These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins  

Microsoft Academic Search

BACKGROUND: Maternal protein restriction during rat pregnancy is known to impact upon fetal development, growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics and plasma volume during pregnancy, in the context of both normal and reduced plasma

Ruth Cornock; Simon C Langley-Evans; Ali Mobasheri; Sarah McMullen

2010-01-01

2

Maternal protein restriction during pregnancy affects gene expression and immunolocalization of intestinal nutrient transporters in rats.  

PubMed

Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium-glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1 in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism. PMID:23544918

Pinheiro, Daniela F; Pinheiro, Patricia F F; Buratini, José; Castilho, Anthony C S; Lima, Paula F; Trinca, Luiza A; Vicentini-Paulino, Maria de Lourdes M

2013-09-01

3

Temporal evaluation of body composition, glucose homeostasis and lipid profile of male rats programmed by maternal protein restriction during lactation.  

PubMed

Neonatal protein restriction causes lower body weight and hormonal dysfunctions in 6 months-old rats. In this model, we studied the body composition, glycogen content, serum lipid, serum protein, and hormones related to glucose homeostasis in the offspring during development. At birth, lactating rats were divided into: control dams - fed a normal diet (23% protein) and protein restricted dams - fed a diet with 8% protein. After weaning, pups received normal diet. Offspring were killed at 21, 90, and 180 days-old. Protein restricted offspring showed lower visceral fat (90th day: 14%; 180th day: 19%) and lower total fat (90th day: 16%; 180th day: 14%) that explain their lower body weight. They presented lower glycemia (180th day: 17%), lower insulinemia (21st day: 63%; 180th day: 24%), higher adiponectinemia (21st day: 169%), higher liver glycogen (21st day: 104%), and higher muscle glycogen (180th day: 106%), suggesting a higher insulin sensitivity. The higher serum corticosterone (50%), higher adrenal total catecholamines content (98%) as well as in vitro catecholamine secretion (26%) of adult protein restricted offspring, suggest a programming stimulatory effect upon adrenal gland. They also presented several biochemical changes, such as lower serum total protein, albumin and globulin (21st day: 17, 21, 12%, respectively), higher LDL-c (21st day: 69%), lower triglycerides (21st day: 42%; 90th day: 39%), and lower total cholesterol (180th day: 16%). Thus, maternal protein restriction during lactation induces an energy-protein malnutrition, characterized by an impairment of the pup's protein anabolism and, after weaning, the lower adiposity suggests lower lipogenesis and higher lipolytic activity, probably caused by catecholamine and glucocorticoid action. PMID:19672817

Fagundes, A T S; Moura, E G; Passos, M C F; Santos-Silva, A P; de Oliveira, E; Trevenzoli, I H; Casimiro-Lopes, G; Nogueira-Neto, J F; Lisboa, P C

2009-12-01

4

Developmental Programming of Cardiovascular Disease Following Intrauterine Growth Restriction: Findings Utilising A Rat Model of Maternal Protein Restriction  

PubMed Central

Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of “programming”. The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR) on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats), in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype. PMID:25551250

Zohdi, Vladislava; Lim, Kyungjoon; Pearson, James T.; Black, M. Jane

2014-01-01

5

Effect of maternal protein restriction on liver metabolism in rat offspring.  

PubMed

Consequences of gestational protein restriction (GPR) on liver metabolism in rat offspring were investigated. Pregnant dams were divided into groups: normal (NP, 17% casein) or low-protein diet (LP, 6% casein). Livers were collected from 30-day-old offspring (d30) for analysis or isolation of mitochondria. At d30, hepatic and muscle glycogen was increased in LP group. Mitochondrial swelling and oxygen uptake (recorded with a Clark-type electrode) were significantly reduced in NP female and LP pups. Thiobarbituric acid reactive substances production was lower in females (NP or LP), suggesting significant inhibition of lipid peroxidation. Measurement of mitochondrial respiration (states 3 and 4 stimulated by succinate) showed a higher ADP/O ratio in LP pups, particularly females, suggesting higher phosphorylation efficiency. In the 1st month of life, under our experimental conditions, GPR protects liver mitochondria against oxidative stress and females seem to be more resistant or more suitable for survival. PMID:24994532

Moraes, Camila; Rebelato, Hércules J; Amaral, Maria Esmeria C; Resende, Thais Marangoni; Silva, Eduarda V C; Esquisatto, Marcelo A M; Catisti, Rosana

2014-09-01

6

Effects of aging and maternal protein restriction on the muscle fibers morphology and neuromuscular junctions of rats after nutritional recovery.  

PubMed

Changes in the nutritional status of mothers may predispose their offspring to neuromuscular disorders in the long term. This study evaluated the effects of maternal protein restriction during pregnancy and lactation on the muscle fibers and neuromuscular junctions (NMJs) of the soleus muscle in the offspring of rats at 365 days of age that had undergone nutritional recovery. Wistar rats were divided into two groups: control (CG) - the offspring of mothers fed a normal protein diet (17%) and restricted (RG) - offspring of mothers fed a low protein diet (6%). After lactation, the male pups received standard chow ad libitum. At 365 days, samples of soleus muscle were collected for muscle fiber analysis (HE staining, NADH-TR reaction and ultrastructure), intramuscular collagen quantification (picrosirius red staining) and NMJs analysis (non-specific esterase technique). The cross-sectional area of type I fibers was reduced by 20% and type IIa fibers by 5% while type IIb fibers increased by 5% in the RG compared to the CG. The percentage of intramuscular collagen was 19% lower in the RG. Disorganization of the myofibrils and Z line was observed, with the presence of clusters of mitochondria in both groups. Regarding the NMJs, in the RG there was a reduction of 10% in the area and 17% in the small diameter and an increase of 7% in the large diameter. The results indicate that the effects of maternal protein restriction on muscle fibers and NMJs seem to be long-lasting and irreversible. PMID:25597842

Confortim, Heloisa Deola; Jerônimo, Leslie Cazetta; Centenaro, Lígia Aline; Felipe Pinheiro, Patrícia Fernanda; Brancalhão, Rose Meire Costa; Michelin Matheus, Selma Maria; Torrejais, Marcia Miranda

2015-04-01

7

Maternal protein restriction alters VEGF signaling and decreases pulmonary alveolar in fetal rats  

PubMed Central

Epidemiological studies have demonstrated that intrauterine growth restriction (IUGR) increases the risk for respiratory morbidity from infancy, throughout childhood and into adulthood. Chronic restriction of nutrients causes abnormalities in the airways and lungs of offspring, but whether IUGR adversely impacts fetal pulmonary vascular development and underlying mechanisms remain under investigation. In this study, we investigated the effects of protein malnutrition in utero on pulmonary alveolarization and vascular growth of the fetal lung and placentae. Pregnant rats were feed with an isocaloric low-protein diet (8% protein) until delivery. Placenta and fetal lungs were harvested on 20th day of gestation (term 21 days of gestation). Lung index (lung weight as a percentage of body weight), total DNA and protein, radial alveolar count, arteriolar wall thickness, lung maturity and angiogenic factor VEGF were assessed. The lung was hypoplastic in IUGR fetus, evidenced by reduction in lung weight, DNA and protein content. Protein restriction in utero led to higher glycogen levels, but reduced number of alveoli as confirmed by the measurement of radial alveolar counts. IUGR fetus had significantly reduced VEGF, Flk-1 levels in lung but no changes in Flt-1 mRNA. Furthermore, IUGR was associated with increased lung miR-126-3p levels, which modulated the expression of angiogenic factor. In contrast, with regard to the placenta, IUGR fetus presented with decreased expression of VEGF, with no changes in VEGF receptors and expression-regulating miRNAs. This work suggested that VEGF signaling defect plays an important role in the defective lung development, which may explain the increased incidence of respiratory infections in IUGR patients. PMID:25031729

Liu, Xiaomei; Lin, Yan; Tian, Baoling; Miao, Jianing; Xi, Chunyan; Liu, Caixia

2014-01-01

8

Maternal protein restriction induces alterations in hepatic tumor necrosis factor-?/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring  

PubMed Central

It is well recognized that adverse events in utero impair fetal development and lead to the development of obesity and metabolic syndrome in adulthood. To investigate the mechanisms linking impaired fetal growth to increased cholesterol, an important clinical risk factor characterizing the metabolic syndrome and cardiovascular disease, we examined the impact of maternal undernutrition on tumor necrosis factor-? (TNF-?)/c-jun N-terminal kinase (JNK) signaling pathway and the cholesterol 7?-hydroxylase (CYP7A1) expression in the livers of the offspring with a protein restriction model. The male offspring with intrauterine growth restriction (IUGR) caused by the isocaloric low-protein diet showed decreased liver weight at birth and augmented circulation and hepatic cholesterol levels at 40 weeks of age. Maternal undernutrition significantly upregulated cytokine TNF-? expression and JNK phospholytion levels in the livers from fetal age to adulthood. Elevated JNK phospholytion could be linked to downregulated hepatocyte nuclear factor-4? and CYP7A1 expression, subsequently led to higher hepatic cholesterol. This work demonstrated that intrauterine malnutrition-induced IUGR might result in intrinsic disorder in hepatic TNF-?/CYP7A1 signaling, and contribute to the development of hypercholesterolemia in later life. PMID:25120278

Liu, Xiaomei; Qi, Ying; Tian, Baoling; Chen, Dong; Gao, Hong; Xi, Chunyan; Xing, Yanlin; Yuan, Zhengwei

2014-01-01

9

Long Non-Coding RNA Expression Profile in the Kidneys of Male, Low Birth Weight Rats Exposed to Maternal Protein Restriction at Postnatal Day 1 and Day 10  

PubMed Central

Background Long non-coding RNAs (lncRNAs), which are involved in a variety of biological functions and aberrantly expressed in many types of diseases, are required for postnatal development. In this study, we aimed to investigate the lncRNA profiles in low birth weight (LBW) rats with reduced nephron endowment induced by the restriction of maternal protein intake. LBW by reduced nephron endowment is a risk factor for hypertension and end-stage renal disease in adulthood. Methods Kidneys were obtained from LBW rats fed a low-protein diet throughout gestation and lactation as well as from normal control rats born from dams fed normal protein diets at postnatal day 1 (p1) and 10 (p10). The total number of glomeruli in the kidneys was counted at p10. LncRNA expression profiles were analyzed by sequencing and screening using the Agilent Rat lncRNA Array. Quantitative real-time PCR (qRT-PCR) analysis of these lncRNAs confirmed the identity of some genes. Results The total number of glomeruli per kidney at p10 was significantly lower in LBW rats than in controls. A total of 42 lncRNAs were identified to be significantly differentially expressed, with fold-changes ?2.0, between the two groups. According to correlation analysis between the differentially expressed lncRNAs and mRNAs involved in kidney development, we randomly selected a number of lncRNAs for comparison analysis between LBW and control kidneys at the two time-points, p1 and p10, using qRT-PCR. Three lncRNAs (TCONS_00014139, TCONS_00014138, and TCONS_00017119), which were significantly correlated with the mRNA expression of mitogen-activated protein kinase 4, were aberrantly expressed in LBW rats, compared with controls, at both p1 and p10. Conclusions LncRNAs are aberrantly expressed in the kidneys of LBW rats, compared with controls, during nephron development, which indicates that lncRNAs might be involved in impaired nephron endowment. PMID:25826617

Li, Yanhong; Wang, Xueqin; Li, Mengxia; Pan, Jian; Jin, Meifang; Wang, Jian; Li, Xiaozhong; Feng, Xing

2015-01-01

10

Suckling a protein-restricted rat dam leads to diminished albuminuria in her male offspring in adult life: a longitudinal study  

PubMed Central

Background Previous studies have shown that in male rats, exposure to maternal protein restriction either in utero or whilst suckling can have profound effects on both longevity and kidney telomere lengths. This study monitored albuminuria longitudinally in male rats whose mothers had been protein restricted either during pregnancy or lactation. Methods Pregnant Wistar rats were fed either a 20% ('control') or an 8% protein ('low protein') diet. At two days of age some of the pups were cross-fostered to dams fed the diet that was not given to their biological mothers. At weaning all pups were fed standard chow. Urine samples were collected for the measurement of albumin and creatinine at monthly intervals from two months-of-age. Longitudinal analysis was then performed using repeated measures analysis of variance. Results Overall estimated marginal geometric mean (95 % confidence interval) urine albumin to creatinine ratios were: control animals 79.5 (57.2~110.6) g/mol (n = 6 litters, 24 animals in total), those exposed in utero to maternal protein restriction 71.0 (47.4~106.5) (n = 4 litters, 16 animals in total), those exposed to maternal protein restriction whilst suckling 21.2 (14.7~30.4) (n = 5 litters, 20 animals in total) (p < 0.001). These latter animals had lower albumin to creatinine ratios than either of the two other groups (both p < 0.001), which had ratios that were indistinguishable from each other (p = 1.0). Similar results were gained using 24 h. urine albumin excretion rates. These differences became evident from three months-of-age and were long-lasting. Conclusion Animals exposed to maternal protein restriction whilst suckling exhibited lower urine albumin excretions during much of adult life. As urine albumin can be nephrotoxic, these rats therefore appeared to be relatively protected against future nephron damage like that previously observed in animals exposed to maternal protein restriction in utero. PMID:17010194

Petry, Clive J; Jennings, Bridget J; James, Lynwen A; Hales, Charles N; Ozanne, Susan E

2006-01-01

11

Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy.  

PubMed

The placenta acts a regulator of nutrient composition and supply from mother to fetus and is the source of hormonal signals that affect maternal and fetal metabolism. Thus, appropriate development of the placenta is crucial for normal fetal development. We investigated the effect of gestational protein restriction (GPR) on placental morphology and mitochondrial function on day 19 of gestation. Pregnant dams were divided into two groups: normal (NP 17 % casein) or low-protein diet (LP 6 % casein). The placentas were processed for biochemical, histomorphometric and ultrastructural analysis. The integrity of rat placental mitochondria (RPM) isolated by conventional differential centrifugation was measured by oxygen uptake (Clark-type electrode). LP animals presented an increase in adipose tissue and triacylglycerol and a decrease in serum insulin levels. No alterations were observed in body, liver, fetus, or placenta weight. There was also no change in serum glucose, total protein, or lipid content. Gestational protein restriction had tissue-specific respiratory effects, with the observation of a small change in liver respiration (~13 %) and considerable respiratory inhibition in placenta samples (~37 %). The higher oxygen uptake by RPM in the LP groups suggests uncoupling between respiration and oxidative phosphorylation. In addition, ultrastructural analysis of junctional zone giant cells from LP placenta showed a disorganized cytoplasm, with loss of integrity of most organelles and intense vacuolization. The present results led us to hypothesize that GPR alters placental structure and morphology, induces sensitivity to insulin, mitochondrial abnormalities and suggests premature aging of the placenta. Further studies are needed to test this hypothesis. PMID:23884563

Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Moraes, Camila; Amaral, Maria Esmeria Corezola; Catisti, Rosana

2013-12-01

12

Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice  

PubMed Central

We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P?=?0.038) and insulin levels (P?=?0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P?=?0.0002) and thymus (P?=?0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P?=?0.021) and protein kinase C zeta (P?=?0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85? (P?=?0.018), p110? (P?=?0.048) and protein kinase C zeta (P?=?0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity. PMID:19308256

Chen, Jian-Hua; Martin-Gronert, Malgorzata S.; Tarry-Adkins, Jane; Ozanne, Susan E.

2009-01-01

13

Effect of nickel sulfate on testicular steroidogenesis in rats during protein restriction.  

PubMed Central

Nickel, a widely used heavy metal, exerts potent toxic effects on peripheral tissues as well as on the reproductive system. Low dietary protein coupled with exposure to this metal induces more severe changes, including biochemical defects, structural disorders, and altered physiologic functions. This study was designed to assess the effects of nickel sulfate on testicular steroidogenesis and to ascertain whether such alterations are reversible with normal protein and protein-restricted dietary regime. Nickel sulfate [2 mg/100 g body weight (bw)] dissolved in double-distilled water was administered on alternate days for 10 doses in a normal protein diet (18% casein) and a protein-restricted diet (5% casein) to Wistar male albino rats (bw 160 +/- 5 g). Two groups, one with a normal protein diet and the other with a protein-restricted diet, served as controls. Twenty-four hours after the last treatment, all the animals except those in withdrawal groups were sacrificed by decapitation. We observed a significant reduction in the activities of the testicular steroidogenic enzymes and plasma testosterone concentration accompanied by a significant elevation in cholesterol and ascorbic acid level in both dietary groups. After 15 days of withdrawal from the nickel sulfate treatment, the testicular steroidogenic enzymes, along with plasma testosterone level, improved significantly in both normal protein-fed and protein-restricted dietary groups. The effects of nickel on testicular cholesterol and ascorbic acid concentration were also reduced after withdrawal. Our results indicate that nickel sulfate affects the steroidogenic enzymes, causing alteration in the formation of testosterone in both dietary groups, which was manifested in the elevated cholesterol and ascorbic acid level with decreased activities of steroidogenic enzymes in adult rats testes. However, these alterations were reversible in both groups of animals fed normal protein diets and protein-restricted diets. PMID:12204828

Das, Kusal K; Dasgupta, Shakuntala

2002-01-01

14

Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring.  

PubMed

Epidemiological and experimental evidence suggests that a suboptimal environment during perinatal life programs offspring susceptibility to the development of metabolic syndrome and Type 2 diabetes. We hypothesized that the lasting impact of perinatal protein deprivation on mitochondrial fuel oxidation and insulin sensitivity would depend on the time window of exposure. To improve our understanding of underlying mechanisms, an integrative approach was used, combining the assessment of insulin sensitivity and untargeted mass spectrometry-based metabolomics in the offspring. A hyperinsulinemic-euglycemic clamp was performed in adult male rats born from dams fed a low-protein diet during gestation and/or lactation, and subsequently exposed to a Western diet (WD) for 10 wk. Metabolomics was combined with targeted acylcarnitine profiling and analysis of liver gene expression to identify markers of adaptation to WD that influence the phenotype outcome evaluated by body composition analysis. At adulthood, offspring of protein-restricted dams had impaired insulin secretion when fed a standard diet. Moreover, rats who demonstrated catch-up growth at weaning displayed higher gluconeogenesis and branched-chain amino acid catabolism, and lower fatty acid ?-oxidation compared with control rats. Postweaning exposure of intrauterine growth restriction-born rats to a WD exacerbated incomplete fatty acid ?-oxidation and excess fat deposition. Control offspring nursed by protein-restricted mothers showed peculiar low-fat accretion through adulthood and preserved insulin sensitivity even after WD-exposure. Altogether, our findings suggest a testable hypothesis about how maternal diet might influence metabolic outcomes (insulin sensitivity) in the next generation such as mitochondrial overload and/or substrate oxidation inflexibility dependent on the time window of perinatal dietary manipulation. PMID:24808498

Agnoux, Aurore Martin; Antignac, Jean-Philippe; Simard, Gilles; Poupeau, Guillaume; Darmaun, Dominique; Parnet, Patricia; Alexandre-Gouabau, Marie-Cécile

2014-07-15

15

Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats  

SciTech Connect

The possibility that there are changes in brain benzodiazepine binding sites controlled by photoperiod was investigated in two strains of male rats. The hypothesis was tested by 3H-diazepam binding studies in various brain regions of prepubertal rats maintained in 14 or 10 h of light or treated with late-afternoon injections of melatonin (50 micrograms/day). Protein restriction was applied during the experiment to sensitize the animals to the treatments. Under the conditions employed, rats kept in short daylength throughout or kept on long photoperiod and given late-afternoon melatonin injections showed evidence of delayed puberty (seminal vesicle, ventral prostate, and testis weight decreased by 45%, 55%, and 60% respectively, compared to control rats). Binding measurements were made 1 h before and 2 and 5 h after the onset of darkness in the pubertal (42-day-old) or experimentally prepubertal rats. In the rats of the Porton strain (for which protein restriction was obligatory for the gonadal response) there was no consistent treatment or time effects on specific binding of 3H-diazepam to washed membranes of the hypothalamus, midbrain, or striatum. Similarly, there were no differences in the stimulation of 3H-diazepam binding by 100 microM GABA or the inhibition of binding by 50 microM N-acetyl 5 methoxy kynurenamine. By contrast, in Wistar rats, specific binding to midbrain membranes was reduced 5 h after dark compared to 2 h (37% saline; 20% melatonin) and the extent of stimulation by GABA in the hypothalamus was increased 5 h after darkness (35.6% to 46.7% saline; 37.4% to 50% melatonin). Melatonin treatment resulted in significantly higher specific binding in the hypothalamus 2 h after dark (10%, control fed; 20%, protein restricted) but reduced the GABA induced stimulation of binding in the midbrain (35.5% to 25%, control fed; 33.7% to 23.5%, protein restricted).

Kennaway, D.J.; Royles, P.; Webb, H.; Carbone, F.

1988-01-01

16

Enhanced mesenteric arterial responsiveness to angiotensin II is androgen receptor-dependent in prenatally protein-restricted adult female rat offspring.  

PubMed

Gestational protein restriction results in intrauterine growth restriction and hypertension in adult female growth-restricted rats. Enhanced vascular responsiveness to angiotensin II is observed, and blockade of the renin-angiotensin system abolishes hypertension in adult growth-restricted rats, suggesting that the renin-angiotensin system contributes to intrauterine growth restriction-induced hypertension. Moreover, growth-restricted adult rats have higher plasma testosterone levels, and antiandrogen treatment abolishes hypertension, indicating an important role for testosterone. We hypothesized that androgens may play a pivotal role in the enhanced responsiveness to Ang II and hypertension. Female offspring of pregnant rats fed 20% protein (control) or 6% protein diet (protein restricted), at 6 mo of age, were studied. Plasma testosterone and mean arterial pressure in protein-restricted offspring were significantly higher compared to controls. Flutamide treatment (10 mg/kg/day subcutaneously for 10 days) reduced mean arterial pressure in protein-restricted offspring but was without significant effect in controls. Vascular Agtr1/Agtr2 ratio was significantly higher in protein-restricted offspring, an effect that was reversed by flutamide. Flutamide treatment did not have any effect on Agtr1/Agtr2 ratio in controls. Enhanced contractile response to angiotensin II in mesenteric arteries was observed in protein-restricted offspring compared with control. Flutamide treatment reversed the enhanced contractile response to angiotensin II in protein-restricted offspring without significant effect in controls. Vascular reactivity to phenylephrine was similar between the control and protein-restricted offspring with and without flutamide treatment, suggesting that enhanced contractile response and flutamide's reversal effect is specific to angiotensin II. These results suggest that prenatally protein-restricted rats exhibit an enhanced responsiveness to angiotensin II that is testosterone-dependent. PMID:25550341

Sathishkumar, Kunju; Balakrishnan, Meena P; Yallampalli, Chandrasekhar

2015-02-01

17

Transcription of Rat Liver Chromatin by Escherichia coli RNA Polymerase: Template Properties after Protein Restriction  

Microsoft Academic Search

Transcription was determined in liver chromatin from rats fed for 6 days, an optimal (20%) or suboptimal (3%) amount of high-quality protein. Transcription by Escherichia coli RNA polymerase (EC 2.7.7.6) was lower after prolonged incubation with chromatin from rats fed 3% as compared with 20% protein. Differences were detected in the transcripts of the two types of chromatin after analysis

Marianne Andersson; Per Näslund; Alexandra von der Decken

1979-01-01

18

Maternal protein restriction during gestation and lactation programs offspring ovarian steroidogenesis and folliculogenesis in the prepubertal gilts.  

PubMed

Maternal malnutrition may disrupt ovarian functions in adult offspring. Steroidogenesis and folliculogenesis in the offspring ovary appear to be the major targets of nutritional programming. Nevertheless, the mechanism by which maternal low-protein diet affects the offspring steroidogenesis and folliculogenesis, and the possible pathway linking these two processes remain unclear. In this study, Landrace×Yorkshire crossbred sows were fed either standard (SP) or low-protein (LP, 50% of the SP) diets throughout gestation and lactation. Female offspring were fed the same diet after weaning until 6 months of age. LP offspring had higher serum 17?-estradiol level (P<0.01), which was accompanied by lower mRNA (P<0.05) but higher protein (P<0.05) expression of cytochrome P450 aromatase (CYP19A1) in the ovary. CYP19A1 protein up-regulation was associated with lower ovarian expression of drosha (P<0.05) and miRNAs targeting CYP19A1 (P<0.05). LP offspring had less graafian follicles with more apoptotic granulosa cells (P<0.05), as well as higher caspase 3 activity (P<0.05) and FasL expression (P<0.05) in the ovary. FasL gene up-regulation was associated with higher ER? protein expression (P<0.05) and binding to FasL gene promoter. These results suggest that a maternal LP diet in pregnancy and lactation elevated serum 17?-estradiol level by activating CYP19A1 through miRNA-mediated mechanism, and induced granulosa apoptosis in graafian follicles through ER-activated Fas/FasL-caspase 3 pathway. PMID:24787658

Sui, Shiyan; He, Bin; Jia, Yimin; Li, Runsheng; Cai, Demin; Li, Xi; Song, Haogang; Jia, Longfei; Zhao, Ruqian

2014-09-01

19

Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: Role of hepatic triglyceride utilization.  

PubMed

We have previously demonstrated that protein restriction throughout gestation and lactation reduces liver triglyceride content in adult rat offspring. However, the mechanisms mediating the decrease in liver triglyceride content are not understood. The aim of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty-acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content. Pregnant Sprague-Dawley rats received either a control or a low protein diet throughout pregnancy and lactation. Pups were weaned onto laboratory chow on day 28 and killed on day 65. Liver triglyceride content was reduced in male, but not female, low-protein offspring, both in the fed and fasted states. The reduction was accompanied by a trend towards higher liver carnitine palmitoyltransferase-1a activity, suggesting increased fatty-acid transport into the mitochondrial matrix. However, medium-chain acyl coenzyme A dehydrogenase activity within the mitochondrial matrix, expression of nuclear peroxisome proliferator activated receptor-?, and plasma levels of ?-hydroxybutyrate were similar between low protein and control offspring, indicating a lack of change in fatty-acid oxidation. Hepatic triglyceride secretion, assessed by blocking peripheral triglyceride utilization and measuring serum triglyceride accumulation rate, and the activity of microsomal transfer protein, were similar between low protein and control offspring. Because enhanced triglyceride utilization is not a significant contributor, the decrease in liver triglyceride content in male low-protein offspring is likely due to alterations in liver fatty-acid transport or triglyceride biosynthesis. PMID:25641378

Qasem, Rani J; Li, Jing; Tang, Hee Man; Browne, Veron; Mendez-Garcia, Claudia; Yablonski, Elizabeth; Pontiggia, Laura; D'Mello, Anil P

2015-04-01

20

Weaning in Rats: I. Maternal Behavior  

E-print Network

in the nesting chamber but devoted increasingly less time to nursing. Subtle, progressive changes in maternalWeaning in Rats: I. Maternal Behavior CATHERINE P. CRAMER Department of Psychology Dartmouth Maternal behavior during the weaning period (postpartum Days 14-35) was described from continuoustimelapse

21

Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation  

PubMed Central

We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPAR? as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNF? mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-?B mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNF?-mediated inflammation.

Reis, Sílvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, Bárbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, Márcia Queiroz

2015-01-01

22

Maternal low-protein diet during lactation programmes body composition and glucose homeostasis in the adult rat offspring.  

PubMed

Previously we have reported that maternal malnutrition during lactation programmes body weight and thyroid function in the adult offspring. In the present study we evaluated the effect of maternal protein restriction during lactation upon body composition and hormones related to glucose homeostasis in adult rats. During lactation, Wistar lactating rats and their pups were divided into two experimental groups: control (fed a normal diet; 23% protein) and protein-restricted (PR; fed a diet containing 8% protein). At weaning, offspring received a normal diet until they were 180 d old. Body weight (BW) and food intake were monitored. Serum, adrenal glands, visceral fat mass (VFM) and carcasses were collected. PR rats showed lower BW (-13%; P < 0.05), VFM (-33%; P < 0.05), total body fat (-33%; P < 0.05), serum glucose (-7%; P < 0.05), serum insulin (-26%, P < 0.05), homeostasis model assessment index (-20%), but higher total adrenal catecholamine content (+90%; P < 0.05) and serum corticosterone concentration (+51%; P < 0.05). No change was observed in food intake, protein mass or total body water. The lower BW of PR rats is due to a reduction of white fat tissue, probably caused by an increase in lipolysis or impairment of lipogenesis; both effects could be related to higher catecholaminergic status, as well as to hypoinsulinaemia. To conclude, changes in key hormones which control intermediary metabolism are programmed by maternal protein restriction during lactation, resulting in BW alterations in adult rats. PMID:17524178

Fagundes, A T S; Moura, E G; Passos, M C F; Oliveira, E; Toste, F P; Bonomo, I T; Trevenzoli, I H; Garcia, R M G; Lisboa, P C

2007-11-01

23

Maternal Responsiveness to Infant Norway Rat (Rattus norvegicus) Ultrasonic Vocalizations During the Maternal Behavior Cycle and After  

E-print Network

Maternal Responsiveness to Infant Norway Rat (Rattus norvegicus) Ultrasonic Vocalizations During environment, Norway rat (Rattus norvegicus) pups emit ultrasonic vocalizations that can elicit maternal search

24

Effect of maternal low protein diet during pregnancy on the fetal liver of rats.  

PubMed

Maternal protein restriction plays a critical role in the developmental programming of later disease susceptibility of the fetus. Developmental insults could exert permanent effects on health through alteration of tissue morphology. As the liver has the greatest number of functions among other body organs, this study aimed at evaluating the effects of maternal dietary protein insufficiency on the structure and the proliferative capacity of the liver in rat fetuses. Morphometric histological studies and biochemical analysis were performed. Twenty adult Albino female Wistar rats were divided into two groups after confirmation of pregnancy. Group I (ST), serving as control, was fed a standard diet (20% protein) and group II (LP) a low protein diet (5% protein). Fetuses were extracted on the day 21.5 of pregnancy. Group II morphometric results revealed a significant decrease in the mothers' weight gain, number and weight of fetuses and weight of fetal livers, but there was also an increase in the mean area of hepatocytes. Histological results showed apoptosis, vacuolization of the hepatocytes, increased positivity of the Oil Red O stained fat droplets and the PAS-positive stained glycogen granules. Liver TUNEL showed increased apoptotic nuclei. Ki-67 immunostaining showed decreased proliferation of the hepatocytes. Ultrastructurally, the nucleus showed peripheral masses of heterochromatin besides irregular nuclear and cell membranes. Mitochondria varied in shape with loss of cristea. Biochemically, there was a significant decrease in the protein concentration and a significant increase in the glycogen concentration in livers of group II. It thus appears that the maternal metabolic condition not only reduced fetal growth in response to protein restriction, but also altered the structure of the liver. PMID:22877887

Ramadan, Wafaa S; Alshiraihi, Ilham; Al-karim, Saleh

2013-01-01

25

Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a MaternalLow-ProteinDiet  

PubMed Central

Maternal protein restriction in rat pregnancy is associated with impaired renal development and age-related loss of renal function in the resulting offspring. Pregnant rats were fed either control or low-protein (LP) diets, and kidneys from their male offspring were collected at 4, 13, or 16 weeks of age. Mitochondrial state 3 and state 4 respiratory rates were decreased by a third in the LP exposed adults. The reduction in mitochondrial function was not explained by complex IV deficiency or altered expression of the complex I subunits that are typically associated with mitochondrial dysfunction. Similarly, there was no evidence that LP-exposure resulted in greater oxidative damage to the kidney, differential expression of ATP synthetase ?-subunit, and ATP-ADP translocase 1. mRNA expression of uncoupling protein 2 was increased in adult rats exposed to LP in utero, but there was no evidence of differential expression at the protein level. Exposure to maternal undernutrition is associated with a decrease in mitochondrial respiration in kidneys of adult rats. In the absence of gross disturbances in respiratory chain protein expression, programming of coupling efficiency may explain the long-term impact of the maternal diet. PMID:22536494

Engeham, Sarah; Mdaki, Kennedy; Jewell, Kirsty; Austin, Ruth; Lehner, Alexander N.; Langley-Evans, Simon C.

2012-01-01

26

Moderate protein restriction during pregnancy modifies the regulation of triacylglycerol turnover and leads to dysregulation of insulin's anti-lipolytic action.  

PubMed

Moderate protein restriction throughout pregnancy in the rat leads to relative hyperlipidaemia and blunted insulin responsiveness of lipid fuel supply, and impairs foetal growth. The present study examined the basis for these changes. Isocaloric 8% (vs 20%) protein diets were provided throughout pregnancy. Rats were sampled at 19-20 days of gestation. Protein restriction enhanced triacylglycerol (TAG) secretion rates (estimated using Triton WR 1339) 1.6-fold (P < 0.05) in the post-absorptive state. Insulin infusion (4.2 mU/kg per min) decreased plasma TAG concentrations by 33% (P < 0.05) and 48% (P < 0.05) in control (C) and protein-restricted (PR) pregnant groups, an effect associated with suppression of TAG secretion by 42% (P < 0.05) and 51% (P < 0.01) respectively, in the C and PR groups. Since TAG concentrations decline more rapidly, while TAG secretion is enhanced, TAG utilisation during hyperinsulinaemia is enhanced in the PR group. We evaluated whether these changes were associated with dysregulation of lipolysis using adipocytes from two abdominal depots (mesenteric and parametrial). Noradrenaline-stimulated glycerol release was enhanced in parametrial adipocytes (by 40%; P < 0.05) from PR pregnant rats. The anti-lipolytic action of insulin at low concentrations (< or = 15 microU/ml) was impaired by protein restriction (adipocytes from both depots). There was no evidence for altered intra-hepatic regulation of fatty acid (FA) disposal at the level of carnitine palmitoyltransferase. Our results demonstrate increased post-absorptive production of non-carbohydrate energy substrates (TAG and FA) as a consequence of mild protein restriction during pregnancy. These adaptations contribute to a homeostatic strategy to reduce the maternal requirement for gluconeogenesis from available amino acids, optimising the foetal protein supply. Protein restriction also enhances TAG turnover during hyperinsulinaemia. This effect is not a consequence of abnormal regulation of hepatic lipid metabolism by insulin. PMID:9783899

Holness, M J; Fryer, L G; Priestman, D A; Sugden, M C

1998-07-25

27

MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT  

EPA Science Inventory

MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT. C. Lau and J.M. Rogers, Reproductive Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA Perfluorooctane sulfonate (PFOS), an environmentally persistent compound used ...

28

Early changes of hypothalamic angiotensin II receptors expression in gestational protein-restricted offspring: effect on water intake, blood pressure and renal sodium handling.  

PubMed

The current study examines changes in the postnatal hypothalamic angiotensin receptors by maternal protein restriction (LP), and its impact on in uteri programming of hypertension in adult life. The data show that LP male pup body weight was significantly reduced when compared to that of control (NP) pups. Also, immunoblotting analysis demonstrated a significantly decreased expression of type 1 AngII receptors (AT1R) in the entire hypothalamic tissue extract of LP rats at 12 days of age compared to age-matched NP offspring. Conversely, the expression of the type 2 AngII (AT2R) receptors in 12-day- and 16-week-old LP hypothalamus was significantly increased. The current data show the influence of central AngII administration on water consumption in a concentration-dependent fashion, but also demonstrate that the water intake response to AngII was strikingly attenuated in 16-week-old LP. These results may be related to decreased brain arginine vasopressin (AVP) expression appearing in maternal protein-restricted offspring. The present investigation shows an early decrease in fractional urinary sodium excretion in maternal protein-restricted offspring. The decreased fractional sodium excretion was accompanied by a fall in proximal sodium excretion and occurred despite unchanged creatinine clearance. These effects were associated with a significant enhancement in arterial blood pressure in the LP group, but the precise mechanism of these phenomena remains unknown. PMID:22936038

de Lima, Marcelo Cardoso; Scabora, José Eduardo; Lopes, Agnes; Mesquita, Flávia Fernandes; Torres, Daniele; Boer, Patrícia Aline; Gontijo, José Antonio Rocha

2013-09-01

29

FGF21 is an endocrine signal of protein restriction  

PubMed Central

Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2? (eIF2?) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2? kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake. PMID:25133427

Laeger, Thomas; Henagan, Tara M.; Albarado, Diana C.; Redman, Leanne M.; Bray, George A.; Noland, Robert C.; Münzberg, Heike; Hutson, Susan M.; Gettys, Thomas W.; Schwartz, Michael W.; Morrison, Christopher D.

2014-01-01

30

Central V1b receptor antagonism in lactating rats: impairment of maternal care but not of maternal aggression.  

PubMed

Maternal behaviour in rodents is mediated by the central oxytocin and vasopressin systems, amongst others. The role of vasopressin, acting via the V1a receptor (V1aR), on maternal care and maternal aggression has recently been described. However, a potential involvement of the V1b receptor (V1bR) in maternal behaviour has only been demonstrated in knockout mice. The present study aimed to examine the effects of central pharmacological manipulation of the V1bR on maternal behaviour in lactating Wistar rats. On pregnancy day 18, female rats were implanted with a guide cannula targeting the lateral ventricle. After parturition, dams received an acute central infusion of a specific V1bR agonist (d[Leu4,Lys8]VP) or V1bR antagonist (SSR149415) once daily, followed by observations of maternal care [lactation day (LD) 1], maternal motivation in the pup retrieval test (LD 2), anxiety-related behaviour on the elevated plus-maze (LD 3) and maternal aggression in the maternal defence test followed by maternal care monitoring (LD 4). Our data demonstrate that, under nonstress conditions, the V1bR antagonist decreased the occurrence of both nursing and mother-pup interaction, whereas the V1bR agonist did not affect either parameter. Under stress conditions (i.e. after the maternal defence test), mother-pup interaction was decreased by infusion of the V1bR antagonist. During the maternal defence test, neither treatment affected aggressive or non-aggressive behaviour. Finally, neither treatment altered maternal motivation or anxiety. In conclusion, central V1bR antagonism modulates aspects of maternal care but not of maternal aggression or maternal motivation in lactating rats. These findings further extend our knowledge on the vasopressin system as a vital mediator of maternal behaviour. PMID:25283607

Bayerl, D S; Klampfl, S M; Bosch, O J

2014-12-01

31

Interaction of maternal separation on the UCh rat cerebellum.  

PubMed

Maternal care is the main source of signals and stimuli for proper development, growth, and production of adjustment responses to stressful factors. Adverse experiences in childhood are associated with a vulnerability to developing abusive ethanol ingestion via alterations of the response of the hypothalamic-pituitary-adrenal axis. Alcoholism causes global brain abnormalities, with the cerebellum being one of the most susceptible areas. We evaluated the effect of maternal separation on the cerebellum structure of male UCh rats. Adult male UChA (low 10% ethanol consumption) and UChB (high 10% ethanol consumption) rats were divided in to four experimental groups: (1) UChA, (2) UChA maternal separation (MS), (3) UChB, and (4) UChB MS. The MS occurred between the 4th and 14th days of age, for 240 min day(-1) . Euthanasia was performed at 120 days of age. An image analysis system was used to measure cerebellar cortical height and Purkinje cellular area and height in five rats from each group. The cerebellar sections were stained with antibodies against IGFR-I. MS did not alter the ethanol consumption of UChA and UChB rats. Corticosterone level was significantly higher in UChA MS and UChB MS rats than in UChA and UChB rats. The Purkinje cellular area and height were higher in UChA MS rats. IGFR-I expression was observed in the cortical glomerular area of UChA MS and UChB MS rats. MS altered the Purkinje cells in the cerebella of male UCh rats. PMID:24203397

Oliveira, S A; Fontanelli, B A F; Stefanini, M A; Chuffa, L G A; Teixeira, G R; Lizarte, F S N; Tirapelli, L F; Quitete, V H A; Matheus, S M M; Padovani, C R; Martinez, M; Martinez, F E

2014-01-01

32

Long-term modification of the excretion of prostaglandin E(2) by fetal exposure to a maternal low protein diet in the rat.  

PubMed

Prenatal exposure to maternal undernutrition in both humans and animals is associated with long-term changes in the structure, physiological functions and metabolism of key tissues and organs. This phenomenon, termed programming, is implicated in the aetiology of cardiovascular disease. Using an established rat model of hypertension programmed by prenatal protein restriction, assessment was made of the long-term influence of maternal diet upon prostaglandin metabolism. Pregnant rats were fed isoenergetic diets containing 18% casein (control) or 9% casein (low protein) from conception until littering. The offspring of these pregnancies were studied at day 20 of gestation, full-term gestation and at 4, 7 or 12 weeks postnatal age. Prostaglandin E(2) concentrations in plasma were similar in control and low-protein diet-exposed rats at 4 weeks of age. Urinary prostaglandin E(2) excretion was, however, significantly increased by prenatal undernutrition in rats at both 4 and 12 weeks postnatal age. The principal enzyme of prostaglandin E(2) degradation, 15-hydroxyprostaglandin dehydrogenase (PGDH) exhibited significantly lower activity in the kidneys of 4-week-old rats exposed to a maternal low-protein diet. This effect was transient and absent by 12 weeks postnatal age. There was also some evidence of an altered developmental profile of PGDH activity in the lungs of low-protein diet-exposed rats. These data are consistent with the long-term programming effects of the maternal diet upon renal prostaglandin metabolism. In the rat, increased local prostaglandin E(2) concentrations associated with impaired degradation may contribute to increased renovascular resistance and hypertension. PMID:10436308

Sherman, R C; Jackson, A A; Langley-Evans, S C

1999-01-01

33

Effects of Maternal Geophagia on Infant and Juvenile Rats  

PubMed Central

Clay eating, a form of geophagia, is often observed in the human population, particularly during pregnancy. The intent of this study was to determine the effects of maternal geophagia on developmental and behavioral characteristics of the offspring. Twelve Sprague-Dawley female rats and their 88 progeny were divided into three groups: control, 20 percent clay, and 35 percent clay. The experimental diets were fed to adult rats during the period of gestation and for 14 days following parturition. Righting reflex, homing response, and activity level tests were administered and hemoglobin concentrations and red blood cell counts were determined. Data suggest that the higher level of maternal clay ingestion during the perinatal period decreased growth and development of motor skills in the infant pups. Homing skills, however, were enhanced. PMID:6631996

Edwards, Adrienne A.; Mathura, Clyde B.; Edwards, Cecile H.

1983-01-01

34

The effects of adrenalectomy and corticosterone replacement on maternal behavior in the postpartum rat  

E-print Network

that mother rats will respond maternally to offspring by enhancing the moth- er's attraction to infant cues­pituitary­adrenal axis; Rat Introduction The hormonal profile of gestation in the rat prepares the expectant mother; Numan, 1994), is important for the initiation of maternal behaviors in new mothers, especially in female

Sokolowski, Marla

35

Immune responsiveness of Japanese quail selected for egg yolk testosterone content under severe protein restriction.  

