). It is not clear whether there is a correlation between changes in the number of these subsets. The aim of the current study is to find an answer to this question. Materials and Methods The number of all EPC subsets was quantified in the peripheral blood of nine pregnant women in their first and third trimesters of pregnancy. We enumerated 14 cell populations by quantitative flow-cytometry using various combinations of the markers, CD34, CD133, CD309, and CD45, to cover most of the reported phenotypes of CACs and ECFCs. Culturing technique was used to enumerate the CFU-ECs. Changes in the number of cells were calculated by subtracting the number of cells in the first trimester peripheral blood from the number of cells in the third trimester peripheral blood, and correlations between these changes were analyzed. Results The number of CFU-ECs did not correlate with the number of ECFCs and CACs. Also, CACs and ECFCs showed independent behaviors. However, the number of CACs showed a strong correlation with the number of CD133+CD309+ cells (p=0.001) and a moderate correlation with the number of CD34+CD309+ cells (p=0.042). Also, the number of ECFCs was correlated with the number of CD309+CD45- cells (p=0.029) and CD34+CD45- cells (p=0.03). Conclusion Our study showed that the three commonly used methods for quantifying EPC subsets represent different cells with independent behaviors. Also, any study that measured the number of EPCs using the flow cytometry method with a marker combination that lacks CD309 may be inaccurate. PMID:26240587

  9. Prognostic relevance of circulating endothelial progenitor cells in patients with chronic heart failure.

    PubMed

    Koller, Lorenz; Hohensinner, Philipp; Sulzgruber, Patrick; Blum, Steffen; Maurer, Gerald; Wojta, Johann; Hülsmann, Martin; Niessner, Alexander

    2016-08-01

    Novel strategies for a tailored risk prediction in chronic heart failure (CHF) are crucial to identify patients at very high risk for an improved patient management and to specify treatment regimens. Endothelial progenitor cells (EPCs) are an important endogenous repair mechanism with the ability to counteract endothelial injury and the possibility of new vessel formation. We hypothesised that exhaustion of circulating EPCs may be a suitable prognostic biomarker in patients with CHF. EPCs, defined as CD34+CD45dimKDR+ cells, were analysed using fluorescence-activated cell sorting. EPCs were measured in 185 patients with CHF including 87 (47 %) patients with ischaemic aetiology and 98 (53 %) patients with non-ischaemic CHF and followed for a median time of 2.7 years. During this period, 34.7 % of patients experienced the primary study endpoint all-cause mortality. EPC count was a significant and independent inverse predictor of mortality with an hazard ratio hazard ratio (HR) per increase of one standard deviation (1-SD) of 0.47 (95 % confidence interval [CI]: 0.35-0.61; p<0.001) and remained significant after multivariable adjustment for a comprehensive set of cardiovascular risk factors and potential confounders with a HR per 1-SD of 0.54 (95 % CI: 0.4-0.73; p<0.001). EPCs further demonstrated additional prognostic information indicated by improvements in C-statistic, net reclassification index and integrated discrimination increment. In conclusion, in our study circulating EPCs turned out as strong and independent inverse predictors of mortality underlining the importance of an impaired endothelial repair mechanism in the pathophysiology and progression of CHF. PMID:27412580

  10. Application of anodized titanium for enhanced recruitment of endothelial progenitor cells

    PubMed Central

    2012-01-01

    Objectives To study the efficacy of an effective anodized titanium surface with enhanced attachment of endothelial progenitor cell (EPC). Background In-stent restenosis is a major obstacle for vascular patency after catheter-based intravascular interventions. Recently, stents that capture EPCs have been paid attention in order to make a functional endothelialized layer at the site of stent-induced endothelial denudation. Anodized titanium has been shown to enhance stem cell attachment. Anodization is a quick and inexpensive method, which can provide suitable stent surface. Methods Surface topography was examined by high-resolution scanning electron microscopy (SEM). Substrates were co-cultured with EPCs at second passage in 24-well culture plates. Evaluation of cell growth, proliferation, viability, surface cytotoxicity and cell adhesion was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and 4,6-diamidino-2-phenylindole dihydrochloride staining. For platelet attachment, platelets added to substrates were evaluated under SEM. Results The average MTT values for tissue culture polystyrene plate, unanodized and anodized titanium with nanostructure were equal to 0.49, 0.16 and 0.72, respectively (P < 0.05). The surface had no cytotoxic effects on cells. The average cell attachment results showed that 9,955 ± 461.18, 3,300 ± 197.98 and 11,359 ± 458.10 EPCs were attached per well of tissue culture polystyrene plate, unanodized and anodized titanium surfaces, respectively (P < 0.05). Conclusions Anodized titanium surfaces can be potentially applied for devices that need enhanced recruitment of EPCs. This unique property makes these anodized surfaces good and cheap candidates for designing cardiovascular medical devices as endovascular stents. PMID:22676440

  11. Role for Tetrahydrobiopterin in the Fetoplacental Endothelial Dysfunction in Maternal Supraphysiological Hypercholesterolemia

    PubMed Central

    Leiva, Andrea; Fuenzalida, Bárbara; Toledo, Fernando; Salomón, Carlos; Gutiérrez, Jaime; Sanhueza, Carlos; Pardo, Fabián

    2016-01-01

    Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development. PMID:26697136

  12. Role for Tetrahydrobiopterin in the Fetoplacental Endothelial Dysfunction in Maternal Supraphysiological Hypercholesterolemia.

    PubMed

    Leiva, Andrea; Fuenzalida, Bárbara; Westermeier, Francisco; Toledo, Fernando; Salomón, Carlos; Gutiérrez, Jaime; Sanhueza, Carlos; Pardo, Fabián; Sobrevia, Luis

    2015-01-01

    Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development. PMID:26697136

  13. Pancreatic-carcinoma-cell-derived pro-angiogenic factors can induce endothelial-cell differentiation of a subset of circulating CD34+ progenitors

    PubMed Central

    2013-01-01

    Background CD34+ progenitor cells comprise both hematopoietic and endothelial progenitor cells. Recent studies suggest that circulating endothelial progenitor cells are recruited into the angiogenic vascular system of several cancers, including pancreatic carcinoma, and that they correlate with clinical progress. However, whether endothelial progenitor cell mobilization occurs in response to cytokine release by tumor cells is still unclear. Methods The chemotactic- and/or differentiating-activities of the poorly-differentiated pancreatic carcinoma cell line PT45, and of the immortal H6c7 cell line, a line of near-normal pancreatic duct epithelial cells, on endothelial progenitor cells were investigated in vitro using circulating CD34+ as model. Results The study showed that Vascular Endothelial Growth Factor produced by PT45 cells and, at lesser extent, by H6c7 cells, predominantly chemoattract peripheral blood CD34+ expressing the type 2 relative receptor. Addition of PT45-conditioned medium to CD34+ cells, cultured under conditions supporting myeloid cell development, diverted the differentiation of a subset of these progenitor cells into cells expressing endothelial cell markers, such as CD146, CD105, VE-cadherin and von Willebrand Factor-related antigen. Moreover, these endothelial-like cells formed capillary networks in vitro, chiefly through the release of Angiopoietin-1 by PT45 cells. Conclusions The results demonstrate that pancreatic-carcinoma cells potentially attract circulating endothelial progenitor cells to the tumor site, by releasing high levels of pro-angiogenic factors such as Vascular Endothelial Growth Factor and Angiopoietin-1, and may direct the differentiation of these cell subsets of the CD34+ cell population into endothelial cells; the latter cells may become a component of the newly-formed vessels, contributing to angiogenesis-mediated tumor growth and metastasis. PMID:24341512

  14. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model

    PubMed Central

    Schuh, Alexander; Kroh, Andreas; Konschalla, Simone; Liehn, Elisa A; Sobota, Radoslav M; Biessen, Erik AL; Bot, Ilze; Sönmez, Tolga Taha; Schober, Andreas; Marx, Nikolaus; Weber, Christian; Sasse, Alexander

    2012-01-01

    Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal-cell derived factor-1α (SDF-1α) facilitates proliferation and migration of endogenous progenitor cells into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1α-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF-1 infected EPCs compared to medium control. Intracoronary application of cells did not lead to significant differences compared to medium injected control hearts. Histology showed a significantly elevated rate of apoptotic cells and augmented proliferation after transplantation of EPCs and EPCs + SDF-1α in infarcted myocardium. In addition, a significant increased density of CD31+ vessel structures, a lower collagen content and higher numbers of inflammatory cells after transplantation of SDF-1 transgenic cells were detectable. Intramyocardial application of lentiviral-infected EPCs is associated with a significant improvement of myocardial function after infarction, in contrast to an intracoronary application. Histological results revealed a significant augmentation of neovascularization, lower collagen content, higher numbers of inflammatory cells and remarkable alterations of apoptotic/proliferative processes in infarcted areas after cell transplantation. PMID:22288686

  15. Transplantation of endothelial progenitor cells in treating rats with IgA nephropathy

    PubMed Central

    2014-01-01

    Background Therapeutic options in IgAN are still limited. The aim of this study is to explore the feasibility of using endothelial progenitor cell to treat IgAN in rat model. Methods Rat bone marrow mononuclear cells (BM-MNCs) obtained with density gradient centrifugation were cultured in vitro, and induced into endothelial progenitor cells (EPCs). EPCs were identified by surface marker CD34, CD133 and VEGFR2 (FLK-1) and by Dil-Ac-LDL/FITC-UEA-1 double staining. EPCs were labeled with PKH26 prior to transplantation. Rat model of IgAN was established by oral administration of bovine serum albumin together with lipopolysaccharide via the caudal vein and subcutaneous injection of CCL4. Kidney paraffin sections were stained by H&E and PAS. Immunofluorescence was used to assess IgA deposition in the glomeruli. Peritubular capillary (PTC) density was determined by CD31 staining. Monocyte chemoattrant protein-1 (MCP-1), hypoxia-inducible factor-1α (HIF-1α) and CD105 were also measured by immunohistochemistry, western blotting and real-time fluorescent quantitative PCR. Results The transplanted BM-EPCs were successfully located in IgAN rat kidney. After transplantation, Urinary red blood cell, urine protein, BUN, Scr and IgA serum level were significantly decreased, so were the areas of glomerular extracellular matrix and the IgA deposition in the glomeruli. In addition, PTC density was elevated. And the expression levels of HIF-1α and MCP-1 were significantly down-regulated, while the expression of CD105 was up-regulated. All these changes were not observed in control groups. Conclusion The BM-EPCs transplantation significantly decreases the expansion of glomerular extracellular matrix and the deposition of IgA in the glomeruli; lowers the expression of inflammatory factors; increases PTC density; improves ischemic-induced renal tissue hypoxia, all of which improves the renal function and slows the progress of IgA nephropathy. PMID:25012471

  16. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  17. Statins Enhance Clonal Growth of Late Outgrowth Endothelial Progenitors and Increase Myocardial Capillary Density in the Chronically Ischemic Heart

    PubMed Central

    Wang, Wen; Lang, Jennifer K.; Suzuki, Gen; Canty, John M.; Cimato, Thomas

    2011-01-01

    Background Coronary artery disease and ischemic heart disease are leading causes of heart failure and death. Reduced blood flow to heart tissue leads to decreased heart function and symptoms of heart failure. Therapies to improve heart function in chronic coronary artery disease are important to identify. HMG-CoA reductase inhibitors (statins) are an important therapy for prevention of coronary artery disease, but also have non-cholesterol lowering effects. Our prior work showed that pravastatin improves contractile function in the chronically ischemic heart in pigs. Endothelial progenitor cells are a potential source of new blood vessels in ischemic tissues. While statins are known to increase the number of early outgrowth endothelial progenitor cells, their effects on late outgrowth endothelial progenitor cells (LOEPCs) and capillary density in ischemic heart tissue are not known. We hypothesized that statins exert positive effects on the mobilization and growth of late outgrowth EPCs, and capillary density in ischemic heart tissue. Methodology/Principal Findings We determined the effects of statins on the mobilization and growth of late outgrowth endothelial progenitor cells from pigs. We also determined the density of capillaries in myocardial tissue in pigs with chronic myocardial ischemia with or without treatment with pravastatin. Pravastatin therapy resulted in greater than two-fold increase in CD31+ LOEPCs versus untreated animals. Addition of pravastatin or simvastatin to blood mononuclear cells increased the number of LOEPCs greater than three fold in culture. Finally, in animals with chronic myocardial ischemia, pravastatin increased capillary density 46%. Conclusions Statins promote the derivation, mobilization, and clonal growth of LOEPCs. Pravastatin therapy in vivo increases myocardial capillary density in chronically ischemic myocardium, providing an in vivo correlate for the effects of statins on LOEPC growth in vitro. Our findings provide

  18. Adiponectin Pretreatment Counteracts the Detrimental Effect of a Diabetic Environment on Endothelial Progenitors

    PubMed Central

    Leicht, Simon F.; Schwarz, Theresa M.; Hermann, Patrick C.; Seissler, Jochen; Aicher, Alexandra; Heeschen, Christopher

    2011-01-01

    OBJECTIVE It has been shown that vascular progenitors from patients with diabetes are dysfunctional. However, therapeutic strategies to counteract their reduced functional capacity are still lacking. Because adiponectin has reported salutary effects on endothelial function, we investigated the functional effects of globular adiponectin (gAcrp), the active domain of adiponectin, on isolated endothelial colony-forming cells (ECFC). RESEARCH DESIGN AND METHODS ECFC were isolated from peripheral blood of type 2 diabetic patients (dmECFC) and compared with ECFC of healthy young volunteers (yECFC) and nondiabetic age-matched control subjects (hECFC). Cells were treated with gAcrp for 48 h followed by assessment of cell counts, cell cycle analysis, and migration capacity. For in vivo evaluation, human ECFC were injected into normoglycemic or streptozotocin-induced hyperglycemic nu/nu mice after hind limb ischemia. RESULTS Whereas dmECFC were functionally impaired compared with yECFC and hECFC, gAcrp significantly enhanced their in vitro proliferation and migratory activity. In vitro effects were significantly stronger in hECFC compared with dmECFC and were mediated through the cyclooxygenase-2 pathway. Most important, however, we observed a profound and sustained increase of the in vivo neovascularization in mice receiving gAcrp-pretreated dmECFC compared with untreated dmECFC under both normoglycemic and hyperglycemic conditions. CONCLUSIONS Pretreatment of ECFC with gAcrp enhanced the functional capacity of ECFC in vitro and in vivo in normoglycemic and hyperglycemic environments. Therefore, preconditioning of dmECFC with gAcrp may be a novel approach to counteract their functional impairment in diabetes. PMID:21270275

  19. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells.

    PubMed

    Chavakis, Emmanouil; Hain, Andreas; Vinci, Maria; Carmona, Guillaume; Bianchi, Marco E; Vajkoczy, Peter; Zeiher, Andreas M; Chavakis, Triantafyllos; Dimmeler, Stefanie

    2007-02-01

    Endothelial progenitor cells (EPCs) are recruited to ischemic regions and improve neovascularization. Integrins contribute to EPC homing. High-mobility group box 1 (HMGB1) is a nuclear protein that is released extracellularly on cell necrosis and tissue damage, eliciting a proinflammatory response and stimulating tissue repair. In the present study, we investigated the effects of HMGB1 on EPC homing. EPCs express the HMGB1 receptors RAGE (receptor for advanced glycation end products) and TLR2 (Toll-like receptor 2). EPC migration was stimulated by HMGB1 in a RAGE-dependent manner. In addition, the HMGB1-induced migration of EPCs on fibronectin and fibrinogen was significantly inhibited by antibodies against beta1 and beta2 integrins, respectively. Short-term prestimulation of EPCs with HMGB1 also increased EPC adhesion to endothelial cell monolayers, and this effect was blocked by antibodies to beta2 integrins or RAGE. HMGB1 increased EPC adhesion to the immobilized integrin ligands intercellular adhesion molecule-1 and fibronectin in a RAGE-dependent manner. Strikingly, HMGB1 rapidly increased integrin affinity and induced integrin polarization. Using intravital microscopy in a tumor model of neovascularization, prestimulation of EPCs with HMGB1 enhanced the initial in vivo adhesion of EPCs to microvessels and the recruitment of EPCs in the tumor tissue. In addition, prestimulation of EPCs with HMGB1 increased the homing of EPCs to ischemic muscles. In conclusion, these data represent a link between HMGB1 and integrin functions of EPCs and demonstrate that HMGB1 stimulates EPC homing to ischemic tissues. These results may provide a platform for the development of novel therapeutic approaches to improve EPC homing. PMID:17218606

  20. NOTCH4 signaling controls EFNB2-induced endothelial progenitor cell dysfunction in preeclampsia.

    PubMed

    Liu, Xiaoxia; Luo, Qingqing; Zheng, Yanfang; Liu, Xiaoping; Hu, Ying; Liu, Weifang; Luo, Minglian; Zhao, Yin; Zou, Li

    2016-07-01

    Preeclampsia is a serious complication of pregnancy and is closely related to endothelial dysfunction, which can be repaired by endothelial progenitor cells (EPCs). The DLL4/NOTCH-EFNB2 (ephrinB2) cascade may be involved in the pathogenesis of preeclampsia by inhibiting the biological activity of EPCs. In addition, both NOTCH1 and NOTCH4, which are specific receptors for DLL4/NOTCH, play critical roles in the various steps of angiogenesis. However, it has not been determined which receptor (NOTCH1, NOTCH4, or both) is specific for the DLL4/NOTCH-EFNB2 cascade. Accordingly, we performed a series of investigations to evaluate it. EFNB2 expression was examined when NOTCH4 or NOTCH1 was downregulated, with or without DLL4 treatment. Then, the effects of NOTCH4 on EPC function were detected. Additionally, we analyzed NOTCH4 and EFNB2 expression in the EPCs from preeclampsia and normal pregnancies. Results showed that NOTCH4 downregulation led to decreased expression of EFNB2, which maintained the same level in the presence of DLL4/NOTCH activation. By contrast, NOTCH1 silencing resulted in a moderate increase in EFNB2 expression, which further increased in the presence of DLL4/NOTCH activation. The downregulation of NOTCH4 resulted in an increase of EPC biological activity, which was similar to EFNB2 silencing. NOTCH4 expression, consistent with the EFNB2 level, increased notably in preeclampsia EPCs compared with the controls. These findings suggest that NOTCH4, not NOTCH1, is the specific receptor for the DLL4/NOTCH-EFNB2 cascade. Blockade of this cascade may enhance the angiogenic property of EPCs, and act as a potential target to promote angiogenesis in patients with preeclampsia. PMID:27069008

  1. Postischemic microvasculopathy and endothelial progenitor cell-based therapy in ischemic AKI: update and perspectives.

    PubMed

    Patschan, D; Kribben, A; Müller, G A

    2016-08-01

    Acute kidney injury (AKI) dramatically increases mortality of hospitalized patients. Incidences have been increased in recent years. The most frequent cause is transient renal hypoperfusion or ischemia which induces significant tubular cell dysfunction/damage. In addition, two further events take place: interstitial inflammation and microvasculopathy (MV). The latter evolves within minutes to hours postischemia and may result in permanent deterioration of the peritubular capillary network, ultimately increasing the risk for chronic kidney disease (CKD) in the long term. In recent years, our understanding of the molecular/cellular processes responsible for acute and sustained microvasculopathy has increasingly been expanded. The methodical approaches for visualizing impaired peritubular blood flow and increased vascular permeability have been optimized, even allowing the depiction of tissue abnormalities in a three-dimensional manner. In addition, endothelial dysfunction, a hallmark of MV, has increasingly been recognized as an inductor of both vascular malfunction and interstitial inflammation. In this regard, so-called regulated necrosis of the endothelium could potentially play a role in postischemic inflammation. Endothelial progenitor cells (EPCs), represented by at least two major subpopulations, have been shown to promote vascular repair in experimental AKI, not only in the short but also in the long term. The discussion about the true biology of the cells continues. It has been proposed that early EPCs are most likely myelomonocytic in nature, and thus they may simply be termed proangiogenic cells (PACs). Nevertheless, they reliably protect certain types of tissues/organs from ischemia-induced damage, mostly by modulating the perivascular microenvironment in an indirect manner. The aim of the present review is to summarize the current knowledge on postischemic MV and EPC-mediated renal repair. PMID:27194716

  2. Enhanced angiogenic potency of monocytic endothelial progenitor cells in patients with systemic sclerosis

    PubMed Central

    2010-01-01

    Introduction Microvasculopathy is one of the characteristic features in patients with systemic sclerosis (SSc), but underlying mechanisms still remain uncertain. In this study, we evaluated the potential involvement of monocytic endothelial progenitor cells (EPCs) in pathogenic processes of SSc vasculopathy, by determining their number and contribution to blood vessel formation through angiogenesis and vasculogenesis. Methods Monocytic EPCs were enriched and enumerated using a culture of peripheral blood mononuclear cells and platelets on fibronectin in 23 patients with SSc, 22 patients with rheumatoid arthritis (RA), and 21 healthy controls. To assess the capacity of monocytic EPCs to promote vascular formation and the contribution of vasculogenesis to this process, we used an in vitro co-culture system with human umbilical vein endothelial cells (HUVECs) on Matrigel® and an in vivo murine tumor neovascularization model. Results Monocytic EPCs were significantly increased in SSc patients than in RA patients or healthy controls (P = 0.01 for both comparisons). Monocytic EPCs derived from SSc patients promoted tubular formation in Matrigel® cultures more than those from healthy controls (P = 0.007). Transplantation of monocytic EPCs into immunodeficient mice resulted in promotion of tumor growth and blood vessel formation, and these properties were more prominent in SSc than healthy monocytic EPCs (P = 0.03 for both comparisons). In contrast, incorporation of SSc monocytic EPCs into the tubular structure was less efficient in vitro and in vivo, compared with healthy monocytic EPCs. Conclusions SSc patients have high numbers of aberrant circulating monocytic EPCs that exert enhanced angiogenesis but are impaired in vasculogenesis. However, these cells apparently cannot overcome the anti-angiogenic environment that characterizes SSc-affected tissues. PMID:21050433

  3. IFNα Serum Levels Are Associated with Endothelial Progenitor Cells Imbalance and Disease Features in Rheumatoid Arthritis Patients

    PubMed Central

    Rodríguez-Carrio, Javier; de Paz, Banesa; López, Patricia; Prado, Catuxa; Alperi-López, Mercedes; Ballina-García, Francisco Javier; Suárez, Ana

    2014-01-01

    Introduction IFNα has been largely implicated in the ethiopathogenesis of autoimmune diseases but only recently it has been linked to endothelial damage and accelerated atherosclerosis in autoimmunity. In addition, proinflammatory conditions are supposed to be implicated in the cardiovascular status of these patients. Since a role for IFNα in endothelial damage and impaired Endothelial Progenitor Cell (EPC) number and function has been reported in other diseases, we aimed to evaluate the potential associations of IFNα serum levels on EPC populations and cytokine profiles in Rheumatoid Arthritis (RA) patients. Methods pre-EPC, EPC and mature EPC (mEPC) populations were quantified by flow cytometry analyzing their differential CD34, CD133 and VEGFR2 expression in blood samples from 120 RA patients, 52 healthy controls (HC), and 83 systemic lupus erythematosus (SLE) patients as disease control. Cytokine serum levels were measured by immunoassays and clinical and immunological data, including cardiovascular (CV) events and CV risk factors, were retrospectively obtained by reviewing clinical records. Results Long-standing, but not recent onset RA patients displayed a significant depletion of all endothelial progenitor populations, unless high IFNα levels were present. In fact, the IFNhigh RA patient group (n = 40, 33%), showed increased EPC levels, comparable to SLE patients. In addition, high IFNα serum levels were associated with higher disease activity (DAS28), presence of autoantibodies, higher levels of IL-1β, IL-6, IL-10 and MIP-1α, lower amounts of TGF-β, and increased mEPC/EPC ratio, thus suggesting higher rates of endothelial damage and an endothelial repair failure. Finally, the relationship between high IFNα levels and occurrence of CV events observed in RA patients seems to support this hypothesis. Conclusions IFNα serum marker could be used to identify a group of RA patients with increased disease activity, EPC imbalance, enhanced

  4. Changes of Number and Function of Late Endothelial Progenitor Cells in Peripheral Blood of COPD Patients Combined with Pulmonary Hypertension.

    PubMed

    Liu, Pei; Zhang, Hongmei; Liu, Jianxin; Sheng, Chunfeng; Zhang, Linlin; Zeng, Yanjun

    2016-06-01

    Objective The objective of this study was to investigate the changes of number and function of late endothelial progenitor cells (EPCs) in peripheral blood of chronic obstructive pulmonary disease (COPD) patients combined with pulmonary hypertension. Subjects and Methods The study enrolled 120 cases including 40 non-COPD and pulmonary arterial hypertension (PAH) patients (non-COPD group), 40 COPD non-PAH patients (COPD group), and 40 COPD patients combined with PAH (COPD + PAH group). Peripheral blood mononuclear cells were separated by density gradient centrifugation, cultured for 21 days, and then identified as late endothelial progenitor cells. The cell colonies were counted. MTT assay, modified Boyden chamber assay, and human fibronectin plates were used to measure the proliferation, migration, and adhesion functions of the late endothelial progenitor cells, respectively. Results Compared with non-COPD and COPD groups, the number of peripheral blood late EPCs in COPD + PAH group was significantly reduced, and the proliferation, adhesion, and migration capacities were significantly lowered; the differences were statistically significant (p < 0.05). The number and function of late EPCs decreased with the increase of pulmonary artery pressure (p < 0.05). Conclusion The number of late EPCs in COPD patients combined with pulmonary hypertension was reduced, which implies the impaired cell functions. The changes of number and function were negatively correlated with the severity of pulmonary hypertension. PMID:25226359

  5. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    PubMed

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential. PMID:24792117

  6. Experimental study on apoptosis of TNFR1 receptor pro-endothelial progenitor cells activated by high glucose induced oxidative stress

    PubMed Central

    Liu, Yong; Xei, Fei; Xu, Xiong-Fei; Zeng, Hong; He, Hu-Qiang; Zhang, Lei; Zheng, Ying-Qiang; He, Yan-Zheng

    2015-01-01

    Objective: To investigate whether high glucose in vitro activating TNFR1 and further promote rat marrow endothelial progenitor cells (EPCs) apoptosis. Methods: Rat morrow endothelial progenitor cells were cultured and identified by Confocal Microscopy; then were treated with high glucose (5.5, 15, 30, 60 mmol/L), mannitol (15, 30, 60, 90 mmol/L), high glucose + Tempol and high glucose+ MAB430. Apoptosis rate of the above cells were detected by flow cytometry. ROS and MDA level and anti-O2- were detected by colorimetric technique; the expression level of TNFR1 induced signal pathway related proteins were detected by Western blotting. Results: High glucose can induce endothelial progenitor cells apoptosis, which is mostly in the later stage (72 h-96 h) instead of the earlier stage (24 h-48 h); high glucose can also induce oxidative stress reaction and the produces ROS and MDA increase significantly in the later stage (after 72 h), but anti-O2- decrease significantly. TNF apoptosis signal pathway related protein expression level not increase in the earlier stage (before 24 h) but increase significantly in the later stage (after 72 h). Tempol and MAB430 down-regulate TNF apoptosis signal pathway related protein expression and reduce EPCs apoptosis. Conclusion: High glucose activates the TNFR1 of TPCs through oxidative stress reaction and further induces cell apoptosis. PMID:26884909

  7. Promotion of adhesion and proliferation of endothelial progenitor cells on decellularized valves by covalent incorporation of RGD peptide and VEGF.

    PubMed

    Zhou, Jianliang; Ding, Jingli; Nie, Bin'en; Hu, Shidong; Zhu, Zhigang; Chen, Jia; Xu, Jianjun; Shi, Jiawei; Dong, Nianguo

    2016-09-01

    Tissue engineered heart valve is a promising alternative to current heart valve surgery, for its capability of growth, repair, and remodeling. However, extensive development is needed to ensure tissue compatibility, durability and antithrombotic potential. This study aims to investigate the biological effects of multi-signal composite material of polyethyl glycol-cross-linked decellularized valve on adhesion and proliferation of endothelial progenitor cells. Group A to E was decellularized valve leaflets, composite material of polyethyl glycol-cross-linked decellularized valves leaflets, vascular endothelial growth factor-composite materials, Arg-Gly-Asp peptide-composite materials and multi-signal modified materials of polyethyl glycol-cross-linked decellularized valve leaflets, respectively. The endothelial progenitor cells were seeded for each group, cell adhesion and proliferation were detected and neo-endothelium antithrombotic function of the multi-signal composite materials was evaluated. At 2, 4, and 8 h after the seeding, the cell numbers and 3H-TdR incorporation in group D were the highest. At 2, 4, and 8 days after the seeding, the cell numbers and 3H-TdR incorporation were significantly higher in groups C, D, and E compared with groups A and B (P < 0.05) and cell numbers and the expression of t-PA and eons in the neo-endothelium were quite similar to those in the human umbilical vein endothelial cells at 2, 4, and 8 days after the seeding. The Arg-Gly-Asp- peptides (a sequential peptide composed of arginine (Arg), glycine (Gly) and aspartic acid (Asp)) and VEGF-conjugated onto the composite material of PEG-crosslinked decellularized valve leaflets synergistically promoted the adhesion and proliferation of endothelial progenitor cells on the composite material, which may help in tissue engineering of heart valves. PMID:27541486

  8. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization.

    PubMed

    Sun, Jiayin; Xie, Jun; Kang, Lina; Ferro, Albert; Dong, Li; Xu, Biao

    2016-01-01

    Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI) through improving bone marrow endothelial progenitor cell (EPC) mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg(-1) day(-1)), amlodipine (2.5 mgkg(-1) day(-1)), or vehicle by gavage (n = 20 per group). Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5). Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this. PMID:27243031

  9. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization

    PubMed Central

    Sun, Jiayin; Xie, Jun; Kang, Lina; Ferro, Albert; Dong, Li; Xu, Biao

    2016-01-01

    Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI) through improving bone marrow endothelial progenitor cell (EPC) mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg−1 day−1), amlodipine (2.5 mgkg−1 day−1), or vehicle by gavage (n = 20 per group). Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5). Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this. PMID:27243031

  10. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells.

    PubMed

    Hong, Jong Kyu; Bang, Ju Yup; Xu, Guan; Lee, Jun-Hee; Kim, Yeon-Ju; Lee, Ho-Jun; Kim, Han Seong; Kwon, Sang-Mo

    2015-01-01

    Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D) scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 μm) while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 μm in 4 hours of cell culture) of individual endothelial progenitor cells (EPCs) and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly porous 3D scaffold with tunable thickness has implications for the regeneration of vascularized thick tissues and cardiac patch development. PMID:25709441

  11. Increased Endothelial Progenitor Cell Levels are Associated with Good Outcome in Intracerebral Hemorrhage.

    PubMed

    Pías-Peleteiro, Juan; Pérez-Mato, María; López-Arias, Esteban; Rodríguez-Yáñez, Manuel; Blanco, Miguel; Campos, Francisco; Castillo, José; Sobrino, Tomás

    2016-01-01

    Circulating endothelial progenitor cells (EPCs) play a role in the regeneration of damaged brain tissue. However, the relationship between circulating EPC levels and functional recovery in intracerebral hemorrhage (ICH) has not yet been tested. Therefore, our aim was to study the influence of circulating EPCs on the outcome of ICH. Forty-six patients with primary ICH (males, 71.7%; age, 72.7 ± 10.8 years) were prospectively included in the study within 12 hours of symptom onset. The main outcome variable was good functional outcome at 12 months (modified Rankin scale ≤2), considering residual volume at 6 months as a secondary variable. Circulating EPC (CD34(+)/CD133(+)/KDR(+)) levels were measured by flow cytometry from blood samples obtained at admission, 72 hours and day 7. Our results indicate that patients with good outcome show higher EPC numbers at 72 hours and day 7 (all p < 0.001). However, only EPC levels at day 7 were independently associated with good functional outcome at 12 months (OR, 1.15; CI95%, 1.01-1.35) after adjustment by age, baseline stroke severity and ICH volume. Moreover, EPC levels at day 7 were negatively correlated to residual volume (r = -0.525; p = 0.005). In conclusion, these findings suggest that EPCs may play a role in the functional recovery of ICH patients. PMID:27346699

  12. Patient-Derived Endothelial Progenitor Cells Improve Vascular Graft Patency in Rodent Model

    PubMed Central

    Stroncek, JD; Ren, LC; Klitzman, B; Reichert, WM

    2011-01-01

    Late outgrowth endothelial progenitor cells (EPCs) derived from the peripheral blood of patients with significant coronary artery disease were sodded into the lumens of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts. Grafts (1 mm inner diameter) were denucleated and sodded either with native EPCs or with EPCs transfected with an adenoviral vector containing the gene for human thrombomodulin (EPC+AdTM). EPC+AdTM was shown to increase the in vitro rate of graft activated protein C (APC) production 4-fold over grafts sodded with untransfected EPCs (p<0.05). Unsodded control and EPC-sodded and EPC+AdTM-sodded grafts were implanted bilaterally into the femoral arteries of athymic rats for 7 or 28 days. Unsodded control grafts, both with and without denucleation treatment, each exhibited 7-day patency rates of 25%. Unsodded grafts showed extensive thrombosis and were not tested for patency over 28 days. In contrast, grafts sodded with untransfected EPCs or EPC+AdTM both had 7-day patency rates of 88-89% and 28-day patency rates of 75-88%. Intimal hyperplasia was observed near both the proximal and distal anastomoses in all sodded graft conditions but did not appear to be the primary occlusive failure event. This in vivo study suggests autologous EPCs derived from the peripheral blood of patients with coronary artery disease may improve the performance of synthetic vascular grafts, although no differences were observed between untransfected EPCs and TM transfected EPCs. PMID:21945828

  13. Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation

    PubMed Central

    Zhao, Xin; Liu, Huan-Qiu; Li, Ji; Liu, Xiao-Liang

    2016-01-01

    Tumor growth and progression require new blood vessel formation to deliver nutrients and oxygen for further cell proliferation and to create a neovascular network exit for tumor cell metastasis. Endothelial progenitor cells (EPCs) are a bone marrow (BM)-derived stem cell population that circulates in the peripheral circulation and homes to the tumor bed to participate in new blood vessel formation. In addition to structural support to nascent vessels, these cells can also regulate the angiogenic process by paracrine secretion of a number of proangiogenic growth factors and cytokines, thus playing a crucial role in tumor neovascularization and development. Inhibition of EPC-mediated new vessel formation may be a promising therapeutic strategy in tumor treatment. EPC-mediated neovascularization is a complex process that includes multiple steps and requires a series of cytokines and modulators, thus understanding the underlying mechanisms may provide anti-neovasculogenesis targets that may be blocked for the prevention of tumor development. The present review stresses the process and contribution of EPCs to the formation of new blood vessels in solid tumors, in an attempt to gain an improved understanding of the underlying cellular and molecular mechanisms involved, and to provide a potential effective therapeutic target for cancer treatment. PMID:27446353

  14. Thickness-controllable electrospun fibers promote tubular structure formation by endothelial progenitor cells

    PubMed Central

    Hong, Jong Kyu; Bang, Ju Yup; Xu, Guan; Lee, Jun-Hee; Kim, Yeon-Ju; Lee, Ho-Jun; Kim, Han Seong; Kwon, Sang-Mo

    2015-01-01

    Controlling the thickness of an electrospun nanofibrous scaffold by altering its pore size has been shown to regulate cell behaviors such as cell infiltration into a three-dimensional (3D) scaffold. This is of great importance when manufacturing tissue-engineering scaffolds using an electrospinning process. In this study, we report the development of a novel process whereby additional aluminum foil layers were applied to the accumulated electrospun fibers of an existing aluminum foil collector, effectively reducing the incidence of charge buildup. Using this process, we fabricated an electrospun scaffold with a large pore (pore size >40 μm) while simultaneously controlling the thickness. We demonstrate that the large pore size triggered rapid infiltration (160 μm in 4 hours of cell culture) of individual endothelial progenitor cells (EPCs) and rapid cell colonization after seeding EPC spheroids. We confirmed that the 3D, but not two-dimensional, scaffold structures regulated tubular structure formation by the EPCs. Thus, incorporation of stem cells into a highly porous 3D scaffold with tunable thickness has implications for the regeneration of vascularized thick tissues and cardiac patch development. PMID:25709441

  15. Patient-derived endothelial progenitor cells improve vascular graft patency in a rodent model.

    PubMed

    Stroncek, J D; Ren, L C; Klitzman, B; Reichert, W M

    2012-01-01

    Late outgrowth endothelial progenitor cells (EPCs) derived from the peripheral blood of patients with significant coronary artery disease were sodded into the lumens of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts. Grafts (1mm inner diameter) were denucleated and sodded either with native EPCs or with EPCs transfected with an adenoviral vector containing the gene for human thrombomodulin (EPC+AdTM). EPC+AdTM was shown to increase the in vitro rate of graft activated protein C (APC) production 4-fold over grafts sodded with untransfected EPCs (p<0.05). Unsodded control and EPC-sodded and EPC+AdTM-sodded grafts were implanted bilaterally into the femoral arteries of athymic rats for 7 or 28 days. Unsodded control grafts, both with and without denucleation treatment, each exhibited 7 day patency rates of 25%. Unsodded grafts showed extensive thrombosis and were not tested for patency over 28 days. In contrast, grafts sodded with untransfected EPCs or EPC+AdTM both had 7 day patency rates of 88-89% and 28 day patency rates of 75-88%. Intimal hyperplasia was observed near both the proximal and distal anastomoses in all sodded graft conditions but did not appear to be the primary occlusive failure event. This in vivo study suggests autologous EPCs derived from the peripheral blood of patients with coronary artery disease may improve the performance of synthetic vascular grafts, although no differences were observed between untransfected EPCs and TM transfected EPCs. PMID:21945828

  16. Increased Endothelial Progenitor Cell Levels are Associated with Good Outcome in Intracerebral Hemorrhage

    PubMed Central

    Pías-Peleteiro, Juan; Pérez-Mato, María; López-Arias, Esteban; Rodríguez-Yáñez, Manuel; Blanco, Miguel; Campos, Francisco; Castillo, José; Sobrino, Tomás

    2016-01-01

    Circulating endothelial progenitor cells (EPCs) play a role in the regeneration of damaged brain tissue. However, the relationship between circulating EPC levels and functional recovery in intracerebral hemorrhage (ICH) has not yet been tested. Therefore, our aim was to study the influence of circulating EPCs on the outcome of ICH. Forty-six patients with primary ICH (males, 71.7%; age, 72.7 ± 10.8 years) were prospectively included in the study within 12 hours of symptom onset. The main outcome variable was good functional outcome at 12 months (modified Rankin scale ≤2), considering residual volume at 6 months as a secondary variable. Circulating EPC (CD34+/CD133+/KDR+) levels were measured by flow cytometry from blood samples obtained at admission, 72 hours and day 7. Our results indicate that patients with good outcome show higher EPC numbers at 72 hours and day 7 (all p < 0.001). However, only EPC levels at day 7 were independently associated with good functional outcome at 12 months (OR, 1.15; CI95%, 1.01–1.35) after adjustment by age, baseline stroke severity and ICH volume. Moreover, EPC levels at day 7 were negatively correlated to residual volume (r = −0.525; p = 0.005). In conclusion, these findings suggest that EPCs may play a role in the functional recovery of ICH patients. PMID:27346699

  17. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway

    PubMed Central

    Wang, Yuqiang; Cao, Qing; Sang, Tiantian; Liu, Fang; Chen, Shuyan

    2015-01-01

    Acidic fibroblast growth factor (FGF1) has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs). The Forkhead homeobox type O transcription factors (FOXOs), a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a) or a GFP control (Ad-GFP). FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future. PMID:26061278

  18. Effect of hypoxia on integrin-mediated adhesion of endothelial progenitor cells

    PubMed Central

    Kaiser, Ralf; Friedrich, Denise; Chavakis, Emmanouil; Böhm, Michael; Friedrich, Erik B

    2012-01-01

    Homing of endothelial progenitor cells (EPCs) is crucial for neoangiogenesis, which might be negatively affected by hypoxia. We investigated the influence of hypoxia on fibronectin binding integrins for migration and cell-matrix-adhesion. AMP-activated kinase (AMPK) and integrin-linked kinase (ILK) were examined as possible effectors of hypoxia.Human EPCs were expanded on fibronectin (FN) and integrin expression was profiled by flow cytometry. Cell-matrix-adhesion- and migration-assays on FN were performed to examine the influence of hypoxia and AMPK-activation. Regulation of AMPK and ILK was shown by Western blot analysis. We demonstrate the presence of integrin β1, β2 and α5 on EPCs. Adhesion to FN is reduced by blocking β1 and α5 (49% and 2% of control, P < 0.05) whereas α4-blockade has no effect. Corresponding effects were shown for migration. Hypoxia and AMPK-activation decrease adhesion on FN. Although total AMPK-expression remains unchanged, phospho-AMPK increases eightfold.The EPCs require α5 for adhesion on FN. Hypoxia and AMPK-activation decrease adhesion. As α5 is the major adhesive factor for EPCs on FN, this suggests a link between AMPK and α5-integrins. We found novel evidence for a connection between hypoxia, AMPK-activity and integrin activity. This might affect the fate of EPCs in ischaemic tissue. PMID:22353471

  19. Endothelial Progenitor Cells Correlate with Clinical Outcome of Traumatic Brain Injury

    PubMed Central

    Liu, Li; Wei, Huijie; Chen, Fanglian; Wang, Jinghua; Dong, Jing-fei; Zhang, Jianning

    2012-01-01

    Objective Endothelial progenitor cells (EPCs) play an active role in vascular repair and revascularization of tissue damaged by traumatic, inflammatory, and ischemic injures. We correlate the changes in circulating EPCs with the severity of traumatic brain injury (TBI). The study is designed to investigate the EPC mobilization after injury and a potential use of circulating EPCs as a prognostic marker for evaluating trauma severity and clinical outcomes. Design A prospective cohort study conducted in two neurosurgical intensive care units (NSICU) of Tianjin Medical University General Hospital and Tianjin Huanhu Hospital. Patients Patients with traumatic brain injury and age- and gender-matched healthy controls. Interventions None Measurements and Main Results Changes in the levels of circulating EPCs were monitored for up to 21 days in 84 patients with TBI. Results were correlated with the clinical assessment of injury severity as determined by Glasgow Coma Scale (GCS). The level of circulating EPCs was found to be suppressed 24–48 hrs after injury, but rapidly increased, reaching the highest at day 5–7 posttrauma. Circulating EPCs in patients with improved GCS were significantly higher than those with deteriorated conditions, and remained persistently low in patients who died of trauma. Conclusions The results suggest that the level of circulating EPCs correlates with the clinical severity and outcome of TBI, and may offer potentials as a prognostic marker for TBI. A long-term follow up of these patients is ongoing. PMID:21460712

  20. Ambient Fine Particulate Matter Induces Apoptosis of Endothelial Progenitor Cells Through Reactive Oxygen Species Formation

    PubMed Central

    Cui, Yuqi; Xie, Xiaoyun; Jia, Fengpeng; He, Jianfeng; Li, Zhihong; Fu, Minghuan; Hao, Hong; Liu, Ying; Liu, Jason Z.; Cowan, Peter J.; Zhu, Hua; Sun, Qinghua; Liu, Zhenguo

    2015-01-01

    Background/Aims Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in angiogenesis and vascular repair. Some environmental insults, like fine particulate matter (PM) exposure, significantly impair cardiovascular functions. However, the mechanisms for PM-induced adverse effects on cardiovascular system remain largely unknown. The present research was to study the detrimental effects of PM on EPCs and explore the potential mechanisms. Methods PM was intranasal-distilled into male C57BL/6 mice for one month. Flow cytometry was used to measure the number of EPCs, apoptosis level of circulating EPCs and intracellular reactive oxygen species (ROS) formation. Serum TNF-α and IL-1β were measured using ELISA. To determine the role of PM-induced ROS in EPC apoptosis, PM was co-administrated with the antioxidant N-acetylcysteine (NAC) in wild type mice or used in a triple transgenic mouse line (TG) with overexpression of antioxidant enzyme network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase (Gpx-1) with decreased in vivo ROS production. Results PM treatment significantly decreased circulating EPC population, promoted apoptosis of EPCs in association with increased ROS production and serum TNF-α and IL-1β levels, which could be effectively reversed by either NAC treatment or overexpression of AON. Conclusion PM exposure significantly decreased circulating EPCs population due to increased apoptosis via ROS formation in mice. PMID:25591776

  1. TNFα Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB

    PubMed Central

    Prisco, Anthony R.; Hoffmann, Brian R.; Kaczorowski, Catherine C.; McDermott-Roe, Chris; Stodola, Timothy J.; Exner, Eric C.; Greene, Andrew S.

    2016-01-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a co-culture assay where TNFα treated EPCs were tracked while migrating towards vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. PMID:26867147

  2. Knockdown of stromal interaction molecule 1 attenuates hepatocyte growth factor-induced endothelial progenitor cell proliferation.