PubMed

Yolk testosterone concentrations vary in response to environmental conditions and different testosterone contents can subsequently modify the phenotypic traits of offspring. Apart from effects on growth, proactive behaviour and secondary sexual characteristics, the possible negative impacts of maternal testosterone on the immune system are often considered a limitation for its deposition. The effects of maternal testosterone can be modulated by postnatal environmental conditions, such as the availability of food resources. However, the majority of studies considering the effects of maternal testosterone on the immune system have been conducted under optimum conditions. We evaluated the influence of genetic selection for high (HET) and low (LET) egg testosterone content in Japanese quail on immune responsiveness of offspring to phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) stimulation under severe protein restriction. Protein restriction negatively influenced body weight and performance in the PHA-test. We observed an increase in Cort (corticosterone) and He/Ly (heterophil/lymphocyte ratio) after LPS, while no changes occurred in total IgY levels in the protein-restricted group. HET quails showed higher body mass and total IgY levels and lower He/Ly ratio than LET quails, while the PHA index and Cort concentration did not differ between lines. No interactions were found between protein restriction and genetic line. In conclusion, the immune response was not compromised under conditions of severe protein restriction in the faster growing HET line compared with the LET line. We hypothesise that the immune responsiveness of birds with higher yolk testosterone may be linked with other maternally-derived substances in a context-dependent manner. PMID:25086332

Kankova, Zuzana; Okuliarova, Monika; Zeman, Michal

2014-11-01

36

Involvement of Renal Corpuscle microRNA Expression on Epithelial-to-Mesenchymal Transition in Maternal Low Protein Diet in Adult Programmed Rats  

PubMed Central

Prior study shows that maternal protein-restricted (LP) 16-wk-old offspring have pronounced reduction of nephron number and arterial hypertension associated with unchanged glomerular filtration rate, besides enhanced glomerular area, which may be related to glomerular hyperfiltration/overflow and which accounts for the glomerular filtration barrier breakdown and early glomerulosclerosis. In the current study, LP rats showed heavy proteinuria associated with podocyte simplification and foot process effacement. TGF-?1 glomerular expression was significantly enhanced in LP. Isolated LP glomeruli show a reduced level of miR-200a, miR-141, miR-429 and ZEB2 mRNA and upregulated collagen 1?1/2 mRNA expression. By western blot analyzes of whole kidney tissue, we found significant reduction of both podocin and nephrin and enhanced expression of mesenchymal protein markers such as desmin, collagen type I and fibronectin. From our present knowledge, these are the first data showing renal miRNA modulation in the protein restriction model of fetal programming. The fetal-programmed adult offspring showed pronounced structural glomerular disorders with an accentuated and advanced stage of fibrosis, which led us to state that the glomerular miR-200 family would be downregulated by TGF-?1 action inducing ZEB 2 expression that may subsequently cause glomeruli epithelial-to-mesenchymal transition. PMID:23977013

Sene, Letícia de Barros; Mesquita, Flávia Fernandes; de Moraes, Leonardo Nazário; Santos, Daniela Carvalho; Carvalho, Robson; Gontijo, José Antônio Rocha; Boer, Patrícia Aline

2013-01-01

37

Lactating Rats Retain Nursing Behavior and Maternal Care in Space  

NASA Technical Reports Server (NTRS)

In 1997, suckling mammals were flown in space for the first time as part of the NIH.R3 experiment sponsored jointly by NIH (National Institutes of Health) and NASA. Six rat dams and litters (Rattus norvegicus) were launched on an eight-day Space Shuttle mission at each of three postnatal ages (P5, P8, and P15). Dams and litters (N = 10 pups/litter) were housed within modified Animal Enclosure Modules (AEMs). Comparisons were made to ground controls. Dams and litters were videotaped daily in flight. The P8 and P15 flight litters showed excellent survival (99%) and weight gain relative to AEM ground controls, whereas P5 litters showed reduced survival (0% and 60%, respectively) and weight gain (less than 40% AEM). To examine the possibility that failures of maternal care contributed to P5 results, we analyzed the dams' in-flight nursing, licking and retrieving from four video segments ranging from twelve to fifteen minutes in length with control data derived from multiple ground segments. Video analyses revealed clear evidence of maternal care in flight. For P5 dams, frequency and duration of nursing and licking bouts fell within or above one standard deviation of control values. Retrieving was noted in the P5 and P8 groups only. The observed results suggest that factors other than maternal care contributed to the low survival rates and body weight gains of the P5 flight offspring.

Daly, Megan E.; Ronca, April E.; Dalton, Bonnie (Technical Monitor)

2001-01-01

38

Maternal diet fatty acid composition affects neurodevelopment in rat pups.  

PubMed

The effect of pre- and postnatal maternal dietary fatty acid composition on neurodevelopment in rat pups was studied. Timed pregnant dams were fed, beginning on d 2 of gestation and throughout lactation, either nonpurified diet (reference) or a purified diet whose fat source (22% of energy) was either corn oil or menhaden fish oil. On postnatal d 3, pups were randomly cross-fostered among dams of the same diet group and culled to 10 pups per dam. Milk was removed from stomachs of culled pups for fatty acid analyses. From postnatal d 4 to 30, pups were assessed daily for the appearance of neurodevelopmental reflexes. Auditory brainstem conduction times were measured on postnatal d 23 and 29. Pups were killed on postnatal d 30, and cerebrums were removed for fatty acid analyses. The fatty acid composition of maternal milk and pup cerebrums reflected maternal diet with higher levels of (n-3) and (n-6) fatty acids in the fish oil and corn oil groups, respectively. The time of appearance of auditory startle was significantly delayed (P = 0.004), and auditory brainstem conduction times on postnatal d 23 and 29 were significantly longer in pups of the fish oil- than corn oil-fed dams (P

Saste, M D; Carver, J D; Stockard, J E; Benford, V J; Chen, L T; Phelps, C P

1998-04-01

39

Maternal hyperthyroidism in rats impairs stress coping of adult offspring.  

PubMed

Given the evidence that maternal hyperthyroidism (MH) compromises expression of neuronal cytoskeletal proteins in the late fetal brain by accelerated neuronal differentiation, we investigated possible consequences of MH for the emotional and cognitive functions of adult offspring during acute and subchronic stress coping. Experimental groups consisted of male rat offspring from mothers implanted with osmotic minipumps infusing either thyroxine (MH) or vehicle (Ctrl) during pregnancy. Body weight and T4 level were monitored during the first 3 postnatal months, and no differences were found with the controls. We analyzed hippocampal CA3 pyramidal neurons and dentate granular cell morphology during several postnatal stages and found increased dendritic arborization. On postnatal day 90 a modified subchronic mild stress (SCMS) protocol was applied to experimental subjects for 10 days. The Morris water maze was used before, during, and after application of the SCMS protocol to measure spatial learning. The tail suspension test (TST) and forced-swimming test (FST) were used to evaluate behavioral despair. The MH rats displayed normal locomotor activity and spatial memory prior to SCMS, but impaired spatial learning after acute and chronic stress. In both the FST and TST we found that MH rats spent significantly more time immobile than did controls. Serum corticosterone level was found to increase after 30 min of restraint stress, and corticotropin-releasing factor immunoreactivity was found to be increased in the central nucleus of the amygdala. Our results suggest that MH in rats leads to the offspring being more vulnerable to stress in adulthood. PMID:18074386

Zhang, Limei; Hernández, Vito S; Medina-Pizarro, Mauricio; Valle-Leija, Pablo; Vega-González, Arturo; Morales, Teresa

2008-05-01

40

Protein Content and Methyl Donors in Maternal Diet Interact to Influence the Proliferation Rate and Cell Fate of Neural Stem Cells in Rat Hippocampus  

PubMed Central

Maternal diet during pregnancy and early postnatal life influences the setting up of normal physiological functions in the offspring. Epigenetic mechanisms regulate cell differentiation during embryonic development and may mediate gene/environment interactions. We showed here that high methyl donors associated with normal protein content in maternal diet increased the in vitro proliferation rate of neural stem/progenitor cells isolated from rat E19 fetuses. Gene expression on whole hippocampi at weaning confirmed this effect as evidenced by the higher expression of the Nestin and Igf2 genes, suggesting a higher amount of undifferentiated precursor cells. Additionally, protein restriction reduced the expression of the insulin receptor gene, which is essential to the action of IGFII. Inhibition of DNA methylation in neural stem/progenitor cells in vitro increased the expression of the astrocyte-specific Gfap gene and decreased the expression of the neuron-specific Dcx gene, suggesting an impact on cell differentiation. Our data suggest a complex interaction between methyl donors and protein content in maternal diet that influence the expression of major growth factors and their receptors and therefore impact the proliferation and differentiation capacities of neural stem cells, either through external hormone signals or internal genomic regulation. PMID:25317634

Amarger, Valérie; Lecouillard, Angèle; Ancellet, Laure; Grit, Isabelle; Castellano, Blandine; Hulin, Philippe; Parnet, Patricia

2014-01-01

41

Adolescent Exposure to Chronic Delta9Tetrahydrocannabinol Blocks Opiate Dependence in Maternally Deprived Rats  

Microsoft Academic Search

Maternal deprivation in rats specifically leads to a vulnerability to opiate dependence. However, the impact of cannabis exposure during adolescence on this opiate vulnerability has not been investigated. Chronic dronabinol (natural delta-9 tetrahydrocannabinol, THC) exposure during postnatal days 35–49 was made in maternal deprived (D) or non-deprived (animal facility rearing, AFR) rats. The effects of dronabinol exposure were studied after

Lydie J Morel; Bruno Giros; Valérie Daugé

2009-01-01

42

Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats  

PubMed Central

The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

Furuta, Miyako; Bridges, Robert S.

2009-01-01

43

Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates  

PubMed Central

Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity.

Cutuli, Debora; Caporali, Paola; Gelfo, Francesca; Angelucci, Francesco; Laricchiuta, Daniela; Foti, Francesca; De Bartolo, Paola; Bisicchia, Elisa; Molinari, Marco; Farioli Vecchioli, Stefano; Petrosini, Laura

2015-01-01

44

Stimulus Control of Maternal Responsiveness to Norway Rat (Rattus norvegicus) Pup Ultrasonic Vocalizations  

E-print Network

Stimulus Control of Maternal Responsiveness to Norway Rat (Rattus norvegicus) Pup Ultrasonic Vocalizations William J. Farrell and Jeffrey R. Alberts Indiana University Bloomington Mother rats (Rattus norvegicus; 6 to 8 days postpartum) approach and maintain proximal orientation to a pup that is emitting

45

Effects of maternal separation on the dietary preference and behavioral satiety sequence in rats.  

PubMed

This study investigated the effects of maternal separation on the feeding behavior of rats. A maternal separation model was used on postnatal day 1 (PND1), forming the following groups: in the maternal separation (MS) group, pups were separated from their mothers each day from PND1 to PND14, whereas in the control (C) group pups were kept with their mothers. Subgroups were formed to study the effects of light and darkness: control with dark and light exposure, female and male (CF and CM), and maternal separation with dark and light exposure, female and male (SDF, SDM, SLF and SLM). Female rats had higher caloric intake relative to body weight compared with male controls in the dark period only (CF=23.3±0.5 v. CM=18.2±0.7, P<0.001). Macronutrient feeding preferences were observed, with male rats exhibiting higher caloric intake from a protein diet as compared with female rats (CF=4.1±0.7, n=8 v. CM=7.0±0.5, n=8, P<0.05) and satiety development was not interrupted. Female rats had a higher adrenal weight as compared with male rats independently of experimental groups and exhibited a higher concentration of serum triglycerides (n=8, P<0.001). The study indicates possible phenotypic adjustments in the structure of feeding behavior promoted by maternal separation, especially in the dark cycle. The dissociation between the mother's presence and milk intake probably induces adjustments in feeding behavior during adulthood. PMID:24901662

da Silva, M C; de Souza, J A; Dos Santos, L O; Pinheiro, I L; Borba, T K F; da Silva, A A M; de Castro, R M; de Souza, S L

2014-06-01

46

Maternal Programming of Reproductive Function and Behavior in the Female Rat  

PubMed Central

Parental investment can be used as a forecast for the environmental conditions in which offspring will develop to adulthood. In the rat, maternal behavior is transmitted to the next generation through epigenetic modifications such as methylation and histone acetylation, resulting in variations in estrogen receptor alpha expression. Natural variations in maternal care also influence the sexual strategy adult females will adopt later in life. Lower levels of maternal care are associated with early onset of puberty as well as increased motivation to mate and greater receptivity toward males during mating. Lower levels of maternal care are also correlated with greater activity of the hypothalamus–pituitary–gonadal axis, responsible for the expression of these behaviors. Contrary to the transition of maternal care, sexual behavior cannot simply be explained by maternal attention, since adoption studies changed the sexual phenotypes of offspring born to low caring mothers but not those from high caring dams. Indeed, mothers showing higher levels of licking/grooming have embryos that are exposed to high testosterone levels during development, and adoption studies suggest that this androgen exposure may protect their offspring from lower levels of maternal care. We propose that in the rat, maternal care and the in utero environment interact to influence the reproductive strategy female offspring display in adulthood and that this favors the species by allowing it to thrive under different environmental conditions. PMID:22203802

Cameron, Nicole M.

2011-01-01

47

IFITM proteins restrict viral membrane hemifusion.  

PubMed

The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection. PMID:23358889

Li, Kun; Markosyan, Ruben M; Zheng, Yi-Min; Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C; Gratton, Enrico; Cohen, Fredric S; Liu, Shan-Lu

2013-01-01

48

IFITM Proteins Restrict Viral Membrane Hemifusion  

PubMed Central

The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection. PMID:23358889

Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

2013-01-01

49

Possible Role for Endogenous Oxytocin in Estrogen-Facilitated Maternal Behavior in Rats  

Microsoft Academic Search

Intracerebroventricular (i.c.v.) infusions of oxytocin (OXY) induce short-latency maternal behavior in estrogen-primed virgin rats. To investigate if brain OXY might have a role in the onset of maternal behavior at parturition, we have used both antisera to OXY and an analog antagonist of OXY, d(CH2)5–8-ornithine-vasotocin, to reduce the activity of endogenous OXY in a pregnancy-terminated preparation which yields reliable short-latency

Susan E. Fahrbach; Joan I. Morrell; Donald W. Pfaff

1985-01-01

50

Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations.  

PubMed

The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluoride and substituted perfluorooctane sulfonamido components found in many commercial and consumer applications. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestational day (GD) 2 to GD 20; CD-1 mice were similarly treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 17. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). Maternal weight gain, food and water consumption, and serum chemistry were monitored. Rats were euthanized on GD 21 and mice on GD 18. PFOS levels in maternal serum and in maternal and fetal livers were determined. Maternal weight gains in both species were suppressed by PFOS in a dose-dependent manner, likely attributed to reduced food and water intake. Serum PFOS levels increased with dosage, and liver levels were approximately fourfold higher than serum. Serum thyroxine (T4) and triiodothyronine (T3) in the PFOS-treated rat dams were significantly reduced as early as one week after chemical exposure, although no feedback response of thyroid-stimulating hormone (TSH) was observed. A similar pattern of reduction in T4 was also seen in the pregnant mice. Maternal serum triglycerides were significantly reduced, particularly in the high-dose groups, although cholesterol levels were not affected. In the mouse dams, PFOS produced a marked enlargement of the liver at 10 mg/kg and higher dosages. In the rat fetuses, PFOS was detected in the liver but at levels nearly half of those in the maternal counterparts, regardless of administered doses. In both rodent species, PFOS did not alter the numbers of implantations or live fetuses at term, although small deficits in fetal weight were noted in the rat. A host of birth defects, including cleft palate, anasarca, ventricular septal defect, and enlargement of the right atrium, were seen in both rats and mice, primarily in the 10 and 20 mg/kg dosage groups, respectively. Our results demonstrate both maternal and developmental toxicity of PFOS in the rat and mouse. PMID:12773773

Thibodeaux, Julie R; Hanson, Roger G; Rogers, John M; Grey, Brian E; Barbee, Brenda D; Richards, Judy H; Butenhoff, John L; Stevenson, Lisa A; Lau, Christopher

2003-08-01

51

The effects of adrenalectomy and corticosterone replacement on induction of maternal behavior in the virgin female rat  

E-print Network

behavior of the sensitized virgin rat is affected by approach­avoidance systems as well as by hypothalamic­pituitary behavior; Virgin maternal sensitization; Hypothalamic pituitary adrenal axis; Rat Introduction Following of the adrenal gland, the source of corticosterone, decreases maternal licking and crouching in the postpartum

Sokolowski, Marla

52

Ingestion of amniotic fluid enhances the facilitative effect of VTA morphine on the onset of maternal behavior in virgin rats  

Microsoft Academic Search

Previous research has shown that injection of morphine into the ventral tegmental area (VTA) facilitates the onset of maternal behavior in virgin female rats, and injection of the opioid antagonist naltrexone into the VTA disrupts the onset of maternal behavior in parturient rats. Placentophagia – ingestion of placenta and amniotic fluid, usually at parturition – modifies central opioid processes. Ingestion

Anne Neumann; Robert F. Hoey; Lindsey B. Daigler; Alexis C. Thompson; Mark B. Kristal

2009-01-01

53

Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition  

PubMed Central

Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-?2 (PPAR?2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR? increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR? agonist, would normalize IUGR adipose deposition in association with increased PPAR?, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR? expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR. PMID:23533720

Bagley, Heidi N.; Wang, Yan; Campbell, Michael S.; Yu, Xing; Lane, Robert H.; Joss-Moore, Lisa A.

2013-01-01

54

Developmental Triclosan Exposure Decreases Maternal and Offspring Thyroxine in Rats*  

EPA Science Inventory

Epidemiological and laboratory data have demonstrated that disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. In a short-term exposure paradigm, triclosan decreased systemic thyroxine (T4) concentr...

55

Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats  

Microsoft Academic Search

Acute exposure to the organophosphate pesticide chlorpyrifos (CPF) on gestation day 12 (GD12, 200 mg\\/kg\\/ml, SC) causes extensive neurochemical changes in maternal brain but lesser changes in fetal brain. In the present study, we examined the relative neurotoxicity of repeated, lower-level CPF exposures during gestation in rats. Pregnant Sprague-Dawley rats were exposed to CPF (6.25, 12.5, or 25 mg\\/kg per

S. M. Chanda; C. N. Pope

1996-01-01

56

Comparative developmental and maternal neurotoxicity following acute gestational exposure to chlorpyrifos in rats  

Microsoft Academic Search

Chlorpyrifos (CPF), an organophosphorus (OP) insecticide, exerts toxicity through inhibition of acetylcholinesterase (AChE). In the present study, pregnant Sprague?Dawley rats were given CPF (200 mg\\/kg, sc) as a single dose on gestation d 12 (GD12) and then sacrificed on either GD16, GD20, or postnatal d 3 (PND3) for measurement of maternal and developmental indicators of toxicity. While most CPF?treated rats

S. M. Chanda; P. Harp; J. Liu; C. N. Pope

1995-01-01

57

Early maternal separation increases symptoms of activity-based anorexia in male and female rats.  

PubMed

Running activates the hypothalamic-pituitary-adrenal (HPA) axis, increasing the release of stress hormones known to exert anorexic effects. HPA axis reactivity is strongly influenced by early postnatal manipulations, including removal of pups from the dam for short (handling) or prolonged (maternal separation) durations during the preweaning period. The authors examined the effects of handling and maternal separation on food intake, body weight loss, and running rates of young adult male and female rats in the activity-based anorexia (ABA) paradigm. Postnatal treatment did not affect adaptation to a 1-hr restricted feeding schedule before the introduction of wheel running. During the ABA paradigm, maternally separated animals lost weight faster, ate less, ran more, and required fewer days to reach removal criterion compared with handled rats. Females were particularly vulnerable. These findings indicate that early postnatal treatment and sex influence ABA. PMID:19594284

Hancock, Stephanie; Grant, Virginia

2009-07-01

58

Developmental toxicity of benzyl benzoate in rats after maternal exposure throughout pregnancy.  

PubMed

The maternal and fetal toxicity of benzyl benzoate, commonly used as antiparasitic insecticide, was evaluated in pregnant rats after a daily oral dose of 25 and 100 mg/kg. Biochemical, histopathological, and morphological examinations were performed. Dams were observed for maternal body weights and food and water consumption and subjected to caesarean section on (GD) 20. Maternal and fetal liver, kidney, heart, brain, and placenta were examined histopathologically under light microscope. Maternal and fetal liver and placenta were stained immunohistochemically for vascular endothelial growth factor (VEGF). Morphometric analysis of fetal body lengths, placental measurements, and fetal skeletal stainings was performed. Statistically significant alterations in biochemical parameters and placental and skeletal measurements were determined in treatment groups. In addition to histopathological changes, considerable differences were observed in the immunolocalization of VEGF in treatment groups. These results demonstrated that benzyl benzoate and its metabolites can transport to the placenta and eventually enter the fetuses. PMID:21922633

Koçkaya, E Arzu; K?l?ç, Aysun

2014-01-01

59

Effect of ethanol consumption during gestation on maternal-fetal amino acid metabolism in the rat  

SciTech Connect

The distribution of /sup 14/C-alpha-aminoisobutyric acid (AIB), administered intravenously, in maternal, fetal and placental tissues was examined in the rat on gestation-day 21. Ethanol consumption during gestation (day 6 through 21) significantly reduced the uptake of AIB by the placenta and fetus while exerting no influence on maternal tissue AIB uptake. The concentration of fetal plasma free histidine was decreased 50% as a result of maternal ethanol ingestion, but the free histidine level of maternal plasma was not altered. Since no effect on protein content of fetal tissue could be detected, it is speculated that reduced histidine to the fetus might significantly alter the amounts of histamine and carnosine formed via their precursor. The significance of these findings in relation to the Fetal Alcohol Syndrome is discussed.

Lin, G.W.

1981-01-01

60

Ultrasonic vocalizations and maternal-infant interactions in a rat model of fetal alcohol syndrome  

Microsoft Academic Search

When isolated from their dams and littermates, rat pups emit ultrasonic vocalizations to elicit attention and retrieval from their dams. This study examined the effects of perinatal alcohol exposure on ultrasonic vocalizations and maternal-infant interactions. Alcohol was administered throughout gestation to the dams and during the early postnatal period to the pups. Control groups consisted of a nontreated control and

Melissa D. Marino; Kim Cronise; Joaquin N. Lugo; Sandra J. Kelly

2002-01-01

61

REPEATED MATERNAL SEPARATION IN THE NEONATAL RAT: CELLULAR MECHANISMS CONTRIBUTING TO BRAIN GROWTH SPARING  

EPA Science Inventory

Separation of rat neonates from their dam has been shown to evoke acutely a variety of biochemical and physiological responses. n the current study, we examined whether these responses were extended to pups who were subject to daily episodes of maternal deprivation, and whether t...

62

LATE GESTATIONAL ATRAZINE EXPOSURE DECREASES MATERNAL BEHAVIOR IN LONG-EVANS RATS  

EPA Science Inventory

Late Gestational Atrazine Exposure Alters Maternal Nursing Behavior in Rats Jennifer L. Rayner1 and Suzanne E. Fenton2 1 University of North Carolina at Chapel Hill, DESE, Chapel Hill, NC, and 2 USEPA/ ORD/NHEERL/Reproductive Toxicology Division, RTP, NC. At...

63

Maternal Copper Deficiency Perpetuates Altered Vascular Function in Sprague-Dawley Rat Offspring  

Technology Transfer Automated Retrieval System (TEKTRAN)

Little is known about the consequences of maternal Cu (Cu) deficiency on the vascular function of offspring or on perpetuation of vascular effects to a second generation. We examined vascular functional responses in mesenteric arteries from Cu-deficient Sprague-Dawley rat dams and from offspring dir...

64

MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCATANE SULFONATE (PFOS) IN THE RAT  

EPA Science Inventory

MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT. C. Lau1, J.M. Rogers1, J.R. Thibodeaux1, R.G. Hanson1, B.E. Grey1, B.D. Barbee1, J.H. Richards2, J.L. Butenoff3. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, USEPA, Research Triangle Park, NC, 3...

65

Neuronal degeneration and microglial reaction in the fetal and postnatal rat brain after transient maternal hypoxia  

Microsoft Academic Search

This study examined the neuropathological changes in different areas of the brain of fetal and postnatal rats after transient maternal hypoxia. At different time intervals following hypoxia, reactive microglia as determined immunohistochemically with the antibody OX-42 that recognizes complement type three (CR3) receptors, responded vigorously to the hypoxic stress. Microglial activation was particularly evident in the cingulate cortex and the

Yong-Biao Li; Charanjit Kaur; Eng-Ang Ling

1998-01-01

66

FETAL DEVELOPMENT IN THE RAT FOLLOWING DISRUPTION OF MATERNAL RENAL FUNCTION DURING PREGNANCY  

EPA Science Inventory

Pregnant Sprague Dawley rats were exposed on either gestation day 7, 9, 11 or 13 to mercuric chloride (1-4 mg/kg, subcutaneously) in order to evaluate maternal renal pathophysiology as a risk factor for abnormal embryonic and fetal development. ollowing exposure, the magnitude an...

67

Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations  

EPA Science Inventory

Abstract: The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluorid...

68

Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring  

Technology Transfer Automated Retrieval System (TEKTRAN)

Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

69

EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON MATERNAL AND DEVELOPMENTAL THYROID STATUS IN THE RAT  

EPA Science Inventory

EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON MATERNAL AND DEVELOPMENTAL THYROID STATUS IN THE RAT. JR Thibodeaux1, R Hanson1, B Grey1, JM Rogers1, ME Stanton2, and C Lau1. 1Reproductive Toxicology Division; 2Neurotoxicology Division, NHEERL, ORD, US EPA, Research Triangle P...

70

Maternal separation affects dopamine transporter function in the Spontaneously Hypertensive Rat: An in vivo electrochemical study  

PubMed Central

Background Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR) is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT) in ways that distinguish SHR from control rat strains. Methods SHR and control Wistar-Kyoto (WKY) rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Results Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1) in SHR striatum. Consistent with this observation, the dopamine clearance time (T100) was increased in SHR. These results suggest that the chronic mild stress of maternal separation impaired the function of striatal DAT in SHR. Conclusions The present findings suggest that maternal separation failed to alter the behaviour of SHR in the open field and elevated plus maze. However, maternal separation altered the dopaminergic system by decreasing surface expression of DAT and/or the affinity of DAT for dopamine, increasing the time to clear dopamine from the extracellular fluid in the striatum of SHR. PMID:22133315

2011-01-01

71

Release of Zn from maternal tissues in pregnant rats deficient in Zn or Zn and Ca  

SciTech Connect

Earlier studies have shown that diets that increase tissue catabolism reduce the teratogenic effects of Zn deficiency. The hypothesis that Zn may be released from body tissues when the metabolic state is altered was further tested. Nonpregnant Sprague Dawley females were injected with Zn-65; after equilibration, the two major pools of Zn, bone and muscle, had different specific activities (SA), muscle being much higher. Females were mated and fed diets adequate in Zn and Ca (C) or deficient in Zn (ZnD) or deficient in both Zn and Ca (ZnCaD). Calculations using weight loss in ZnD and ZnCaD rats, Zn content of maternal bone and muscle, and total fetal Zn at term indicated that in ZnCaD rats a relatively small amount of Zn from bone early in pregnancy was sufficient to prevent abnormal organogenesis, but most fetal Zn came from breakdown of maternal muscle in the last 3 days of pregnancy. Isotope data supported this conclusion. SA of Zn in ZnD fetuses was equal and high, indicating that most Zn came from the same maternal tissue. High muscle SA prior to mating, and increased SA in tibia and liver during pregnancy suggest that muscle provided Zn for other maternal tissues as well as fetuses. In contrast, SA in C fetuses was less than 30% of that of the D groups, consistent with the earlier hypothesis that most fetal Zn in C rats is accrued directly from the diet.

Hurley, L.S.; Masters, D.G.; Lonnerdal, B.; Keen, C.L.

1986-03-05

72

Chronic maternal dietary iodine deficiency but not thiocyanate feeding affects maternal reproduction and postnatal performance of the rat.  

PubMed

Iodine deficiency disorders affect reproductive performance in the afflicted populations. Environmental iodine deficiency (ID) and goitrogens are important in their aetiology. We observed earlier that chronic maternal dietary ID but not goitrogen feeding altered the blood-brain barrier nutrient transport in adult rats. Whether similar differences exist in their effects on reproduction of dams and postnatal performance of the offspring has been assessed. Inbred, female, weaning WNIN rats were rendered hypothyroid by feeding for 8-12 weeks, a low iodine test diet or a control diet with added potassium thiocyanate (KSCN) (@ 25 mg/rat/day). Following mating with control males, they continued on their respective diets till their pups were weaned. Indices of reproductive performance such as percentage of conception, mortality of dams during pregnancy and parturition, litter size, and survival of pups till weaning were affected markedly by ID but not thiocyanate feeding. Neither ID nor thiocyanate feeding from conception or parturition affected their reproductive performance. Nevertheless, postnatal weight gain of pups was less in all the three ID groups but not thiocyanate fed dams. Rehabilitation of chronically ID pregnant dams from conception or parturition did not improve their pregnancy weight gain, litter size or birth weight of pups but decreased abortion and mortality of mothers during pregnancy and parturition. Rehabilitation improved the pups' postnatal weight gain but the effect was only moderate. Based on the results of the present study it may be suggested that maternal ID but not thiocyanate feeding affects reproductive performance and postnatal performance of their offspring. PMID:17821855

Sundari, S Bala Tripura; Venu, L; Sunita, Y; Raghunath, M

2007-07-01

73

The different effects of maternal separation on spatial learning and reversal learning in rats.  

PubMed

Early postnatal maternal separation (MS) can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4h per day from postnatal day (PND) 1 to 21) on locomotor activity and anxiety behavior in open field, spatial learning and reversal learning in Morris water maze of male and female juvenile (PND 21), adolescent (PND 35) and early adult (PND 56) Wistar rats. The results indicated that MS increased locomotor activity of rats across all ages and reduced anxiety behavior of adolescent rats in open field test. MS also increased swim distance in spatial learning and decreased escape latency in reversal learning in adolescent and early adult rats. Additionally, for socially reared rats, there was increased spontaneous locomotion with age, decreased reversal learning ability with age. The present study provides novel insights into the consequences of MS and demonstrates unique age-dependent changes at the behavioral levels. PMID:25479401

Wang, Qiong; Li, Man; Du, Wei; Shao, Feng; Wang, Weiwen

2015-03-01

74

Maternal Aggression in Rats: Effects of Olfactory Bulbectomy, ZnSO 4Induced Anosmia, and Vomeronasal Organ Removal  

Microsoft Academic Search

Previous studies from our laboratory indicate that somatosensory inputs to the snout and ventral trunk, but not visual or auditory stimuli, play critical roles in the elicitation and maintenance of maternal aggression by lactating Norway rats toward a strange male intruder. There are conflicting reports on the influence of olfaction on maternal aggression. We explored the possible roles of central

Jane M. Kolunie; Judith M. Stern

1995-01-01

75

Relationship oí Level and Type of Dietary Fat to Fetal and Maternal Rat Lipogenesis and Lipid Deposition1  

Microsoft Academic Search

Pregnant rats were pair-fed isoenergetic diets with vary ing fat content and varying fatty acid compositions to determine if manipu lation of the maternal diet would affect fetal lipid metabolism. A mixture of tallow and lard replaced cornstarch on an equal-energy basis so that fat supplied 5 to 65% of the metabolizable energy. Fat content of the maternal diet did

LORRAINE PLATKA-BIRD; MAURICE R. BENNINK

76

Late-onset exercise in female rat offspring ameliorates the detrimental metabolic impact of maternal obesity.  

PubMed

Rising rates of maternal obesity/overweight bring the need for effective interventions in offspring. We observed beneficial effects of postweaning exercise, but the question of whether late-onset exercise might benefit offspring exposed to maternal obesity is unanswered. Thus we examined effects of voluntary exercise implemented in adulthood on adiposity, hormone profiles, and genes involved in regulating appetite and metabolism in female offspring. Female Sprague Dawley rats were fed either normal chow or high-fat diet (HFD) ad libitum for 5 weeks before mating and throughout gestation/lactation. At weaning, female littermates received either chow or HFD and, after 7 weeks, half were exercised (running wheels) for 5 weeks. Tissues were collected at 15 weeks. Maternal obesity was associated with increased hypothalamic inflammatory markers, including suppressor of cytokine signaling 3, TNF-?, IL-1?, and IL-6 expression in the arcuate nucleus. In the paraventricular nucleus (PVN), Y1 receptor, melanocortin 4 receptor, and TNF-? mRNA were elevated. In the hippocampus, maternal obesity was associated with up-regulated fat mass and obesity-associated gene and TNF-? mRNA. We observed significant hypophagia across all exercise groups. In female offspring of lean dams, the reduction in food intake by exercise could be related to altered signaling at the PVN melanocortin 4 receptor whereas in offspring of obese dams, this may be related to up-regulated TNF-?. Late-onset exercise ameliorated the effects of maternal obesity and postweaning HFD in reducing body weight, adiposity, plasma leptin, insulin, triglycerides, and glucose intolerance, with greater beneficial effects in offspring of obese dams. Overall, hypothalamic inflammation was increased by maternal obesity or current HFD, and the effect of exercise was dependent on maternal diet. In conclusion, even after a significant sedentary period, many of the negative impacts of maternal obesity could be improved by voluntary exercise and healthy diet. PMID:23928377

Bahari, Hasnah; Caruso, Vanni; Morris, Margaret J

2013-10-01

77

Contextual fear conditioning in maternal separated rats: the amygdala as a site for alterations.  

PubMed

The first 2 weeks of life are a critical period for neural development in rats. Repeated long-term separation from the dam is considered to be one of the most potent stressors to which rat pups can be exposed, and permanently modifies neurobiological and behavioral parameters. Prolonged periods of maternal separation (MS) usually increase stress reactivity during adulthood, and enhance anxiety-like behavior. The aim of this study was to verify the effects of maternal separation during the neonatal period on memory as well as on biochemical parameters (Na(+), K(+)-ATPase and antioxidant enzymes activities) in the amygdala of adult rats. Females and male Wistar rats were subjected to repeated maternal separation (incubator at 32 °C, 3 h/day) during postnatal days 1-10. At 60 days of age, the subjects were exposed to a Contextual fear conditioning task. One week after the behavioral task, animals were sacrificed and the amygdala was dissected for evaluation of Na(+), K(+)-ATPase and antioxidant enzymes activities. Student-t test showed significant MS effect, causing an increase of freezing time in the three exposures to the aversive context in both sexes. Considering biochemical parameters Student-t test showed significant MS effect causing an increase of Na(+), K(+)-ATPase activity in both sexes. On the other hand, no differences were found among the groups on the antioxidant enzymes activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT)] in male rats, but in females, we found a significant MS effect, causing an increase of CAT activity and no differences were found among the groups on SOD and GPx activities. Our results suggest a role of early rearing environment in programming fear learning and memory in adulthood. An early stress experience such as maternal separation may increase activity in the amygdala (as pointed by the increased activity of Na(+), K(+)-ATPase), affecting behaviors related to fear in adulthood, and this effect could be task-specific. PMID:24368626

Diehl, Luisa A; Pereira, Natividade de Sá Couto; Laureano, Daniela P; Benitz, André N D; Noschang, Cristie; Ferreira, Andrea G K; Scherer, Emilene B; Machado, Fernanda R; Henriques, Thiago Pereira; Wyse, Angela T S; Molina, Victor; Dalmaz, Carla

2014-02-01

78

Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation.  

PubMed

Early partial maternal deprivation causes long-lasting neurochemical, behavioral and brain structural effects. In rats, it causes a deficit in memory consolidation visible in adult life. Some of these deficits can be reversed by donepezil and galantamine, which suggests that they may result from an impairment of brain cholinergic transmission. One such deficit, representative of all others, is an impairment of memory consolidation, clearly observable in a one-trial inhibitory avoidance task. Recent data suggest a role of brain histaminergic systems in the regulation of behavior, particularly inhibitory avoidance learning. Here we investigate whether histamine itself, its analog SKF-91844, or various receptor-selective histamine agonists and antagonists given into the CA1 region of the hippocampus immediately post-training can affect retention of one-trial inhibitory avoidance in rats submitted to early postnatal maternal deprivation. We found that histamine, SKF-91844 and the H2 receptor agonist, dimaprit enhance consolidation on their own and reverse the consolidation deficit induced by maternal deprivation. The enhancing effect of histamine was blocked by the H2 receptor antagonist, ranitidine, but not by the H1 receptor antagonist pyrilamine or by the H3 antagonist thioperamide given into CA1 at doses known to have other behavioral actions, without altering locomotor and exploratory activity or the anxiety state of the animals. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may in part be due to an impairment of histamine mediated mechanisms in the CA1 region of the rat hippocampus. PMID:21979429

Benetti, Fernando; da Silveira, Clarice Kras Borges; da Silva, Weber Cláudio; Cammarota, Martín; Izquierdo, Iván

2012-01-01

79

Effects of Love Canal soil extracts on maternal health and fetal development in rats  

Microsoft Academic Search

The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb

J. B. Silkworth; C. Tumasonis; R. G. Briggs; A. S. Narang; R. S. Narang; R. Rej; V. Stein; D. N. McMartin; L. S. Kaminsky

1986-01-01

80

Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats  

Microsoft Academic Search

Gestational stress (GS) produces profound behavioural impairments in the offspring and may permanently programme hypothalamic–pituitary–adrenal (HPA) axis function. We investigated whether or not GS produced changes in the maternal behaviour of rat dams, and measured depression-like behaviour in the dam, which might contribute to effects in the progeny. We used the Porsolt test, which measures immobility in a forced-swim task,

J. W Smith; J. R Seckl; A. T Evans; B Costall; J. W Smythe

2004-01-01

81

Maternal separation attenuates the effect of adolescent social isolation on HPA axis responsiveness in adult rats.  

PubMed

Adverse early life experiences that occur during childhood and adolescence can have negative impacts on behavior later in life. The main goal of our work was to assess how the association between stressful experiences during neonatal and adolescent periods may influence stress responsiveness and brain plasticity in adult rats. Stressful experiences included maternal separation and social isolation at weaning. Three hours of separation from the pups (3-14 PND) significantly increased frequencies of maternal arched-back nursing and licking-grooming across the first two weeks postpartum. Separation also induced a long-lasting increase in dams blood levels of corticosterone. Maternal separation did not modify brain and plasma allopregnanolone and corticosterone levels in adult offspring, but they demonstrate partial recovery from the reduction induced by social isolation during adolescence. Moreover, the enhancement of corticosterone and allopregnanolone levels induced by foot shock stress in socially isolated animals that were subjected to maternal separation was markedly reduced with respect to that observed in animals that were just socially isolated. All experimental groups showed a significant reduction of BDNF and Arc protein expression in the hippocampus. However, the reduction of BDNF observed in animals that were maternally separated and subjected to social isolation was less significantly pronounced than in animals that were just socially isolated. The results sustained the mismatch hypothesis stating that aversive experiences early in life trigger adaptive processes, thereby rendering an individual to be better adapted to aversive challenges later in life. PMID:24745548

Biggio, F; Pisu, M G; Garau, A; Boero, G; Locci, V; Mostallino, M C; Olla, P; Utzeri, C; Serra, M

2014-07-01

82

Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A.  

PubMed

Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been reported to adversely impact the central nervous system, especially with respect to learning and memory. However, the precise effect and specific mechanisms have not been fully elucidated. In the present study, pregnant Sprague-Dawley rats were orally administered with BPA at 0.05, 0.5, 5 or 50mg/kg·body weight (BW) per day from embryonic day 9 (E 9) to E 20. We examined the effects of maternal BPA exposure on memory and synaptic structure in the hippocampus of male offspring at postnatal day (PND) 21. Maternal BPA exposure significantly affected locomotor activity, exploratory habits, and emotional behavior in open field test, and increased reference and especially working memory errors in the radial arm maze during the postnatal developing stage. Maternal BPA exposure had an adverse effect on synaptic structure, including a widened synaptic cleft, a thinned postsynaptic density (PSD), unclear synaptic surface and disappeared synaptic vesicles. Furthermore, maternal BPA exposure decreased the mRNA and protein expressions of synaptophysin, PSD-95, spinophilin, GluR1 and NMDAR1 in the hippocampus of male offspring on PND 21. These results showed that fetal growth and development was more sensitive to BPA exposure. The decreased learning and memory induced by maternal exposure to BPA in this study may be involved in synaptic plasticity alteration. PMID:24820113

Wang, Chong; Niu, Ruiyan; Zhu, Yuchen; Han, Haijun; Luo, Guangying; Zhou, Bingrui; Wang, Jundong

2014-08-01

83

Incorporation of labeled ribonucleic acid precursors into maternal and fetal rat tissues during pregnancy  

SciTech Connect

Tritium-labeled ribonucleic acid precursors, including cytidine, uridine, and orotic acid, were injected into rats with dated pregnancies (14 to 21 days) and virgin rats. The acid-insoluble counts indicating incorporation into fetal and placental tissues showed that the highest incorporation occurred with cytidine, particularly earlier in pregnancy. In contrast, uridine demonstrated a minor degree of incorporation but displayed facile and enhanced transplacental passage with duration of pregnancy as represented by acid-soluble counts. Orotic acid was minimally used by both fetal and placental tissues. The incorporation of labeled precursors into maternal liver, heart, and kidney demonstrated varying responses during the course of pregnancy.

Dorko, M.E.; Hayashi, T.T.

1986-04-01

84

Maternal Protein Malnutrition Does Not Impair Insulin Secretion from Pancreatic Islets of Offspring after Transplantation into Diabetic Rats  

PubMed Central

Pancreatic islets from adult rats whose mothers were protein restricted during lactation undersecrete insulin. The current work analyzes whether this secretory dysfunction can be improved when the pancreatic islets are grafted into hyperglycemic diabetic rats. Two groups of rats were used: the adult offspring from dams that received a low protein diet (4%) during the initial 2/3 of lactation (LP) and, as a control, the adult offspring from dams that consumed a normal protein diet (23%) during the entire period of lactation (NP). Islets from NP- and LP-rats were transplanted into diabetic recipient rats, which were generated by streptozotocin treatment. The islets were transplanted via the portal vein under anesthesia. The fed blood glucose levels were monitored during the 4 days post-transplantation. Transplanted islets from LP-rats (T LP) decreased the fed glucose levels of diabetic rats 34% (21.37±0.24 mM, p<0.05); however, the levels still remained 2-fold higher than those of the sham-operated controls (6.88±0.39 mM, p<0.05). Grafts with NP-islets (T NP) produced the same effect as the LP-islets in diabetic rats. The high fasting blood glucose levels of diabetic rats were improved by the transplantations. Islet grafts from both rat groups recovered 50% of the retroperitoneal fat mass of the diabetic rats (0.55±0.08 g/100 g of body weight for T NP and 0.56±0.07 g/100 g of body weight for T LP, p<0.05). Because pancreatic islets from both the NP- and LP-rats were able to regulate fasting blood glucose concentrations in hyperglycemic rats, we propose that the altered function of pancreatic islets from LP-rats is not permanent. PMID:22383969

Branco, Renato Chaves Souto; de Oliveira, Júlio Cezar; Grassiolli, Sabrina; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Gomes, Rodrigo Mello; Bataglini, Luiz Augusto; Torrezan, Rosana; Gravena, Clarice; de Freitas Mathias, Paulo Cezar

2012-01-01

85

Effects of Shiga Toxin Type 2 on Maternal and Fetal Status in Rats in the Early Stage of Pregnancy  

PubMed Central

Shiga toxin type 2 (Stx2), a toxin secreted by Shiga toxin-producing Escherichia coli (STEC), could be one of the causes of maternal and fetal morbimortality not yet investigated. In this study, we examined the effects of Stx2 in rats in the early stage of pregnancy. Sprague-Dawley pregnant rats were intraperitoneally (i.p.) injected with sublethal doses of Stx2, 0.25 and 0.5?ng Stx2/g of body weight (bwt), at day 8 of gestation (early postimplantation period of gestation). Maternal weight loss and food and water intake were analyzed after Stx2 injection. Another group of rats were euthanized and uteri were collected at different times to evaluate fetal status. Immunolocalization of Stx2 in uterus and maternal kidneys was analyzed by immunohistochemistry. The presence of Stx2 receptor (globotriaosylceramide, Gb3) in the uteroplacental unit was observed by thin layer chromatography (TLC). Sublethal doses of Stx2 in rats caused maternal weight loss and pregnancy loss. Stx2 and Gb3 receptor were localized in decidual tissues. Stx2 was also immunolocalized in renal tissues. Our results demonstrate that Stx2 leads to pregnancy loss and maternal morbidity in rats in the early stage of pregnancy. This study highlights the possibility of human pregnancy loss and maternal morbidity mediated by Stx2. PMID:25157355

Sacerdoti, Flavia; Amaral, María M.; Zotta, Elsa; Franchi, Ana M.; Ibarra, Cristina

2014-01-01

86

Effects of Shiga toxin type 2 on maternal and fetal status in rats in the early stage of pregnancy.  

PubMed

Shiga toxin type 2 (Stx2), a toxin secreted by Shiga toxin-producing Escherichia coli (STEC), could be one of the causes of maternal and fetal morbimortality not yet investigated. In this study, we examined the effects of Stx2 in rats in the early stage of pregnancy. Sprague-Dawley pregnant rats were intraperitoneally (i.p.) injected with sublethal doses of Stx2, 0.25 and 0.5?ng Stx2/g of body weight (bwt), at day 8 of gestation (early postimplantation period of gestation). Maternal weight loss and food and water intake were analyzed after Stx2 injection. Another group of rats were euthanized and uteri were collected at different times to evaluate fetal status. Immunolocalization of Stx2 in uterus and maternal kidneys was analyzed by immunohistochemistry. The presence of Stx2 receptor (globotriaosylceramide, Gb3) in the uteroplacental unit was observed by thin layer chromatography (TLC). Sublethal doses of Stx2 in rats caused maternal weight loss and pregnancy loss. Stx2 and Gb3 receptor were localized in decidual tissues. Stx2 was also immunolocalized in renal tissues. Our results demonstrate that Stx2 leads to pregnancy loss and maternal morbidity in rats in the early stage of pregnancy. This study highlights the possibility of human pregnancy loss and maternal morbidity mediated by Stx2. PMID:25157355

Sacerdoti, Flavia; Amaral, María M; Zotta, Elsa; Franchi, Ana M; Ibarra, Cristina

2014-01-01

87

Effects of polychlorinated biphenyls on maternal odor conditioning in rat pups  

PubMed Central

Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants that can have damaging effects on physiologic, motoric and cognitive function. Results from studies on PCBs and behavior have shown that exposure can alter learning and memory processes and that these shifts in cognitive abilities can be related to changes in hormonal and neural function. Little experimentation has been done on the impact of exposure to PCBs on social and emotional development. Previous work has shown that exposure to PCBs in children can alter play behavior. Importantly, exposure to PCBs has been found to change aspects of maternal–offspring interactions in rodents. The present study examined the impact of PCBs on maternal odor conditioning in rat pups 12–14 days of age. A modified version of the conditioned place preference paradigm was used that incorporated a maternal-associated odor cue (lemon scent) as the conditioned stimulus. PCBs significantly depressed the preference for the maternal-associated cue but did not impair discrimination for a novel odor. These effects could arise due to changes in the social dynamics between the dam and offspring after co-exposure to PCBs. For example, dams exposed to PCBs during gestation have been found to show elevated grooming directed towards pups exposed to PCBs. This change in maternal care can have dramatic effects on behavioral and hormonal systems in the developing rat pup. In conclusion, perinatal PCBs alter important social behaviors of both the mother and pup, and these alterations could have long-lasting effects on behavioral, cognitive and emotional development. PMID:17498760

Cromwell, Howard C.; Johnson, Asia; McKnight, Logan; Horinek, Maegan; Asbrock, Christina; Burt, Shannon; Jolous-Jamshidi, Banafsheh; Meserve, Lee A.

2014-01-01

88

Prenatal exposure to a low fipronil dose disturbs maternal behavior and reflex development in rats.  

PubMed

Fipronil (FPN) is a phenylpyrazole insecticide used in veterinary services and agriculture, and it is of considerable concern to public health. It inhibits the chloride channels associated with gamma-amino butyric acid (GABA) receptors in mammals and also inhibits the chloride channels associated with GABA and glutamate (Glu) receptors in insects. In this study, a commercial product containing fipronil was orally administered to pregnant Wistar rats at dose levels of 0.1, 1.0, or 10.0mg/kg/day from the sixth to twentieth day of gestation (n=10 pregnant rats/group). Its toxicity was evaluated based on maternal toxicity, reproductive quality, maternal behavior, and offspring physical as well as reflex development. All parameters observed in the observed offspring were assigned to one ink-marked couple in each litter (n=20 animals/group - 10 males and 10 females). The offspring couple represented the litter. Slight maternal toxicity presented during the second week of gestation for each fipronil dose and during the third gestational week at the highest dose due to lower chow intake. However, no effects were observed for gestational weight gain or gestation time, and the reproductive quality was not impaired, which suggests no adverse maternal effects from the doses during pregnancy. Moreover, the lowest fipronil dose compromised the active and reflexive maternal responses, but the highest dose induced a stereotyped active response without interfering in the reflexive reaction. For offspring development, no differences in physical growth parameters were observed between the groups. However, considering reflex development, our results showed that negative geotaxis reflex development was delayed in the offspring at the lowest fipronil dose, and palmar grasp was lost earlier at the lowest and intermediate fipronil doses. These results suggest that the alterations observed herein may be due to either the GABAergic system or endocrine disruption, considering that fipronil also acts as an endocrine disruptor. PMID:24978116

Udo, Mariana S B; Sandini, Thaísa M; Reis, Thiago M; Bernardi, Maria Martha; Spinosa, Helenice S

2014-01-01

89

Maternal repeated oral exposure to microcystin-LR affects neurobehaviors in developing rats.  

PubMed

Microcystins are toxic peptides secreted by certain water blooms of toxic cyanobacteria. The most widely studied microcystin is microcystin-LR (MC-LR), which exhibits hepatotoxicity and neurotoxicity. However, limited information is available regarding the effects on offspring following maternal exposure. The present study was conducted to observe the effects of progestational exposure to MC-LR on postnatal development in rats. Female Sprague-Dawley rats (28 d old) were randomly divided into a control group and 3 treatment groups (1.0?µg MC-LR/kg body wt, 5.0?µg MC-LR/kg body wt, and 20.0?µg MC-LR/kg body wt), with 7 rats per group. The MC-LR was administered through gavage once every 48?h for 8 wk. Pure water was used as control. Each female rat was mated with an unexposed adult male rat. Motor development, behavioral development, and learning ability of pups were detected using surface righting reflex, negative geotaxis, and cliff avoidance tests on postnatal day 7. Open-field and Morris water maze tests were performed on postnatal day 28 and day 60. The levels of lipid peroxidation products and antioxidant indices in the rat hippocampus were also detected. Pups from the MC-LR-treated groups had significantly lower scores than controls in the cliff avoidance test (p?maternal exposure to MC-LR has adverse effects on neurodevelopment in rat offspring. PMID:25319481

Li, XiaoBo; Zhang, Xin; Ju, Jingjuan; Li, Yunhui; Yin, Lihong; Pu, Yuepu

2015-01-01

90

Effect of Transient Maternal Hypotension on Apoptotic Cell Death in Foetal Rat Brain  

PubMed Central

Background: Intrauterine perfusion insufficiency induced by transient maternal hypotension has been reported to be associated with foetal brain malformations. However, the effects of maternal hypotension on apoptotic processes in the foetal brain have not been investigated experimentally during the intrauterine period. Aims: The aim of this study was to investigate the effects of transient maternal hypotension on apoptotic cell death in the intrauterine foetal brain. Study Design: Animal experimentation. Methods: Three-month-old female Wistar albino rats were allocated into four groups (n=5 each). The impact of hypoxic/ischemic injury induced by transient maternal hypotension on the 15th day of pregnancy (late gestation) in rats was investigated at 48 (H17 group) or 96 hours (H19 group) after the insult. Control groups underwent the same procedure except for induction of hypotension (C17 and H17 groups). Brain sections of one randomly selected foetus from each pregnant rat were histopathologically evaluated for hypoxic/ischemic injury in the metencephalon, diencephalon, and telencephalon by terminal transferase-mediated dUTP nick end labelling and active cysteine-dependent aspartate-directed protease-3 (caspase-3) positivity for cell death. Results: The number of terminal transferase-mediated dUTP nick end labelling (+) cells in all the areas examined was comparable in both hypotension and control groups. The H17 group had active caspase-3 (+) cells in the metencephalon and telencephalon, sparing diencephalon, whereas the C19 and H19 groups had active caspase-3 (+) cells in all three regions. The number of active caspase-3 (+) cells in the telencephalon in the H19 group was higher compared with the metencephalon and diencephalon and compared with H17 group (p<0.05). Conclusion: Our results suggest that prenatal hypoxic/ischemic injury triggers apoptotic mechanisms. Therefore, blockade of apoptotic pathways, considering the time pattern of the insult, may constitute a potential neuroprotective approach for the detrimental effects of prenatal hypoperfusion. PMID:25207175

Özyürek, Hamit; Bayrak, Sibel; Pehlivano?lu, Bilge; Atilla, Pergin; Balkanc?, Zeynep Dicle; Çakar, Nur; Anlar, Banu

2014-01-01

91

Fetal and maternal effects of continual exposure of rats to 970-MHz circularly polarized microwaves  

SciTech Connect

Virtually continual exposure to970-MHz microwaves in circularly-polarized waveguides was used to elicit fetal responses in Sprague-Dawley rats during gestation. Two hundred fifty rats were exposed to microwave radiation at whole-body averaged specific absorption rates (SAR) of 0.07, 2.4, or 4.8 W/kg, or concurrently sham-irradiated for 22 h/day from the 1st through the 19th day of gestation. At SAR of 4.8 W/kg, only fetal body weight was significantly altered (-12%, P=.012). Two of twelve rats died during the exposure at SAR of 4.8 W/kg. Bred, but non-pregnant, rats that were exposed at SAR of 4.8 W/kg had significantly lower body weight gain than sham-irradiated rats; similar lower gain is assumed to have occurred in the pregnant rats exposed at SAR of 4.8 W/kg, and whose fetuses were significantly smaller. The authors conclude that continual gestational exposure at SAR of 4.8 (but not 2.4 or lower) W/kg induces fetal alterations. Apparently, deleterious maternal effects are associated with these fetal changes. Although colonic temperature was not measured in these rats, it is expected that exposure at 4.8 W/kg was hyperthermal.

Berman, E.; Weil, C.; Phillips, P.A.; Carter, H.B.; House, D.E.

1992-01-01

92

Neural and Environmental Factors Impacting Maternal Behavior Differences in High- versus Low-Novelty Seeking Rats  

PubMed Central

Selective breeding of rats exhibiting differences in novelty-induced locomotion revealed that this trait predicts several differences in emotional behavior. Bred High Responders (bHRs) show exaggerated novelty-induced locomotion, aggression, and psychostimulant self-administration, compared to bred Low Responders (bLRs), which are inhibited and prone to anxiety- and depression-like behavior. Our breeding studies highlight the heritability of the bHR/bLR phenotypes, although environmental factors like maternal care also shape some aspects of these traits. We previously reported that HR vs. LR mothers act differently, but it was unclear whether their behaviors were genetically driven or influenced by their pups. The present study (a) used cross-fostering to evaluate whether the bHR/bLR maternal styles are inherent to mothers and/or are modulated by pups; and (b) assessed oxytocin and oxytocin receptor mRNA expression to examine possible underpinnings of bHR/bLR maternal differences. While bHR dams exhibited less maternal behavior than bLRs during the dark/active phase, they were very attentive to pups during the light phase, spending greater time passive nursing and in contact with pups compared to bLRs. Cross-fostering only subtly changed bHR and bLR dams’ behavior, suggesting that their distinct maternal styles are largely inherent to the mothers. We also found elevated oxytocin mRNA levels in the supraoptic nucleus of the hypothalamus in bHR versus bLR dams, which may play some role in driving their behavior differences. Overall these studies shed light on the interplay between the genetics of mothers and infants in driving differences in maternal style. PMID:20156440

Clinton, Sarah M.; Bedrosian, Tracy A.; Abraham, Antony D.; Watson, Stanley J.; Akil, Huda

2010-01-01

93

Effects of Love Canal soil extracts on maternal health and fetal development in rats  

SciTech Connect

The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

Silkworth, J.B.; Tumasonis, C.; Briggs, R.G.; Narang, A.S.; Narang, R.S.; Rej, R.; Stein, V.; McMartin, D.N.; Kaminsky, L.S.

1986-10-01

94

The effects of Love Canal soil extracts on maternal health and fetal development in rats.  

PubMed

The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity. PMID:3781137

Silkworth, J B; Tumasonis, C; Briggs, R G; Narang, A S; Narang, R S; Rej, R; Stein, V; McMartin, D N; Kaminsky, L S

1986-10-01

95

Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity  

NASA Technical Reports Server (NTRS)

A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Recent spaceflight and centrifugation studies demonstrate that reproduction and ontogenesis in mammals are amenable to study under gravitational conditions that deviate considerably from those typically experienced on Earth (1 x g). In the present study, we tested the hypothesis that maternal reproductive experience determines neonatal outcome following gestation and birth under increased (hyper) gravity. Primigravid and bigravid female rats and their offspring were exposed to 1.5 x g centrifugation from Gestational Day 11 either through birth or through the first postnatal week. On the day of birth, litter sizes were identical across gravity and parity conditions, although significantly fewer live neonates were observed among hypergravity-reared litters born to primigravid dams than among those born to bigravid dams (82% and 94%, respectively; 1.0 x g controls, 99%). Within the hypergravity groups, neonatal mortality was comparable across parity conditions from Postnatal Day 1 through Day 7, at which time litter sizes stabilized. Maternal reproductive experience ameliorated neonatal losses during the first 24 h after birth but not on subsequent days, and neonatal mortality was associated with changes in maternal care patterns. These results indicate that repeated maternal reproductive experience affords protection against neonatal losses during exposure to increased gravity. Differential mortality of neonates born to primigravid versus bigravid dams denotes gravitational load as one environmental mechanism enabling the expression of parity-related variations in birth outcome.

Ronca, A. E.; Baer, L. A.; Daunton, N. G.; Wade, C. E.

2001-01-01

96

A protein restriction-dependent sulfur code for longevity.  

PubMed

The restriction of proteins has recently emerged as the most important factor for the beneficial effects of calorie restriction. Hine et al. now provide strong evidence for the role of the hydrogen sulfide (H2S) gas in the protective effects of calorie and protein restriction against ischemia/reperfusion injury (IRI) but also implicate H2S in longevity extension in model organisms. PMID:25594171

Shim, Hong Seok; Longo, Valter D

2015-01-15

97

Long-Term Effects of Maternal Deprivation on the Neuronal Soma Area in the Rat Neocortex  

PubMed Central

Early separation of rat pups from their mothers (separatio a matrem) is considered and accepted as an animal model of perinatal stress. Adult rats, separated early postnatally from their mothers, are developing long-lasting changes in the brain and neuroendocrine system, corresponding to the findings observed in schizophrenia and affective disorders. With the aim to investigate the morphological changes in this animal model we exposed 9-day-old (P9) Wistar rats to a 24?h maternal deprivation (MD). At young adult age rats were sacrificed for morphometric analysis and their brains were compared with the control group bred under the same conditions, but without MD. Rats exposed to MD had a 28% smaller cell soma area in the prefrontal cortex (PFCX), 30% in retrosplenial cortex (RSCX), and 15% in motor cortex (MCX) compared to the controls. No difference was observed in the expression of glial fibrillary acidic protein in the neocortex of MD rats compared to the control group. The results of this study demonstrate that stress in early life has a long-term effect on neuronal soma size in cingulate and retrosplenial cortex and is potentially interesting as these structures play an important role in cognition. PMID:24895554

Aksi?, Milan; Radonji?, Nevena V.; Aleksi?, Dubravka; Jevti?, Gordana; Markovi?, Branka; Petronijevi?, Nataša; Radonji?, Vidosava; Filipovi?, Branislav

2014-01-01

98

Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones–neurotransmitters and adenosinergic system interactions  

Microsoft Academic Search

The adequate functioning of the maternal thyroid gland plays an important role to ensure that the offspring develop normally. Thus, maternal hypo- and hyperthyroidism are used from the gestation day 1 to lactation day 21, in general, to recognize the alleged association of offspring abnormalities associated with the different thyroid status. In maternal rats during pregnancy and lactation, hypothyroidism in

O. M. Ahmed; S. M. Abd El-Tawab; R. G. Ahmed

2010-01-01

99

Effects of maternal ethanol ingestion on uptake of glucose alanine analogs in fetal rats  

SciTech Connect

The distribution of maternally-derived glucose and alanine has been studied in selected tissues of fetuses from ethanol-fed (EF) rats (30% of caloric intake throughout gestation). Controls received diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation, 2 ..mu..Ci /sup 3/H 2-deoxyglucose (DG) and 1 ..mu..Ci /sup 14/C ..cap alpha..-aminoisobutyric acid (AIB) were administered i.v. to each rat. One hour later, maternal blood, placenta, and fetal blood, liver, lung and brain were sampled for /sup 3/H and /sup 14/C activities. When compared to either control group, the mean /sup 14/C AIB activities of tissues from EF animals were reduced from 19 to 46%, with the greatest effect seen in the brain (3.7 +/- 0.1, 7.2 +/- 0.3 and 6.9 +/- 1.3 dpm/mg in EF, PF and AF fetuses respectively). In addition, the ratios of tissue:plasma /sup 14/C were reduced (p < 0.01 or lower) in the EF fetal tissues and placenta. Maternal ethanol ingestion reduced the /sup 3/H 2-DG content of placenta (p < 0.05) and of brain (38.6 + 1.2, 48.1 +/- 1.2 and 47.2 +/- 1.2 in EF, PF and AF, p < 0.001). Brain weight showed significant positive correlations with AIB content (r = 0.466, p < 0.001) and with 2-DG content (r = 0.267, p < 0.01). Impaired uptake of maternally-derived nutrients may play a significant role in the effects of ethanol in utero.

Snyder, A.K.; Singh, S.P.; Pullen, G.L.

1986-05-01

100

Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats  

PubMed Central

Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O2) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart. PMID:21856922

Tong, Wenni; Xue, Qin; Li, Yong

2011-01-01

101

Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague–Dawley rats  

PubMed Central

Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague–Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus. PMID:22476924

Bugarith, Kishor; Russell, Vivienne A

2012-01-01

102

Maternal dietary chromium restriction programs muscle development and function in the rat offspring.  

PubMed

Intrauterine growth retardation programs the fetus to manipulated metabolic changes that lead to adult diseases. Considering that chromium (Cr) supplements influence lean body mass (LBM) in both humans and experimental animals, we have studied the effect of maternal Cr restriction on muscle development and function in the rat offspring. Female weanling Wistar/NIN rats received, for 12 weeks, a control or 65% Cr-restricted diet ad libitum and mated with control males. While control mothers/offspring received control diet throughout (CrC), some restricted mothers were switched to control diet from conception (CrRC) and parturition (CrRP) and their offspring were weaned on to control diet. Half of the remaining restricted pups were weaned on to control diet (CrRW) and the other half continued on restricted diet throughout (CrR). Maternal CrR significantly decreased the percent of LBM (LBM %) and fat-free mass (FFM %) in the offspring and this was associated with decreased expression of the myogenic genes: MyoD, Myf5 and MyoG. Surprisingly, expression of the muscle atrophy genes, Atrogin and MuRF 1, was also decreased in CrR offspring. Although basal glucose uptake by muscle was higher in CrR than in CrC offspring, the stimulation with insulin was comparable, implying no change in its insulin sensitivity. Rehabilitation partly corrected myogenic and atrophic gene expression but had no effect on LBM % or FFM % or glucose uptake by muscle. The results show that maternal Cr restriction in rats may irreversibly impair muscle development and glucose uptake by muscle. Modulation of muscle atrophy appears to be an adaptive mechanism to preserve muscle mass in CrR offspring. PMID:20404053

Padmavathi, Inagadapa J N; Rao, Kalashikam Rajender; Venu, Lagishetty; Ismail, Ayesha; Raghunath, Manchala

2010-03-01

103

Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood  

PubMed Central

Background and Objective: Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Material and Methods: Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Results: Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1? in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Conclusion: Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis. PMID:25713634

Breivik, Torbjørn; Gundersen, Yngvar; Murison, Robert; Turner, Jonathan D; Muller, Claude P; Gjermo, Per; Opstad, Kristian

2015-01-01

104

Exposure to repeated maternal aggression induces depressive-like behavior and increases startle in adult female rats.  

PubMed

The stress response is a multifaceted physiological reaction that engages a wide range of systems. Animal studies examining stress and the stress response employ diverse methods as stressors. While many of these stressors are capable of inducing a stress response in animals, a need exists for an ethologically relevant stressor for female rats. The purpose of the current study was to use an ethologically relevant social stressor to induce behavioral alterations in adult female rats. Adult (postnatal day 90) female Wistar rats were repeatedly exposed to lactating Long Evans female rats to simulate chronic stress. After six days of sessions, intruder females exposed to defeat were tested in the sucrose consumption test, the forced swim test, acoustic startle test, elevated plus maze, and open field test. At the conclusion of behavioral testing, animals were restrained for 30 min and trunk blood was collected for assessment of serum hormones. Female rats exposed to maternal aggression exhibited decreased sucrose consumption, and impaired coping behavior in the forced swim test. Additionally, female rats exposed to repeated maternal aggression exhibited an increased acoustic startle response. No changes were observed in female rats in the elevated plus maze or open field test. Serum hormones were unaltered due to repeated exposure to maternal aggression. These data indicate the importance of the social experience in the development of stress-related behaviors: an acerbic social experience in female rats precipitates the manifestation of depressive-like behaviors and an enhanced startle response. PMID:22093902

Bourke, Chase H; Neigh, Gretchen N

2012-02-01

105

Exposure to repeated maternal aggression induces depressive-like behavior and increases startle in adult female rats  

PubMed Central

The stress response is a multifaceted physiological reaction that engages a wide range of systems. Animal studies examining stress and the stress response employ diverse methods as stressors. While many of these stressors are capable of inducing a stress response in animals, a need exists for an ethologically relevant stressor for female rats. The purpose of the current study was to use an ethologically relevant social stressor to induce behavioral alterations in adult female rats. Adult (postnatal day 90) female Wistar rats were repeatedly exposed to lactating Long Evans female rats to simulate chronic stress. After six days of sessions, intruder females exposed to defeat were tested in the sucrose consumption test, the forced swim test, acoustic startle test, elevated plus maze, and open field test. At the conclusion of behavioral testing, animals were restrained for 30 minutes and trunk blood was collected for assessment of serum hormones. Female rats exposed to maternal aggression exhibited decreased sucrose consumption, and impaired coping behavior in the forced swim test. Additionally, female rats exposed to repeated maternal aggression exhibited an increased acoustic startle response. No changes were observed in female rats in the elevated plus maze or open field test. Serum hormones were unaltered due to repeated exposure to maternal aggression. These data indicate the importance of the social experience in the development of stress-related behaviors: an acerbic social experience in female rats precipitates the manifestation of depressive-like behaviors and an enhanced startle response. PMID:22093902

Bourke, Chase H.; Neigh, Gretchen N.

2011-01-01

106

Inactivation Or Inhibition Of Neuronal Activity In The Medial Prefrontal Cortex Largely Reduces Pup Retrieval And Grouping in Maternal Rats  

PubMed Central

Previous research suggests that the maternal medial prefrontal cortex (mPFC) may play a role in maternal care and that cocaine sensitization before pregnancy can affect neuronal activity within this region. The present work was carried out to test whether the mPFC does actually play a role in the expression of maternal behaviors in the rats and to understand what specific behaviors this cortical area may modulate. In the first experiment, tetrodotoxin (TTX) was used to chemically inactivate the mPFC during tests for maternal behavior latencies. Lactating rats were tested on postpartum day 7–9. The results of this first experiment indicate that there is a large effect of TTX-induced inactivation on retrieval behavior latencies. TTX nearly abolished the expression of maternal retrieval of pups without significantly impairing locomotor activity. In the second experiment, GABA-mediated inhibition was used to test maternal behavior latencies and durations of maternal and other behaviors in postpartum dams. In agreement with experiment 1, it was observed that dams capable of retrieving are rendered incapable by inhibition in the mPFC. GABA-mediated inhibition in the mPFC largely reduced retrieval without altering other indices of maternal care and non-specific behavior such as ambulation time, self-grooming, and inactivity. Moreover, in both experiments dams were able to establish contact with pups within seconds. The overall results indicate that the mPFC may play an active role in modulating maternal care, particularly retrieval behavior. External factors that affect the function of the frontal cortical site may result in significant impairments in maternal goal-directed behavior as reported in our earlier work. PMID:20156425

Febo, Marcelo; Felix-Ortiz, Ada C.; Johnson, Tehya R.

2010-01-01

107

Maternal care affects the phenotype of a rat model for schizophrenia  

PubMed Central

Schizophrenia is a complex mental disorder caused by an interplay between genetic and environmental factors, including early postnatal stressors. To explore this issue, we use two rat lines, apomorphine-susceptible (APO-SUS) rats that display schizophrenia-relevant features and their phenotypic counterpart, apomorphine-unsusceptible (APO-UNSUS) rats. These rat lines differ not only in their gnawing response to apomorphine, but also in their behavioral response to novelty (APO-SUS: high, APO-UNSUS: low). In this study, we examined the effects of early postnatal cross-fostering on maternal care and on the phenotypes of the cross-fostered APO-SUS and APO-UNSUS animals later in life. Cross-fostered APO-UNSUS animals showed decreased body weights as pups and decreased novelty-induced locomotor activity as adults (i.e., more extreme behavior), in accordance with the less appropriate maternal care provided by APO-SUS vs. their own APO-UNSUS mothers (i.e., the APO-SUS mother displayed less non-arched-back nursing and more self-grooming, and was more away from its nest). In contrast, cross-fostered APO-SUS animals showed increased body weights as pups and reduced apomorphine-induced gnawing later in life (i.e., normalization of their extreme behavior), in line with the more appropriate maternal care provided by APO-UNSUS relative to their own APO-SUS mothers (i.e., the APO-UNSUS mother displayed more non-arched-back nursing and similar self-grooming, and was not more away). Furthermore, we found that, in addition to arched-back nursing, non-arched-back nursing was an important feature of maternal care, and that cross-fostering APO-SUS mothers, but not cross-fostering APO-UNSUS mothers, displayed increased apomorphine-induced gnawing. Thus, cross-fostering not only causes early postnatal stress shaping the phenotypes of the cross-fostered animals later in life, but also affects the phenotypes of the cross-fostering mothers. PMID:25157221

van Vugt, Ruben W. M.; Meyer, Francisca; van Hulten, Josephus A.; Vernooij, Jeroen; Cools, Alexander R.; Verheij, Michel M. M.; Martens, Gerard J. M.

2014-01-01

108

Acute cocaine alters oxytocin levels in the medial preoptic area and amygdala in lactating rat dams: implications for cocaine-induced changes in maternal behavior and maternal aggression.  

PubMed

Acute cocaine administration has been correlated with disruptions in the onset and maintenance of maternal behavior as well as decreases in maternal aggressive behavior in rat dams. A growing body of evidence suggests that cocaine may alter oxytocin levels leading to impairments in maternal behavior and aggression. The current study assessed whether acute cocaine injections alter oxytocin (OT) levels in the medial preoptic area (MPOA), ventral tegmental area (VTA), amygdala (AMY), and hippocampus (HIP) on postpartum day (PPD) 1 or PPD 6. On PPD 1, 30 mg/kg cocaine reduced OT levels by approximately 26.9% (picograms/milligram) in the MPOA (t (18) = 3.44, P<.01) compared to saline. On PPD 6, 30 mg/kg cocaine significantly increased OT levels by approximately 20.9% (picograms/brain area) in the AMY (F (2,25) = 3.44, P=.05) relative to saline. These findings suggest that acute cocaine may disrupt maternal behavior and maternal aggression at least in part through its action on the oxytocinergic system. PMID:11384208

Elliott, J C; Lubin, D A; Walker, C H; Johns, J M

2001-04-01

109

Adaptive significance of natural variations in maternal care in rats: a translational perspective.  

PubMed

A wealth of data from the last fifty years documents the potency of early life experiences including maternal care on developing offspring. A majority of this research has focused on the developing stress axis and stress-sensitive behaviors in hopes of identifying factors impacting resilience and risk-sensitivity. The power of early life experience to shape later development is profound and has the potential to increase fitness of individuals for their environments. Current findings in a rat maternal care paradigm highlight the complex and dynamic relation between early experiences and a variety of outcomes. In this review we propose adaptive hypotheses for alternate maternal strategies and resulting offspring phenotypes, and suggest means of distinguishing between these hypotheses. We also provide evidence underscoring the critical role of context in interpreting the adaptive significance of early experiences. If our goal is to identify risk-factors relevant to humans, we must better explore the role of the social and physical environment in our basic animal models. PMID:21458485

Beery, Annaliese K; Francis, Darlene D

2011-06-01

110

Adaptive significance of natural variations in maternal care in rats: a translational perspective  

PubMed Central

A wealth of data from the last fifty years documents the potency of early life experiences including maternal care on developing offspring. A majority of this research has focused on the developing stress axis and stress-sensitive behaviors in hopes of identifying factors impacting resilience and risk-sensitivity. The power of early life experience to shape later development is profound and has the potential to increase fitness of individuals for their environments. Current findings in a rat maternal care paradigm highlight the complex and dynamic relation between early experiences and a variety of outcomes. In this review we propose adaptive hypotheses for alternate maternal strategies and resulting offspring phenotypes, and ways to distinguish between these hypotheses. We also provide evidence underscoring the critical role of context in interpreting the adaptive significance of early experiences. If our goal is to identify risk-factors relevant to humans, we must better explore the role of the social and physical environment in our basic animal models. PMID:21458485

Beery, Annaliese K.; Francis, Darlene D.

2011-01-01

111

Changes in behavior and ultrasonic vocalizations during antidepressant treatment in the maternally separated Wistar-Kyoto rat model of depression.  

PubMed

Genetic predisposition and stress are major factors in depression. The objective of this study was to establish a robust animal model of depression by selecting the appropriate substrain of the Wistar-Kyoto (WKY) rat, and subjecting these rats to the stress of maternal separation during the early stages of development. The initial experiment identified WKY/NCrl as the appropriate substrain of WKY to use for the study. In the second part of the study, depression-like behavior and ultrasonic vocalizations (USVs) were recorded in WKY/NCrl and maternally separated WKY/NCrl rats during the course of reversal of depression-like behavior. Wistar rats served as the reference strain. In adulthood, non-separated WKY/NCrl, maternally separated WKY/NCrl and Wistar rats were injected intraperitoneally with either saline or desipramine (15 mg/kg/day) for 15 days and their behavior recorded. Desipramine decreased immobility and increased active swimming and struggling behavior of WKY/NCrl in the FST and also decreased their USVs in response to removal of cage mates. The USVs in this study appeared to signal an attempt to re-establish social contact with cage mates and provided a measure of social dependence. Maternally separated WKY/NCrl rats displayed more anxiety than normally reared WKY/NCrl rats and responded to the anxiolytic effects of desipramine. The present findings support the use of WKY/NCrl as an animal model of depression. Maternal separation increased the anxiety-like behavior of the WKY/NCrl, thus providing a robust model to study depression- and anxiety-related behavior. PMID:24338028

van Zyl, P J; Dimatelis, J J; Russell, V A

2014-06-01

112

Increased affective ultrasonic communication during fear learning in adult male rats exposed to maternal immune activation.  

PubMed

Maternal exposure to infection during pregnancy greatly increases the risk of psychopathology in the offspring. In support of clinical findings, rodent models of maternal immune activation (MIA) show that prenatal exposure to pathogens can induce phenotypic changes in the offspring associated with schizophrenia, autism, depression and anxiety. In the current study, we investigated the effects of MIA via polyinosinic:polycytidylic acid (poly I:C) on emotional behavior and communication in rats. Pregnant rats were administered poly I:C or saline on gestation day 15 and male offspring were tested in an auditory fear conditioning paradigm in early adulthood. We found that prenatal poly I:C exposure significantly altered affective signaling, namely, the production of aversive 22-kHz ultrasonic vocalizations (USVs), in terms of call number, structure and temporal patterning. MIA led to an increase in aversive 22-kHz USVs to 300% of saline controls. Offspring exposed to MIA not only emitted more 22-kHz USVs, but also emitted calls that were shorter in duration and occurred in bouts containing more calls. The production of appetitive 50-kHz USVs and audible calls was not affected. Intriguingly, alterations in aversive 22-kHz USV emission were observed despite no obvious changes in overt defensive behavior, which highlights the importance of assessing USVs as an additional measure of fear. Aversive 22-kHz USVs are a prominent part of the rat's defensive behavioral repertoire and serve important communicative functions, most notably as alarm calls. The observed changes in aversive 22-kHz USVs show that MIA has long-term effects on emotional behavior and communication in exposed rat offspring. PMID:22687817

Yee, Nicole; Schwarting, Rainer K W; Fuchs, Eberhard; Wöhr, Markus

2012-09-01

113

Threshold of trichloroethylene contamination in maternal drinking waters affecting fetal heart development in the rat.  

PubMed Central

Halogenated hydrocarbons such as trichloroethylene (TCE) are among the most common water supply contaminants in the United States and abroad. Epidemiologic studies have found an association but not a cause-and-effect relation between halogenated hydrocarbon contamination and increased incidence of congenital cardiac malformations or other defective birth outcomes. Avian and rat studies demonstrated statistically significant increases in the number of congenital cardiac malformations in those treated with high doses of TCE, either via intrauterine pump or in maternal drinking water, compared with controls. This study attempts to determine if there is a threshold dose exposure to TCE above which the developing heart is more likely to be affected. Sprague-Dawley rats were randomly placed in test groups and exposed to various concentrations of TCE (2.5 ppb, 250 ppb, 1.5 ppm, 1,100 ppm) in drinking water or distilled water (control group) throughout pregnancy. The percentage of abnormal hearts in the treated groups ranged from 0 to 10.48%, with controls having 2.1% abnormal hearts, and the number of litters with fetuses with abnormal hearts ranged from 0 to 66.7%, and the control percentage was 16.4%. The data from this study indicate not only that there is a statistically significant probability overall of a dose response to increasing levels of TCE exposure, but also that this trend begins to manifest at relatively low levels of exposure (i.e., < 250 ppb). Maternal rats exposed to more than this level of TCE during pregnancy showed an associated increased incidence of cardiac malformations in their developing rat fetuses. PMID:12611656

Johnson, Paula D; Goldberg, Stanley J; Mays, Mary Z; Dawson, Brenda V

2003-01-01

114

Maternal treatment of spontaneously hypertensive rats with pentaerythritol tetranitrate reduces blood pressure in female offspring.  

PubMed

Pentaerythritol tetranitrate is devoid of nitrate tolerance and shows no reproductive or developmental toxicity in animal studies. Recently, pentaerythritol tetranitrate has been demonstrated to reduce the risk of intrauterine growth restriction and the risk of preterm birth in women with abnormal placental perfusion. This study was conducted to test the perinatal programming effect of pentaerythritol tetranitrate in spontaneously hypertensive rats, a rat model of genetic hypertension. Parental spontaneously hypertensive rats were treated with pentaerythritol tetranitrate (50 mg/kg per day) during pregnancy and lactation periods; the offspring received standard chow without pentaerythritol tetranitrate after weaning. Maternal treatment with pentaerythritol tetranitrate had no effect on blood pressure in male offspring. In the female offspring, however, a persistent reduction in blood pressure was observed at 6 and 8 months. This long-lasting effect was accompanied by an upregulation of endothelial nitric oxide synthase, mitochondrial superoxide dismutase, glutathione peroxidase 1, and heme oxygenase 1 in the aorta of 8-month-old female offspring, which was likely to result from epigenetic changes (enhanced histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation) and transcriptional activation (enhanced binding of DNA-directed RNA polymerase II to the transcription start site of the genes). In organ chamber experiments, the endothelium-dependent, nitric oxide-mediated vasodilation to acetylcholine was enhanced in aorta from female offspring of the pentaerythritol tetranitrate-treated parental spontaneously hypertensive rats. In conclusion, maternal pentaerythritol tetranitrate treatment leads to epigenetic modifications, gene expression changes, an improvement of endothelial function and a persistent blood pressure reduction in the female offspring. PMID:25385760

Wu, Zhixiong; Siuda, Daniel; Xia, Ning; Reifenberg, Gisela; Daiber, Andreas; Münzel, Thomas; Förstermann, Ulrich; Li, Huige

2015-01-01

115

Moderate maternal vitamin A deficiency affects perinatal organ growth and development in rats.  

PubMed

Vitamin A deficiency during pregnancy is associated with detrimental effects in the offspring. We have developed a rat model to examine specific effects of maternal vitamin A status on perinatal growth and development. A total of 54 female rats were fed a vitamin A-free (VAF), -marginal (VAM) or -sufficient (VAS) diet from weaning until mating (at 7 weeks) and throughout pregnancy. Half of the rats in each group were injected with a single large dose of vitamin A on day 10 of pregnancy. Fetal and neonatal samples were taken on day 20 of pregnancy and the day of birth respectively. Maternal plasma retinol concentrations on day 20 and at birth were 50% and 30% lower in the VAF and VAM when compared to the VAS group. Fetal weight and survival did not differ between groups although placental:fetal ratio was higher in the VAF group than in the VAS group (0.195 (SE 0.005) v. 0.175 (SE 0.004), P < 0.05). Rats fed the VAF diet gave birth at 23.5 d, an average of 1 d later than the other groups, and had lower number of live neonates at birth. Fetal liver, heart and lung weights relative to total body weight were lower in the VAF group and had altered growth trajectories. In neonates, only the relative lung weight was reduced. In addition, an increased protein:DNA ratio indicated hypertrophy in fetal kidneys. Vitamin A injection had no additional effect on length of gestation and fetal or neonatal number. However, injection increased relative fetal organ weights in the VAF group but did not alter the effects of vitamin A deficiency in the neonate. These data suggest that chronic vitamin A deficiency during pregnancy compromises liver, heart and kidney and impairs lung growth and development during the last few days of gestation and reduces number of live neonates at birth. PMID:10961169

Antipatis, C; Grant, G; Ashworth, C J

2000-07-01

116

Prenatal exposure to integerrimine N-oxide impaired the maternal care and the physical and behavioral development of offspring rats.  

PubMed

Plants that contain pyrrolizidine alkaloids (PAs) have been reported as contaminants of pastures and food, as well as being used in herbal medicine. PAs are responsible for poisoning events in livestock and human beings. The aim of this present study was to evaluate effects of prenatal exposure to integerrimine N-oxide, the main PA found in the butanolic residue (BR) of Senecio brasiliensis, on both physical and behavioral parameters of Wistar rat offspring. The toxicity and maternal behavior were also evaluated. For this, pregnant Wistar rats received integerrimine N-oxide from the BR of Senecio brasiliensis, by gavage, on gestational days 6-20 (during organogenesis and fetal development period) at doses of 3, 6 and 9 mg/kg. During treatment, maternal body weight gain, and food and water intake were evaluated. After parturition, maternal behavior and aggressive maternal behavior were analyzed. In addition, physical development and behavioral assessments were observed in both male and female pups. Results showed that prenatal exposure to integerrimine N-oxide of S. brasiliensis induced maternal toxicity, impairment in maternal behavior and aggressive maternal behavior, mainly in the highest dose group. Between sexes comparison of pups showed loss of body weight, delayed physical development such as pinna detachment, hair growth, eruption of incisor teeth, eye and vaginal openings. These pups also showed a delay of palmar grasp, surface righting reflex, negative geotaxis and auditory startle reflexes. Thus, prenatal exposure to integerrimine N-oxide induces maternal toxicity, impairment of maternal care and delayed in physical and behavioral development of the offspring. PMID:24881561

Sandini, Thaísa M; Udo, Mariana S B; Reis-Silva, Thiago M; Bernardi, Maria Martha; Spinosa, Helenice de S

2014-08-01

117

Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta  

PubMed Central

Placental inflammation is associated with several pregnancy disorders. Inflammation is limited by anti-inflammatory and proresolving mechanisms, the latter partly mediated by resolvins and protectins derived from omega-3 polyunsaturated fatty acids (n-3PUFA). We examined effects of dietary n-3PUFAs on levels of resolvins, protectins, and lipoxygenase (ALOX) enzymes in the rat placenta. Rats consumed standard (Std) or high n-3PUFA (Hn3) diets from day 1 of pregnancy; tissues were collected on day 17 or 22 (term = day 23). Maternal Hn3 diet increased resolvin and protectin precursors, 18R/S-HEPE (P < 0.001), and 17R/S-HDHA (P < 0.01) at both days. Resolvins (17R-RvD1 and RvD1) increased at day 22 (P < 0.001) after Hn3 consumption, coincident with higher Alox15b and Alox5 mRNA expression, while RvD2 increased at both days (P < 0.05). Protectins, PD1, and 10S,17S-DiHDHA increased over late gestation (P < 0.001), coincident with higher Alox15 mRNA expression (P < 0.001) and further increased with Hn3 diet (P < 0.05). Maternal systemic and placental proinflammatory mediators were not suppressed by Hn3 diet; systemic IL1?, placental Il1?, and Il6 mRNA expression increased marginally with Hn3 at day 22 (P < 0.001), while Ptgs1 (Cox1) expression increased both days (P < 0.05). Our data indicate that maternal n-3PUFA supplementation enhances expression of enzymes in the n-3PUFA metabolic pathway and increases placental levels of resolvins and protectins. PMID:23723388

Jones, Megan L.; Mark, Peter J.; Keelan, Jeffrey A.; Barden, Anne; Mas, Emilie; Mori, Trevor A.; Waddell, Brendan J.

2013-01-01

118

The effects of the wood preservative copper dimethyldithiocarbamate in the hippocampus of maternal and newborn Long-Evans rats  

Microsoft Academic Search

The potential toxic effects on human health and deleterious effects to the environment by copper dimethyldithiocarbamate (CDDC), an alternative wood preservative to chromated copper arsenate (CCA) have not been investigated. This study describes the neurotoxicity and accumulation of copper in the hippocampus of maternal and newborn Long-Evans rats following a subacute exposure to CDDC. Pregnant rats (220–270g) were treated daily

Brian Scharf; Louis David Trombetta

2007-01-01

119

Effect of maternal separation on mitochondrial function and role of exercise in a rat model of Parkinson's disease.  