    PubMed

    Shi, Yankun; Song, Mingbao; Guo, Ruiwei; Wang, Hong; Gao, Pan; Shi, Weibin; Huang, Lan

    2010-03-01

    Increased Ca(2+) entry through store-operated Ca(2+) channels (SOCCs) plays an essential role in the regulation of hepatocyte growth factor (HGF)-induced cell proliferation. Stromal interaction molecule 1 (STIM1) is thought to transmit endoplasmic reticulum (ER) Ca(2+) store depletion signals to the plasma membrane (PM), causing the opening of SOCCs in the PM. However, the relationship between HGF and STIM1 in endothelial progenitor cell (EPC) proliferation remains uncharacterized. The objective of this study was to evaluate the potential involvement of STIM1 in HGF-induced EPC proliferation. For this purpose, we used cultured rat bone marrow-derived EPCs and found that HGF-induced EPC proliferation at low concentrations. Store-operated Ca(2+) entry (SOCE) was elevated in HGF-treated EPCs, and the SOCC inhibitors 2-aminoethoxydiphenyl borate (2-APB) and BTP-2 inhibited the HGF-induced proliferation response. Moreover, STIM1 mRNA and protein expression levels were increased in response to HGF stimulation and knockdown of STMI1 decreased SOCE and prevented HGF-induced EPC proliferation. In conclusion, our data suggest that HGF-induced EPC proliferation is mediated partly via activation of STIM1. PMID:20404049

  3. Circulating endothelial progenitor cells in women with gestational alterations of glucose tolerance.

    PubMed

    Penno, Giuseppe; Pucci, Laura; Lucchesi, Daniela; Lencioni, Cristina; Iorio, Maria Carla; Vanacore, Renato; Storti, Eugenia; Resi, Veronica; Di Cianni, Graziano; Del Prato, Stefano

    2011-07-01

    Endothelial progenitor cells (EPCs) play a role in angiogenesis during pregnancy. The aim of this study was to evaluate circulating EPCs in pregnant women with gestational alterations of glucose tolerance. Glucose tolerance, insulin sensitivity and β-cell function were derived from oral glucose tolerance tests in 23 women with normal glucose tolerance (NGT), 18 with gestational impaired glucose tolerance (GIGT) and 24 with gestational diabetes mellitus (GDM). Circulating cells expressing CD34 in combination with CD133, kinase insert domain receptor (KDR) or both were quantified by flow cytometry. Women with GIGT and GDM had lower CD34(+)KDR(+) and CD34(+)CD133( +)KDR(+) cells at 27±3.2 weeks' gestation compared with NGT (ANOVA p<0.02 for both). CD34(+)KDR(+) and CD34(+)CD133(+)KDR(+) cells were inversely correlated with the area-under-the-glucose-curve (p<0.005, for both) and positively to insulin secretion-sensitivity index (p<0.05, for both). Alterations of glucose tolerance during pregnancy are associated with a decrease in EPCs. Hyperglycaemia might exert a direct effect on depletion of EPCs. PMID:21653675

  4. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration

    PubMed Central

    Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S

    2014-01-01

    The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases. PMID:24481445

  5. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy

    PubMed Central

    Zbucka-Kretowska, Monika; Eljaszewicz, Andrzej; Lipinska, Danuta; Grubczak, Kamil; Rusak, Malgorzata; Mrugacz, Grzegorz; Dabrowska, Milena; Ratajczak, Mariusz Z.; Moniuszko, Marcin

    2016-01-01

    Recently, murine hematopoietic progenitor stem cells (HSCs) and very small embryonic-like stem cells (VSELs) were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH). This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin−CD235a−CD45−CD133+ cells), HSPCs (referred to as Lin−CD235a−CD45+CD133+ cells), and endothelial progenitor cells (EPCs, identified as CD34+CD144+, CD34+CD133+, and CD34+CD309+CD133+ cells) in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB) number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings. PMID:26635885

  6. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy.

    PubMed

    Zbucka-Kretowska, Monika; Eljaszewicz, Andrzej; Lipinska, Danuta; Grubczak, Kamil; Rusak, Malgorzata; Mrugacz, Grzegorz; Dabrowska, Milena; Ratajczak, Mariusz Z; Moniuszko, Marcin

    2016-01-01

    Recently, murine hematopoietic progenitor stem cells (HSCs) and very small embryonic-like stem cells (VSELs) were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH). This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin(-)CD235a(-)CD45(-)CD133(+) cells), HSPCs (referred to as Lin(-)CD235a(-)CD45(+)CD133(+) cells), and endothelial progenitor cells (EPCs, identified as CD34(+)CD144(+), CD34(+)CD133(+), and CD34(+)CD309(+)CD133(+) cells) in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB) number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings. PMID:26635885

  7. Trophoblastic debris modifies endothelial cell transcriptome in vitro: a mechanism by which fetal cells might control maternal responses to pregnancy

    PubMed Central

    Wei, J.; Lau, S. Y.; Blenkiron, C.; Chen, Q.; James, J. L.; Kleffmann, T.; Wise, M.; Stone, P. R.; Chamley, L. W.

    2016-01-01

    The mechanisms by which the fetus induces maternal physiological adaptations to pregnancy are unclear. Cellular debris, shed from the placental syncytiotrophoblast into the maternal blood and phagocytosed by maternal endothelial and immune cells, may be one of these mechanisms. Here we show that trophoblastic debris from normal first trimester placentae induces changes in the transcriptome and proteome of endothelial cells in vitro, which might contribute to the adaptation of the maternal cardiovascular system to pregnancy. Trophoblastic debris also induced endothelial cells to transcribe placenta-specific genes, including the vasodilator hormone CSH1, thereby expanding the effective functional size of the placenta. Our data suggest that the deportation of trophoblastic debris is an important part of the complex network of feto-maternal communication. PMID:27468655

  8. Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia.

    PubMed

    Leiva, Andrea; Fuenzalida, Bárbara; Salsoso, Rocío; Barros, Eric; Toledo, Fernando; Gutiérrez, Jaime; Pardo, Fabián; Sobrevia, Luis

    2016-04-01

    Maternal physiological hypercholesterolemia (MPH) allows a proper foetal development; however, maternal supraphysiological hypercholesterolemia (MSPH) associates with foetal endothelial dysfunction and early development of atherosclerosis. MSPH courses with reduced endothelium-dependent dilation of the human umbilical vein due to reduced endothelial nitric oxide synthase activity compared with MPH. Whether MSPH modifies the availability of the nitric oxide synthase cofactor tetrahydrobiopterin is unknown. We investigated whether MSPH-associated lower umbilical vein vascular reactivity results from reduced bioavailability of tetrahydrobiopterin. Total cholesterol <7.2mmol/L was considered as maternal physiological hypercholesterolemia (n=72 women) and ≥7.2mmol/L as MSPH (n=35 women). Umbilical veins rings were used for vascular reactivity assays (wire myography), and primary cultures of human umbilical vein endothelial cells (HUVECs) to measure nitric oxide synthase, GTP cyclohydrolase 1, and dihydrofolate reductase expression and activity, as well as tetrahydrobiopterin content. MSPH reduced the umbilical vein rings relaxation caused by calcitonine gene-related peptide, a phenomenon partially improved by incubation with sepiapterin. HUVECs from MSPH showed lower nitric oxide synthase activity (l-citrulline synthesis from l-arginine) without changes in its protein abundance, as well as reduced tetrahydrobiopterin level compared with MPH, a phenomenon reversed by incubation with sepiapterin. Expression and activity of GTP cyclohydrolase 1 was lower in MSPH, without changes in dihydrofolate reductase expression. MSPH is a pathophysiological condition reducing human umbilical vein reactivity due to lower bioavailability of tetrahydrobiopterin leading to lower NOS activity in the human umbilical vein endothelium. PMID:26826019

  9. Association of endothelial progenitor cells and peptic ulcer treatment in patients with type 2 diabetes mellitus

    PubMed Central

    NIE, ZHIHONG; XU, LIMIN; LI, CHUANYUAN; TIAN, TAO; XIE, PINGPING; CHEN, XIA; LI, BOJING

    2016-01-01

    The present study aimed to investigate the association between endothelial progenitor cells (EPCs) and peptic ulcers in patients with or without type 2 diabetes mellitus (T2DM), in association with the efficiency of peptic ulcer treatment. The study recruited healthy subjects and peptic ulcer patients with or without T2DM. All the ulcer patients, including those with and without T2DM, were administered omeprazole for 8 weeks. Peptic ulcer patients with T2DM were additionally treated with glipizide and novolin. Blood samples were then obtained from the three groups following ulcer treatment. CD133+ cells were isolated from the blood samples using magnetic bead selection, and cultured in complete medium 199. Morphological and quantity changes in EPCs were observed by light and fluorescence microscopy. In addition, flow cytometric analysis was used to quantify the number of vascular endothelial cells. The treatment was partially effective in 7 of the 32 peptic ulcer patients without T2DM and 12 of the 32 peptic ulcer patients with T2DM. However, this treatment was ineffective in 20 of the 32 peptic ulcer patients with T2DM. Notably, 25 peptic ulcer patients without T2DM were defined as completely recovered following treatment. In addition, the number of circulating EPCs as well as their colony forming ability was significantly reduced (P<0.05) in the peptic ulcer patients with T2DM following ulcer treatment, compared with the other groups. Circulating EPC counts were significantly increased in peptic ulcer patients without T2DM, as compared with the healthy controls. With regards to colony formation, peptic ulcer patients without T2DM did not exhibit improved colony formation ability. In conclusion, the number of circulating EPCs and their colony-forming ability was significantly reduced in peptic ulcer patients with T2DM following ulcer treatment when compared with the other groups. This suggests that the poor curative effect of peptic ulcer treatment in these

  10. Circulating endothelial progenitor cells in type 1 diabetic patients with erectile dysfunction.

    PubMed

    Maiorino, Maria Ida; Bellastella, Giuseppe; Petrizzo, Michela; Della Volpe, Elisabetta; Orlando, Rosanna; Giugliano, Dario; Esposito, Katherine

    2015-06-01

    Circulating endothelial progenitor cells (EPCs) are bone marrow-derived stem cells able to migrate to sites of damaged endothelium and differentiate into endothelial cells, thereby contributing to vascular repair. Recent studies demonstrated a reduction of EPCs in patients with diabetes mellitus or erectile dysfunction (ED). The aim of this study was to evaluate the circulating levels of different EPCs phenotypes and their relation with testosterone levels in young type 1 diabetic patients with ED. We studied 118 consecutively type 1 diabetic patients and 60 age-matched healthy controls. Erectile function was assessed by completing the International Index of Erectile Function (IIEF-5) and EPCs levels by flow cytometry. Testosterone concentrations were evaluated in all the study population. We identified 38 diabetic patients with ED (Group 1) and 80 patients without ED (Group 2). CD34+KDR+CD133+ cells were significantly lower in patients in Group 1 as compared with those in Group 2 [median and interquartile range, n/10(6) events, 12 (6-16) vs. 18 (13-22), P < 0.001)]. In all participants in the study, there was a significant correlation between circulating CD34+KDR+CD133+ cells and testosterone levels (r = 0.410, P < 0.001), which was highest in Group 1, intermediate in Group 2, and lowest in Group 3 (controls). There was a significant correlation between IIEF-5 score and both CD34+KDR+ (r = 0.459, P = 0.003) and CD34+KDR+CD133+ (r = 0.316, P = 0.050) cells among patients of Group 1, as well as between testosterone levels and most of the EPCs phenotypes. Finally, multivariate regression analysis identified levels of circulating CD34+KDR+ cells as an independent risk factor for ED (β-coefficient 0.348, P = 0.007). In conclusion, type 1 diabetic patients with ED show reduced levels of CD34+KDR+CD133+ cells, whose number correlates with IIEF. Further studies are needed to fully understand the exact mechanisms by which testosterone regulates vascular homeostasis. PMID

  11. Circulating Endothelial Progenitor Cells in Castration Resistant Prostate Cancer: A Randomized, Controlled, Biomarker Study

    PubMed Central

    Fuereder, Thorsten; Wacheck, Volker; Strommer, Sabine; Horak, Peter; Gerschpacher, Marion; Lamm, Wolfgang; Kivaranovic, Danijel; Krainer, Michael

    2014-01-01

    Background Endothelial progenitor cells (CEPs) and circulating endothelial cells (CECs) are potential biomarkers of response to anti-angiogenic treatment regimens. In the current study, we investigated the effect of docetaxel and sunitinib on CEP/CEC kinetics and clinical response in castration resistant prostate cancer (CRPC) patients. Patients and methods Chemonaive patients with CRPC were enrolled in this study to receive either sunitinib (37.5 mg/d), in combination with docetaxel (75 mg/m2) or docetaxel alone. CEP and CEC kinetics were analyzed for every cycle. The primary objective was to compare CEP/CEC pharmacodynamics between both treatment arms. We also investigated if CEC/CEP spikes, induced by MTD docetaxel, are suppressed by sunitinib in patients treated with docetaxel/sunitinib relative to docetaxel monotherapy. Results A total of 27 patients were enrolled. We observed a significant increase of CEP/CEC (total/viable) counts over time within each cycle (coefficients 0.29233, 0.22092 and 0.26089, respectively; p<0.001). However, no differences between the treatment groups, in terms of CEP and CEC kinetics, were detected. In the docetaxel monotherapy arm 4 (30%) patients responded to therapy with a 50% PSA decline, while 9 (64%) patients showed a PSA decline in the combination group (n.s.). The median PFS in the docetaxel monotherapy group was 3.1 months (2.6–3.6 months, 95% CI) and 6.2 months (4.9–7.4 months, 95% CI; p = 0.062) in the combination arm. Sunitinib/docetaxel was reasonably well tolerated and toxicity manageable. Conclusion In summary, no significant differences in CEC and CEP kinetics between the treatment arms were observed, although a highly significant increase of CEPs/CECs within each cycle over time was detected. These results mirror the challenge we have to face when employing anti-angiogenic strategies in CRPC. Additional preclinical research is needed to elucidate the underlying molecular mechanisms. However, docetaxel

  12. Endothelial Progenitor Cells Are Related to Glycemic Control in Children With Type 1 Diabetes Over Time

    PubMed Central

    Hörtenhuber, Thomas; Rami-Mehar, Birgit; Satler, Miriam; Nagl, Katrin; Höbaus, Clemens; Höllerl, Florian; Koppensteiner, Renate; Schernthaner, Guntram; Schober, Edith; Schernthaner, Gerit-Holger

    2013-01-01

    OBJECTIVE The risk of cardiovascular death before the age of 40 is 20-fold higher in patients with type 1 diabetes mellitus (T1DM). Endothelial progenitor cells (EPCs) predict cardiovascular morbidity and mortality in patients without diabetes. We hypothesized that EPCs are modified in children with T1DM and are related to characteristics of T1DM such as glycemic control. RESEARCH DESIGN AND METHODS Children (n = 190; 156 T1DM subjects and 34 control subjects) were included in an observational cohort study and matched for age and sex. EPCs were enumerated by flow cytometry at the beginning (cross-sectional) and 1 year later (longitudinal). To analyze changes of variables during the observation, Δ values were calculated. RESULTS EPCs were significantly reduced in T1DM children versus control subjects (609 ± 359 vs. 1,165 ± 484, P < 0.001). Multivariate regression modeling revealed that glycated hemoglobin A1c (HbA1c) was the strongest independent predictor of EPCs (β = −0.355, P < 0.001). Overall glycemic control at the beginning and end of study did not differ (7.8 ± 1.2 vs. 7.8 ± 1.2 relative %, P = NS), but we observed individual HbA1c changes of −4.30/+3.10 relative %. The strongest EPC increase was observed in the patients with the most favorable HbA1c lowering during the 1-year follow-up. Accordingly, the strongest EPC decrease was demonstrated in the patients with the strongest HbA1c worsening during the time period. CONCLUSIONS This is the first prospective study demonstrating diminished EPCs in children with T1DM. The association of better glycemic control with an increase in EPC numbers within 1 year suggests that a reduction of the high cardiovascular disease burden might be mediated likewise. PMID:23340890

  13. Relation between endothelial progenitor cells and arterial stiffness in patients with psoriasis.

    PubMed

    Liu, Ju-Hua; Chen, Yan; Zhen, Zhe; Yeung, Chi-Keung; Chan, Johnny; Chan, Henry H; Tse, Hung-Fat; Yiu, Kai-Hang

    2016-08-01

    Patients with psoriasis are prone to premature atherosclerosis. We hypothesize that depletion of circulating endothelial progenitor cells (EPC) is related to patients with psoriasis and can contribute to the development of atherosclerosis. Thirty-five plaque-type psoriasis patients (41.9 ± 5.5 years, 30 men) and 20 age- and sex-matched controls were studied. Four subpopulations of EPC, namely, CD34(+) EPC, CD133(+) EPC, CD34(+) /kinase insert domain-containing receptor (KDR)(+) EPC and CD133(+) /KDR(+) EPC were measured by flow cytometry. Arterial stiffness in psoriasis patients was assessed by heart to ankle pulse wave velocity (haPWV), augmentation index (AI) and carotid intima media thickness (IMT). Patients with psoriasis had a lower level of CD34(+) EPC (7.85 ± 2.49% vs 6.26 ± 2.13%, P = 0.02) compared with healthy controls. In patients with psoriasis, level of CD34(+) EPC was negatively related with haPWV (r = -0.43 P = 0.01) and Psoriasis Area and Severity Index (r = -0.39 P = 0.02). Multivariate regression analysis further demonstrated that haPWV was independently associated with level of CD34(+) EPC. Each percentage decrease in CD34(+) EPC accounted for an increase in haPWV of +0.02 m/s. The result demonstrated that patients with psoriasis had reduced CD34(+) EPC compared with controls. Importantly, CD34(+) EPC was independently related with haPWV in these patients. This finding suggests that EPC reduction is associated with the development of arterial stiffness in patients with psoriasis. PMID:26704131

  14. Autologous endothelial progenitor cells improve allograft survival in porcine lung transplantation with prolonged ischemia

    PubMed Central

    Yen, Yi-Ting; Roan, Jun-Neng; Fang, Shih-Yuan; Chang, Shi-Wei; Tseng, Yau-Lin

    2016-01-01

    Background As endothelial progenitor cells (EPCs) attenuated acute lung injury (ALI) in rabbit model, we hypothesized that autologous EPCs preserved lung graft function during the acute reperfusion period of lung transplantation and tested the therapeutic potential of EPCs in a porcine model of lung transplantation with prolonged graft ischemia. Methods Day-7 EPCs isolated from the recipient subjects or plain culture media were administered into the left pulmonary artery immediately before restoration of pulmonary blood flow in a porcine lung allotransplantation model, with the transplantation surgeons blinded to the content of injection. Hemodynamics and arterial blood gas were recorded, and the right pulmonary artery was occluded 30 min after reperfusion to evaluate the lung graft function. The lung grafts were sectioned for histological examination at the end of experiments. The total ischemic time for lung graft was approximately 14 h. Results All animals receiving plain medium died within 40 min after reperfusion, but 3 out of 5 (60%) piglets receiving EPCs survived up to 4 h after diversion of the entire cardiac output into the lung graft (P<0.01). The donor body weight, recipient body weight, cold ischemic time, and time for anastomosis were comparable between the EPC and control group (P=0.989, 0.822, 0.843, and 0.452, respectively). The mean aortic pressure decreased, and the cardiac output and mean pulmonary artery pressure elevated after right pulmonary artery occlusion. All these parameters were gradually compensated in the EPC group but decompensated in the control group. Better preservation of gas exchange function, reduced thrombi formation in the terminal pulmonary arterioles, and attenuated interstitial hemorrhage of the lung graft were observed in the EPC group. Conclusions We concluded autologous EPCs significantly enhanced the function of lung allograft and improved survival in a porcine model of lung transplantation with prolonged ischemia

  15. Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent.

    PubMed

    Ratliff, B B; Ghaly, T; Brudnicki, P; Yasuda, K; Rajdev, M; Bank, M; Mares, J; Hatzopoulos, A K; Goligorsky, M S

    2010-07-01

    Intrinsic stem cells (SC) participate in tissue remodeling and regeneration in various diseases and following toxic insults. Failure of tissue regeneration is in part attributed to lack of SC protection from toxic stress of noxious stimuli, thus prompting intense research efforts to develop strategies for SC protection and functional preservation for in vivo delivery. One strategy is creation of artificial SC niches in an attempt to mimic the requirements of endogenous SC niches by generating scaffolds with properties of extracellular matrix. Here, we investigated the use of hyaluronic acid (HA) hydrogels as an artificial SC niche and examined regenerative capabilities of encapsulated embryonic endothelial progenitor cells (eEPC) in three different in vivo models. Hydrogel-encapsulated eEPC demonstrated improved resistance to toxic insult (adriamycin) in vitro, thus prompting in vivo studies. Implantation of HA hydrogels containing eEPC to mice with adriamycin nephropathy or renal ischemia resulted in eEPC mobilization to injured kidneys (and to a lesser extent to the spleen) and improvement of renal function, which was equal or superior to adoptively transferred EPC by intravenous infusion. In mice with hindlimb ischemia, EPC encapsulated in HA hydrogels dramatically accelerated the recovery of collateral circulation with the efficacy superior to intravenous infusion of EPC. In conclusion, HA hydrogels protect eEPC against adriamycin cytotoxicity and implantation of eEPC encapsulated in HA hydrogels supports renal regeneration in ischemic and cytotoxic (adriamycin) nephropathy and neovascularization of ischemic hindlimb, thus establishing their functional competence and superior capabilities to deliver stem cells stored in and released from this bioartificial niche. PMID:20410213

  16. Nicotine improves the functional activity of late endothelial progenitor cells via nicotinic acetylcholine receptors.

    PubMed

    Yu, Min; Liu, Qian; Sun, Jing; Yi, Kaihong; Wu, Libiao; Tan, Xuerui

    2011-08-01

    The aim of this study is to investigate whether nicotinic acetylcholine receptors (nAChRs) are involved in the modulation of functional activity of late endothelial progenitor cells (EPCs) induced by nicotine. Total mononuclear cells (MNCs) were isolated from human umbilical cord blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture plates. Late EPCs were positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (DiI-acLDL) uptake and fluorescein-isothiocyanate-conjugated Ulex europaeus agglutinin lectin (UEA-1) binding. Expression of von Willbrand factor (vWF), kinase insert domain receptor (KDR), and α7 nAChR was detected by indirect immunofluorescence staining. Late EPCs of 3-5 passages were treated for 32 h with either vehicle or nicotine with or without pre-incubation of nAChR antagonism, mecamylamine, or α-bungarotoxin. The viability, migration, and in vitro vasculogenesis activity of late EPCs were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, modified Boyden chamber assay, and in vitro angiogenesis assay, respectively. Late EPCs adhesion assay was performed by replating cells on fibronectin-coated plates, and then adherent cells were counted. Incubation with 10 nmol/L nicotine enhanced viable, migratory, adhesive, and in vitro vasculogenesis capacity of late EPCs. The effect of nicotine on late EPCs can be attenuated by mecamylamine or α-bungarotoxin. In conclusion, nicotine improves the functional activity of late EPCs via nAChRs. PMID:21774635

  17. ENDOTHELIAL PROGENITOR CELL ADHESION, GROWTH AND CHARACTERIZATION ON TRABECULAR TITANIUM AND TRABECULAR TITANIUM COATED WITH COLLAGEN OR DECELLULARIZED ECM.

    PubMed

    Gastaldi, G; Caliogna, L; Botta, L; Ghiara, M; Benazzo, F

    2015-01-01

    Adequate blood supply is essential for prosthesis osteointegration and bone healing as it supplies oxygen, nutrition and progenitor cells. The bone healing process and vascularization depend upon the endothelial cells, which speed up implant osteointegration. Endothelial Progenitor Cells (EPC) are a population of stem cells that can reproduce, migrate and acquire mature endothelial phenotype. Their recruitment occurs in the tissue lesion to enhance neovascularization. Trabecular TitaniumTM (TTTM) is a new biomaterial with very interesting biomechanical characteristics and fast osteointegration. This study has investigated adhesion, proliferation and characteristics of EPC on three types of biomaterial: unmodified trabecular titanium, trabecular titanium coated with the ECM deposited by human mesenchymal stem cells isolated from subcutaneous adipose tissue and decellularized and trabecular titanium coated with type I collagen (control scaffold). MTT assay showed similar percentages of EPCs seeded on the different kinds of scaffold: 67% on TT, 70% on decellularized scaffolds and 82% on collagen-coated scaffolds. There were no statistically significant differences between the three groups. We therefore conclude that TTTM allows EPC adhesion and proliferation and, consequently, by permitting vascularization, it favours prosthesis osteointegration. PMID:26652487

  18. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications

    PubMed Central

    Rajasekar, Poojitha; O'Neill, Christina L.; Eeles, Lydia; Stitt, Alan W.; Medina, Reinhold J.

    2015-01-01

    The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a “carrier” of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications. PMID:26106624

  19. Insulin-Like Growth Factor Binding Protein-2 Promotes Adhesion of Endothelial Progenitor Cells to Endothelial Cells via Integrin α5β1.

    PubMed

    Feng, Nianping; Zhang, Zhuo; Wang, Zhengfei; Zheng, Haihong; Qu, Fujun; He, Xijun; Wang, Chunlai

    2015-11-01

    The contribution of endothelial progenitor cells (EPCs) to new vessel formation has been studied in different physiological and pathological conditions for decades. As previously suggested, insulin-like growth factor binding protein-2 (IGFBP-2) may interact with integrins and promote cell migration. However, the role of IGFBP-2 in regulation of EPC functions remains largely unknown. In this present study, we found that overexpression of IGFBP-2 in human umbilical vein endothelial cells (HUVECs) promoted EPC-endothelial adhesion. Conversely, siRNA-mediated depletion of IGFBP-2 inhibited oxygen-glucose deprivation (OGD)-induced EPC-endothelial adhesion. Further, we demonstrated that the arginine-glycine-aspartic acid (RGD) motif in its C-domain is required for interaction with integrin α5β1. In addition, treatment with IGFBP-2 significantly enhanced incorporation of EPCs into tubule networks formed by HUVECs. Thus, our findings suggest that exogenous administration of IGFBP-2 may facilitate neovascularization and improve treatment of ischemic conditions. PMID:26076738

  20. Influence of Rho kinase inhibitor Fasudil on late endothelial progenitor cells in peripheral blood of COPD patients with pulmonary artery hypertension.

    PubMed

    Liu, Pei; Zhang, Hongmei; Tang, Yijun; Sheng, Chunfeng; Liu, Jianxin; Zeng, Yanjun

    2014-02-01

    The objective of our work was to investigate the influence of Fasudil, a Rho inhibitor on the number and function of the late endothelial progenitor cells in peripheral blood of chronic obstructive pulmonary diseases (COPD) patients with pulmonary artery hypertension. Eighty COPD patients with pulmonary artery hypertension were selected and divided into two groups: the treatment group and the control group, which had 40 patients respectively. The control group received routine treatment, including oxygen uptake, anti-infection and phlegm dissolving. The treatment group received the Fasudil in addition to the routine treatment. The changes on the number and function of the late endothelial progenitor cells in peripheral blood of the patients before and after the treatment were compared between the two groups. The changes on the pulmonary artery pressure were also compared. The number of the late endothelial progenitor cells in peripheral blood of the treatment group increased and the function was enhanced. The pulmonary artery pressure was reduced. The difference before and after the treatment and with the control group was statistically significant (p<0.05). The changes on the number and function of the late endothelial progenitor cells in peripheral blood and the pulmonary artery pressure before and after the treatment of the control group were not statistically significant (p>0.05). The Rho-kinase inhibitor Fasudil increased the number and enhanced the function of the late endothelial progenitor cells in peripheral blood of COPD patients with pulmonary artery hypertension. PMID:24579970

  1. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    PubMed Central

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  2. The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial Dysfunction.

    PubMed

    Sultan, Samar A; Liu, Wanting; Peng, Yonghong; Roberts, W; Whitelaw, Donald; Graham, Anne M

    2015-11-01

    Gestational diabetes mellitus (GDM) is known to be associated with fetal endothelial dysfunction, however, the mechanisms are not fully understood. This study examines the effect of maternal diabetes on fetal endothelial function and gene expression under physiological glucose conditions (5 mM). Human umbilical vein endothelial cell (HUVEC) isolated from diabetic mothers (d.HUVEC) grew more slowly than HUVEC isolated from healthy mothers (c.HUVEC) and had delayed doubling time despite increased levels of total vascular endothelial growth factor (VEGF) expression and protein production as determined by real-time PCR and ELISA respectively. Using western blot, the levels of antiproliferative VEGF165b isoform were increased in d.HUVEC relative to c.HUVEC. Successful VEGF165b knockdown by small interfering RNA (siRNA) resulted in increased proliferation of d.HUVEC measured by MTT, compared with negative siRNA control, to similar levels measured in c.HUVEC. In addition, d.HUVEC generated excess levels of ROS as revealed by 2',7' Dichlorodihydrofluorescein Diacetate (DCFH-DA) and Nitrotetrazolium blue (NBT). Using microarray, 102 genes were differentially overexpressed between d.HUVEC versus c.HUVEC (>1.5-fold change; P < 0.05). Functional clustering analysis of these differentially expressed genes revealed participation in inflammatory responses (including adhesion) which may be related to pathological outcomes. Of these genes, ICAM-1 was validated as upregulated, confirming microarray results. Additional confirmatory immunofluorescence staining revealed increased protein expression of ICAM-1 compared with c.HUVEC which was reduced by vitamin C treatment (100 μM). Thus, maternal diabetes induces persistent alterations in fetal endothelial function and gene expression following glucose normalization and antioxidant treatment could help reverse endothelium dysfunction. PMID:25808705

  3. Moderate Hypoxia Exhibits Increased Endothelial Progenitor Vessel-forming Ability However Gestational Diabetes Caused to Impede Compensatory Defense Reaction

    PubMed Central

    Dincer, U. Deniz

    2016-01-01

    Endothelium represents a defense barrier and responds and integrates neuro humoral stimulus which describes as a compensatory mechanism. Endothelium formed with endothelial cells (ECs) and their progenitors. Endothelial progenitor cells (EPCs) represent minor subpopulation of mononuclear cells in the blood. During acute hypoxia, larger amount of EPCs mobilize into the peripheral blood and they directly contribute revascularization process. One of the subtypes of EPC is termed endothelial colony forming cells (ECFCs) which they possess de novo vessel-forming ability. The present study aims to investigate the role of hypoxia in EPCs functional and vessel-forming ability. Furthermore, it was investigated whether fetal exposure to a diabetic intrauterine environment influence EPCs adaptation ability. Human umbilical cord blood (HUCB) derived ECFCs were selected in all experimental procedures obtained from normal and gestational diabetes mellitus (GDM) subjects via in vitro cell culture methods. Early passage (<5) HUCB ECFCs obtain from GDM (n; 5) and control (n; 5) subjects were cultured with plates pre-coated with collagen in vitro 72 h hypoxic as well as normoxic condition. Endothelial, angiogenic and hypoxia associated gene specific primers designed to perform Real-time PCR. Senescenes assay conducted onto HUCB ECFCs to investigate their functional clonogenic ability. To quantify their vessel forming ability matrigel assay was applied. These data demonstrates that moderate hypoxia results increased vessel-forming ability and VEGFA expression in HUCB ECFCs obtained from control subjects. However, GDM caused to impede compensatory defense reaction against hypoxia which observed in control subjects. Thus, it illuminates beneficial information related future therapeutic modalities. PMID:27426097

  4. The Effects of Smoking on Levels of Endothelial Progenitor Cells and Microparticles in the Blood of Healthy Volunteers

    PubMed Central

    Mobarrez, Fariborz; Antoniewicz, Lukasz; Bosson, Jenny A.; Kuhl, Jeanette; Pisetsky, David S.; Lundbäck, Magnus

    2014-01-01

    Background Cigarette smoking, both active and passive, is one of the leading causes of morbidity and mortality in cardiovascular disease. To assess the impact of brief smoking on the vasculature, we determined levels of circulating endothelial progenitor cells (EPCs) and circulating microparticles (MPs) following the smoking of one cigarette by young, healthy intermittent smokers. Materials and Methods 12 healthy volunteers were randomized to either smoking or not smoking in a crossover fashion. Blood sampling was performed at baseline, 1, 4 and 24 hours following smoking/not smoking. The numbers of EPCs and MPs were determined by flow cytometry. MPs were measured from platelets, leukocytes and endothelial cells. Moreover, MPs were also labelled with anti-HMGB1 and SYTO 13 to assess the content of nuclear molecules. Results Active smoking of one cigarette caused an immediate and significant increase in the numbers of circulating EPCs and MPs of platelet-, endothelial- and leukocyte origin. Levels of MPs containing nuclear molecules were increased, of which the majority were positive for CD41 and CD45 (platelet- and leukocyte origin). CD144 (VE-cadherin) or HMGB1 release did not significantly change during active smoking. Conclusion Brief active smoking of one cigarette generated an acute release of EPC and MPs, of which the latter contained nuclear matter. Together, these results demonstrate acute effects of cigarette smoke on endothelial, platelet and leukocyte function as well as injury to the vascular wall. PMID:24587320

  5. Endothelial-to-mesenchymal transition in lipopolysaccharide-induced acute lung injury drives a progenitor cell-like phenotype.

    PubMed

    Suzuki, Toshio; Tada, Yuji; Nishimura, Rintaro; Kawasaki, Takeshi; Sekine, Ayumi; Urushibara, Takashi; Kato, Fumiaki; Kinoshita, Taku; Ikari, Jun; West, James; Tatsumi, Koichiro

    2016-06-01

    Pulmonary vascular endothelial function may be impaired by oxidative stress in endotoxemia-derived acute lung injury. Growing evidence suggests that endothelial-to-mesenchymal transition (EndMT) could play a pivotal role in various respiratory diseases; however, it remains unclear whether EndMT participates in the injury/repair process of septic acute lung injury. Here, we analyzed lipopolysaccharide (LPS)-treated mice whose total number of pulmonary vascular endothelial cells (PVECs) transiently decreased after production of reactive oxygen species (ROS), while the population of EndMT-PVECs significantly increased. NAD(P)H oxidase inhibition suppressed EndMT of PVECs. Most EndMT-PVECs derived from tissue-resident cells, not from bone marrow, as assessed by mice with chimeric bone marrow. Bromodeoxyuridine-incorporation assays revealed higher proliferation of capillary EndMT-PVECs. In addition, EndMT-PVECs strongly expressed c-kit and CD133. LPS loading to human lung microvascular endothelial cells (HMVEC-Ls) induced reversible EndMT, as evidenced by phenotypic recovery observed after removal of LPS. LPS-induced EndMT-HMVEC-Ls had increased vasculogenic ability, aldehyde dehydrogenase activity, and expression of drug resistance genes, which are also fundamental properties of progenitor cells. Taken together, our results demonstrate that LPS induces EndMT of tissue-resident PVECs during the early phase of acute lung injury, partly mediated by ROS, contributing to increased proliferation of PVECs. PMID:27106288

  6. Zoledronate Inhibits Ischemia-Induced Neovascularization by Impairing the Mobilization and Function of Endothelial Progenitor Cells

    PubMed Central

    Tsai, Shih-Hung; Huang, Po-Hsun; Chang, Wei-Chou; Tsai, Hsiao-Ya; Lin, Chih-Pei; Leu, Hsin-Bang; Wu, Tao-Cheng; Chen, Jaw-Wen; Lin, Shing-Jong

    2012-01-01

    Background Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs) play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. Methodology/Principal Findings Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg). Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control). Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1+/Flk-1+) after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. Conclusions/Significance Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions. These findings suggest

  7. Effects of corneal stromal cell- and bone marrow-derived endothelial progenitor cell-conditioned media on the proliferation of corneal endothelial cells

    PubMed Central

    Zhu, Meng-Yu; Yao, Qin-Ke; Chen, Jun-Zhao; Shao, Chun-Yi; Yan, Chen-Xi; Ni, Ni; Fan, Xian-Qun; Gu, Ping; Fu, Yao

    2016-01-01

    AIM To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECs) and to compare the efficiency of different conditioned media (CM). METHODS Rat CECs, corneal stromal cells (CSCs), bone marrow-derived endothelial progenitor cells (BEPCs), and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro. CM was collected from CSCs, BEPCs, and BMSCs. CECs were cultivated in different culture media. Cell morphology was recorded, and gene and protein expression were analyzed. RESULTS After grown in CM for 5d, CECs in each experimental group remained polygonal, in a cobblestone-like monolayer arrangement. Immunocytofluorescence revealed positive expression of Na+/K+-ATP, aquaporin 1 (AQP1), and zonula occludens 1 (ZO-1). Based on quantitative polymerase chain reaction (qPCR) analysis, Na+/K+-ATP expression in CSC-CM was notably upregulated by 1.3-fold (±0.036) (P<0.05, n=3). The expression levels of ZO-1, neuron specific enolase (NSE), Vimentin, paired homebox 6 (PAX6), and procollagen type VIII (COL8A1) were notably upregulated in each experimental group. Each CM had a positive effect on CEC proliferation, and CSC-CM had the strongest effect on proliferation. CONCLUSION CSC-CM, BEPC-CM, and BMSC-CM not only stimulated the proliferation of CECs, but also maintained the characteristic differentiated phenotypes necessary for endothelial functions. CSC-CM had the most notable effect on CEC proliferation. PMID:27158599

  8. Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis.

    PubMed

    Mayeuf-Louchart, Alicia; Montarras, Didier; Bodin, Catherine; Kume, Tsutomu; Vincent, Stéphane D; Buckingham, Margaret

    2016-03-01

    Pax3 and Foxc2 have been shown genetically to mutually repress each other in the mouse somite. Perturbation of this balance in multipotent cells of the dermomyotome influences cell fate; upregulation of Foxc2 favours a vascular fate, whereas higher levels of Pax3 lead to myogenesis. Foxc1 has overlapping functions with Foxc2. In Foxc1/2 double-mutant embryos, somitogenesis is severely affected, precluding analysis of somite derivatives. We have adopted a conditional approach whereby mutations in Foxc1 and Foxc2 genes were targeted to Pax3-expressing cells. Inclusion of a conditional reporter allele in the crosses made it possible to follow cells that had expressed Pax3. At the forelimb level, endothelial and myogenic cells migrate from adjacent somites into the limb bud. This population of endothelial cells is compromised in the double mutant, whereas excessive production of myogenic cells is observed in the trunk. However, strikingly, myogenic progenitors fail to enter the limbs, leading to the absence of skeletal muscle. Pax3-positive migratory myogenic progenitors, marked by expression of Lbx1, are specified in the somite at forelimb level, but endothelial progenitors are absent. The myogenic progenitors do not die, but differentiate prematurely adjacent to the somite. We conclude that the small proportion of somite-derived endothelial cells in the limb is required for the migration of myogenic limb progenitors. PMID:26839363

  9. [Preparation of Biological Functional Magnetic Nanoparticles and Study on the Effect of Guiding Endothelial Progenitor Cells In Vitro].

    PubMed

    Ma, Baolong; Yan, Wei; Chen, Jialong; Qi, Pengkai; Li, Jianhui; Huang, Nan

    2016-02-01

    Coprecipitation method was used to prepare triiron tetroxide magnetic nanoparticles enclosed in L-DOPA, and then EDC was used to activate the carboxyl group of L-DOPA after the nanoparticles were synthesized. The carboxyl group of L-DOPA formed amide bond with specific amino on the aptamer by dehydration condensation reaction. The surfaces of magnetic nanoparticles were modified with aptamer and L-DOPA. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nanoparticle size analysis (SEM), magnetic measurement (VSM) and other testing methods were used to detect the magnetic nanoparticles in different stages. The endothelial progeni-tor cells (EPCs) were cocultured with the surface modified magnetic nanoparticles to evaluate cell compatibility and the combination effect of nanoparticles on EPCs in a short period of time. Directional guide of the surface-modified magnetic nanoparticles to endothelial progenitor cells (EPCs) was evaluated under an applied magnetic field and simulated dynamic blood flow condition. The results showed that the prepared magnetic nanoparticles had good magnetic response, good cell compatibility within a certain range of the nanoparticle concentrations. The surface modified nanoparticles could combine with EPCs effectively in a short time, and those nanoparticles combined EPCs can be directionally guided on to a stent surface under the magnetic field in the dynamic flow environment. PMID:27382754

  10. Characterization of Umbilical Cord Blood–Derived Late Outgrowth Endothelial Progenitor Cells Exposed to Laminar Shear Stress

    PubMed Central

    Brown, Melissa A.; Wallace, Charles S.; Angelos, Mathew

    2009-01-01

    Endothelial progenitor cells isolated from umbilical cord blood (CB-EPCs) represent a promising source of endothelial cells for synthetic vascular grafts and tissue-engineered blood vessels since they are readily attainable, can be easily isolated, and possess a high proliferation potential. The objective of this study was to compare the functional behavior of late outgrowth CB-EPCs with human aortic endothelial cells (HAECs). CB-EPCs and HAECs were cultured on either smooth muscle cells in a coculture model of a tissue-engineered blood vessels or fibronectin adsorbed to Teflon-AF™–coated glass slides. Late outgrowth CB-EPCs expressed endothelial cell–specific markers and were negative for the monocytic marker CD14. CB-EPCs have higher proliferation rates than HAECs, but are slightly smaller in size. CB-EPCs remained adherent under supraphysiological shear stresses, oriented and elongated in the direction of flow, and expressed similar numbers of α5β1 and αvβ3 integrins and antithrombotic genes compared to HAECs. There were some differences in mRNA levels of E-selectin and vascular cell adhesion molecule 1 between CB-EPCs and HAECs; however, protein levels were similar on the two cell types, and CB-EPCs did not support adhesion of monocytes in the absence of tumor necrosis factor-α stimulation. Although CB-EPCs expressed significantly less endothelial nitric oxide synthase protein after exposure to flow than HAECs, nitric oxide levels induced by flow were not significantly different. These results suggest that late outgrowth CB-EPCs are functionally similar to HAECs under flow conditions and are a promising cell source for cardiovascular therapies. PMID:19480571

  11. Polyphenol-rich Cranberry Juice has a neutral effect on endothelial function but decreases the fraction of osteocalcin expressing endothelial progenitor cells

    PubMed Central

    Flammer, Andreas J.; Martin, Elizabeth; Gossl, Mario; Widmer, R Jay; Lennon, Ryan; Sexton, Jasmine A.; Loeffler, Darrell; Khosla, Sundeep; Lerman, Lilach O.; Lerman, Amir

    2014-01-01

    Purpose Cranberry juice (CJ) contains a remarkably high concentration of polyphenols, considered to be beneficial for cardiovascular and bone health. The current double-blind, randomized study was designed to test whether daily consumption of double-strength Ocean Spray light CJ (2×230ml) over 4 months has beneficial effects on vascular function and on endothelial progenitor cells (EPCs), EPCs carrying the osteoblastic marker osteocalcin in particular. Methods 84 participants (49.5±16.2yrs.) with peripheral endothelial dysfunction and cardiovascular risk factors were enrolled in this double-blind, randomized, controlled trial (69 completed the four month protocol - 32 in the CJ group and 37 in the placebo group - respectively). Vascular responses to reactive hyperemia were measured non-invasively by peripheral arterial tonometry (EndoPAT). Peripheral blood mononuclear cells were stained for EPC markers, as well as osteocalcin, and counted by flow-cytometry. Results Baseline characteristics were similar in both groups. The effect of CJ on peripheral endothelial function and on circulating EPC counts (CD34+/CD133+/KDR+) did not change during the study. A high percentage of EPCs expressed osteocalcin (59.4±35.7%). CJ, as compared to placebo, induced a decrease in the fraction of EPCs expressing osteocalcin (-8.64±48.98 and 19.13±46.11%, respectively, p=0.019). Systemic levels of the adhesion marker ICAM correlated significantly with the number of EPCs expressing osteocalcin. Conclusions The study demonstrated that long term supplementation of polyphenol-rich CJ did not improve peripheral endothelial function. However, the decrease in the fraction of osteocalcin+ EPCs suggests a potential beneficial effect of polyphenol-rich CJ. PMID:22382203

  12. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis

    PubMed Central

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-01-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  13. Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells.

    PubMed

    Lam, Enid Yi Ni; Hall, Christopher J; Crosier, Philip S; Crosier, Kathryn E; Flores, Maria Vega

    2010-08-12

    Blood cells of an adult vertebrate are continuously generated by hematopoietic stem cells (HSCs) that originate during embryonic life within the aorta-gonad-mesonephros region. There is now compelling in vivo evidence that HSCs are generated from aortic endothelial cells and that this process is critically regulated by the transcription factor Runx1. By time-lapse microscopy of Runx1-enhanced green fluorescent protein transgenic zebrafish embryos, we were able to capture a subset of cells within the ventral endothelium of the dorsal aorta, as they acquire hemogenic properties and directly emerge as presumptive HSCs. These nascent hematopoietic cells assume a rounded morphology, transiently occupy the subaortic space, and eventually enter the circulation via the caudal vein. Cell tracing showed that these cells subsequently populated the sites of definitive hematopoiesis (thymus and kidney), consistent with an HSC identity. HSC numbers depended on activity of the transcription factor Runx1, on blood flow, and on proper development of the dorsal aorta (features in common with mammals). This study captures the earliest events of the transition of endothelial cells to a hemogenic endothelium and demonstrates that embryonic hematopoietic progenitors directly differentiate from endothelial cells within a living organism. PMID:20453160

  14. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis.

    PubMed

    Wang, Yan-Wei; Zhang, Ji-Hang; Yu, Yang; Yu, Jie; Huang, Lan

    2016-07-01

    Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury. PMID:27169819

  15. Detrimental effects of Bartonella henselae are counteracted by L-arginine and nitric oxide in human endothelial progenitor cells.

    PubMed

    Salvatore, Paola; Casamassimi, Amelia; Sommese, Linda; Fiorito, Carmela; Ciccodicola, Alfredo; Rossiello, Raffaele; Avallone, Bice; Grimaldi, Vincenzo; Costa, Valerio; Rienzo, Monica; Colicchio, Roberta; Williams-Ignarro, Sharon; Pagliarulo, Caterina; Prudente, Maria Evelina; Abbondanza, Ciro; Lamberti, Florentia; Baroni, Adone; Buommino, Elisabetta; Farzati, Bartolomeo; Tufano, Maria Antonietta; Ignarro, Louis Joseph; Napoli, Claudio

    2008-07-01

    The recruitment of circulating endothelial progenitor cells (EPCs) might have a beneficial effect on the clinical course of several diseases. Endothelial damage and detachment of endothelial cells are known to occur in infection, tissue ischemia, and sepsis. These detrimental effects in EPCs are unknown. Here we elucidated whether human EPCs internalize Bartonella henselae constituting a circulating niche of the pathogen. B. henselae invades EPCs as shown by gentamicin protection assays and transmission electron microscopy (TEM). Dil-Ac-LDL/lectin double immunostaining and fluorescence-activated cell sorting (FACS) analysis of EPCs revealed EPC bioactivity after infection with B. henselae. Nitric oxide (NO) and its precursor l-arginine (l-arg) exert a plethora of beneficial effects on vascular function and modulation of immune response. Therefore, we tested also the hypothesis that l-arg (1-30 mM) would affect the infection of B. henselae or tumor necrosis factor (TNF) in EPCs. Our data provide evidence that l-arg counteracts detrimental effects induced by TNF or Bartonella infections via NO (confirmed by DETA-NO and L-NMMA experiments) and by modulation of p38 kinase phosphorylation. Microarray analysis indicated several genes involved in immune response were differentially expressed in Bartonella-infected EPCs, whereas these genes returned in steady state when cells were exposed to sustained doses of l-arg. This mechanism may have broad therapeutic applications in tissue ischemia, angiogenesis, immune response, and sepsis. PMID:18595894

  16. Detrimental effects of Bartonella henselae are counteracted by l-arginine and nitric oxide in human endothelial progenitor cells

    PubMed Central

    Salvatore, Paola; Casamassimi, Amelia; Sommese, Linda; Fiorito, Carmela; Ciccodicola, Alfredo; Rossiello, Raffaele; Avallone, Bice; Grimaldi, Vincenzo; Costa, Valerio; Rienzo, Monica; Colicchio, Roberta; Williams-Ignarro, Sharon; Pagliarulo, Caterina; Prudente, Maria Evelina; Abbondanza, Ciro; Lamberti, Florentia; Baroni, Adone; Buommino, Elisabetta; Farzati, Bartolomeo; Tufano, Maria Antonietta; Ignarro, Louis Joseph; Napoli, Claudio

    2008-01-01

    The recruitment of circulating endothelial progenitor cells (EPCs) might have a beneficial effect on the clinical course of several diseases. Endothelial damage and detachment of endothelial cells are known to occur in infection, tissue ischemia, and sepsis. These detrimental effects in EPCs are unknown. Here we elucidated whether human EPCs internalize Bartonella henselae constituting a circulating niche of the pathogen. B. henselae invades EPCs as shown by gentamicin protection assays and transmission electron microscopy (TEM). Dil-Ac-LDL/lectin double immunostaining and fluorescence-activated cell sorting (FACS) analysis of EPCs revealed EPC bioactivity after infection with B. henselae. Nitric oxide (NO) and its precursor l-arginine (l-arg) exert a plethora of beneficial effects on vascular function and modulation of immune response. Therefore, we tested also the hypothesis that l-arg (1–30 mM) would affect the infection of B. henselae or tumor necrosis factor (TNF) in EPCs. Our data provide evidence that l-arg counteracts detrimental effects induced by TNF or Bartonella infections via NO (confirmed by DETA-NO and L-NMMA experiments) and by modulation of p38 kinase phosphorylation. Microarray analysis indicated several genes involved in immune response were differentially expressed in Bartonella-infected EPCs, whereas these genes returned in steady state when cells were exposed to sustained doses of l-arg. This mechanism may have broad therapeutic applications in tissue ischemia, angiogenesis, immune response, and sepsis. PMID:18595894

  17. A Case of Abnormal Lymphatic-Like Differentiation and Endothelial Progenitor Cell Activation in Neovascularization Associated with Hemi-Retinal Vein Occlusion

    PubMed Central

    Loukovaara, Sirpa; Gucciardo, Erika; Repo, Pauliina; Lohi, Jouko; Salven, Petri; Lehti, Kaisa

    2015-01-01

    Purpose Pathological vascular differentiation in retinal vein occlusion (RVO)-related neovessel formation remains poorly characterized. The role of intraocular lymphatic-like differentiation or endothelial progenitor cell activity has not been studied in this disease. Methods Vitrectomy was performed in an eye with hemi-RVO; the neovessel membrane located at the optic nerve head was removed and subjected to immunohistochemistry. Characterization of the neovascular tissue was performed using hematoxylin and eosin, α-smooth muscle actin, and the pan-endothelial cell (EC) adhesion molecule CD31. The expression of lymphatic EC markers was studied by lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), podoplanin (PDPN), and prospero-related homeobox protein 1 (Prox-1). Potential vascular stem/progenitor cells were identified by active cellular proliferation (Ki67) and expression of the stem cell marker CD117. Results The specimen contained blood vessels lined by ECs and surrounded by pericytes. Immunoreactivity for LYVE-1 and Prox-1 was detected, with Prox-1 being more widely expressed in the active Ki67-positive lumen-lining cells. PDPN expression was instead found in the cells residing in the extravascular tissue. Expression of the stem cell markers CD117 and Ki67 suggested vascular endothelial progenitor cell activity. Conclusions Intraocular lymphatic-like differentiation coupled with progenitor cell activation may be involved in the pathology of neovessel formation in ischemia-induced human hemi-RVO. PMID:26327908

  18. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    PubMed Central

    Le Belle, Janel E.; Sperry, Jantzen; Ngo, Amy; Ghochani, Yasmin; Laks, Dan R.; López-Aranda, Manuel; Silva, Alcino J.; Kornblum, Harley I.

    2014-01-01

    Summary A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX)-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species. PMID:25418720

  19. Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis

    PubMed Central

    Wang, Jinju; Zhong, Yun; Ma, Xiaotang; Xiao, Xiang; Cheng, Chuanfang; Chen, Yusen; Iwuchukwu, Ifeanyi; Gaines, Kenneth J.; Bin Zhao; Liu, Shiming; Travers, Jeffrey B.; Bihl, Ji C.; Chen, Yanfang

    2016-01-01

    Accurate analysis of specific microvesicles (MVs) from biofluids is critical and challenging. Here we described novel methods to purify and detect MVs shed from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads with fluorescence quantum dots (Q-dots) coupled nanoparticle tracking analysis (NTA). In the in vitro screening systems, we demonstrated that 1) anti-CD105 (EC marker) and anti-CD34 (EPC marker) conjugated-microbeads had the highest sensitivity and specificity for isolating respective MVs, which were confirmed with negative controls, CD41 and CD235a; 2) anti-CD144 (EC marker) and anti-KDR (EPC marker) conjugated-Q-dots exhibited the best sensitivity and specificity for their respective MV NTA detection, which were confirmed with positive control, anti-Annexin V (MV universal marker). The methods were further validated by their ability to efficiently recover the known amount of EC-MVs and EPC-MVs from particle-depleted plasma, and to detect the dynamical changes of plasma MVs in ischemic stroke patients, as compared with traditional flow cytometry. These novel methods provide ideal approaches for functional analysis and biomarker discovery of ECs- and EPCs- derived MVs. PMID:27094208

  20. Effect of Human Endothelial Progenitor Cell (EPC)- or Mouse Vascular Endothelial Growth Factor-Derived Vessel Formation on the Survival of Vitrified/Warmed Mouse Ovarian Grafts

    PubMed Central

    Cha, Soo Kyung; Shin, Dong Hyuk; Kim, Bo Yeun; Yoon, Sook-Young; Yoon, Tae Ki; Lee, Woo Sik

    2014-01-01

    The aim of this study was to evaluate the effectiveness of improving angiogenesis at graft sites on the survival of follicles in transplanted ovarian tissue. Matrigel containing 5 × 105 of cord blood-derived endothelial progenitor cells (EPCs) or 200 ng of mouse vascular endothelial growth factor (VEGF) was injected subcutaneously into BALB/c-Nu mice. After 1 week, vitrified/warmed ovaries from female B6D2F1 mice were subcutaneously transplanted into the injection sites. After 1, 2, and 4 weeks posttransplantation, the ovaries were recovered and subjected to histological analysis. Oocytes were collected from the transplanted ovaries, and their fertilization, embryonic development, and delivery were also observed. Vitrified/warmed ovaries transplanted into EPC- or VEGF-treated sites developed more blood vessels and showed better follicle survival than those transplanted into sham-injected sites. Normal embryonic development and consequent live births were obtained using oocytes recovered from cryopreserved/transplanted ovaries. Treatment with EPCs or VEGF could prevent the ischemic damage during the early revascularization stage of ovarian transplantation. PMID:24401473

  1. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    PubMed

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  2. Impact of an endothelial progenitor cell capturing stent on coronary microvascular function: comparison with drug-eluting stents

    PubMed Central

    Choi, Woong Gil; Kim, Soo Hyun; Yoon, Hyung Seok; Lee, Eun Joo

    2015-01-01

    Background/Aims Although drug-eluting stents (DESs) effectively reduce restenosis following percutaneous coronary intervention (PCI), they also delay re-endothelialization and impair microvascular function, resulting in adverse clinical outcomes. Endothelial progenitor cell (EPC) capturing stents, by providing a functional endothelial layer on the stent, have beneficial effects on microvascular function. However, data on coronary microvascular function in patients with EPC stents versus DESs are lacking. Methods Seventy-four patients who previously underwent PCI were enrolled in this study. Microvascular function was evaluated 6 months after PCI based on the index of microvascular resistance (IMR) and the coronary flow reserve (CFR). IMR was calculated as the ratio of the mean distal coronary pressure at maximal hyperemia to the inverse of the hyperemic mean transit time (hTmn). The CFR was calculated by dividing the hTmn by the baseline mean transit time. Results Twenty-one patients (age, 67.2 ± 9.6 years; male:female, 15:6) with an EPC stent and 53 patients (age, 61.5 ± 14.7 years; male:female, 40:13) with second-generation DESs were included in the study. There were no significant differences in the baseline clinical and angiographic characteristics of the two groups. Angiography performed 6 months postoperatively did not show significant differences in their CFR values. However, patients with the EPC stent had a significantly lower IMR than patients with second-generation DESs (median, 25.5 [interquartile range, 12.85 to 28.18] vs. 29.0 [interquartile range, 15.42 to 39.23]; p = 0.043). Conclusions Microvascular dysfunction was significantly improved after 6 months in patients with EPC stents compared to those with DESs. The complete re-endothelialization achieved with the EPC stent may provide clinical benefits over DESs, especially in patients with microvascular dysfunction. PMID:25589834

  3. Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface.

    PubMed

    Qi, Pengkai; Yan, Wei; Yang, Ying; Li, Yalong; Fan, Yi; Chen, Junying; Yang, Zhilu; Tu, Qiufen; Huang, Nan

    2015-02-01

    The endothelial progenitor cells (EPCs) capture stent has drawn increasing attentions and become one of the most promising concepts for the next generation vascular stent. In this regard, it is of great significance to immobilize a molecule with the ability to bind EPC for rapid in vivo endothelialization with high specificity. In this work, a facile two-step method aimed at constructing a coating with specific EPC capturing aptamers is reported. The processes involves as the first-step deposition of plasma polymerized allylamine (PPAam) on a substrate to introduce amine groups, followed by the electrostatic adsorption of a 34 bases single strand DNA sequence to the PPAam surface as a second step (PPAam-DNA). Grazing incidence attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful immobilization of the aptamers. Quartz crystal microbalance with dissipation (QCM-D) real time monitoring result shows that about 175 ng/cm(2) aptamers were conjugated onto the PPAam surface. The interactions between the modified surfaces and human umbilical vein endothelial cells (ECs), smooth muscle cells (SMCs), and murine induced EPCs derived from mesenchymal stem cells (MSCs) were also investigated. It was demonstrated that PPAam-DNA samples could capture more EPCs, and present a cellular friendly surface for the proliferation of both EPCs and ECs but no effect on the hyperplasia of SMCs. Also, the co-culture results of 3 types of cells confirmed that the aptamer could specifically bond EPCs rather than ECs and SMCs, suggesting the competitive adhesion advantage of EPCs to ECs and SMCs. These data demonstrate that the EPC aptamer has large potential for designing an EPC captured stent and other vascular grafts with targeted in situ endothelialization. PMID:25575347

  4. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins.

    PubMed

    Kang, Tae-Yun; Lee, Jung Ho; Kim, Bum Jin; Kang, Jo-A; Hong, Jung Min; Kim, Byoung Soo; Cha, Hyung Joon; Rhie, Jong-Won; Cho, Dong-Woo

    2015-01-01

    The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine-glycine-aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks. PMID:25599716

  5. Tissue Engineering Special Feature: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo

    NASA Astrophysics Data System (ADS)

    Ford, Millicent C.; Bertram, James P.; Royce Hynes, Sara; Michaud, Michael; Li, Qi; Young, Michael; Segal, Steven S.; Madri, Joseph A.; Lavik, Erin B.

    2006-02-01

    A microvascular network is critical for the survival and function of most tissues. We have investigated the potential of neural progenitor cells to augment the formation and stabilization of microvascular networks in a previously uncharacterized three-dimensional macroporous hydrogel and the ability of this engineered system to develop a functional microcirculation in vivo. The hydrogel is synthesized by cross-linking polyethylene glycol with polylysine around a salt-leached polylactic-co-glycolic acid scaffold that is degraded in a sodium hydroxide solution. An open macroporous network is formed that supports the efficient formation of tubular structures by brain endothelial cells. After subcutaneous implantation of hydrogel cocultures in mice, blood flow in new microvessels was apparent at 2 weeks with perfused networks established on the surface of implants at 6 weeks. Compared to endothelial cells cultured alone, cocultures of endothelial cells and neural progenitor cells had a significantly greater density of tubular structures positive for platelet endothelial cell adhesion molecule-1 at the 6-week time point. In implant cross sections, the presence of red blood cells in vessel lumens confirmed a functional microcirculation. These findings indicate that neural progenitor cells promote the formation of endothelial cell tubes in coculture and the development of a functional microcirculation in vivo. We demonstrate a previously undescribed strategy for creating stable microvascular networks to support engineered tissues of desired parenchymal cell origin. microvasculature | neural stem cells | polymer | scaffold

  6. Endothelial Progenitor Cell Migration-Enhancing Factors in the Secretome of Placental-Derived Mesenchymal Stem Cells

    PubMed Central

    Kamprom, Witchayaporn; Kheolamai, Pakpoom; U-Pratya, Yaowalak; Supokawej, Aungkura; Wattanapanitch, Methichit; Laowtammathron, Chuti; Roytrakul, Sittiruk; Issaragrisil, Surapol

    2016-01-01

    Therapeutic potentials of mesenchymal stem cells (MSCs) depend largely on their ability to secrete cytokines or factors that modulate immune response, enhance cell survival, and induce neovascularization in the target tissues. We studied the secretome profile of gestational tissue-derived MSCs and their effects on functions of endothelial progenitor cells (EPCs), another angiogenic cell type that plays an important role during the neovascularization. MSCs derived from placental tissues (PL-MSCs) significantly enhanced EPC migration while BM-MSCs, which are the standard source of MSCs for various clinical applications, did not. By using protein fractionation and mass spectrometry analysis, we identified several novel candidates for EPC migration enhancing factor in PL-MSCs secretome that could be used to enhance neovascularization in the injured/ischemic tissues. We recommend that the strategy developed in our study could be used to systematically identify therapeutically useful molecules in the secretomes of other MSC sources for the clinical applications. PMID:26880942

  7. MicroRNAs as potential novel therapeutic targets and tools for regulating paracrine function of endothelial progenitor cells

    PubMed Central

    Xu, Shengjie; Jin, Chongying; Shen, Xiaohua; Ding, Fang; Zhu, Junhui; Fu, Guosheng

    2012-01-01

    Summary Endothelial progenitor cells (EPCs) play a protective role in the cardiovascular system by enhancing the maintenance of endothelium homeostasis and the process of new vessel formation. Recent studies show that EPCs may induce vascular regeneration and neovascularization mainly through paracrine signaling, that is, through the secretion of growth factors and pro-angiogenic cytokines [1]. However, multiple factors might function synergistically and therefore make it difficult to manipulate EPC paracrine effects. MicroRNAs, a family of small, non-coding RNAs, are characterized by post-transcriptionally regulating multiple functionally related genes, which renders them potentially powerful therapeutic targets or tools. In this paper we propose the hypothesis that microRNAs can be utilized as a novel therapeutic strategy for regulating EPC paracrine secretion. PMID:22739741

  8. Stimulatory Influences of Far Infrared Therapy on the Transcriptome and Genetic Networks of Endothelial Progenitor Cells Receiving High Glucose Treatment

    PubMed Central

    Lin, Tzu-Chiao; Lin, Chin-Sheng; Tsai, Tsung-Neng; Cheng, Shu-Meng; Lin, Wei-Shiang; Cheng, Cheng-Chung; Wu, Chun-Hsien; Hsu, Chih-Hsueng

    2015-01-01

    Background Endothelial progenitor cells (EPCs) play a fundamental role in vascular repair and angiogenesis- related diseases. It is well-known that the process of angiogenesis is faulty in patients with diabetes. Long-term exposure of peripheral blood EPCs to high glucose (HG-EPCs) has been shown to impair cell proliferation and other functional competencies. Far infrared (FIR) therapy can promote ischemia-induced angiogenesis in diabetic mice and restore high glucose-suppressed endothelial progenitor cell functions both in vitro and in vivo. However, the detail mechanisms and global transcriptome alternations are still unclear. Methods In this study, we investigated the influences of FIR upon HG-EPC gene expressions. EPCs were obtained from the peripheral blood and treated with high glucose. These cells were then subjected to FIR irradiation and functional assays. Results Those genes responsible for fibroblast growth factors, Mitogen-activated protein kinases (MAPK), Janus kinase/signal transducer and activator of transcription and prostaglandin signaling pathways were significantly induced in HG-EPCs after FIR treatment. On the other hand, mouse double minute 2 homolog, genes involved in glycogen metabolic process, and genes involved in cardiac fibrosis were down-regulated. We also observed complex genetic networks functioning in FIR-treated HG-EPCs, in which several genes, such as GATA binding protein 3, hairy and enhancer of split-1, Sprouty Homolog 2, MAPK and Sirtuin 1, acted as hubs to maintain the stability and connectivity of the whole genetic network. Conclusions Deciphering FIR-affected genes will not only provide us with new knowledge regarding angiogenesis, but also help to develop new biomarkers for evaluating the effects of FIR therapy. Our findings may also be adapted to develop new methods to increase EPC activities for treating diabetes-related ischemia and metabolic syndrome-associated cardiovascular disorders. PMID:27122901

  9. Overexpression of hypoxia-inducible factor-1 alpha improves vasculogenesis-related functions of endothelial progenitor cells.

    PubMed

    Kütscher, Christian; Lampert, Florian M; Kunze, Mirjam; Markfeld-Erol, Filiz; Stark, G Björn; Finkenzeller, Günter

    2016-05-01

    Postnatal vasculogenesis is mediated by mobilization of endothelial progenitor cells (EPCs) from bone marrow and homing to ischemic tissues. This feature emphasizes this cell type for cell-based therapies aiming at the improvement of neovascularization in tissue engineering applications and regenerative medicine. In animal models, it was demonstrated that implantation of EPCs from cord blood (cbEPCs) led to the formation of a complex functional neovasculature, whereas EPCs isolated from adult peripheral blood (pbEPCs) showed a limited vasculogenic potential, which may be attributed to age-related dysfunction. Recently, it was demonstrated that activation of hypoxia-inducible factor-1α (Hif-1α) improves cell functions of progenitor cells of mesenchymal and endothelial origin. Thus, we hypothesized that overexpression of Hif-1α may improve the vasculogenesis-related phenotype of pbEPCs. In the present study, we overexpressed Hif-1α in pbEPCs and cbEPCs by using recombinant adenoviruses and investigated effects on stem cell- and vasculogenesis-related cell parameters. Overexpression of Hif-1α enhanced proliferation, invasion, cell survival and in vitro capillary sprout formation of both EPC populations. Migration was increased in cbEPCs upon Hif-1α overexpression, but not in pbEPCs. Cellular senescence was decreased in pbEPCs, while remained in cbEPCs, which showed, as expected, intrinsically a dramatically lower senescent phenotype in relation to pbEPCs. Similarly, the colony-formation capacity was much higher in cbEPCs in comparison to pbEPCs and was further increased by Hif-1α overexpression, whereas Hif-1α transduction exerted no significant influence on colony formation of pbEPCs. In summary, our experiments illustrated multifarious effects of Hif-1α overexpression on stem cell and vasculogenic parameters. Therefore, Hif-1α overexpression may represent a therapeutic option to improve cellular functions of adult as well as postnatal EPCs. PMID:26827661

  10. The LINA Study: Higher Sensitivity of Infant Compared to Maternal Eosinophil/Basophil Progenitors to Indoor Chemical Exposures

    PubMed Central

    Hörnig, Friederike; Kohajda, Tibor; Röder, Stefan; Herberth, Gunda; von Bergen, Martin; Borte, Michael; Diez, Ulrike; Rolle-Kampczyk, Ulrike; Simon, Jan-C.; Denburg, Judah A.; Lehmann, Irina; Junge, Kristin M.

    2016-01-01

    Purpose. Enhanced eosinophil/basophil (Eo/B) progenitor cell levels are known to be associated with allergic inflammation and atopy risk. The aim of the present study was to investigate the influence of different indoor exposures on the recruitment and differentiation of Eo/B progenitors in mother-child pairs. Methods. In 68 mother-child pairs of the LINA study peripheral blood mononuclear cells were used to assess Eo/B colony forming units (CFUs). Information about disease outcomes and indoor exposures was obtained from questionnaires. Indoor concentrations of volatile organic compounds (VOCs) were measured by passive sampling. Results. Infant's Eo/B CFUs were positively associated with exposure to tobacco smoke, disinfectants, or VOCs. In contrast, for maternal Eo/B CFUs, only a few associations were seen. Higher numbers of infant Eo/B CFUs were observed in children with wheezing symptoms within the second year of life. Conclusions. We demonstrate that infant's hematopoietic cells seem to respond with more sensitivity to environmental exposure compared to maternal cells. At least in infants, an activation of these hematopoietic cells by environmental exposure could contribute to an enhanced risk for the development of respiratory outcomes. PMID:27313631

  11. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration

    PubMed Central

    Shi, Yaoyao; Wu, Weiwei; Chai, Qian; Li, Qingqing; Hou, Yu; Xia, Huan; Ren, Boyang; Xu, Hairong; Guo, Xiaohuan; Jin, Caiwei; Lv, Mengjie; Wang, Zhongnan; Fu, Yang-Xin; Zhu, Mingzhao

    2016-01-01

    Continuous thymic homing of haematopoietic progenitor cells (HPCs) via the blood is critical for normal T-cell development. However, the nature and the differentiation programme of specialized thymic endothelial cells (ECs) controlling this process remain poorly understood. Here using conditional gene-deficient mice, we find that lymphotoxin beta receptor (LTβR) directly controls thymic ECs to guide HPC homing. Interestingly, T-cell deficiency or conditional ablation of T-cell-engaged LTβR signalling results in a defect in thymic HPC homing, suggesting the feedback regulation of thymic progenitor homing by thymic products. Furthermore, we identify and characterize a special thymic portal EC population with features that guide HPC homing. LTβR is essential for the differentiation and homeostasis of these thymic portal ECs. Finally, we show that LTβR is required for T-cell regeneration on irradiation-induced thymic injury. Together, these results uncover a cellular and molecular pathway that governs thymic EC differentiation for HPC homing. PMID:27493002

  12. New Method for Sorting Endothelial and Neural Progenitors from Human Induced Pluripotent Stem Cells by Sedimentation Field Flow Fractionation.

    PubMed

    Faye, Pierre-Antoine; Vedrenne, Nicolas; De la Cruz-Morcillo, Miguel A; Barrot, Claire-Cécile; Richard, Laurence; Bourthoumieu, Sylvie; Sturtz, Franck; Funalot, Benoît; Lia, Anne-Sophie; Battu, Serge

    2016-07-01

    Human induced pluripotent stem cells (hiPSc) are a very useful solution to create and observe the behavior of specific and usually inaccessible cells, such as human motor neurons. Obtained from a patient biopsy by reprograming dermal fibroblasts (DF), hiPSc present the same properties as embryonic stem cells and can generate any cell type after several weeks of differentiation. Today, there are numerus protocols which aim to control hiPSC differentiation. The principal challenge is to obtain a sufficiently enriched specific cell population to study disease pathophysiology and to provide a good model for further investigation and drug screening. The differentiation process is very costly and time-consuming, because many specific factors and different culture media must be used. In this study, we used Sedimentation Field Flow Fractionation (SdFFF) to prepare enriched populations derived from hiPSc after only 10 days of culture in a classical medium. Based on phenotypic and proteomic characterization, "hyperlayer" elution resulted in a fraction expressing markers of endothelial progenitors while another fraction expressed markers of neural progenitors. The isolation of subpopulations representing various differentiation lineages is of major interest for the production of specialized, cell-enriched fractions and in the preparation of increasingly complex models for the development of new therapeutic tools. PMID:27263863

  13. Circulating endothelial progenitor cells: a new approach to anti-aging medicine?

    PubMed Central

    2009-01-01

    Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function. Endothelial precursor cells (EPC) provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects. PMID:20003528

  14. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    PubMed

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients. PMID:27399127

  15. High Calcium Bioglass Enhances Differentiation and Survival of Endothelial Progenitor Cells, Inducing Early Vascularization in Critical Size Bone Defects

    PubMed Central

    Nguyen Ngoc, Christina; Meier, Simon; Nau, Christoph; Schaible, Alexander; Marzi, Ingo; Henrich, Dirk

    2013-01-01

    Early vascularization is a prerequisite for successful bone healing and endothelial progenitor cells (EPC), seeded on appropriate biomaterials, can improve vascularization. The type of biomaterial influences EPC function with bioglass evoking a vascularizing response. In this study the influence of a composite biomaterial based on polylactic acid (PLA) and either 20 or 40% bioglass, BG20 and BG40, respectively, on the differentiation and survival of EPCs in vitro was investigated. Subsequently, the effect of the composite material on early vascularization in a rat calvarial critical size defect model with or without EPCs was evaluated. Human EPCs were cultured with β-TCP, PLA, BG20 or BG40, and seeding efficacy, cell viability, cell morphology and apoptosis were analysed in vitro. BG40 released the most calcium, and improved endothelial differentiation and vitality best. This effect was mimicked by adding an equivalent amount of calcium to the medium and was diminished in the presence of the calcium chelator, EGTA. To analyze the effect of BG40 and EPCs in vivo, a 6-mm diameter critical size calvarial defect was created in rats (n = 12). Controls (n = 6) received BG40 and the treatment group (n = 6) received BG40 seeded with 5×105 rat EPCs. Vascularization after 1 week was significantly improved when EPCs were seeded onto BG40, compared to implanting BG40 alone. This indicates that Ca2+ release improves EPC differentiation and is useful for enhanced early vascularization in critical size bone defects. PMID:24244419

  16. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression.

    PubMed

    Xia, Xi; Yu, Yang; Zhang, Li; Ma, Yang; Wang, Hong

    2016-09-01

    Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless‑type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β‑catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs. PMID:27432753

  17. The relationship between the number of preprocedural circulating endothelial progenitor cells and angiographic restenosis following coronary artery stent placement

    PubMed Central

    Klomp, Margo; van Tiel, Claudia M; Klous, Anita M; Beijk, Marcel A M; Klees, Margriet I; Scheunhage, Esther M; Tijssen, Jan G P; de Vries, Carlie J M; de Winter, Robbert J

    2011-01-01

    Objective In animals, endothelial progenitor cells (EPCs) beneficially influence the repair of the coronary vessel wall after damage by stent placement. However, their role in humans is less well understood. In the present study, the authors aimed to evaluate the relationship between the number of preprocedural EPCs defined as CD34+/KDR+/CD133+ cells and angiographic late loss as a measure of the growth of in-stent intimal hyperplasia. Design, setting, patients and interventions The 59 study patients were treated in the authors' clinic with a Genous EPC capturing stent, a bare metal stent (BMS) or a drug-eluting stent, and angiographic follow-up occurred between 6 and 13 months. Results The authors found no relationship between preprocedural EPCs and angiographic late loss, irrespective of stent type. Though statistically not significant, patients with a high number of preprocedural CD34 cells and treated with a Genous stent or BMS showed a numerically higher late loss (in Genous patients: 1.03±0.76 mm vs 0.71±0.50 mm, p=0.15; in BMS patients: 1.06±0.73 mm vs 0.35±0.62 mm, p=0.08). Conclusions Considering these and other varied observations, further studies aimed at identifying the biological mechanism and the individual roles of EPCs and/or CD34 cells in endothelial repair after coronary vessel stenting are needed.

  18. Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic Application for Ischemic Injury

    PubMed Central

    Heo, Soon Chul; Kwon, Yang Woo; Choi, Eun Jung; Bae, Kwang-Hee; Suh, Dong-Soo; Kim, Seung-Chul; Han, Seungmin; Haam, Seungjoo; Jung, Jongha; Kim, Kiseok; Ryu, Sung Ho; Kim, Jae Ho

    2015-01-01

    Endothelial progenitor cells (EPCs) can be isolated from human bone marrow or peripheral blood and reportedly contribute to neovascularization. Aptamers are 40-120-mer nucleotides that bind to a specific target molecule, as antibodies do. To utilize apatmers for isolation of EPCs, in the present study, we successfully generated aptamers that recognize human CD31, an endothelial cell marker. CD31 aptamers bound to human umbilical cord blood-derived EPCs and showed specific interaction with human CD31, but not with mouse CD31. However, CD31 aptamers showed non-specific interaction with CD31-negative 293FT cells and addition of polyanionic competitor dextran sulfate eliminated non-specific interaction without affecting cell viability. From the mixture of EPCs and 293FT cells, CD31 aptamers successfully isolated EPCs with 97.6% purity and 94.2% yield, comparable to those from antibody isolation. In addition, isolated EPCs were decoupled from CD31 aptamers with a brief treatment of high concentration dextran sulfate. EPCs isolated with CD31 aptamers and subsequently decoupled from CD31 aptamers were functional and enhanced the restoration of blood flow when transplanted into a murine hindlimb ischemia model. In this study, we demonstrated isolation of foreign material-free EPCs, which can be utilized as a universal protocol in preparation of cells for therapeutic transplantation. PMID:26148001

  19. Apelin/APJ signaling promotes hypoxia-induced proliferation of endothelial progenitor cells via phosphoinositide-3 kinase/Akt signaling.

    PubMed

    Zhang, Jingchang; Liu, Qiming; Hu, Xinqun; Fang, Zhenfei; Huang, Feng; Tang, Liang; Zhou, Shenghua

    2015-09-01

    Endothelial progenitor cells (EPCs) can adhere to the endothelium at sites of hypoxia/ischemia and participate in the formation of novel vessels through differentiating into endothelial cells (ECs). Apelin is an endogenous ligand for the G protein‑coupled receptor APJ, and apelin/APJ signaling has a role in cardiovascular function. The present study aimed to investigate the role of apelin/APJ signaling in the regulation of EPC proliferation under hypoxia. The results showed that hypoxia was able to induce EPC proliferation, accompanied with an upregulation of hypoxia‑inducible factor (HIF)‑1α as well as apelin/APJ signaling. Further investigation indicated that siRNA‑mediated knockdown of apelin or APJ expression attenuated the hypoxia‑induced proliferation of EPCs, suggesting that apelin/APJ signaling has an important role in hypoxia‑induced EPC proliferation. Moreover, the phosphoinositide‑3 kinase (PI3K)/Akt signaling pathway was found to be involved in the apelin/APJ‑mediated EPC proliferation under hypoxia. Based on these findings, the present study suggested that hypoxia‑induced upregulation of HIF‑1α promotes the expression of apelin and APJ, which further activate the downstream PI3K/Akt signaling pathway, a key promoter of EPC proliferation. In conclusion, the present study highlighted the role of apelin/APJ in the regulation of EPC proliferation, and apelin/APJ may therefore serve as a potential target for the prevention of hypoxic ischemic injury. PMID:26018184

  20. Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation

    PubMed Central

    Duttenhoefer, Fabian; Lara de Freitas, Rafael; Loibl, Markus; Bittermann, Gido; Geoff Richards, R.; Alini, Mauro; Verrier, Sophie

    2015-01-01

    In bone tissue engineering (TE) endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs) are a rich source of mesenchymal stem cells (MSCs) able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs) are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+) were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+) or medium containing platelet lysate (PL). MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs. PMID:26491682

  1. The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells

    SciTech Connect

    Yu Yang; Gao Yu; Wang, Hong; Huang Lan Qin Jun; Guo Ruiwei; Song Mingbao; Yu Shiyong; Chen Jianfei; Cui Bin; Gao Pan

    2008-10-15

    Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted the proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.

  2. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    SciTech Connect

    Kuang, Chun-yan; Yu, Yang; Guo, Rui-wei; Qian, De-hui; Wang, Kui; Den, Meng-yang; Shi, Yan-kun; Huang, Lan

    2010-07-23

    Research highlights: {yields} STIM1 and TRPC1 are expressed in EPCs. {yields} Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. {yields} TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  3. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2

    SciTech Connect

    Chen Qin; Dong Li; Wang Lian; Kang Lina; Xu Biao

    2009-04-03

    Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.

  4. Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice

    PubMed Central

    JIN, PENG; LI, TAO; LI, XUEQI; SHEN, XINGHUA; ZHAO, YANRU

    2016-01-01

    Myocardial infarction is a major contributor to morbidity and mortality in diabetes, which is characterized by inadequate angiogenesis and consequent poor blood reperfusion in the diabetic ischemic heart. The aim of the present study was to investigate the effect that oxidative stress in endothelial progenitor cells (EPCs) has on cardiac angiogenesis in diabetic mice. EPCs derived from diabetic mice revealed reductions in superoxide dismutase (SOD) expression levels and activity compared with those from normal mice. An endothelial tube formation assay showed that angiogenesis was markedly delayed for diabetic EPCs, compared with normal controls. EPCs subjected to various pretreatments were tested as a cell therapy in a diabetic mouse model of myocardial infarction. Induction of oxidative stress in normal EPCs by H2O2 or small interfering RNA-mediated knockdown of SOD reduced their angiogenic activity in the ischemic myocardium of the diabetic mice. Conversely, cell therapy using EPCs from diabetic mice following SOD gene overexpression or treatment with the antioxidant Tempol normalized their ability to promote angiogenesis. These results indicate that decreased expression levels of SOD in EPCs contribute to impaired angiogenesis. In addition, normalization of diabetic EPCs by ex vivo SOD gene therapy accelerates the ability of the EPCs to promote angiogenesis and improve cardiac function when used as a cell therapy following myocardial infarction in diabetic mice. PMID:27284297

  5. The effect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells.

    PubMed

    Ye, Xiaofeng; Wang, Haozhe; Zhou, Jingxin; Li, Haiqing; Liu, Jun; Wang, Zhe; Chen, Anqing; Zhao, Qiang

    2013-01-01

    The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EPCs) on the decellularized aortic heart valve. SEM demonstrated the adhesion and geometric deformation of platelets. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Binding and subsequent release of heparin and VEGF from valve leaflets were assessed qualitatively by laser confocal scanning microscopy and quantitatively by ELISA methods. Human blood derived EPCs were cultured and the adhesion and growth of EPCs on the surface modified valvular scaffolds were assessed. The results showed that Heparin-VEGF multilayer film improved decellularized valve haemocompatibility with respect to a substantial reduction of platelet adhesion. Release of VEGF from the decellularized heart valve leaflets at physiological conditions was sustained over 5 days. In vitro biological tests demonstrated that EPCs achieved better adhesion, proliferation and migration on the coatings with Heparin-VEGF multilayer film. Combined, these results indicate that Heparin-VEGF multilayer film could be used to cover the decellularized porcine aortic valve to decrease platelet adhesion while exhibiting excellent EPCs biocompatibility. PMID:23359625

  6. Ultrasound Microbubble-Mediated Delivery of Integrin-Linked Kinase Gene Improves Endothelial Progenitor Cells Dysfunction in Pre-Eclampsia

    PubMed Central

    Cui, Kai; Yan, Ting; Luo, Qingqing; Zheng, Yanfang; Liu, Xiaoxia; Huang, Xiaoyu

    2014-01-01

    Pre-eclampsia (PE) is a specific vascular complication in pregnancy whose precise mechanism is still unclear. We hypothesized that endothelial progenitor cells (EPCs), the precursor of endothelial cells, might be impaired in patients with PE and hold a great promise for the treatment of PE. In the present study, we analyzed the EPCs number and expression of integrin-linked kinase (ILK) in PE patients. We confirmed that both EPCs number and ILK expression were diminished in PE patients. Next, we transfected EPCs with ILK gene using ultrasonic microbubble technique (UMT) for the first time, as UMT is a novel type of gene transfer technology showing promising applications in stem cells apart from EPCs. To further investigate the transfection efficiency of UMT, RT-PCR analysis and western blot were used to examine the messenger RNA (mRNA) and protein level of ILK. After transfection of the ILK gene, EPCs function was tested to illustrate the role of ILK in cell proliferation, apoptosis, migration, and secretion. The results of the in vitro study suggested that UMT, a novel gene delivery system, could be considered a potent physical method for EPCs transfection. Moreover, the growth and angiogenetic properties of EPCs are enhanced by introducing ILK. This study may afford a new trend for EPCs transfection and gene therapy in PE. PMID:24564279

  7. PPARα Regulates Mobilization and Homing of Endothelial Progenitor Cells Through the HIF-1α/SDF-1 Pathway

    PubMed Central

    Wang, Zhongxiao; Moran, Elizabeth; Ding, Lexi; Cheng, Rui; Xu, Xun; Ma, Jian-xing

    2014-01-01

    Purpose. The mechanism for the antiangiogenic activity of peroxisome proliferator–activated receptor alpha (PPARα) remains incompletely understood. Endothelial progenitor cells (EPC) are known to participate in neovascularization (NV). The purpose of this study was to investigate whether PPARα regulates EPC during retinal NV. Methods. Retinal NV was induced by oxygen-induced retinopathy (OIR). Mice with OIR were injected intraperitoneally with the PPARα agonist fenofibric acid (FA) or with adenovirus expressing PPARα (Ad-PPARα). Flow cytometry was used to quantify circulating and retinal EPC. Serum stromal cell-derived factor 1 (SDF-1) levels were measured by ELISA. Hypoxia was induced in primary human retinal capillary endothelial cells (HRCEC) and mouse brain endothelial cells (MBEC) by CoCl2. Levels of SDF-1 and hypoxia-inducible factor 1 alpha (HIF-1α) were measured by Western blotting. Results. Fenofibric acid and overexpression of PPARα attenuated the increase of circulating and retinal EPC, correlating with suppressed retinal NV in OIR mice at P17. The PPARα knockout enhanced the OIR-induced increase of circulating and retinal EPC. Fenofibric acid decreased retinal HIF-1α and SDF-1 levels as well as serum SDF-1 levels in the OIR model. In HRCEC, PPARα inhibited HIF-1α nuclear translocation and SDF-1 overexpression induced by hypoxia. Further, MBEC from PPARα−/− mice showed more prominent activation of HIF-1α and overexpression of SDF-1 induced by hypoxia, compared with the wild-type (WT) MBEC. PPARα failed to block SDF-1 overexpression induced by a constitutively active mutant of HIF-1α, suggesting that regulation of SDF-1 by PPARα was through blockade of HIF-1α activation. Conclusions. Peroxisome proliferator-activated receptor alpha suppresses ischemia-induced EPC mobilization and homing through inhibition of the HIF-1α/SDF-1 pathway. This represents a novel molecular mechanism for PPARα's antiangiogenic effects. PMID:24845641

  8. 20-HETE Regulates the Angiogenic Functions of Human Endothelial Progenitor Cells and Contributes to Angiogenesis In Vivo

    PubMed Central

    Chen, Li; Ackerman, Rachel; Saleh, Mohamed; Gotlinger, Katherine H.; Kessler, Michael; Mendelowitz, Lawrence G.; Falck, John R.; Arbab, Ali S.; Scicli, A. Guillermo; Schwartzman, Michal L.

    2014-01-01

    Circulating endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We identified the cytochrome P450 4A/F–20-hydroxyeicosatetraenoic acid (CYP4A/F–20-HETE) system as a novel regulator of EPC functions associated with angiogenesis in vitro. Here, we explored cellular mechanisms by which 20-HETE regulates EPC angiogenic functions and assessed its contribution to EPC-mediated angiogenesis in vivo. Results showed that both hypoxia and vascular endothelial growth factor (VEGF) induce CYP4A11 gene and protein expression (the predominant 20-HETE synthases in human EPC), and this is accompanied by an increase in 20-HETE production by ∼1.4- and 1.8-fold, respectively, compared with the control levels. Additional studies demonstrated that 20-HETE and VEGF have a synergistic effect on EPC proliferation, whereas 20-HETE antagonist 20-HEDGE or VEGF-neutralizing antibody negated 20-HETE- or VEGF-induced proliferation, respectively. These findings are consistent with the presence of a positive feedback regulation on EPC proliferation between the 20-HETE and the VEGF pathways. Furthermore, we found that 20-HETE induced EPC adhesion to fibronectin and endothelial cell monolayer by 40 ± 5.6 and 67 ± 10%, respectively, which was accompanied by a rapid induction of very late antigen-4 and chemokine receptor type 4 mRNA and protein expression. Basal and 20-HETE-stimulated increases in adhesion were negated by the inhibition of the CYP4A–20-HETE system. Lastly, EPC increased angiogenesis in vivo by 3.6 ± 0.2-fold using the Matrigel plug angiogenesis assay, and these increases were markedly reduced by the local inhibition of 20-HETE system. These results strengthened the notion that 20-HETE regulates the angiogenic functions of EPC in vitro and EPC-mediated angiogenesis in vivo. PMID:24403517

  9. 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo.

    PubMed

    Chen, Li; Ackerman, Rachel; Saleh, Mohamed; Gotlinger, Katherine H; Kessler, Michael; Mendelowitz, Lawrence G; Falck, John R; Arbab, Ali S; Scicli, A Guillermo; Schwartzman, Michal L; Yang, Jing; Guo, Austin M

    2014-03-01

    Circulating endothelial progenitor cells (EPC) contribute to postnatal neovascularization. We identified the cytochrome P450 4A/F-20-hydroxyeicosatetraenoic acid (CYP4A/F-20-HETE) system as a novel regulator of EPC functions associated with angiogenesis in vitro. Here, we explored cellular mechanisms by which 20-HETE regulates EPC angiogenic functions and assessed its contribution to EPC-mediated angiogenesis in vivo. Results showed that both hypoxia and vascular endothelial growth factor (VEGF) induce CYP4A11 gene and protein expression (the predominant 20-HETE synthases in human EPC), and this is accompanied by an increase in 20-HETE production by ~1.4- and 1.8-fold, respectively, compared with the control levels. Additional studies demonstrated that 20-HETE and VEGF have a synergistic effect on EPC proliferation, whereas 20-HETE antagonist 20-HEDGE or VEGF-neutralizing antibody negated 20-HETE- or VEGF-induced proliferation, respectively. These findings are consistent with the presence of a positive feedback regulation on EPC proliferation between the 20-HETE and the VEGF pathways. Furthermore, we found that 20-HETE induced EPC adhesion to fibronectin and endothelial cell monolayer by 40 ± 5.6 and 67 ± 10%, respectively, which was accompanied by a rapid induction of very late antigen-4 and chemokine receptor type 4 mRNA and protein expression. Basal and 20-HETE-stimulated increases in adhesion were negated by the inhibition of the CYP4A-20-HETE system. Lastly, EPC increased angiogenesis in vivo by 3.6 ± 0.2-fold using the Matrigel plug angiogenesis assay, and these increases were markedly reduced by the local inhibition of 20-HETE system. These results strengthened the notion that 20-HETE regulates the angiogenic functions of EPC in vitro and EPC-mediated angiogenesis in vivo. PMID:24403517

  10. IQ Domain GTPase-Activating Protein 1 is Involved in Shear Stress-Induced Progenitor-Derived Endothelial Cell Alignment

    PubMed Central

    Rami, Lila; Auguste, Patrick; Thebaud, Noélie B.; Bareille, Reine; Daculsi, Richard; Ripoche, Jean; Bordenave, Laurence

    2013-01-01

    Shear stress is one of mechanical constraints which are exerted by blood flow on endothelial cells (ECs). To adapt to shear stress, ECs align in the direction of flow through adherens junction (AJ) remodeling. However, mechanisms regulating ECs alignment under shear stress are poorly understood. The scaffold protein IQ domain GTPase activating protein 1 (IQGAP1) is a scaffold protein which couples cell signaling to the actin and microtubule cytoskeletons and is involved in cell migration and adhesion. IQGAP1 also plays a role in AJ organization in epithelial cells. In this study, we investigated the potential IQGAP1 involvement in the endothelial cells alignment under shear stress. Progenitor-derived endothelial cells (PDECs), transfected (or not) with IQGAP1 small interfering RNA, were exposed to a laminar shear stress (1.2 N/m2) and AJ proteins (VE-cadherin and β-catenin) and IQGAP1 were labeled by immunofluorescence. We show that IQGAP1 is essential for ECs alignment under shear stress. We studied the role of IQGAP1 in AJs remodeling of PDECs exposed to shear stress by studying cell localization and IQGAP1 interactions with VE-cadherin and β-catenin by immunofluorescence and Proximity Ligation Assays. In static conditions, IQGAP1 interacts with VE-cadherin but not with β-catenin at the cell membrane. Under shear stress, IQGAP1 lost its interaction from VE-cadherin to β-catenin. This “switch” was concomitant with the loss of β-catenin/VE-cadherin interaction at the cell membrane. This work shows that IQGAP1 is essential to ECs alignment under shear stress and that AJ remodeling represents one of the mechanisms involved. These results provide a new approach to understand ECs alignment under to shear stress. PMID:24278215

  11. Sympathetic predominance is associated with impaired endothelial progenitor cells and tunneling nanotubes in controlled-hypertensive patients.