PubMed

Early life stress, such as maternal separation, causes adaptive changes in neural mechanisms that have adverse effects on the neuroplasticity of the brain in adulthood. As a consequence, children who are exposed to stress during development may be predisposed to neurodegenerative disorders in adulthood. A possible mechanism for increased vulnerability to neurodegeneration may be dysfunctional mitochondria. Protection from neurotoxins, such as 6-hydroxydopamine (6-OHDA), has been observed following voluntary exercise. The mechanism of this neuroprotection is not understood and mitochondria may play a role. The purpose of this study was to determine the effects of maternal separation and exercise on mitochondrial function in a rat model of Parkinson's disease. Maternally separated (pups separated from the dam for 3 h per day from postnatal day (P) 2-14) and non-separated rats were placed in individual cages with or without attached running wheels for 1 week prior to unilateral infusion of 6-OHDA (5 ?g/4 ?l, 0.5 ?l/min) into the left medial forebrain bundle at P60. After 2 h recovery, rats were returned to their cages and wheel revolutions recorded for a further 2 weeks. On P72, the rats' motor function was assessed using the forelimb akinesia test. On P74, rats were sacrificed for measurement of mitochondrial function. Exercise increased the respiratory control index (RCI) in the non-lesioned hemisphere of 6-OHDA-lesioned rats. This effect was evident in the striatum of non-separated rats and the prefrontal cortex of maternally separated rats. These results suggest that early life stress may reduce the adaptive response to exercise in the striatum, a major target of dopamine neurons, but not the prefrontal cortex in this model of Parkinson's disease. PMID:22527997

Hendricks, Sharief; Ojuka, Edward; Kellaway, Lauriston A; Mabandla, Musa V; Russell, Vivienne A

2012-09-01

120

Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats  

PubMed Central

Endocrine disruptors, chemicals that disturb the actions of endogenous hormones, have been implicated in birth defects associated with hormone-dependent development. Phytoestrogens are a class of endocrine disruptors found in plants. In the current study we examined the effects of exposure at various perinatal time periods to genistein, a soy phytoestrogen, on reproductive development and learning in male rats. Dams were fed genistein-containing (5 mg/kg feed) food during both gestation and lactation, during gestation only, during lactation only, or during neither period. Measures of reproductive development and body mass were taken in the male offspring during postnatal development, and learning and memory performance was assessed in adulthood. Genistein exposure via the maternal diet decreased body mass in the male offspring of dams fed genistein during both gestation and lactation, during lactation only, but not during gestation only. Genistein decreased anogenital distance when exposure was during both gestation and lactation, but there was no effect when exposure was limited to one of these time periods. Similarly, spatial learning in the Morris water maze was impaired in male rats exposed to genistein during both gestation and lactation, but not in rats exposed during only one of these time periods. There was no effect of genistein on cued or contextual fear conditioning. In summary, the data indicate that exposure to genistein through the maternal diet significantly impacts growth in male offspring if exposure is during lactation. The effects of genistein on reproductive development and spatial learning required exposure throughout the pre- and postnatal periods. PMID:20053350

Ball, Evan R.; Caniglia, Mary Kay; Wilcox, Jenna L.; Overton, Karla A.; Burr, Marra J.; Wolfe, Brady D.; Sanders, Brian J.; Wisniewski, Amy B.; Wrenn, Craige C.

2010-01-01

121

Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning  

Technology Transfer Automated Retrieval System (TEKTRAN)

In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...

122

Evidence That Circadian Variations of Circulating Melatonin Levels in Fetal and Suckling Rats Are Dependent on Maternal Melatonin Transfer  

Microsoft Academic Search

Although the circadian variation of melatonin content in the pineal gland appears during the 3rd week of extrauterine life, recent studies suggest that the fetus perceives the day length through maternal melatonin transfer. Accordingly, we determined serum melatonin concentrations in pregnant and lactating rats and in their offsprings during the day (D) and at night (N). As compared with nonpregnant

Esther Velázquez; Ana I. Esquifino; Jose Antonio Zueco; Juan M. Ruiz Albusac; Enrique Blázquez

1992-01-01

123

Maternal Antioxidant Supplementation Prevents Adiposity in the Offspring of Western Diet–Fed Rats  

PubMed Central

OBJECTIVE Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. RESEARCH DESIGN AND METHODS Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. RESULTS Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring. PMID:20823102

Sen, Sarbattama; Simmons, Rebecca A.

2010-01-01

124

Maternal Omega-3 Supplementation Increases Fat Mass in Male and Female Rat Offspring  

PubMed Central

Adipogenesis and lipogenesis are highly sensitive to the nutritional environment in utero and in early postnatal life. Omega-3 long chain polyunsaturated fatty acids (LCPUFA) inhibit adipogenesis and lipogenesis in adult rats, however it is not known whether supplementing the maternal diet with omega-3 LCPUFA results in reduced fat deposition in the offspring. Female Albino Wistar rats were fed either a standard chow (Control, n?=?10) or chow designed to provide ?15?mg/kg/day of omega-3 LCPUFA, chiefly as docosahexaenoic acid (DHA), throughout pregnancy and lactation (Omega-3, n?=?11) and all pups were weaned onto a commercial rat chow. Blood and tissues were collected from pups at 3 and 6?weeks of age and weights of visceral and subcutaneous fat depots recorded. The expression of adipogenic and lipogenic genes in the subcutaneous and visceral fat depots were determined using quantitative real time reverse transcription-PCR. Birth weight and postnatal growth were not different between groups. At 6?weeks of age, total percentage body fat was significantly increased in both male (5.09?±?0.32% vs. 4.56?±?0.2%, P?maternal omega-3 LCPUFA supplementation on the expression of adipogenic or lipogenic genes in the offspring in either the visceral or subcutaneous fat depots. We have therefore established that an omega-3 rich environment during pregnancy and lactation in a rodent model increases fat accumulation in both male and female offspring, particularly in subcutaneous depots, but that this effect is not mediated via upregulation adipogenic/lipogenic gene transcription. These data suggest that maternal n?3 LCPUFA supplementation during pregnancy/lactation may not be an effective strategy for reducing fat deposition in the offspring. PMID:22303344

Muhlhausler, Beverly Sara; Miljkovic, Dijana; Fong, Laura; Xian, Cory J.; Duthoit, Emmanuelle; Gibson, Robert A.

2011-01-01

125

Maternal metallothionein and zinc after acute ethanol exposure during gestation in the rat  

SciTech Connect

Acute exposure of the rat fetus to ethanol at critical periods can cause growth retardation and brain damage; the mechanism(s) is not known. Ethanol may cause redistribution of maternal zinc which results in fetal zinc deficiency and subsequent interruption of growth and development. The purpose was to determine if acute ethanol administration to the pregnant rat alters Zn and the Zn binding protein metallothionein (MT) in selected tissues. On gestational day (gd) 14, eighteen pregnant Sprague-Dawley rats were divided into groups. By intragastric tube, ethanol treated dams were given ethanol and pairfed controls were given a 0.85% NaCl solution. On gd 15, intragastric feedings were repeated. Throughout, the Lieber-DeCarli control diet was fed (adlibitum to untreated controls and ethanol treated dams and in appropriate quantities to pair fed controls). Blood ethanol concentrations at 90 minutes after the ethanol dose were 154 {plus minus} 46 and 265 {plus minus} 110 mg% on gd 14 and 15, respectively.

Harris, J.E. (Univ. of Kansas, Kansas City (United States))

1992-02-26

126

Maternal caffeine consumption has irreversible effects on reproductive parameters and fertility in male offspring rats  

PubMed Central

Objective Concerns are growing about the decrease in male reproductive health. Caffeine is one of the popular nutrients that has been implicated as a risk factor for infertility. In the present study, we examined whether in utero and lactational exposure to caffeine affects the reproductive function of the offspring of rats. Methods Pregnant rats received caffeine via drinking water during gestation (26 and 45 mg/kg) and lactation (25 and 35 mg/kg). Body and reproductive organ weight, seminiferous tubule diameter, germinal epithelium height, sperm parameters, fertility rate, number of implantations, and testosterone level of the offspring were assessed from birth to adulthood. Results Significant dose-related decreases were observed in the body and reproductive organ weight, seminiferous tubule diameter, and germinal epithelium height of the offspring. Sperm density had declined significantly in offspring of the low-dose and high-dose groups, by 8.81% and 19.97%, respectively, by postnatal day 150. The number of viable fetuses had decreased significantly in females mated with male offspring of the high-dose group at postnatal days 60, 90, 120, and 150. There were also significant reductions in testosterone levels of high-dose group offspring from birth to postnatal day 150. Conclusion It is concluded that maternal caffeine consumption impairs gonadal development and has long-term adverse effects on the reproductive efficiency of male offspring rats. PMID:23346524

Erfani Majd, Naeem; Nooraei, Parvaneh

2012-01-01

127

Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood  

PubMed Central

Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784

Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.

2012-01-01

128

Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats  

SciTech Connect

Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and in the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.

Hayden, L.J.; Goeden, H.; Roth, S.H. (Univ. of Calgary, Alberta (Canada))

1990-09-01

129

Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia-reperfusion.  

PubMed

Molecular hydrogen (H2) scavenges hydroxyl radicals. Recently, H2 has been reported to prevent a variety of diseases associated with oxidative stress in model systems and in humans. Here, we studied the effects of H2 on rat fetal hippocampal damage caused by ischemia and reperfusion (IR) on day 16 of pregnancy with the transient occlusion of the bilateral utero-ovarian arteries. Starting 2 days before the operation, we provided the mothers with hydrogen-saturated water ad libitum until vaginal delivery. We observed a significant increase in the concentration of H2 in the placenta after the oral administration of hydrogen-saturated water to the mothers, with less placental oxidative damage after IR in the presence of H2. Neonatal growth retardation was observed in the IR group, which was alleviated by the H2 administration. We analyzed the neuronal cell damage in the CA1 and CA3 areas of the hippocampus at day 7 after birth by immunohistochemical analysis of the 8-oxo-7,8-dihydro-2?-deoxyguanosine- and 4-hydroxy-2-nonenal-modified proteins. Both oxidative stress markers were significantly increased in the IR group, which was again ameliorated by the H2 intake. Last, 8-week-old rats were subjected to a Morris water maze test. Maternal H2 administration improved the reference memory of the offspring to the sham level after IR injury during pregnancy. Overall, the present results support the idea that maternal H2 intake helps prevent the hippocampal impairment of offspring induced by IR during pregnancy. PMID:24509162

Mano, Yukio; Kotani, Tomomi; Ito, Mikako; Nagai, Taku; Ichinohashi, Yuko; Yamada, Kiyofumi; Ohno, Kinji; Kikkawa, Fumitaka; Toyokuni, Shinya

2014-04-01

130

Delay and impairment in brain development and function in rat offspring after maternal exposure to methylmercury.  

PubMed

Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [(18)F]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [(18)F]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase-associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests. PMID:23457123

Radonjic, Marijana; Cappaert, Natalie L M; de Vries, Erik F J; de Esch, Celine E F; Kuper, Frieke C; van Waarde, Aren; Dierckx, Rudi A J O; Wadman, Wytse J; Wolterbeek, André P M; Stierum, Rob H; de Groot, Didima M G

2013-05-01

131

The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats.  

PubMed

The increasing evidences showed that adverse early life events have profound long lasting consequences in adult rats including neural, behavioral, and cognitive effects. Early maternal separation was one of the models of adverse early life stress, but which period acts critically was unknown until now. The purpose of this paper was to explore the effects of maternal separation in different periods, that is, postnatal Day 2-9 and postnatal Day 14-21, on spatial learning and memory and long-term potentiation (LTP) in hippocampus of adolescent rats. Rat pups were assigned to three groups: early maternal separation from postnatal Day 2-9 (EMS2-9), separation from postnatal Day 14-21 (EMS14-21), and control (Con)--rats stayed with their mother all the time before weaning. Morris water maze test (MWM) and electrophysiological test were performed at 40-50 days of age. The results indicated that EMS14-21 impaired spatial learning and memory ability. For the excitatory postsynaptic potential long-term potentiation (EPSP LTP), both the two maternal separation groups showed decreased values compared to control group. In terms of population spike long-term potentiation (PS LTP), both the two maternal separation groups also showed lower values compared with control group, but only EMS14-21 group had significant difference compared with control group. In conclusion, our results revealed that EMS14-21 showed worst in both escape latency in Morris Water Maze test and LTP compared to control group and EMS2-9 group. PMID:23712516

Cao, Xiujing; Huang, Shenghai; Cao, Jiejie; Chen, Tingting; Zhu, Ping; Zhu, Rui; Su, Puyu; Ruan, Diyun

2014-07-01

132

Evidences that maternal swimming exercise improves antioxidant defenses and induces mitochondrial biogenesis in the brain of young Wistar rats.  

PubMed

Physical exercise during pregnancy has been considered beneficial to mother and child. Recent studies showed that maternal swimming improves memory in the offspring, increases hippocampal neurogenesis and levels of neurotrophic factors. The objective of this work was to investigate the effect of maternal swimming during pregnancy on redox status and mitochondrial parameters in brain structures from the offspring. Adult female Wistar rats were submitted to five swimming sessions (30 min/day) prior to mating with adult male Wistar rats, and then trained during the pregnancy (five sessions of 30-min swimming/week). The litter was sacrificed when 7 days old, when cerebellum, parietal cortex, hippocampus, and striatum were dissected. We evaluated the production of reactive species and antioxidant status, measuring the activities of superoxide-dismutase (SOD), catalase (CAT) and glutathione-peroxidase (GPx), as well as non-enzymatic antioxidants. We also investigated a potential mitochondrial biogenesis regarding mitochondrion mass and membrane potential, through cytometric approaches. Our results showed that maternal swimming exercise promoted an increase in reactive species levels in cerebellum, parietal cortex, and hippocampus, demonstrated by an increase in dichlorofluorescein oxidation. Mitochondrial superoxide was reduced in cerebellum and parietal cortex, while nitrite levels were increased in cerebellum, parietal cortex, hippocampus, and striatum. Antioxidant status was improved in cerebellum, parietal cortex, and hippocampus. SOD activity was increased in parietal cortex, and was not altered in the remaining brain structures. CAT and GPx activities, as well as non-enzymatic antioxidant potential, were increased in cerebellum, parietal cortex, and hippocampus of rats whose mothers were exercised. Finally, we observed an increased mitochondrial mass and membrane potential, suggesting mitochondriogenesis, in cerebellum and parietal cortex of pups subjected to maternal swimming. In conclusion, maternal swimming exercise induced neurometabolic programing in the offspring that could be of benefit to the rats against future cerebral insults. PMID:23639877

Marcelino, T B; Longoni, A; Kudo, K Y; Stone, V; Rech, A; de Assis, A M; Scherer, E B S; da Cunha, M J; Wyse, A T S; Pettenuzzo, L F; Leipnitz, G; Matté, C

2013-08-29

133

Effects of essential oil from Chamaecyparis obtusa on cytokine genes in the hippocampus of maternal separation rats.  

PubMed

We investigated the effects of an essential oil from Chamaecyparis obtusa (EOCO) on early life stress, using maternal separation (MS) rats and a microarray method to analyze the changes in gene expressions caused by EOCO in the hippocampus of MS rats. Rats in the MS groups were separated from their respective mothers from postnatal day (pnd) 14 to 28. Rats in the EOCO-treated groups were exposed to EOCO for 1 or 2 h by inhalation from pnd 21 to 28. The EOCO-treated MS rats showed decreased anxiety-related behaviors compared with the untreated MS rats in the elevated plus-maze (EPM) test. In the microarray analysis, we found that EOCO downregulated the expressions of cytokine genes such as Ccl2, Il6, Cxcl10, Ccl19, and Il1rl in the hippocampus of MS rats, and also confirmed that using reverse transcriptase - PCR. In particular, the expressions of Ccl2 and Il6 were predominantly decreased by EOCO in the hippocampus of MS rats. Interestingly, protein expression was also reduced by EOCO in MS rats. These results indicate that EOCO decreases MS-induced anxiety-related behaviors, and modulates cytokines, particularly Ccl2 and Il6, in the hippocampus of MS rats. PMID:24502631

Park, Hae Jeong; Kim, Su Kang; Kang, Won Sub; Woo, Jong-Min; Kim, Jong Woo

2014-02-01

134

Effects of Maternal Dietary Restriction of Vitamin B-6 on Neocortex Development in Rats  

NASA Astrophysics Data System (ADS)

The aim of this investigation was to quantitate the effects of a dietary restriction in Vitamin B-6 during gestation or gestation and lactation on neurogenesis, neuron longevity and neuron differentiation in the neocortex of rats. Sprague Dawley female rats were fed, ad libitum, a Vitamin B-6 free diet (AIN 76) supplemented with 0.0 or 0.6 mg pyridoxine (PN)/kg diet during gestation followed by a control level of 7.0 mg PN/kg diet during lactation, or were fed the Vitamin B-6 free diet supplemented with 0.6 or 7.0 mg PN/kg diet throughout gestation and lactation. The neocortex of progeny of these animals were examined at 30 days of age employing light and electron microscopy. Analyses of neurogenesis, neuron longevity and differentiation of neurons (size of somata, dendritic arborization and spine density in Golgi Cox preparations, and synaptic density in E.M. preparations) were conducted. Each of the Vitamin B-6 restricted treatments adversely affected neurogenesis, neuron longevity and neuron differentiation. The degree of adverse effects paralleled the severity (dose or duration) of the restriction imposed. Expressed as percentage reduction from control values, the findings indicated that neuron longevity and differentiation of neurons in the neocortex were more severely affected than neurogenesis by a maternal dietary restriction in Vitamin B-6.

Groziak, Susan Marie

135

Chemically induced alterations in maternal homeostasis and histology of conceptus: their etiologic significance in rat fetal anomalies.  

PubMed

Possible relationships between maternal acid-base-electrolyte imbalance, histological changes in the maternal/extraembryonic tissues (decidua, placenta, membranes enclosing cavities), and fetal anomalies induced by maternotoxic doses of ethylene glycol, sodium salicylate, and cadmium chloride in rats were investigated. Acid-base-electrolyte, histologic and, teratologic studies were conducted concurrently with, as far as feasible, a similar protocol. Ethylene glycol caused 1) maternal homeostatic changes including metabolic acidosis and hyperosmolality, 2) extraembryonic lesions with degeneration of allantois and reduced villigenesis being more prevalent, and 3) materno-fetal effects such as decreases in fetal and maternal body weights, decreased maternal food intake, and fetal abnormalities (vertebral, rib, and sternebral defects). Few of these changes occurred when NaHCO3, an endogenous agent known to correct metabolic acidosis, was coadministered with ethylene glycol. Ethylene glycol-induced maternal metabolic acidosis, concurrent with hyperosmolality, was suspected to contribute toward reduction in villigenesis and fetal anomalies, including body weight reductions. Sodium salicylate induced the following: 1) mild maternal acidosis, hypokalemia, and hypophosphatemia with no significant change in pH; 2) maternal hemorrhage in extraembryonic cavities, papillary proliferation of the visceral yolk sac endoderm, and failure to form the chorioallantoic labyrinth; and 3) resorptions, hydrocephaly, rib defects, and fetal body weight reduction. Upon simultaneous treatment with sodium salicylate, NaHCO3 significantly reduced, and NH4Cl enhanced the incidence of the above histologic and teratologic effects, without significantly altering acid-base values. An etiologic association between the above salicylate-induced maternal and extraembryonic lesions and teratogenicity was likely. Cadmium chloride, whether administered by the intraperitoneal (ip) or intravenous (iv) route, caused 1) hydrocephaly, anophthalmia, vertebral and rib defects, reduction in fetal body weight, resorptions and maternal toxicity (acute peritonitis by the ip route only), and 2) extensive necrosis and hemorrhage in the decidua basalis, hemorrhage in the ectoplacental cone and around Reichert's membrane, and absence of chorioallantoic labyrinth. An etiologic relationship between these teratologic and histologic effects seemed probable, since both were dose-related. From the above studies, it was hypothesized that maternal factors--metabolic acidosis, hyperosmolality, hemorrhages in the ectoplacental cone, extraembryonic cavities, and around Reichert's membrane, and necrosis of decidua basalis--may have, directly or indirectly, reduced fetal nutrition and materno-embryonic gaseous exchange, which ultimately altered fetal development. PMID:1948764

Khera, K S

1991-09-01

136

Distribution and binding of 1, 3, 5 [U14C]-trioxane in maternal and fetal rats.  

PubMed

The tissue distribution and binding of 14C activity were studied at different time intervals following a single oral administration of 1,3,5[U14C]-trioxane (14C-TOX) (40 mg/kg: 1.6 MBq/kg) to pregnant rats. Animals were killed on the 21st day of gestation 3, 24, or 48 hours after administration of TOX. In maternal rats, 3 hours after administration, the highest levels of total radioactivity were found in the liver and plasma, followed by a slow, gradual decline with time. The level of 14C-activity in the whole fetus was comparable to that of the maternal kidney through the study. The radioactivity in the fetal kidney and liver at the end of 48 hours after single administration was higher than at 3 hours after administration. Slow decline in radioactivity was observed with time in the fetal brain, skin and carcass. However, after 48 hours the level of total radioactivity in the fetal kidney and brain was more than twice as high as in the corresponding maternal organs. Three hours following 14C-TOX administration 35-41% of the respective total 14C radioactivity in maternal liver and kidney was firmly bound to the macromolecules, while the fetal liver and kidney showed 100-72% binding with respect to their total radioactivity. PMID:2132938

Sitarek, K; Bara?ski, B; Sapota, A

1990-01-01

137

Chronic intake of caffeine during gestation down regulates metabotropic glutamate receptors in maternal and fetal rat heart  

Microsoft Academic Search

Summary.  Caffeine is the most widely consumed substance in the world which antagonizes adenosine effects. Adenosine acting through\\u000a A1 receptors inhibits glutamate release which binds to metabotropic glutamate receptors (mGluRs). Recently, we have shown that\\u000a maternal caffeine intake during gestation causes down-regulation of A1 and metabotropic glutamate receptors in the brain of both rat mothers and fetuses. In the present work

I. Iglesias; D. León; M. A. Ruiz; J. L. Albasanz; M. Martín

2006-01-01

138

Dietary ethinyl estradiol exposure during development causes increased voluntary sodium intake and mild maternal and offspring toxicity in rats  

Microsoft Academic Search

Exogenous estrogen exposure during development often results in behavioral masculinization and\\/or defeminization of genetic females. Genetic males may be defeminized, hypermasculinized or even demasculinized after similar treatment. Here, pregnant Sprague–Dawley rats consumed phytoestrogen-free diets containing 0, 1, 5 or 200 ppb EE2 beginning on gestational day (GD) 7. Offspring were weaned to the same maternal diet and maintained gonadally intact.

Sherry A Ferguson; K. Barry Delclos; Retha R Newbold; Katherine M Flynn

2003-01-01

139

The effect of a prolonged magnesium restriction on the humoral immune response in maternal rats and their offspring  

E-print Network

TIIE EFFECT 0F A PR0L0NGED MAGNESIUM RESTRI CTI0N ON THE HUMORAL IMMUNE RESPONSE IN HATERHAL RATS AHD THEIR OFFSPRING A Thesis by DIANE T. COHILL Submitted to the Graduate College of Texas ASM University in Partial fulfillment... of the requirements for the degree of MASTER OF SC IENCE May 1987 Major Subject: Nutrition THE EFFECT OF A PROLONGED MAGNESIUM RESTRICTION ON THE HUMORAL IMMUNE RESPONSE IN MATERNAL RATS AND THEIR OFFSPRING A Thesis by DIANE T. COHILL Approved as to sty le...

Cohill, Diane T

1987-01-01

140

Effects of Maternal Diet and Exercise during Pregnancy on Glucose Metabolism in Skeletal Muscle and Fat of Weanling Rats  

PubMed Central

Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-?), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1?) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring. PMID:25853572

Raipuria, Mukesh; Bahari, Hasnah; Morris, Margaret J.

2015-01-01

141

The mother as hunter: significant reduction in foraging costs through enhancements of predation in maternal rats.  

PubMed

In previous laboratory investigations, we have identified enhanced cognition and reduced stress in parous rats, which are likely adaptations in mothers needing to efficiently exploit resources to maintain, protect and provision their immature offspring. Here, in a series of seven behavioral tests on rats, we examined a natural interface between cognition and resource gathering: predation. Experiment 1 compared predatory behavior (toward crickets) in age-matched nulliparous mothers (NULLs) and postpartum lactating mothers (LACTs), revealing a highly significant enhancement of predation in LACT females (mean = -65s in LACTs, vs. -270s in NULLs). Experiment 2 examined the possibility that LACTs, given their increased metabolic rate, were hungrier, and thus more motivated to hunt; doubling the length of time of food deprivation in NULLs did not decrease their predatory latencies. Experiments 3-5, which examined sensory regulation of the effect, indicated that olfaction (anosmia), audition (blockade with white noise), and somatosensation (trimming the vibrissae) appear to play little role in the behavioral enhancement observed in the LACTs; Experiment 6 examined the possibility that visual augmentations may facilitate the improvements in predation; testing LACTs in a 0-lux environment eliminated the behavioral advantage (increasing their latencies from -65s to -212s), which suggests that temporary augmentation to the visual system may be important, and with hormone-neural alterations therein a likely candidate for further study. In contrast, testing NULLS in the 0-lux environment had the opposite effect, reducing their latency to catch the cricket (from -270s to -200s). Finally, Experiment 7 examined the development of predatory behavior in Early-pregnant (PREG), Mid-PREG, and Late-PREG females. Here, we observed a significant enhancement of predation in Mid-PREG and Late-PREG females--at a time when maternity-associated bodily changes would be expected to diminish predation ability--relative to NULLs. Therefore, as with the increasing reports of enhancements to the maternal brain, it is apparent that meaningful behavioral adaptations occur that likewise promote the survival of the mother and her infants at a crucial stage of their lives. PMID:25240277

Kinsley, Craig Howard; Blair, Jamie C; Karp, Natalie E; Hester, Naomi W; McNamara, Ilan M; Orthmeyer, Angela L; McSweeney, Molly C; Bardi, Massimo M; Karelina, Kate; Christon, Lillian M; Sirkin, Maxwell R; Victoria, Lindsay W; Skurka, Danielle J; Fyfe, Christian R; Hudepohl, Margaret B; Felicio, Luciano F; Franssen, R Adam; Meyer, Elizabeth E A; da Silva, Ilton S; Lambert, Kelly G

2014-09-01

142

Maternal and perinatal magnesium restriction predisposes rat pups to insulin resistance and glucose intolerance.  

PubMed

According to the fetal programming hypothesis, impaired intrauterine development results in insulin resistance and associated metabolic disturbances. Recently, we reported increased body fat, a forerunner of insulin resistance, in the pups of mineral-restricted rat dams. To identify the causative mineral(s), the effect of magnesium restriction was assessed. Female weanling WNIN rats (n = 21) consumed ad libitum for 9 wk a 70% magnesium-restricted diet or were pair-fed a control (C) diet (n = 7). After 9 wk, they were mated with control males. Control dams and pups were fed the control diet throughout, whereas 7 Mg-restricted dams were switched to the control diet at parturition and their pups weaned onto the control diet (RP). Pups of the remaining 14 restricted dams were weaned onto the control diet (RW) or the Mg-restricted diet (R). All groups had 8 male pups from weaning. Pups were studied on postnatal d 90 and 180. R pups weighed less than C pups at weaning, but both RP and RW pups caught up with controls by d 90. At this time, R pups were neither insulin resistant nor glucose intolerant, but had a higher percentage of body fat and plasma triglycerides and lower lean body and fat-free mass than C pups. These variables were partially corrected in both RP and RW pups. On postnatal d 180, R, RP, and RW pups were insulin resistant and had a lower insulin response to a glucose challenge than C pups; however, glucose tolerance was impaired only in RW pups. Thus, maternal magnesium restriction irreversibly increases body fat and induces insulin resistance in pups by 6 mo of age, whereas additional perinatal Mg deficiency impairs glucose tolerance. PMID:15930437

Venu, Lagishetty; Kishore, Yedla Durga; Raghunath, Manchala

2005-06-01

143

Prenatal exposure to escitalopram and/or stress in rats: a prenatal stress model of maternal depression and its treatment  

PubMed Central

Rationale A rigorously investigated model of stress and antidepressant administration during pregnancy is needed to evaluate possible effects on the mother. Objective The objective of this study was to develop a model of clinically relevant prenatal exposure to an antidepressant and stress during pregnancy to evaluate the effects on maternal care behavior. Results Female rats implanted with 28 day osmotic minipumps delivering the SSRI escitalopram throughout pregnancy had serum escitalopram concentrations in a clinically observed range (17-65 ng/mL). A separate cohort of pregnant females exposed to a chronic unpredictable mild stress paradigm on gestational days 10-20 showed elevated baseline (305 ng/mL), and acute stress-induced (463 ng/mL), plasma corticosterone concentrations compared to unstressed controls (109 ng/mL). A final cohort of pregnant dams were exposed to saline (control), escitalopram, stress, or stress and escitalopram to determine the effects on maternal care. Maternal behavior was continuously monitored over the first 10 days post parturition. A reduction of 35% in maternal contact and 11% in nursing behavior was observed due to stress during the light cycle. Licking and grooming behavior was unaffected by stress or drug exposure in either the light or dark cycle. Conclusions These data indicate that: 1) clinically relevant antidepressant treatment during human pregnancy can be modeled in rats using escitalopram; 2) chronic mild stress can be delivered in a manner that does not compromise fetal viability; and 3) neither of these prenatal treatments substantially altered maternal care post parturition. PMID:23436130

Bourke, Chase H.; Capello, Catherine F.; Rogers, Swati M.; Yu, Megan L.; Boss-Williams, Katherine A.; Weiss, Jay M.; Stowe, Zachary N.; Owens, Michael J.

2014-01-01

144

EFFECTS ON THE FETAL RAT INTESTINE OF MATERNAL MALNUTRITION AND EXPOSURE TO NITROFEN (2,4-DICHLOROPHENYL-P-NITROPHENYL ETHER)  

EPA Science Inventory

The effects of maternal protein-energy malnutrition and exposure to nitrofen on selected aspects of intestinal morphology and function were studied in the fetal rat. Pregnant rats were fed, throughout gestation, diets containing 24% or 6% casein as the sole source of protein. Red...

145

A methyl-seq analyses of rat offspring liver reveals maternal obesity-induced alterations in dna methylation status at weaning  

Technology Transfer Automated Retrieval System (TEKTRAN)

Exposure to maternal obesity (MO) increases the risk of obesity in adult-life. MO was induced in rats by overfeeding via total enteral nutrition. Male offspring from obese rats gain greater body weight, fat mass and develop insulin resistance when fed high fat diets. However the mechanisms underlyin...

146

Influence of the destabilisation of the maternal digestive microflora on that of the newborn rat.  

PubMed

By destabilising the digestive flora of pregnant rats by antibiotic treatment, it was shown that part of the digestive microflora of the neonate originated from the maternal faeces. A mixture of ampicillin, bacitracin neomycin and streptomycin associated with nystatin were administered ad libitum at three different times, 1-3, 3-5, and more than 5 days before the estimated date of littering. For each treatment, samples were taken from the faeces, teats, and vagina of dams and from the digestive tracts of neonates aged between 6 and 120 h, and analysed for the presence of staphylococci, enterococci, lactobacilli and coliform bacteria. Antibiotic treatment reduced digestive flora populations to levels lower than 10(2) g-1 but had less effect on the vaginal and cutaneous mammary flora. In the digestive microflora of the neonate, the enterococci were unevenly affected, whereas the staphylococci were considerably decreased and the lactobacilli almost completely eliminated; coliform bacteria were found sporadically and in small numbers. The traces of antibiotics found in milk are not sufficient to explain these modifications. Counts made in control animals on media fed the same antibiotic concentrations were not modified. This work underlined the awful consequences for the newborn of a serious perturbation of the mother flora and the necessity of its presence for a normal installation of the digestive microflora of the newborn. PMID:8513029

Brunel, A; Gouet, P

1993-01-01

147

Maternal exercise during pregnancy reduces risk of mammary tumorigenesis in rat offspring.  

PubMed

Breast cancer is the most common cancer among women. Emerging research indicates that modifying lifestyle factors during pregnancy may convey long-term health benefits to offspring. This study was designed to determine whether maternal exercise during pregnancy leads to reduced mammary tumorigenesis in female offspring. Pregnant rats were randomly assigned to exercised and sedentary groups, with the exercised group having free access to a running wheel and the sedentary group housed with a locked wheel during pregnancy. Female pups from exercised or sedentary dams were weaned at 21 days of age and fed a high fat diet without access to a running wheel. At 6 weeks, all pups were injected with the carcinogen N-methyl-N-nitrosourea. Mammary tumor development in all pups was monitored for 15 weeks. Pups from exercised dams had a substantially lower tumor incidence (42.9%) compared with pups from sedentary dams (100%). Neither tumor latency nor histological grade differed between the two groups. These data are the first to demonstrate that exercise during pregnancy potentiates reduced tumorigenesis in offspring. This study provides an important foundation towards developing more effective modes of behavior modification for cancer prevention. PMID:24950432

Camarillo, Ignacio G; Clah, Leon; Zheng, Wei; Zhou, Xuanzhu; Larrick, Brienna; Blaize, Nicole; Breslin, Emily; Patel, Neal; Johnson, Diamond; Teegarden, Dorothy; Donkin, Shawn S; Gavin, Timothy P; Newcomer, Sean

2014-11-01

148

Maternal tobacco smoke exposure during lactation inhibits catecholamine production by adrenal medullae in adult rat offspring.  

PubMed

Previously, we have shown that maternal smoke exposure during lactation, even when pups are not exposed, affects biochemical profiles in the offspring at weaning, eliciting lower body adiposity, hyperinsulinemia, hypocorticosteronemia and lower adrenal catecholamine content. However, the future impact of tobacco exposure is still unknown. As postnatal nicotine exposure causes short- and long-term effects on pups' biochemistry and endocrine profiles, we have now evaluated some endocrine and metabolic parameters of the adult offspring whose mothers were tobacco exposed during lactation. For this, from day 3 to 21 of lactation, rat dams were divided in: 1) SE group, cigarette smoke-exposed (1.7 mg nicotine/cigarettes for 1 h, 4 times/day, daily), without their pups, and 2) C group, exposed to air, in the same conditions. Offspring were killed at 180-days-old. Body weight and food intake were evaluated. Blood, white adipose tissue, adrenal, and liver were collected. All significant data were p<0.05. The adult SE offspring showed no change in body weight, cumulative food intake, serum hormone profile, serum lipid profile, or triglycerides content in liver. However, in adrenal gland, adult SE offspring showed lower catecholamine content ( - 50%) and lower tyrosine hydroxylase protein expression ( - 56%). Despite the hormonal alterations during lactation, tobacco smoke exposure through breast milk only programmed the adrenal medullary function at adulthood and this dysfunction can have consequence on stress response. Thus, an environment free of smoke during lactation period is essential to improve health outcomes in adult offspring. PMID:22618271

Santos-Silva, A P; Lisboa, P C; Pinheiro, C R; Maia, L A; Peixoto-Silva, N; Abreu-Villaça, Y; Moura, E G; Oliveira, E

2012-06-01

149

Maternal Nicotine Exposure Leads to Impaired Disulfide Bond Formation and Augmented Endoplasmic Reticulum Stress in the Rat Placenta  

PubMed Central

Maternal nicotine exposure has been associated with many adverse fetal and placental outcomes. Although underlying mechanisms remain elusive, recent studies have identified that augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. Moreover, ER function depends on proper disulfide bond formation—a partially oxygen-dependent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases. Given that nicotine compromised placental development in the rat, and placental insufficiency has been associated with poor disulfide bond formation and ER stress, we hypothesized that maternal nicotine exposure leads to both placental ER stress and impaired disulfide bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous injections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2?, Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia (Hif1?), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylated eIF2?, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of augmented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally, elevated expression of Hif1? and GCN2 (p<0.05) indicate hypoxia and amino acid deprivation in nicotine-exposed placentas, respectively, which may also cause impaired disulfide bond formation and augmented ER stress. This study is the first to link maternal nicotine exposure with both placental ER stress and disulfide bond impairment in vivo, providing novel insight into the mechanisms underlying nicotine exposure during pregnancy on placental health. PMID:25811377

Wong, Michael K.; Nicholson, Catherine J.; Holloway, Alison C.; Hardy, Daniel B.

2015-01-01

150

Maternal weight as an alternative determinant of the gestational day of Wistar rats housed in individually-ventilated cages.  

PubMed

One of the commonly used animal models in fertility, developmental and neurobiological studies is the laboratory rat. The early recognition of rat pregnancy and confirmation of the exact embryonic day are vital. The aim of this study was to investigate the correlation of maternal weight at the time of conception to its increase throughout gestation, aiming to develop a mathematical model, which can be used for the determination of the exact day of pregnancy, set the threshold, and monitor pregnancy from the onset. We studied a total of 173 Wistar rats with a mean body weight of 238.22?±?34.9?g. After 72?h at the male's cages, we considered as Day 0 (D0) the day in which a copulatory plug or sperm was found during the vaginal smear examination. After that period the female animals were transferred into their cages, and weight monitoring started 14 days (D14) after D0, until parturition. Based on the statistical analysis, there is a correlation between maternal body weight at D0 and maternal body weight from D14 to D19. Moreover, the average weight gain from D14 to D19 is positively correlated to initial female body weight, while there is no correlation between each pregnant animal's weight from D14 to D19 and litter size. A mathematical model was developed as a tool for the verification of the day of pregnancy. In conclusion, continuous monitoring of maternal weight after D14 can be a reliable method for the recognition of pregnancy and determination of the exact gestational day. PMID:25488321

Paronis, E; Samara, A; Polyzos, A; Spyropoulos, C; Kostomitsopoulos, N G

2014-12-01

151

Effects of maternal separation on behavior and brain damage in adult rats exposed to neonatal hypoxia-ischemia.  

PubMed

Animal studies suggest that maternal separation, a widely used paradigm to study the effects of early life adversity, exerts a profound and life-long impact on both brain and behavior. The aim of the current study was to investigate whether adverse early life experiences interact with neonatal hypoxia-ischemia, affecting the outcome of this neurological insult at both functional and structural levels during adulthood. Rat pups were separated from their mothers during postnatal days 1-6, for either a short (15 min) or prolonged (180 min) period, while another group was left undisturbed. On postnatal day 7, a subgroup from each of the three postnatal manipulations was exposed to a hypoxic-ischemic episode. Behavioral examination took place approximately at three months of age and included tests of learning and memory (Morris water maze, novel object and novel place recognition), as well as motor coordination (rota-rod). We found that both prolonged maternal separation and neonatal hypoxia-ischemia impaired the animals' spatial learning and reference memory. Deficits in spatial but not visual recognition memory were detected only in hypoxic-ischemic rats. Interestingly, prolonged maternal separation prior to neonatal hypoxia-ischemia augmented the reference memory impairments. Histological analysis of infarct size, hippocampal area and thickness of corpus callosum did not reveal any exacerbation of damage in hypoxic-ischemic rats that were maternally separated for a prolonged period. These are the first data suggesting that an adverse postnatal environmental manipulation of just 6 days causes long-term effects on spatial learning and memory and may render the organism more vulnerable to a subsequent insult. PMID:25433094

Tata, Despina A; Markostamou, Ioanna; Ioannidis, Anestis; Gkioka, Mara; Simeonidou, Constantina; Anogianakis, Georgios; Spandou, Evangelia

2015-03-01

152

Maternal toxicity.  

PubMed

Although demonstration of some degree of maternal toxicity is required in regulatory developmental toxicology studies, marked maternal toxicity may be a confounding factor in data interpretation. Reduction in maternal body weight gain is the far most frequently used endpoint of toxicity, but alternative endpoints, like organ toxicity or exaggerated pharmacological response, can also be taken into consideration. The following conclusions are based on literature data and discussions at maternal toxicity workshops attended by representatives from regulatory agencies, academia, and industry: (1) Available results do not support that maternal toxicity (defined as clinical signs, decreased body weight gain or absolute body weight loss of up to 15% in rats or 7% in rabbits) can be used to explain the occurrence of major malformations. (2) There is clear evidence that substantial reductions in maternal weight gain (or absolute weight loss) are linked with other manifestations of developmental toxicity. Among these can be mentioned decreased fetal weight, and skeletal anomalies (e.g., wavy ribs) in rats and decreased fetal weights, post implantation loss, abortions, and some skeletal anomalies in rabbits. (3) There are several examples of misinterpretation among companies, where it was incorrectly expected that regulatory authorities would not label chemicals/drugs as "teratogens/developmental toxicants" because embryo fetal adverse effects were only observed at doses also causing signs of maternal toxicity. (4) Similarly, even if mechanistic studies indicate that a substance causes developmental toxicity via exaggerated pharmacological effects in the mother, such a mechanism does not automatically negate the observed fetal adverse effects.From a regulatory perspective, an observed developmental toxic finding is considered to be of potential human relevance (even if it is mediated via maternal pharmacological effects or occur at doses causing signs of maternal toxicity) unless the company can provide appropriate mechanistic and/or other convincing evidence to the contrary. PMID:23138914

Danielsson, Bengt R

2013-01-01

153

Histamine acting on the basolateral amygdala reverts the impairment of aversive memory of rats submitted to neonatal maternal deprivation.  

PubMed

Recent findings suggest a role of brain histamine in the regulation of memory consolidation, particularly in one-trial inhibitory avoidance (IA) learning and that disruption in the mother infant relationship i.e. maternal deprivation induces cognitive deficits. We investigate whether histamine itself, and histaminergic compounds given into the basolateral amygdala (BLA) immediately post-training can affect retention (24h after training) of one-trial (IA) in rats submitted to early postnatal maternal deprivation. In all cases, deprived (Dep) animals had lower retention scores than non-deprived controls (N-dep). Histamine induced memory enhancement on its own in N-dep animals and was able to overcome the deleterious effect of Dep. The effects by SKF-91488 is similar to histamine. The H3 agonist, imetit mimetized the enhancing effects of histamine; neither agonist H1 pyridylethylamine nor the H2 dimaprit had any effect. Ranitidine and thioperamide (50nmol) co-infused with histamine (10nmol) fully blocked the restorative effect of histamine on retention in Dep animals. Thioperamide, in addition, blocked the enhancing effect of histamine on memory of the N-dep animals as well. None of the drugs used given into BLA had any effect on open-field or elevated plus-maze behavior in N-dep or Dep rats. Our results are limited to experimental design in rats. Extrapolation i.e. in humans requires further experimentations. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may at least in part be due to an impairment of histamine H3 receptor-mediated mediated mechanisms in the BLA. PMID:25257105

Benetti, Fernando; da Silveira, Clarice Kras Borges; Rosa, Jessica; Izquierdo, Ivan

2014-09-22

154

Interactions between protein and vegetable oils in the maternal diet determine the programming of the insulin axis in the rat.  

PubMed

The available evidence suggests that metabolic control mechanisms are programmed early in life. Previous studies of pregnant rats fed low-protein diets have suggested that the vegetable oils used in the experimental diets influence the outcome. The present study investigated the offspring of female rats fed semi-synthetic diets containing either 180 or 90g casein/kg with 70 g/kg (w/w) of either corn oil or soya oil during gestation. During lactation, the dams received stock diet, and the offspring were subsequently weaned onto the stock diet. The offspring of dams fed the low-protein diets were smaller at birth. At 25 weeks of age, the offspring were subjected to an oral glucose tolerance test. In the offspring of dams fed the diet containing soya oil, the area under the insulin curve was affected by the protein content of the maternal diet. There was no effect of protein on the area under the insulin curve in the offspring of dams fed the diet prepared with corn oil. There were no differences in plasma glucose concentrations. The levels of mRNA for acetyl-CoA carboxylase- in the livers of female offspring were affected by the protein and oil content of the maternal diet. The level of carnitine palmitoyl transferase mRNA was affected by the protein content of the maternal diet. The present study suggests that PUFA in the maternal diet can interact with protein metabolism to influence the development of the offspring. This may involve the higher content of alpha-linolenic acid in soya oil compared with corn oil. PMID:17408526

Maloney, Christopher A; Lilley, Christina; Czopek, Alicja; Hay, Susan M; Rees, William D

2007-05-01

155

Importance of Maternal Diabetes on the Chronological Deregulation of the Intrauterine Development: An Experimental Study in Rat  

PubMed Central

We investigated whether maternal diabetes induced in rats using streptozotocin (STZ) on Day 5 of pregnancy affects the intrauterine developmental timeline. A total of 30 pregnant Sprague-Dawley diabetic rats (DRs) and 20 control rats (CRs) were used to obtain 21-day fetuses (F21) and newborn (NB) pups. Gestational age, weight, and body size were recorded as were the maxillofacial morphometry and morphohistological characteristics of the limbs. In DRs, pregnancy continued for ?1.7 days, and delivery occurred 23 days postcoitus (DPC). In this group, the number of pups was lower, and 13% had maxillofacial defects. F21 in the DR group had lower weights and were smaller; moreover, the morphological characteristics of the maxillofacial structures, derived from the neural crest, were discordant with their chronological gestational age, resembling 18- to 19-day-old fetuses. These deficiencies were counterbalanced in NB pups. We conclude that hyperglycemia, which results from maternal diabetes and precedes embryo implantation, deregulates the intrauterine developmental timeline, restricts embryo-fetal growth, and primarily delays the remodeling and maturation of the structures derived from neural crest cells. PMID:25756053

Salazar García, Marcela; Reyes Maldonado, Elba; Revilla Monsalve, María Cristina; Villavicencio Guzmán, Laura; Reyes López, Alfonso; Sánchez-Gómez, Concepción

2015-01-01

156

Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring  

SciTech Connect

Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

Ronco, Ana Maria, E-mail: amronco@inta.cl [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile); Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile); Saez, Daniel [Faculty of Veterinary Medicine, University of Chile, Casilla 138-11, Santiago (Chile); Hirsch, Sandra [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile); Zepeda, Ramiro [Faculty of Medicine, University of Chile, Casilla 138-11, Santiago (Chile); Llanos, Miguel N. [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile)

2011-03-01

157

Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny.  

PubMed

Postnatal nicotine exposure leads to obesity and hypothyroidism in adulthood. We studied the effects of maternal nicotine exposure during lactation on thyroid hormone (TH) metabolism and function in adult offspring. Lactating rats received implants of osmotic minipumps releasing nicotine (NIC, 6?mg/kg per day s.c.) or saline (control) from postnatal days 2 to 16. Offspring were killed at 180 days. We measured types 1 and 2 deiodinase activity and mRNA, mitochondrial ?-glycerol-3-phosphate dehydrogenase (mGPD) activity, TH receptor (TR), uncoupling protein 1 (UCP1), hypothalamic TRH, pituitary TSH, and in vitro TRH-stimulated TSH secretion. Expression of deiodinase mRNAs followed the same profile as that of the enzymatic activity. NIC exposure caused lower 5'-D1 and mGPD activities; lower TR?1 content in liver as well as lower 5'-D1 activity in muscle; and higher 5'-D2 activity in brown adipose tissue (BAT), heart, and testis, which are in accordance with hypothyroidism. Although deiodinase activities were not changed in the hypothalamus, pituitary, and thyroid of NIC offspring, UCP1 expression was lower in BAT. Levels of both TRH and TSH were lower in offspring exposed to NIC, which presented higher basal in vitro TSH secretion, which was not increased in response to TRH. Thus, the hypothyroidism in NIC offspring at adulthood was caused, in part, by in vivo TRH-TSH suppression and lower sensitivity to TRH. Despite the hypothyroid status of peripheral tissues, these animals seem to develop an adaptive mechanism to preserve thyroxine to triiodothyronine conversion in central tissues. PMID:25653393

Lisboa, P C; de Oliveira, E; Manhães, A C; Santos-Silva, A P; Pinheiro, C R; Younes-Rapozo, V; Faustino, L C; Ortiga-Carvalho, T M; Moura, E G

2015-03-01

158

Toxic Effects of Maternal Zearalenone Exposure on Intestinal Oxidative Stress, Barrier Function, Immunological and Morphological Changes in Rats  

PubMed Central

The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses. PMID:25180673

Liu, Min; Gao, Rui; Meng, Qingwei; Zhang, Yuanyuan; Bi, Chongpeng; Shan, Anshan

2014-01-01

159

Measurement of somatomedin-related peptides in fetal, neonatal, and maternal rat serum by insulin-like growth factor (IGF) I radioimmunoassay, IGF-II radioreceptor assay (RRA)  

SciTech Connect

Previous measurements of somatomedins (Sms) and insulin-like growth factors (IGFs) in maternal and fetal serum have yielded contradictory results. We have, therefore, measured maternal, fetal, and neonatal rat serum with two highly specific assays: 1) IGF-I/Sm-C RIA and 2) a highly specific IGF-II/rat placental membrane radioreceptor assay (RRA). In addition, we have made measurements with a less specific multiplication-stimulating activity (MSA)-rat placental membrane RRA. To avoid possible serious artifacts created by Sm-binding proteins, preliminary acid-ethanol extraction of serum was performed. Results are expressed in terms of a reference human serum with an assigned potency of 1 U/ml. We now conclude that radioimmunoassayable IGF-I is present in higher concentrations than previously reported interm fetal rat serum and that radioreceptor assayable IGF-II is selectively elevated in rat fatal and neonatal life and may have unique metabolic and rowth-promoting significance.

Daughaday, W.H.; Parker, K.A.; Borowsky, S.; Trivedi, B.; Kapadia, M.

1982-02-01

160

Maternal dexamethasone exposure during pregnancy in rats disrupts gonadotropin-releasing hormone neuronal development in the offspring.  

PubMed

The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13-20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47-52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults. PMID:24374911

Lim, Wei Ling; Soga, Tomoko; Parhar, Ishwar S

2014-02-01

161

Enzymic basis of deranged foetal flavin-nucleotide metabolism consequent on immunoneutralization of maternal riboflavin carrier protein in the pregnant rat.  

PubMed Central

A comparison of the kinetic and other parameters of enzymes of flavin-nucleotide metabolism in the whole foetus vis-à-vis the maternal liver in the pregnant rat revealed relatively lower activities of foetal flavokinase and FAD pyrophosphorylase. Passive immunoneutralization of the maternal riboflavin carrier protein suppresses foetal FAD pyrophosphorylase rather selectively. Additionally, although the activities of foetal nucleotide pyrophosphatase and FMN phosphatase were unchanged owing to immunoneutralization, higher activities of these enzymes in the whole foetus as compared with the maternal liver may be responsible for the drastic depletion of FAD levels that precipitates foetal degeneration. PMID:2996499

Surolia, N; Krishnamurthy, K; Adiga, P R

1985-01-01

162

Effects of 5-hydroxytryptamine 2C receptor agonist MK212 and 2A receptor antagonist MDL100907 on maternal behavior in postpartum female rats.  

PubMed

Maternal behavior in rats is a highly motivated and well-organized social behavior. Given the known roles of serotonin (5-HT) in emotion, motivation, social behavior, and major depression - and its known interaction with dopamine - it is likely that serotonin also plays a crucial role in this behavior. So far, there are surprisingly few studies focusing on 5-HT in maternal behavior, except for maternal aggression. In the present study, we examined the effects of 5-HT2C receptor agonism and 5-HT2A receptor antagonism on maternal behavior in postpartum female rats. We hypothesized that activation of 5-HT2C receptors and blockade of 5-HT2A receptors would produce a functionally equivalent disruption of maternal behavior because these two receptor subtypes often exert opposite effects on various brain functions and psychological processes relevant to rat maternal behavior. On postpartum Days 5, 7, and 9, Sprague-Dawley mother rats were given a single injection of 0.9% NaCl solution, the 5-HT2C agonist MK212 (0.5, 1.0 or 2.0 mg/kg, ip), or the 5-HT2A antagonist MDL100907 (0.05, 0.5 or 2.0 mg/kg, ip). Maternal behavior was tested 30 min before and 30 min, 120 min, 240 min after injection. Acute injection of MK212 significantly disrupted pup retrieval, pup licking, pup nursing, and nest building in a dose-dependent fashion. At the tested doses, MDL100907 had little effect on various components of rat maternal behavior. Across the 3 days of testing, no apparent sensitization or tolerance associated with repeated administration of MK212 and MDL100907 was found. We concluded that rat maternal performance is critically dependent on 5-HT2C receptors, while the role of 5-HT2A receptors is still inconclusive. Possible behavioral mechanisms of actions of 5-HT2C receptor in maternal behavior are discussed. PMID:24321440

Chen, Weihai; Zhang, Qi; Su, Wenxin; Zhang, Haorong; Yang, Yu; Qiao, Jing; Sui, Nan; Li, Ming

2014-02-01

163

COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*  

PubMed Central

BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and ?Cue). The BOLD response to +Cue and ?Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus ?Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

Caffrey, Martha K.; Febo, Marcelo

2013-01-01

164

Effect of maternal alcohol and nicotine intake, individually and in combination, on fetal growth in the rat  

SciTech Connect

The effect of maternal ethanol and nicotine administration, separately and in combination, on fetal growth of rats was studied. Nicotine was administered by gavage for the entire gestational period. Alcohol was given in drinking water for 4 weeks prior to mating and 30% throughout gestation. Appropriate pair-fed and ad libitum control animals were included to separate the effect of ethanol and nicotine on the outcome of pregnancy from those produced by the confounding variables of malnutrition. Body weights of fetuses exposed to alcohol alone or in combination with nicotine were significantly lower than those of the pair-fed and ad libitum controls. However, the difference in fetal body weight between the alcohol plus nicotine and the alcohol alone group was not significant. Similarly, in the rats administered nicotine only, fetal weight was not significantly different compared to control animals. The results of this study indicate that maternal alcohol intake impairs fetal growth and nicotine does not, regardless whether it is administered separately or in combination with alcohol for the entire gestational period.

Leichter, J. (Univ. of British Columbia, Vancouver (Canada))

1991-03-15

165

The effect of feeding a low iron diet prior to and during gestation on fetal and maternal iron homeostasis in two strains of rat  

PubMed Central

Background Iron deficiency anaemia during pregnancy is a global problem, with short and long term consequences for maternal and child health. Animal models have demonstrated that the developing fetus is vulnerable to maternal iron restriction, impacting on postnatal metabolic and blood pressure regulation. Whilst long-term outcomes are similar across different models, the commonality in mechanistic events across models is unknown. This study examined the impact of iron deficiency on maternal and fetal iron homeostasis in two strains of rat. Methods Wistar (n=20) and Rowett Hooded Lister (RHL, n=19) rats were fed a control or low iron diet for 4 weeks prior to and during pregnancy. Tissues were collected at day 21 of gestation for analysis of iron content and mRNA/protein expression of regulatory proteins and transporters. Results A reduction in maternal liver iron content in response to the low iron diet was associated with upregulation of transferrin receptor expression and a reduction in hepcidin expression in the liver of both strains, which would be expected to promote increased iron absorption across the gut and increased turnover of iron in the liver. Placental expression of transferrin and DMT1+IRE were also upregulated, indicating adaptive responses to ensure availability of iron to the fetus. There were considerable differences in hepatic maternal and fetal iron content between strains. The higher quantity of iron present in livers from Wistar rats was not explained by differences in expression of intestinal iron transporters, and may instead reflect greater materno-fetal transfer in RHL rats as indicated by increased expression of placental iron transporters in this strain. Conclusions Our findings demonstrate substantial differences in iron homeostasis between two strains of rat during pregnancy, with variable impact of iron deficiency on the fetus. Whilst common developmental processes and pathways have been observed across different models of nutrient restriction during pregnancy, this study demonstrates differences in maternal adaptation which may impact on the trajectory of the programmed response. PMID:23635304

2013-01-01

166

Maternal nicotinamide supplementation causes global DNA hypomethylation, uracil hypo-incorporation and gene expression changes in fetal rats.  

PubMed

Recent evidence shows that excess nicotinamide can cause epigenetic changes in developing rats. The aim of the present study was to investigate the effects of maternal nicotinamide supplementation on the fetus. Female rats were randomised into four groups fed a standard chow diet (control group) or diets supplemented with 1 g/kg of nicotinamide (low-dose group), 4 g/kg of nicotinamide (high-dose group) or 4 g/kg of nicotinamide plus 2 g/kg of betaine (betaine group) for 14-16 d before mating and throughout the study. Fetal tissue samples were collected on the 20th day of pregnancy. Compared with the control group, the high-dose group had a higher fetal death rate, and the average fetal body weight was higher in the low-dose group but lower in the high-dose group. Nicotinamide supplementation led to a decrease in placental and fetal hepatic genomic DNA methylation and genomic uracil contents (a factor modifying DNA for diversity) in the placenta and fetal liver and brain, which could be completely or partially prevented by betaine. Moreover, nicotinamide supplementation induced tissue-specific alterations in the mRNA expression of the genes encoding nicotinamide N-methyltransferase, DNA methyltransferase 1, catalase and tumour protein p53 in the placenta and fetal liver. High-dose nicotinamide supplementation increased fetal hepatic ?-fetoprotein mRNA level, which was prevented by betaine supplementation. It is concluded that maternal nicotinamide supplementation can induce changes in fetal epigenetic modification and DNA base composition. The present study raises the concern that maternal nicotinamide supplementation may play a role in the development of epigenetic-related diseases in the offspring. PMID:24507733

Tian, Yan-Jie; Luo, Ning; Chen, Na-Na; Lun, Yong-Zhi; Gu, Xin-Yi; Li, Zhi; Ma, Qiang; Zhou, Shi-Sheng

2014-05-01

167

Treatment with a monoclonal antibody against methamphetamine and amphetamine reduces maternal and fetal rat brain concentrations in late pregnancy.  

PubMed

We hypothesized that treatment of pregnant rat dams with a dual reactive monoclonal antibody (mAb4G9) against (+)-methamphetamine [METH; equilibrium dissociation rate constant (KD) = 16 nM] and (+)-amphetamine (AMP; KD = 102 nM) could confer maternal and fetal protection from brain accumulation of both drugs of abuse. To test this hypothesis, pregnant Sprague-Dawley rats (on gestational day 21) received a 1 mg/kg i.v. METH dose, followed 30 minutes later by vehicle or mAb4G9 treatment. The mAb4G9 dose was 0.56 mole-equivalent in binding sites to the METH body burden. Pharmacokinetic analysis showed baseline METH and AMP elimination half-lives were congruent in dams and fetuses, but the METH volume of distribution in dams was nearly double the fetal values. The METH and AMP area under the serum concentration-versus-time curves from 40 minutes to 5 hours after mAb4G9 treatment increased >7000% and 2000%, respectively, in dams. Fetal METH serum did not change, but AMP decreased 23%. The increased METH and AMP concentrations in maternal serum resulted from significant increases in mAb4G9 binding. Protein binding changed from ?15% to > 90% for METH and AMP. Fetal serum protein binding appeared to gradually increase, but the absolute fraction bound was trivial compared with the dams. mAb4G9 treatment significantly reduced METH and AMP brain values by 66% and 45% in dams and 44% and 46% in fetuses (P < 0.05), respectively. These results show anti-METH/AMP mAb4G9 therapy in dams can offer maternal and fetal brain protection from the potentially harmful effects of METH and AMP. PMID:24839971

White, Sarah J; Hendrickson, Howard P; Atchley, William T; Laurenzana, Elizabeth M; Gentry, W Brooks; Williams, D Keith; Owens, S Michael

2014-08-01

168

1,25(OH) sub 2 D sub 3 and Ca-binding protein in fetal rats: Relationship to the maternal vitamin D status  

SciTech Connect

The autonomy and functional role of fetal 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) were investigated in nondiabetic and diabetic BB rats fed diets containing 0.85% calcium-0.7% phosphorus or 0.2% calcium and phosphorus and in semistarved rats on the low calcium-phosphorus diet. The changes in maternal and fetal plasma 1,25(OH){sub 2}D{sub 3} were similar: the levels were increased by calcium-phosphorus restriction and decreased by diabetes and semistarvation. Maternal and fetal 1,25(OH){sub 2}D{sub 3} levels were correlated. The vitamin D-dependent calcium-binding proteins (CaBP{sub 9K} and CaBP{sub 28K}) were measured in multiple maternal and fetal tissues and in the placenta of nondiabetic, diabetic, and calcium-phosphorus-restricted rats. The distributions of CaBP{sub 9K} and CaBP{sub 28K} in the pregnant rat were similar to that of the growing rat. The increased maternal plasma 1,25(OH){sub 2}D{sub 3} levels in calcium-phosphorus-restricted rats were associated with higher duodenal CaBP{sub 9K} and renal CaBPs, but placental CaBP{sub 9K} was not different. In diabetic pregnant rats, duodenal CaBP{sub 9K} was not different. In diabetic pregnant rats, duodenal CaBP{sub 9K} tended to be lower, while renal CaBPs were normal; placental CaBP{sub 9K} was decreased. The results indicate that in the rat fetal 1,25(OH){sub 2}D{sub 3} depends on maternal 1,25(OH){sub 2}D{sub 3} or on factors regulating maternal 1,25(OH){sub 2}D{sub 3}. The lack of changes in fetal CaBP in the presence of altered fetal plasma 1,25(OH){sub 2}D{sub 3} levels confirms earlier data showing that 1,25(H){sub 2}D{sub 3} has a limited hormonal function during perinatal development in the rat.

Verhaeghe, J.; Thomasset, M.; Brehier, A.; Van Assche, F.A.; Bouillon, R. (Katholieke Universiteit Leuven (Belgium) Institut National de la Sante et de la Recherche Medical (France))

1988-04-01

169

Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring  

Microsoft Academic Search

Epidemiologic studies have demonstrated associations between low birth weight and increased rates of adult diseases such as hypertension and diabetes. Maternal iron restriction in the rat has been reported to both reduce birth weight and to elevate blood pressure at 40 days of age. The aim of the present study was to extend these findings to investigate the effects of

R. M. Lewis; C. J. Petry; S. E. Ozanne; C. N. Hales

2001-01-01

170

Effects in Rats of Maternal Exposure to Raspberry Leaf and Its Constituents on the Activity of Cytochrome P450 Enzymes in the Offspring  

Microsoft Academic Search

The goal of our study was to determine whether maternal exposure to red raspberry leaf (RRL) and its constituents can permanently alter biotransformation of fluorogenic substrates by cytochrome P450 (CYP) in the livers of male and female offspring. Nulliparous female rats received vehicle, raspberry leaf, kaempferol, quercetin, or ellagic acid orally once breeding had been confirmed until parturition. Hepatic microsomes

Emilija Makaji; Shirley H. Y. Ho; Alison C. Holloway; Denis J. Crankshaw

2011-01-01

171

High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring  

Technology Transfer Automated Retrieval System (TEKTRAN)

The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

172

Prevention of maternal and developmental toxicity in rats via dietary inclusion of common aflatoxin sorbents: potential for hidden risks.  

PubMed

In earlier work, we have reported that a phyllosilicate clay (HSCAS or NovaSil) can tightly and selectively bind the aflatoxins in vitro and in vivo. Since then, a variety of untested clay and zeolitic minerals have been added to poultry and livestock feeds as potential "aflatoxin binders." However, the efficacy and safety of these products have not been determined. A common zeolite that has been frequently added to animal feed is clinoptilolite. Our objectives in this study were twofold: (1) to utilize the pregnant rat as an in vivo model to compare the potential of HSCAS and clinoptilolite to prevent the developmental toxicity of aflatoxin B1 (AfB1), and (2) to determine the effect of these two sorbents on the metabolism and bioavailability of AfB1. Clay and zeolitic minerals (HSCAS or clinoptilolite) were added to the diet at a level of 0.5% (w/w) and fed to pregnant Sprague-Dawley rats throughout pregnancy (i.e., day 0 to 20). Treatment groups (HSCAS or clinoptilolite) alone and in combination with AfB1 were exposed to sorbents in the feed as well as by gavage. Untreated and AfB1 control animals were fed the basal diet without added sorbent. Between gestation days 6 and 13, animals maintained on diets containing sorbent were gavaged with corn oil in combination with an amount of the respective sorbent equivalent to 0.5% of the estimated maximum daily intake of feed. Animals receiving AfB1 were dosed orally (between days 6 and 13) with AfB1 (2 mg/kg body wt) either alone or concomitantly with a similar quantity of the respective sorbent. Evaluations of toxicity were performed on day 20. These included: maternal (mortality, body weights, feed intake, and litter weights), developmental (embryonic resorptions and fetal body weights), and histological (maternal livers and kidneys). Sorbents alone were not toxic; AfB1 alone and with clinoptilolite resulted in significant maternal and developmental toxicity. Animals treated with HSCAS (plus AfB1) were comparable to controls. Importantly, clinoptilolite (plus AfB1) resulted in severe maternal liver lesions (more severe than AfB1 alone), suggesting that this zeolite may interact with dietary components that modulate aflatoxicosis. In metabolism studies, adult male Sprague-Dawley rats, maintained on diets containing 0.5% (w/w) HSCAS or clinoptilolite, were dosed orally with 2.0 mg AfB1/kg body wt. The concentration of the major urinary metabolite (AfM1) was considerably decreased in the presence of HSCAS. These results suggest that the mechanism of protection of AfB1-induced maternal and developmental toxicities in the rat may involve adsorption and reduction of AfB1 bioavailability in vivo. Importantly, this study demonstrates the potential for significant hidden risks associated with the inclusion of nonselective aflatoxin binders in feeds. Aflatoxin sorbents should be rigorously tested individually and thoroughly characterized in vivo, paying particular attention to their effectiveness and safety in sensitive animal models and their potential for deleterious interactions. PMID:9520353

Mayura, K; Abdel-Wahhab, M A; McKenzie, K S; Sarr, A B; Edwards, J F; Naguib, K; Phillips, T D

1998-02-01

173

Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect.  

PubMed

Poor maternal nutrition predisposes offspring to metabolic disease. This predisposition is modified by various postnatal factors. We hypothesised that coupled to the initial effects of developmental programming due to a maternal low-protein diet, a second hit resulting from increased offspring postnatal sugar consumption would lead to additional changes in metabolism and adipose tissue function. The objective of the present study was to determine the effects of sugared water consumption (5% sucrose in the drinking-water) on adult offspring adiposity as a 'second hit' following exposure to maternal protein restriction during pregnancy. We studied four offspring groups: (1) offspring of mothers fed the control diet (C); (2) offspring of mothers fed the restricted protein diet (R); (3) offspring of control mothers that drank sugared water (C-S); (4) offspring of restricted mothers that drank sugared water (R-S). Maternal diet in pregnancy was considered the first factor and sugared water consumption as the second factor - the second hit. Body weight and total energy consumption, before and after sugared water consumption, were similar in all the groups. Sugared water consumption increased TAG, insulin and cholesterol concentrations in both the sexes of the C-S and R-S offspring. Sugared water consumption increased leptin concentrations in the R-S females and males but not in the R offspring. There was also an interaction between sugared water and maternal diet in males. Sugared water consumption increased adipocyte size and adiposity index in both females and males, but the interaction with maternal diet was observed only in females. Adiposity index and plasma leptin concentrations were positively correlated in both the sexes. The present study shows that a second hit during adulthood can amplify the effects of higher adiposity arising due to poor maternal pregnancy diet in an offspring sex dependent fashion. PMID:24124655

Cervantes-Rodríguez, M; Martínez-Gómez, M; Cuevas, E; Nicolás, L; Castelán, F; Nathanielsz, P W; Zambrano, E; Rodríguez-Antolín, J

2014-02-01

174

Enhanced Maternal Aggression and Associated Changes in Neuropeptide Gene Expression in Multiparous Rats  

PubMed Central

While it has often been speculated that prior reproductive experience improves subsequent maternal care, few studies have examined specific changes in behavior during a first versus second lactation. During lactation mothers display heightened aggression toward male intruders, purportedly to protect vulnerable young. In the current study, maternal aggression was examined in primiparous and age-matched, multiparous females on postpartum days 5 (PPD5) and PPD15. Expression of oxytocin (OXT), oxytocin receptor (OXT-R), arginine vasopressin (AVP), arginine vasopressin V1a receptors (V1a), and corticotrophin releasing hormone (CRH) mRNA was measured following aggression testing at both time points using real-time quantitative PCR (qPCR) in brain regions previously implicated in the regulation of maternal aggression. Multiparity significantly enhanced maternal aggression on PPD5 but not on PPD15. In addition, this increased aggression was associated with region and gene specific changes in mRNA expression. These findings indicate that reproductive experience enhances maternal aggression, an effect that may be mediated by region specific alterations in neuropeptidergic activity. The adaptations observed in multiparous females provide an innate model for the study of neuroplasticity in the regulation of aggression. PMID:19824761

Nephew, Benjamin C.; Bridges, Robert S.; Lovelock, Dennis F.; Byrnes, Elizabeth M.

2009-01-01

175

Impact of the aqueous extract of Eclipta alba on maternal aggression in rats.  

PubMed

Parturient females display impulsive behavior represented in the form of aggressive bouts when exposed to conspecifics. Prolonged aggression during the postpartum period could affect maternal care. Eclipta alba is traditionally known to induce neuropsychiatric alterations, however its ability to circumvent maternal aggression has not been elucidated. The present study was aimed to investigate the ability of the aqueous extract of Eclipta alba to suppress maternal aggression. In the single dose study, 100, 200 and 500 mg/kg body weight of the aqueous extract of Eclipta alba was administered to parturient females 30 minutes prior to maternal aggression testing against intruder males. In the multiple dose study, 100, 200 and 500 mg/kg of the extract were administered for 15 and 30 days and maternal aggression was quantified. Administration of the extract for 15 and 30 days in dose schedules of 200 and 500 mg/kg body weight significantly suppressed agonistic encounters by the dams and therefore had beneficial anti-aggressive activity. PMID:20363689

Banji, David; Banji, Otilia J F; Annamalai, A R; Shanthmurthy, M

2010-04-01

176

Intrauterine protein restriction combined with early postnatal overfeeding was not associated with adult-onset obesity but produced glucose intolerance by pancreatic dysfunction  

PubMed Central

We investigated if whether intrauterine protein restriction in combination with overfeeding during lactation would cause adult-onset obesity and metabolic disorders. After birth, litters from dams fed with control (17% protein) and low protein (6% protein) diets were adjusted to a size of four (CO and LO groups, respectively) or eight (CC and LC groups, respectively) pups. All of the offspring were fed a diet containing 12% protein from the time of weaning until they were 90 d old. Compared to the CC and LC groups, the CO and LO groups had higher relative and absolute food intakes, oxygen consumption and carbon dioxide production; lower brown adipose tissue weight and lipid content and greater weight gain and absolute and relative white adipose tissue weight and absolute lipid content. Compared with the CO and CC rats, the LC and LO rats exhibited higher relative food intake, brown adipose tissue weight and lipid content, reduced oxygen consumption, carbon dioxide production and spontaneous activity, increased relative retroperitoneal adipose tissue weight and unaltered absolute white adipose tissue weight and lipid content. The fasting serum glucose was similar among the groups. The area under the glucose curve was higher in the LO and CO rats than in the LC and CC rats. The basal insulinemia and homeostasis model assessment of insulin resistance (HOMA-IR) were lower in the LO group than in the other groups. The total area under the insulin curve for the LO rats was similar to the CC rats, and both were lower than the CO and LC rats. Kitt was higher in the LO, LC and CO groups than in the CC group. Thus, intrauterine protein restriction followed by overfeeding during lactation did not induce obesity, but produced glucose intolerance by impairing pancreatic function in adulthood. PMID:23305533

2013-01-01

177

Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats  

E-print Network

Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal October 2010 Keywords: Maternal behavior Social behavior Oxytocin antagonist Hippocampus Caudate nucleus

Sokolowski, Marla

178

Effect of maternal obesity on fetal bone development in the rat  

Technology Transfer Automated Retrieval System (TEKTRAN)

Epidemiological studies show that quality of nutrition during intrauterine and postnatal early life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...

179

Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst  

Technology Transfer Automated Retrieval System (TEKTRAN)

Maternal obesity at conception increases the risk of offspring obesity, thus propagating an intergenerational vicious cycle. Male offspring born to obese dams are hyper-responsive to high fat diets, gaining greater body weight, fat mass and additional metabolic sequelae compared to lean controls. ...

180

Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience?  

PubMed

Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces "detrimental" effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a "substitute" mother. The maternal care of biological and "substitute" mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the "substitute" mother did not exhibit overt maltreatment. A mixture of "detrimental" and "beneficial" effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may "buffer" the effects of ELS in a context-dependent manner. PMID:24616673

Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Garrido, Pedro; Zelena, Dóra; Monasterio, Nela; Armario, Antonio; Nadal, Roser

2014-01-01

181

Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience?  

PubMed Central

Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces “detrimental” effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a “substitute” mother. The maternal care of biological and “substitute” mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the “substitute” mother did not exhibit overt maltreatment. A mixture of “detrimental” and “beneficial” effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may “buffer” the effects of ELS in a context-dependent manner. PMID:24616673

Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Garrido, Pedro; Zelena, Dóra; Monasterio, Nela; Armario, Antonio; Nadal, Roser

2014-01-01

182

Intergenerational and parent of origin effects of maternal calorie restriction on Igf2 expression in the adult rat hippocampus.  

PubMed

Insulin-like growth factor 2 (Igf2) regulates development, memory and adult neurogenesis in the hippocampus. Calorie restriction (CR) is known to modulate non-neuronal Igf2 expression intergenerationally, but its effect has not been evaluated on brain Igf2. Here, Sprague-Dawley (S) dams underwent moderate CR between gestational days 8-21. To identify parent of origin expression pattern of the imprinted Igf2 gene, their offspring (SS F1) were mated with naïve male or female Brown Norway (B) rats to obtain the second generation (BS and SB F2) progeny. CR did not affect adult hippocampal Igf2 transcript levels in SS F1 males or their BS F2 progeny, but increased it in SS F1 females and their SB F2 offspring. The preferentially maternal Igf2 expression in the SB F2 control male hippocampus relaxed to biallelic with CR, with no effect of grandmaternal diet in any other groups. Thus, allele-specific and total expression of hippocampal Igf2 is affected by maternal, grandmaternal CR in a strain and sex-specific manner. PMID:24845189

Harper, Kathryn M; Tunc-Ozcan, Elif; Graf, Evan N; Herzing, Laura B K; Redei, Eva E

2014-07-01

183

Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome.  

PubMed

Early life stress has been implicated as a risk factor for irritable bowel syndrome (IBS). We studied the effect of neonatal maternal separation on the visceromotor response and the expression of c-fos, 5-HT, and its receptors/transporters along the brain-gut axis in an animal model of IBS. Male neonatal Sprague-Dawley rats were randomly assigned to a 3-h daily maternal separation (MS) or nonhandling (NH) on postnatal days 2-21. Colorectal balloon distention (CRD) was performed for assessment of abdominal withdrawal reflex as a surrogate marker of visceral pain. Tissues from dorsal raphe nucleus in midbrain, lumbar-sacral cord, and distal colon were harvested for semiquantitative analysis of c-fos and 5-HT. The expression of 5-HT expression, 5-HT3 receptors, and 5-HT transporter were analyzed by RT-PCR. Pain threshold was significantly lower in MS than NH rats. The abdominal withdrawal reflex score in response to CRD in MS rats was significantly higher with distension pressures of 40, 60, and 80 mmHg. In MS rats, the number of c-fos-like immunoreactive nuclei at dorsal horn of lumbar-sacral spinal cord increased significantly after CRD. 5-HT content in the spinal cord of MS rats was significant higher. In the colon, both 5-HT-positive cell number and 5-HT content were comparable between MS and NH groups before CRD. Post-CRD only MS rats had significant increase in 5-HT content. Protein and mRNA expression levels of 5-HT3 receptors and 5-HT transporter were similar in MS and NH rats. Neonatal maternal separation stress predisposes rats to exaggerated neurochemical responses and visceral hyperalgesia in colon mimicking IBS. PMID:17110521

Ren, Tian-Hua; Wu, Justin; Yew, David; Ziea, Eric; Lao, Lixing; Leung, Wai-Keung; Berman, Brian; Hu, Pin-Jin; Sung, Joseph J Y

2007-03-01

184

Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.  

PubMed

Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent approaches towards the experimental simulation of congenital and early-age-occurring hypothyroidism. PMID:24972880

Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

2015-02-01

185

Oxytocin mediates the acquisition of filial, odor-guided huddling for maternally-associated odor in preweanling rats  

PubMed Central

The present study was designed to examine possible roles of oxytocin (OT) in the acquisition of a filial huddling preference in preweanling rats. We used a procedure in which a scented, foster mother can induce an odor-guided huddling preference in preweanling pups, following a single, 2-h-long co-habitation (Kojima & Alberts, 2009, 2011). This single, discrete period for preference learning enables us to observe the mother-pup interactions that establish the pups’ preferences and to intervene with experimental manipulations. Four, 14-day-old littermates interacted with a scented foster mother that provided maternal care during a 2-h session. Two of the pups were pretreated with an intracerebroventricular injection of OT or an oxytocin antagonist (OTA), and the others received a vehicle injection. Filial preference for a maternally-paired odor was measured in a huddling test the next day. OT is necessary for acquisition of the filial preference: Odor learning was blocked in the pups treated with OTA, but not in their vehicle-treated littermates who experienced the same mother at the same time. Injection with exogenous OT did not augment the pups’ preference. Manipulating pups’ central OT also altered the contact interactions of the mother and pups. When some pups received OT, mother-litter aggregations formed as frequently and with similar combinations of bodies, but contact aggregations were significantly more cohesive than when some pups in the litter received OTA. We discuss dual, behavioral and neuroendocrine roles of OT in social learning by preweanling rats. PMID:21872599

Kojima, Sayuri; Alberts, Jeffrey R.

2011-01-01

186

Hypoactivation of CRF Receptors, Predominantly Type 2, in the Medial-Posterior BNST Is Vital for Adequate Maternal Behavior in Lactating Rats  

PubMed Central

Maternal behavior ensures the proper development of the offspring. In lactating mammals, maternal behavior is impaired by stress, the physiological consequence of central corticotropin-releasing factor receptor (CRF-R) activation. However, which CRF-R subtype in which specific brain area(s) mediates this effect is unknown. Here we confirmed that an intracerebroventricularly injected nonselective CRF-R antagonist enhances, whereas an agonist impairs, maternal care. The agonist also prolonged the stress-induced decrease in nursing, reduced maternal aggression and increased anxiety-related behavior. Focusing on the bed nucleus of the stria terminalis (BNST), CRF-R1 and CRF-R2 mRNA expression did not differ in virgin versus lactating rats. However, CRF-R2 mRNA was more abundant in the posterior than in the medial BNST. Pharmacological manipulations within the medial-posterior BNST showed that both CRF-R1 and CRF-R2 agonists reduced arched back nursing (ABN) rapidly and after a delay, respectively. After stress, both antagonists prevented the stress-induced decrease in nursing, with the CRF-R2 antagonist actually increasing ABN. During the maternal defense test, maternal aggression was abolished by the CRF-R2, but not the CRF-R1, agonist. Anxiety-related behavior was increased by the CRF-R1 agonist and reduced by both antagonists. Both antagonists were also effective in virgin females but not in males, revealing a sexual dimorphism in the regulation of anxiety within the medial-posterior BNST. In conclusion, the detrimental effects of increased CRF-R activation on maternal behavior are mediated via CRF-R2 and, to a lesser extent, via CRF-R1 in the medial-posterior BNST in lactating rats. Moreover, both CRF-R1 and CRF-R2 regulate anxiety in females independently of their reproductive status. PMID:25031406

Klampfl, Stefanie M.; Brunton, Paula J.; Bayerl, Doris S.

2014-01-01

187

Neonatal maternal deprivation sensitizes voltage-gated sodium channel currents in colon-specific dorsal root ganglion neurons in rats.  

PubMed

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by abdominal pain in association with altered bowel movements. The underlying mechanisms of visceral hypersensitivity remain elusive. This study was designed to examine the role for sodium channels in a rat model of chronic visceral hyperalgesia induced by neonatal maternal deprivation (NMD). Abdominal withdrawal reflex (AWR) scores were performed on adult male rats. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch-clamp configurations. The expression of Na(V)1.8 was analyzed by Western blot and quantitative real-time PCR. NMD significantly increased AWR scores, which lasted for ~6 wk in an association with hyperexcitability of colon DRG neurons. TTX-resistant but not TTX-sensitive sodium current density was greatly enhanced in colon DRG neurons in NMD rats. Compared with controls, activation curves showed a leftward shift in NMD rats whereas inactivation curves did not differ significantly. NMD markedly accelerated the activation time of peak current amplitude without any changes in inactivation time. Furthermore, NMD remarkably enhanced expression of Na(V)1.8 at protein levels but not at mRNA levels in colon-related DRGs. The expression of Na(V)1.9 was not altered after NMD. These data suggest that NMD enhances TTX-resistant sodium activity of colon DRG neurons, which is most likely mediated by a leftward shift of activation curve and by enhanced expression of Na(V)1.8 at protein levels, thus identifying a specific molecular mechanism underlying chronic visceral pain and sensitization in patients with IBS. PMID:23139220

Hu, Shufen; Xiao, Ying; Zhu, Liyan; Li, Lin; Hu, Chuang-Ying; Jiang, Xinghong; Xu, Guang-Yin

2013-02-15

188

FETAL AND MATERNAL EFFECTS OF CONTINUAL EXPOSURE OF RATS TO 970-MHZ CIRCULARLY-POLARIZED MICROWAVES  

EPA Science Inventory

Virtually continual exposure to 970-MHz microwaves in circularly-polarized waveguides was used to elicit fetal responses in Sprague-Dawley rats during gestation. wo hundred fifty rats were exposed to microwave radiation at whole-body averaged specific absorption rates (SAR) of 0....

189

SENSITIVITY OF FETAL RAT TESTICULAR STEROIDOGENESIS TO MATERNAL PROCHLORAZ EXPOSURE AND THE UNDERLYING MECHANISM OF INHIBITION  

EPA Science Inventory

Since prochloraz (PCZ) is an imidazole fungicide that inhibits gonadal steroidogenesis and antagonizes the androgen receptor (AR), we hypothesized that pubertal exposure to PCZ would delay male rat reproductive development. Sprague Dawley rats were dosed by gavage with 0, 31.3, ...

190

Paralemniscal TIP39 is induced in rat dams and may participate in maternal functions  

PubMed Central

The paralemniscal area, situated between the pontine reticular formation and the lateral lemniscus in the pontomesencephalic tegmentum contains some tuberoin-fundibular peptide of 39 residues (TIP39)-expressing neurons. In the present study, we measured a 4 times increase in the level of TIP39 mRNA in the paralemniscal area of lactating mothers as opposed to nulliparous females and mothers deprived of pups using real-time RT-PCR. In situ hybridization histochemistry and immunolabeling demonstrated that the induction of TIP39 in mothers takes place within the medial paralemniscal nucleus, a cytoarchitectonically distinct part of the paralemniscal area, and that the increase in TIP39 mRNA levels translates into elevated peptide levels in dams. The paralemniscal area has been implicated in maternal control as well as in pain perception. To establish the function of induced TIP39, we investigated the activation of TIP39 neurons in response to pup exposure as maternal, and formalin injection as noxious stimulus. Both stimuli elicited c-fos expression in the paralemniscal area. Subsequent double labeling demonstrated that 95% of neurons expressing Fos in response to pup exposure also contained TIP39 immunoreactivity and 91% of TIP39 neurons showed c-fos activation by pup exposure. In contrast, formalin-induced Fos does not co-localize with TIP39. Instead, most formalin-activated neurons are situated medial to the TIP39 cell group. Our data indicate that paralemniscal neurons may be involved in the processing of maternal and nociceptive information. However, two different groups of paralemniscal neurons participate in the two functions. In particular, TIP39 neurons may participate in the control of maternal functions. PMID:22081168

Varga, Tamás; Mogyoródi, Bence; Bagó, Attila G.; Cservenák, Melinda; Domokos, Dominika; Renner, Éva; Gallatz, Katalin; Usdin, Ted B.; Palkovits, Miklós

2011-01-01

191

Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment.  

PubMed

Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72?h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1(+) microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1?, IL-6, TNF-?, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU(+)/DCX(+) cells. Minocycline reduced Iba1(+) cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

2015-01-01

192

EFFECTS ON THE FETUS OF MATERNAL BENOMYL EXPOSURE IN THE PROTEIN-DEPRIVED RAT  

EPA Science Inventory

The separate and combined effects of protein deprivation and benomyl ((methyl 1-butylcarbomoyl)2-benzimidazole carbamate) exposure were studied in the pregnant rat fed a diet containing 24% (control) or 8% (deficient) casein throughout gestation. Within each diet group, subgroups...

193

Effects in rats of maternal exposure to raspberry leaf and its constituents on the activity of cytochrome p450 enzymes in the offspring.  

PubMed

The goal of our study was to determine whether maternal exposure to red raspberry leaf (RRL) and its constituents can permanently alter biotransformation of fluorogenic substrates by cytochrome P450 (CYP) in the livers of male and female offspring. Nulliparous female rats received vehicle, raspberry leaf, kaempferol, quercetin, or ellagic acid orally once breeding had been confirmed until parturition. Hepatic microsomes were prepared from animals at birth (postnatal day 1 [PND1]), weaning (PND21), PND65, and PND120 to determine the biotransformation of 8 fluorogenic substrates. The pattern of biotransformation of all but 2 of the substrates was gender specific. Maternal consumption of RRL increased biotransformation of 3 substrates by female offspring at PND120 resulting in a more masculine profile. Kaempferol and quercetin had a similar effect to RRL. These results suggest that maternal consumption of either RRL or some of its constituents leads to long-term alterations of CYP activity in female offspring. PMID:21115944

Makaji, Emilija; Ho, Shirley H Y; Holloway, Alison C; Crankshaw, Denis J

2011-03-01

194

Gestational protein restriction impairs insulin-regulated glucose transport mechanisms in gastrocnemius muscles of adult male offspring.  

PubMed

Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet-exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet-fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor substrate-1, and AS160 phosphorylation and impaired glucose transporter type 4 translocation. PMID:24797633

Blesson, Chellakkan S; Sathishkumar, Kunju; Chinnathambi, Vijayakumar; Yallampalli, Chandrasekhar

2014-08-01

195

IFITM proteins restrict antibody-dependent enhancement of dengue virus infection.  