    PubMed

    de Cavanagh, Elena M V; González, Sergio A; Inserra, Felipe; Forcada, Pedro; Castellaro, Carlos; Chiabaut-Svane, Jorge; Obregón, Sebastián; Casarini, María Jesús; Kempny, Pablo; Kotliar, Carol

    2014-07-15

    Early endothelial progenitor cells (early EPC) and late EPC are involved in endothelial repair and can rescue damaged endothelial cells by transferring organelles through tunneling nanotubes (TNT). In rodents, EPC mobilization from the bone marrow depends on sympathetic nervous system activity. Indirect evidence suggests a relation between autonomic derangements and human EPC mobilization. We aimed at testing whether hypertension-related autonomic imbalances are associated with EPC impairment. Thirty controlled-essential hypertensive patients [systolic blood pressure/diastolic blood pressure = 130(120-137)/85(61-88) mmHg; 81.8% male] and 20 healthy normotensive subjects [114(107-119)/75(64-79) mmHg; 80% male] were studied. Mononuclear cells were cultured on fibronectin- and collagen-coated dishes for early EPC and late EPC, respectively. Low (LF)- and high (HF)-frequency components of short-term heart rate variability were analyzed during a 5-min rest, an expiration/inspiration maneuver, and a Stroop color-word test. Modulations of cardiac sympathetic and parasympathetic activities were evaluated by LF/HF (%) and HF power (ms(2)), respectively. In controlled-hypertensive patients, the numbers of early EPC, early EPC that emitted TNT, late EPC, and late EPC that emitted TNT were 41, 77, 50, and 88% lower than in normotensive subjects (P < 0.008), respectively. In controlled-hypertensive patients, late EPC number was positively associated with cardiac parasympathetic reserve during the expiration/inspiration maneuver (rho = 0.45, P = 0.031) and early EPC with brachial flow-mediated dilation (rho = 0.655; P = 0.049); also, late TNT number was inversely related to cardiac sympathetic response during the stress test (rho = -0.426, P = 0.045). EPC exposure to epinephrine or norepinephrine showed negative dose-response relationships on cell adhesion to fibronectin and collagen; both catecholamines stimulated early EPC growth, but epinephrine inhibited late EPC growth. In

  12. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction

    PubMed Central

    Berezin, Alexander E.; Kremzer, Alexander A.; Martovitskaya, Yulia V.; Berezina, Tatyana A.; Gromenko, Elena A.

    2016-01-01

    Background Chronic heart failure (HF) remains a leading cause of cardiovascular (CV) mortality and morbidity worldwide. The aim of the study was to investigate whether the pattern of angiogenic endothelial progenitor cells (EPCs) and apoptotic endothelial cell-derived microparticles (EMPs) would be able to differentiate HF with reduced (HFrEF) and preserved (HFpEF) ejection fraction. Methods One hundred sixty four chronic HF subjects met inclusion criteria. Patients with global left ventricular ejection fraction ≥ 50% were categorized as the HFpEF group (n = 79) and those with ≤ 45% as the HFrEF group (n = 85). Therefore, to compare the circulating levels of biological markers 35 control subjects without HF were included in the study. All control individuals were age- and sex-matched chronic HF patients. The serum level of biomarkers was measured at baseline. The flow cytometric technique was used for predictably distinguishing circulating cell subsets depending on expression of CD45, CD34, CD14, Tie-2, and CD309 antigens and determining endothelial cell-derived microparticles. CD31+/annexin V+ was defined as apoptotic endothelial cell-derived MPs, MPs labeled for CD105+ or CD62E+ were determined as MPs produced due to activation of endothelial cells. Results In multivariate logistic regression model T2DM (R2 = 0.26; P = 0.001), obesity (R2 = 0.22; P = 0.001), previous MI (R2 = 0.17; P = 0.012), galectin-3 (R2 = 0.67; P = 0.012), CD31+/annexin V+ EMPs (R2 = 0.11; P = 0.001), NT-proBNP (R2 = 0.11; P = 0.046), CD14+ CD309+ cells (R2 = 0.058; P = 0.001), and CD14+ СD309+ Tie-2+ cells (R2 = 0.044; P = 0.028) were found as independent predictors of HFpEF. Using multivariate Cox-regression analysis adjusted etiology (previous myocardial infarction), cardiovascular risk factors (obesity, type 2 diabetes mellitus) we found that NT-proBNP (OR 1.08; 95% CI = 1.03–1.12; P = 0.001) and CD31+/annexin V+ EMPs to CD14+ CD309

  13. The Secretome of Hydrogel-Coembedded Endothelial Progenitor Cells and Mesenchymal Stem Cells Instructs Macrophage Polarization in Endotoxemia

    PubMed Central

    Zullo, Joseph A.; Nadel, Ellen P.; Rabadi, May M.; Baskind, Matthew J.; Rajdev, Maharshi A.; Demaree, Cameron M.; Vasko, Radovan; Chugh, Savneek S.; Lamba, Rajat; Goligorsky, Michael S.

    2015-01-01

    We previously reported the delivery of endothelial progenitor cells (EPCs) embedded in hyaluronic acid-based (HA)-hydrogels protects renal function during acute kidney injury (AKI) and promotes angiogenesis. We attempted to further ameliorate renal dysfunction by coembedding EPCs with renal mesenchymal stem cells (MSCs), while examining their paracrine influence on cytokine/chemokine release and proinflammatory macrophages. A live/dead assay determined whether EPC-MSC coculturing improved viability during lipopolysaccharide (LPS) treatment, and HA-hydrogel-embedded delivery of cells to LPS-induced AKI mice was assessed for effects on mean arterial pressure (MAP), renal blood flow (RBF), circulating cytokines/chemokines, serum creatinine, proteinuria, and angiogenesis (femoral ligation). Cytokine/chemokine release from embedded stem cells was examined, including effects on macrophage polarization and release of proinflammatory molecules. EPC-MSC coculturing improved stem cell viability during LPS exposure, an effect augmented by MSC hypoxic preconditioning. The delivery of coembedded EPCs with hypoxic preconditioned MSCs to AKI mice demonstrated additive improvement (compared with EPC delivery alone) in medullary RBF and proteinuria, with comparable effects on serum creatinine, MAP, and angiogenesis. Exposure of proinflammatory M1 macrophages to EPC-MSC conditioned medium changed their polarization to anti-inflammatory M2. Incubation of coembedded EPCs-MSCs with macrophages altered their release of cytokines/chemokines, including enhanced release of anti-inflammatory interleukin (IL)-4 and IL-10. EPC-MSC delivery to endotoxemic mice elevated the levels of circulating M2 macrophages and reduced the circulating cytokines/chemokines. In conclusion, coembedding EPCs-MSCs improved their resistance to stress, impelled macrophage polarization from M1 to M2 while altering their cytokine/chemokines release, reduced circulating cytokines/chemokines, and improved renal and

  14. Effect of maternal anti-HPA-1a antibodies and polyclonal IVIG on the activation status of vascular endothelial cells

    PubMed Central

    RADDER, C M; BEEKHUIZEN, H; KANHAI, H H H; BRAND, A

    2004-01-01

    Maternal anti-HPA-1a antibodies can cause severe fetal and neonatal alloimmune thrombocytopenia (FNAIT), complicated by intracranial haemorrhage (ICH). Antenatal treatment with maternal intravenous immunoglobulin (IVIG) seems to protect against ICH even when thrombocytopenia persists. The aim of this study was to investigate if anti-HPA-1a antibodies and IVIG potentially affect vascular endothelial cells (ECs) in order to identify susceptibility for ICH. Human umbilical cord endothelial cells (HUVEC) were incubated with anti-HPA-1a antibodies with or without polyclonal IVIG and evaluated for EC activation. Maternal sera with anti-HPA-1a antibodies affected neither the EC expression of intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and tissue factor (TF) nor the release of van Willebrand factor (vWF) or interleukin (IL)-8 nor the integrity of ECs. Maternal sera obtained after IVIG treatment and polyclonal IVIG decrease constitutive and cytokine-induced ICAM-1 and VCAM-1 expression on ECs. The results show that maternal anti-HPA-1a antibodies cause no activation or damage of ECs in this model. The clinical relevance of the de-activating properties of IVIG on EC activation with respect to ICH deserves further investigation. PMID:15196265

  15. Sustained Release of Engineered Stromal Cell–Derived Factor 1-α From Injectable Hydrogels Effectively Recruits Endothelial Progenitor Cells and Preserves Ventricular Function After Myocardial Infarction

    PubMed Central

    MacArthur, John W.; Purcell, Brendan P.; Shudo, Yasuhiro; Cohen, Jeffrey E.; Fairman, Alex; Trubelja, Alen; Patel, Jay; Hsiao, Philip; Yang, Elaine; Lloyd, Kelsey; Hiesinger, William; Atluri, Pavan; Burdick, Jason A.; Woo, Y. Joseph

    2014-01-01

    Background Exogenously delivered chemokines have enabled neovasculogenic myocardial repair in models of ischemic cardiomyopathy; however, these molecules have short half-lives in vivo. In this study, we hypothesized that the sustained delivery of a synthetic analog of stromal cell–derived factor 1-α (engineered stromal cell–derived factor analog [ESA]) induces continuous homing of endothelial progenitor cells and improves left ventricular function in a rat model of myocardial infarction. Methods and Results Our previously designed ESA peptide was synthesized by the addition of a fluorophore tag for tracking. Hyaluronic acid was chemically modified with hydroxyethyl methacrylate to form hydrolytically degradable hydrogels through free-radical–initiated crosslinking. ESA was encapsulated in hyaluronic acid hydrogels during gel formation, and then ESA release, along with gel degradation, was monitored for more than 4 weeks in vitro. Chemotactic properties of the eluted ESA were assessed at multiple time points using rat endothelial progenitor cells in a transwell migration assay. Finally, adult male Wistar rats (n=33) underwent permanent ligation of the left anterior descending (LAD) coronary artery, and 100 μL of saline, hydrogel alone, or hydrogel+25 μg ESA was injected into the borderzone. ESA fluorescence was monitored in animals for more than 4 weeks, after which vasculogenic, geometric, and functional parameters were assessed to determine the therapeutic benefit of each treatment group. ESA release was sustained for 4 weeks in vitro, remained active, and enhanced endothelial progenitor cell chemotaxis. In addition, ESA was detected in the rat heart >3 weeks when delivered within the hydrogels and significantly improved vascularity, ventricular geometry, ejection fraction, cardiac output, and contractility compared with controls. Conclusions We have developed a hydrogel delivery system that sustains the release of a bioactive endothelial progenitor cell

  16. Severe Type 2 Diabetes Induces Reversible Modifications of Endothelial Progenitor Cells Which are Ameliorate by Glycemic Control

    PubMed Central

    De Pascale, Maria Rosaria; Bruzzese, Giuseppe; Crimi, Ettore; Grimaldi, Vincenzo; Liguori, Antonio; Brongo, Sergio; Barbieri, Michelangela; Picascia, Antonietta; Schiano, Concetta; Sommese, Linda; Ferrara, Nicola; Paolisso, Giuseppe; Napoli, Claudio

    2016-01-01

    Background Circulating endothelial progenitors cells (EPCs) play a critical role in neovascularization and endothelial repair. There is a growing evidence that hyperglycemia related to Diabetes Mellitus (DM) decreases EPC number and function so promoting vascular complications. Aim of the Study This study investigated whether an intensive glycemic control regimen in Type 2 DM can increase the number of EPCs and restores their function. Methods Sixty-two patients with Type 2 DM were studied. Patients were tested at baseline and after 3 months of an intensive regimen of glycemic control. The Type 2 DM group was compared to control group of subjects without diabetes. Patients with Type 2 DM (mean age 58.2±5.4 years, 25.6% women, disease duration of 15.4±6.3 years) had a baseline HgA1c of 8.7±0.5% and lower EPC levels (CD34+/KDR+) in comparison to healthy controls (p<0.01). Results The intensive glycemic control regimen (HgA1c decreased to 6.2±0.3%) was coupled with a significant increase of EPC levels (mean of 18%, p<0.04 vs. baseline) and number of EPCs CFUs (p<0.05 vs. baseline). Conclusion This study confirms that number and bioactivity of EPCs are reduced in patients with Type 2 DM and, most importantly, that the intensive glycemic control in Type 2 DM promotes EPC improvement both in their number and in bioactivity. PMID:27426095

  17. TNF-α increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity

    PubMed Central

    Prisco, Anthony R.; Prisco, Michael R.; Carlson, Brian E.

    2014-01-01

    Endothelial progenitor cells (EPCs) are a rare population of cells that participate in angiogenesis. To effectively use EPCs for regenerative therapy, the mechanisms by which they participate in tissue repair must be elucidated. This study focused on the process by which activated EPCs bind to a target tissue. It has been demonstrated that EPCs can bind to endothelial cells (ECs) through the tumore necrosis factor-α (TNF-α)-regulated vascular cell adhesion molecule 1/very-late antigen 4 (VLA4) interaction. VLA4 can bind in a high or low affinity state, a process that is difficult to experimentally isolate from bond expression upregulation. To separate these processes, a new parallel plate flow chamber was built, a detachment assay was developed, and a mathematical model was created that was designed to analyze the detachment assay results. The mathematical model was developed to predict the relative expression of EPC/EC bonds made for a given bond affinity distribution. EPCs treated with TNF-α/vehicle were allowed to bind to TNF-α/vehicle-treated ECs in vitro. Bound cells were subjected to laminar flow, and the cellular adherence was quantified as a function of shear stress. Experimental data were fit to the mathematical model using changes in bond expression or affinity as the only free parameter. It was found that TNF-α treatment of ECs increased adhesion through bond upregulation, whereas TNF-α treatment of EPCs increased adhesion by increasing bond affinity. These data suggest that injured tissue could potentially increase recruitment of EPCs for tissue regeneration via the secretion of TNF-α. PMID:25539711

  18. Prominin-1/CD133 expression as potential tissue-resident vascular endothelial progenitor cells in the pulmonary circulation.

    PubMed

    Sekine, Ayumi; Nishiwaki, Tetsu; Nishimura, Rintaro; Kawasaki, Takeshi; Urushibara, Takashi; Suda, Rika; Suzuki, Toshio; Takayanagi, Shin; Terada, Jiro; Sakao, Seiichiro; Tada, Yuji; Iwama, Atsushi; Tatsumi, Koichiro

    2016-06-01

    Pulmonary vascular endothelial cells could contribute to maintain homeostasis in adult lung vasculature. "Tissue-resident" endothelial progenitor cells (EPCs) play pivotal roles in postnatal vasculogenesis, vascular repair, and tissue regeneration; however, their local pulmonary counterparts remain to be defined. To determine whether prominin-1/CD133 expression can be a marker of tissue-resident vascular EPCs in the pulmonary circulation, we examined the origin and characteristics of prominin-1/CD133-positive (Prom1(+)) PVECs considering cell cycle status, viability, histological distribution, and association with pulmonary vascular remodeling. Prom1(+) PVECs exhibited high steady-state transit through the cell cycle compared with Prom1(-) PVECs and exhibited homeostatic cell division as assessed using the label dilution method and mice expressing green fluorescent protein. In addition, Prom1(+) PVECs showed more marked expression of putative EPC markers and drug resistance genes as well as highly increased activation of aldehyde dehydrogenase compared with Prom1(-) PVECs. Bone marrow reconstitution demonstrated that tissue-resident cells were the source of >98% of Prom1(+) PVECs. Immunofluorescence analyses revealed that Prom1(+) PVECs preferentially resided in the arterial vasculature, including the resistant vessels of the lung. The number of Prom1(+) PVECs was higher in developing postnatal lungs. Sorted Prom1(+) PVECs gave rise to colonies and formed fine vascular networks compared with Prom1(-) PVECs. Moreover, Prom1(+) PVECs increased in the monocrotaline and the Su-5416 + hypoxia experimental models of pulmonary vascular remodeling. Our findings indicated that Prom1(+) PVECs exhibited the phenotype of tissue-resident EPCs. The unique biological characteristics of Prom1(+) PVECs predominantly contribute to neovasculogenesis and maintenance of homeostasis in pulmonary vascular tissues. PMID:27059286

  19. Quercitrin treatment protects endothelial progenitor cells from oxidative damage via inducing autophagy through extracellular signal-regulated kinase.

    PubMed

    Zhi, Kangkang; Li, Maoquan; Bai, Jun; Wu, Yongfa; Zhou, Sili; Zhang, Xiaoping; Qu, Lefeng

    2016-07-01

    Atherosclerosis is a disease resulting from impaired endothelial function, often caused by oxidant injury or inflammation. Endothelial progenitor cells (EPCs) play a critical role in repairing damaged endothelium and protecting against atherosclerosis. Quercitrin, a plant-derived flavonoid compound, displays antioxidant and anti-inflammatory activities. In this study, we showed that quercitrin treatment reduced the apoptosis of EPCs caused by oxidized low-density lipoprotein (ox-LDL) in a dose-dependent manner. Quercitrin improved tube formation, migration and adhesion of ox-LDL-treated EPCs. To determine the effect of quercitrin in vivo, EPCs treated with or without ox-LDL and quercitrin were locally injected into the ischemic hind limb muscle of nude mice. Those injected with EPCs treated with ox-LDL and quercitrin showed significantly increased local accumulation of EPCs, blood flow recovery and capillary density compared with the control and ox-LDL only groups. Furthermore, we showed that quercitrin enhanced autophagy and upregulated mitogen-activated protein kinase and ERK phosphorylation in a dose-dependent manner in vitro. Autophagy inhibitors, chloroquine and 3-methyladenine, abrogated quercitrin-enhanced autophagy caused by ox-LDL as evidenced by decreased numbers of branch points, migratory cells and adherent cells, and increased numbers of apoptotic cells. The ERK inhibitor PD98059 abrogated quercitrin-enhanced autophagy, as identified by decreased autophagosome formation and downregulated ERK phosphorylation. The inhibition of ERK did not affect the expression of Rac1, but enhanced phosphorylation of Akt. Quercitrin treatment also increased the expression of E-cadherin, and PD98059 abrogated the upregulation of E-cadherin induced by quercitrin. Our findings suggested that autophagy is a protective mechanism in EPCs exposed to oxidative damage. Quercitrin can promote autophagy through the activation of ERK and the ERK signaling pathway is therefore

  20. GroEL1, a Heat Shock protein 60 of Chlamydia pneumoniae, Impairs Neovascularization by Decreasing Endothelial Progenitor Cell Function

    PubMed Central

    Lin, Yi-Wen; Huang, Chun-Yao; Chen, Yung-Hsiang; Shih, Chun-Ming; Tsao, Nai-Wen; Lin, Cheng-Yen; Chang, Nen-Chung; Tsai, Chien-Sung; Tsai, Hsiao-Ya; Tsai, Jui-Chi; Huang, Po-Hsun; Li, Chi-Yuan; Lin, Feng-Yen

    2013-01-01

    The number and function of endothelial progenitor cells (EPCs) are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4) mutation) mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS) in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae. PMID:24376840

  1. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis

    PubMed Central

    Chen, Jianfei; Jing, Jun; Yu, Shiyong; Song, Minbao; Tan, Hu; Cui, Bin; Huang, Lan

    2016-01-01

    Elevated levels of advanced glycation endproducts (AGEs) is an important risk factor for atherosclerosis. Dysfunction of endothelial progenitor cells (EPCs), which is essential for re-endothelialization and neovascularization, is a hallmark of atherosclerosis. However, it remains unclear whether and how AGEs acts on EPCs to promote pathogenesis of atherosclerosis. In this study, EPCs were exposed to different concentrations of AGEs. The expression of NADPH and Rac1 was measured to investigate the involvement of NADPH oxidase pathway. ROS was examined to indicate the level of oxidative stress in EPCs. Total JNK and p-JNK were determined by Western blotting. Cell apoptosis was evaluated by both TUNEL staining and flow cytometry. Cell proliferation was measured by 3H thymidine uptake. The results showed that treatment of EPCs with AGEs increased the levels of ROS in EPCs. Mechanistically, AGEs increased the activity of NADPH oxidase and the expression of Rac1, a major component of NADPH. Importantly, treatment of EPCs with AGEs activated the JNK signaling pathway, which was closely associated with cell apoptosis and inhibition of proliferation. Our results suggest that the RAGE activation by AGEs in EPCs upregulates intracellular ROS levels, which contributes to increased activity of NADPH oxidase and expression of Rac1, thus promoting cellular apoptosis and inhibiting proliferation. Mechanistically, AGEs binding to the receptor RAGE in EPCs is associated with hyperactivity of JNK signaling pathway, which is downstream of ROS. Our findings suggest that dysregulation of the AGEs/RAGE axis in EPCs may promote atherosclerosis and identify the NADPH/ROS/JNK signaling axis as a potential target for therapeutic intervention. PMID:27347324

  2. Oxidized High-Density Lipoprotein Impairs Endothelial Progenitor Cells' Function by Activation of CD36-MAPK-TSP-1 Pathways

    PubMed Central

    Wu, Jianxiang; He, Zhiqing; Gao, Xiang; Wu, Feng; Ding, Ru; Ren, Yusheng; Jiang, Qijun; Fan, Min

    2015-01-01

    Abstract Aims: High-density lipoprotein (HDL) levels inversely correlate with cardiovascular events due to the protective effects on vascular wall and stem cells, which are susceptible to oxidative modifications and then lead to potential pro-atherosclerotic effects. We proposed that oxidized HDL (ox-HDL) might lead to endothelial progenitor cells (EPCs) dysfunction and investigated underlying mechanisms. Results: ox-HDL was shown to increase apoptosis and intracellular reactive oxygen species levels, but to reduce migration, angiogenesis, and cholesterol efflux of EPCs in a dose-dependent manner. p38 mitogen-activated protein kinase (MAPK) and NF-κB were activated after ox-HDL stimulation, which also upregulated thrombospondin-1 (TSP-1) expression without affecting vascular endothelial growth factor. Effects caused by ox-HDL could be significantly attenuated by pretreatment with short hairpin RNA-mediated CD36 knockdown or probucol. Data of in vivo experiments and the inverse correlation of ox-HDL and circulating EPC numbers among patients with coronary artery diseases (CAD) or CAD and type 2 diabetes also supported it. Meanwhile, HDL separated from such patients could significantly increase cultured EPC's caspase 3 activity, further supporting our proposal. Innovation: This is the most complete study to date of how ox-HDL would impair EPCs function, which was involved with activation of CD36-p38 MAPK-TSP-1 pathways and proved by not only the inverse relationship between ox-HDL and circulating EPCs in clinic but also pro-apoptotic effects of HDL separated from patients' serum. Conclusion: Activation of CD36-p38 MAPK-TSP-1 pathways contributes to the pathological effects of ox-HDL on EPCs' dysfunction, which might be one of the potential etiological factors responsible for the disturbed neovascularization in chronic ischemic disease. Antioxid. Redox Signal. 22, 308–324. PMID:25313537

  3. Exposure to Inhaled Nickel Nanoparticles Causes a Reduction in Number and Function of Bone Marrow Endothelial Progenitor Cells

    PubMed Central

    Liberda, Eric N; Cuevas, Azita K; Gillespie, Patricia A; Grunig, Gabriele; Qu, Qingshan; Chen, Lung Chi

    2016-01-01

    Introduction Particulate matter (PM), specifically nickel (Ni) found on or in PM, has been associated with an increased risk of mortality in human population studies and significant increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone, and potentiated atherosclerosis in murine exposures. Recently, murine inhalation of Ni nanoparticles have been shown to cause pulmonary inflammation which affects cardiovascular tissue and potentiates atherosclerosis. These adverse cardiovascular outcomes may be due to the effects of Ni on endothelial progenitor cells (EPCs), endogenous semi-pluripotent stem cells that aid in endothelial repair. Thus, we hypothesize that Ni nanoparticle exposures decrease cell count and cause impairments in function which may ultimately have significant effects on various cardiovascular diseases such as atherosclerosis. Methods Experiments involving inhaled Ni nanoparticle exposures(2 days/5 hrs/day at ~1000 μg/m3, 3 days/5 hrs/day at ~1000 μg/m3, and 5days/5 hrs/day at ~100 μg/m3), were performed in order to quantify bone marrow resident EPCs using flow cytometry in C57BL/6 mice. Plasma levels of SDF-1α and VEGF were assessed by ELISA and in vitro functional assessments of cultured EPCs were conducted. Results and Conclusions Significant EPC count differences between exposure and control groups for Ni nanoparticle exposures were observed. Differences in EPC tube formation and chemotaxis were also observed for the Ni nanoparticle exposed group. Plasma VEGF and SDF-1α differences were not statistically significant. In conclusion, this study shows that inhalation of Ni nanoparticles results in functionally impaired EPCs and reduced number in the bone marrow, which may lead to enhanced progression of atherosclerosis. PMID:20936915

  4. Autologous Endothelial Progenitor Cell-Seeding Technology and Biocompatibility Testing For Cardiovascular Devices in Large Animal Model

    PubMed Central

    Jantzen, Alexandra E.; Lane, Whitney O.; Gage, Shawn M.; Haseltine, Justin M.; Galinat, Lauren J.; Jamiolkowski, Ryan M.; Lin, Fu-Hsiung; Truskey, George A.; Achneck, Hardean E.

    2011-01-01

    Implantable cardiovascular devices are manufactured from artificial materials (e.g. titanium (Ti), expanded polytetrafluoroethylene), which pose the risk of thromboemboli formation1,2,3. We have developed a method to line the inside surface of Ti tubes with autologous blood-derived human or porcine endothelial progenitor cells (EPCs)4. By implanting Ti tubes containing a confluent layer of porcine EPCs in the inferior vena cava (IVC) of pigs, we tested the improved biocompatibility of the cell-seeded surface in the prothrombotic environment of a large animal model and compared it to unmodified bare metal surfaces5,6,7 (Figure 1). This method can be used to endothelialize devices within minutes of implantation and test their antithrombotic function in vivo. Peripheral blood was obtained from 50 kg Yorkshire swine and its mononuclear cell fraction cultured to isolate EPCs4,8. Ti tubes (9.4 mm ID) were pre-cut into three 4.5 cm longitudinal sections and reassembled with heat-shrink tubing. A seeding device was built, which allows for slow rotation of the Ti tubes. We performed a laparotomy on the pigs and externalized the intestine and urinary bladder. Sharp and blunt dissection was used to skeletonize the IVC from its bifurcation distal to the right renal artery proximal. The Ti tubes were then filled with fluorescently-labeled autologous EPC suspension and rotated at 10 RPH x 30 min to achieve uniform cell-coating9. After administration of 100 USP/ kg heparin, both ends of the IVC and a lumbar vein were clamped. A 4 cm veinotomy was performed and the device inserted and filled with phosphate-buffered saline. As the veinotomy was closed with a 4-0 Prolene running suture, one clamp was removed to de-air the IVC. At the end of the procedure, the fascia was approximated with 0-PDS (polydioxanone suture), the subcutaneous space closed with 2-0 Vicryl and the skin stapled closed. After 3 - 21 days, pigs were euthanized, the device explanted en-block and fixed. The Ti

  5. Enhanced Expression of Stim, Orai, and TRPC Transcripts and Proteins in Endothelial Progenitor Cells Isolated from Patients with Primary Myelofibrosis

    PubMed Central

    Dragoni, Silvia; Laforenza, Umberto; Bonetti, Elisa; Reforgiato, Marta; Poletto, Valentina; Lodola, Francesco; Bottino, Cinzia; Guido, Daniele; Rappa, Alessandra; Pareek, Sumedha; Tomasello, Mario; Guarrera, Maria Rosa; Cinelli, Maria Pia; Aronica, Adele; Guerra, Germano; Barosi, Giovanni; Tanzi, Franco

    2014-01-01

    Background An increase in the frequency of circulating endothelial colony forming cells (ECFCs), the only subset of endothelial progenitor cells (EPCs) truly belonging to the endothelial phenotype, occurs in patients affected by primary myelofibrosis (PMF). Herein, they might contribute to the enhanced neovascularisation of fibrotic bone marrow and spleen. Store-operated Ca2+ entry (SOCE) activated by the depletion of the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ store drives proliferation in ECFCs isolated from both healthy donors (N-ECFCs) and subjects suffering from renal cellular carcinoma (RCC-ECFCs). SOCE is up-regulated in RCC-ECFCs due to the over-expression of its underlying molecular components, namely Stim1, Orai1, and TRPC1. Methodology/Principal Findings We utilized Ca2+ imaging, real-time polymerase chain reaction, western blot analysis and functional assays to evaluate molecular structure and the functional role of SOCE in ECFCs derived from PMF patients (PMF-ECFCs). SOCE, induced by either pharmacological (i.e. cyclopiazonic acid or CPA) or physiological (i.e. ATP) stimulation, was significantly higher in PMF-ECFCs. ATP-induced SOCE was inhibited upon blockade of the phospholipase C/InsP3 signalling pathway with U73111 and 2-APB. The higher amplitude of SOCE was associated to the over-expression of the transcripts encoding for Stim2, Orai2–3, and TRPC1. Conversely, immunoblotting revealed that Stim2 levels remained constant as compared to N-ECFCs, while Stim1, Orai1, Orai3, TRPC1 and TRPC4 proteins were over-expressed in PMF-ECFCs. ATP-induced SOCE was inhibited by BTP-2 and low micromolar La3+ and Gd3+, while CPA-elicited SOCE was insensitive to Gd3+. Finally, BTP-2 and La3+ weakly blocked PMF-ECFC proliferation, while Gd3+ was ineffective. Conclusions Two distinct signalling pathways mediate SOCE in PMF-ECFCs; one is activated by passive store depletion and is Gd3+-resistant, while the other one is regulated by the InsP3-sensitive Ca2

  6. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    NASA Astrophysics Data System (ADS)

    Chen, Huiqing; Li, Xiaojing; Zhao, Yuancong; Li, Jingan; Chen, Jiang; Yang, Ping; Maitz, Manfred F.; Huang, Nan

    2015-08-01

    A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  7. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme

    PubMed Central

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Rosso, Mario Del; Fibbi, Gabriella

    2014-01-01

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of “targeted therapies” as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a “personalized therapy”, without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  8. Melanoma cell therapy: Endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme.

    PubMed

    Laurenzana, Anna; Biagioni, Alessio; D'Alessio, Silvia; Bianchini, Francesca; Chillà, Anastasia; Margheri, Francesca; Luciani, Cristina; Mazzanti, Benedetta; Pimpinelli, Nicola; Torre, Eugenio; Danese, Silvio; Calorini, Lido; Del Rosso, Mario; Fibbi, Gabriella

    2014-06-15

    The receptor for the urokinase-type plasminogen activator (uPAR) accounts for many features of cancer progression, and is therefore considered a target for anti-tumoral therapy. Only full length uPAR mediates tumor progression. Matrix-metallo-proteinase-12 (MMP12)-dependent uPAR cleavage results into the loss of invasion properties and angiogenesis. MMP12 can be employed in the field of "targeted therapies" as a biological drug to be delivered directly in patient's tumor mass. Endothelial Progenitor Cells (EPCs) are selectively recruited within the tumor and could be used as cellular vehicles for delivering anti-cancer molecules. The aim of our study is to inhibit cancer progression by engeneering ECFCs, a subset of EPC, with a lentivirus encoding the anti-tumor uPAR-degrading enzyme MMP12. Ex vivo manipulated ECFCs lost the capacity to perform capillary morphogenesis and acquired the anti-tumor and anti-angiogenetic activity. In vivo MMP12-engineered ECFCs cleaved uPAR within the tumor mass and strongly inhibited tumor growth, tumor angiogenesis and development of lung metastasis. The possibility to exploit tumor homing and activity of autologous MMP12-engineered ECFCs represents a novel way to combat melanoma by a "personalized therapy", without rejection risk. The i.v. injection of radiolabelled MMP12-ECFCs can thus provide a new theranostic approach to control melanoma progression and metastasis. PMID:25003596

  9. Evaluation of the circulating CD34+, CD309+, and endothelial progenitor cells in patients with first attack of optic neuritis

    PubMed Central

    Etemadifar, Masoud; Dehghani, Leila; Ganji, Hamid; Soleimani, Reza; Talebi, Maedeh; Eskandari, Nahid; Samani, Fazel Sahraneshin; Meamar, Rokhsareh

    2015-01-01

    Background: Endothelial progenitor cells (EPCs) are present in circulation and contribute to vasculogenesis in adults. The aim of the present study was to determine the number of circulating EPCs in patients with optic neuritis (ON). Materials and Methods: Fifty patients with ON were diagnosed by expert neurologist and optometrist at the Feiz Hospital, Isfahan, Iran (2012–2013). Blood samples were collected from ON patients in the first attack. The number of EPCs was measured by flow cytometry through the assessment of CD34+ and CD309+ in patients and healthy individuals. Results: With using flow cytometry, CD34+ and CD309+ cells detected in peripheral blood cells of patients (n = 50) with ON, and healthy individuals (n = 30). Patients with ON had (mean = 66.71 ± 17.82) CD34+ and CD309+ cells compared with healthy controls (mean = 28.72 ± 22.46). In addition, there was no significant difference in CD309+ cells in both groups. Conclusion: This study showed elevated CD34+ and CD309+ cells in the early stage of the disease. Regarded to EPC increment in neural repair, it expected the EPC level be increased in these patients, but no detectable differences were observed among both markers in healthy and patient with first attack. PMID:26380236

  10. The biphasic effects of oxidized-low density lipoprotein on the vasculogenic function of endothelial progenitor cells.

    PubMed

    Lin, Feng-Yen; Tsao, Nai-Wen; Shih, Chun-Ming; Lin, Yi-Wen; Yeh, Jong-Shiua; Chen, Jaw-Wen; Nakagami, Hironori; Morishita, Ryuichi; Sawamura, Tatsuya; Huang, Chun-Yao

    2015-01-01

    Late-outgrowth endothelial progenitor cells (EPCs) are stress-resistant and responsible for reparative functions in the cardiovascular system. Oxidized-LDL (oxLDL) plays a critical role in cardiovascular disease pathogenesis. However, it is largely unknown what the impacts of oxLDL are on late-outgrowth EPCs. This study aimed to investigate the concentration-related effects of oxLDL on EPC functions and related angiogenesis, in vitro and in vivo. In this study, early and late-outgrowth EPCs were generated from circulating human mononuclear cells. oxLDL may regulate EPC vasculogenic function via the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Lower concentrations (5 μg/mL) of oxLDL can potentiate EPC tube formation in vitro and in vivo by activating eNOS mechanisms, which are mediated by p38 MAPK- and SAPK/JNK-related pathways. Higher concentrations of oxLDL (10-50 μg/mL) impaired EPC function via the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathways and consequent inhibition of eNOS activity, which could be reversed by anti-oxidants (diphenylene iodonium and apocynin) and gp91phox siRNA. In conclusion, oxLDL has concentration-dependent biphasic effects on human late-outgrowth EPC tube formation in vitro and in vivo. PMID:26017136

  11. Exogenous hTERT gene transfected endothelial progenitor cells from bone marrow promoted angiogenesis in ischemic myocardium of rats

    PubMed Central

    Li, Shang-Hai; Wang, Dan-Dan; Xu, Yun-Jun; Ma, Guo-Dong; Li, Xing-Yue; Liang, Wei-Jun

    2015-01-01

    Objective: To explore the biological behavior and the revascularizative ability of endothelial progenitor cells (EPCs) transfected with human telomerase reverse transcriptase (hTERT) gene. Methods: EPCs were isolated from mononuclear cells in bone marrow by using the method of density gradient centrifugation, then cultured with differential velocity adherent method, EPCs were transfected by recombinant plasmid carrying GFP report gene EGFP-hTERT. The EPCs secretion and proliferation ability were detected before and after transfection. The expression of EPCs mRNA were detected by RT-PCR before and after transfection. The new capillaries of infarct area were observed. Results: After transgenesis, the proliferation of EPCs were increased, and the secretion of NO, LDH, iNOS by EPCs were significantly increased compared to the non-transgenesis group. After transplanted the transfected EPCs into the ischemic myocardial of rats, revascularization were increased obviously. Conclusion: EPCs maintained the original biological characteristics after transfecting exogenous hTER gene, the proliferation and survival rate were up-regulated significantly, and the revascularization ability of EPCs were significantly strengthen. PMID:26550433

  12. Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation.

    PubMed

    Du, Yibin; Zhang, Shuo; Yu, Tao; Du, Gongwen; Zhang, Hui; Yin, Zongsheng

    2016-09-01

    The present study aimed to determine whether co-culture with bone marrow‑derived endothelial progenitor cells (EPCs) affects the proliferation and differentiation of spinal cord-derived neural stem cells (NSCs), and to investigate the underlying mechanism. The proliferation and differentiation of the NSCs were evaluated by an MTT cell proliferation and cytotoxicity assay, and immunofluorescence, respectively. The number of neurospheres and the number of β‑tubulin III‑positive cells were detected by microscopy. The wingless‑type MMTV integration site family, member 3a (Wnt3a)/β-catenin signaling pathway was analyzed by western blot analysis and reverse transcription‑quantitative polymerase chain reaction to elucidate the possible mechanisms of EPC‑mediated NSC proliferation and differentiation. The results revealed that co‑culture with EPCs significantly induced NSC proliferation and differentiation. In addition, co‑culture with EPCs markedly induced the expression levels of Wnt3a and β‑catenin and inhibited the phosphorylation of glycogen synthase kinase 3β (GSK‑3β). By contrast, Wnt3a knockdown using a short hairpin RNA plasmid in the EPCs reduced EPC‑mediated NSC proliferation and differentiation, accompanied by inhibition of the EPC‑mediated expression of β‑catenin, and its phosphorylation and activation of GSK‑3β. Taken together, the findings of the present study demonstrated that Wnt3a was critical for EPC‑mediated NSC proliferation and differentiation. PMID:27484039

  13. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. PMID:26616141

  14. Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells

    PubMed Central

    Dai, Bingyan; Pan, Qunwen; Li, Zhanghua; Zhao, Mingyan; Liao, Xiaorong; Wu, Keng; Ma, Xiaotang

    2016-01-01

    Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment. PMID:27190523

  15. The Biphasic Effects of Oxidized-Low Density Lipoprotein on the Vasculogenic Function of Endothelial Progenitor Cells

    PubMed Central

    Lin, Feng-Yen; Tsao, Nai-Wen; Shih, Chun-Ming; Lin, Yi-Wen; Yeh, Jong-Shiua; Chen, Jaw-Wen; Nakagami, Hironori; Morishita, Ryuichi; Sawamura, Tatsuya; Huang, Chun-Yao

    2015-01-01

    Late-outgrowth endothelial progenitor cells (EPCs) are stress-resistant and responsible for reparative functions in the cardiovascular system. Oxidized-LDL (oxLDL) plays a critical role in cardiovascular disease pathogenesis. However, it is largely unknown what the impacts of oxLDL are on late-outgrowth EPCs. This study aimed to investigate the concentration-related effects of oxLDL on EPC functions and related angiogenesis, in vitro and in vivo. In this study, early and late-outgrowth EPCs were generated from circulating human mononuclear cells. oxLDL may regulate EPC vasculogenic function via the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Lower concentrations (5 μg/mL) of oxLDL can potentiate EPC tube formation in vitro and in vivo by activating eNOS mechanisms, which are mediated by p38 MAPK- and SAPK/JNK-related pathways. Higher concentrations of oxLDL (10-50 μg/mL) impaired EPC function via the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathways and consequent inhibition of eNOS activity, which could be reversed by anti-oxidants (diphenylene iodonium and apocynin) and gp91phox siRNA. In conclusion, oxLDL has concentration-dependent biphasic effects on human late-outgrowth EPC tube formation in vitro and in vivo. PMID:26017136

  16. Endothelial Cells Mediate Islet-Specific Maturation of Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells

    PubMed Central

    Jaramillo, Maria; Mathew, Shibin; Mamiya, Hikaru; Goh, Saik Kia

    2015-01-01

    It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell–cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis. PMID:24943736

  17. The GroEL protein of Porphyromonas gingivalis accelerates tumor growth by enhancing endothelial progenitor cell function and neovascularization.

    PubMed

    Lin, F-Y; Huang, C-Y; Lu, H-Y; Shih, C-M; Tsao, N-W; Shyue, S-K; Lin, C-Y; Chang, Y-J; Tsai, C-S; Lin, Y-W; Lin, S-J

    2015-06-01

    Porphyromonas gingivalis is a bacterial species that causes destruction of periodontal tissues. Additionally, previous evidence indicates that GroEL from P. gingivalis may possess biological activities involved in systemic inflammation, especially inflammation involved in the progression of periodontal diseases. The literature has established a relationship between periodontal disease and cancer. However, it is unclear whether P. gingivalis GroEL enhances tumor growth. Here, we investigated the effects of P. gingivalis GroEL on neovasculogenesis in C26 carcinoma cell-carrying BALB/c mice and chick eggs in vivo as well as its effect on human endothelial progenitor cells (EPC) in vitro. We found that GroEL treatment accelerated tumor growth (tumor volume and weight) and increased the mortality rate in C26 cell-carrying BALB/c mice. GroEL promoted neovasculogenesis in chicken embryonic allantois and increased the circulating EPC level in BALB/c mice. Furthermore, GroEL effectively stimulated EPC migration and tube formation and increased E-selectin expression, which is mediated by eNOS production and p38 mitogen-activated protein kinase activation. Additionally, GroEL may enhance resistance against paclitaxel-induced cell cytotoxicity and senescence in EPC. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to the neovasculogenesis of tumor cells and resulting in accelerated tumor growth. PMID:25220060

  18. Tumor Necrosis Factor α Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB.

    PubMed

    Prisco, Anthony R; Hoffmann, Brian R; Kaczorowski, Catherine C; McDermott-Roe, Chris; Stodola, Timothy J; Exner, Eric C; Greene, Andrew S

    2016-07-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a coculture assay where TNFα treated EPCs were tracked while migrating toward vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. Stem Cells 2016;34:1922-1933. PMID:26867147

  19. Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation

    PubMed Central

    Du, Yibin; Zhang, Shuo; Yu, Tao; Du, Gongwen; Zhang, Hui; Yin, Zongsheng

    2016-01-01

    The present study aimed to determine whether co-culture with bone marrow-derived endothelial progenitor cells (EPCs) affects the proliferation and differentiation of spinal cord-derived neural stem cells (NSCs), and to investigate the underlying mechanism. The proliferation and differentiation of the NSCs were evaluated by an MTT cell proliferation and cytotoxicity assay, and immunofluorescence, respectively. The number of neurospheres and the number of β-tubulin III-positive cells were detected by microscopy. The wingless-type MMTV integration site family, member 3a (Wnt3a)/β-catenin signaling pathway was analyzed by western blot analysis and reverse transcription-quantitative polymerase chain reaction to elucidate the possible mechanisms of EPC-mediated NSC proliferation and differentiation. The results revealed that co-culture with EPCs significantly induced NSC proliferation and differentiation. In addition, co-culture with EPCs markedly induced the expression levels of Wnt3a and β-catenin and inhibited the phosphorylation of glycogen synthase kinase 3β (GSK-3β). By contrast, Wnt3a knockdown using a short hairpin RNA plasmid in the EPCs reduced EPC-mediated NSC proliferation and differentiation, accompanied by inhibition of the EPC-mediated expression of β-catenin, and its phosphorylation and activation of GSK-3β. Taken together, the findings of the present study demonstrated that Wnt3a was critical for EPC-mediated NSC proliferation and differentiation. PMID:27484039

  20. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications

    PubMed Central

    Fortunato, Tiago M.; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A.; Pula, Giordano

    2016-01-01

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs. PMID:27141997

  1. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    PubMed

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-01-01

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs. PMID:27141997

  2. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents

    PubMed Central

    Shaked, Yuval; Henke, Erik; Roodhart, Jeanine; Mancuso, Patrizia; Langenberg, Marlies; Colleoni, Marco; Daenen, Laura G.; Man, Shan; Xu, Ping; Emmenegger, Urban; Tang, Terence; Zhu, Zhenping; Witte, Larry; Strieter, Robert M.; Bertolini, Francesco; Voest, Emile; Benezra, Robert; Kerbel, Robert S.