PubMed

Interferon-inducible transmembrane (IFITM) proteins restrict the entry processes of several pathogenic viruses, including the flaviviruses West Nile virus and dengue virus (DENV). DENV infects cells directly or via antibody-dependent enhancement (ADE) in Fc-receptor-bearing cells, a process thought to contribute to severe disease in a secondary infection. Here we investigated whether ADE-mediated DENV infection bypasses IFITM-mediated restriction or whether IFITM proteins can be protective in a secondary infection. We observed that IFITM proteins restricted ADE-mediated and direct infection with comparable efficiencies in a myelogenous leukemia cell line. Our data suggest that IFITM proteins can contribute to control of secondary DENV infections. PMID:22479637

Chan, Ying Kai; Huang, I-Chueh; Farzan, Michael

2012-01-01

196

Protein restriction in hepatic encephalopathy is appropriate for selected patients: a point of view  

PubMed Central

Since the late nineteenth century, protein restriction has been shown to improve hepatic encephalopathy. However, malnutrition has been described in up to 60 % of cirrhotic patients and is associated with increased mortality. Furthermore, emerging clinical evidence has revealed that a large proportion of cirrhotic patients may tolerate normal protein intake. However, approximately one third of cirrhotic patients with hepatic encephalopathy may need a short course of protein restriction, in addition to maximum medical therapy, to ameliorate the clinical course of their hepatic encephalopathy. For patients with chronic hepatic encephalopathy who are protein-sensitive, modifying their sources of nitrogen by using more vegetable protein, less animal protein, and branched-chain amino acids may improve their encephalopathy without further loss of lean body mass. In conclusion, among cirrhotics with hepatic encephalopathy, modulation of normal protein intake must take into account the patient’s hepatic reserve, severity of hepatic encephalopathy, and current nutritional status. PMID:25525477

Morgan, Timothy

2014-01-01

197

IFITM Proteins Restrict Antibody-Dependent Enhancement of Dengue Virus Infection  

Microsoft Academic Search

Interferon-inducible transmembrane (IFITM) proteins restrict the entry processes of several pathogenic viruses, including the flaviviruses West Nile virus and dengue virus (DENV). DENV infects cells directly or via antibody-dependent enhancement (ADE) in Fc-receptor-bearing cells, a process thought to contribute to severe disease in a secondary infection. Here we investigated whether ADE-mediated DENV infection bypasses IFITM-mediated restriction or whether IFITM proteins

Ying Kai Chan; I-Chueh Huang; Michael Farzan

2012-01-01

198

Perinatal Maternal Food Restriction Induces Alterations in Hypothalamo-Pituitary-Adrenal Axis Activity and in Plasma Corticosterone-Binding Globulin Capacity of Weaning Rat Pups  

Microsoft Academic Search

We investigated the effects of perinatal maternal malnutrition on the hypothalamo-pituitary-adrenal (HPA) axis activity in both basal and stressful conditions in newborn rats at weaning. Mothers from the control group were fed ad libitum. Mothers exposed to food restriction received 50% (FR50) of the daily intake of pregnant dams during the last week of gestation (Pre group), lactation (Post group)

Marion Léonhardt; Jean Lesage; Laurence Dufourny; Anne Dickès-Coopman; Valérie Montel; Jean-Paul Dupouy

2002-01-01

199

Effect of Maternal Lipopolysaccharide Administration on the Development of Dopaminergic Receptors and Transporter in the Rat Offspring  

PubMed Central

Epidemiological evidence supports that maternal infection during gestation are notable risk factors for developmental mental illnesses including schizophrenia and autism. In prenatal lipopolysaccharide (LPS) model of immune activation in rats, the offspring exhibit significant impairments in behaviors mediated by central dopamine (DA) system. This study aimed to examine the temporal and regional pattern of postnatal DA development in the male offspring of pregnant Sprague-Dawley rats administered with 100 µg/kg LPS or saline at gestational days 15/16. Using ligand autoradiography, D1 and D2 dopamine receptors (D1R, D2R) and dopamine transporter (DAT) binding levels were measured in the prefrontal cortex (PFC) and sub cortical regions (dorsal striatum and nucleus accumbens core and shell) at pre pubertal (P35) and post pubertal ages (P60). We found a significant decrease in D2R ligand [3H] YM-90151-2 binding in the medial PFC (mPFC) in prenatal LPS-treated animals at P35 and P60 compared to respective saline groups. The decrease in D2R levels was not observed in the striatum or accumbens of maternal LPS-treated animals. No significant changes were observed in [3H] SCH23390 binding to D1R. However, the level of [125I] RTI-121 binding to DAT was selectively reduced in the nucleus accumbens core and shell at P35 in the prenatal LPS group. Immunohistochemical analysis showed that number of D2R immunopositive cells in infralimbic/prelimbic (IL/PL) part of mPFC was significantly reduced in the LPS group at P60. Prenatal LPS treatment did not significantly affect either the total number of mature neurons or parvalbumin (PV)-immunopositive interneurons in this region. However the number of PV and D2R co-labeled neurons was significantly reduced in the IL/PL subregion of PFC of LPS treated animals. Our data suggests D2R deficit in the PFC and PV interneurons may be relevant to understanding mechanisms of cortical dysfunctions described in prenatal infection animal models as well as schizophrenia. PMID:23349891

Baharnoori, Moogeh; Bhardwaj, Sanjeev K.; Srivastava, Lalit K.

2013-01-01

200

Maternal mobile phone exposure adversely affects the electrophysiological properties of Purkinje neurons in rat offspring.  

PubMed

Electromagnetic field (EMF) radiations emitted from mobile phones may cause structural damage to neurons. With the increased usage of mobile phones worldwide, concerns about their possible effects on the nervous system are rising. In the present study, we aimed to elucidate the possible effects of prenatal EMF exposure on the cerebellum of offspring Wistar rats. Rats in the EMF group were exposed to 900-MHz pulse-EMF irradiation for 6h per day during all gestation period. Ten offspring per each group were evaluated for behavioral and electrophysiological evaluations. Cerebellum-related behavioral dysfunctions were analyzed using motor learning and cerebellum-dependent functional tasks (Accelerated Rotarod, Hanging and Open field tests). Whole-cell patch clamp recordings were used for electrophysiological evaluations. The results of the present study failed to show any behavioral abnormalities in rats exposed to chronic EMF radiation. However, whole-cell patch clamp recordings revealed decreased neuronal excitability of Purkinje cells in rats exposed to EMF. The most prominent changes included afterhyperpolarization amplitude, spike frequency, half width and first spike latency. In conclusion, the results of the present study show that prenatal EMF exposure results in altered electrophysiological properties of Purkinje neurons. However, these changes may not be severe enough to alter the cerebellum-dependent functional tasks. PMID:23906636

Haghani, M; Shabani, M; Moazzami, K

2013-10-10

201

Assessment of the perinatal effects of maternal ingestion of Ipomoea carnea in rats  

Technology Transfer Automated Retrieval System (TEKTRAN)

It is believed that I. carnea toxicosis induces abnormal embryogenesis in livestock. Studies with rats treated with I. carnea aqueous fraction (AF) during gestation, revealed litters with decreased body weight, but the characteristic vacuolar lesions promoted by swainsonine, its main toxic principle...

202

Repeated neonatal pain influences maternal behavior, but not stress responsiveness in rat offspring  

Microsoft Academic Search

Early preterm neonates in the Neonatal Intensive Care Unit (NICU) are subjected to repeated painful procedures which could sensitize their responses to pain and potentiate neuroendocrine and behavioral responses to subsequent stressors in the long-term. In this study, we used the model of the neonatal rat to test the effects of repeated pain during the first 2 weeks of life

Claire-Dominique Walker; Kristin Kudreikis; Adam Sherrard; Celeste C Johnston

2003-01-01

203

OFFSPRING MORTALITY AND MATERNAL LUNG PATHOLOGY IN FEMALE RATS FED HEXACHLOROBENZENE  

EPA Science Inventory

Female Sprague-Dawley CD rats were fed 0, 60, 80, 100, 120 and 140 ppm hexachlorobenzene (HCB) continuously in the diet and 2 successive litters raised. These doses were selected to range from approximately the no observable effect level to lethality in suckling offspring of trea...

204

EFFECTS ON THE FETUS OF MATERNAL NITROFEN EXPOSURE IN THE PROTEIN-DEPRIVED RAT  

EPA Science Inventory

The separate and combined effects of protein deprivation and nitrofen exposure were studied in the pregnant rat. Animals were fed diets containing 24, 8, 6 or 4% casein throughout gestation. Within each diet group, sub-groups were gavage-fed with 12.5 (lower dose) and 25 (higher ...

205

Early Oral Ovalbumin Exposure during Maternal Milk Feeding Prevents Spontaneous Allergic Sensitization in Allergy-Prone Rat Pups  

PubMed Central

There are conflicting data to support the practice of delaying the introduction of allergenic foods into the infant diet to prevent allergy development. This study investigated immune response development after early oral egg antigen (Ovalbumin; OVA) exposure in a rat pup model. Brown Norway (BN) rat pups were randomly allocated into groups: dam reared (DR), DR pups challenged daily (days 4–13) with oral OVA (DR + OVAc), DR pups challenged intermittently (on day 4, 10, 12, and 13) with oral OVA (DR + OVAi), formula-fed pups (FF), and FF pups challenged daily with oral OVA (FF + OVA). Immune parameters assessed included OVA-specific serum IgE, IgG1, and IgA. Ileal and splenic messenger ribonucleic acid (mRNA) expression of transforming growth factor-beta (TGF-?1), mothers against decapentaplegic (Smad) 2/4/7, and forkhead box P3 (Foxp3) were determined. Ileum was stained for TGF-?1 and Smad4. Results. Feeding OVA daily to DR pups maintained systemic and local gut antibody and immunoregulatory marker mRNA responses. Systemic TGF-?1 was lower in DR + OVAi pups compared to DR and DR + OVAc pups. Feeding OVA to FF pups resulted in significantly greater OVA-specific IgE and IgG1, and lower IgA and TGF-?1 and Smad expression compared to DR pups. Conclusions. Early daily OVA exposure in the presence of maternal milk maintains immune markers associated with a regulated immune response, preventing early allergic sensitization. PMID:22203855

El-Merhibi, Adaweyah; Lymn, Kerry; Kanter, Irene; Penttila, Irmeli A.

2012-01-01

206

Dietary ethinyl estradiol exposure during development causes increased voluntary sodium intake and mild maternal and offspring toxicity in rats.  

PubMed

Exogenous estrogen exposure during development often results in behavioral masculinization and/or defeminization of genetic females. Genetic males may be defeminized, hypermasculinized or even demasculinized after similar treatment. Here, pregnant Sprague-Dawley rats consumed phytoestrogen-free diets containing 0, 1, 5 or 200 ppb EE(2) beginning on gestational day (GD) 7. Offspring were weaned to the same maternal diet and maintained gonadally intact. There were mild effects on body weight and food consumption in dams of the 200 ppb group and their offspring weighed less at birth than those of the control group; however, gross assessments of nursing behavior were normal in all dietary groups. Postweaning, offspring of the 200 ppb group weighed less and consumed less food than controls. There were no EE(2)-related effects on open-field activity (tested at postnatal days (PND) 22-24, 43-45 and 64-66), play behavior (tested at PND 35), running wheel activity (PND 63-77) or intake of a 0.3% saccharin-flavored solution (PND 69-71). Intake of a 3.0% sodium chloride-flavored solution on PND 73-75 was increased in both male and female offspring of the 200 ppb group relative to same-sex controls, an effect that is reportedly estrogen mediated. Sodium chloride-flavored solution intake is a sexually dimorphic behavior for which female rats consume more than males. Here, while EE(2) exposure had few effects on the conventional tests of sexually dimorphic behaviors, exposure to 200 ppb in the diet appeared to feminize genetic males and hyperfeminize genetic females with regard to sodium intake. PMID:12798966

Ferguson, Sherry A; Delclos, K Barry; Newbold, Retha R; Flynn, Katherine M

2003-01-01

207

Trace Element Studies in Weanling Rats: Maternal Diets and Baseline Tissue Mineral Values  

Microsoft Academic Search

The initial nutritional status of experimental animals can influence their response to subsequent dietary regimens. In the present study, we determined the variations in minerals in diet NIH-31, a breeding colony stock diet, and in tissues of weanling rats nursed by dams fed this diet. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine nine elements (Ca, Cu, Fe,

JEANNE I. RADER; KAREN A. WOLNIK; CYNTHIA M. GASTON; EVELYN M. CELESK; JAMES T. PEELER

208

The influence of handling and isolation postweaning on open field, exploratory and maternal behavior of female rats.  

PubMed

Fifty-three black-hooded female rats, raised from the 28th to the 128th day of life under four types of environmental conditions differing in social and handling factors, had their behavioral performance evaluated in eight tests involving exploration of a complex environment (EX) in two open field (OF) tests and in three pup-retrieving tests. These tests were held before, during and after the period of lactation of their first brood. Females differed from (previously studied) males in that environmental raising conditions had a much smaller influence, especially during the lactation period. Nevertheless, females raised in isolation tended to remain for longer times inside a protected den in the exploration tests and to have greater locomotion in the open field. Previous handling allowed a greater exploration during the first contact with the novel complex environment as well as greater activity in the open field. The presence of small pups drastically reduced the exploratory motivation, but the presence of pups more than 20 days old tended to increase it. Maternal behavior evaluated in the pup retrieval test and in the test of time for the female to leave the nest side of the double box system was markedly refractory to previous environmental influences. PMID:12020733

Genaro, Gelson; Schmidek, Werner Robert

2002-04-15

209

Dose-Dependent Effects of Multiple Acute Cocaine Injections on Maternal Behavior and Aggression in Sprague-Dawley Rats  

PubMed Central

Rat dams, which had no prior drug treatment, were either nontreated controls or were injected subcutaneously 4 times during a 10-day period with a single dose of 30, 15 or 7.5 mg/kg of cocaine hydrochloride HCl, or normal saline. Injections were given immediately postpartum following delivery of their final pup (PPD 1), and again on postpartum day 3 (PPD 3), postpartum day 6 (PPD 6) and postpartum day 10 (PPD 10). Dams were observed 30 min following injections for maternal behavior (MB) towards 8 surrogate male pups on PPD 1 and PPD 3 and for aggression towards a male or female intruder in the presence of their litter on PPD 6 and PPD 10. Compared to saline and untreated controls, cocaine-treated dams exhibited more disruptions in MB on both PPD 1 and PPD 3 and were less aggressive towards an intruder, regardless of intruder sex, on PPD 6 and PPD 10. In most cases MB was altered in a dose-dependent manner with the higher doses of cocaine resulting in a greater disruption of behavior. PMID:9858841

Johns, Josephine M.; Nelson, Christina J.; Meter, Kathleen E.; Lubin, Deborah A.; Couch, C. Destine; Ayers, Andy; Walker, Cheryl H.

2011-01-01

210

Early postnatal maternal separation causes alterations in the expression of ?3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity  

SciTech Connect

Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of ?3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved by separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), ?3-adrenergic receptor (?3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through ?3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the ?3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.

Miki, Takanori, E-mail: mikit@med.kagawa-u.ac.jp [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan)] [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan); Liu, Jun-Qian; Ohta, Ken-ichi; Suzuki, Shingo [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan)] [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan); Kusaka, Takashi [Department of Pediatrics, Faculty of Medicine, Kagawa University (Japan)] [Department of Pediatrics, Faculty of Medicine, Kagawa University (Japan); Warita, Katsuhiko [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan)] [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan); Yokoyama, Toshifumi [Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University (Japan)] [Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University (Japan); Jamal, Mostofa [Department of Forensic Medicine, Faculty of Medicine, Kagawa University (Japan)] [Department of Forensic Medicine, Faculty of Medicine, Kagawa University (Japan); Ueki, Masaaki [Department of Anesthesia, Nishiwaki Municipal Hospital (Japan)] [Department of Anesthesia, Nishiwaki Municipal Hospital (Japan); Yakura, Tomiko; Tamai, Motoki [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan)] [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan); Sumitani, Kazunori [Department of Medical Education, Faculty of Medicine, Kagawa University (Japan)] [Department of Medical Education, Faculty of Medicine, Kagawa University (Japan); Hosomi, Naohisa [Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences (Japan)] [Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences (Japan); Takeuchi, Yoshiki [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan)] [Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University (Japan)

2013-12-06

211

Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring.  

PubMed

Early nicotine exposure causes future obesity and insulin resistance. We evaluated the long-term effect of the maternal nicotine exposure during lactation in liver oxidative status, insulin sensitivity and morphology in adult offspring. Two days after birth, osmotic minipumps were implanted in the dams: nicotine (N), 6?mg/kg/day for 14 days or saline (C). Offspring were killed at 180 days. Protein content of superoxide dismutase, glutathione peroxidase, catalase, nitrotyrosine, 4HNE, IRS1, Akt1 and PPARs were measured. MDA, bound protein carbonyl content, SOD, GPx and catalase activities were determined in liver and plasma. Hepatic morphology and triglycerides content were evaluated. Albumin and bilirubin were determined. In plasma, N offspring had higher catalase activity, and SOD/GPx ratio, albumin and bilirubin levels but lower MDA content. In liver, they presented higher MDA and 4HNE levels, bound protein carbonyl content, SOD activity but lower GPx activity. N offspring presented an increase of lipid droplet, higher triglyceride content and a trend to lower PPAR? in liver despite unchanged insulin signaling pathway. Early nicotine exposure causes oxidative stress in liver at adulthood, while protect against oxidative stress at plasma level. In addition, N offspring develop liver microsteatosis, which is related to oxidative stress but not to insulin resistance. PMID:25662863

Conceição, E P; Peixoto-Silva, N; Pinheiro, C R; Oliveira, E; Moura, E G; Lisboa, P C

2015-04-01

212

Effect of docosahexaenoic acid content of maternal diet on auditory brainstem conduction times in rat pups.  

PubMed

Previous studies of dietary docosahexaenoic acid (DHA; 22:6n-3) effects on neurodevelopment have focused mainly on effects on the visual system; these studies may be confounded by effects on the retina rather than on neural pathways. Auditory brainstem conduction times (ABCTs) provide an alternate measure of central neural development. We conducted a dose-response study in which ABCTs were measured in pups whose dams were fed diets containing one of three levels of DHA (2, 4 or 6% of total fatty acids) from a single cell oil. Diets were fed during pregnancy and lactation, and pups were randomly cross-fostered on postnatal day 3 to minimize litter effects. ABCTs showed a dose-response effect, with higher levels of dietary DHA being associated with longer conduction times on postnatal day 31 (p < 0.05). Higher dietary DHA was reflected in pup cerebrums collected on postnatal days 3 and 31, and levels of arachidonic acid (AA, 20:4n-6) were inversely related to levels of DHA. This study demonstrated that the auditory brainstem response is sensitive for identifying effects of diet on neurodevelopment, and that supplementing the maternal diet with high levels of DHA may negatively impact development of the central auditory system of offspring. PMID:11111168

Stockard, J E; Saste, M D; Benford, V J; Barness, L; Auestad, N; Carver, J D

2000-01-01

213

Folic acid intestinal absorption in newborn rats at 21 day postpartum: effects of maternal ethanol consumption.  

PubMed

This study was designed to examine the effects of prenatal and postnatal exposure of ethanol in the in vivo absorption of free folic acid in the small intestine in pups rats at the 21st day after birth. The rats were accustomed to increasing amounts of ethanol (5 to 20%, vol/vol) in tap water for 1 month. During pregnancy and suckling period, ethanol-fed dams were assigned again to ethanol 20% in drinking water. Two sets of experiments were performed. In the first set, jejunal free folic acid absorption in control group and litters nursed by dams receiving ethanol showed a gradual increase along with the increase of perfusion time at all the assayed concentrations. In general, in litters of ethanol-fed dams, jejunal free folic acid absorption expressed as nmol/intestinal surface, nmol/g tissue wet weight and nmol/g tissue dry weight were higher than in control animals. In the second set of experiments, in distal ileum loops, free folic acid absorption did not occur in control pups, but appeared in litters exposed to ethanol. Milk folic acid levels are significantly decreased in ethanol-treated dams. However, only a slight decrease in the serum folic acid levels occurs in litters of ethanol-fed dams. In conclusion, the results obtained in the present work suggested a different pattern of free folic acid absorption in distal ileum for the two groups. The exposure of rats to ethanol during the pregnancy and suckling period, can affect postnatal development of intestinal functions and could play a role in the genesis of malnutrition observed in the infant. PMID:10374925

Tavares, E; Gomez-Tubio, A; Murillo, M L; Carreras, O

1999-01-01

214

Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease  

PubMed Central

Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 ?M, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

2014-01-01

215

Role of metallothionein induction and altered zinc status in maternally mediated developmental toxicity: Comparison of the effects of urethane and styrene in rats  

SciTech Connect

The authors hypothesize that maternal metallothionein (MT) induction by toxic dosages of chemicals may contribute to or cause developmental toxicity by a chain of events leading to a transient but developmentally adverse decrease in Zn availability to the embryo. The hypothesis was tested by evaluating hepatic MT induction, maternal and embryonic Zn status, and developmental toxicity after exposure to urethane, a developmental toxicant, or styrene, which is not a developmental toxicant. Pregnant Sprague-Dawley rats were given 0 or 1 g/kg urethane ip, or 0 or 300 mg/kg styrene in corn oil po, on Gestation Day 11 (sperm positive = Gestation Day 0). These were maternally toxic dosages. As both treatments decreased food consumption, separate pair-fed control groups were also evaluated for effects on MT and Zn status and development. In addition, Gestation Day 11 rat embryos were exposed to urethane in vitro in order to determine whether urethane has the potential to be directly embryotoxic. Urethane treatment induced hepatic MT 14-fold over control; styrene treatment induced MT 2.5-fold. The MT induction by styrene could be attributed to decreased food intake, as a similar level of induction was observed in a pair-fed untreated control group. However, the level of MT induction by urethane was much greater than that produced by decreased food intake alone. (Copyright (c) 1991 Academic Press, Inc.)

Daston, G.P.; Overmann, G.J.; Taubeneck, M.W.; Lehman-McKeeman, L.D.; Rogers, J.M.

1991-01-01

216

Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11?), 11?-HSD, and 17?-HSD in rat offspring.  

PubMed

Hippocampal functions such as neuronal protection and synapse formation are positively modulated by neurosteroids, which are synthesized de novo within the brain. However, the mechanisms regulating neurosteroidogenesis remain unclear. Fructose, which is used as a sweetener, affects steroid hormone synthesis in peripheral endocrine organs. This monosaccharide can penetrate the blood-brain barrier and impair hippocampal function. Also, fructose is secreted into milk and is thus delivered to the fetus. Based on these observations, we hypothesized that the hippocampal neurosteroidogenesis in the offspring may be affected by maternal fructose consumption. Female rats were fed with normal water or 20% fructose solution during gestation and lactation. Maternal calorie intake did not change significantly, and no significant change in body weight was observed. The levels of messenger RNAs (mRNAs) for steroidogenic enzymes and proteins in the hippocampus of the offspring were analyzed by real-time reverse transcriptase polymerase chain reaction. Maternal fructose consumption during gestation and lactation increased mRNA levels of P450(11?)-2, 11?-HSD-2, and 17?-HSD-1 in the offspring hippocampus, and reduced levels of mRNAs for StAR, PBR, and 17?-HSD-3. Maternal fructose consumption might influence hippocampal neurosteroidogenesis in offspring. PMID:25554348

Ohashi, Koji; Ando, Yoshitaka; Munetsuna, Eiji; Yamada, Hiroya; Yamazaki, Mirai; Nagura, Ayuri; Taromaru, Nao; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryouji

2015-03-01

217

Maternal ethanol ingestion: effect on maternal and neonatal glucose balance  

SciTech Connect

Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24 h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.

Witek-Janusek, L.

1986-08-01

218

Maternal dietary docosahexanoic acid content affects the rat pup auditory system.  

PubMed

Previous studies of the effects of dietary docosahexanoic acid (DHA), 22:6n3, on neurodevelopment have focused mainly on visual-evoked potentials and indices of visual activity, measures that may be confounded by effects on the retina rather than on neural pathways. We investigated the effect of pre- and postnatal maternal dietary DHA content on auditory brainstem conduction times (ABCTs), the appearance of the auditory startle reflex (ASR), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity in brainstem homogenates. Timed pregnant dams were fed, beginning on day 2 of gestation and throughout lactation, a purified diet containing one of three levels of DHA (0, 1, or 3% of total fatty acids, or 0, 0.4 or 1.2% of total energy). On postnatal day (PND) 3, pups were randomly crossfostered within diet groups to minimize litter effects and culled to 10 per litter. Cerebrums and milk from culled pups stomachs were collected for lipid analysis. The timing of appearance of the ASR was determined between PND 10 through 14 and ABCTs were measured in pups on PND 24 and 31. Pups were sacrificed on PND 31 and cerebrums were removed. In each of two replicated studies, pups in the 1% DHA group weighed significantly less on PND 3 and they gained significantly less weight from PND 3 to 31 compared with pups in the 0 or 3% groups (p<0.01). The auditory studies were not conducted on the 1% DHA group since measures of auditory function are in part a function of somatic growth. The tissue fatty acid data for the 1% DHA group did not show unexpected findings. Higher dietary DHA was reflected in milk and pup cerebrums, and levels of arachidonic acid were inversely related to levels of DHA. In the pups of dams fed diets containing 3% versus 0% DHA, the ASR appeared significantly later (p<0.001) and the ABCTs were longer (p<0.05) on PND 31. CNPase activity levels were not different between the 0 and 3% DHA groups. This study demonstrated that the auditory brainstem response is sensitive for identifying effects of diet on neurodevelopment, and that diets supplemented with high levels of DHA may exert a negative influence on central nervous system development, potentially through effects on myelin. This study suggests the need for further studies of pre- and postnatal long chain polyunsaturated fatty acid dietary supplementation. PMID:12121805

Haubner, Laura Y; Stockard, Janet E; Saste, Monisha D; Benford, Valerie J; Phelps, Christopher P; Chen, Li T; Barness, Lewis; Wiener, Doris; Carver, Jane D

2002-05-01

219

Maternal manganese restriction increases susceptibility to high-fat diet-induced dyslipidemia and altered adipose function in WNIN male rat offspring.  

PubMed

Growth in utero is largely a reflection of nutrient and oxygen supply to the foetus. We studied the effects of Mn restriction per se, maternal Mn restriction, and postnatal high-fat feeding in modulating body composition, lipid metabolism and adipocyte function in Wistar/NIN (WNIN) rat offspring. Female weanling, WNIN rats received ad libitum for 4 months, a control or Mn-restricted diet and were mated with control males. Some restricted mothers were rehabilitated with control diet from conception (MnRC) or parturition (MnRP), and their offspring were raised on control diet. Some restricted offspring were weaned onto control diet (MnRW), while others continued on restricted diet throughout (MnR). A set of offspring from each group was fed high-fat diet from 9 months onwards. Body composition, adipocytes function, and lipid metabolism were monitored in male rat offspring at regular intervals. Maternal manganese restriction increased the susceptibility of the offspring to high-fat-induced adiposity, dyslipidaemia, and a proinflammatory state but did not affect their glycemic or insulin status. PMID:22007189

Ganeshan, Manisha; Sainath, Pothaganti B; Padmavathi, Inagadapa J Naga; Venu, Lagishetty; Kishore, Yedla Durga; Kumar, Kalle Anand; Harishanker, Nemani; Rao, J Srinivasa; Raghunath, Manchala

2011-01-01

220

Maternal Manganese Restriction Increases Susceptibility to High-Fat Diet-Induced Dyslipidemia and Altered Adipose Function in WNIN Male Rat Offspring  

PubMed Central

Growth in utero is largely a reflection of nutrient and oxygen supply to the foetus. We studied the effects of Mn restriction per se, maternal Mn restriction, and postnatal high-fat feeding in modulating body composition, lipid metabolism and adipocyte function in Wistar/NIN (WNIN) rat offspring. Female weanling, WNIN rats received ad libitum for 4 months, a control or Mn-restricted diet and were mated with control males. Some restricted mothers were rehabilitated with control diet from conception (MnRC) or parturition (MnRP), and their offspring were raised on control diet. Some restricted offspring were weaned onto control diet (MnRW), while others continued on restricted diet throughout (MnR). A set of offspring from each group was fed high-fat diet from 9 months onwards. Body composition, adipocytes function, and lipid metabolism were monitored in male rat offspring at regular intervals. Maternal manganese restriction increased the susceptibility of the offspring to high-fat-induced adiposity, dyslipidaemia, and a proinflammatory state but did not affect their glycemic or insulin status. PMID:22007189

Ganeshan, Manisha; Sainath, Pothaganti B.; Padmavathi, Inagadapa J. Naga; Venu, Lagishetty; Kishore, Yedla Durga; Kumar, Kalle Anand; Harishanker, Nemani; Rao, J. Srinivasa; Raghunath, Manchala

2011-01-01

221

Maternal Exposure to Low Levels of Corticosterone during Lactation Protects against Experimental Inflammatory Colitis-Induced Damage in Adult Rat Offspring  

PubMed Central

Opposing emotional events (negative/trauma or positive/maternal care) during the postnatal period may differentially influence vulnerability to the effects of stress later in life. The development and course of intestinal disorders such as inflammatory bowel disease are negatively affected by persistent stress, but to date the role of positive life events on these pathologies has been entirely unknown. In the present study, the effect of early life beneficial experiences in the development of intestinal dysfunctions, where inflammation and stress stimuli play a primary role, was investigated. As a “positive” experimental model we used adult male rat progeny nursed by mothers whose drinking water was supplemented with moderate doses of corticosterone (CORT) (0.2 mg/ml) during the lactation period. Such animals have been generally shown to cope better with different environmental situations during life. The susceptibility to inflammatory experimental colitis induced by intracolonic infusion of TNBS (2,4,6-trinitrobenzenesulphonic acid) was investigated in CORT-nursed rats in comparison with control rats. This mild increase in maternal corticosterone during lactation induced, in CORT-nursed rats, a long lasting protective effect on TNBS-colitis, characterized by improvements in some indices of the disease (increased colonic myeloperoxidase activity, loss of body weight and food intake) and by the involvement of endogenous peripheral pathways known to participate in intestinal disorder development (lower plasma corticosterone levels and colonic mast cell degranulation, alterations in the colonic expression of both corticotrophin releasing factor/CRF and its receptor/CRH-1R). All these findings contribute to suggesting that the reduced vulnerability to TNBS-colitis in CORT-nursed rats is due to recovery from the colonic mucosal barrier dysfunction. Such long lasting changes induced by mild hormonal manipulation during lactation, making the adult also better adapted to colonic inflammatory stress, constitute a useful experimental model to investigate the etiopathogenetic mechanisms and therapeutic treatments of some gastrointestinal diseases. PMID:25405993

Petrella, Carla; Giuli, Chiara; Agostini, Simona; Bacquie, Valérie; Zinni, Manuela; Theodorou, Vassilia; Broccardo, Maria; Casolini, Paola; Improta, Giovanna

2014-01-01

222

Exposure to AT1 Receptor Autoantibodies during Pregnancy Increases Susceptibility of the Maternal Heart to Postpartum Ischemia-Reperfusion Injury in Rats  

PubMed Central

Epidemiological studies have demonstrated that women with a history of preeclampsia have a two-fold increased risk of developing cardiovascular diseases in later life. It is not known whether or not this risk is associated with angiotensin II receptor type 1 autoantibody (AT1-AA), an agonist acting via activation of AT1 receptor (AT1R), which is believed to be involved in the pathogenesis of preeclampsia. The objective of the present study was to confirm the hypothesis that AT1-AA exposure during pregnancy may change the maternal cardiac structure and increase the susceptibility of the postpartum heart to ischemia/reperfusion injury (IRI). In the present study, we first established a preeclampsia rat model by intravenous injection of AT1-AA extracted from the plasma of rats immunized with AT1R, observed the susceptibility of the postpartum maternal heart to IRI at 16 weeks postpartum using the Langendorff preparation, and examined the cardiac structure using light and transmission electron microscopy. The modeled animals presented with symptoms very similar to the clinical symptoms of human preeclampsia during pregnancy, including hypertension and proteinuria. The left ventricular weight (LVW) and left ventricular mass index (LVMI) in AT1-AA treatment group were significantly increased as compared with those of the control group (p < 0.01), although there was no significant difference in final weight between the two groups. AT1-AA acting on AT1R not only induced myocardial cell hypertrophy, mitochondrial swelling, cristae disorganization and collagen accumulation in the interstitium but affected the left ventricular (LV) function and delayed recovery from IRI. In contrast, co-treatment with AT1-AA + losartan completely blocked AT1-AA-induced changes in cardiac structure and function. These data indicate that the presence of AT1-AA during pregnancy was strongly associated with the markers of LV geometry changes and remodeling, and increased the cardiac susceptibility to IRI in later life of postpartum maternal rats. PMID:24979132

Wang, Hui-Ping; Zhang, Wen-Hui; Wang, Xiao-Fang; Zhu, Jin; Zheng, Yan-Qian; Xia, Qin; Zhi, Jian-Ming

2014-01-01

223

Effects of maternal separation on neuropeptide Y and calcitonin gene-related peptide in "depressed" Flinders Sensitive Line rats: a study of gene-environment interactions.  

PubMed

Interactions between genetic vulnerability to stress/depression and early life experience may play a crucial role in the pathogenesis of mood disorders. Here we explore this hypothesis by superimposing early life trauma in the form of maternal deprivation for 180 min per day from postnatal day 2 to 14 onto a genetic model of depression/susceptibility to depression, Flinders Sensitive Line (FSL) and their controls, Flinders Resistant Line (FRL) rats. We investigate effects on neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) like immunoreactivity (LI) in 10 brain regions as these neuropeptides are affected by antidepressants and are altered in cerebrospinal fluid of depressed patients. NPY-LI was reduced while CGRP-LI was elevated in hippocampus and frontal cortex of "genetically depressed" FSL rats. The two peptides displayed a significant negative correlation in these regions that was strongest in the FSL strain. Maternal deprivation exacerbated the strain difference in hippocampal CGRP-LI, while it was without effect on NPY-LI. FSL rats had higher tissue concentration of both neuropeptides in periaqueductal grey and higher NPY-LI in caudate/putamen. Maternal deprivation selectively raised CGRP-LI in amygdala of the FRL control stain. Thus, in two brain regions implicated in the neurobiology of depression, hippocampus and frontal cortex, changes in CGRP-LI and NPY-LI were in opposite direction, and CGRP-LI appears to be more responsive to adverse experience. Our findings thus support the hypothesis that genetic disposition and developmental stress may contribute to the susceptibility to depression by exerting selective neuropeptide- and brain region-specific effects on adult neurobiology. PMID:16600456

Wörtwein, Gitta; Husum, Henriette; Andersson, Weronica; Bolwig, Tom G; Mathé, Aleksander A

2006-06-01

224

Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring.  

PubMed

Maternal vitamin deficiencies are associated with low birth weight and increased perinatal morbidity and mortality. We hypothesize that maternal folate and/or vitamin B(12) restrictions alter body composition and fat metabolism in the offspring. Female weaning Wistar rats received ad libitum for 12 weeks a control diet (American Institute of Nutrition-76A) or the same with restriction of folate, vitamin B(12) or both (dual deficient) and, after confirming vitamin deficiency, were mated with control males. The pregnant/lactating mothers and their offspring received their respective diets throughout. Biochemical and body composition parameters were determined in mothers before mating and in offspring at 3, 6, 9 and 12 months of age. Vitamin restriction increased body weight and fat and altered lipid profile in female Wistar rats, albeit differences were significant with only B(12) restriction. Offspring born to vitamin-B(12)-restricted dams had lower birth weight, while offspring of all vitamin-restricted dams weighed higher at/from weaning. They had higher body fat (specially visceral fat) from 3 months and were dyslipidemic at 12 months, when they had high circulating and adipose tissue levels of tumor necrosis factor ?, leptin and interleukin 6 and low levels of adiponectin and interleukin 1?. Vitamin-restricted offspring had higher activities of hepatic fatty acid synthase and acetyl-CoA-carboxylase and higher plasma cortisol levels. In conclusion, maternal and peri-/postnatal folate and/or vitamin B(12) restriction increased visceral adiposity (due to increased corticosteroid stress), altered lipid metabolism in rat offspring perhaps by modulating adipocyte function and may thus predispose them to high morbidity later. PMID:22703962

Kumar, Kalle Anand; Lalitha, Anumula; Pavithra, Dhandapani; Padmavathi, Inagadapa J N; Ganeshan, Manisha; Rao, Kalashikam Rajender; Venu, Lagishetty; Balakrishna, Nagala; Shanker, Nemani Hari; Reddy, Singi Umakar; Chandak, Giriraj Ratan; Sengupta, Shantanu; Raghunath, Manchala

2013-01-01

225

Low-Protein Diet during Lactation and Maternal Metabolism in Rats  

PubMed Central

Some metabolic alterations were evaluated in Wistar rats which received control or low-protein (17%; 6%) diets, from the pregnancy until the end of lactation: control non-lactating (CNL), lactating (CL), low-protein non-lactating (LPNL) and lactating (LPL) groups. Despite the increased food intake by LPL dams, both LP groups reduced protein intake and final body mass was lower in LPL. Higher serum glucose occurred in both LP groups. Lactation induced lower insulin and glucagon levels, but these were reduced by LP diet. Prolactin levels rose in lactating, but were impaired in LPL, followed by losses of mammary gland (MAG) mass and, a fall in serum leptin in lactating dams. Lipid content also reduced in MAG and gonadal white adipose tissue of lactating and, in LPL, contributed to a decreased daily milk production, and consequent impairment of body mass gain by LPL pups. Liver mass, lipid content and ATP-citrate enzyme activity were increased by lactation, but malic enzyme and lipid: glycogen ratio elevated only in LPL. Conclusion. LP diet reduced the development of MAG and prolactin secretion which compromised milk production and pups growth. Moreover, this diet enhanced the store of lipid to glycogen ratio and suggests a higher risk of fatty liver development. PMID:21637364

Moretto, Vera L.; Ballen, Marcia O.; Gonçalves, Talita S. S.; Kawashita, Nair H.; Stoppiglia, Luiz F.; Veloso, Roberto V.; Latorraca, Márcia Q.; Martins, Maria Salete F.; Gomes-da-Silva, Maria Helena G.

2011-01-01

226

Role of maternal tissue in the synthesis of polyunsaturated fatty acids in response to a lipid-deficient diet during pregnancy and lactation in rats.  

PubMed

During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P<0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P<0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue. PMID:25046614

González, Raúl Sánchez; Rodriguez-Cruz, Maricela; Maldonado, Jorge; Saavedra, Filiberto Jasso

2014-10-01

227

Maternal low protein diet causes body weight loss in male, neonate Sprague-Dawley rats involving UCP-1 mediated thermogenesis  

Technology Transfer Automated Retrieval System (TEKTRAN)

Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

228

In utero glucocorticoid (GLC) exposure and maternal undernutrition reduce fetal skeletal muscle mass by different mechanisms in rats  

Technology Transfer Automated Retrieval System (TEKTRAN)

Both maternal undernutrition and exposure of the fetus to above normal levels of GLC impair skeletal muscle growth. The degree to which the effects of maternal undernutrition on fetal skeletal muscle growth are a direct result of nutrient deficit or secondary to the presence of above normal GLC leve...

229

Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat.  

PubMed

1. Associations of intrauterine exposure to maternal undernutrition with later hypertension and coronary heart disease in the human population have been duplicated in the rat. Fetal exposure to low protein diets produces offspring that develop raised systolic blood pressure by the age of weaning. This animal model of 'programmed' hypertension was used to investigate the role of the renin-angiotensin system in the initiation and maintenance of high blood pressure. 2. Pregnant rats were fed diets containing 18 or 9% casein from conception until littering. The offspring from these pregnancies were administered captopril either between 2 and 4 weeks of age, or from 10 to 12 weeks of age. 3. The feeding of low protein diets in pregnancy had no effect upon the reproductive ability of female rats and the offspring generated were of normal birthweight. By 4 weeks of age the male and female offspring of low-protein-fed dams had systolic blood pressures that were 24-25 mmHg higher than those of rats exposed to a control diet in utero. 4. Treatment of 10-week-old female offspring with captopril for 2 weeks indicated that angiotensin II formation may play a role in the maintenance of high blood pressure in low-protein-exposed rats. While captopril had no significant effect upon systolic pressures of rats exposed to the control diet in intrauterine life, the systolic blood pressures of low-protein animals rapidly declined by 31 mmHg. 5. Administration of captopril to male and female offspring between 2 and 4 weeks of age exerted long-term effects upon systolic blood pressure. Eight weeks after cessation of treatment, at an age where maximal blood pressures are achieved, captopril-treated, low-protein-exposed rats had similar blood pressures to normotensive rats exposed to the protein-replete diet in utero. 6. In conclusion, we have demonstrated that the elevation of adult blood pressure associated with fetal exposure to a maternal low-protein diet, is prevented by early administration of an angiotensin-converting enzyme inhibitor. The actions of angiotensin II in the late suckling period may be a critical determinant of long-term cardiovascular functions in these animals. PMID:9640343

Sherman, R C; Langley-Evans, S C

1998-04-01

230

Maternal citrulline supplementation prevents prenatal N(G)-nitro-L-arginine-methyl ester (L-NAME)-induced programmed hypertension in rats.  

PubMed

Nitric oxide (NO) deficiency induced by the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) resulted in hypertension. L-citrulline (CIT) can be converted to L-arginine to generate NO. We examined whether maternal CIT supplementation can prevent L-NAME-induced programmed hypertension. Pregnant Sprague-Dawley rats were assigned to four groups: control, L-NAME, control + citrulline (CIT), and L-NAME + citrulline (L-NAME+CIT). Pregnant rats received L-NAME administration at 60 mg/kg/day subcutaneously during pregnancy alone or with additional 0.25% l-citrulline solution in drinking water during the whole period of pregnancy and lactation. Male offspring were sacrificed at 12 wk of age. L-NAME exposure during pregnancy induces hypertension in the 12-wk-old offspring. Maternal CIT therapy prevented L-NAME-induced programmed hypertension, which was associated with a decreased asymmetric dimethylarginine (ADMA) concentration and an increased L-arginine-to-ADMA ratio in the kidney, increased urinary cGMP levels, and decreased renal protein levels of type 3 sodium hydrogen exchanger (NHE3). Together, our data suggest that the beneficial effects of CIT supplementation are attributed to its ability to increase NO level in the kidney and inhibition of NHE3 expression. Our results suggest that supplementing CIT in pregnant women with NO deficiency can improve fetal development and prevent programmed hypertension. PMID:25395680

Tain, You-Lin; Huang, Li-Tung; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

2015-01-01

231

Maternal hypoxia increases the susceptibility of adult rat male offspring to high-fat diet-induced nonalcoholic fatty liver disease.  

PubMed

Exposure to an adverse intrauterine environment increases the risk for adult metabolic syndrome. However, the influence of prenatal hypoxia on the risk of fatty liver disease in offspring is unclear. The purpose of the present study was to evaluate the role of reduced fetal oxygen on the development and severity of high-fat (HF) diet-induced nonalcoholic fatty liver disease (NAFLD). Based on design implicating 2 factors, ie, maternal hypoxia (MH) and postnatal HF diet, blood lipid and insulin levels, hepatic histology, and potential molecular targets were evaluated in male Sprague Dawley rat offspring. MH associated with postnatal HF diet caused a significant increase in plasma concentration of triglycerides, free fatty acids, low-density lipoprotein cholesterol, and insulin. Histologically, a more severe form of NAFLD with hepatic inflammation, hepatic resident macrophage infiltration, and progression toward nonalcoholic steatohepatitis was observed. The lipid homeostasis changes and insulin resistance caused by MH plus HF were accompanied by a significant down-regulation of insulin receptor substrate 2 (IRS-2), phosphoinositide-3 kinase p110 catalytic subunit, and protein kinase B. In MH rats, insulin-stimulated IRS-2 and protein kinase B (AKT) phosphorylation were significantly blunted as well as insulin suppression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Meanwhile, a significant up-regulation of lipogenic pathways was noticed, including sterol-regulatory element-binding protein-1 and fatty acid synthase in liver. Our results indicate that maternal hypoxia enhances dysmetabolic liver injury in response to an HF diet. Therefore, the offspring born in the context of maternal hypoxia may require special attention and follow-up to prevent the early development of NAFLD. PMID:24002036

Su, Yi-Ming; Lv, Guo-Rong; Xie, Jing-Xian; Wang, Zhen-Hua; Lin, Hui-Tong

2013-11-01

232

Chronic Maternal Vitamin B12 Restriction Induced Changes in Body Composition & Glucose Metabolism in the Wistar Rat Offspring Are Partly Correctable by Rehabilitation  

PubMed Central

Maternal under-nutrition increases the risk of developing metabolic diseases. We studied the effects of chronic maternal dietary vitamin B12 restriction on lean body mass (LBM), fat free mass (FFM), muscle function, glucose tolerance and metabolism in Wistar rat offspring. Prevention/reversibility of changes by rehabilitating restricted mothers from conception or parturition and their offspring from weaning was assessed. Female weaning Wistar rats (n?=?30) were fed ad libitum for 12 weeks, a control diet (n?=?6) or the same with 40% restriction of vitamin B12 (B12R) (n?=?24); after confirming deficiency, were mated with control males. Six each of pregnant B12R dams were rehabilitated from conception and parturition and their offspring weaned to control diet. While offspring of six B12R dams were weaned to control diet, those of the remaining six B12R dams continued on B12R diet. Biochemical parameters and body composition were determined in dams before mating and in male offspring at 3, 6, 9 and 12 months of their age. Dietary vitamin B12 restriction increased body weight but decreased LBM% and FFM% but not the percent of tissue associated fat (TAF%) in dams. Maternal B12R decreased LBM% and FFM% in the male offspring, but their TAF%, basal and insulin stimulated glucose uptake by diaphragm were unaltered. At 12 months age, B12R offspring had higher (than controls) fasting plasma glucose, insulin, HOMA-IR and impaired glucose tolerance. Their hepatic gluconeogenic enzyme activities were increased. B12R offspring had increased oxidative stress and decreased antioxidant status. Changes in body composition, glucose metabolism and stress were reversed by rehabilitating B12R dams from conception, whereas rehabilitation from parturition and weaning corrected them partially, highlighting the importance of vitamin B12 during pregnancy and lactation on growth, muscle development, glucose tolerance and metabolism in the offspring. PMID:25398136

Kumar, Kalle Anand; Lalitha, Anumula; Reddy, Umakar; Chandak, Giriraj Ratan; Sengupta, Shantanu; Raghunath, Manchala

2014-01-01

233

Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on Post-Operative Pain in Sprague-Dawley Rat Offspring  

PubMed Central

Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system. PMID:23437400

Knaepen, Liesbeth; Rayen, Ine; Charlier, Thierry D.; Fillet, Marianne; Houbart, Virginie; van Kleef, Maarten; Steinbusch, Harry W.; Patijn, Jacob; Tibboel, Dick; Joosten, Elbert A.; Pawluski, Jodi L.

2013-01-01

234

Differential effects of maternal immune activation and juvenile stress on anxiety-like behaviour and physiology in adult rats: no evidence for the "double-hit hypothesis".  

PubMed

Environmental disruptions can influence neurodevelopment during pre- and postnatal periods. Given such a large time window of opportunity for insult, the "double-hit hypothesis" proposes that exposure to an environmental challenge may impact development such that an individual becomes vulnerable to developing a psychopathology, which then manifests upon exposure to a second challenge later in life. The present study in male rats utilized the framework of the "double-hit hypothesis" to investigate potential compounding effects of maternal immune activation (MIA) during pregnancy and exposure of offspring to stress during juvenility on physiological and behavioural indications of anxiety in adulthood. We used an established rat model of MIA via maternal treatment with polyinosinic:polycytidylic acid (poly I:C) on gestation day 15 in combination with a model of juvenile stress (applied ages 27-29 d) in offspring to explore potential interacting/additive effects. First, we confirmed our employment of the MIA model by replicating previous findings that prenatal treatment with poly I:C caused deficits in sensorimotor gating in adult offspring, as measured by prepulse inhibition. Juvenile stress, on the other hand, had no effect on prepulse inhibition. In terms of anxiety-related behaviour and physiology, we found that prenatal poly I:C alone or in combination with juvenile stress had no effects on body weight, adrenal weight, and plasma concentration of corticosterone and cytokines in adult rats. MIA and juvenile stress increased anxiety-related behaviour on the elevated plus maze, but did so independently of each other. In all, our findings do not support an interaction between MIA and juvenile stress in terms of producing marked changes related to anxiety-like behaviour in adulthood. PMID:21679729

Yee, Nicole; Ribic, Adema; de Roo, Christina Coenen; Fuchs, Eberhard

2011-10-10

235

Consequences of maternal undernutrition for fetal and postnatal hepatic insulin-like growth factor-I, growth hormone receptor and growth hormone binding protein gene regulation in the rat  

Microsoft Academic Search

The mechanisms that contribute to postnatal growth failure following intrauterine growth retar- dation (IUGR) are poorly understood. We demon- strated previously that nutritional deprivation in the pregnant rat leads to IUGR in oVspring, postnatal growth failure and to changes in endocrine parameters of the somatotrophic axis. The present study examines the eVects of maternal under- nutrition (30% of the ad

S M Woodall; N S Bassett; P D Gluckman; B H Breier

1998-01-01

236

Dietary Protein Restriction Stress in the Domestic Turkey ( Meleagris gallopavo) Induces Hypofunction and Remodeling of Adrenal Steroidogenic Tissue  

Microsoft Academic Search

In the present study, we investigated the influence of dietary protein restriction stress on adrenal steroidogenic function of the domestic turkey. Immature male turkeys (2 weeks old) were fed isocaloric synthetic diets containing either 28% (control) or 8% (restriction) soy protein for 4 weeks. Trunk plasma was processed for the determination of adrenocorticotropin (ACTH), corticosterone, aldosterone, and total 3, 5,

Rocco V. Carsia; Patrick J. McIlroy

1998-01-01

237

A multi-generational study on low-dose BPA exposure in Wistar rats: effects on maternal behavior, flavor intake and development.  

PubMed

Bisphenol A (BPA) is a common endocrine disruptor found as an environmental and food contaminant. It exerts both developmental and behavioral effects, mainly when exposure occurs in early life. The aim of this study was to determine the multi-generational effects of chronic, human-relevant low-dose exposure to BPA on development, maternal behavior and flavor preference in Wistar rats. BPA was orally administered at a daily dose of 5 ?g/kg body weight to F0 pregnant dams from the first day of gestation (GD 1) until the last day of lactation (LD 21), and then to F1 offspring from weaning (PND 21) to adulthood (PND 100). F2 offspring were not exposed. Development and clinical signs of toxicity were assessed daily. Maternal behavior was evaluated by observing nursing and pup-caring actions, as well as "non-maternal" behaviors in F0 and F1 dams from parturition until LD 8. The flavor preferences of F1 and F2 offspring were evaluated based on the intake of sweet, salt and fat solutions using the two-bottle choice test on PND 21-34 and PND 86-99. BPA exposure: 1) decreased maternal behavior in F1 dams, 2) caused developmental defects in both F1 and F2 offspring, with a noticeable decrease in anogenital distance in male rats, and 3) did not affect flavored solution intake in F1, but induced changes in sweet preference in F2 juveniles and in salt and fat solution intakes in F2 adults, and 4) induced a body weight increase in the F2 generation only, whereas food intake and water consumption did not change. Taken as a whole, our findings showed that both gestational (F0) and lifelong (F1) exposures to a human-relevant dose of BPA could induce multi-generational effects on both development and behavior. These results suggest possible selective neuroendocrine defects and/or epigenetic changes caused by BPA exposure. PMID:24269606

Boudalia, Sofiane; Berges, Raymond; Chabanet, Claire; Folia, Mireille; Decocq, Laurence; Pasquis, Bruno; Abdennebi-Najar, Latifa; Canivenc-Lavier, Marie-Chantal

2014-01-01

238

Acute Changes in Maternal Thyroid Hormone Induce Rapid and Transient Changes in Gene Expression in Fetal Rat Brain  

E-print Network

Acute Changes in Maternal Thyroid Hormone Induce Rapid and Transient Changes in Gene Expression, Massachusetts 01655 Despite clinical evidence that thyroid hormone is essential for brain development before birth, effects of thyroid hormone on the fetal brain have been largely unexplored. One mechanism

Zoeller, R. Thomas

239

Predation threat exerts specific effects on rat maternal behaviour and anxiety-related behaviour of male and female offspring  

E-print Network

the first week postpartum. Exposure on the day of birth (DOB), but not the third day following birth, increased levels of maternal care in predator-exposed dams relative to dams exposed to a control condition in adulthood; this is the basis for much of the work examining effects of alterations in early life

Champagne, Frances A.

240

Postpartum Behavioral Profiles in Wistar Rats Following Maternal Separation - Altered Exploration and Risk-Assessment Behavior in MS15 Dams.  

PubMed

The rodent maternal separation (MS) model is frequently used to investigate the impact of early environmental factors on adult neurobiology and behavior. The majority of MS studies assess effects in the offspring and few address the consequences of repeated pup removal in the dam. Such studies are of interest since alterations detected in offspring subjected to MS may, at least in part, be mediated by variations in maternal behavior and the amount of maternal care provided by the dam. The aim of this study was to investigate how daily short (15 min; MS15) and prolonged (360 min; MS360) periods of MS affects the dam by examining postpartum behavioral profiles using the multivariate concentric square field (MCSF) test. The dams were tested on postpartum days 24-25, i.e., just after the end of the separation period and weaning. The results reveal a lower exploratory drive and lower risk-assessment behavior in MS15 dams relative to MS360 or animal facility reared dams. The present results contrast some of the previously reported findings and provide new information about early post-weaning behavioral characteristics in a multivariate setting. Plausible explanations for the results are provided including a discussion how the present results fit into the maternal mediation hypothesis. PMID:20617189

Daoura, Loudin; Hjalmarsson, My; Oreland, Sadia; Nylander, Ingrid; Roman, Erika

2010-01-01

241

Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia.  

PubMed

Cerebral palsy (CP) is a disorder of locomotion, posture and movement that can be caused by prenatal, perinatal or postnatal insults during brain development. An increased incidence of CP has been correlated to perinatal asphyxia and maternal infections during gestation. The effects of maternal exposure to low doses of bacterial endotoxin (lipopolysaccharide, LPS) associated or not with perinatal anoxia (PA) in oxidative and inflammatory parameters were examined in cerebral cortices of newborns pups. Concentrations of TNF-?, IL-1, IL-4, SOD, CAT and DCF were measured by the ELISA method. Other newborn rats were assessed for neonatal developmental milestones from day 1 to 21. Motor behavior was also tested at P29 using open-field and Rotarod. PA alone only increased IL-1 expression in cerebral cortex with no changes in oxidative measures. PA also induced a slight impact on development and motor performance. LPS alone was not able to delay motor development but resulted in changes in motor activity and coordination with increased levels of IL-1 and TNF-? expression associated with a high production of free radicals and elevated SOD activity. When LPS and PA were combined, changes on inflammatory and oxidative stress parameters were greater. In addition, greater motor development and coordination impairments were observed. Prenatal exposure of pups to LPS appeared to sensitize the developing brain to effects of a subsequent anoxia insult resulting in an increased expression of pro-inflammatory cytokines and increased free radical levels in the cerebral cortex. These outcomes suggest that oxidative and inflammatory parameters in the cerebral cortex are implicated in motor deficits following maternal infection and perinatal anoxia by acting in a synergistic manner during a critical period of development of the nervous system. PMID:24140242

Stigger, Felipe; Lovatel, Gisele; Marques, Marília; Bertoldi, Karine; Moysés, Felipe; Elsner, Viviane; Siqueira, Ionara Rodrigues; Achaval, Matilde; Marcuzzo, Simone

2013-12-01

242

Histopathologic effects of maternal 4- tert -octylphenol exposure on liver, kidney and spleen of rats at adulthood  

Microsoft Academic Search

The present study was performed to investigate the potential toxic effects of prenatal exposure to 4-tert-octylphenol (OP) on liver, kidney, spleen, and hematologic parameters of male and female rats in adult life. The rats were\\u000a treated with OP subcutaneously in utero at doses of control (vehicle, corn oil), 100 or 250 mg\\/kg per day. After birth, the\\u000a rats were allowed to

Nurhayat Barlas; Müfide Aydo?an

2009-01-01

243

[Influence of maternal factor on motor behavior and lipid turnover in rats exposed to severe psychoemotional stress].  

PubMed

Adverse condition of rat development during the prenatal period (rearing by mother survived brain injury) or during the early post-natal period (cross fostering), causes impairment of motor behavior and a lipid turnover in adult rats. Such rats under severe stress showed decrease of adaptation (as expressed or low indexes of motor impellent behavior and lipid metabolism) in comparison with rats that were grown up by own mother. The psychoemotional stress caused the most expressed deficient behavior in males that were grown up by mothers with brain injury (decrease in serum level of HC and HDL and depressively - similar behavior). PMID:23659055

Avaliani, T V; Kliueva, N N; Fedotova, O R; Apraksina, N K; Tsikunov, S G

2013-01-01

244

Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation.  

PubMed

Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2(+) progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling(+) apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing ?-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction of cholinergic inputs into granule cell lineages and/or GABAergic interneurons as indicated by decreased transcript levels of Chrnb2 and numbers of Chrnb2(+) interneurons caused by myelin vacuolation in the septal-hippocampal pathway. PMID:25497112

Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

2015-02-01

245

Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat  

SciTech Connect

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most widely studied environmental contaminants, causes a variety of adverse health effects including teratogenesis and altered development which may be related to disruptions in retinoid homeostasis. The purpose of this study was to determine the effect that gestational administration of TCDD has on retinoid homeostasis in both pregnant Holtzman rats and developing fetuses and neonates. A single oral dose of TCDD (0, 1.5, 3, or 6 {mu}g/kg) was administered to pregnant rats on gestation day 10, with fetuses analyzed on gestation days 17 and 20, and neonates analyzed on post natal day 7. Exposure to TCDD generally produced decreases in the concentrations of retinyl esters, such as retinyl palmitate, and retinol in maternal and perinatal liver and lung, while increasing levels in the maternal kidney. Additionally, perinatal hepatic retinol binding protein 1-dependent retinyl ester hydrolysis was also decrease by TCDD. Sensitivity of the developing perinates to TCDD appeared to have an age-related component demonstrated by an increased rate of mortality and significant alterations to body weight and length on post natal day 7 relative to that observed at gestation day 20. A unique observation made in this study was a significant decrease in lung weight observed in the perinates exposed to TCDD. Taken together, these data demonstrate that TCDD significantly alters retinoid homeostasis in tissues of the developing fetus and neonate, suggesting that their unique sensitivity to TCDD may at least be in part the result of altered retinoid homeostasis.

Kransler, Kevin M. [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Farber Hall 102, 3435 Main Street, Buffalo, NY 14214 (United States)], E-mail: kransler@buffalo.edu; Tonucci, David A. [Givaudan Flavors Corp., 1199 Edison Drive, Cincinnati, OH 45216 (United States)], E-mail: david.tonucci@givaudan.com; McGarrigle, Barbara P. [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Farber Hall 102, 3435 Main Street, Buffalo, NY 14214 (United States)], E-mail: bpmg@buffalo.edu; Napoli, Joseph L. [Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, CA 94720 (United States)], E-mail: jna@berkeley.edu; Olson, James R. [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Farber Hall 102, 3435 Main Street, Buffalo, NY 14214 (United States)], E-mail: jolson@buffalo.edu

2007-10-01

246

Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat's offspring: modulation by folic acid supplementation.  

PubMed

Fluoxetine is an antidepressant that has been largely used for treatment of depression in pregnancy. In the present study we evaluated the effects of the exposure to fluoxetine during gestation and lactation on DNA methylation of rat brain regions. Female Wistar rats were treated with 5mg/kg of fluoxetine during pregnancy and lactation. In order to assess the effects of fluoxetine in the context of maternal folic acid supplementation we performed an additional combined treatment composed by folic acid (8 mg/kg/day) and fluoxetine (5 mg/kg/day). On the postnatal day 22, male rats were euthanized and hippocampus, cortex, hypothalamus, and periaqueductal gray area were removed. Global DNA methylation was quantified using a high-throughput ELISA-based method. Neurofunctional changes were addressed using validated behavioral tests: hot plate, elevated plus maze and open field. A decrease in the global DNA methylation profile of hippocampus was associated to the exposure to fluoxetine, whereas an increase in methylation was observed in cortex. The combined treatment induced an increase in the methylation of hippocampus indicating the potential of folic acid to modulate this epigenetic alteration. Increase in the latency to the thermal nociceptive response was observed in animals exposed to fluoxetine whereas this effect was abolished in animals from the combined treatment. In summary we demonstrated that exposure to fluoxetine during gestation and lactation affect the DNA methylation of brain and the nociceptive response of rats. Furthermore our data reveal the potential of folic acid to modulate epigenetic and functional changes induced by early exposure to fluoxetine. PMID:24583191

Toffoli, L V; Rodrigues, G M; Oliveira, J F; Silva, A S; Moreira, E G; Pelosi, G G; Gomes, M V

2014-05-15

247

Variable Maternal Stress in Rats Alters Locomotor Activity, Social Behavior, and Recognition Memory in the Adult Offspring  

PubMed Central

Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral signs that are similar to those manifested in several neuropsychiatric disorders such as deficits in attention and inhibitory control, and impairments in memory-related task performance. The purpose of the study described here was to conduct a comprehensive battery of tests to further characterize the behavioral phenotype of PNS rats as well as to evaluate the sensitivity of the model to therapeutic interventions (i.e., to compounds previously shown to have therapeutic potential in neuropsychiatric disorders). The results of this study indicated that PNS in rats is associated with: 1) increased locomotor activity and stereotypic behaviors, 2) elevated sensitivity to the psychostimulant amphetamine, 3) increased aggressive behaviors toward both adult and juvenile rats and 4) delay-dependent deficits in recognition memory. There was no evidence that PNS rats exhibited deficits in other areas of motor function/learning, sensorimotor gating, spatial learning and memory, social withdrawal, or anhedonia. In addition, the results revealed that the second generation antipsychotic risperidone attenuated amphetamine-related increases in locomotor activity in PNS rats; however, the effect was not sustained over time. Furthermore, deficits in recognition memory in PNS rats were attenuated by the norepinephrine reuptake inhibitor, atomoxetine, but not by the ?7 nicotinic acetylcholine receptor partial agonist, GTS-21. This study supports the supposition that important phenomenological similarities exist between rats exposed to PNS and patients afflicted with neuropsychiatric disorders thus further establishing the face validity of the model for evaluating potential therapeutic interventions. PMID:23287801

Wilson, Christina A.; Terry, Alvin V.

2013-01-01

248

Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: implications for models of developmental programming  

PubMed Central

Background Maternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment. In a rat model, both male and female offspring of undernourished mothers are programmed to become obese, however postnatal leptin treatment gives discordant results between males and females. Leptin treatment is able to rescue the adverse programming effects in the female offspring of undernourished mothers, but not in their male offspring. Additionally, in these rats, postnatal leptin treatment of offspring from normally-nourished mothers programmes their male offspring to develop obesity in later life, while there is no comparable effect in their female offspring. Results We show by microarray analysis of the female liver transcriptome that both maternal undernutrition and postnatal leptin treatment independently induce a similar thrifty transcriptional programme affecting carbohydrate metabolism, amino acid metabolism and oxidative stress genes. Paradoxically, however, the combination of both stimuli restores a more normal transcriptional environment. This demonstrates that “leptin reversal” is a global phenomenon affecting all genes involved in fetal programming by maternal undernourishment and leptin treatment. The thrifty transcriptional programme was associated with pro-inflammatory markers and downregulation of adaptive immune mediators, particularly MHC class I genes, suggesting a deficit in antigen presentation in these offspring. Conclusions We propose a revised model of developmental programming reconciling the male and female observations, in which there are two competing programmes which collectively drive liver transcription. The first element is a thrifty metabolic phenotype induced by early life growth restriction independently of leptin levels. The second is a homeostatic set point calibrated in response to postnatal leptin surge, which is able to over-ride the metabolic programme. This “calibration model” for the postnatal leptin surge, if applicable in humans, may have implications for understanding responses to catch-up growth in infants. Additionally, the identification of an antigen presentation deficit associated with metabolic thriftiness may relate to a previously observed correlation between birth season (a proxy for gestational undernutrition) and infectious disease mortality in rural African communities. PMID:24447410

2014-01-01

249

The Effect of Neonatal Leptin Antagonism in Male Rat Offspring Is Dependent upon the Interaction between Prior Maternal Nutritional Status and Post-Weaning Diet  

PubMed Central

Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring. It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We investigated the effect of neonatal treatment with a leptin antagonist (LA) on growth and metabolism in offspring of mothers fed either a control or a high fat diet. Wistar rats were fed either a control (CON) or a high fat diet (MHF) during pregnancy and lactation. Male CON and MHF neonates received either saline (S) or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were weaned onto either a control or a high fat (hf) diet. At day 100, body composition, blood glucose, ?-hydroxybutyrate and plasma leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent upon interactions between maternal and post-weaning nutrition. PMID:22548153

Beltrand, J.; Sloboda, D. M.; Connor, K. L.; Truong, M.; Vickers, M. H.

2012-01-01

250

Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups.  

PubMed

Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. PMID:25435080

Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi

2015-01-01

251

Forced catch-up growth after fetal protein restriction alters the adipose tissue gene expression program leading to obesity in adult mice.  

PubMed

A mismatch between fetal and postnatal environment can permanently alter the body structure and physiology and therefore contribute later to obesity and related disorders, as revealed by epidemiological studies. Early programming of adipose tissue might be central in this observation. Moreover, adipose tissue secretes adipokines that provide a molecular link between obesity and its related disorders. Therefore, our aim was to investigate whether a protein restriction during fetal life, followed by catch-up growth could lead to obesity in 9-mo-old male mice and could alter the adipose tissue gene expression profile. Dams were fed a low-protein (LP) or an isocaloric control (C) diet during gestation. Postnatal catch-up growth was induced in LP offspring by feeding dams with control diet and by culling LP litters to four pups instead of eight in the C group. At weaning, male mice were fed by lab chow alone (C) or supplemented with a hypercaloric diet (HC), to induce obesity (C-C, C-HC, LP-C, and LP-HC groups). At 9 mo, LP offspring featured increased relative fat mass, hyperglycemia, hypercholesterolemia, and hyperleptinemia. Using a microarray designed to study the expression of 89 genes involved in adipose tissue differentiation/function, we demonstrated that the expression profile of several genes were dependent upon the maternal diet. Among the diverse genes showing altered expression, we could identify genes encoding several enzymes involved in lipid metabolism. These results indicated that offspring submitted to early mismatched nutrition exhibited alterations in adipose tissue gene expression that probably increases their susceptibility to overweight when challenged after weaning with a HC diet. PMID:19458276

Bol, V V; Delattre, A-I; Reusens, B; Raes, M; Remacle, C

2009-08-01

252

Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet.  

PubMed

While the effects of maternal separation on pups are well studied, the impact on dams has attracted little attention. The consumption of palatable food is known to dampen stress responses in animals, and emotions influence food choice in humans. Here we examined the early- and long-term impacts of maternal separation on behavioral profile of the dams, and the effects of palatable cafeteria high-fat diet (HFD). After littering, Sprague-Dawley female rats were subjected to prolonged separation, S180 (180 min) or brief separation, S15 (15 min/day) from postnatal days (PND) 2-14. At 4 weeks postpartum, half the dams were assigned to HFD. Anxiety and depression-like behaviors were assessed pre- and post-diet. Compared to S15 dams, S180 dams consuming chow demonstrated increased anxiety and depression-like behaviors assessed by elevated plus maze (EPM) and forced swim (FST) tests, respectively. These behavioral deficits were observed at 4 weeks, and persisted until 17 weeks postpartum. The S180 dams also had increased plasma corticosterone concentration compared to S15 dams, which coincided with increased hypothalamic CRH mRNA and reduced hippocampal GR mRNA expression, suggesting possible dysregulation of hypothalamic-pituitary-adrenal axis activity. Interestingly, continuous provision of HFD improved the behavioral deficits observed in S180 dams with significant reduction of hypothalamic CRH mRNA expression. These data are the first to describe long-term detrimental behavioral impacts of separation in dams, suggesting this may provide a model of postpartum depression. Moreover, they support the notion of long-term beneficial effects of 'comfort food' on stress responses. PMID:19896506

Maniam, Jayanthi; Morris, Margaret J

2010-03-17

253

Prenatal Nicotine and Maternal Deprivation Stress De-Regulate the Development of CA1, CA3, and Dentate Gyrus Neurons in Hippocampus of Infant Rats  

PubMed Central

Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment. PMID:23785432

Wang, Hong; Gondré-Lewis, Marjorie C.

2013-01-01

254

Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats.  

PubMed

Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic ?-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes. PMID:24523338

Tran, Melanie; Gallo, Linda A; Hanvey, Alanna N; Jefferies, Andrew J; Westcott, Kerryn T; Cullen-McEwen, Luise A; Gardner, David K; Moritz, Karen M; Wlodek, Mary E

2014-04-15

255

Maternal overnutrition programs changes in the expression of skeletal muscle genes that are associated with insulin resistance and defects of oxidative phosphorylation in adult male rat offspring.  

PubMed

Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of prepregnancy obesity, can promote metabolic dysregulation and predispose offspring to type 2 diabetes. PMID:24381224

Latouche, Celine; Heywood, Sarah E; Henry, Sarah L; Ziemann, Mark; Lazarus, Ross; El-Osta, Assam; Armitage, James A; Kingwell, Bronwyn A

2014-03-01

256

The effects of dietary protein restriction on chorda tympani nerve taste responses and terminal field organization  

Microsoft Academic Search

Prenatal dietary sodium restriction produces profound developmental effects on rat functional taste responses and formation of neural circuits in the brainstem. Converging evidence indicates that the underlying mechanisms for these effects are related to a compromised nutritional state and not to direct stimulus-receptor interactions. We explored whether early malnourishment produces similar functional and structural effects to those seen following dietary

J. E. Thomas; D. L. Hill

2008-01-01

257

Effects of maternal food restriction on offspring lung extracellular matrix deposition and long term pulmonary function in an experimental rat model.  

PubMed

Intrauterine growth restriction (IUGR) increases the risk of respiratory compromise throughout postnatal life. However, the molecular mechanism(s) underlying the respiratory compromise in offspring following IUGR is not known. We hypothesized that IUGR following maternal food restriction (MFR) would affect extracellular matrix deposition in the lung, explaining the long-term impairment in pulmonary function in the IUGR offspring. Using a well-established rat model of MFR during gestation to produce IUGR pups, we found that at postnatal day 21, and at 9 months (9M) of age the expression and abundance of elastin and alpha smooth muscle actin (?SMA), two key extracellular matrix proteins, were increased in IUGR lungs when compared to controls (P?rat lung fibroblasts to serum deprivation increased the expression of elastin and elastin-related genes, which was blocked by serum albumin supplementation, suggesting protein deficiency as the predominant mechanism for increased pulmonary elastin deposition in IUGR lungs. We conclude that accompanying the changes in lung function, consistent with bronchial hyperresponsiveness, expression of the key alveolar extracellular matrix proteins elastin and ?SMA increased in the IUGR lung, thus providing a potential explanation for the compromised lung function in IUGR offspring. PMID:22058072

Rehan, Virender K; Sakurai, Reiko; Li, Yishi; Karadag, Ahmet; Corral, Julia; Bellusci, Saverio; Xue, Ying Ying; Belperio, John; Torday, John S

2012-02-01

258

EFFECTS OF MATERNAL FOOD RESTRICTION ON FETAL LUNG EXTRACELLULAR MATRIX DEPOSITION AND LONG TERM PULMONARY FUNCTION IN AN EXPERIMENTAL RAT MODEL  

PubMed Central

Intrauterine growth restriction (IUGR) increases the risk of respiratory compromise throughout postnatal life. However, the molecular mechanism(s) underlying the respiratory compromise in offspring following IUGR is not known. We hypothesized that IUGR following maternal food restriction (MFR) would affect extracellular matrix deposition in the lung, explaining the long-term impairment in pulmonary function in the IUGR offspring. Using a well-established rat model of MFR during gestation to produce IUGR pups, we found that at postnatal day 21, and at 9 months of age the expression and abundance of elastin and alpha smooth muscle actin (?SMA), two key extracellular matrix proteins, were increased in IUGR lungs when compared to controls (p<0.05, n = 6), as determined by both Western and immunohistochemistry analyses. Compared to controls, the MFR group showed no significant change in pulmonary resistance at baseline, but did have significantly decreased pulmonary compliance at 9 months (p<0.05 vs control, n=5). In addition, MFR lungs exhibited increased responsiveness to methacholine challenge. Furthermore, exposing cultured fetal rat lung fibroblasts to serum deprivation increased the expression of elastin and elastin-related genes, which was blocked by serum albumin supplementation, suggesting protein deficiency as the predominant mechanism for increased pulmonary elastin deposition in IUGR lungs. We conclude that accompanying the changes in lung function, consistent with bronchial hyperresponsiveness, expression of the key alveolar extracellular matrix proteins elastin and ?SMA increased in the IUGR lung, thus providing a potential explanation for the compromised lung function in IUGR offspring. PMID:22058072

Rehan, Virender K.; Sakurai, Reiko; Li, Yishi; Karadag, Ahmet; Corral, Julia; Bellusci, Saverio; Xue, Ying Ying; Belperio, John; Torday, John S.

2011-01-01

259

Grape skin extract protects against programmed changes in the adult rat offspring caused by maternal high-fat diet during lactation.  

PubMed

Maternal overnutrition during suckling period is associated with increased risk of metabolic disorders in the offspring. We aimed to assess the effect of Vitis vinifera L. grape skin extract (ACH09) on cardiovascular and metabolic disorders in adult male offspring of rats fed a high-fat (HF) diet during lactation. Four groups of female rats were fed: control diet (7% fat), ACH09 (7% fat plus 200 mg kg(-1) d(-1) ACH09 orally), HF (24% fat), and HF+ACH09 (24% fat plus 200 mg kg(-1) d(-1) ACH09 orally) during lactation. After weaning, all male offspring were fed a control diet and sacrificed at 90 or 180 days old. Systolic blood pressure was increased in adult offspring of HF-fed dams and ACH09 prevented the hypertension. Increased adiposity, plasma triglyceride, glucose levels and insulin resistance were observed in offspring from both ages, and those changes were reversed by ACH09. Expression of insulin cascade proteins IRS-1, AKT and GLUT4 in the soleus muscle was reduced in the HF group of both ages and increased by ACH09. The plasma oxidative damage assessed by malondialdehyde levels was increased, and nitrite levels decreased in the HF group of both ages, which were reversed by ACH09. In addition, ACH09 restored the decreased plasma and mesenteric arteries antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase in the HF group. In conclusion, the treatment of HF-fed dams during lactation with ACH09 provides protection from later-life hypertension, body weight gain, insulin resistance and oxidative stress. The protective effect ACH09 may involve NO synthesis, antioxidant action and activation of insulin-signaling pathways. PMID:24183306

Resende, Angela C; Emiliano, Andréa F; Cordeiro, Viviane S C; de Bem, Graziele F; de Cavalho, Lenize C R M; de Oliveira, Paola Raquel B; Neto, Miguel L; Costa, Cristiane A; Boaventura, Gilson T; de Moura, Roberto S

2013-12-01

260

Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats.  

PubMed

Exposure to chronic stress during the neonatal period is known to induce permanent long-term changes in the central nervous system and hipothalamic-pituitary-adrenal axis reactivity that are associated with increased levels of depression, anxiety, and cognitive impairments. In rodents, a validated model of early life stress is the maternal separation (MS) paradigm, which has been shown to have long-term consequences for the pups that span to adulthood. We hypothesized that the early life stress-associated effects could be exacerbated with aging, because it is often accompanied by cognitive decline. Using a MS model in which rat pups were separated from their mothers for 3 hours daily, during postnatal days 2-14, we evaluated the long-term functional consequences to aged animals (70-week-old), by measuring synaptic plasticity and cognitive performance. The baseline behavioral deficits of aged control rats were further exacerbated in MS animals, indicating that early-life stress induces sustained changes in anxiety-like behavior and hippocampal-dependent memory that are maintained much later in life. We then investigated whether these differences are linked to impaired function of hippocampal neurons by recording hippocampal long-term potentiation from Schaffer collaterals/CA1 synapses. The magnitude of the hippocampal long-term potentiation induced by high-frequency stimulation was significantly lower in aged MS animals than in age-matched controls. These results substantiate the hypothesis that the neuronal and endocrine alterations induced by early-life stress are long lasting, and are able to exacerbate the mild age-associated deficits. PMID:24559649

Sousa, Vasco C; Vital, Joana; Costenla, Ana Rita; Batalha, Vânia L; Sebastião, Ana M; Ribeiro, Joaquim A; Lopes, Luísa V

2014-07-01

261

Maternal transfer of 14 C- p,p? - DDT via Placenta and milk and its metabolism in infant rats  

Microsoft Academic Search

Female rats were dosed orally with 0.9 mg14C-ring-labeledp,p?-DDT during pregnancy or lactation. The results from the lactation experiment showed that the mean concentration of14C-DDT in milk was 15.26?g per g dry weight the first day after dosing, and decreased gradually with a rate constant of clearance of ?0.096. The half-life of DDT and its metabolites in milk was approximately 7.2

S. C. Fang; Elizabeth Fallin; V. H. Freed

1977-01-01

262

The fatty acid composition of maternal diet affects lung prostaglandin E2 levels and survival from group B streptococcal sepsis in neonatal rat pups.  

PubMed

Dietary fatty acid effects upon the immune system may be mediated in part by effects upon the synthesis of proinflammatory mediators. The effects of maternal dietary fatty acid composition upon lung prostaglandin (PG) E2 levels and survival from group B streptococcal (GBS) infection were investigated in neonatal rat pups. Beginning on d 2 of gestation and throughout lactation, pregnant dams were fed a purified diet whose fat source (22% of energy) was either corn oil or menhaden fish oil. On postnatal d 3, pups were randomly cross-fostered to dams of the same diet group to minimize litter effects; litters were then culled to 10 pups per dam. On postnatal d 7, pups were either injected with 1 x 10(7.5) GBS organisms or were killed for determination of lung tissue levels of PGE2 and lung and erythrocyte fatty acid composition. Arachidonic acid and PGE2 levels were significantly higher in the lungs of pups in the corn oil group compared with the fish oil group. Forty-nine percent of pups in the corn oil group survived the GBS challenge compared with 79% of pups in the fish oil group (P = 0.0005). These data suggest that the fatty acid composition of pre- and/or postnatal diet affects the neonatal response to immune challenge, which may be due in part to effects upon the synthesis of pro-inflammatory mediators. PMID:9311955

Rayon, J I; Carver, J D; Wyble, L E; Wiener, D; Dickey, S S; Benford, V J; Chen, L T; Lim, D V

1997-10-01

263

Maternal immunization.  

PubMed

Maternal immunization has the potential to protect the pregnant woman, fetus, and infant from vaccine-preventable diseases. Maternal immunoglobulin G is actively transported across the placenta, providing passive immunity to the neonate and infant prior to the infant's ability to respond to vaccines. Currently inactivated influenza, tetanus toxoid, and acellular pertussis vaccines are recommended during pregnancy. Several other vaccines have been studied in pregnancy and found to be safe and immunogenic and to provide antibody to infants. These include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines. Other vaccines in development for potential maternal immunization include respiratory syncytial virus, herpes simplex virus, and cytomegalovirus vaccines. PMID:24799324

Chu, Helen Y; Englund, Janet A

2014-08-15

264

Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring.  

PubMed

Titanium dioxide nanoparticles (TiO2-NPs) are massively produced in the environment, and because of their wide usage, they are a potential risk of damage to human health. TiO2-NPs are often used as additives for paints, papers, and foods. The central nervous system (CNS), including hippocampal regions, is potentially susceptible targets for TiO2-NPs. This study aimed to determine the effects of exposure to TiO2-NPs during pregnancy on hippocampal cell proliferation and the learning and memory of offspring. Pregnant Wistar rats received intragastric TiO2-NPs (100 mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21. Animals in the control group received the same volume of distilled water via gavage. After delivery, the one-day-old neonates were deeply anesthetized and weighed. They were then killed and the brains of each group were collected. Sections of the brains from the rat offspring were stained using Ki-67 immunolabeling and the immunohistochemistry technique. Some of the male offspring (n=12 for each group) were weaned at postnatal day (PND21), and housed until adulthood (PND60). Then the learning and memory in animals of each group were evaluated using passive avoidance and Morris water maze tests. The immunolabeling of Ki-67 protein as a proliferating cell marker showed that TiO2-NPs significantly reduced cell proliferation in the hippocampus of the offspring (P<0.05). Moreover, both the Morris water maze test and the passive avoidance test showed that exposure to TiO2-NPs significantly impaired learning and memory in offspring (P<0.05). These results may provide basic experimental evidence for a better understanding of the neurotoxic effects of TiO2-NPs on neonatal and adult brains. PMID:24577229

Mohammadipour, Abbas; Fazel, Alireza; Haghir, Hossein; Motejaded, Fatemeh; Rafatpanah, Houshang; Zabihi, Hoda; Hosseini, Mahmoud; Bideskan, Alireza Ebrahimzadeh

2014-03-01

265

Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat.  

PubMed

Undernutrition exposure during the perinatal period reduces the growth kinetic of the offspring and sensitizes it to the development of chronic adult metabolic diseases both in animals and in humans. Previous studies have demonstrated that a 50% maternal food restriction performed during the last week of gestation and during lactation has both short- and long-term consequences in the male rat offspring. Pups from undernourished mothers present a decreased intrauterine (IUGR) and extrauterine growth restriction. This is associated with a drastic reduction in their leptin plasma levels during lactation, and exhibit programming of their stress neuroendocrine systems (corticotroph axis and sympatho-adrenal system) in adulthood. In this study, we report that perinatally undernourished 6-month-old adult animals demonstrated increased leptinemia (at PND200), blood pressure (at PND180), food intake (from PND28 to PND168), locomotor activity (PND187) and altered regulation of glycemia (PND193). Cross-fostering experiments indicate that these alterations were prevented in IUGR offspring nursed by control mothers during lactation. Interestingly, the nutritional status of mothers during lactation (ad libitum feeding v. undernutrition) dictates the leptin plasma levels in pups, consistent with decreased leptin concentration in the milk of mothers subjected to perinatal undernutrition. As it has been reported that postnatal leptin levels in rodent neonates may have long-term metabolic consequences, restoration of plasma leptin levels in pups during lactation may contribute to the beneficial effects of cross-fostering IUGR offspring to control mothers. Collectively, our data suggest that modification of milk components may offer new therapeutic perspectives to prevent the programming of adult diseases in offspring from perinatally undernourished mothers. PMID:24847697

Wattez, J-S; Delahaye, F; Barella, L F; Dickes-Coopman, A; Montel, V; Breton, C; Mathias, P; Foligné, B; Lesage, J; Vieau, D

2014-04-01

266

Effects of an Early Experience of Reward through Maternal Contact or its Denial on Laterality of Protein Expression in the Developing Rat Hippocampus  

PubMed Central

Laterality is a basic characteristic of the brain which is detectable early in life. Although early experiences affect laterality of the mature brain, there are no reports on their immediate neurochemical effects during neonatal life, which could provide evidence as to the mechanisms leading to the lateralized brain. In order to address this issue, we determined the differential protein expression profile of the left and right hippocampus of 13-day-old rat control (CTR) pups, as well as following exposure to an early experience involving either receipt (RER) or denial (DER) of the expected reward of maternal contact. Proteomic analysis was performed by 2-dimensional polyacrylamide gel electrophoresis (PAGE) followed by mass spectroscopy. The majority of proteins found to be differentially expressed either between the three experimental groups (DER, RER, CTR) or between the left and right hemisphere were cytoskeletal (34%), enzymes of energy metabolism (32%), and heat shock proteins (17%). In all three groups more proteins were up-regulated in the left compared to the right hippocampus. Tubulins were found to be most often up-regulated, always in the left hippocampus. The differential expression of ?-tubulin, ?-actin, dihydropyrimidinase like protein 1, glial fibrillary acidic protein (GFAP) and Heat Shock protein 70 revealed by the proteomic analysis was in general confirmed by Western blots. Exposure to the early experience affected brain asymmetry: In the RER pups the ratio of proteins up-regulated in the left hippocampus to those in the right was 1.8, while the respective ratio was 3.6 in the CTR and 3.4 in the DER. Our results could contribute to the elucidation of the cellular mechanisms mediating the effects of early experiences on the vulnerability for psychopathology, since proteins shown in our study to be differentially expressed (e.g. tubulins, dihydropyrimidinase like proteins, 14-3-3 protein, GFAP, ATP synthase, ?-internexin) have also been identified in proteomic analyses of post-mortem brains from psychiatric patients. PMID:23118990

Raftogianni, Androniki; Stamatakis, Antonios; Papadopoulou, Angeliki; Vougas, Konstantinos; Anagnostopoulos, Athanasios K.; Stylianopoulou, Fotini; Tsangaris, George Th.

2012-01-01

267

Sex-dependent effects of early maternal deprivation on MDMA-induced conditioned place preference in adolescent rats: possible neurochemical correlates.  

PubMed

The early neonatal stage constitutes a sensitive period during which exposure to adverse events can increase the risk of neuropsychiatric disorders. Maternal deprivation (MD) is a model of early life stress that induces long-term behavioural and physiological alterations, including susceptibility to different drugs of abuse. In the present study we have used the conditioned place preference (CPP) paradigm to address the influence of MD on the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in adolescent animals of both sexes. We have previously observed in adolescent rats that MD induces modifications in the serotonergic and endocannabinoid systems, which play a role in the rewarding effects of MDMA. In light of this evidence, we hypothesized that MD would alter the psychobiological consequences of exposure to MDMA. Neonatal Wistar rats underwent MD (24h, on PND 9) or were left undisturbed (controls). The animals were conditioned with 2.5mg/kg MDMA during the periadolescent period (PND 34-PND 43) and were tested in the open-field test at the end of adolescence (PND 60). Animals were sacrificed on PND 68-75 and levels of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid were measured in the striatum, hippocampus and cortex, while the expression of hippocampal CB1 cannabinoid receptor (CB1R) and circulating levels of corticosterone and leptin were also measured. Control males showed CPP after administration of MDMA. However, no MDMA-induced CPP was detected in control females or MD males, and MD had no effect on open field activity in any group. A reduction in striatal and cortical 5-HT levels, increased expression of hippocampal CB1R and a marked trend towards higher circulating leptin levels were observed in MDMA-treated MD males. Our results demonstrate for the first time that MD reduces the rewarding effects of MDMA in a sex-dependent manner. We propose that this effect is related, at least in part, with alterations of the serotonergic and cannabinoid systems. PMID:23246480

Llorente-Berzal, Alvaro; Manzanedo, Carmen; Daza-Losada, Manuel; Valero, Manuel; López-Gallardo, Meritxell; Aguilar, María A; Rodríguez-Arias, Marta; Miñarro, José; Viveros, Maria-Paz

2013-09-01

268

Canalization and developmental instability of the fetal skull in a mouse model of maternal nutritional stress.  