    2008-01-01

    SUMMARY Several hypotheses have been proposed to explain how antiangiogenic drugs enhance the treatment efficacy of cytotoxic chemotherapy including impairing the ability of chemotherapy-responsive tumors to regrow after therapy. With respect to the latter, we show that certain chemotherapy drugs, e.g. paclitaxel, can rapidly induce pro-angiogenic bone marrow derived circulating endothelial cell (CEP) mobilization, and subsequent tumor homing, whereas others, e.g. gemcitabine, did not. Acute CEP mobilization was mediated, at least in part, by systemic induction of SDF-1α and could be prevented by various procedures such as treatment with anti-VEGFR2 blocking antibodies or by paclitaxel treatment in CEP-deficient Id-mutant mice, both of which resulted in enhanced anti-tumor effects mediated by paclitaxel, but not gemcitabine. PMID:18772115

  3. Grain and Bean Lysates Improve Function of Endothelial Progenitor Cells from Human Peripheral Blood: Involvement of the Endogenous Antioxidant Defenses

    PubMed Central

    Lucchesi, Daniela; Russo, Rossella; Gabriele, Morena; Longo, Vincenzo; Del Prato, Stefano; Penno, Giuseppe; Pucci, Laura

    2014-01-01

    Increased oxidative stress contributes to the functional impairment of endothelial progenitor cells (EPCs), the pivotal players in the servicing of the endothelial cell lining. Several evidences suggest that decreasing oxidative stress by natural compounds with antioxidant properties may improve EPCs bioactivity. Here, we investigated the effects of Lisosan G (LG), a Triticum Sativum grain powder, and Lady Joy (LJ), a bean lysate, on function of EPCs exposed to oxidative stress. Peripheral blood mononuclear cells were isolated and plated on fibronectin-coated culture dishes; adherent cells, identified as early EPCs, were pre-treated with different concentrations of LG and LJ and incubated with hydrogen peroxide (H2O2). Viability, senescence, adhesion, ROS production and antioxidant enzymes gene expression were evaluated. Lysate-mediated Nrf-2 (nuclear factor (erythroid-derived 2)-like 2)/ARE (antioxidant response element) activation, a modulator of oxidative stress, was assessed by immunocytochemistry. Lady Joy 0.35–0.7 mg/ml increases EPCs viability; pre-treatment with either LG 0.7 mg/ml and LJ 0.35–0.7 mg/ml protect EPCs viability against H2O2-induced injury. LG 0.7 and LJ 0.35–0.7 mg/ml improve EPCs adhesion; pre-treatment with either LG 0.35 and 0.7 mg/ml or LJ 0.35, 0.7 and 1.4 mg/ml preserve adhesiveness of EPCs exposed to H2O2. Senescence is attenuated in EPCs incubated with lysates 0.35 mg/ml. After exposure to H2O2, LG pre-treated cells show a lower senescence than untreated EPCs. Lysates significantly decrease H2O2-induced ROS generation. Both lysates increase glutathione peroxidase-1 and superoxide dismutase-2 (SOD-2) expression; upon H2O2 exposure, pre-treatment with LJ allows higher SOD-2 expression. Heme oxigenase-1 increases in EPCs pre-treated with LG even upon H2O2 exposure. Finally, incubation with LG 0.7 mg/ml results in Nrf-2 translocation into the nucleus both at baseline and after the oxidative challenge. Our data suggest a protective

  4. Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone

    PubMed Central

    Wang, L.; Du, F.; Zhang, H.M.; Zhang, W.J.; Wang, H.X.

    2015-01-01

    Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM) patients. We investigated whether circulating endothelial progenitor cells (cEPCs) could be a biomarker for predicting patient response in the first cycle of chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs and stromal cell-derived factor-1α (SDF-1α) in 46 MM patients in the first cycle of treatment with bortezomib and dexamethasone, and investigated clinical relevance based on patient response after four 21-day cycles. The mononuclear cell fraction was analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study population was divided into 3 groups according to the response to chemotherapy: good responders (n=16), common responders (n=12), and non-responders (n=18). There were no significant differences among these groups at baseline day 1 (P>0.05). cEPC levels decreased slightly at day 21 (8.2±3.3 cEPCs/μL) vs day 1 (8.4±2.9 cEPCs/μL) in good responders (P>0.05). In contrast, cEPC levels increased significantly in the other two groups (P<0.05). SDF-1α changes were closely related to changes in cEPCs. These findings indicate that change in cEPCs at day 21 in the first cycle might be considered a noninvasive biomarker for predicting a later response, and extent of change could help decide whether to continue this costly chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for improved response and outcomes in MM patients. PMID:26108099

  5. Preconditioned endothelial progenitor cells reduce formation of melanoma metastases through SPARC-driven cell-cell interactions and endocytosis.

    PubMed

    Defresne, Florence; Bouzin, Caroline; Grandjean, Marie; Dieu, Marc; Raes, Martine; Hatzopoulos, Antonis K; Kupatt, Christian; Feron, Olivier

    2011-07-15

    Tumor progression is associated with the release of signaling substances from the primary tumor into the bloodstream. Tumor-derived cytokines are known to promote the mobilization and the recruitment of cells from the bone marrow, including endothelial progenitor cells (EPC). Here, we examined whether such paracrine influence could also influence the capacity of EPC to interfere with circulating metastatic cells. We therefore consecutively injected EPC prestimulated by tumor-conditioned medium (EPC-CM) and luciferase-expressing B16 melanoma cells to mice. A net decrease in metastases spreading (vs. nonstimulated EPC) led us to carry out a 2-dimensional difference gel electrophoresis (2D-DIGE) proteomic study to identify possible mediators of EPC-driven protection. Among 33 proteins exhibiting significant changes in expression, secreted protein, acidic and rich in cysteine (SPARC) presented the highest induction after EPC exposure to CM. We then showed that contrary to control EPC, SPARC-silenced EPC were not able to reduce the extent of metastases when injected with B16 melanoma cells. Using adhesion tests and the hanging drop assay, we further documented that cell-cell interactions between EPC-CM and melanoma cells were promoted in a SPARC-dependent manner. This interaction led to the engulfment of melanoma cells by EPC-CM, a process prevented by SPARC silencing and mimicked by recombinant SPARC. Finally, we showed that contrary to melanoma cells, the prometastatic human breast cancer cell line MDA-MB231-D3H2 reduced SPARC expression in human EPC and stimulated metastases spreading. Our findings unravel the influence of tumor cells on EPC phenotypes through a SPARC-driven accentuation of macrophagic capacity associated with limitations to metastatic spread. PMID:21616936

  6. Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes.

    PubMed

    Chien, Szu-Yu; Huang, Chun-Yin; Tsai, Chun-Hao; Wang, Shih-Wei; Lin, Yu-Min; Tang, Chih-Hsin

    2016-05-01

    Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis. PMID:26811540

  7. Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice.

    PubMed

    Sun, Yuan-Yuan; Bai, Wen-Wu; Wang, Bo; Lu, Xiao-Ting; Xing, Yi-Fan; Cheng, Wen; Liu, Xiao-Qiong; Zhao, Yu-Xia

    2014-05-01

    Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2(-/-) than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2(-/-) mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2(-/-) mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2(-/-) EPC intramyocardially into mice with induced MI. Per2(-/-) reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2(-/-) EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo. PMID:24621388

  8. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. PMID:27016579

  9. Development of a Xeno-Free Autologous Culture System for Endothelial Progenitor Cells Derived from Human Umbilical Cord Blood

    PubMed Central

    Park, Soon-Jung; Kim, Hojin; Bae, Daekyeong

    2013-01-01

    Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs) in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs), we isolated extracts (UCE) and collagen (UC-collagen) from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases. PMID:24086472

  10. Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes

    PubMed Central

    Chien, Szu-Yu; Huang, Chun-Yin; Tsai, Chun-Hao; Wang, Shih-Wei

    2016-01-01

    Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis. PMID:26811540

  11. Cytoprotective effect of dieckol on human endothelial progenitor cells (hEPCs) from oxidative stress-induced apoptosis.

    PubMed

    Lee, S H; Kim, J Y; Yoo, S Y; Kwon, S M

    2013-07-01

    Although endothelial progenitor cells (EPCs) have been used to promote revascularization after peripheral or myocardial ischemia, excess amounts of reactive oxygen species (ROS) are often involved in senescence and apoptosis of EPCs, thereby causing defective neovascularization and reduced or failed recovery. Here, we examined the cytoprotective effect of Ecklonia cava-derived antioxidant dieckol (DK) on oxidative stress-induced apoptosis in EPCs to improve EPC bioactivity for vessel repair. Although H2O2 (10 (- 3) M) increased the intracellular ROS level in EPCs, DK (10ug/ml) pretreatment suppressed the H2O2-induced ROS increase and drastically reduced the ratios of apoptotic cells. H2O2-induced ROS increased the phosphorylation of p38 MAPK and JNK; this was inhibited by DK pretreatment. H2O2 treatment increased the phosphorylation of NF-κB, which was blocked by pretreatment with SB 203580, a p38 MAPK inhibitor, or SP 600125, a JNK inhibitor. H2O2 decreased the cellular levels of Bcl-2 and c-IAPs, cellular inhibitors of apoptosis proteins, but increased caspase-3 activation. However, all these effects were inhibited by pretreatment with DK. Injection of DK-mixed EPCs (DK + EPCs) into myocardial ischemic sites in vivo induced cellular proliferation and survival of cells at the ischemic sites and, thereby, enhanced the secretion of angiogenic cytokines at the ischemic sites. These results show that DK + EPC exhibit markedly enhanced anti-apoptotic and antioxidative capabilities, unlike that shown by EPCs alone; thus, they contribute to improved repair of ischemic myocardial injury through cell survival and angiogenic cytokine production. PMID:23607503

  12. Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion.

    PubMed

    Poleganov, Marco Alexander; Eminli, Sarah; Beissert, Tim; Herz, Stephanie; Moon, Jung-Il; Goldmann, Johanna; Beyer, Arianne; Heck, Rosario; Burkhart, Isabell; Barea Roldan, Diana; Türeci, Özlem; Yi, Kevin; Hamilton, Brad; Sahin, Ugur

    2015-11-01

    mRNA reprogramming results in the generation of genetically stable induced pluripotent stem (iPS) cells while avoiding the risks of genomic integration. Previously published mRNA reprogramming protocols have proven to be inconsistent and time-consuming and mainly restricted to fibroblasts, thereby demonstrating the need for a simple but reproducible protocol applicable to various cell types. So far there have been no published reports using mRNA to reprogram any cell type derived from human blood. Nonmodified synthetic mRNAs are immunogenic and activate cellular defense mechanisms, which can lead to cell death and inhibit mRNA translation upon repetitive transfection. Hence, to overcome RNA-related toxicity we combined nonmodified reprogramming mRNAs (OCT4, SOX2, KLF4, cMYC, NANOG, and LIN28 [OSKMNL]) with immune evasion mRNAs (E3, K3, and B18R [EKB]) from vaccinia virus. Additionally, we included mature, double-stranded microRNAs (miRNAs) from the 302/367 cluster, which are known to enhance the reprogramming process, to develop a robust reprogramming protocol for the generation of stable iPS cell lines from both human fibroblasts and human blood-outgrowth endothelial progenitor cells (EPCs). Our novel combination of RNAs enables the cell to tolerate repetitive transfections for the generation of stable iPS cell colonies from human fibroblasts within 11 days while requiring only four transfections. Moreover, our method resulted in the first known mRNA-vectored reprogramming of human blood-derived EPCs within 10 days while requiring only eight daily transfections. PMID:26381596

  13. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis.

    PubMed

    Zou, Gang-Ming; Karikari, Collins; Kabe, Yasuaki; Handa, Hiroshi; Anders, Robert A; Maitra, Anirban

    2009-04-01

    The apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape-1/Ref-1) is a multi-functional protein, involved in DNA repair and the activation of redox-sensitive transcription factors. The Ape-1/Ref-1 redox domain acts as a cytoprotective element in normal endothelial cells, mitigating the deleterious effects of apoptotic stimuli through induction of survival signals. We explored the role of the Ape-1/Ref-1 redox domain in the maintenance of tumor-associated endothelium, and of endothelial progenitor cells (EPCs), which contribute to tumor angiogenesis. We demonstrate that E3330, a small molecule inhibitor of the Ape-1/Ref-1 redox domain, blocks the in vitro growth of pancreatic cancer-associated endothelial cells (PCECs) and EPCs, which is recapitulated by stable expression of a dominant-negative redox domain mutant. Further, E3330 blocks the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into CD31(+) endothelial progeny. Exposure of PCECs to E3330 results in a reduction of H-ras expression and intracellular nitric oxide (NO) levels, as well as decreased DNA-binding activity of the hypoxia-inducible transcription factor, HIF-1alpha. E3330 also reduces secreted and intracellular vascular endothelial growth factor expression by pancreatic cancer cells, while concomitantly downregulating the cognate receptor Flk-1/KDR on PCECs. Inhibition of the Ape-1/Ref-1 redox domain with E3330 or comparable angiogenesis inhibitors might be a potent therapeutic strategy in solid tumors. PMID:19097035

  14. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    SciTech Connect

    Zhang, Xiaoping; Mao, Haian; Chen, Jin-yuan; Wen, Shengjun; Li, Dan; Ye, Meng; Lv, Zhongwei

    2013-02-15

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) as a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs.

  15. Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors

    PubMed Central

    Bain, Jennifer M.; Moore, Lisamarie; Ren, Zhihua; Simonishvili, Sophia; Levison, Steven W.

    2012-01-01

    Episodes of neonatal hypoxia-ischemia (H-I) are strongly associated with cerebral palsy and a wide spectrum of other neurological deficits in children. Two key processes required to repair damaged organs are to amplify the number of precursors capable of regenerating damaged cells and to direct their differentiation towards the cell types that need to be replaced. Since hypoxia induces vascular endothelial growth factor (VEGF) production, it is logical to predict that VEGFs are key mediators of tissue repair after H-I injury. The goal of this study was to test the hypothesis that certain VEGF isoforms increase during recovery from neonatal H-I and that they would differentially affect the proliferation and differentiation of subventricular zone (SVZ) progenitors. During the acute recovery period from H-I both VEGF-A and VEGF-C were transiently induced in the SVZ, which correlated with an increase in SVZ blood vessel diameter. These growth factors were produced by glial progenitors, astrocytes and to a lesser extent, microglia. VEGF-A promoted the production of astrocytes from SVZ glial progenitors while VEGF-C stimulated the proliferation of both early and late oligodendrocyte progenitors, which was abolished by blocking the VEGFR-3. Altogether, these results provide new insights into the signals that coordinate the reactive responses of the progenitors in the SVZ to neonatal H-I. Our studies further suggest that therapeutics that extend VEGF-C production and/or agonists that stimulate the VEGFR-3 will promote oligodendrocyte progenitor cell development to enhance myelination after perinatal brain injury. PMID:23565129

  16. Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury

    PubMed Central

    Sudo, Takao; Yokota, Takafumi; Okuzaki, Daisuke; Ueda, Tomoaki; Ichii, Michiko; Ishibashi, Tomohiko; Isono, Tomomi; Habuchi, Yoko; Oritani, Kenji; Kanakura, Yuzuru

    2016-01-01

    Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling

  17. Placental hypoxia, endoplasmic reticulum stress and maternal endothelial sensitisation by sFLT1 in pre-eclampsia

    PubMed Central

    Charnock-Jones, D. Stephen

    2016-01-01

    The human placenta is a multifunctional organ that grows and adapts to increasing fetal demand and fluctuations in the intrauterine environment. It is subjected to physiological and pathological changes in local oxygenation, both of which induce adaptive changes. In early pregnancy a low PO2 is the normal physiological state and this is not hypoxic—there is no perturbation of ATP/ADP ratios and, if the placenta is sampled very rapidly, little HIF1α is detected in human first-trimester placental villi. Nonetheless, HIF1α can be increased and activated by culture. However, the placenta does show evidence of stress under pathological conditions. For example, in cases of pre-eclampsia where delivery by caesarean section is necessitated for maternal well-being before 34 weeks’ gestation, placental endoplasmic reticulum stress is evident. Cases delivered ≥34 weeks are indistinguishable from normal term controls. One consequence of placental stress, whether oxidative, related to the endoplasmic reticulum or immunological, is that factors are released into the maternal circulation, which affects the endothelium, leading to the maternal syndrome. Soluble FLT1 may contribute directly to this and the most likely mechanism is direct action on the maternal endothelium. sFLT1 is able to form a heterodimer with cell surface VEGF receptors and is therefore able to have a dominant negative effect (in addition to acting as a competitive inhibitor by simply binding vascular endothelial growth factor A [VEGFA] and placental growth factor [PlGF]). This leads in vitro to the sensitisation of endothelial cells to low levels of TNFα. PMID:26228018

  18. Placental hypoxia, endoplasmic reticulum stress and maternal endothelial sensitisation by sFLT1 in pre-eclampsia.

    PubMed

    Charnock-Jones, D Stephen

    2016-04-01

    The human placenta is a multifunctional organ that grows and adapts to increasing fetal demand and fluctuations in the intrauterine environment. It is subjected to physiological and pathological changes in local oxygenation, both of which induce adaptive changes. In early pregnancy a low PO2 is the normal physiological state and this is not hypoxic-there is no perturbation of ATP/ADP ratios and, if the placenta is sampled very rapidly, little HIF1α is detected in human first-trimester placental villi. Nonetheless, HIF1α can be increased and activated by culture. However, the placenta does show evidence of stress under pathological conditions. For example, in cases of pre-eclampsia where delivery by caesarean section is necessitated for maternal well-being before 34 weeks' gestation, placental endoplasmic reticulum stress is evident. Cases delivered ≥34 weeks are indistinguishable from normal term controls. One consequence of placental stress, whether oxidative, related to the endoplasmic reticulum or immunological, is that factors are released into the maternal circulation, which affects the endothelium, leading to the maternal syndrome. Soluble FLT1 may contribute directly to this and the most likely mechanism is direct action on the maternal endothelium. sFLT1 is able to form a heterodimer with cell surface VEGF receptors and is therefore able to have a dominant negative effect (in addition to acting as a competitive inhibitor by simply binding vascular endothelial growth factor A [VEGFA] and placental growth factor [PlGF]). This leads in vitro to the sensitisation of endothelial cells to low levels of TNFα. PMID:26228018

  19. Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose

    PubMed Central

    Zeng, Yao-Chi; Mu, Gui-Ping; Huang, Shu-Fen; Zeng, Xue-Hui; Cheng, Hong

    2014-01-01

    BACKGROUND/OBJECTIVES The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs. MATERIALS/METHODS Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and 50 µg/mL of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK. RESULTS The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and 50 µg/mL of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury. CONCLUSIONS Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of

  20. Association between Microalbuminuria Predicting In-Stent Restenosis after Myocardial Infarction and Cellular Senescence of Endothelial Progenitor Cells

    PubMed Central

    Ota, Hisanobu; Takehara, Naofumi; Aonuma, Tatsuya; Kabara, Maki; Matsuki, Motoki; Yamauchi, Atsushi; Takeuchi, Toshiharu; Kawabe, Jun-ichi; Hasebe, Naoyuki

    2015-01-01

    Objective Relationship between microalbuminuria and worse outcome of coronary artery disease patients is discussed, but its underlying pathophysiological mechanism remains unclear. We investigated the role of microalbuminuria to the function of endothelial progenitor cells (EPCs), that might affect to outcome of acute myocardial infarction (AMI) patients. Methods Forty-five AMI patients were divided into two groups according to their urinary albumin excretion: normal (n = 24) and microalbuminuria (>30 mg/day, n = 21). At day-2 and day-7 after AMI onset, circulating-EPCs (CD34+Flk1+) were quantified by flow cytometry. The number of lectin-acLDL-positive cultured-EPCs immobilized on fibronectin was determined. To assess the cellular senescence of cultured-EPCs, the expression level of sirtuin-1 mRNA and the number of SA-β-gal positive cell were evaluated. Angiographic late in-stent loss after percutaneous coronary intervention (PCI) was evaluated at a six-month follow-up. Results No significant differences in coronary risk and the extent of myocardial damage were observed between the two groups. Late in-stent loss at the six-month follow-up was significantly higher in the microalbuminuria group (normal : microalbuminuria = 0.76±0.34 : 1.18±0.57 mm, p=0.021). The number of circulating-EPCs was significantly increased in microalbuminuria group at day-7, however, improved adhesion of EPCs was observed in normal group but not in microalbuminuria group from baseline to day-7 (+3.1±8.3 : -1.3±4.4 %: p<0.05). On the other hand, in microalbuminuria group at day-7, the level of sirtuin-1 mRNA expression of cultured-EPCs was significantly decreased (7.1±8.9 : 2.5±3.7 fold, p<0.05), which was based on the negative correlation between the level of sirtuin-1 mRNA expression and the extent of microalbuminuria. The ratio of SA-β-gal-positive cells in microalbuminuria group was increased compared to that of normal group. Conclusions Microalbuminuria in AMI patients is

  1. Impact of obesity control on circulating level of endothelial progenitor cells and angiogenesis in response to ischemic stimulation

    PubMed Central

    2012-01-01

    Background and aim We tested the hypothesis that obesity reduced circulating number of endothelial progenitor cells (EPCs), angiogenic ability, and blood flow in ischemic tissue that could be reversed after obesity control. Methods 8-week-old C57BL/6J mice (n = 27) were equally divided into group 1 (fed with 22-week control diet), group 2 (22-week high fat diet), and group 3 (14-week high fat diet, followed by 8-week control diet). Critical limb ischemia (CLI) was induced at week 20 in groups 2 and 3. The animals were sacrificed at the end of 22 weeks. Results Heart weight, body weight, abdominal fat weight, serum total cholesterol level, and fasting blood sugar were highest in group 2 (all p < 0.001). The numbers of circulating EPCs (C-kit/CD31+, Sca-1/KDR + and CXCR4/CD34+) were lower in groups 1 and 2 than in group 3 at 18 h after CLI induction (p < 0.03). The numbers of differentiated EPCs (C-kit/CD31+, CXCR4/CD34+ and CD133+) from adipose tissue after 14-day cultivation were also lowest in group 2 (p < 0.001). Protein expressions of VCAM-1, oxidative index, Smad3, and TGF-β were higher, whereas the Smad1/5 and BMP-2, mitochondrial cytochrome-C SDF-1α and CXCR4 were lower in group 2 than in groups 1 and 3 (all p < 0.02). Immunofluorescent staining of CD31+ and vWF + cells, the number of small vessel (<15 μm), and blood flow through Laser Doppler scanning of ischemic area were lower in group 2 compared to groups 1 and 3 on day 14 after CLI induction (all p < 0.001). Conclusion Obesity suppressed abilities of angiogenesis and recovery from CLI that were reversed by obesity control. PMID:22568992

  2. Maternal microchimerism

    PubMed Central

    Ye, Jody; Vives-Pi, Marta; Gillespie, Kathleen M

    2014-01-01

    Increased levels of non-inherited maternal HLA alleles have been detected in the periphery of children with type 1 diabetes and an increased frequency of maternal cells have been identified in type 1 diabetes pancreas. It is now clear that the phenotype of these cells is pancreatic,1 supporting the hypothesis that maternal cells in human pancreas are derived from multipotent maternal progenitors. Here we hypothesize how increased levels of maternal cells could play a role in islet autoimmunity. PMID:25093746

  3. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury

    PubMed Central

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-01-01

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage. PMID:26447335

  4. Synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury.

    PubMed

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Chia-Wei; Handayani, Fitri; Chiang, Yi-Lun; Fan, Shih-Chen; Ho, Chien-Jung; Kuo, Yu-Min; Yang, Shang-Hsun; Chen, Yuh-Ling; Lin, Sheng-Che; Huang, Chao-Ching; Wu, Chia-Ching

    2015-01-01

    Perinatal cerebral hypoxic-ischemic (HI) injury damages the architecture of neurovascular units (NVUs) and results in neurological disorders. Here, we differentiated adipose-derived stem cells (ASCs) toward the progenitor of endothelial progenitor cells (EPCs) and neural precursor cells (NPCs) via microenvironmental induction and investigated the protective effect by transplanting ASCs, EPCs, NPCs, or a combination of EPCs and NPCs (E+N) into neonatal HI injured rat pups. The E+N combination produced significant reduction in brain damage and cell apoptosis and the most comprehensive restoration in NVUs regarding neuron number, normal astrocytes, and vessel density. Improvements in cognitive and motor functions were also achieved in injured rats with E+N therapy. Synergistic interactions to facilitate transmigration under in vitro hypoxic microenvironment were discovered with involvement of the neuropilin-1 (NRP1) signal in EPCs and the C-X-C chemokine receptor 4 (CXCR4) and fibroblast growth factor receptor 1 (FGFR1) signals in NPCs. Therefore, ASCs exhibit great potential for cell sources in endothelial and neural lineages to prevent brain from HI damage. PMID:26447335

  5. Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells

    PubMed Central

    Chiang, Kuang-Hsing; Cheng, Wan-Li; Shih, Chun-Ming; Lin, Yi-Wen; Tsao, Nai-Wen; Kao, Yung-Ta; Lin, Chih-Ting; Wu, Shinn-Chih; Huang, Chun-Yao; Lin, Feng-Yen

    2015-01-01

    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved

  6. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells.

    PubMed

    Turchan, William T; Shapiro, Ronald H; Sevigny, Garrett V; Chin-Sinex, Helen; Pruden, Benjamin; Mendonca, Marc S

    2016-08-01

    Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion

  7. Successful In Vitro Expansion and Differentiation of Cord Blood Derived CD34+ Cells into Early Endothelial Progenitor Cells Reveals Highly Differential Gene Expression

    PubMed Central

    Topcic, Denijal; Haviv, Izhak; Merivirta, Ruusu-Maaria; Agrotis, Alexander; Leitner, Ephraem; Jowett, Jeremy B.; Bode, Christoph; Lappas, Martha; Peter, Karlheinz

    2011-01-01

    Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene. PMID:21858032

  8. Data regarding association between serum osteoprotegerin level, numerous of circulating endothelial-derived and mononuclear-derived progenitor cells in patients with metabolic syndrome.

    PubMed

    Berezin, Alexander E; Kremzer, Alexander A; Berezina, Tatyana A; Martovitskaya, Yulia V; Gronenko, Elena A

    2016-09-01

    Metabolic syndrome (MetS) is defined as cluster of multiple metabolic and cardiovascular (CV) abnormalities included abdominal obesity, high-normal blood pressure, dyslipidaemia, and impaired fasting glucose tolerance that exhibits has a growing prevalence worldwide. We investigated whether an elevated level of osteoprotegerin (OPG) predicts imbalance between different phenotypes of circulating endothelial (EPCs) and mononuclear (MPCs) progenitor cells in MetS patients. We have analyzed data regarding dysmetabolic disorder subjects without known CV disease), as well as with known type two diabetes mellitus. All patients have given their informed written consent for participation in the study. This article contains data on the independent predictors of depletion in numerous of circulating EPCs and MPCs in MetS patients. The data are supplemental to our original research article describing detailed associations of elevated OPG level in MetS patients with numerous of EPCs and MPCs beyond traditional CV risk factors. PMID:27508223

  9. Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling.

    PubMed

    Patel, Jatin; Wong, Ho Yi; Wang, Weili; Alexis, Josue; Shafiee, Abbas; Stevenson, Alexander J; Gabrielli, Brian; Fisk, Nicholas M; Khosrotehrani, Kiarash

    2016-04-01

    Since the discovery of endothelial colony forming cells (ECFC), there has been significant interest in their therapeutic potential to treat vascular injuries. ECFC cultures display significant heterogeneity and a hierarchy among cells able to give rise to high proliferative versus low proliferative colonies. Here we aimed to define molecularly this in vitro hierarchy. Based on flow cytometry, CD34 expression levels distinguished two populations. Only CD34 + ECFC had the capacity to reproduce high proliferative potential (HPP) colonies on replating, whereas CD34- ECFCs formed only small clusters. CD34 + ECFCs were the only ones to self-renew in stringent single-cell cultures and gave rise to both CD34 + and CD34- cells. Upon replating, CD34 + ECFCs were always found at the centre of HPP colonies and were more likely in G0/1 phase of cell cycling. Functionally, CD34 + ECFC were superior at restoring perfusion and better engrafted when injected into ischemic hind limbs. Transcriptomic analysis identified cyclin-dependent kinase (CDK) cell cycle inhibiting genes (p16, p21, and p57), the Notch signaling pathway (dll1, dll4, hes1, and hey1), and the endothelial cytokine il33 as highly expressed in CD34 + ECFC. Blocking the Notch pathway using a γ-secretase inhibitor (DAPT) led to reduced expression of cell cycle inhibitors, increased cell proliferation followed by a loss of self-renewal, and HPP colony formation capacity reflecting progenitor exhaustion. Similarly shRNA knockdown of p57 strongly affected self-renewal of ECFC colonies. ECFC hierarchy is defined by Notch signalling driving cell cycle regulators, progenitor quiescence and self-renewal potential. Stem Cells 2016;34:902-912. PMID:26732848

  10. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    PubMed Central

    Wang, Chengyan; Tang, Xuming; Sun, Xiaomeng; Miao, Zhenchuan; Lv, Yaxin; Yang, Yanlei; Zhang, Huidan; Zhang, Pengbo; Liu, Yang; Du, Liying; Gao, Yang; Yin, Ming; Ding, Mingxiao; Deng, Hongkui

    2012-01-01

    Embryonic hematopoiesis is a complex process. Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells. However, the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs) remains unknown. Here, on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells, we demonstrated that VEGF was essential and sufficient, and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells. Significantly, we identified TGFβ as a novel signal to regulate hematopoietic development, as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation. By defining these critical signaling factors during hematopoietic differentiation, we can efficiently generate HPCs from hESCs. Our strategy could offer an in vitro model to study early human hematopoietic development. PMID:21862970

  11. Decidual vascular endothelial cells promote maternal-fetal immune tolerance by inducing regulatory T cells through canonical Notch1 signaling.

    PubMed

    Yao, Yanyi; Song, Jieping; Wang, Weipeng; Liu, Nian

    2016-05-01

    Adaptation of the maternal immune response to accommodate the semiallogeneic fetus is necessary for pregnancy success. However, the mechanisms by which the fetus avoids rejection despite expression of paternal alloantigens remain incompletely understood. Regulatory T cells (Treg cells) are pivotal for maintaining immune homeostasis, preventing autoimmune disease and fetus rejection. In this study, we found that maternal decidual vascular endothelial cells (DVECs) sustained Foxp3 expression in resting Treg cells in vitro. Moreover, under in vitro Treg cell induction condition with agonistic antibodies and transforming growth factor (TGF)-β, DVECs promoted Treg cell differentiation from non-Treg conventional T cells. Consistent with the promotion of Treg cell maintenance and differentiation, Treg cell-associated gene expression such as TGF-β, Epstein-Barr-induced gene-3, CD39 and glucocorticoid-induced tumor necrosis factor receptor was also increased in the presence of DVECs. Further study revealed that DVECs expressed Notch ligands such as Jagged-1, Delta-like protein 1 (DLL-1) and DLL-4, while Treg cells expressed Notch1 on their surface. The effects of DVECs on Treg cells was inhibited by siRNA-induced knockdown of expression of Jagged-1 and DLL-1 in DVECs. Downregulation of Notch1 in Treg cells using lentiviral shRNA transduction decreased Foxp3 expression in Treg cells. Adoptive transfer of Notch1-deficient Treg cells increased abortion rate in a murine semiallogeneic pregnancy model. Taken together, our study suggests that maternal DVECs are able to maintain decidual Treg cell identity and promote Treg cell differentiation through activation of Notch1 signal pathway in Treg cells and subsequently inhibit the immune response against semiallogeneic fetuses and preventing spontaneous abortion. PMID:26714886

  12. Cilostazol Enhances Mobilization of Circulating Endothelial Progenitor Cells and Improves Endothelium-Dependent Function in Patients at High Risk of Cardiovascular Disease.

    PubMed

    Chao, Ting-Hsing; Chen, I-Chih; Lee, Cheng-Han; Chen, Ju-Yi; Tsai, Wei-Chuan; Li, Yi-Heng; Tseng, Shih-Ya; Tsai, Liang-Miin; Tseng, Wei-Kung

    2016-08-01

    This is the first study to investigate the vasculoangiogenic effects of cilostazol on endothelial progenitor cells (EPCs) and flow-mediated dilatation (FMD) in patients at high risk of cardiovascular disease (CVD). This double-blind, placebo-controlled study included 71 patients (37 received 200 mg/d cilostazol and 34 received placebo for 12 weeks). Use of cilostazol, but not placebo, significantly increased circulating EPC (kinase insert domain receptor(+)CD34(+)) counts (percentage changes: 149.0% [67.9%-497.8%] vs 71.9% [-31.8% to 236.5%], P = .024) and improved triglyceride and high-density lipoprotein cholesterol levels (P = .002 and P = .003, respectively). Plasma levels of vascular endothelial growth factor (VEGF)-A165 and FMD significantly increased (72.5% [32.9%-120.4%] vs -5.8% [-46.0% to 57.6%], P = .001; 232.8% ± 83.1% vs -46.9% ± 21.5%, P = .003, respectively) in cilostazol-treated patients. Changes in the plasma triglyceride levels significantly inversely correlated with the changes in the VEGF-A165 levels and FMD. Cilostazol significantly enhanced the mobilization of EPCs and improved endothelium-dependent function by modifying some metabolic and angiogenic markers in patients at high risk of CVD. PMID:27401788

  13. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells

    PubMed Central

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; G, Natasha; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Hamblin, Michael R; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-01-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings. PMID:24706135

  14. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo.

    PubMed

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease. PMID:27595100

  15. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo

    PubMed Central

    Tseng, Shih-Ya; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease. PMID:27595100

  16. Cardiac shockwave therapy improves myocardial function in patients with refractory coronary artery disease by promoting VEGF and IL-8 secretion to mediate the proliferation of endothelial progenitor cells

    PubMed Central

    CAI, HONG-YAN; LI, LIN; GUO, TAO; WANG, YU; MA, TIE-KUN; XIAO, JIAN-MING; ZHAO, LING; FANG, YIN; YANG, PING; ZHAO, HU

    2015-01-01

    Cardiac shockwave therapy (CSWT) is a potential and effective remedy to promote revascularization in the ischemic myocardium of patients with refractory coronary heart disease (CHD). The technique is both safe and non-invasive; however, the underlying molecular mechanism remains unclear. The aim of this study was to evaluate the efficacy of CSWT in treating CHD patients and investigate a potential mechanism. A total of 26 patients with CHD were enrolled in the study, and CSWT was performed over a 3-month period. The efficacy of CSWT was assessed using several clinical parameters. Peripheral blood (PB) was collected prior to and following treatment. The number of circulating endothelial progenitor cells (EPCs) in the PB was counted using a flow cytometer, and the levels of vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), stromal cell-derived factor 1 and matrix metalloproteinase 9 in the PB were analyzed. Mononuclear cells were isolated from the PB and cultured in vitro. The EPCs and EPC-colony forming units (EPC-CFUs) in the PB mononuclear cell culture were counted using an inverted phase contrast microscope. Following CSWT, the tested clinical parameters were significantly improved. The levels of circulating EPCs, VEGF and IL-8 in the PB were significantly increased, as were the EPCs and EPC-CFUs from the PB mononuclear cell culture. We suggest that EPC proliferation, mediated by VEGF and IL-8 secretion, may be among the potential mechanisms associated with CSWT. PMID:26668649

  17. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production.

    PubMed

    Litwin, Monika; Radwańska, Agata; Paprocka, Maria; Kieda, Claudine; Dobosz, Tadeusz; Witkiewicz, Wojciech; Baczyńska, Dagmara

    2015-12-01

    In recent years, special attention has been paid to finding new pro-angiogenic factors which could be used in gene therapy of vascular diseases such as critical limb ischaemia (CLI). Angiogenesis, the formation of new blood vessels, is a complex process dependent on different cytokines, matrix proteins, growth factors and other pro- or anti-angiogenic stimuli. Numerous lines of evidence suggest that key mediators of angiogenesis, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) together with fibroblast growth factor2 (FGF2) are involved in regulation of the normal and pathological process of angiogenesis. However, less information is available on the complex interactions between these and other angiogenic factors. The aim of this study was to characterise the effect of fibroblast growth factor2 on biological properties of human endothelial progenitor cells with respect to the expression level of other regulatory cytokines. Ectopic expression of FGF2 in EP cells stimulates their pro-angiogenic behaviour, leading to increased proliferation, migration and tube formation abilities. Moreover, we show that the expression profile of VEGF and other pro-angiogenic cytokines, such as HGF, MCP2, and interleukins, is affected differently by FGF2 in EPC. In conclusion, we provide evidence that FGF2 directly affects not only the biological properties of EP cells but also the expression pattern and secretion of numerous chemocytokines. Our results suggest that FGF2 could be applied in therapeutic approaches for CLI and other ischaemic diseases of the vascular system in vivo. PMID:26314253

  18. Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model

    PubMed Central

    Jantzen, Alexandra E.; Lane, Whitney O.; Gage, Shawn M.; Jamiolkowski, Ryan M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Lawson, Jeffrey H.; Truskey, George A.; Achneck, Hardean E.

    2011-01-01

    Titanium (Ti) is commonly utilized in many cardiovascular devices, e.g. as a component of Nitinol stents, intra- and extracorporeal mechanical circulatory assist devices, but is associated with the risk of thromboemboli formation. We propose to solve this problem by lining the Ti blood-contacting surfaces with autologous peripheral blood-derived late outgrowth endothelial progenitor cells (EPCs) after having previously demonstrated that these EPCs adhere to and grow on Ti under physiological shear stresses and functionally adapt to their environment under flow conditions ex vivo. Autologous fluorescently-labeled porcine EPCs were seeded at the point-of-care in the operating room onto Ti tubes for 30 minutes and implanted into the pro-thrombotic environment of the inferior vena cava of swine (n = 8). After 3 days, Ti tubes were explanted, disassembled, and the blood-contacting surface was imaged. A blinded analysis found all 4 cell-seeded implants to be free of clot, whereas 4 controls without EPCs were either entirely occluded or partially thrombosed. Pre-labeled EPCs had spread and were present on all 4 cell-seeded implants while no endothelial cells were observed on control implants. These results suggest that late outgrowth autologous EPCs represent a promising source of lining Ti implants to reduce thrombosis in vivo. PMID:21840592

  19. Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells.

    PubMed

    Tan, Aaron; Farhatnia, Yasmin; Goh, Debbie; G, Natasha; de Mel, Achala; Lim, Jing; Teoh, Swee-Hin; Malkovskiy, Andrey V; Chawla, Reema; Rajadas, Jayakumar; Cousins, Brian G; Hamblin, Michael R; Alavijeh, Mohammad S; Seifalian, Alexander M

    2013-12-01

    An unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization. Biophysical characterization techniques were used to assess POSS-PCU and its subsequent functionalization with anti-CD34 antibodies. Results indicated successful covalent attachment of anti-CD34 antibodies on the surface of POSS-PCU leading to an increased propensity for EPC capture, whilst maintaining in vitro biocompatibility and hemocompatibility. POSS-PCU has already been used in 3 first-in-man studies, as a bypass graft, lacrimal duct and a bioartificial trachea. We therefore postulate that its superior biocompatibility and unique biophysical properties would render it an ideal candidate for coating medical devices, with stents as a prime example. Taken together, anti-CD34 functionalized POSS-PCU could form the basis of a nano-inspired polymer platform for the next generation stent coatings. PMID:24706135

  20. MRI Tracking of FePro Labeled Fresh and Cryopreserved Long Term In Vitro Expanded Human Cord Blood AC133+ Endothelial Progenitor Cells in Rat Glioma

    PubMed Central

    Janic, Branislava; Jafari-Khouzani, Kourosh; Babajani-Feremi, Abbas; Iskander, A. S. M.; Varma, Nadimpalli Ravi S.; Ali, Meser M.; Knight, Robert A.; Arbab, Ali S.

    2012-01-01

    Background Endothelial progenitors cells (EPCs) are important for the development of cell therapies for various diseases. However, the major obstacles in developing such therapies are low quantities of EPCs that can be generated from the patient and the lack of adequate non-invasive imaging approach for in vivo monitoring of transplanted cells. The objective of this project was to determine the ability of cord blood (CB) AC133+ EPCs to differentiate, in vitro and in vivo, toward mature endothelial cells (ECs) after long term in vitro expansion and cryopreservation and to use magnetic resonance imaging (MRI) to assess the in vivo migratory potential of ex vivo expanded and cryopreserved CB AC133+ EPCs in an orthotopic glioma rat model. Materials, Methods and Results The primary CB AC133+ EPC culture contained mainly EPCs and long term in vitro conditions facilitated the maintenance of these cells in a state of commitment toward endothelial lineage. At days 15–20 and 25–30 of the primary culture, the cells were labeled with FePro and cryopreserved for a few weeks. Cryopreserved cells were thawed and in vitro differentiated or IV administered to glioma bearing rats. Different groups of rats also received long-term cultured, magnetically labeled fresh EPCs and both groups of animals underwent MRI 7 days after IV administration of EPCs. Fluorescent microscopy showed that in vitro differentiation of EPCs was not affected by FePro labeling and cryopreservation. MRI analysis demonstrated that in vivo accumulation of previously cryopreserved transplanted cells resulted in significantly higher R2 and R2* values indicating a higher rate of migration and incorporation into tumor neovascularization of previously cryopreserved CB AC133+ EPCs to glioma sites, compared to non-cryopreserved cells. Conclusion Magnetically labeled CB EPCs can be in vitro expanded and cryopreserved for future use as MRI probes for monitoring the migration and incorporation to the sites of

  1. Apolipoprotein A-I mimetic peptide D-4F promotes human endothelial progenitor cell proliferation, migration, adhesion though eNOS/NO pathway.

    PubMed

    Zhang, Zhengang; Qun, Jianhua; Cao, Chunmei; Wang, Jun; Li, Wei; Wu, Yong; Du, Lin; Zhao, Pei; Gong, Kaizheng

    2012-04-01

    Circulating endothelial progenitor cells (EPCs) have a critical role in endothelial maintenance and repair. Apolipoprotein A-I mimetic peptide D-4F has been shown to posses anti-atherogenic properties via sequestration of oxidized phospholipids, induction of remodeling of high density lipoprotein and promotion of cholesterol efflux from macrophage-derived foam cells. In this study, we test the effects of D-4F on EPC biology. EPCs were isolated from the peripheral venous blood of healthy male volunteers and characterized by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-labeled acetylated LDL uptake and ulex europaeus agglutinin binding and flow cytometry. Cell proliferation, migration, adhesion, nitric oxide production and endothelial nitric oxide synthase (eNOS) expression in the absence and presence of D-4F or simvastatin (as a positive control), were assayed. We demonstrated that D-4F significantly enhanced EPC proliferation, migration and adhesion in a dose-dependent manner compared with vehicle. However, all of the favorable effects of D-4F on EPCs were dramatically attenuated by preincubation with NOS inhibitor L-NAME. Further, D-4F also increased nitric oxide production in culture supernatant and the levels of eNOS expression and phosphorylation. The stimulatory effects of D-4F (10 μg/ml) on EPC biology were comparable to 0.5 μM simvastatin. These results suggest that eNOS/NO pathway mediates the functional modulation of EPC biology in response to D-4F treatment and support the notion that the beneficial role of D-4F on EPCs may be one of the important components of its anti-atherogenic potential. PMID:21947883

  2. Effects of pitavastatin versus atorvastatin on the peripheral endothelial progenitor cells and vascular endothelial growth factor in high-risk patients: a pilot prospective, double-blind, randomized study

    PubMed Central

    2014-01-01

    Background Circulating endothelial progenitor cells (EPCs) reflect endothelial repair capacity and may be a significant marker for the clinical outcomes of cardiovascular disease. While some high-dose statin treatments may improve endothelial function, it is not known whether different statins may have similar effects on EPCs.This study aimed to investigate the potential class effects of different statin treatment including pitavastatin and atorvastatin on circulating EPCs in clinical setting. Methods A pilot prospective, double-blind, randomized study was conducted to evaluate the ordinary dose of pitavastatin (2 mg daily) or atorvastatin (10 mg daily) treatment for 12 weeks on circulating EPCs in patients with cardiovascular risk such as hypercholesterolemia and type 2 diabetes mellitus (T2DM). Additional in vitro study was conducted to clarify the direct effects of both statins on EPCs from the patients. Results A total of 26 patients (19 with T2DM) completed the study. While the lipid-lowering effects were similar in both treatments, the counts of circulating CD34+KDR+EPCs were significantly increased (from 0.021 ± 0.015 to 0.054 ± 0.044% of gated mononuclear cells, P < 0.05) only by pitavastatin treatment. Besides, plasma asymmetric dimethylarginine level was reduced (from 0.68 ± 0.10 to 0.53 ± 0.12 μmol/L, P < 0.05) by atorvastatin, and plasma vascular endothelial growth factor (VEGF) level was increased (from 74.33 ± 32.26 to 98.65 ± 46.64 pg/mL, P < 0.05) by pitavastatin. In the in vitro study, while both statins increased endothelial nitric oxide synthase (eNOS) expression, only pitavastatin increased the phosphorylation of eNOS in EPCs. Pitavastatin but not atorvastatin ameliorated the adhesion ability of early EPCs and the migration and tube formation capacities of late EPCs. Conclusions While both statins similarly reduced plasma lipids, only pitavastatin increased plasma VEGF level and circulating EPCs in

  3. Ex vivo reconstitution of arterial endothelium by embryonic stem cell-derived endothelial progenitor cells in baboons.

    PubMed

    Shi, Qiang; Hodara, Vida; Simerly, Calvin R; Schatten, Gerald P; VandeBerg, John L

    2013-02-15

    There is an increasing need for an animal model that can be used to translate basic research into clinical therapy. We documented the differentiation and functional competence of embryonic stem cell (ESC)-derived endothelial cells in baboons. Baboon angioblasts were sequentially differentiated from embryoid body cultures for 9 days in an angioblast differentiation medium with varying concentrations of BMP-4, FLT-3 ligand, stem cell factor, thrombopoietin, basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and knockout serum replacement. Real-time polymerase chain reaction results showed that ESC-derived angioblasts downregulated NANOG and OCT3/4, upregulated T-brachyury and GATA2, and moderately expressed CD34; they did not express CD144, TEK, or VWF, and varied in levels of CD31 expression. Several populations of putative angioblasts appeared 3 days and 9 days after differentiation, as identified by flow cytometry. Angioblasts at this stage exhibited dual paths of differentiation toward hematopoietic and vascular fates. To examine whether derived angioblasts could reconstitute the endothelium, we built an ex vivo culture system and seeded fluorescently labeled angioblast cultures onto a denuded segment of the femoral artery. We found that the seeded cells were able to grow into the endothelium on the interior surface of denuded artery segments within 5 days after seeding. After 14 days of ex vivo culture, the transplanted cells expressed CD31, an endothelial marker. The control arteries, seeded with vehicle only, did not harbor cells with endothelial markers. We conclude that ESC-derived angioblasts are promising therapeutic agents for repairing damaged vasculature, and that the baboon model will be vital for optimizing therapies for human clinical studies. PMID:22931470

  4. Bovine Posterior Limbus: An Evaluation of an Alternative Source for Corneal Endothelial and Trabecular Meshwork Stem/Progenitor Cells

    PubMed Central

    Yu, Wing Yan; Grierson, Ian; Sheridan, Carl; Lo, Amy Cheuk-Yin

    2015-01-01

    A growing body of evidence has revealed that stem-like cells in the posterior limbus of the eye between the corneal endothelium (CE) and trabecular meshwork (TM) may be able to rejuvenate these tissues in disease. However, these cells have not been clearly defined and we have named them PET cells (progenitor cells of the endothelium and trabeculum). A good and inexpensive animal model for PET cells is lacking, so we investigated bovine eyes as an effective large tissue source. We showed the presence of stem/progenitor cells in the bovine CE, transition zone, and TM in situ. Floating spheres cultured from the CE and TM showed similar stem cell marker expression patterns. Both the CE and TM spheres were bipotent and highly proliferative, but with limited secondary sphere-forming capability. They were highly prone to differentiate back into the cell type of their tissue of origin. It is speculated that the PET cells become more tissue-specific as they migrate away from their niche. Here, we showed that PET cells are present in the posterior limbus of bovine eyes and that they can be successfully cultured and expanded. PET cells represent an attractive target for developing new treatments to regenerate both the CE and TM, thereby reducing the requirement for donor tissue for corneal transplant and invasive treatments for glaucomatous patients. PMID:25323922

  5. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro.

    PubMed

    Peters, Erica B; Liu, Betty; Christoforou, Nicolas; West, Jennifer L; Truskey, George A

    2015-10-01

    Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications. PMID:25777295

  6. The effects of microvesicles on endothelial progenitor cells are compromised in type 2 diabetic patients via downregulation of the miR-126/VEGFR2 pathway.

    PubMed

    Wu, Keng; Yang, Yi; Zhong, Yun; Ammar, Hala Mustafa; Zhang, Peihua; Guo, Runmin; Liu, Hua; Cheng, Chuanfang; Koroscil, Thomas M; Chen, Yanfang; Liu, Shiming; Bihl, Ji C

    2016-05-15

    Our previous study showed that circulating microvesicles (cMVs) of diabetic mice have negative effects on the function of endothelial progenitor cells (EPCs). Whether this is true in diabetic patients deserves further study. In this study, the effects of cMVs and EPC-derived MVs (EPC-MVs) on EPC migration, apoptosis, and reactive oxygen species (ROS) production in healthy controls, well-controlled, and uncontrolled diabetic patients were investigated. The levels of miR-126 and vascular endothelial growth factor receptor 2 (VEGFR2) in cMVs, EPC-MVs, and/or EPCs were analyzed. Moreover, miR-126 inhibitor or mimic was applied to EPCs to modulate the miR-126 level in EPC-MVs. We found the following: 1) the circulating EPC level was reduced but the circulating EPC-MV level increased in uncontrolled diabetic patients; 2) the cMVs and EPC-MVs of healthy controls had beneficial effects on EPCs (migration, apoptosis, ROS), whereas the effects were reversely changed in the cMVs and EPC-MVs of uncontrolled diabetic patients; and 3) the cMVs and EPC-MVs of uncontrolled diabetic patients carried less miR-126 and had downregulated VEGFR2 expression in EPCs. Manipulating the miR-126 level in EPC-MVs with inhibitor or mimic changed their function. The effects of cMVs and EPC-MVs are compromised in diabetes due to the reduction of their carried miR-126, which might provide a therapy target for diabetic vascular complications. PMID:26956185

  7. Mesenchymal stem cells and endothelial progenitor cells accelerate intra-aneurysmal tissue organization after treatment with SDF-1α-coated coils.

    PubMed

    Gao, Yuyuan; Lu, Ziming; Chen, Chengwei; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping; Wang, Qiujing

    2016-04-01

    Recurrences of aneurysms remain the major drawback of detachable coils for the endovascular treatment of intracranial aneurysms. The aim of the present study is to develop new modified coils, coating the surface of platinum coils with silk fibroin (SF) consisting of stromal cell-derived factor-1α (SDF-1α), and evaluate its acceleration of organization of cavities and reduction of lumen size in a rat aneurysm model. The morphological characteristics of SDF-1α-coated coils were examined using scanning electron microscopy (SEM). Fifty experimental aneurysms were created and randomly divided into five groups: three groups were embolized with SDF-1α-coated coils (8 mm) and two of these groups need transplantation of mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs); one group was embolized with bare coils (8 mm) and another group severed as control. After coil implantation for 14 or 28 days, the coils were harvested and histological analysis was performed. SEM photographs showed that SF/SDF-1α-coated coils have uniform size and a thin film compared with bare coils. In the group treated with SDF-1α-coated coils, tissue organization was accelerated and the proliferation of α-smooth muscle actin positive cells was promoted in the aneurysmal sac. Compared with unmodified coils, on day 28, tissue organization was significantly greater in the group treated with SDF-1α-coated coils and MSC or EPC transplantation. These results suggest that SDF-1α-coated coils with MSC or EPC transplantation may be beneficial in the aneurysm healing and endothelialization at the orifice of embolized aneurysm. PMID:27125512

  8. In vitro interactions between rat bone marrow-derived endothelial progenitor cells and hepatic stellate cells: interaction between EPCs and HSCs.

    PubMed

    Liu, Feng; Liu, Zhi-da; Wu, Nan; Wang, Jiang-Hua; Zhang, Heng-Hui; Fei, Ran; Cong, Xu; Chen, Hong-song; Wei, Lai

    2013-08-01

    Transplantation of bone marrow (BM)-derived endothelial progenitor cells (EPCs) has been reported to improve liver fibrosis, but there is no direct evidence for the mechanism of improvement. We investigated the mechanism in vitro by coculturing BM-derived EPCs with activated hepatic stellate cells (HSCs) to mimic the hepatic environment. EPCs and HSCs were cultured alone and indirectly cocultured at a 1:1 ratio in a Transwell system. The characteristics of HSCs and EPCs were examined at different time points. An invasion assay showed the time-dependent effect on degradation of the extracellular matrix (ECM) layer in EPCs cultured alone. Real-time PCR and enzyme-linked immunosorbent assay analysis revealed that EPCs served as a source of matrix metalloproteinase-9 (MMP-9), and MMP-9 expression levels significantly increased during the 2 d of coculture. CFSE labeling showed that EPCs inhibited proliferation of HSCs. Annexin-V/PI staining, erminal deoxynucleotidyl transferase X-dUTP nick end labeling analysis, and (cleaved) caspase-3 activity revealed that EPCs promoted HSC apoptosis. However, the proliferation and apoptosis of EPCs were unaffected by cocultured HSCs. Coculturing increased the expression of inducible nitric oxide synthase, vascular endothelial growth factor, and hepatocyte growth factor (HGF) in EPCs, promoted differentiation of EPCs, and reduced the expression of types I and III collagens and transforming growth factor beta 1. Knockdown of HGF expression attenuated EPC-induced activation of HSC apoptosis and profibrotic ability. These findings demonstrated that BM-derived EPCs could degrade ECM, promoting activated HSC apoptosis, suppressing proliferation and profibrotic ability of activated HSCs. HGF secretion by EPCs plays a key role in inducing activated HSC apoptosis and HSC profibrotic ability. PMID:23722413

  9. Co-Transplantation of Endothelial Progenitor Cells and Pancreatic Islets to Induce Long-Lasting Normoglycemia in Streptozotocin-Treated Diabetic Rats

    PubMed Central

    Spiga, Saturnino; Mazzanti, Benedetta; Curcio, Michele; Mulas, Giovanna; Diana, Marco; Marzola, Pasquina; Mosca, Franco; Longoni, Biancamaria

    2014-01-01

    Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs) contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP) transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months) normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3–5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards. PMID:24733186

  10. Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats.

    PubMed

    Quaranta, Paola; Antonini, Sara; Spiga, Saturnino; Mazzanti, Benedetta; Curcio, Michele; Mulas, Giovanna; Diana, Marco; Marzola, Pasquina; Mosca, Franco; Longoni, Biancamaria

    2014-01-01

    Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs) contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP) transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months) normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3-5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards. PMID:24733186

  11. Circulating endothelial progenitor cells and residual in vivo thromboxane biosynthesis in low-dose aspirin-treated polycythemia vera patients.

    PubMed

    Santilli, Francesca; Romano, Mario; Recchiuti, Antonio; Dragani, Alfredo; Falco, Angela; Lessiani, Gianfranco; Fioritoni, Francesca; Lattanzio, Stefano; Mattoscio, Domenico; De Cristofaro, Raimondo; Rocca, Bianca; Davì, Giovanni

    2008-08-15

    Polycythemia vera (PV) is associated with high morbidity and mortality for thrombosis. We hypothesized that in PV altered sensitivity to aspirin might be related to dysfunction of the endothelial repair and/or of the nitric oxide (NO) system. Urinary thromboxane (TX) A(2) metabolite (TXM), endothelial colony-forming cells (ECFCs), plasma asymmetric dimethylarginine (ADMA) and von Willebrand factor (VWF) were measured in 37 PV patients on low-dose aspirin and 12 healthy controls. Patients showed an approximately 2-fold increase in median TXM and plasma ADMA levels (P < .001), while ECFC numbers were reduced by approximately 7-fold (P < .001) as compared with non-aspirinated control. These differences were more pronounced in patients with previous thrombosis. An 8-week course of aspirin did not affect ECFCs in 6 controls. VWF and TXM correlated directly with ADMA, and inversely with ECFCs. By multiple regression analysis, lower ECFC quartiles (beta = -0.39; SE = 0.17; P = .028) and higher VWF levels (beta = 0.338, SE = 0.002, P = .034) were independent predictors of higher TXM quartiles (R(2) = 0.39). Serum TXB(2), measured in 22 patients, was approximately 10-fold higher than aspirin-treated controls. PV patients appear to have an unbalanced ECFC/NO axis, and an apparent altered sensitivity of platelet TXA(2) production, all potentially contributing to aspirin-insensitive TXM formation. Thus, additional antithrombotic strategies may be beneficial in PV. PMID:18541722

  12. Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR2 and CD133, are not detectable in healthy peripheral and cord blood.

    PubMed

    Lanuti, Paola; Rotta, Gianluca; Almici, Camillo; Avvisati, Giuseppe; Budillon, Alfredo; Doretto, Paolo; Malara, Natalia; Marini, Mirella; Neva, Arabella; Simeone, Pasquale; Di Gennaro, Elena; Leone, Alessandra; Falda, Alessandra; Tozzoli, Renato; Gregorj, Chiara; Di Cerbo, Melania; Trunzo, Valentina; Mollace, Vincenzo; Marchisio, Marco; Miscia, Sebastiano

    2016-03-01

    Circulating endothelial cells (CEC) and their progenitors (EPC) are restricted subpopulations of peripheral blood (PB), cord blood (CB), and bone marrow (BM) cells, involved in the endothelial homeostasis maintenance. Both CEC and EPC are thought to represent potential biomarkers in several clinical conditions involving endothelial turnover/remodeling. Although different flow cytometry methods for CEC and EPC characterization have been published so far, none of them have reached consistent conclusions, therefore consensus guidelines with respect to CEC and EPC identification and quantification need to be established. Here, we have carried out an in depth investigation of CEC and EPC phenotypes in healthy PB, CB and BM samples, by optimizing a reliable polychromatic flow cytometry (PFC) panel. Results showed that the brightness of CD34 expression on healthy PB and CB circulating cells represents a key benchmark for the identification of CEC (CD45neg/CD34bright/CD146pos) respect to the hematopoietic stem cell (HSC) compartment (CD45dim/CD34pos/CD146neg). This approach, combined with a dual-platform counting technique, allowed a sharp CEC enumeration in healthy PB (n = 38), and resulting in consistent CEC counts with previously reported data (median = 11.7 cells/ml). In parallel, by using rigorous PFC conditions, CD34pos/CD45dim/CD133pos/VEGFR2pos EPC were not found in any healthy PB or CB sample, since VEGFR2 expression was never detectable on the surface of CD34pos/CD45dim/CD133pos cells. Notably, the putative EPC phenotype was observed in all analyzed BM samples (n = 12), and the expression of CD146 and VEGFR2, on BM cells, was not restricted to the CD34bright compartment, but also appeared on the HSC surface. Altogether, our findings suggest that the previously reported EPC antigen profile, defined by the simultaneous expression of VEGFR2 and CD133 on the surface of CD45dim/CD34pos cells, should be carefully re-evaluated and further studies should be conducted to

  13. tPA-MMP-9 Axis Plays a Pivotal Role in Mobilization of Endothelial Progenitor Cells from Bone Marrow to Circulation and Ischemic Region for Angiogenesis

    PubMed Central

    Day, Yuan-Ji

    2016-01-01

    We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9−/−) BMC (group 2), MMP-9−/− receiving MMP-9−/− BMC (group 3), and MMP-9−/− receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI. PMID:27610138

  14. Effect of Periodic Granulocyte Colony-Stimulating Factor Administration on Endothelial Progenitor Cells and Different Monocyte Subsets in Pediatric Patients with Muscular Dystrophies

    PubMed Central

    Sienkiewicz, Dorota; Grubczak, Kamil; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Miklasz, Paula; Singh, Paulina; Radzikowska, Urszula; Kulak, Wojciech

    2016-01-01

    Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration. We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells with proangiogenic potential. These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric MD patients. PMID:26770204

  15. Direct Cell-Cell Contact between Mesenchymal Stem Cells and Endothelial Progenitor Cells Induces a Pericyte-Like Phenotype In Vitro

    PubMed Central

    Richards, R. Geoff; Nerlich, Michael; Alini, Mauro

    2014-01-01

    Tissue engineering techniques for the regeneration of large bone defects require sufficient vascularisation of the applied constructs to ensure a sufficient supply of oxygen and nutrients. In our previous work, prevascularised 3D scaffolds have been successfully established by coculture of bone marrow derived stem cells (MSCs) and endothelial progenitor cells (EPCs). We identified stabilising pericytes (PCs) as part of newly formed capillary-like structures. In the present study, we report preliminary data on the interactions between MSCs and EPCs, leading to the differentiation of pericyte-like cells. MSCs and EPCs were seeded in transwell cultures, direct cocultures, and single cultures. Cells were cultured for 10 days in IMDM 10% FCS or IMDM 5% FCS 5% platelet lysate medium. Gene expression of PC markers, CD146, NG2, αSMA, and PDGFR-β, was analysed using RT-PCR at days 0, 3, 7, and 10. The upregulation of CD146, NG2, and αSMA in MSCs in direct coculture with EPCs advocates the MSCs' differentiation towards a pericyte-like phenotype in vitro. These results suggest that pericyte-like cells derive from MSCs and that cell-cell contact with EPCs is an important factor for this differentiation process. These findings emphasise the concept of coculture strategies to promote angiogenesis for cell-based tissue engineered bone grafts. PMID:24563864

  16. tPA-MMP-9 Axis Plays a Pivotal Role in Mobilization of Endothelial Progenitor Cells from Bone Marrow to Circulation and Ischemic Region for Angiogenesis.

    PubMed

    Leu, Steve; Day, Yuan-Ji; Sun, Cheuk-Kwan; Yip, Hon-Kan

    2016-01-01

    We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9(-/-)) BMC (group 2), MMP-9(-/-) receiving MMP-9(-/-) BMC (group 3), and MMP-9(-/-) receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI. PMID:27610138

  17. Inhibition of p38 Mitogen-Activated Protein Kinase Enhances the Apoptosis Induced by Oxidized Low-Density Lipoprotein in Endothelial Progenitor Cells.

    PubMed

    Tie, Guodong; Yan, Jinglian; Messina, Julia A; Raffai, Robert L; Messina, Louis M

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) is an important risk factor in the development of atherosclerosis. oxLDL has been shown to decrease endothelial progenitor cell (EPC) number by inducing apoptosis. p38 mitogen-activated protein kinase (MAPK) was shown to be activated by oxLDL and participated in the regulation of EPC number and function. However, the role of p38 remains unknown. Here, we show that oxLDL-induced p38 phosphorylation in EPCs is time and dose dependent. Treatment with antioxidant N-acetyl cysteine restored oxLDL-induced p38 phosphorylation to basal levels. LOX-1-blocking antibody also significantly decreased oxLDL-induced p38 phosphorylation. Interestingly, TUNEL staining showed that pretreatment with the p38 inhibitor SB203580 further increased oxLDL-induced apoptosis in EPCs. In accordance with these findings, pretreatment with SB203580 further attenuated Akt phosphorylation in EPCs challenged with oxLDL, indicating an interaction between Akt and p38 MAPK pathways. In agreement, inhibition of p38 MAPK further attenuated Akt phosphorylation and increased apoptosis in EPCs isolated from hypercholesterolemic ApoE-/- mice. In conclusion, p38 MAPK serves as an anti-apoptotic pathway by supporting Akt activity when EPCs are challenged with oxLDL. PMID:27031525

  18. Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration

    PubMed Central

    De Angelis, Luciana; Berghella, Libera; Coletta, Marcello; Lattanzi, Laura; Zanchi, Malvina; Gabriella, M.; Ponzetto, Carola; Cossu, Giulio

    1999-01-01

    Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aorta of mouse embryos. This finding is based on a detailed clonal analysis of different tissue anlagen at various developmental stages. In vitro, these myogenic cells show the same morphology as satellite cells derived from adult skeletal muscle, and express a number of myogenic and endothelial markers. Surprisingly, the latter are also expressed by adult satellite cells. Furthermore, it is possible to clone myogenic cells from limbs of mutant c-Met−/− embryos, which lack appendicular muscles, but have a normal vascular system. Upon transplantation, aorta-derived myogenic cells participate in postnatal muscle growth and regeneration, and fuse with resident satellite cells. The potential of the vascular system to generate skeletal muscle cells may explain observations of nonsomite skeletal myogenesis and raises the possibility that a subset of satellite cells may derive from the vascular system. PMID:10562287

  19. Effect of Periodic Granulocyte Colony-Stimulating Factor Administration on Endothelial Progenitor Cells and Different Monocyte Subsets in Pediatric Patients with Muscular Dystrophies.

    PubMed

    Eljaszewicz, Andrzej; Sienkiewicz, Dorota; Grubczak, Kamil; Okurowska-Zawada, Bożena; Paszko-Patej, Grażyna; Miklasz, Paula; Singh, Paulina; Radzikowska, Urszula; Kulak, Wojciech; Moniuszko, Marcin

    2016-01-01

    Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration. We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells with proangiogenic potential. These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric MD patients. PMID:26770204

  20. Bradykinin inhibits oxidative stress-induced senescence of endothelial progenitor cells through the B2R/AKT/RB and B2R/EGFR/RB signal pathways.

    PubMed

    Fu, Cong; Li, Bing; Sun, Yuning; Ma, Genshan; Yao, Yuyu

    2015-09-22

    Circulating endothelial progenitor cells (EPCs) have multiple protective effects that facilitate repair of damage to tissues and organs. However, while various stressors are known to impair EPC function, the mechanisms of oxidative stress-induced EPC senescence remains unknown. We demonstrated that B2 receptor (B2R) expression on circulating CD34(+) cells was significantly reduced in patients with diabetes mellitus (DM) as compared to healthy controls. Furthermore, CD34(+) cell B2R expression in patients with DM was inversely correlated with plasma myeloperoxidase concentrations. Bradykinin (BK) treatment decreased human EPC (hEPC) senescence and intracellular oxygen radical production, resulting in reduced retinoblastoma 1 (RB) RNA expression in H2O2-induced senescent hEPCs and a reversal of the B2R downregulation that is normally observed in senescent cells. Furthermore, BK treatment of H2O2-exposed cells leads to elevated phosphorylation of RB, AKT, and cyclin D1 compared with H2O2-treatment alone. Antagonists of B2R, PI3K, and EGFR signaling pathways and B2R siRNA blocked BK protective effects. In summary, this study demonstrates that BK significantly inhibits oxidative stress-induced hEPC senescence though B2R-mediated activation of PI3K and EGFR signaling pathways. PMID:26360782

  1. Cell-Surface MMP-9 Protein Is a Novel Functional Marker to Identify and Separate Proangiogenic Cells from Early Endothelial Progenitor Cells Derived from CD133(+) Cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Tanaka, Takeshi; Kikuchi, Yutaka; Uchida, Eriko; Matsuyama, Akifumi; Yamaguchi, Teruhide

    2016-05-01

    To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262. PMID:26824798

  2. Visfatin attenuates the ox-LDL-induced senescence of endothelial progenitor cells by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway.

    PubMed

    Ming, Guang-Feng; Tang, Yong-Jun; Hu, Kai; Chen, Yao; Huang, Wei-Hua; Xiao, Jian

    2016-08-01

    Endothelial progenitor cells (EPCs) play an important role in aging-associated senescence, thereby potentially contributing to vascular pathologies. Visfatin, identified as a new adipocytokine, is closely associated with the senescence of human cells. However, the effects of visfatin on the oxidized low-density lipoprotein (ox-LDL)-induced senescence of EPCs has not yet been explored, to the best of our knowledge. For this purpose, in the present study, we examined the effects of visfatin in ox-LDL-stimulated EPCs as well as the underlying mechanism responsible for these effects. We found that visfatin attenuated the ox-LDL-induced senescence of EPCs by repressing β-galactosidase expression and recovering telomerase activity. Western blot analysis confirmed that visfatin induced a dose-dependent increase in sirtuin 1 (SIRT1) expression in EPCs and ox-LDL exposure decreased SIRT1 expression. Silencing SIRT1 abolished the inhibition of EPC senescence and the suppression of p53 expression induced by visfatin. Moreover, visfatin attenuated the inhibition of phosphorylation of Akt, phosphoinositide-3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) induced by ox-LDL. Taken together, these findings suggest that the treatment of EPCs with visfatin markedly attenuates the ox-LDL-induced senescence of EPCs by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway. PMID:27277186

  3. NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway.

    PubMed

    Ming, Guang-Feng; Wu, Kai; Hu, Kai; Chen, Yao; Xiao, Jian

    2016-09-23

    The importance of endothelial progenitor cells (EPCs) in cardiovascular diseases has been demonstrated by numerous studies. Previous studies have shown that Nicotinamide phosphoribosyltransferase (NAMPT) plays a role in EPC development by regulating Sirtuin 1 (SIRT1), but the specific mechanism has not yet been elucidated. After stimulating EPCs with NAMPT, expression of SIRT1 and SIRT1 antisense long non-coding RNA (AS lncRNA) was upregulated. Upon transfection of an SIRT1 AS lncRNA overexpression vector into EPCs, SIRT1 expression was upregulated. Upon transfection of a small interfering RNA (siRNA) that targets SIRT1 AS lncRNA along with NAMPT, SIRT1 AS lncRNA was downregulated and NAMPT-induced SIRT1 expression was reduced. We used software analyses and a dual-luciferase reporter assay to demonstrate that microRNA (miR)-22 regulated SIRT1 and SIRT1 AS lncRNA. Our data suggest that SIRT1 AS lncRNA relieves miR-22-induced SIRT1 downregulation by competitively sponging miR-22. By measuring EPC senescence, proliferation, and migration, we found that NAMPT inhibited EPC senescence through an SIRT1 AS lncRNA/miR-22/SIRT1 pathway and promoted EPC proliferation and migration. These findings provide a new theoretical basis for the prevention and treatment of atherosclerosis (AS) and other cardiovascular diseases. PMID:27569277

  4. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia12

    PubMed Central

    Teofili, Luciana; Martini, Maurizio; Nuzzolo, Eugenia Rosa; Capodimonti, Sara; Iachininoto, Maria Grazia; Cocomazzi, Alessandra; Fabiani, Emiliano; Voso, Maria Teresa; Larocca, Luigi M.

    2015-01-01

    We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs), and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS). Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34 + cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b + and CD41 + cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt) pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia. PMID:26025663

  5. Vasculogenic Conditioning of Peripheral Blood Mononuclear Cells Promotes Endothelial Progenitor Cell Expansion and Phenotype Transition of Anti‐Inflammatory Macrophage and T Lymphocyte to Cells With Regenerative Potential

    PubMed Central

    Masuda, Haruchika; Tanaka, Rica; Fujimura, Satoshi; Ishikawa, Masakazu; Akimaru, Hiroshi; Shizuno, Tomoko; Sato, Atsuko; Okada, Yoshinori; Iida, Yumi; Itoh, Jobu; Itoh, Yoshiko; Kamiguchi, Hiroshi; Kawamoto, Atsuhiko; Asahara, Takayuki

    2014-01-01

    Background Cell‐based therapies involving mononuclear cells (MNCs) have been developed for vascular regeneration to treat ischemic diseases; however, quality control of therapeutic MNCs has not been evaluated. We investigated the therapeutic potential of peripheral blood (PB) MNCs, operated by recently developed quality and quantity (QQ) culture of endothelial progenitor cells (EPCs). Methods and Results PBs were collected from healthy volunteers; peripheral blood mononuclear cells (PBMNCs) isolated from these PBs were subjected to QQ culture for 7 days with medium containing stem cell factor, thrombopoietin, Flt‐3 ligand, vascular endothelial growth factor, and interleukin‐6. The resulting cells (QQMNCs) in EPC colony‐forming assay generated significantly more definitive EPC colonies than PBMNCs. In flow cytometry, macrophages and helper T lymphocytes of QQMNCs became phenotypically polarized into angiogenic, anti‐inflammatory, and regenerative subsets: classical M1 to alternative M2; T helper (Th)1 to Th2; angiogenic or regulatory T‐cell expansion. Quantitative real‐time polymerase chain reaction (qRT‐PCR) assay revealed the predominant proangiogenic gene expressions in QQMNCs versus PBMNCs. Using murine ischemic hindlimb models, the efficacy of QQMNC intramuscular transplantation (Tx) was compared to that of PBMNCTx, cultured “early EPC” Tx (eEPCTx), and granulocyte colony‐stimulating factor mobilized CD34+ cell Tx (GmCD34Tx). Laser Doppler imaging revealed the blood perfusion recovery in ischemic hindlimbs after QQMNCTx superior to after PBMNCTx and eEPCTx, but also earlier than after GmCD34Tx. Histological evaluations and qRT‐PCR assays in ischemic hindlimbs demonstrated that QQMNCTx, similarly to GmCD34Tx, enhanced angiovasculogenesis and myogenesis, whereas it preponderantly inhibited inflammation and fibrosis versus PBMNCTx and eEPCTx. Conclusions QQ culture potentiates the ability of PBMNCs to promote regeneration of injured tissue

  6. Sleep-disordered breathing is associated with depletion of circulating endothelial progenitor cells and elevation in pulmonary arterial pressure in patients with decompensated systolic heart failure

    PubMed Central

    Zhang, Han; Feng, Liu; Wan, Qi-Lin; Hong, Yan; Li, Yan-Ming; Cheng, Guan-Chang; Han, Xin-Qiang

    2015-01-01

    Background Sleep-disordered breathing (SDB) is known to occur frequently in and may predict worsening progression of patients with congestive heart failure (CHF). SDB is also known to play an important role in the development of idiopathic pulmonary arterial hypertension (PAH) via inducing endothelial dysfunction and vascular remodeling, a pathological process that can be significantly influenced by factors such as osteoprotegerin (OPG) and endothelial progenitor cells (EPCs). The objective of this study is to determine if CHF with SDB is associated with changes in OPG, EPCs, and PAH. Methods EPCs were isolated, cultured, and quantified from CHF patients with SDB (n = 52), or without SDB (n = 68). OPG and N-terminal pro-brain natriuretic peptide (NT-proBNP) from each group was analyzed and correlated with EPCs and the mean pulmonary artery pressure (mPAP) measured by right heart catheterization. Results A significant decrease in circulating EPCs (29.30 ± 9.01 vs. 45.17 ± 10.51 EPCs/× 200 field; P < 0.05) was found in CHF patients with SDB compared to those without SDB. Both OPG (789.83 ± 89.38 vs. 551.29 ± 42.12 pg/mL; P < 0.05) and NT-proBNP (5946.50 ± 1434.50 vs. 3028.60 ± 811.90 ng/mL; P < 0.05) were also significantly elevated in SDB CHF patients who also had significantly elevated mPAP (50.2 ± 9.5 vs. 36.4 ± 4.1 mm Hg; P < 0.05). EPC numbers correlated inversely with the episodes of apnea and hypopnea per hour (RDI, r = –0.45, P = 0.037) and blood level of OPG (r = –0.53, P = 0.011). Although NT-proBNP was also increased significantly in patients with SDB, it had no correlation with either EPCs or RDI. Conclusions SDB due to hypoxemia from decompensated CHF is associated with (1) OPG elevation, (2) EPC depletion, and (3) mPAP elevation. The inverse relationship of circulating OPG with EPCs suggests a likely mechanism for hypoxemia and OPG in the development of pulmonary vascular dysfunction via depleting EPCs, thus worsening prognosis of CHF. PMID

  7. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial.

    PubMed

    Jeong, Han Saem; Kim, Sohyeon; Hong, Soon Jun; Choi, Seung Cheol; Choi, Ji-Hyun; Kim, Jong-Ho; Park, Chi-Yeon; Cho, Jae Young; Lee, Tae-Bum; Kwon, Ji-Wung; Joo, Hyung Joon; Park, Jae Hyoung; Yu, Cheol Woong; Lim, Do-Sun

    2016-04-01

    Administration of black raspberry (Rubus occidentalis) is known to improve vascular endothelial function in patients at a high risk for cardiovascular (CV) disease. We investigated short-term effects of black raspberry on circulating endothelial progenitor cells (EPCs) and arterial stiffness in patients with metabolic syndrome. Patients with metabolic syndrome (n = 51) were prospectively randomized into the black raspberry group (n = 26, 750 mg/day) and placebo group (n = 25) during the 12-week follow-up. Central blood pressure, augmentation index, and EPCs, such as CD34/KDR(+), CD34/CD117(+), and CD34/CD133(+), were measured at baseline and at 12-week follow-up. Radial augmentation indexes were significantly decreased in the black raspberry group compared to the placebo group (-5% ± 10% vs. 3% ± 14%, P < .05). CD34/CD133(+) cells at 12-week follow-up were significantly higher in the black raspberry group compared to the placebo group (19 ± 109/μL vs. -28 ± 57/μL, P < .05). Decreases from the baseline in interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were significantly greater in the black raspberry group compared to the placebo group (-0.5 ± 1.4 pg/mL vs. -0.1 ± 1.1 pg/mL, P < .05 and -5.4 ± 4.5 pg/mL vs. -0.8 ± 4.0 pg/mL, P < .05, respectively). Increases from the baseline in adiponectin levels (2.9 ± 2.1 μg/mL vs. -0.2 ± 2.5 μg/mL, P < .05) were significant in the black raspberry group. The use of black raspberry significantly lowered the augmentation index and increased circulating EPCs, thereby improving CV risks in patients with metabolic syndrome during the 12-week follow-up. PMID:26891216

  8. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    PubMed

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  9. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    PubMed Central

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  10. May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment?

    PubMed

    Moccia, Francesco; Poletto, Valentina

    2015-09-01

    Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. PMID:25447551

  11. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    SciTech Connect

    Aguirre, A.; Planell, J.A.; Engel, E.

    2010-09-17

    Research highlights: {yields} BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. {yields} Co-culture decreases proliferation by cellular self-regulatory mechanisms. {yields} Co-cultured cells present an activated proangiogenic phenotype. {yields} qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  12. TNF-TNFR2/p75 Signaling Inhibits Early and Increases Delayed Nontargeted Effects in Bone Marrow-derived Endothelial Progenitor Cells*

    PubMed Central

    Sasi, Sharath P.; Song, Jin; Park, Daniel; Enderling, Heiko; McDonald, J. Tyson; Gee, Hannah; Garrity, Brittany; Shtifman, Alexander; Yan, Xinhua; Walsh, Kenneth; Natarajan, Mohan; Kishore, Raj; Goukassian, David A.

    2014-01-01

    TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1–5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3–5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general. PMID:24711449

  13. Spliced stromal cell-derived factor-1α analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction

    PubMed Central

    Hiesinger, William; Frederick, John R.; Atluri, Pavan; McCormick, Ryan C.; Marotta, Nicole; Muenzer, Jeffrey R.; Woo, Y. Joseph

    2011-01-01

    Objectives Stromal cell-derived factor (SDF)-1α is a potent endogenous endothelial progenitor cell (EPC) chemokine and key angiogenic precursor. Recombinant SDF-1α has been demonstrated to improve neovasculogenesis and cardiac function after myocardial infarction (MI) but SDF-1α is a bulky protein with a short half-life. Small peptide analogs might provide translational advantages, including ease of synthesis, low manufacturing costs, and the potential to control delivery within tissues using engineered biomaterials. We hypothesized that a minimized peptide analog of SDF-1α, designed by splicing the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a truncated amino acid linker, would induce EPC migration and preserve ventricular function after MI. Methods EPC migration was first determined in vitro using a Boyden chamber assay. For in vivo analysis, male rats (n=48) underwent left anterior descending coronary artery ligation. At infarction, the rats were randomized into 4 groups and received peri-infarct intramyocardial injections of saline, 3 μg/kg of SDF-1α, 3 μg/kg of spliced SDF analog, or 6 μg/kg spliced SDF analog. After 4 weeks, the rats underwent closed chest pressure volume conductance catheter analysis. Results EPCs showed significantly increased migration when placed in both a recombinant SDF-1α and spliced SDF analog gradient. The rats treated with spliced SDF analog at MI demonstrated a significant dose-dependent improvement in end-diastolic pressure, stroke volume, ejection fraction, cardiac output, and stroke work compared with the control rats. Conclusions A spliced peptide analog of SDF-1α containing both the N- and C- termini of the native protein induced EPC migration, improved ventricular function after acute MI, and provided translational advantages compared with recombinant human SDF-1α. PMID:20951261

  14. Stromal Cell-Derived Factor-1α Activation of Tissue Engineered Endothelial Progenitor Cell Matrix Enhances Ventricular Function after Myocardial Infarction by Inducing Neovasculogenesis

    PubMed Central

    Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Harris, David A.; Kim, Ah-Young; Muenzer, Jeffrey R.; Marotta, Nicole; Smith, Maximilian J.; Cohen, Jeffrey E.; Hiesinger, William; Atluri, Pavan; Woo, Y. Joseph

    2014-01-01

    Background Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPC) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1α (SDF). We hypothesized that implantation of a tissue engineered extracellular matrix scaffold seeded with EPCs primed with SDF could induce neovasculogenesis, prevent adverse remodeling, and preserve ventricular function after myocardial infarction (MI). Methods and Results Lewis rats (n=82) underwent left anterior descending artery ligation to induce MI. EPCs were cultured on a vitronectin/collagen scaffold, and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular (LV) wall including the region of ischemia.. At four weeks, when compared to controls, borderzone myocardial tissue demonstrated increased levels of VEGF in the EPCM group. Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 vs 6.2 vessels/high-powered field, p<0.001), and microvascular perfusion measured by lectin microangiography was enhanced four-fold (0.7 vs. 2.7% vessel volume/section volume, p=0.04). Ventricular geometry and scar fraction assessed by analysis of sectioned hearts exhibited significantly preserved LV internal diameter (9.7mm vs. 8.6mm, p=0.005) and decreased infarct scar expressed as percent of total section area (16% vs. 7%, p=0.002) when compared to all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure volume-conductance, and Doppler flow. Conclusions Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after MI. PMID:20837901

  15. SIRT1 Protects Against Oxidative Stress-Induced Endothelial Progenitor Cells Apoptosis by Inhibiting FOXO3a via FOXO3a Ubiquitination and Degradation.

    PubMed

    Wang, Yu-Qiang; Cao, Qing; Wang, Fei; Huang, Li-Ya; Sang, Tian-Tian; Liu, Fang; Chen, Shu-Yan

    2015-09-01

    Cell loss due to apoptosis induced by oxidative stress is a major hurdle for endothelial progenitor cells (EPCs)-based therapy. Sirtuin 1 (SIRT1) plays important roles in many pathophysiological processes by deacetylating various substrates, including forkhead transcription factor (FOXO). However, after deacetylation, the fate of FOXO protein remains to be explored. In the present study, we investigated whether SIRT1 exerted a protective effect on hydrogen peroxide (H(2)O(2))-induced EPCs apoptosis and, if so, what the underlying mechanism might be. EPCs were isolated and obtained from human umbilical cord blood by density gradient centrifugation and identified by morphology, tube formation ability, cell surface markers, and the ability to take up acetylated low-density lipoprotein (Dil-Ac-LDL) and bind ulex europaeus agglutinin 1 (FITC-UEA-1). Immunofluorescence showed that SIRT1 is localized in the nucleus of EPCs in the presence or absence of H(2)O(2). SIRT1 protein level in EPCs was increased by the treatment with H(2)O(2) for 24 h. Incubation of EPCs with H(2)O(2) dose dependently induced EPCs apoptosis. SIRT1 overexpression reduced the rate of EPCs apoptosis induced by H(2)O(2), whereas SIRT1 downregulation and EX527, a specific SIRT1 inhibitor, exerted the opposite effect. SIRT1 overexpression decreased the total FOXO3a protein expression, whereas SIRT1 downregulation and EX527 increased the amount of FOXO3a protein. SIRT1 reduced FOXO3a transcriptional activity according to Bim expression. Co-immunoprecipitation assay showed that SIRT1 could bind to FOXO3a, reduce its acetylation level and increase its ubiquitination level. To sum up, our work demonstrated that SIRT1 had a pivotally protective role in the regulation of EPCs apoptosis induced by H(2)O(2) and that SIRT1 protected against apoptosis by inhibiting FOXO3a via FOXO3a ubiquitination and subsequent degradation. PMID:25640014

  16. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    PubMed Central

    QIN, GANG; CHEN, YONGQIANG; LI, HAIDONG; XU, SUYANG; LI, YUMEI; SUN, JIAN; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; YE, YONG

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF-1α, AKT and extracellular signal-regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR-106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR-106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF-1α-treated cells. Melittin decreased the expression of phosphorylated (p)-AKT, p-ERK1/2, SDF-1α and CXCR4 in UMR-106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double-positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF-1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC-mediated angiogenesis, possibly via inhibition of the SDF-1α/CXCR4 signaling pathway

  17. Store-Operated Ca2+ Entry Is Remodelled and Controls In Vitro Angiogenesis in Endothelial Progenitor Cells Isolated from Tumoral Patients

    PubMed Central

    Dragoni, Silvia; Bottino, Cinzia; Ong, Hwei Ling; Guerra, Germano; Ganini, Carlo; Massa, Margherita; Manzoni, Mariangela; Ambudkar, Indu S.; Genazzani, Armando A.; Rosti, Vittorio; Pedrazzoli, Paolo; Tanzi, Franco; Moccia, Francesco

    2012-01-01

    Background Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain tumor vascularisation and promote the metastatic switch. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca2+ entry (SOCE), which is activated by a depletion of the intracellular Ca2+ pool, regulates the growth of human EPCs, where is mediated by the interaction between the endoplasmic reticulum Ca2+-sensor, Stim1, and the plasmalemmal Ca2+ channel, Orai1. As oncogenesis may be associated to the capability of tumor cells to grow independently on Ca2+ influx, it is important to assess whether SOCE regulates EPC-dependent angiogenesis also in tumor patients. Methodology/Principal Findings The present study employed Ca2+ imaging, recombinant sub-membranal and mitochondrial aequorin, real-time polymerase chain reaction, gene silencing techniques and western blot analysis to investigate the expression and the role of SOCE in EPCs isolated from peripheral blood of patients affected by renal cellular carcinoma (RCC; RCC-EPCs) as compared to control EPCs (N-EPCs). SOCE, activated by either pharmacological (i.e. cyclopiazonic acid) or physiological (i.e. ATP) stimulation, was significantly higher in RCC-EPCs and was selectively sensitive to BTP-2, and to the trivalent cations, La3+ and Gd3+. Furthermore, 2-APB enhanced thapsigargin-evoked SOCE at low concentrations, whereas higher doses caused SOCE inhibition. Conversely, the anti-angiogenic drug, carboxyamidotriazole (CAI), blocked both SOCE and the intracellular Ca2+ release. SOCE was associated to the over-expression of Orai1, Stim1, and transient receptor potential channel 1 (TRPC1) at both mRNA and protein level The intracellular Ca2+ buffer, BAPTA, BTP-2, and CAI inhibited RCC-EPC proliferation and tubulogenesis. The genetic suppression of Stim1, Orai1, and TRPC1 blocked CPA-evoked SOCE in RCC

  18. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    PubMed

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  19. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.

    PubMed

    Ali, Muhammad; Mehmood, Azra; Anjum, Muhammad Sohail; Tarrar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2015-12-01

    Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia

  20. Levels and values of lipoprotein-associated phospholipase A2, galectin-3, RhoA/ROCK, and endothelial progenitor cells in critical limb ischemia: pharmaco-therapeutic role of cilostazol and clopidogrel combination therapy

    PubMed Central

    2014-01-01

    Objective We tested the hypothesis that clopidogrel and cilostazol combination therapy could effectively attenuate systemic inflammatory reaction, facilitate proliferation of circulating endothelial progenitor cell (EPC), and improve the clinical outcomes of critical limb ischemia (CLI) in patients unsuitable for surgical revascularization or percutaneous transluminal angioplasty (PTA). Methods A total 55 patients (mean age, 72 years; 56% female) were consecutively enrolled. Clopidogrel and cilostazol combination therapy was administered throughout the study period. Results As compared with the baseline, circulating endothelial progenitor cell level (as shown by flow cytometry) was significantly increased (p < 0.003), whereas the CLI-related ulcers and painfulness were significantly improved (all p < 0.01) by day 90 after treatment. On the other hand, after clopidogrel and cilostazol combination therapy, galectin-3 level, lipoprotein-associated phospholipase A2 gene expression, and RhoA/ROCK-related protein expression in peripheral blood mononuclear cells were significantly suppressed (all p < 0.01). Eventually, by day 90, 5 patients (9.1%) died of other etiologies, 3 (5.5%) withdrew from the study, 6 (10.9%) required amputation, and the remaining 41 had satisfactory clinical improvement with complete wound healing in 9 (16.4%) patients. Conclusion The results of the present study highlight that clopidogrel and cilostazol combination therapy may be considered to be an alternative method for treating patients with CLI unsuitable for surgical revascularization or PTA. PMID:24742198

  1. An Anti-CD34 Antibody-Functionalized Clinical-Grade POSS-PCU Nanocomposite Polymer for Cardiovascular Stent Coating Applications: A Preliminary Assessment of Endothelial Progenitor Cell Capture and Hemocompatibility

    PubMed Central

    Farhatnia, Yasmin; G, Natasha; Lim, Jing; Teoh, Swee-Hin; Rajadas, Jayakumar; Alavijeh, Mohammad S.; Seifalian, Alexander M.

    2013-01-01

    In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs) from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs) were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05). However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05), as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05) and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization. PMID:24116210

  2. Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: involvement of antioxidation and Akt/eNOS signaling pathways.

    PubMed

    Wu, Qinqin; Qi, Benling; Liu, Yun; Cheng, Bei; Liu, Lihua; Li, Yuanyuan; Wang, Qian

    2013-05-01

    Trimetazidine (TMZ) is a widely used drug exerting cardioprotective effects against ischemic heart disease through a number of mechanisms in conditions of oxidative stress. However, there are few data regarding the effects of TMZ on endothelial lineage, especially endothelial progenitor cells (EPCs). Thus, we sought to investigate whether TMZ could protect EPCs against oxidative stress injury induced by H2O2 (100 µM) and the preliminary mechanisms involved in vitro. The results showed that pretreatment of EPCs with TMZ (10 µM) protected the proliferation, adhesion, migration, and apoptosis of EPCs against H2O2, accompanied by an increase in superoxide dismutase (SOD) activity, a decrease in malonaldehyde (MDA) content, and increases in eNOS, Akt phosphorylation, and NO production. These TMZ-mediated beneficial effects on EPCs could be attenuated by pre-incubation with the Akt inhibitor triciribine. In conclusion, the present study demonstrates that TMZ ameliorated H2O2-induced impairment of biological functions in EPCs with the involvement of antioxidation and Akt/eNOS signaling pathway. These findings suggest that TMZ mediating preservation of EPCs may contribute to its cardioprotective effects on ischemic heart disease. PMID:23528356

  3. How to utilize Ca2+ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach?

    PubMed Central

    2013-01-01

    Endothelial dysfunction or loss is the early event that leads to a host of severe cardiovascular diseases, such as atherosclerosis, hypertension, brain stroke, myocardial infarction, and peripheral artery disease. Ageing is regarded among the most detrimental risk factor for vascular endothelium and predisposes the subject to atheroscleorosis and inflammatory states even in absence of traditional comorbid conditions. Standard treatment to restore blood perfusion through stenotic arteries are surgical or endovascular revascularization. Unfortunately, ageing patients are not the most amenable candidates for such interventions, due to high operative risk or unfavourable vascular involvement. It has recently been suggested that the transplantation of autologous bone marrow-derived endothelial progenitor cells (EPCs) might constitute an alternative and viable therapeutic option for these individuals. Albeit pre-clinical studies demonstrated the feasibility of EPC-based therapy to recapitulate the diseased vasculature of young and healthy animals, clinical studies provided less impressive results in old ischemic human patients. One hurdle associated to this kind of approach is the senescence of autologous EPCs, which are less abundant in peripheral blood and display a reduced pro-angiogenic activity. Conversely, umbilical cord blood (UCB)-derived EPCs are more suitable for cellular therapeutics due to their higher frequency and sensitivity to growth factors, such as vascular endothelial growth factor (VEGF). An increase in intracellular Ca2+ concentration is central to EPC activation by VEGF. We have recently demonstrated that the Ca2+ signalling machinery driving the oscillatory Ca2+ response to this important growth factor is different in UCB-derived EPCs as compared to their peripheral counterparts. In particular, we focussed on the so-called endothelial colony forming cells (ECFCs), which are the only EPC population belonging to the endothelial lineage and able to

  4. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair

    PubMed Central

    Tu, Tran Cam; Nagano, Masumi; Yamashita, Toshiharu; Hamada, Hiromi; Ohneda, Kinuko; Kimura, Kenichi

    2016-01-01

    Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues. PMID:26620723

  5. A Chemokine Receptor, CXCR4, Which Is Regulated by Hypoxia-Inducible Factor 2α, Is Crucial for Functional Endothelial Progenitor Cells Migration to Ischemic Tissue and Wound Repair.

    PubMed

    Tu, Tran Cam; Nagano, Masumi; Yamashita, Toshiharu; Hamada, Hiromi; Ohneda, Kinuko; Kimura, Kenichi; Ohneda, Osamu

    2016-02-01

    Endothelial progenitor cells (EPCs) have the ability to form new blood vessels and protect ischemic tissues from damage. We previously reported that EPCs with low activity of aldehyde dehydrogenase (Alde-Low EPCs) possess the greater ability to treat ischemic tissues compared with Alde-High EPCs. The expression level of the hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, was found to be greater in Alde-Low EPCs than in Alde-High EPCs. However, the precise role of the HIF factors in the regulation of EPC activity remains obscure. In this study, we demonstrate a critical role of HIF-2α and its target gene CXCR4 for controlling the migratory activity of EPC to ischemic tissue. We found that coculture of Alde-High EPCs with microvesicles derived from Alde-Low EPCs improved their ability to repair an ischemic skin flap, and the expression of CXCR4 and its ligand SDF1 was significantly increased following the coculture. In Alde-Low EPCs, the expression of CXCR4 was suppressed by short hairpin RNA (shRNA)-mediated HIF-2α, but not HIF-1α downregulation. Chromatin immunoprecipitation assays showed that HIF-2α, but not HIF-1α, binds to the promoter region of CXCR4 gene. The CXCR4 shRNA treatment in Alde-Low EPCs almost completely abrogated their migratory activity to ischemic tissues, whereas the reduction of vascular endothelial growth factor (VEGF) showed much less effect. The CXCR4 overexpression in Alde-High EPCs resulted in a partial, but significant improvement in their repairing ability in an ischemic skin flap. Collectively, these findings indicate that the CXCR4/SDF-1 axis, which is specifically regulated by HIF-2α, plays a crucial role in the regulation of EPC migration to ischemic tissues. PMID:26620723

  6. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma.

    PubMed

    Yu, Wing Yan; Sheridan, Carl; Grierson, Ian; Mason, Sharon; Kearns, Victoria; Lo, Amy Cheuk Yin; Wong, David

    2011-01-01

    Several adult stem cell types have been found in different parts of the eye, including the corneal epithelium, conjunctiva, and retina. In addition to these, there have been accumulating evidence that some stem-like cells reside in the transition area between the peripheral corneal endothelium (CE) and the anterior nonfiltering portion of the trabecular meshwork (TM), which is known as the Schwalbe's Ring region. These stem/progenitor cells may supply new cells for the CE and TM. In fact, the CE and TM share certain similarities in terms of their embryonic origin and proliferative capacity in vivo. In this paper, we discuss the putative stem cell source which has the potential for replacement of lost and nonfunctional cells in CE diseases and glaucoma. The future development of personalized stem cell therapies for the CE and TM may reduce the requirement of corneal grafts and surgical treatments in glaucoma. PMID:22187525

  7. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs

    PubMed Central

    Tare, Marianne; Parkington, Helena C; Wallace, Euan M; Sutherland, Amy E; Lim, Rebecca; Yawno, Tamara; Coleman, Harold A; Jenkin, Graham; Miller, Suzanne L

    2014-01-01

    Intrauterine growth restriction (IUGR) is associated with impaired cardiac function in childhood and is linked to short- and long-term morbidities. Placental dysfunction underlies most IUGR, and causes fetal oxidative stress which may impact on cardiac development. Accordingly, we investigated whether antenatal melatonin treatment, which possesses antioxidant properties, may afford cardiovascular protection in these vulnerable fetuses. IUGR was induced in sheep fetuses using single umbilical artery ligation on day 105–110 of pregnancy (term 147). Study 1: melatonin (2 mg h−1) was administered i.v. to ewes on days 5 and 6 after surgery. On day 7 fetal heart function was assessed using a Langendorff apparatus. Study 2: a lower dose of melatonin (0.25 mg h−1) was administered continuously following IUGR induction and the ewes gave birth normally at term. Lambs were killed when 24 h old and coronary vessels studied. Melatonin significantly improved fetal oxygenation in vivo. Contractile function in the right ventricle and coronary flow were enhanced by melatonin. Ischaemia–reperfusion-induced infarct area was 3-fold greater in IUGR hearts than in controls and this increase was prevented by melatonin. In isolated neonatal coronary arteries, endothelium-dependent nitric oxide (NO) bioavailability was reduced in IUGR, and was rescued by modest melatonin treatment. Melatonin exposure also induced the emergence of an indomethacin-sensitive vasodilation. IUGR caused marked stiffening of the coronary artery and this was prevented by melatonin. Maternal melatonin treatment reduces fetal hypoxaemia, improves heart function and coronary blood flow and rescues cardio-coronary deficit induced by IUGR. PMID:24710061

  8. Differentiation state determines neural effects on microvascular endothelial cells

    SciTech Connect

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  9. Correlation of ionizing irradiation-induced late pulmonary fibrosis with long-term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules.

    PubMed

    Epperly, Michael W; Guo, Hongliang; Shields, Donna; Zhang, Xichen; Greenberger, Joel S

    2004-01-01

    Ionizing irradiation damage to the lung is associated with an acute inflammatory reaction, followed by a latent period and then late effects including predominantly pulmonary fibrosis. The cells mediating fibrosis have recently been shown to derive from the bone marrow hematopoietic microenvironment. Initiation of late pulmonary irradiation lung damage has been correlated with up-regulation of VCAM-1 and ICAM-1 in pulmonary endothelial cells, followed by infiltration of macrophages and bone marrow-derived fibroblasts forming the fibrotic lesions of organizing alveolitis/fibrosis. To determine whether the absence of expression of VCAM-1, ICAM-1, or other adhesion molecules known to be relevant to inflammatory cell attachment to lung endothelial cells was associated with a decrease in irradiation-induced lung fibrosis, homozygous deletion recombinant knockout mice lacking each of several adhesion molecules were tested compared to littermates for survival and development of organizing alveolitis following 20 Gy irradiation to both lungs. Bone marrow culture longevity has been shown to be a parameter, which correlates with both hematopoietic stem cell reserve and the integrity of fibroblast progenitors of the supportive hematopoietic microenvironment; radiation lung survival data were correlated to longevity of hematopoiesis in long-term bone marrow cultures established from tibia and femur bone marrow of the same mice. Homozygous deletion recombinant negative mice including VCAM-1-/-, ICAM-1-/-, E-Selectin-/-, or L-Selectin-/- were irradiated to 20 Gy to both lungs and followed for survival and percent organizing alveolitis at time of death compared to each normal littermate. A significant increase in survival (median 190 days) was detected with L-Selectin-/- compared to littermate control mice (median 140 days) or other groups. Long-term bone marrow cultures from L-Selectin-/- mice showed no detectable difference in marrow fibroblasts or hematopoietic cell biology

  10. Involvement of marrow-derived endothelial cells in vascularization.

    PubMed

    Larrivée, B; Karsan, A

    2007-01-01

    Until recently, the adult neovasculature was thought to arise only through angiogenesis, the mechanism by which new blood vessels form from preexisting vessels through endothelial cell migration and proliferation. However, recent studies have provided evidence that postnatal neovasculature can also arise though vasculogenesis, a process by which endothelial progenitor cells are recruited and differentiate into mature endothelial cells to form new blood vessels. Evidence for the existence of endothelial progenitors has come from studies demonstrating the ability of bone marrow-derived cells to incorporate into adult vasculature. However, the exact nature of endothelial progenitor cells remains controversial. Because of the lack of definitive markers of endothelial progenitors, the in vivo contribution of progenitor cells to physiological and pathological neovascularization remains unclear. Early studies reported that endothelial progenitor cells actively integrate into the adult vasculature and are critical in the development of many types of vascular-dependent disorders such as neoplastic progression. Moreover, it has been suggested that endothelial progenitor cells can be used as a therapeutic strategy aimed at promoting vascular growth in a variety of ischemic diseases. However, increasing numbers of studies have reported no clear contribution of endothelial progenitors in physiological or pathological angiogenesis. In this chapter, we discuss the origin of the endothelial progenitor cell in the embryo and adult, and we discuss the cell's link to the primitive hematopoietic stem cell. We also review the potential significance of endothelial progenitor cells in the formation of a postnatal vascular network and discuss the factors that may account for the current lack of consensus of the scientific community on this important issue. PMID:17554506

  11. Controlled release of stromal cell-derived factor-1α from silk fibroin-coated coils accelerates intra-aneurysmal organization and occlusion of neck remnant by recruiting endothelial progenitor cells.

    PubMed

    Gao, Yuyuan; Wang, Qiujing; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Sun, Chengmei; Huang, Shuyun; Wang, Xin; Liu, Yanchao; Jiang, Xiaodan; Zeng, Chi; Quan, Daping

    2014-01-01

    This study is to test the efficacy of stromal cell-derived factor-1α (SDF-1α)-coated coils together with endothelial progenitor cells (EPCs) transplantation in occluding aneurysms. Bone marrow-derived EPC surface markers were analyzed using flow cytometry. The migratory function of EPCs in response to SDF-1α was evaluated using a modified Boyden chamber assay. Capillary-like tube formation was assessed using Matrigel gel. Coil morphologies before and after coating with SDF-1α were observed under a scanning electron microscope. The level of SDF-1α in supernatants was measured by ELISA. Sprague-Dawley rats were randomly allocated into five groups. Histological analysis was performed on days 14 and 28 after coil implantation. The bone marrow-EPCs could express CD133, CD34, and VEGFR-2 and form tubule-like structures in vitro. Migratory ability of EPCs in the presence of SDF-1α-coated coils was similar to that in the presence of 5 ng/ml SDF-1α gradient. Sustained release of SDF-1α was achieved using silk fibroin as a carrier. In SDF-1α-coated coils + EPCs transplantation group, a well-organized fibrous tissue bridging the orifice of aneurysms was shown on days 14 and 28. On day 28, tissue organization was greater in the SDF-1α-coated coils group than in the unmodified coils group. Immunofluorescence showed α-smooth muscle actin-positive cells in organized tissue in sacs. Combined treatment with SDF-1α-coated coils and EPCs transplantation is a safe and effective treatment for rat aneurysms. This may provide a new strategy for endovascular therapy following aneurysmal subarachnoid hemorrhage. PMID:25674201

  12. Effect of High-Dose Atorvastatin Reload on the Release of Endothelial Progenitor Cells in Patients on Long-Term Statin Treatment Who Underwent Percutaneous Coronary Intervention (from the ARMYDA-EPC Study).

    PubMed

    Ricottini, Elisabetta; Madonna, Rosalinda; Grieco, Domenico; Zoccoli, Alice; Stampachiacchiere, Barbara; Patti, Giuseppe; Tonini, Giuseppe; De Caterina, Raffaele; Di Sciascio, Germano

    2016-01-15

    Endothelial progenitor cells (EPCs) may concur to endogenous vascular repair. Previous studies have reported that statin treatment increases EPC levels. We investigated whether this occurs in patients on long-term statin treatment who underwent percutaneous coronary interventions (PCIs). In a phase A study, 53 patients (atorvastatin reload [AR] 80 mg 12 hours before + 40 mg 2 hours before PCI, n = 27; placebo [P], n = 26) were evaluated for EPC mobilization as CD45dim/CD34+/CD133+/KDR+ cell number by flow cytometry. Assays were run at randomization (12 hours before PCI, R), immediately before PCI (T0) at 8 (T8) and 24 hours (T24). In phase B study, 50 patients (AR, n = 25; P, n = 25) were evaluated for early colony formation by Hill colony forming unit (CFU) assay, with sampling at randomization and 24 hours later. In phase A, EPCs levels were similar at randomization between 2 arms (0.23% [0.14 to 0.54] of total events in AR vs 0.22% [0.04 to 0.37] in P group; p = 0.33). At PCI, EPC levels were higher in AR arm (0.42% [0.06 to 0.30] vs 0.19% [0.06 to 030]; p = 0.009). Higher EPC levels in AR group were also found at 8 and 24 hours. In phase B, EPC CFUs/well numbers at randomization were similar in the 2 arms (8 [6 to 12] in AR vs 12 [6 to 20] in P group, p = 0.109). EPC CFU/well at 24 hours became significantly higher in AR arm (17 [10 to 23] vs 5 [2 to 13], p = 0.002). In conclusion, high-dose AR before PCI in patients on long-term statin therapy promptly increases EPCs mobilization, which are capable of early colony formation and may contribute to cardioprotection. PMID:26743348

  13. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    PubMed

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825453

  14. Progenitor Epithelium

    PubMed Central

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  15. Simultaneous characterization of progenitor cell compartments in adult human liver.

    PubMed

    Porretti, Laura; Cattaneo, Alessandra; Colombo, Federico; Lopa, Raffaella; Rossi, Giorgio; Mazzaferro, Vincenzo; Battiston, Carlo; Svegliati-Baroni, Gianluca; Bertolini, Francesco; Rebulla, Paolo; Prati, Daniele

    2010-01-01

    The human liver is a complex tissue consisting of epithelial, endothelial, hematopoietic, and mesenchymal elements that probably derive from multiple lineage-committed progenitors, but no comprehensive study aimed at identifying and characterizing intrahepatic precursors has yet been published. Cell suspensions for this study were obtained by enzymatic digestion of liver specimens taken from 20 patients with chronic liver disease and 13 multiorgan donors. Stem and progenitor cells were first isolated, amplified, and characterized ex vivo according to previously validated methods, and then optimized flow cytometry was used to assess their relative frequencies and characterize their immunophenotypes in the clinical specimens. Stem and progenitor cells committed to hematopoietic, endothelial, epithelial, and mesenchymal lineages were clearly identifiable in livers from both healthy and diseased subjects. Within the mononuclear liver cell compartment, epithelial progenitors [epithelial cell adhesion molecule (EpCAM)(+)/CD49f(+)/CD29(+)/CD45(-)] accounted for 2.7-3.5% whereas hematopoietic (CD34(+)/CD45(+)), endothelial [vascular endothelial growth factor-2 (KDR)(+)/CD146(+)/CD45(-)], and mesenchymal [CD73(+)/CD105(+)/CD90 (Thy-1)(+)/CD45 (-)] stem cells and progenitors accounted for smaller fractions (0.02-0.6%). The patients' livers had higher percentages of hematopoietic and endothelial precursors than those of the donors. In conclusion, we identified and characterized precursors committed to four different lineages in adult human liver. We also optimized a flow cytometry approach that will be useful in exploring the contribution of these cells to the pathogenesis of liver disease. PMID:19960544

  16. Endothelial RIG-I activation impairs endothelial function

    SciTech Connect

    Asdonk, Tobias; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  17. Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair

    PubMed Central

    Li, Ya-Feng; Huang, Xiao; Li, Xinyuan; Gong, Ren; Yin, Ying; Nelson, Jun; Gao, Erhe; Zhang, Hongyu; Hoffman, Nicholas E.; Houser, Steven R.; Madesh, Muniswamy; Tilley, Douglas G.; Choi, Eric T.; Jiang, Xiaohua; Huang, Cong-Xin; Wang, Hong; Yang, Xiao-Feng

    2015-01-01

    Caspase-1 activation senses metabolic danger-associated molecular patterns (DAMPs) and mediates the initiation of inflammation in endothelial cells. Here, we examined whether the caspase-1 pathway is responsible for sensing hyperlipidemia as a DAMP in bone marrow (BM)-derived Stem cell antigen-1 positive (Sca-1+) stem/progenitor cells and weakening their angiogenic ability. Using biochemical methods, gene knockout, cell therapy and myocardial infarction (MI) models, we had the following findings: 1) Hyperlipidemia induces caspase-1 activity in mouse Sca-1+ progenitor cells in vivo; 2) Caspase-1 contributes to hyperlipidemia-induced modulation of vascular cell death-related gene expression in vivo; 3) Injection of Sca-1+ progenitor cells from caspase-1−/− mice improves endothelial capillary density in heart and decreases cardiomyocyte death in a mouse model of MI; and 4) Caspase-1−/− Sca-1+ progenitor cell therapy improves mouse cardiac function after MI. Our results provide insight on how hyperlipidemia activates caspase-1 in Sca-1+ progenitor cells, which subsequently weakens Sca-1+ progenitor cell repair of vasculature injury. These results demonstrate the therapeutic potential of caspase-1 inhibition in improving progenitor cell therapy for MI. PMID:26709768

  18. Circulating Hematopoietic Progenitor Cells are Decreased in COPD

    PubMed Central

    Janssen, William J.; Yunt, Zulma X.; Muldrow, Alaina; Kearns, Mark T.; Kloepfer, Angela; Barthel, Lea; Bratton, Donna L.; Bowler, Russell P.; Henson, Peter M.

    2014-01-01

    Rationale Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. Objectives The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. Methods Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45dim CD34+ ) and HPCs (CD45+ CD34+ VEGF-R2+) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. Measurements and Main Results HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. Conclusions HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD. PMID:24182349

  19. Endothelialized ePTFE Graft by Nanobiotechnology

    ClinicalTrials.gov

    2013-11-29

    The Apparatus for Processing the Tubular Graft Modification Will be Designed and Evaluated.; The On-site Capturing of the Endothelial (Progenitor) Cells by Peptide-mediated Selective Adhesion in Vitro and in Vivo Will Also be Elucidated.; The Patency Rate of ITRI-made Artificial Blood Vessels Will be Evaluated by the Porcine Animal Model.

  20. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus. PMID:20624989

  1. Bone marrow-derived Kruppel-like Factor 10 Controls Re-endothelialization in Response to Arterial Injury

    PubMed Central

    Wara, Akm Khyrul; Manica, Andre; Marchini, Julio F.; Sun, Xinghui; Icli, Basak; Tesmenitsky, Yevgenia; Croce, Kevin; Feinberg, Mark W.

    2013-01-01

    Objective The objective of this study was to investigate the role of Kruppel-like factor (KLF) 10, a zinc-finger transcription factor, in bone marrow-derived cell responses to arterial endothelial injury. Accumulating evidence indicates that bone marrow-derived progenitors are recruited to sites of vascular injury and contribute to endothelial repair. Approach and Results In response to carotid artery endothelial denudation, KLF10 mRNA expression was markedlyincreased in both bone marrow and circulating lin− progenitor cells. To examine the specific role for KLF10 in arterial re-endothelialization, we used two models of endothelial denudation (wire- and thermal-induced injury) of the carotid artery in WT and KLF10−/− mice. WT mice displayed higher areas of re-endothelialization compared to KLF10−/− mice following endothelial injury using either method. Bone marrow (BM) transplant studies revealed that re-constitution of KLF10−/− mice with WT BM fully rescued the defect in re-endothelialization and increased lin−CD34+KDR+ progenitors in the blood and injured carotid arteries. Conversely, reconstitution of WT mice with KLF10−/−BM re-capitulated the defects in re-endothelialization and peripheral cell progenitors. The media from cultured KLF10−/− BM progenitors was markedly inefficient at promoting endothelial cell growth and migration compared to the media from WT progenitors, indicative of defective paracrine trophic effects from KLF10−/− BM progenitors. Finally, BM-derived KLF10−/− lin− progenitors from reconstituted mice had reduced CXCR4 expression and impaired migratory responses. Conclusions Collectively, these observations demonstrate a protective role for BM-derived KLF10 in paracrine and homing responses important to arterial endothelial injury and highlight KLF10 as a possible therapeutic target to promote endothelial repair in vascular disease states. PMID:23685559

  2. Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart.

    PubMed

    Fuentes, Tania I; Appleby, Nancy; Raya, Michael; Bailey, Leonard; Hasaniya, Nahidh; Stodieck, Louis; Kearns-Jonker, Mary

    2015-01-01

    Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression and protein levels after 6-7 days of 2D clinorotation. Utilization of neonatal and adult cardiovascular progenitors in ground-based studies has provided novel insight into how microgravity may affect cells differently depending on age. Simulated microgravity exposure did not impact AKT or ERK phosphorylation levels and did not influence cell migration, but elevated transcripts for paracrine factors were identified in neonatal and adult cardiovascular progenitors. Age-dependent responses surfaced when comparing the impact of microgravity on differentiation. Endothelial cell tube formation was unchanged or increased in progenitors from adults whereas neonatal cardiovascular progenitors showed a decline in tube formation (p<0.05). Von Willebrand Factor, an endothelial differentiation marker, and MLC2v and Troponin T, markers for cardiomyogenic differentiation, were elevated in expression in adult progenitors after simulated microgravity. DNA repair genes and telomerase reverse transcriptase which are highly expressed in early stem cells were increased in expression in neonatal but not adult cardiac progenitors after growth under simulated microgravity conditions. Neonatal cardiac progenitors demonstrated higher levels of MESP1, OCT4, and brachyury, markers for early stem cells. MicroRNA profiling was used to further investigate the impact of simulated microgravity on cardiovascular progenitors. Fifteen microRNAs were significantly altered in expression, including microRNAs-99a and 100 (which play a critical role in cell dedifferentiation). These microRNAs were unchanged in adult cardiac progenitors. The effect of

  3. Endothelial Lessons.

    PubMed

    Vanhoutte, Paul M

    2016-01-01

    This essay focuses on nine important lessons learned during more than thirty years of endothelial research. They include: the danger of hiding behind a word, the confusion generated by abbreviations, the need to define the physiological role of the response studied, the local role of endothelium- dependent responses, the strength of pharmacological analyses, endothelial dysfunction as consequence and cause of disease, the importance of rigorous protocols, the primacy of in vivo studies and the importance of serendipity. PMID:26638800

  4. Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension

    PubMed Central

    Farha, Samar; Lichtin, Alan; Graham, Brian; George, Deepa; Aldred, Micheala; Hazen, Stanley L.; Loyd, James; Tuder, Rubin

    2012-01-01

    Hematopoietic myeloid progenitors released into the circulation are able to promote vascular remodeling through endothelium activation and injury. Endothelial injury is central to the development of pulmonary arterial hypertension (PAH), a proliferative vasculopathy of the pulmonary circulation, but the origin of vascular injury is unknown. In the present study, mice transplanted with BM-derived CD133+ progenitor cells from patients with PAH, but not from healthy controls, exhibited morbidity and/or death due to features of PAH: in situ thrombi and endothelial injury, angioproliferative remodeling, and right ventricular hypertrophy and failure. Myeloid progenitors from patients with heritable and/or idiopathic PAH all produced disease in xenografted mice. Analyses of hematopoietic transcription factors and colony formation revealed underlying abnormalities of progenitors that skewed differentiation toward the myeloid-erythroid lineage. The results of the present study suggest a causal role for hematopoietic stem cell abnormalities in vascular injury, right ventricular hypertrophy, and morbidity associated with PAH. PMID:22745307

  5. Morphogenesis of the lymphatic vasculature: A focus on new progenitors and cellular mechanisms important for constructing lymphatic vessels.

    PubMed

    Kazenwadel, Jan; Harvey, Natasha L

    2016-03-01

    Lymphatic vessels serve crucial roles in the regulation of tissue fluid homeostasis, dietary lipid absorption and immune cell trafficking. Defects in lymphatic vessel morphogenesis and function have been associated with lymphedema, obesity, hypertension and tumour metastasis. Morphogenetic events important for construction of the lymphatic vasculature during development include the specification and emergence of lymphatic endothelial progenitor cells, their differentiation and assembly into interconnected vessels and vascular remodeling, ultimately giving rise to a functional vascular network. Despite the embryonic origins of lymphatic endothelial progenitor cells being long debated, work performed over the last decade had overwhelmingly supported at least a great majority of progenitor cells arising from the venous vasculature. Here, we review the most recent advances in the field of lymphatic vessel morphogenesis, with a focus on studies that have identified novel sources of embryonic lymphatic endothelial progenitor cells, together with the cellular mechanisms by which lymphatic vessels are initially assembled. PMID:26228815

  6. Red light, green light: Signals that control endothelial cell proliferation during embryonic vascular development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proper regulation of endothelial cell proliferation is critical for vascular development in the embryo. VEGF-A and bFGF, which are important in the induction of mesodermal progenitors to form a capillary plexus, are also key mitogenic signals. Disruption in VEGF-A or bFGF decreases endothelial c...

  7. Circulating Progenitor Cells and Vascular Dysfunction in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Pizarro, Sandra; García-Lucio, Jéssica; Peinado, Víctor I.; Tura-Ceide, Olga; Díez, Marta; Blanco, Isabel; Sitges, Marta; Petriz, Jordi; Torralba, Yolanda; Marín, Pedro; Roca, Josep; Barberà, Joan Albert

    2014-01-01

    Background In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. Objectives To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. Methods 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45+CD34+CD133+ labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. Results Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. Conclusions Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit. PMID:25171153

  8. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity.

    PubMed

    Alvarez, Diego F; Huang, Lan; King, Judy A; ElZarrad, M Khair; Yoder, Mervin C; Stevens, Troy

    2008-03-01

    Endothelial progenitor cells (EPCs) have been isolated postnatally from bone marrow, blood, and both the intima and adventitia of conduit vessels. However, it is unknown whether EPCs can be isolated from the lung microcirculation. Thus we sought to determine whether the microvasculature possesses EPCs capable of de novo vasculogenesis. Rat pulmonary artery (PAEC) and microvascular (PMVEC) endothelial cells were isolated and selected by using a single-cell clonogenic assay. Whereas the majority of PAECs (approximately 60%) were fully differentiated, the majority of PMVECs (approximately 75%) divided, with approximately 50% of the single cells giving rise to large colonies (>2,000 cells/colony). These highly proliferative cells exhibited the capacity to reconstitute the entire proliferative hierarchy of PMVECs, unveiling the existence of resident microvascular endothelial progenitor cells (RMEPCs). RMEPCs expressed endothelial cell markers (CD31, CD144, endothelial nitric oxide synthase, and von Willenbrand factor) and progenitor cell antigens (CD34 and CD309) but did not express the leukocyte marker CD45. Consistent with their origin, RMEPCs interacted with Griffonia simplicifolia and displayed restrictive barrier properties. In vitro and in vivo Matrigel assays revealed that RMEPCs possess vasculogenic capacity, forming ultrastructurally normal de novo vessels. Thus the pulmonary microcirculation is enriched with EPCs that display vasculogenic competence while maintaining functional endothelial microvascular specificity. PMID:18065657

  9. Maternal Immunization

    PubMed Central

    Chu, Helen Y.; Englund, Janet A.

    2014-01-01

    Maternal immunization has the potential to protect the pregnant woman, fetus, and infant from vaccine-preventable diseases. Maternal immunoglobulin G is actively transported across the placenta, providing passive immunity to the neonate and infant prior to the infant's ability to respond to vaccines. Currently inactivated influenza, tetanus toxoid, and acellular pertussis vaccines are recommended during pregnancy. Several other vaccines have been studied in pregnancy and found to be safe and immunogenic and to provide antibody to infants. These include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines. Other vaccines in development for potential maternal immunization include respiratory syncytial virus, herpes simplex virus, and cytomegalovirus vaccines. PMID:24799324

  10. Maternal immunization

    PubMed Central

    Moniz, Michelle H; Beigi, Richard H

    2014-01-01

    Maternal immunization holds tremendous promise to improve maternal and neonatal health for a number of infectious conditions. The unique susceptibilities of pregnant women to infectious conditions, as well as the ability of maternally-derived antibody to offer vital neonatal protection (via placental transfer), together have produced the recent increased attention on maternal immunization. The Advisory Committee on Immunization Practices (ACIP) currently recommends 2 immunizations for all pregnant women lacking contraindication, inactivated Influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap). Given ongoing research the number of vaccines recommended during pregnancy is likely to increase. Thus, achieving high vaccination coverage of pregnant women for all recommended immunizations is a key public health enterprise. This review will focus on the present state of vaccine acceptance in pregnancy, with attention to currently identified barriers and determinants of vaccine acceptance. Additionally, opportunities for improvement will be considered. PMID:25483490

  11. Hemovascular Progenitors in the Kidney Require Sphingosine-1-Phosphate Receptor 1 for Vascular Development.

    PubMed

    Hu, Yan; Li, Minghong; Göthert, Joachim R; Gomez, R Ariel; Sequeira-Lopez, Maria Luisa S

    2016-07-01

    The close relationship between endothelial and hematopoietic precursors during early development of the vascular system suggested the possibility of a common yet elusive precursor for both cell types. Whether similar or related progenitors for endothelial and hematopoietic cells are present during organogenesis is unclear. Using inducible transgenic mice that specifically label endothelial and hematopoietic precursors, we performed fate-tracing studies combined with colony-forming assays and crosstransplantation studies. We identified a progenitor, marked by the expression of helix-loop-helix transcription factor stem cell leukemia (SCL/Tal1). During organogenesis of the kidney, SCL/Tal1(+) progenitors gave rise to endothelium and blood precursors with multipotential colony-forming capacity. Furthermore, appropriate morphogenesis of the kidney vasculature, including glomerular capillary development, arterial mural cell coating, and lymphatic vessel development, required sphingosine 1-phosphate (S1P) signaling via the G protein-coupled S1P receptor 1 in these progenitors. Overall, these results show that SCL/Tal1(+) progenitors with hemogenic capacity originate and differentiate within the early embryonic kidney by hemovasculogenesis (the concomitant formation of blood and vessels) and underscore the importance of the S1P pathway in vascular development. PMID:26534925

  12. GAP JUNCTION COMMUNICATION MEDIATES TRANSFORMING GROWTH FACTOR-BETA ACTIVATION AND ENDOTHELIAL-INDUCED MURAL CELL DIFFERENTIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During blood vessel assembly, endothelial cells recruit mesenchymal progenitors and induce their differentiation into mural cells via contact-dependent transforming growth factor-beta (TGF-beta) activation. We investigated whether gap junction channels are formed between endothelial cells and recrui...

  13. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization.

    PubMed

    Gorden, Brandi H; Kim, Jong-Hyuk; Sarver, Aaron L; Frantz, Aric M; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Sharkey, Leslie C; Modiano, Jaime F; Dickerson, Erin B

    2014-04-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  14. Identification of Three Molecular and Functional Subtypes in Canine Hemangiosarcoma through Gene Expression Profiling and Progenitor Cell Characterization

    PubMed Central

    Gorden, Brandi H.; Kim, Jong-Hyuk; Sarver, Aaron L.; Frantz, Aric M.; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D.; Sharkey, Leslie C.; Modiano, Jaime F.; Dickerson, Erin B.

    2015-01-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  15. Stromal vascular progenitors in adult human adipose tissue

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  16. Stem cells and progenitor cells in renal disease.

    PubMed

    Haller, Hermann; de Groot, Kirsten; Bahlmann, Ferdinand; Elger, Marlies; Fliser, Danilo

    2005-11-01

    Stem cells and progenitor cells are necessary for repair and regeneration of injured renal tissue. Infiltrating or resident stem cells can contribute to the replacement of lost or damaged tissue. However, the regulation of circulating progenitor cells is not well understood. We have analyzed the effects of erythropoietin on circulating progenitor cells and found that low levels of erythropoietin induce mobilization and differentiation of endothelial progenitor cells. In an animal model of 5/6 nephrectomy we could demonstrate that erythropoietin ameliorates tissue injury. Full regeneration of renal tissue demands the existence of stem cells and an adequate local "milieu," a so-called stem cell niche. We have previously described a stem cell niche in the kidneys of the dogfish, Squalus acanthus. Further analysis revealed that in the regenerating zone of the shark kidney, stem cells exist that can be induced by loss of renal tissue to form new glomeruli. Such animal models improve our understanding of stem cell behavior in the kidney and may eventually contribute to novel therapies. PMID:16221168

  17. Secondary Sphere Formation Enhances the Functionality of Cardiac Progenitor Cells

    PubMed Central

    Cho, Hyun-Jai; Lee, Ho-Jae; Youn, Seock-Won; Koh, Seok-Jin; Won, Joo-Yun; Chung, Yeon-Ju; Cho, Hyun-Ju; Yoon, Chang-Hwan; Lee, Sae-Won; Lee, Eun Ju; Kwon, Yoo-Wook; Lee, Hae-Young; Lee, Sang Hun; Ho, Won-Kyung; Park, Young-Bae; Kim, Hyo-Soo

    2012-01-01

    Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy. PMID:22713697

  18. Hmga2 regulates self-renewal of retinal progenitors

    PubMed Central

    Parameswaran, Sowmya; Xia, Xiaohuan; Hegde, Ganapati; Ahmad, Iqbal

    2014-01-01

    In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina. PMID:25336737

  19. Maternal Employment

    ERIC Educational Resources Information Center

    Clark, Sam

    1975-01-01

    The overwhelming evidence from years of research is that maternal employment, by itself, has little influence on the behaviors of children. More relevant issues are: mother's reasons for working, family's acceptance of mother's employment, quality of substitute child care, family's social and emotional health, and economic conditions. (Author/AJ)

  20. Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors.

    PubMed

    Chin, Chee Jia; Cooper, Aaron R; Lill, Georgia R; Evseenko, Denis; Zhu, Yuhua; He, Chong Bin; Casero, David; Pellegrini, Matteo; Kohn, Donald B; Crooks, Gay M

    2016-05-01

    Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250. PMID:26934332

  1. Endothelial cells regulate neural crest and second heart field morphogenesis

    PubMed Central

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-01-01

    ABSTRACT Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1. PMID:24996922

  2. Epigenetic Regulation of Placenta-Specific 8 Contributes to Altered Function of Endothelial Colony-Forming Cells Exposed to Intrauterine Gestational Diabetes Mellitus.

    PubMed

    Blue, Emily K; Sheehan, BreAnn M; Nuss, Zia V; Boyle, Frances A; Hocutt, Caleb M; Gohn, Cassandra R; Varberg, Kaela M; McClintick, Jeanette N; Haneline, Laura S

    2015-07-01

    Intrauterine exposure to gestational diabetes mellitus (GDM) is linked to development of hypertension, obesity, and type 2 diabetes in children. Our previous studies determined that endothelial colony-forming cells (ECFCs) from neonates exposed to GDM exhibit impaired function. The current goals were to identify aberrantly expressed genes that contribute to impaired function of GDM-exposed ECFCs and to evaluate for evidence of altered epigenetic regulation of gene expression. Genome-wide mRNA expression analysis was conducted on ECFCs from control and GDM pregnancies. Candidate genes were validated by quantitative RT-PCR and Western blotting. Bisulfite sequencing evaluated DNA methylation of placenta-specific 8 (PLAC8). Proliferation and senescence assays of ECFCs transfected with siRNA to knockdown PLAC8 were performed to determine functional impact. Thirty-eight genes were differentially expressed between control and GDM-exposed ECFCs. PLAC8 was highly expressed in GDM-exposed ECFCs, and PLAC8 expression correlated with maternal hyperglycemia. Methylation status of 17 CpG sites in PLAC8 negatively correlated with mRNA expression. Knockdown of PLAC8 in GDM-exposed ECFCs improved proliferation and senescence defects. This study provides strong evidence in neonatal endothelial progenitor cells that GDM exposure in utero leads to altered gene expression and DNA methylation, suggesting the possibility of altered epigenetic regulation. PMID:25720387

  3. Circulating endothelial cells in cardiovascular disease.

    PubMed

    Boos, Christopher J; Lip, Gregory Y H; Blann, Andrew D

    2006-10-17

    Quantification of circulating endothelial cells (CECs) in peripheral blood is developing as a novel and reproducible method of assessing endothelial damage/dysfunction. The CECs are thought to be mature cells that have detached from the intimal monolayer in response to endothelial injury and are a different cell population to endothelial progenitor cells (EPCs). The EPCs are nonleukocytes derived from the bone marrow that are believed to have proliferative potential and may be important in vascular regeneration. Currently accepted methods of CEC quantification include the use of immunomagnetic bead separation (with cell counting under fluorescence microscopy) and flow cytometry. Several recent studies have shown increased numbers of CECs in cardiovascular disease and its risk factors, such as unstable angina, acute myocardial infarction, stroke, diabetes mellitus, and critical limb ischemia, but no change in stable intermittent claudication, essential hypertension, or atrial fibrillation. Furthermore, CEC quantification at 48 h after acute myocardial infarction has been shown to be an accurate predictor of major adverse coronary events and death at both 1 month and 1 year. This article presents an overview of the pathophysiology of CECs in the setting of cardiovascular disease and a brief comparison with EPCs. PMID:17045885

  4. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds.

    PubMed

    Du, Chan; Narayanan, Karthikeyan; Leong, Meng Fatt; Ibrahim, Mohammed Shahrudin; Chua, Ying Ping; Khoo, Vanessa Mei Hui; Wan, Andrew C A

    2016-08-01

    Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However, the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues, decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering, using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly, the present work is focused on generating the functional unit of the kidney, the glomerulus. In the repopulated organ, the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice, glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant, expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney. PMID:27294565

  5. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    PubMed

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  6. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    PubMed

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-01-01

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. PMID:26952167

  7. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells

    PubMed Central

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C.; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S.; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A.; Lim, Bing; Chien, Kenneth R.

    2016-01-01

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human–mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. PMID:26952167

  8. Microvascular endothelial cells from preeclamptic women exhibit altered expression of angiogenic and vasopressor factors.

    PubMed

    Lee, Dennis K; Nevo, Ori

    2016-06-01

    Preeclampsia (PE) is a severe complication of pregnancy associated with maternal and fetal morbidity and mortality. The underlying pathophysiology involves maternal systemic vascular and endothelial dysfunction associated with circulating antiangiogenic factors, although the specific etiology of the disease remains elusive. Our aim was to investigate the maternal endothelium in PE by exploring the expression of genes involved with endothelial function in a novel platform of maternal primary endothelial cells. Adipose tissue was sampled at the time of caesarean section from both normal and preeclamptic patients. Maternal microvascular endothelial cells were isolated by tissue digestion and CD31 magnetic Dynabeads. Cell purity was confirmed by immunofluorescence microscopy and flow cytometry. Western analyses revealed VEGF activation of VEGF receptor 2 (VEGFR2) and ERK in primary cells. Quantitative PCR analyses revealed significantly altered mRNA levels of various genes involved with angiogenesis and blood pressure control in preeclamptic cells, including soluble fms-like tyrosine kinase-1, endoglin, VEGFR2, angiotensin receptor 1, and endothelin compared with cells isolated from normal pregnancies. Overall, maternal endothelial cells from preeclamptic patients exhibit extensive alteration of expression of factors associated with antiangiogenic and vasoconstrictive phenotypes, shedding light on the underlying mechanisms associated with the vascular dysfunction characteristic of PE. PMID:27199113

  9. TNFα and Endothelial Cells Modulate Notch Signaling in the Bone Marrow Microenvironment during Inflammation

    PubMed Central

    Fernandez, Luis; Rodriguez, Sonia; Huang, Hui; Chora, Angelo; Mumaw, Christin; Cruz, Eugenia; Pollok, Karen; Cristina, Filipa; Price, Joanne E.; Ferkowicz, Michael J.; Scadden, David T.; Clauss, Matthias; Cardoso, Angelo A.; Carlesso, Nadia

    2009-01-01

    Objective Homeostasis of the hematopoietic compartment is challenged and maintained during conditions of stress by mechanisms that are poorly defined. To understand how the bone marrow (BM) microenvironment influences hematopoiesis, we explored the role of Notch signaling and bone marrow endothelial cells in providing microenvironmental cues to hematopoietic cells in the presence of inflammatory stimuli. Methods The human BM endothelial cell line BMEC and primary human BM endothelial cells were analyzed for expression of Notch ligands and the ability to expand hematopoietic progenitors in an in vitro co-culture system. In vivo experiments were carried out to identify modulation of Notch signaling in BM endothelial and hematopoietic cells in mice challenged with TNFα or LPS, or in Tie2-tmTNFα transgenic mice characterized by constitutive TNFα activation. Results BM endothelial cells were found to express Jagged ligands and to greatly support progenitor’s colony-forming ability. This effect was markedly decreased by Notch antagonists and augmented by increasing levels of Jagged2. Physiologic upregulation of Jagged2 expression on BMEC was observed upon TNFα activation. Injection of TNFα or LPS upregulated 3 to 4 fold Jagged2 expression on murine BM endothelial cells in vivo and resulted in increased Notch activation on murine hematopoietic stem/progenitor cells. Similarly, constitutive activation of endothelial cells in Tie2-tmTNFα mice was characterized by increased expression of Jagged2 and by augmented Notch activation on hematopoietic stem/progenitor cells. Conclusions Our results provide the first evidence that BM endothelial cells promote expansion of hematopoietic progenitor cells by a Notch-dependent mechanism and that TNFα and LPS can modulate the levels of Notch ligand expression and Notch activation in the bone marrow microenvironment in vivo. PMID:18439488

  10. Assessment of Endothelial Dysfunction in Childhood Obesity and Clinical Use

    PubMed Central

    Hoymans, Vicky Y.; Van Craenenbroeck, Amaryllis H.; Vissers, Dirk K.; Vrints, Christiaan J.; Conraads, Viviane M.

    2013-01-01

    The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed. PMID:23691262

  11. Functional Blood Progenitor Markers in Developing Human Liver Progenitors.

    PubMed

    Goldman, Orit; Cohen, Idan; Gouon-Evans, Valerie

    2016-08-01

    In the early fetal liver, hematopoietic progenitors expand and mature together with hepatoblasts, the liver progenitors of hepatocytes and cholangiocytes. Previous analyses of human fetal livers indicated that both progenitors support each other's lineage maturation and curiously share some cell surface markers including CD34 and CD133. Using the human embryonic stem cell (hESC) system, we demonstrate that virtually all hESC-derived hepatoblast-like cells (Hep cells) transition through a progenitor stage expressing CD34 and CD133 as well as GATA2, an additional hematopoietic marker that has not previously been associated with human hepatoblast development. Dynamic expression patterns for CD34, CD133, and GATA2 in hepatoblasts were validated in human fetal livers collected from the first and second trimesters of gestation. Knockdown experiments demonstrate that each gene also functions to regulate hepatic fate mostly in a cell-autonomous fashion, revealing unprecedented roles of fetal hematopoietic progenitor markers in human liver progenitors. PMID:27509132

  12. Progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi; Terada, Yukikatsu

    2016-07-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This paper aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  13. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    PubMed Central

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  14. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts.

    PubMed

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S; Fa'ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K; Schwartz, Robert J

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it's transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1's transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1(Cre/+); Rosa26(EYFP/+) ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  15. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors.

    PubMed

    Lalit, Pratik A; Salick, Max R; Nelson, Daryl O; Squirrell, Jayne M; Shafer, Christina M; Patel, Neel G; Saeed, Imaan; Schmuck, Eric G; Markandeya, Yogananda S; Wong, Rachel; Lea, Martin R; Eliceiri, Kevin W; Hacker, Timothy A; Crone, Wendy C; Kyba, Michael; Garry, Daniel J; Stewart, Ron; Thomson, James A; Downs, Karen M; Lyons, Gary E; Kamp, Timothy J

    2016-03-01

    Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy. PMID:26877223

  16. Endothelial Outgrowth Cells: Function and Performance in Vascular Grafts

    PubMed Central

    Glynn, Jeremy J.

    2014-01-01

    The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs. PMID:24004404

  17. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    PubMed

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  18. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review

    PubMed Central

    Quaranta, Nicola; De Ceglie, Vincenzo; D’Elia, Alessandra

    2016-01-01

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  19. Pre-eclampsia and long-term maternal health

    PubMed Central

    Williams, David

    2012-01-01

    Pre-eclampsia is a syndrome of pregnancy, defined by the gestational-onset of hypertension and proteinuria, which resolves postpartum. This definition does not consider the variable multiorgan involvement of a syndrome that can include seizures, fulminating hepatic necrosis and a consumptive coagulopathy. These disparate clinical features are a consequence of an accelerated but transient metabolic syndrome with widespread maternal endothelial dysfunction and inflammation. A trigger to this maternal state is the relatively ischaemic placenta. As pregnancy progresses, the concentration of vaso-toxic factors released by the relatively ischaemic placenta gradually builds up in the maternal circulation. Those predisposed to endothelial dysfunction, e.g. women with risk factors for cardiovascular disease, are more sensitive to these placental derived factors and will develop pre-eclampsia before natural onset of labour. A woman's vulnerability to pre-eclampsia is therefore composed of a unique balance between her pre-existing maternal endothelial and metabolic health and the concentration of placental derived factors toxic to maternal endothelium. Delivery of the placenta remains the only cure. Years later, women who had pre-eclampsia are at increased risk of chronic hypertension, ischaemic heart disease, cerebrovascular disease, kidney disease, diabetes mellitus, thromboembolism, hypothyroidism and even impaired memory. This article describes how a brief, usually single episode of this acute pregnancy syndrome might both identify those vulnerable to chronic disease in later life and in some cases initiate chronic disease.

  20. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  1. The Progenitors of Thermonuclear Supernovae

    SciTech Connect

    Piersanti, L.; Straniero, O.; Tornambe, A.; Dominguez, I.

    2009-05-03

    In the framework of the rotating Double Degenerate Scenario for type Ia Supernovae progenitors, we show that the dichotomy between explosive events in early and late type galaxies can be easily explained. Assuming that more massive progenitors produce slow-decline (high-luminosity) light curve, it comes out that, at the current age of the Universe, in late type galaxies the continuous star formation provides very massive exploding objects (prompt component) corresponding to slow-decline (bright) SNe; on the other hand, in early type galaxies, where star formation ended many billions years ago, only low mass ''normal luminosity'' objects (delayed component) are present.

  2. Strategies and Techniques to Enhance the In Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts

    PubMed Central

    Hibino, Narutoshi; Fisher, John P.

    2013-01-01

    Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the endothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions of vascular tissue-engineering strategies that do not require preprocedural cell seeding. PMID:23252992

  3. Progenitor Cells and Podocyte Regeneration

    PubMed Central

    Shankland, Stuart J.; Pippin, Jeffrey W.; Duffield, Jeremy S.

    2014-01-01

    The very limited ability of adult podocytes to proliferate in vivo is clinically significant because: podocytes form a vascular barrier which is functionally critical to the nephron; podocyte hypoplasia is a characteristic of disease; and inadequate regeneration of podocytes is a major cause of persistent podocyte hypoplasia. Excessive podocyte loss or inadequate replacement leads to glomerulosclerosis in many progressive kidney diseases. Thus, restoration of podocyte cell density is almost certainly reliant on regeneration by podocyte progenitors. However such putative progenitors have remained elusive until recently. In this review we describe the developmental processes leading to podocyte and parietal epithelial cell (PEC) formation during glomerulogenesis. We compare evidence that in normal human kidneys PECs expressing ‘progenitor’ markers CD133 and CD24 can differentiate into podocytes in vitro and in vivo with evidence from animal models suggesting a more limited role of PEC-capacity to serve as podocyte progenitors in adults. We will highlight tantalizing new evidence that specialized vascular wall cells of afferent arterioles including those which produce renin in healthy kidney, provide a novel local progenitor source of new PECs and podocytes in response to podocyte hypoplasia in the adult, and draw comparisons with glomerulogenesis. PMID:25217270

  4. Concise Review: Evidence for CD34 as a Common Marker for Diverse Progenitors

    PubMed Central

    Sidney, Laura E; Branch, Matthew J; Dunphy, Siobhán E; Dua, Harminder S; Hopkinson, Andrew

    2014-01-01

    CD34 is a transmembrane phosphoglycoprotein, first identified on hematopoietic stem and progenitor cells. Clinically, it is associated with the selection and enrichment of hematopoietic stem cells for bone marrow transplants. Due to these historical and clinical associations, CD34 expression is almost ubiquitously related to hematopoietic cells, and it is a common misconception that CD34-positive (CD34+) cells in nonhematopoietic samples represent hematopoietic contamination. The prevailing school of thought states that multipotent mesenchymal stromal cells (MSC) do not express CD34. However, strong evidence demonstrates CD34 is expressed not only by MSC but by a multitude of other nonhematopoietic cell types including muscle satellite cells, corneal keratocytes, interstitial cells, epithelial progenitors, and vascular endothelial progenitors. In many cases, the CD34+ cells represent a small proportion of the total cell population and also indicate a distinct subset of cells with enhanced progenitor activity. Herein, we explore common traits between cells that express CD34, including associated markers, morphology and differentiation potential. We endeavor to highlight key similarities between CD34+ cells, with a focus on progenitor activity. A common function of CD34 has yet to be elucidated, but by analyzing and understanding links between CD34+ cells, we hope to be able to offer an insight into the overlapping properties of cells that express CD34. Stem Cells 2014;32:1380–1389 PMID:24497003

  5. Using cultured endothelial cells to study endothelial barrier dysfunction: Challenges and opportunities.

    PubMed

    Aman, Jurjan; Weijers, Ester M; van Nieuw Amerongen, Geerten P; Malik, Asrar B; van Hinsbergh, Victor W M

    2016-08-01

    Despite considerable progress in the understanding of endothelial barrier regulation and the identification of approaches that have the potential to improve endothelial barrier function, no drug- or stem cell-based therapy is presently available to reverse the widespread vascular leak that is observed in acute respiratory distress syndrome (ARDS) and sepsis. The translational gap suggests a need to develop experimental approaches and tools that better mimic the complex environment of the microcirculation in which the vascular leak develops. Recent studies have identified several elements of this microenvironment. Among these are composition and stiffness of the extracellular matrix, fluid shear stress, interaction of endothelial cells (ECs) with pericytes, oxygen tension, and the combination of toxic and mechanic injurious stimuli. Development of novel cell culture techniques that integrate these elements would allow in-depth analysis of EC biology that closely approaches the (patho)physiological conditions in situ. In parallel, techniques to isolate organ-specific ECs, to define EC heterogeneity in its full complexity, and to culture patient-derived ECs from inducible pluripotent stem cells or endothelial progenitor cells are likely to advance the understanding of ARDS and lead to development of therapeutics. This review 1) summarizes the advantages and pitfalls of EC cultures to study vascular leak in ARDS, 2) provides an overview of elements of the microvascular environment that can directly affect endothelial barrier function, and 3) discusses alternative methods to bridge the gap between basic research and clinical application with the intent of improving the translational value of present EC culture approaches. PMID:27343194

  6. Transplanted human bone marrow progenitor subtypes stimulate endogenous islet regeneration and revascularization.

    PubMed

    Bell, Gillian I; Broughton, Heather C; Levac, Krysta D; Allan, David A; Xenocostas, Anargyros; Hess, David A

    2012-01-01

    Transplanted murine bone marrow (BM) progenitor cells recruit to the injured pancreas and induce endogenous beta cell proliferation to improve islet function. To enrich for analogous human progenitor cell types that stimulate islet regeneration, we purified human BM based on high-aldehyde dehydrogenase activity (ALDH(hi)), an enzymatic function conserved in hematopoietic, endothelial, and mesenchymal progenitor lineages. We investigated the contributions of ALDH(hi) mixed progenitor cells or culture-expanded, ALDH-purified multipotent stromal cell (MSC) subsets to activate endogenous programs for islet regeneration after transplantation into streptozotocin-treated NOD/SCID mice. Intravenous injection of uncultured BM ALDH(hi) cells improved systemic hyperglycemia and augmented insulin secretion by increasing islet size and vascularization, without increasing total islet number. Augmented proliferation within regenerated endogenous islets and associated vascular endothelium indicated the induction of islet-specific proliferative and pro-angiogenic programs. Although cultured MSC from independent human BM samples showed variable capacity to improve islet function, and prolonged expansion diminished hyperglycemic recovery, transplantation of ALDH-purified regenerative MSC reduced hyperglycemia and augmented total beta cell mass by stimulating the formation of small beta cell clusters associated with the ductal epithelium, without evidence of increased islet vascularization or Ngn3(+) endocrine precursor activation. Thus, endogenous islet recovery after progenitor cell transplantation can occur via distinct regenerative mechanisms modulated by subtypes of progenitor cells administered. Further, understanding of how these islet regenerative and pro-angiogenic programs are activated by specific progenitor subsets may provide new approaches for combination cellular therapies to combat diabetes. PMID:21417581

  7. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues

    PubMed Central

    Chakraborty, Syandan; Chellapan, Malathi; Bursac, Nenad; Leong, Kam W.

    2013-01-01

    The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors’ ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and

  8. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis.

    PubMed

    Gargett, C E; Schwab, K E; Brosens, J J; Puttemans, P; Benagiano, G; Brosens, I

    2014-07-01

    The pathogenesis of early-onset endometriosis has recently been revisited, sparked by the discovery of endometrial stem/progenitor cells and their possible role in endometriosis, and because maternal pregnancy hormone withdrawal following delivery induces uterine bleeding in the neonate. The neonatal uterus has a large cervix to corpus ratio which is functionally blocked with mucous, supporting the concept of retrograde shedding of neonatal endometrium. Only 5% show overt bleeding. Furthermore, the presence of endometriosis in pre-menarcheal girls and even in severe stage in adolescents supports the theory that early-onset endometriosis may originate from retrograde uterine bleeding soon after birth. Endometrial stem/progenitor cells have been identified in menstrual blood suggesting that they may also be shed during neonatal uterine bleeding. Thus, we hypothesized that stem/progenitor cells present in shedding endometrium may have a role in the pathogenesis of early-onset endometriosis through retrograde neonatal uterine bleeding. During the neonatal and pre-pubertal period, shed endometrial stem/progenitor cells are postulated to survive in the pelvic cavity in the absence of circulating estrogens supported by niche cells also shed during neonatal uterine bleeding. According to this hypothesis, during thelarche, under the influence of rising estrogen levels, endometrial stem/progenitor cells proliferate and establish ectopic endometrial lesions characteristic of endometriosis. This New Research Horizon review builds on recent discussions on the pathogenesis of early-onset endometriosis and raises new avenues for research into this costly condition. PMID:24674992

  9. Mesenchymal markers on human adipose stem/progenitor cells

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  10. Carotid Repair Using Autologous Adipose-Derived Endothelial Cells

    PubMed Central

    Froehlich, Harald; Gulati, Rajiv; Boilson, Barry; Witt, Tyra; Harbuzariu, Adriana; Kleppe, Laurel; Dietz, Allan B.; Lerman, Amir; Simari, Robert D.

    2009-01-01

    Background and Purpose Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function following vascular injury remains unknown. To define whether delivery of adipose-derived endothelial cells (ADECs) would improve healing of injured carotid arteries, a rabbit model of acute arterial injury was employed. Methods Autologous rabbit ADECS were generated utilizing defined culture conditions. To test the ability of ADECs to enhance carotid artery repair, cells were delivered intra-arterially following acute balloon injury. Additional delivery studies were performed following functional selection of cells prior to delivery. Results Following rabbit omental fat harvest and digestion, a proliferative, homogenous, and distinctly endothelial population of ADECs was identified. Direct delivery of autologous ADECs resulted in marked re-endothelialization 48 hours following acute vascular injury as compared to saline controls (82.2 ±26.9% vs 4.2±3.0% p<0.001). Delivery of ADECs that were selected for their ability to take up acetylated LDL significantly improved vasoreactivity and decreased intimal formation following vascular injury. Conclusions Taken together, these data suggest that ADECs represent an autologous source of proliferative endothelial cells which demonstrate the capacity to rapidly improve re-endothelialization, improve vascular reactivity, and decrease intimal formation in a carotid artery injury model. PMID:19286583

  11. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  12. Endothelin and endothelial dysfunction.

    PubMed

    Masaki, Tomoh; Sawamura, Tatsuya

    2006-03-01

    Nitric oxide (NO) and endothelin (ET) produced in endothelial cells are leading molecules which regulate vascular function. Failure of the physiological balance between these two molecules is usually referred to as endothelial dysfunction. ET was initially identified as a potent vasoconstrictive peptide. Three ET isoforms and two ET receptors have been identified. One of the isoforms, ET-1, plays a significant role in many cardiovascular diseases. On the other hand, oxidized low-density lipoprotein (oxLDL) is known to induce endothelial dysfunction. The endothelial receptor for oxLDL was cloned, and named lectin-like oxidized receptor-1 (LOX-1). Activation of LOX-1 generates reactive oxygen species (ROS), and acivates a transcriptional factor, nuclear factor κB (NFκB), resulting in down-regulation of NO and up-regulation of ET-1. LOX-1 might be a key molecule in the generation of endothelial dysfunction. In endothelial dysfunction, ET-1 is an aggravating factor of cardiovascular diseases. PMID:25792766

  13. Antiphospholipid antibodies prolong the activation of endothelial cells induced by necrotic trophoblastic debris: implications for the pathogenesis of preeclampsia.

    PubMed

    Chen, Q; Guo, F; Hensby-Bennett, S; Stone, P; Chamley, L

    2012-10-01

    The symptoms of preeclampsia are preceded by endothelial cell activation/dysfunction which is induced by a placental trigger(s) but maternal risk factor(s) also contribute to the pathogenesis of preeclampsia. In this work we have investigated the interactions of a maternal risk factor, antiphospholipid antibodies, and a placental trigger, necrotic trophoblastic debris, on the activation of endothelial cells. Trophoblastic debris, from placental explants, was induced to become necrotic by freeze-thawing then exposed to endothelial cells for 24 h. After washing away residual trophoblastic debris antiphospholipid antibodies or a control antibody were added to the cultures then replaced with fresh medium in the presence or absence of antibodies. Endothelial cell activation was quantified by examining cell-surface ICAM-1 expression and monocyte adhesion. Endothelial cells exposed to necrotic trophoblastic debris for 24 h became activated but the activation was lost 24 h after removal of the debris. Antiphospholipid antibodies alone did not active untreated endothelial cells, but did prolong the activation of endothelial cells which had been activated by pre-treatment with necrotic trophoblastic debris. When exposed to antiphospholipid antibodies the endothelial cells remained activated despite removal of the trophoblastic debris. In contrast, a control antibody did not prolong endothelial cell activation. Our data suggest that in women with antiphospholipid antibodies, activation of endothelial cells induced by necrotic trophoblastic debris could be maintained even if the endothelial cells were only intermittently exposed to necrotic debris. This might in part explain why antiphospholipid antibodies are such a strong maternal risk factor for preeclampsia. PMID:22902008

  14. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors

    PubMed Central

    Buono, Mario; Facchini, Raffaella; Matsuoka, Sahoko; Thongjuea, Supat; Waithe, Dominique; Luis, Tiago C.; Giustacchini, Alice; Besmer, Peter; Mead, Adam J.; Jacobsen, Sten Eirik W.; Nerlov, Claus

    2016-01-01

    Thymic T-cell development is initiated from bone marrow-derived multi-potent thymus seeding progenitors (TSPs). During the early stages of thymocyte differentiation progenitors become T-cell restricted. However, the cellular environments supporting these critical initial stages of T-cell development within the thymic cortex are not known. We here use the dependence of early, c-Kit–expressing thymic progenitors on Kit ligand (KitL) to show that CD4–CD8–c-Kit+CD25– DN1-stage progenitors associate with, and depend on the membrane-bound form of KitL (mKitL) provided by, a cortex-specific KitL-expressing vascular endothelial cell (VEC) population. In contrast, the subsequent CD4–CD8–c-Kit+CD25+ DN2 stage progenitors associate selectively with cortical thymic epithelial cells (cTECs) and depend on cTEC-presented mKitL. These results show that the dynamic process of early thymic progenitor differentiation is paralleled by migration-dependent changes to the supporting niche, and identify VECs as a thymic niche cell, with mKitL as a critical ligand. PMID:26780297

  15. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors.

    PubMed

    Buono, Mario; Facchini, Raffaella; Matsuoka, Sahoko; Thongjuea, Supat; Waithe, Dominique; Luis, Tiago C; Giustacchini, Alice; Besmer, Peter; Mead, Adam J; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-02-01

    Thymic T cell development is initiated from bone-marrow-derived multi potent thymus-seeding progenitors. During the early stages of thymocyte differentiation, progenitors become T cell restricted. However, the cellular environments supporting these critical initial stages of T cell development within the thymic cortex are not known. Here we use the dependence of early, c-Kit-expressing thymic progenitors on Kit ligand (KitL) to show that CD4(-)CD8(-)c-Kit(+)CD25(-) DN1-stage progenitors associate with, and depend on, the membrane-bound form of KitL (mKitL) provided by a cortex-specific KitL-expressing vascular endothelial cell (VEC) population. In contrast, the subsequent CD4(-)CD8(-)c-Kit(+)CD25(+) DN2-stage progenitors associate selectively with cortical thymic epithelial cells (cTECs) and depend on cTEC-presented mKitL. These results show that the dynamic process of early thymic progenitor differentiation is paralleled by migration-dependent change to the supporting niche, and identify VECs as a thymic niche cell, with mKitL as a critical ligand. PMID:26780297

  16. The Involving Roles of Intrahepatic and Extrahepatic Stem/Progenitor Cells (SPCs) to Liver Regeneration

    PubMed Central

    Liu, Wei-hui; Ren, Li-na; Wang, Tao; Navarro-Alvarez, Nalu; Tang, Li-jun

    2016-01-01

    Liver regeneration is usually attributed to mature hepatocytes, which possess a remarkable potential to proliferate under mild to moderate injury. However, when the liver is severely damaged or hepatocyte proliferation is greatly inhibited, liver stem/progenitor cells (LSPCs) will contribute to the liver regeneration process. LSPCs in the developing liver have been extensively characterized, however, their contributing role to liver regeneration has not been completely understood. In addition to the restoration of the liver parenchymal tissue by hepatocytes or/and LSPCs, or in some cases bone marrow (BM) derived cells, such as hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), the wound healing after injury in terms of angiopoiesis by liver sinusoidal endothelial cells (LSECs) or/and sinusoidal endothelial progenitor cells (SEPCs) is another important aspect taking place during regeneration. To conclude, liver regeneration can be mainly divided into three distinct restoring levels according to the cause and severity of injury: hepatocyte dominant regeneration, LSPCs mediated regeneration, extrahepatic stem cells participative regeneration. In this review, we focus on the recent findings of liver regeneration, especially on those related to stem/progenitor cells (SPCs)-mediated regeneration and their potential clinical applications and challenges. PMID:27489499

  17. Angiocrine functions of organ-specific endothelial cells

    PubMed Central

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-01

    Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722

  18. Angiocrine functions of organ-specific endothelial cells.

    PubMed

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-21

    Endothelial cells that line capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establishes specialized vascular niches that deploy sets of growth factors, known as angiocrine factors. These cues participate actively in the induction, specification, patterning and guidance of organ regeneration, as well as in the maintainance of homeostasis and metabolism. When upregulated following injury, they orchestrate self-renewal and differentiation of tissue-specific resident stem and progenitor cells into functional organs. Uncovering the mechanisms by which organotypic endothelium distributes physiological levels of angiocrine factors both spatially and temporally will lay the foundation for clinical trials that promote organ repair without scarring. PMID:26791722

  19. Microenvironment influences vascular differentiation of murine cardiovascular progenitor cells.

    PubMed

    Gluck, Jessica M; Delman, Connor; Chyu, Jennifer; MacLellan, W Robb; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh

    2014-11-01

    We examined the effects of the microenvironment on vascular differentiation of murine cardiovascular progenitor cells (CPCs). We isolated CPCs and seeded them in culture exposed to the various extracellular matrix (ECM) proteins in both two-dimensional (2D) and 3D culture systems. To better understand the contribution of the microenvironment to vascular differentiation, we analyzed endothelial and smooth muscle cell differentiation at both day 7 and day 14. We found that laminin and vitronectin enhanced vascular endothelial cell differentiation while fibronectin enhanced vascular smooth muscle cell differentiation. We also observed that the effects of the 3D electrospun scaffolds were delayed and not noticeable until the later time point (day 14), which may be due to the amount of time necessary for the cells to migrate to the interior of the scaffold. The study characterized the contributions of both ECM proteins and the addition of a 3D culture system to continued vascular differentiation. Additionally, we demonstrated the capability bioengineer a CPC-derived vascular graft. PMID:24687591

  20. Generation of functional endothelial-like cells from adult mouse germline-derived pluripotent stem cells.

    PubMed

    Kim, Julee; Eligehausen, Sarah; Stehling, Martin; Nikol, Sigrid; Ko, Kinarm; Waltenberger, Johannes; Klocke, Rainer

    2014-01-10

    Functional endothelial cells and their progenitors are required for vascular development, adequate vascular function, vascular repair and for cell-based therapies of ischemic diseases. Currently, cell therapy is limited by the low abundance of patient-derived cells and by the functional impairment of autologous endothelial progenitor cells (EPCs). In the present study, murine germline-derived pluripotent stem (gPS) cells were evaluated as a potential source for functional endothelial-like cells. Cells displaying an endothelial cell-like morphology were obtained from gPS cell-derived embryoid bodies using a combination of fluorescence-activated cell sorting (FACS)-based selection of CD31-positive cells and their subsequent cultivation on OP9 stromal cells in the presence of VEGF-A. Real-time reverse transcriptase polymerase chain reaction, FACS analysis and immunofluorescence staining showed that the gPS cell-derived endothelial-like cells (gPS-ECs) expressed endothelial cell-specific markers including von Willebrand Factor, Tie2, VEGFR2/Flk1, intercellular adhesion molecule 2 and vascular endothelial-cadherin. The high expression of ephrin B2, as compared to Eph B4 and VEGFR3, suggests an arterial rather than a venous or lymphatic differentiation. Their capability to take up Dil-conjugated acetylated low-density lipoprotein and to form capillary-like networks on matrigel confirmed their functionality. We conclude that gPS cells could be a novel source of endothelial cells potentially suitable for regenerative cell-based therapies for ischemic diseases. PMID:24333870

  1. Evolution of endothelial keratoplasty.

    PubMed

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use. PMID:24104929

  2. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2

    PubMed Central

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-01-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1highPDGFRα−. Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability. PMID:25802403

  3. Frs2α-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis

    PubMed Central

    Zhang, Jue; Lin, Yongshun; Zhang, Yongyou; Lan, Yongsheng; Lin, Chunhong; Moon, Anne M.; Schwartz, Robert J.; Martin, James F.; Wang, Fen

    2009-01-01

    Summary The cardiac outflow tract (OFT) is a developmentally complex structure derived from multiple lineages and is often defective in human congenital anomalies. While emerging evidence shows that the fibroblast growth factor (FGF) is essential for OFT development, the downstream pathways mediating FGF-signaling in cardiac progenitors remain poorly understood. Here, we report that FRS2α, an adaptor protein that links FGF receptor kinases to multiple signaling pathways, mediates critical aspects of FGF-dependent OFT development. Ablation of Frs2α in mesodermal OFT progenitor cells that originate in the second heart field (SHF) affects their expansion into the OFT myocardium, resulting in OFT misalignment and hypoplasia. Moreover, Frs2α mutants had defective endothelial-mesenchymal-transition and neural crest cell recruitment into the OFT cushions, resulting in OFT septation defects. The results provide new insight into the signaling molecules downstream of FGF receptor tyrosine kinases in cardiac progenitors. PMID:18832393

  4. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis. PMID:26117052

  5. [Endothelial function test].

    PubMed

    Tomiyama, Hirofumi

    2015-11-01

    Endothelial dysfunction is thought to have pivotal roles for the development of hypertension, initiation/progression of hypertensive organ damages, and prognosis. In clinical setting, flow-mediated vasodilatation (FMD) of brachial artery is used as a marker of endothelial function. However, well-trained sonographer is needed to conduct FMD measurement, and therefore, FMD has not been fully standardized (i.e., the reference value of FMD has not been established). Even so, FMD predicts future cardiovascular events. Lifestyle modifications (i.e., smoking cessation, exercise, or weight loss) and antihypertensive medication provide beneficial effects on endothelial function. Thus, FMD have a potential as a useful surrogate marker for the management of hypertension. PMID:26619655

  6. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases.

    PubMed

    Conese, Massimo; Carbone, Annalucia; Castellani, Stefano; Di Gioia, Sante

    2013-01-01

    Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders. PMID:23652321

  7. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla.

    PubMed

    Chung, Kuei-Fang; Sicard, Flavie; Vukicevic, Vladimir; Hermann, Andreas; Storch, Alexander; Huttner, Wieland B; Bornstein, Stefan R; Ehrhart-Bornstein, Monika

    2009-10-01

    Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease. PMID:19609938

  8. Mechanisms regulating endothelial permeability

    PubMed Central

    Sukriti, Sukriti; Tauseef, Mohammad; Yazbeck, Pascal

    2014-01-01

    Abstract The endothelial monolayer partitioning underlying tissue from blood components in the vessel wall maintains tissue fluid balance and host defense through dynamically opening intercellular junctions. Edemagenic agonists disrupt endothelial barrier function by signaling the opening of the intercellular junctions leading to the formation of protein-rich edema in the interstitial tissue, a hallmark of tissue inflammation that, if left untreated, causes fatal diseases, such as acute respiratory distress syndrome. In this review, we discuss how intercellular junctions are maintained under normal conditions and after stimulation of endothelium with edemagenic agonists. We have focused on reviewing the new concepts dealing with the alteration of adherens junctions after inflammatory stimulus. PMID:25610592

  9. Dysregulation of VEGF-induced proangiogenic Ca2+ oscillations in primary myelofibrosis-derived endothelial colony-forming cells.

    PubMed

    Dragoni, Silvia; Reforgiato, Marta; Zuccolo, Estella; Poletto, Valentina; Lodola, Francesco; Ruffinatti, Federico Alessandro; Bonetti, Elisa; Guerra, Germano; Barosi, Giovanni; Rosti, Vittorio; Moccia, Francesco

    2015-12-01

    Endothelial progenitor cells could be implicated in the aberrant neoangiogenesis that occurs in bone marrow and spleen in patients with primary myelofibrosis (PMF). However, antivascular endothelial growth factor (VEGF) monotherapy had only a modest and transient effect in these individuals. Recently it was found that VEGF-induced proangiogenic intracellular Ca(2+) oscillations could be impaired in endothelial progenitor cells of subjects with malignancies. Therefore, we employed Ca(2+) imaging, wavelet analysis, and functional assays to assess whether and how VEGF-induced Ca(2+) oscillations are altered in PMF-derived endothelial progenitor cells. We focused on endothelial colony-forming cells (ECFCs), which are the only endothelial progenitor cell subtype capable of forming neovessels both in vivo and in vitro. VEGF triggers repetitive Ca(2+) spikes in both normal ECFCs (N-ECFCs) and ECFCs obtained from PMF patients (PMF-ECFCs). However, the spiking response to VEGF is significantly weaker in PMF-ECFCs. VEGF-elicited Ca(2+) oscillations are patterned by the interaction between inositol-1,4,5-trisphosphate-dependent Ca(2+) mobilization and store-operated Ca(2+) entry. However, in most PMF-ECFCs, Ca(2+) oscillations are triggered by a store-independent Ca(2+) entry pathway. We found that diacylglycerol gates transient receptor potential canonical 1 channel to trigger VEGF-dependent Ca(2+) spikes by recruiting the phospholipase C/inositol-1,4,5-trisphosphate signaling pathway, reflected as a decrease in endoplasmic reticulum Ca(2+) content. Finally, we found that, apart from being less robust and dysregulated as compared with N-ECFCs, VEGF-induced Ca(2+) oscillations modestly stimulate PMF-ECFC growth and in vitro angiogenesis. These results may explain the modest effect of anti-VEGF therapies in PMF. PMID:26432919

  10. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy.

    PubMed

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V

    2014-05-15

    Circulating endothelial cells (CEC) are derived from multiple sources, including bone marrow (circulating endothelial progenitors; CEP), and established vasculature (mature CEC). Although CECs have shown promise as a biomarker for patients with cancer, their utility has been limited, in part, by the lack of specificity for tumor vasculature and the different nonmalignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor versus nonmalignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM(+) endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular-targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTECs were present in patients with esophageal cancer and non-small cell lung cancer (N = 40), and their levels decreased after surgical resection. These results demonstrate that CTECs are detectable in preclinical cancer models and patients with cancer. Furthermore, they suggest that CTECs offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  11. Maternal mortality in Sirur.

    PubMed

    Shrotri, A; Pratinidhi, A; Shah, U

    1990-01-01

    The research aim was 1) to determine the incidence of maternal mortality in a rural health center area in Sirur, Maharashtra state, India; 2) to determine the relative risk; and 3) to make suggestions about reducing maternal mortality. The data on deliveries was obtained between 1981 and 1984. Medical care at the Rural Training Center was supervised by the Department of Preventive and Social Medicine, the B.J. Medical College in Pune. Deliveries numbered 5994 singleton births over the four years; 5919 births were live births. 15 mothers died: 14 after delivery and 1 predelivery. The maternal mortality rate was 2.5/1000 live births. The maternal causes of death included 9 direct obstetric causes, 3 from postpartum hemorrhage of anemic women, and 3 from puerperal sepsis of anemic women with prolonged labor. 2 deaths were due to eclampsia, and 1 death was unexplained. There were 5 (33.3%) maternal deaths due to indirect causes (3 from hepatitis and 2 from thrombosis). One woman died of undetermined causes. Maternal jaundice during pregnancy was associated with the highest relative risk of maternal death: 106.4. Other relative risk factors were edema, anemia, and prolonged labor. Attributable risk was highest for anemia, followed by jaundice, edema, and maternal age of over 30 years. Maternal mortality at 30 years and older was 3.9/1000 live births. Teenage maternal mortality was 3.3/1000. Maternal mortality among women 20-29 years old was lowest at 2.1/1000. Maternal mortality for women with a parity of 5 or higher was 3.6/1000. Prima gravida women had a maternal mortality rate of 2.9/1000. Parities between 1 and 4 had a maternal mortality rate of 2.3/1000. The lowest maternal mortality was at parity of 3. Only 1 woman who died had received more than 3 prenatal visits. 11 out of 13 women medically examined prenatally were identified with the following risk factors: jaundice, edema, anemia, young or old maternal age, parity, or poor obstetric history. The local

  12. Mechanisms of Tubulogenesis and Endothelial Phenotype Expression by MSCs

    PubMed Central

    Rytlewski, Julie A; Aldon, M Alejandra; Lewis, Evan W; Suggs, Laura J

    2015-01-01

    Stem cell-based therapies are a promising new avenue for treating ischemic disease and chronic wounds. Mesenchymal stem cells (MSCs) have a proven ability to augment the neovascularization processes necessary for wound healing and are widely popular as an autologous source of progenitor cells. Our lab has previously reported on PEGylated fibrin as a unique hydrogel that promotes spontaneous tubulogenesis of encapsulated MSCs without exogenous factors. However, the mechanisms underlying this process have remained unknown. To better understand the therapeutic value of PEGylated fibrin delivery of MSCs, we sought to clarify the relationship between biomaterial properties and cell behavior. Here we find that fibrin PEGylation does not dramatically alter the macroscopic mechanical properties of the fibrin-based matrix (less than 10% difference). It does, however, dramatically reduce the rate of diffusion through the gel matrix. PEGylated fibrin enhances the tubulogenic growth of encapsulated MSCs demonstrating fluid-filled lumens by interconnected MSCs. Image analysis gave a value of 4320±1770µm total network length versus 618±443µm for unmodified fibrin. PEGylation promotes the endothelial phenotype of encapsulated MSCs—compared to unmodified fibrin—as evidenced by higher levels of endothelial markers (von Willebrand factor, 2.2-fold; vascular endothelial cadherin, 1.8-fold) and vascular endothelial growth factor (VEGF, up to 1.8-fold). Prospective analysis of underlying molecular pathways demonstrated that this endothelial-like MSC behavior is sensitively modulated by hypoxic stress, but not VEGF supplementation as evidenced by a significant increase in VEGF and MMP-2 secretion per cell under hypoxia. Further gain-of-function studies under hypoxic stress demonstrated that hypoxia culture of MSCs in unmodified fibrin could increase both vWF and VE-cadherin levels to values that were not significantly different than cells cultured in PEGylated fibrin. This

  13. Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs.

    PubMed

    Rytlewski, Julie A; Alejandra Aldon, M; Lewis, Evan W; Suggs, Laura J

    2015-05-01

    Stem cell-based therapies are a promising new avenue for treating ischemic disease and chronic wounds. Mesenchymal stem cells (MSCs) have a proven ability to augment the neovascularization processes necessary for wound healing and are widely popular as an autologous source of progenitor cells. Our lab has previously reported on PEGylated fibrin as a unique hydrogel that promotes spontaneous tubulogenesis of encapsulated MSCs without exogenous factors. However, the mechanisms underlying this process have remained unknown. To better understand the therapeutic value of PEGylated fibrin delivery of MSCs, we sought to clarify the relationship between biomaterial properties and cell behavior. Here we find that fibrin PEGylation does not dramatically alter the macroscopic mechanical properties of the fibrin-based matrix (less than 10% difference). It does, however, dramatically reduce the rate of diffusion through the gel matrix. PEGylated fibrin enhances the tubulogenic growth of encapsulated MSCs demonstrating fluid-filled lumens by interconnected MSCs. Image analysis gave a value of 4320 ± 1770 μm total network length versus 618 ± 443 μm for unmodified fibrin. PEGylation promotes the endothelial phenotype of encapsulated MSCs--compared to unmodified fibrin--as evidenced by higher levels of endothelial markers (von Willebrand factor, 2.2-fold; vascular endothelial cadherin, 1.8-fold) and vascular endothelial growth factor (VEGF, up to 1.8-fold). Prospective analysis of underlying molecular pathways demonstrated that this endothelial-like MSC behavior is sensitively modulated by hypoxic stress, but not VEGF supplementation as evidenced by a significant increase in VEGF and MMP-2 secretion per cell under hypoxia. Further gain-of-function studies under hypoxic stress demonstrated that hypoxia culture of MSCs in unmodified fibrin could increase both vWF and VE-cadherin levels to values that were not significantly different than cells cultured in PEGylated fibrin. This

  14. Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells

    NASA Astrophysics Data System (ADS)

    Critser, Paul J.; Yoder, Mervin C.

    A functional vascular system forms early in development and is continually remodeled throughout the life of the organism. Impairment to the regeneration or repair of this system leads to tissue ischemia, dysfunction, and disease. The process of vascular formation and remodeling is complex, relying on local microenvironmental cues, cytokine signaling, and multiple cell types to function properly. Tissue engineering strategies have attempted to exploit these mechanisms to develop functional vascular networks for the generation of artificial tissues and therapeutic strategies to restore tissue homeostasis. The success of these strategies requires the isolation of appropriate progenitor cell sources which are straightforward to obtain, display high proliferative potential, and demonstrate an ability to form functional vessels. Several populations are of interest including endothelial colony-forming cells, a subpopulation of endothelial progenitor cells. Additionally, the development of scaffolds to deliver and support progenitor cell survival and function is crucial for the formation of functional vascular networks. The composition and biophysical properties of these scaffolds have been shown to modulate endothelial cell behavior and vessel formation. However, further investigation is needed to better understand how these mechanical properties and biophysical properties impact vessel formation. Additionally, several other cell populations are involved in neoangiogenesis and formation of tissue parenchyma and an understanding of the potential impact of these cell populations on the biophysical properties of scaffolds will also be needed to advance these strategies. This chapter examines how the biophysical properties of matrix scaffolds can influence vessel formation and remodeling and, in particular, the impact on in vivo human endothelial progenitor cell vessel formation.

  15. Wine and endothelial function.

    PubMed

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet. PMID:15134380

  16. Preterm Cord Blood Contains a Higher Proportion of Immature Hematopoietic Progenitors Compared to Term Samples

    PubMed Central

    Podestà, Marina; Bruschettini, Matteo; Cossu, Claudia; Sabatini, Federica; Dagnino, Monica; Romantsik, Olga; Spaggiari, Grazia Maria; Ramenghi, Luca Antonio; Frassoni, Francesco

    2015-01-01

    Background Cord blood contains high number of hematopoietic cells that after birth disappear. In this paper we have studied the functional properties of the umbilical cord blood progenitor cells collected from term and preterm neonates to establish whether quantitative and/or qualitative differences exist between the two groups. Methods and Results Our results indicate that the percentage of total CD34+ cells was significantly higher in preterm infants compared to full term: 0.61% (range 0.15–4.8) vs 0.3% (0.032–2.23) p = 0.0001 and in neonates <32 weeks of gestational age (GA) compared to those ≥32 wks GA: 0.95% (range 0.18–4.8) and 0.36% (0.15–3.2) respectively p = 0.0025. The majority of CD34+ cells co-expressed CD71 antigen (p<0.05 preterm vs term) and grew in vitro large BFU-E, mostly in the second generation. The subpopulations CD34+CD38- and CD34+CD45- resulted more represented in preterm samples compared to term, conversely, Side Population (SP) did not show any difference between the two group. The absolute number of preterm colonies (CFCs/10microL) resulted higher compared to term (p = 0.004) and these progenitors were able to grow until the third generation maintaining an higher proportion of CD34+ cells (p = 0.0017). The number of colony also inversely correlated with the gestational age (Pearson r = -0.3001 p<0.0168). Conclusions We found no differences in the isolation and expansion capacity of Endothelial Colony Forming Cells (ECFCs) from cord blood of term and preterm neonates: both groups grew in vitro large number of endothelial cells until the third generation and showed a transitional phenotype between mesenchymal stem cells and endothelial progenitors (CD73, CD31, CD34 and CD144)The presence, in the cord blood of preterm babies, of high number of immature hematopoietic progenitors and endothelial/mesenchymal stem cells with high proliferative potential makes this tissue an important source of cells for developing new cells therapies

  17. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage.

    PubMed

    Goldman, Orit; Feraud, Olivier; Boyer-Di Ponio, Julie; Driancourt, Catherine; Clay, Denis; Le Bousse-Kerdiles, Marie-Caroline; Bennaceur-Griscelli, Annelise; Uzan, Georges

    2009-08-01

    Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12. PMID:19544443

  18. The progenitors of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.

    2013-05-01

    The type Ib/c SNe are those explosions which come from massive star populations, but lack hydrogen and helium. These have been proposed to originate in the explosions of massive Wolf-Rayet stars, and we should easily be able to detect the very luminous, young progenitors if they exist. However, there has not been any detection of progenitors so far. I present the study of two extinguished Type Ic SNe 2003jg and 2004cc. In both cases there is no clear evidence of a direct detection of their progenitors in deep pre-explosion images. Upper limits derived by inserting artificial stars of known brightness at random positions around the progenitor positions (M_v>-8.8 and M_v>-9 magnitudes for the progenitors of SN 2003jg and SN 2004cc, respectively) are brighter than those expected for a massive WC (Wolf-Rayet, carbon-rich) or WO (Wolf-Rayet, oxygen-rich) (e.g., approximately between -3 and -6 in the LMC). Therefore, this is perhaps further evidence that the most massive stars may give rise to black-holes forming SNe, or it is an undetected, compact massive star hidden by a thick dust lane. However the extinction toward these SNe is currently one of the largest known. Even if these results do not directly reveal the nature of the type Ic SN progenitors, they can help to characterize the dusty environment which surrounded the progenitor of the stripped-envelope CC-SNe.

  19. Progenitor genealogy in the developing cerebral cortex.

    PubMed

    Laguesse, Sophie; Peyre, Elise; Nguyen, Laurent

    2015-01-01

    The mammalian cerebral cortex is characterized by a complex histological organization that reflects the spatio-temporal stratifications of related stem and neural progenitor cells, which are responsible for the generation of distinct glial and neuronal subtypes during development. Some work has been done to shed light on the existing filiations between these progenitors as well as their respective contribution to cortical neurogenesis. The aim of the present review is to summarize the current views of progenitor hierarchy and relationship in the developing cortex and to further discuss future research directions that would help us to understand the molecular and cellular regulating mechanisms involved in cerebral corticogenesis. PMID:25141969

  20. Progenitor's Signatures in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that Kepler's SNR is consistent with a symbiotic binary progenitor consisting of a white dwarf and an AGB star. Our hydrosimulations can reproduce the observed kinematic and morphological properties. For Tycho's remnant we use the characteristics of the X-ray spectrum and kinematics to show that the ejecta has likely interacted with dense circumstellar gas.

  1. Endothelial dysfunction and antioxidants.

    PubMed

    Duvall, W Lane

    2005-03-01

    The vascular endothelium plays a crucial role in the physiology of blood vessels and the pathological processes of atherosclerotic disease and acute coronary syndromes. Endothelial dysfunction is the core problem; it is an impairment of endothelium-dependent vasorelaxation caused by a loss of nitric oxide activity in the vessel wall, which results in impairment in the regulation of vascular homeostasis. Further understanding of its mechanisms of action and possible therapeutic targets will be of great importance. The group of antioxidant vitamins, A, C and E, would seem uniquely situated to reduce cardiovascular events by improving endothelial function by reducing the concentration of reactive oxygen species in the vessel wall and by preventing oxidative modification of low-density lipoprotein. Unfortunately, despite extensive studies in both observational and randomized trials, the weight of evidence points to little or no benefit from antioxidant therapy. PMID:15770336

  2. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    PubMed Central

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  3. In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.

    PubMed

    Zaniboni, Andrea; Bernardini, Chiara; Bertocchi, Martina; Zannoni, Augusta; Bianchi, Francesca; Avallone, Giancarlo; Mangano, Chiara; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica

    2015-09-01

    Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes. PMID:26135800

  4. Effect of a Stable Angiotensin‐(1–7) Analogue on Progenitor Cell Recruitment and Cardiovascular Function Post Myocardial Infarction

    PubMed Central

    Pessôa, Bruno Sevá; Becher, Peter Moritz; Van Veghel, Richard; De Vries, René; Tempel, Dennie; Sneep, Stefan; Van Beusekom, Heleen; Van Der Velden, Vincent H. J.; Westermann, Dirk; Danser, A. H. Jan; Roks, Anton J. M.

    2015-01-01

    Background Angiotensin‐(1–7) improves cardiac function and remodeling after myocardial infarction (MI). This may involve recruitment of hematopoietic progenitor cells that support angiogenesis. However, angiotensin‐(1–7) is rapidly metabolized in plasma and tissue. The authors investigated in mice the effect of a metabolically stable angiotensin‐(1–7) analogue, cyclic angiotensin‐(1–7), on progenitor cell recruitment and on the heart post MI, when given in the angiogenesis phase of remodeling. Methods and Results Angiogenic progenitor cell recruitment was measured by using flow cytometry 24 and 72 hours after a daily bolus injection of cyclic angiotensin‐(1–7) in healthy C57BL/6 mice. Further, mice underwent MI or sham surgery and subsequently received saline or 2 different doses of cyclic angiotensin‐(1–7) for 3 or 9 weeks. Cyclic angiotensin‐(1–7) increased circulating hematopoietic progenitor cells at 24 hours but not 72 hours. Post MI, cyclic angiotensin‐(1–7) diminished cardiomyocyte hypertrophy and reduced myogenic tone, without altering cardiovascular function or cardiac histology at 9 weeks. Importantly, cyclic angiotensin‐(1–7)–treated mice had reduced cardiac capillary density at 3 weeks after MI but not after 9 weeks. Finally, cyclic angiotensin‐(1–7) decreased tube formation by cultured human umbilical vein endothelial cells. Conclusions Our results suggest that cyclic angiotensin‐(1–7), when given early after MI, recruits progenitor cells but does not lead to improved angiogenesis, most likely because it simultaneously exerts antiangiogenic effect in adult endothelial cells. Apparently, optimal treatment with cyclic angiotensin‐(1–7) depends on the time point of onset of application after MI. PMID:25655571

  5. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat.

    PubMed

    Seki, Takahiro; Hosaka, Kayoko; Lim, Sharon; Fischer, Carina; Honek, Jennifer; Yang, Yunlong; Andersson, Patrik; Nakamura, Masaki; Näslund, Erik; Ylä-Herttuala, Seppo; Sun, Meili; Iwamoto, Hideki; Li, Xuri; Liu, Yizhi; Samani, Nilesh J; Cao, Yihai

    2016-01-01

    Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α(+) progenitor cells, as well as in human WAT-PDGFR-α(+) adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases. PMID:27492130

  6. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat

    PubMed Central

    Seki, Takahiro; Hosaka, Kayoko; Lim, Sharon; Fischer, Carina; Honek, Jennifer; Yang, Yunlong; Andersson, Patrik; Nakamura, Masaki; Näslund, Erik; Ylä-Herttuala, Seppo; Sun, Meili; Iwamoto, Hideki; Li, Xuri; Liu, Yizhi; Samani, Nilesh J.; Cao, Yihai

    2016-01-01

    Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases. PMID:27492130

  7. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition

    PubMed Central

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J.; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it. PMID:26891705

  8. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition.

    PubMed

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as