PubMed

Nutritional imbalance is one of the main sources of stress in both extant and extinct human populations. Restricted availability of nutrients is thought to disrupt the buffering mechanisms that contribute to developmental stability and canalization, resulting in increased levels of fluctuating asymmetry (FA) and phenotypic variance among individuals. However, the literature is contradictory in this regard. This study assesses the effect of prenatal nutritional stress on FA and among-individual variance in cranial shape and size using a mouse model of maternal protein restriction. Two sets of landmark coordinates were digitized in three dimensions from skulls of control and protein restricted specimens at E17.5 and E18.5. We found that, by the end of gestation, maternal protein restriction resulted in a significant reduction of skull size. Fluctuating asymmetry in size and shape exceeded the amount of measurement error in all groups, but no significant differences in the magnitude of FA were found between treatments. Conversely, the pattern of shape asymmetry was affected by the environmental perturbation since the angles between the first eigenvectors extracted from the covariance matrix of shape asymmetric component of protein restricted and control groups were not significantly different from the expected for random vectors. In addition, among-individual variance in cranial shape was significantly higher in the protein restricted than the control group at E18.5. Overall, the results obtained from a controlled experiment do not support the view of fluctuating asymmetry of cranial structures as a reliable index for inferring nutritional stress in human populations. PMID:24888714

Gonzalez, Paula N; Lotto, Federico P; Hallgrímsson, Benedikt

2014-08-01

269

Dietary protein restriction stress and adrenocortical function: evidence for transient and long-term induction of enhanced cellular function.  

PubMed

Previous work has demonstrated that 4-week protein restriction of the domestic fowl (Gallus gallus domesticus) increases both adrenocortical cell sensitivity to ACTH and corticosteroidogenic capacity. In the present study we examined the transience (study 1) and the persistence (study 2) of this effect of protein restriction. In study 1, two strains of domestic fowl were used: a slower-growing White Leghorn strain and a faster-growing Cobb broiler strain. Cockerels (2 weeks old) were fed isocaloric diets containing either low (L; 5% or 8%) or control (C; 20%) levels of soy protein for 2 weeks, and then were either switched to the alternate diet (C-L, L-C) or maintained on the initial diet (C-C, L-L) for an additional 2 weeks. Cockerels were killed at 6 weeks of age. In study 2, White Leghorn cockerels (2 weeks old) were fed either diet for 4 weeks and then switched to or maintained on the control diet for an additional 4 weeks (i.e. C vs. restriction followed by repletion). In this study cockerels were killed at 10 weeks of age. In both studies highly enriched populations of adrenocortical cells were isolated from cockerel adrenal glands, and their steroidogenic properties (basal and maximally induced corticosterone and cAMP production; steroidogenic agent ED50 values) were evaluated in 2-h suspension incubations. In study 1, regardless of strain, the greater the length of the restriction period, the greater the magnitude of maximal cellular corticosterone production induced by ACTH; the average value for 4-week restriction (L-L) was 39.5% greater than that for 2-week restriction (L-C, C-L) and 117.5% greater than that for control (C-C). In addition, the value for restriction from 4-6 weeks of age (C-L) was 34% greater than that for restriction from 2-4 weeks of age (L-C), suggesting that the enhancement of maximal ACTH-induced corticosterone production after a 2-week restriction interval might be transient. Although there were no strain differences in the effect of protein restriction on maximal ACTH-induced corticosterone production, there were strain differences in its effect on cellular sensitivity to ACTH, as indicated by the ACTH ED50 values (the lower the ED50 value, the greater tha cellular sensitivity). With the White Leghorn strain, the greater the duration of protein restriction, the greater the adrenocortical cell sensitivity to ACTH; the sensitivity of L-L cells was 3.0 times the sensitivities of L-C and C-L cells and 4.1 times the sensitivity of C-C cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2174347

Weber, H; Kocsis, J F; Lauterio, T J; Carsia, R V

1990-12-01

270

The fatty acid composition of maternal diet affects the response to excitotoxic neural injury in neonatal rat pups.  

PubMed

Fatty acids and their derivatives play a role in the response to neural injury. The effects of prenatal and postnatal dietary fatty acid composition on excitotoxic neural injury were investigated in neonatal rat pups. Dams were fed during gestation and lactation a diet whose fat source was either corn oil or menhaden fish oil. On postnatal day 3, litters were culled to 10 per dam. On postnatal day 4, excitotoxic neural injury was induced by infusion of the glutamate analog N-methyl-DL-aspartate (NMA) into the left cerebral hemisphere. Three days later, pups were killed and brains were removed for histological and volume assessments. Levels of arachidonic acid were 2.3-fold higher in cerebrums of pups in the corn oil group than in the fish oil group. Left cerebral hemispheres among all pups were atrophic. Right cerebral hemispheres of pups in the corn oil group showed more histological evidence of edema, and had significantly higher volumes than pups in the fish oil group (66 vs. 42 mm2, p=0.007). These data suggest that the fatty acid composition of prenatal and/or postnatal diet can affect the neonatal response to excitotoxic neural injury. PMID:9566509

Valencia, P; Carver, J D; Wyble, L E; Benford, V J; Gilbert-Barness, E; Wiener, D A; Phelps, C

1998-04-01

271

Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows  

PubMed Central

Aim Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas. Methods Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro. Results Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age. Conclusions GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass. PMID:21991320

Dumortier, Olivier; Theys, Nicolas; Ahn, Marie-Thérèse; Remacle, Claude; Reusens, Brigitte

2011-01-01

272

Dietary protein restriction stress in the domestic fowl (Gallus gallus domesticus) alters adrenocorticotropin-transmembranous signaling and corticosterone negative feedback in adrenal steroidogenic cells.  

PubMed

Previous work with growing chickens (Gallus gallus domesticus) indicates that transient dietary protein restriction induces long-term enhancement of adrenal steroidogenic function in response to adrenocorticotropin (ACTH). The present study investigated two possible cellular functions mediating this enhanced response: (a) ACTH signal transduction and dissemination and (b) short-loop feedback inhibition of ACTH-induced corticosterone production by exogenous corticosterone. Cockerels (2 weeks old) were fed isocaloric synthetic diets containing either 20% (control) or 8% (restriction) soy protein for 4 weeks. Adrenal glands were processed for the isolation of adrenal steroidogenic cells nearly devoid of chromaffin cells ( approximately 90% adrenal steroidogenic cells). Results of experiments to assess signal transduction and dissemination indicated that protein restriction selectively enhanced ACTH-induced corticosterone production mediated by the cyclic AMP (cAMP)-dependent pathway. In addition, protein restriction substantially counteracted exogenous corticosterone-dependent inhibition of acute ACTH-induced corticosterone production (by 40.7% vs control). The proximal portion of the cAMP pathway seemed most affected by this stressor. Protein-restricted cells exhibited enhanced homologous sensitization to ACTH (136% greater than that of control cells) which appeared to be localized at a step(s) prior to or at the formation to cAMP. Also, maximal ACTH-induced cAMP production and sensitivity to ACTH in terms of cAMP production by protein-restricted cells were, respectively, 2.2 and 15.8 times those of control cells. However, variable results were obtained from other experiments designed to pinpoint the altered early steps in ACTH-transmembranous signaling. For example, with intact cells, cAMP responses to cholera toxin (CT) and forskolin (FSK) did not corroborate the results suggesting an augmentation of ACTH-signal transduction induced by protein restriction. Furthermore, basal and stimulatable (by ACTH, CT, FSK, and NaF) adenylyl cyclase activities from membranes from protein-restricted cells were, respectively, 47.2 and 40.2% less than those from control cells (normalized to 10(7) cell equivalents of crude membranes). Collectively, these findings suggest that protein restriction stress potentiates ACTH-induced corticosterone secretion by chicken adrenal steroidogenic cells in at least two ways: (1) on the proximal end, by modulating unknown factors which enhance cellular sensitivity to ACTH, ACTH receptor-adenylyl cyclase coupling, and adenylyl cyclase activity, and (2) on the distal end, by suppressing end-product corticosterone negative feedback, thus facilitating an increase in net corticosterone secretion. PMID:10082628

McIlroy, P J; Kocsis, J F; Weber, H; Carsia, R V

1999-02-01

273

Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12) and Omega-3 Fatty Acids  

PubMed Central

We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes. PMID:25003120

Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

2014-01-01

274

Prenatal immune challenge in rats: Altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to Poly IC  

PubMed Central

Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero-maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, acoustic startle, or latent inhibition deficits reported in Poly IC-treated rats, but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction). PMID:22473973

Vorhees, Charles V.; Graham, Devon L.; Braun, Amanda A.; Schaefer, Tori L.; Skelton, Matthew R.; Richtand, Neil M.; Williams, Michael T.

2012-01-01

275

Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation.  

PubMed Central

Maternal protein restriction is a model of fetal programming of adult glucose intolerance. Perfused livers of 48-h- starved adult offspring of rat dams fed 8% protein diets during pregnancy and lactation produced more glucose from 6 mM lactate than did control livers from rats whose dams were fed 20% protein. In control livers, a mean of 24% of the glucose formed from lactate in the periportal region of the lobule was taken up by the most distal perivenous cells; this distal perivenous uptake was greatly diminished in maternal low protein (MLP) livers, accounting for a major fraction of the increased glucose output of MLP livers. In control livers, the distal perivenous cells contained 40% of the total glucokinase of the liver; this perivenous concentration of glucokinase was greatly reduced in MLP livers. Intralobular distribution of phosphenolpyruvate carboxykinase was unaltered, though overall increased activity could have contributed to the elevated glucose output. Hepatic lobular volume in MLP livers was twice that in control livers, indicating that MLP livers had half the normal number of lobules. Fetal programming of adult glucose metabolism may operate partly through structural alterations and changes in glucokinase expression in the immediate perivenous region. PMID:9312176

Burns, S P; Desai, M; Cohen, R D; Hales, C N; Iles, R A; Germain, J P; Going, T C; Bailey, R A

1997-01-01

276

DIBUTYL PHTHALATE: MATERNAL EFFECTS VERSUS FETOTOXICITY (JOURNAL VERSION)  

EPA Science Inventory

Dibutyl phthalate, a plasticizer, is a teratogen in mice and rabbits but produces fetal loss in the rat. Long-term dosing studies indicating reduced fertility in the rat suggested a maternal effect of the compound. The decidual cell response (DCR) and pregnant rats were used to e...

277

Protein Nutrition of Southern Plains Small Mammals: Immune Response to Variation in Maternal and Offspring Dietary Nitrogen  

EPA Science Inventory

Maternal nutrition during pregnancy and postnatal offspring nutrition may influence offspring traits. We investigated the effects of maternal and postweaning offspring dietary nitrogen on immune function and hematology in two species of rodent: the hispid cotton rat (Sigmodon his...

278

Maternal Obesity at Conception Programs Obesity in the Offspring  

Technology Transfer Automated Retrieval System (TEKTRAN)

The risk of obesity in adult-life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in the offspring, we have developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via ...

279

Maternal Obesity at Conception Programs Obesity in the Offspring  

Technology Transfer Automated Retrieval System (TEKTRAN)

The risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in the offspring, we have developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via ...

280

Perinatal growth restriction decreases diuretic action of furosemide in adult rats.  

PubMed

Perinatal growth restriction programs higher risk for chronic disease during adulthood via morphological and physiological changes in organ systems. Perinatal growth restriction is highly correlated with a decreased nephron number, altered renal function and subsequent hypertension. We hypothesize that such renal maladaptations result in altered pharmacologic patterns for life. Maternal protein restriction during gestation and lactation was used to induce perinatal growth restriction in the current study. The diuretic response of furosemide (2mg/kg single i.p. dose) in perinatally growth restricted rats during adulthood was investigated. Diuresis, natriuresis and renal excretion of furosemide were significantly reduced relative to controls, indicative of decreased efficacy. While a modest 12% decrease in diuresis was observed in males, females experienced 26% reduction. It is important to note that the baseline urine output and natriuresis were similar between treatment groups. The in vitro renal and hepatic metabolism of furosemide, the in vivo urinary excretion of the metabolite, and the expression of renal drug transporters were unaltered. Creatinine clearance was significantly reduced by 15% and 19% in perinatally growth restricted male and female rats, respectively. Further evidence of renal insufficiency was suggested by decreased uric acid clearance. Renal protein expression of sodium-potassium-chloride cotransporter, a pharmacodynamic target, was unaltered. In summary, perinatal growth restriction could permanently imprint pharmacokinetic processes affecting drug response. PMID:24508521

DuBois, Barent N; Pearson, Jacob; Mahmood, Tahir; Nguyen, Duc; Thornburg, Kent; Cherala, Ganesh

2014-04-01

281

Effects of maternal and pre-weaning undernutrition in rat offspring: Age at reproductive senescence and intergenerational pup growth and viability  

EPA Science Inventory

Maternal and/or postnatal undernutrition are widespread in human populations and are components of many experimental developmental and reproductive toxicology bio-assays. This study investigated in utero and/or pre-weaning undernutrition effects on reproductive maturation and se...

282

Relationship of Maternal Dietary Zinc during Gestation and Lactation to Development and Zinc, Iron and Copper Content of the Postnatal Rat '-2  

Microsoft Academic Search

High levels (0.2 and 0.5% ) of zinc were fed to adult female rats be ginning at zero-day age of the fetus and continued to day 14 of lactation to study the development and iron, copper, and zinc status of zero- and 14-day-old postnatal rats. The results were compared with rats fed a basal diet containing 9 ppm zinc. Growth

MARION R. KETCHESON; GEORGE P. BARRON; DENNIS H. COX

283

Dietary Protein Restriction Stress in the Domestic Fowl ( Gallus gallus domesticus) Alters Adrenocorticotropin-Transmembranous Signaling and Corticosterone Negative Feedback in Adrenal Steroidogenic Cells  

Microsoft Academic Search

Previous work with growing chickens (Gallusgallus domesticus) indicates that transient dietary protein restriction induces long-term enhancement of adrenal steroidogenic function in response to adrenocorticotropin (ACTH). The present study investigated two possible cellular functions mediating this enhanced response: (a) ACTH signal transduction and dissemination and (b) short-loop feedback inhibition of ACTH-induced corticosterone production by exogenous corticosterone. Cockerels (2 weeks old) were

Patrick J. McIlroy; John F. Kocsis; Helen Weber; Rocco V. Carsia

1999-01-01

284

Role of the Midbrain Periaqueductal Gray in Maternal Nurturance and Aggression: c-fos and Electrolytic Lesion Studies in Lactating Rats  

Microsoft Academic Search

The upright crouched, or kyphotic, nursing posture of lactating rats is dependent on suckling stimulation from pups. Because of the neuroanatomical connections of the periaqueductal gray (PAG) and its sensorimotor integration of the analogous lordo- sis posture displayed by sexually receptive female rats, the possible role of the PAG in kyphosis was investigated using c-fos immunocytochemistry and electrolytic lesions. Lactating

Joseph S. Lonstein; Judith M. Stern

1997-01-01

285

A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats.  

PubMed

The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood. PMID:23561448

Hallam, Megan C; Reimer, Raylene A

2013-11-14

286

Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5\\/6 nephrectomized rats: a role for KLF15  

Microsoft Academic Search

Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria,

Xiang Gao; Lianghu Huang; Fabrizio Grosjean; Vittoria Esposito; Jianxiang Wu; Lili Fu; Huimin Hu; Jiangming Tan; Cijian He; Susan Gray; Mukesh K Jain; Feng Zheng; Changlin Mei

2011-01-01

287

Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations.  

PubMed

The leading causes of mortality and morbidity worldwide are cardiovascular disease (high blood pressure, high cholesterol and renal disease), cancer and diabetes. It is increasingly obvious that the development of these diseases encompasses complex interactions between adult lifestyle and genetic predisposition. Maternal malnutrition can influence the fetal and early life environment and pose a risk factor for the future development of adult diseases, most likely due to impaired organogenesis in the developing offspring. This then predisposes these offspring to cardiovascular disease and renal dysfunction in adulthood. Studies in experimental animals have further illustrated the significant impact maternal diet has on offspring health. Many studies report changes in kidney structure (a reduction in the number of nephrons in the kidney) in offspring of protein-deprived dams. Although the early studies suggested that increased blood pressure was also present in offspring of protein-restricted dams, this is not a universal finding and requires clarification. Importantly, to date, the literature offers little to no understanding of when in development these changes in kidney development occur, nor are the cellular and molecular mechanisms that drive these changes well characterised. Moreover, the mechanisms linking maternal nutrition and a suboptimal renal phenotype in offspring are yet to be discerned-one potential mechanism involves epigenetics. This review will focus on recent information on potential mechanisms by which maternal nutrition   (focusing on malnutrition due to protein restriction, micronutrient restriction and excessive fat intake) influences kidney development and thereby function in later life. PMID:25774605

Wood-Bradley, Ryan James; Barrand, Sanna; Giot, Anais; Armitage, James Andrew

2015-03-01

288

Maternal and Child nutrition  

E-print Network

Maternal and Child nutrition Earn an advanced degree in a highly specialized field Taught #12;Courses: Nutrition During Pregnancy Lactation and Infant Nutrition Child and Adolescent Nutrition Applied Research Methods in Maternal and Child Nutrition Topics in Epidemiology of Maternal and Child

Schladow, S. Geoffrey

289

Effects of maternal ingestion of aroclor 1254 (PCB) on the development pattern of oxygen consumption and body temperature in neonatal rats  

SciTech Connect

Polychlorinated biphenyl (PCB) is an environmental pollutant that has been implicated in depression of reproductive success in Great Lakes gulls, production of congenital deformities in humans, and increased incidence of carcinogenesis in laboratory mice. PCB has also been shown to be a thyrotoxin in both adult and developing animals. Most recently, the hypothyroid effects of PCB exposure have been reported to elicit effects similar to those of hypothyroidism caused by other methods. This study was done to determine the effects of PCB ingestion in pregnant and lactating rats on the development of thermoregulation in neonatal animals. Body temperature and rate of oxygen consumption was evaluated in rat puts on days 4 through 14 after birth. Because the major thermomregulatory hormones are thyroid hormones, thyroid hormone status and thyroid weights were evaluated at the end of the study on postnatal day 15. 19 refs., 2 figs., 1 tab.

Seo, B.W.; Meserve, L.A. [Bowling Green State Univ., OH (United States)

1995-07-01

290

Methamphetamine administration during gestation impairs maternal behavior.  

PubMed

Previous studies demonstrated that repeated drug exposure, such as opiates or cocaine, during the gestation period attenuates maternal behavior of rats; however, it is not known whether methamphetamine (MA), a drug whose usage has increased recently, negatively affects maternal behavior as well. Therefore, the present study tested the hypothesis that repeated subcutaneous administration of MA (5 mg/kg daily) throughout the entire gestation period alters maternal behavior. Dams (control, saline-, and MA-treated) were observed with their pups in two types of tests. In the observation test, 11 types of activities and three types of nursing positions of mothers were recorded 10 times during each 50-min session for the 22-day lactation period. A decrease in nursing and active maternal behavior was found in MA-treated mothers relative to control rats. In addition, stereotypic behavior such as rearing and sniffing was increased in MA- as well as in saline-treated mothers relative to controls. All mothers, regardless of the treatment, displayed significantly less maternal behavior and more nonmaternal activities as postpartum time progressed. In the retrieval test, mothers also were tested for pup retrieval from postpartum Days 1 through 12. MA-treated mothers were slower in retrieving the first pup, returning the first pup into the nest, and returning all pups into the nest relative to controls or saline-treated mothers. Interestingly, the latency to return all pups to the nest was longer in saline-treated mothers relative to controls. In conclusion, the present study demonstrates a novel finding that MA administered during the gestation period has a negative effect on maternal behavior. PMID:15633162

Slamberová, Romana; Charousová, Petra; Pometlová, Marie

2005-01-01

291

Maternal exposure to anti-androgenic compounds, vinclozolin, flutamide and procymidone, has no effects on spermatogenesis and DNA methylation in male rats of subsequent generations  

SciTech Connect

To verify whether anti-androgens cause transgenerational effects on spermatogenesis and DNA methylation in rats, gravid Crl:CD(SD) female rats (4 or 5/group, gestational day (GD) 0 = day sperm detected) were intraperitoneally treated with anti-androgenic compounds, such as vinclozolin (100 mg/kg/day), procymidone (100 mg/kg/day), or flutamide (10 mg/kg/day), from GD 8 to GD 15. Testes were collected from F1 male pups at postnatal day (PND) 6 for DNA methylation analysis of the region (210 bp including 7 CpG sites) within the lysophospholipase gene by bisulfite DNA sequencing method. F0 and F1 males underwent the sperm analysis (count, motility and morphology), followed by DNA methylation analysis of the sperm. Remaining F1 males were cohabited with untreated-females to obtain F2 male pups for subsequent DNA methylation analysis of the testes at PND 6. These analyses showed no effects on spermatogenesis and fertility in F1 males of any treatment group. DNA methylation status in testes (F1 and F2 pups at PND 6) or sperms (F1 males at 13 weeks old) of the treatment groups were comparable to the control at all observation points, although DNA methylation rates in testes were slightly lower than those in sperm. In F0 males, no abnormalities in the spermatogenesis, fertility and DNA methylation status of sperm were observed. No transgenerational abnormalities of spermatogenesis and DNA methylation status caused by anti-androgenic compounds were observed.

Inawaka, Kunifumi [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka (Japan)], E-mail: inawaka@sc.sumitomo-chem.co.jp; Kawabe, Mayumi [Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); DIMS Institute of Medical Science, Inc., Ichinomiya (Japan); Takahashi, Satoru [Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Doi, Yuko [Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); DIMS Institute of Medical Science, Inc., Ichinomiya (Japan); Tomigahara, Yoshitaka [Corporate Planning and Coordination Office, Sumitomo Chemical Co., Ltd., Tokyo (Japan); Tarui, Hirokazu; Abe, Jun; Kawamura, Satoshi [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka (Japan); Shirai, Tomoyuki [Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

2009-06-01

292

Global uterine and blastocyst gene expression patterns associated with maternal overweight at conception  

Technology Transfer Automated Retrieval System (TEKTRAN)

Exposure to maternal overweight (OW) increases the risk of obesity in adult-life. Maternal OW was induced in rats by overfeeding via total enteral nutrition. Male offspring from OW dams gain greater body weight, fat mass and develop insulin resistance when fed high fat diets (45% fat). This is assoc...

293

Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation  

Microsoft Academic Search

Previous studies demonstrated that stimulant drugs, such as cocaine or amphetamine, administered during gestation or lactation may attenuate maternal behavior in rats. The effect of methamphetamine (MA), a drug whose usage has increased lately, on maternal behavior has not yet been investigated. The present study tested the effect of MA (5mg\\/kg daily) administered prior to, during and after gestation on

Romana Šlamberová; Petra Charousová; Marie Pometlová

2005-01-01

294

Maternal obesity during conception programs offspring's body composition: Modulation of fatty acid synthase expression  

Technology Transfer Automated Retrieval System (TEKTRAN)

The risk of obesity in later life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in the offspring, we have developed an overfeeding-based model of maternal obesity in rats by intragastric feeding of diets using total...

295

Central effects of ethanol interact with endogenous mu opioid activity to control isolation-induced analgesia in maternally separated infant rats  

PubMed Central

Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12–day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol–mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu- opioid activity that increases the pup’s sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity. PMID:24315831

Nizhnikov, Michael E.; Kozlov, Andrey P.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.

2014-01-01

296

The phosphodiesterase type-5 inhibitor, tadalafil, improves depressive symptoms, ameliorates memory impairment, as well as suppresses apoptosis and enhances cell proliferation in the hippocampus of maternal-separated rat pups  

Microsoft Academic Search

Early adverse experiences resulting from maternal separation may lead to neuronal cell death and eventually cause memory impairment. Maternal separation has been used to create a valid animal model of early life stress and a depression-like syndrome. The phosphodiesterase (PDE)-5 inhibitor, tadalafil (Cialis), is a widely prescribed agent for the treatment of erectile dysfunction. In this study, we investigated the

Sang-Bin Baek; Geonho Bahn; Su-Jin Moon; Jiah Lee; Khae-Hawn Kim; Il-Gyu Ko; Sung-Eun Kim; Yun-Hee Sung; Bo-Kyun Kim; Tae-Soo Kim; Chang-Ju Kim; Mal-Soon Shin

2011-01-01

297

Maternal nicotine exposure increases oxidative stress in the offspring  

Microsoft Academic Search

Fetal and neonatal nicotine exposure causes ?-cell apoptosis and loss of ?-cell mass, but the underlying mechanisms are unknown. The goal of this study was to determine whether maternally derived nicotine can act via the pancreatic nicotinic acetylcholine receptor (nAChR) during fetal and neonatal development to induce oxidative stress in the pancreas. Female Wistar rats were given saline or nicotine

Jennifer E. Bruin; Maria A. Petre; Megan A. Lehman; Sandeep Raha; Hertzel C. Gerstein; Katherine M. Morrison; Alison C. Holloway

2008-01-01

298

Maternal overweight programs offspring insulin and adiponectin signaling  

Technology Transfer Automated Retrieval System (TEKTRAN)

Maternal overweight (OW) was induced in rats by overfeeding via total enteral nutrition. Male offspring from OW dams gained greater (p < 0.005) body weight and %fat mass assessed by NMR, X-ray CT and adipose tissue weights when fed high fat diet (45% fat). Hepatic microarray analyses at postnatal da...

299

Levels of maternal care.  

PubMed

In the 1970s, studies demonstrated that timely access to risk-appropriate neonatal and obstetric care could reduce perinatal mortality. Since the publication of the Toward Improving the Outcome of Pregnancy report, more than 3 decades ago, the conceptual framework of regionalization of care of the woman and the newborn has been gradually separated with recent focus almost entirely on the newborn. In this current document, maternal care refers to all aspects of antepartum, intrapartum, and postpartum care of the pregnant woman. The proposed classification system for levels of maternal care pertains to birth centers, basic care (level I), specialty care (level II), subspecialty care (level III), and regional perinatal health care centers (level IV). The goal of regionalized maternal care is for pregnant women at high risk to receive care in facilities that are prepared to provide the required level of specialized care, thereby reducing maternal morbidity and mortality in the United States. PMID:25620372

Menard, M Kathryn; Kilpatrick, Sarah; Saade, George; Hollier, Lisa M; Joseph, Gerald F; Barfield, Wanda; Callaghan, William; Jennings, John; Conry, Jeanne

2015-03-01

300

Maternal care alterations induced by repeated ethanol leads to heightened consumption of the drug and motor impairment during adolescence: A dose–response analysis  

Microsoft Academic Search

Maternal ethanol exposure during lactation induces behavioral alterations in offspring, including disruptions in motor skills and heightened ethanol ingestion during adolescence. These behavioral outcomes appear to partially depend on ethanol-induced disruptions in maternal care. The present study assessed motor skills and ethanol intake in adolescent rats raised by dams that had been repeatedly given ethanol during lactation. Female rats (postpartum

Luciano F. Ponce; Ricardo Marcos Pautassi; Norman E. Spear; Juan C. Molina

2011-01-01

301

Maternal Depression, Maternal Expressed Emotion, and Youth Psychopathology  

Microsoft Academic Search

Across development, maternal depression has been found to be a risk factor for youth psychopathology generally and youth depression\\u000a specifically. Maternal Expressed Emotion (EE) has been examined as a predictor of outcome among youth with depression. The\\u000a present study explored the associations between youth psychopathology and two predictors–maternal depression within the child’s\\u000a lifetime and maternal EE–in a study of children

Martha C. Tompson; Claudette B. Pierre; Kathryn Dingman Boger; James W. McKowen; Priscilla T. Chan; Rachel D. Freed

2010-01-01

302

Media representation of maternal neonaticide  

E-print Network

of mothers who commit neonaticide. Both fictional and non-fictional media sources exhibited aspects of the monstrous maternal theme and the strain defense theme. The monstrous maternal theme consists of words and statements that indicate the descriptions...

Lewis, Jocelyn Renee

2008-10-10

303

Offspring insulin and adiponectin signaling are targets of in utero programming following exposure to maternal overweight during gestation  

Technology Transfer Automated Retrieval System (TEKTRAN)

The risk of obesity in adult-life is subject to programming during gestation. To examine whether in utero exposure to maternal overweight (OW) increases the risk of obesity in the offspring, we developed an overfeeding-based model of maternal OW in rats utilizing intragastric feeding of diets via to...

304

Maternal taurine supplementation attenuates maternal fructose-induced metabolic and inflammatory dysregulation and partially reverses adverse metabolic programming in offspring.  

PubMed

Excessive fructose consumption is associated with insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), and high fructose intake during pregnancy can lead to compromised fetal development in the rat. Evidence suggests that the amino acid taurine can ameliorate fructose-induced IR and NAFLD in nonpregnant animals. This study investigated the efficacy of taurine supplementation on maternal fructose-induced metabolic dysfunction and neonatal health. Time-mated Wistar rats were randomized to four groups during pregnancy and lactation: (a) control diet (CON), (b) CON supplemented with 1.5% taurine in drinking water (CT), (c) CON supplemented with fructose solution (F) and (d) F supplemented with taurine (FT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analyzed. Maternal hyperinsulinemia, increased homeostasis model assessment of IR indices and elevated proinflammatory cytokines were observed in F group and normalized in FT group. Maternal fructose-induced hepatic steatosis accompanied with increased liver weight was ameliorated with taurine supplementation. Maternal hepatic sterol regulatory element-binding protein-1c and fatty acid synthase expression was significantly increased in the F group compared to the CON, CT and FT groups. Neonatal hepatic phosphoenolpyruvate carboxykinase expression was increased in male F neonates compared to the CON, CT and FT groups and was increased in female F and FT neonates compared to CON and CT. Interleukin-1? expression was decreased in male CT and FT neonates compared to other male groups. Hepatic tumour necrosis factor receptor-1 was lower in the male FT group than the F group. These results demonstrate that maternal taurine supplementation can partially reverse fructose-induced maternal metabolic dysfunction and may ameliorate adverse developmental programming effects in offspring in a sex-specific manner. PMID:25576095

Li, M; Reynolds, C M; Sloboda, D M; Gray, C; Vickers, M H

2015-03-01

305

Maternal Sexuality and Breastfeeding  

ERIC Educational Resources Information Center

In this paper I consider the ways in which lactation has been discussed as a form of maternal sexuality, and the implications this carries for our understanding of breastfeeding practices and sexuality. Drawing on knowledge constructed in the western world during the last half of the twentieth century, the paper identifies a shift between the…

Bartlett, Alison

2005-01-01

306

Maternity Leave in Taiwan  

ERIC Educational Resources Information Center

Using the first nationally representative birth cohort study in Taiwan, this paper examines the role that maternity leave policy in Taiwan plays in the timing of mothers returning to work after giving birth, as well as the extent to which this timing is linked to the amount of time mothers spend with their children and their use of breast milk…

Feng, Joyce Yen; Han, Wen-Jui

2010-01-01

307

Maternal sexuality and breastfeeding  

Microsoft Academic Search

In this paper I consider the ways in which lactation has been discussed as a form of maternal sexuality, and the implications this carries for our understanding of breastfeeding practices and sexuality. Drawing on knowledge constructed in the western world during the last half of the twentieth century, the paper identifies a shift between the radical ideologies of the 1960s

Alison Bartlett

2005-01-01

308

Maternal Hartnup disorder.  

PubMed

We describe childbearing in two unrelated women with Hartnup disorder, an inborn error of neutral amino acid transport. Two living, unaffected offspring born after untreated and uneventful pregnancies, one from each woman, have had normal growth and development. The older one had an IQ of 92 at 4 years while the younger one at 4 months had a Development Quotient of 107 on the Mental Scale and 102 on the Motor Scale. A third offspring had a neural tube defect complicated by hydrocephalus and died at 3 months. This mother had a family history of major congenital anomalies. We think that this experience supports the view that Hartnup disorder in the mother, unlike phenylketonuria, does not have an adverse effect on the fetus. The presence of normal ratios of the amino acid concentrations between maternal and umbilical veins in one mother also suggests that placental transport of free amino acids, unlike renal transport, may not be reduced in maternal Hartnup disorder. PMID:3728570

Mahon, B E; Levy, H L

1986-07-01

309

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets  

PubMed Central

Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets. PMID:25358362

Sui, Shiyan; Jia, Yimin; He, Bin; Li, Runsheng; Li, Xian; Cai, Demin; Song, Haogang; Zhang, Rongkui; Zhao, Ruqian

2014-01-01

310

The effect of maternal depression on maternal ratings of child behavior  

Microsoft Academic Search

There have been continuing concerns about the extent to which maternal depression may influence maternal reports of child behavior. To examine this issue, a series of structural equation models of the relationships between maternal depression and errors in maternal reports of child behavior was proposed and tested. These models assumed that (a) maternal depression was unrelated to maternal reporting behavior;

David M. Fergusson; Michael T. Lynskey; L. John Horwood

1993-01-01

311

Chronic Maternal Dietary Chromium Restriction Modulates Visceral Adiposity  

PubMed Central

OBJECTIVE We demonstrated previously that chronic maternal micronutrient restriction altered the body composition in rat offspring and may predispose offspring to adult-onset diseases. Chromium (Cr) regulates glucose and fat metabolism. The objective of this study is to determine the long-term effects of maternal Cr restriction on adipose tissue development and function in a rat model. RESEARCH DESIGN AND METHODS Female weanling WNIN rats received, ad libitum, a control diet or the same with 65% restriction of Cr (CrR) for 3 months and mated with control males. Some pregnant CrR mothers were rehabilitated from conception or parturition and their pups weaned to control diet. Whereas some CrR offspring were weaned to control diet, others continued on CrR diet. Various parameters were monitored in the offspring at three monthly intervals up to 15–18 months of age. RESULTS Maternal Cr restriction significantly increased body weight and fat percentage, especially the central adiposity in both male and female offspring. Further, the expression of leptin and 11 ?-hydroxysteroid dehydrogenase 1 genes were significantly increased in CrR offspring of both the sexes. Adipocytokine levels were altered in plasma and adipose tissue; circulating triglyceride and FFA levels were increased, albeit in female offspring only. Rehabilitation regimes did not correct body adiposity but restored the circulating levels of lipids and adipocytokines. CONCLUSIONS Chronic maternal Cr restriction increased body adiposity probably due to increased stress and altered lipid metabolism in WNIN rat offspring, which may predispose them to obesity and associated diseases in later life. PMID:19846803

Padmavathi, Inagadapa J.N.; Rao, K. Rajender; Venu, Lagishetty; Ganeshan, Manisha; Kumar, K. Anand; Rao, Ch. Narasima; Harishankar, Nemani; Ismail, Ayesha; Raghunath, Manchala

2010-01-01

312

Gene Profiling of Maternal Hepatic Adaptations to Pregnancy  

PubMed Central

Background Maternal metabolic demands change dramatically during the course of gestation and must be coordinated with the needs of the developing placenta and fetus. The liver is critically involved in metabolism and other important functions. However, maternal hepatic adjustments to pregnancy are poorly understood. Aim The aim of the study was to evaluate the influences of pregnancy on the maternal liver growth and gene expression profile. Methods Holtzman Sprague-Dawley rats were mated and sacrificed at various stages of gestation and postpartum. The maternal Livers were analyzed in gravimetric response, DNA content by PicoGreen dsDNA quantitation reagent, hepatocyte ploidy by flow cytometry, and hepatocyte proliferation by ki-67 immunostaining. Gene expression profiling of nonpregnant and gestation d18.5 maternal hepatic tissue was analyzed using a DNA microarray approach and partially verified by northern blot or quantitative real-time PCR analysis. Results During pregnancy, the liver exhibited approximately an 80% increase in size; proportional to the increase in body weight of the pregnant animals. The pregnancy-induced hepatomegaly was a physiological event of liver growth manifested by increases in maternal hepatic DNA content and hepatocyte proliferation. Pregnancy did not affect hepatocyte polyploidization. Pegnancy-dependent changes in hepatic expression were noted for a number of genes, including those associated with cell proliferation, cytokine signaling, liver regeneration, and metabolism. Conclusions The metabolic demands of pregnancy cause marked adjustments in maternal liver physiology. Central to these adjustments are an expansion in hepatic capacity and changes in hepatic gene expression. Our findings provide insights into pregnancy-dependent hepatic adaptations. PMID:20040050

Bustamante, Juan J.; Copple, Bryan L.; Soares, Michael J.; Dai, Guoli

2015-01-01

313

Maternal cardiac metabolism in pregnancy  

PubMed Central

Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

Liu, Laura X.; Arany, Zolt

2014-01-01

314

Maternal mortality in rural Zambia.  

PubMed

The only prospective population-based study of maternal mortality in rural Zambia recorded a ratio of 889 per 100,000 births, about 8 times higher than that found in an urban hospital-based study. To obtain an accurate assessment of maternal mortality in Zambia's rural Kalabo district, both the sisterhood survey method and a review of hospital data were utilized. The maternal mortality ratio derived from the sisterhood survey (August-September 1994) of 1978 respondents was 1238 per 100,000 live births. Data from Kalabo Hospital on 2474 deliveries during 1990-94 revealed a ratio of 548 per 100,000 live births; however, when the latter ratio was corrected for an additional 15 maternal deaths that were not recorded as such, it rose to 1179 per 100,000 live births. The major causes of the 20 (71%) direct maternal deaths were obstructed labor and sepsis. Substandard hospital care factors (primarily inappropriate choice and/or lack of antibiotics, poor monitoring of vital signs, and poor provision of blood products by the laboratory) contributed to 71% of maternal deaths. Delay in seeking care played a role in 29% of all maternal deaths, and poor accessibility to the hospital was implicated in at least 25% of cases. These findings indicate that maternal mortality in rural Zambia is among the highest in the world. The sisterhood method survey appears to be an efficient indirect means of assessing maternal mortality in rural areas of developing countries. PMID:9292638

Vork, F C; Kyanamina, S; van Roosmalen, J

1997-08-01

315

Epigenetic Upregulation of Corticotrophin-Releasing Hormone Mediates Postnatal Maternal Separation-Induced Memory Deficiency  

PubMed Central

Accumulating evidences demonstrated that early postnatal maternal separation induced remarkable social and memory defects in the adult rodents. Early-life stress induced long-lasting functional adaptation of neuroendocrine hypothalamic-pituitary-adrenal axis, including neuropeptide corticotrophin-releasing hormone (CRH) in the brain. In the present study, a significantly increased hippocampal CRH was observed in the adult rats with postnatal maternal separation, and blockade of CRHR1 signaling significantly attenuated the hippocampal synaptic dysfunction and memory defects in the modeled rats. Postnatal maternal separation enduringly increased histone H3 acetylation and decreased cytosine methylation in Crh promoter region, resulting from the functional adaptation of several transcriptional factors, in the hippocampal CA1 of the modeled rats. Enriched environment reversed the epigenetic upregulation of CRH, and ameliorated the hippocampal synaptic dysfunction and memory defects in the adult rats with postnatal maternal separation. This study provided novel insights into the epigenetic mechanism underlying postnatal maternal separation-induced memory deficiency, and suggested environment enrichment as a potential approach for the treatment of this disorder. PMID:24718660

Wang, Aiyun; Nie, Wenying; Li, Haixia; Hou, Yuhua; Yu, Zhen; Fan, Qing; Sun, Ruopeng

2014-01-01

316

Society for Maternal-Fetal Medicine  

MedlinePLUS

... the un-routine The Society for Maternal-Fetal Medicine We partner with referring providers, medical societies, payers ... moms and babies. View Find a Maternal-Fetal Medicine Specialist More than 2,000 Maternal-Fetal Medicine ...

317

Child Health, Maternal Marital and Socioeconomic Factors, and Maternal Health  

ERIC Educational Resources Information Center

Although maternal socioeconomic status and health predict in part children's future health and socioeconomic prospects, it is possible that the intergenerational association flows in the other direction such that child health affects maternal outcomes. Previous research demonstrates that poor child health increases the risk of adverse…

Garbarski, Dana; Witt, Whitney P.

2013-01-01

318

Maternal Depression, Maternal Expressed Emotion, and Youth Psychopathology  

ERIC Educational Resources Information Center

Across development, maternal depression has been found to be a risk factor for youth psychopathology generally and youth depression specifically. Maternal Expressed Emotion (EE) has been examined as a predictor of outcome among youth with depression. The present study explored the associations between youth psychopathology and two…

Tompson, Martha C.; Pierre, Claudette B.; Boger, Kathryn Dingman; McKowen, James W.; Chan, Priscilla T.; Freed, Rachel D.

2010-01-01

319

Ethanol Consumption by Rat Dams During Gestation,  

E-print Network

beverages. Maternal consumption of alcohol during pregnancy and nursing leads to blood- ethanol levelsEthanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary

Galef Jr., Bennett G.

320

Maternal obesity influences hepatic gene expression and genome-wide DNA methylation in offspring liver at weaning  

Technology Transfer Automated Retrieval System (TEKTRAN)

Offspring from obese rat dams gain greater body weight and fat mass when fed HFD. Here we examine hepatic gene expression related to systemic energy expenditure and alterations in genome-wide DNA methylation. Maternal obesity was produced in rats prior to conception via overfeeding of diets. At PND2...

321

Long-Lasting Effect of Perinatal Exposure to L-tryptophan on Circadian Clock of Primary Cell Lines Established from Male Offspring Born from Mothers Fed on Dietary Protein Restriction  

PubMed Central

Background & Aims Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. Methods Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45–55 days) and adult (110–130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. Results Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p?=?0.0291) and adult (p?=?0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p?=?0.049), daily bolus (p<0.0001) and synchronizer hours (p?=?0.0002). All factors were significantly interacting (p?=?0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. Conclusions Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines. PMID:23460795

Nascimento, Elizabeth; Guzman-Quevedo, Omar; Delacourt, Nellie; da Silva Aragão, Raquel; Perez-Garcia, Georgina; de Souza, Sandra Lopes; Manhães-de-Castro, Raul; Bolaños-Jiménez, Francisco; Kaeffer, Bertrand

2013-01-01

322

FROM MOTHERHOOD TO MATERNAL SUBJECTIVITY  

Microsoft Academic Search

In moving from concepts of motherhood and mothers to a theorisation of maternal subjectivity that emphasises unconscious intersubjectivity, this paper casts light on the following questions: ? What is meant by maternal and who qualifies? ? Do gender and sex of parents and carers make any systematic difference to an infant, child or adolescent's experience of parenting and their own

Wendy Hollway

2001-01-01

323

Ego identity and maternal identification  

Microsoft Academic Search

The relationship between ego identity and maternal identification was studied within the framework of Erikson's psychosocial theory of ego development. Because maternal identification is an important childhood identification contributing to ego identity, it was hypothesized that it would be positively related to ego identity. This hypothesis was tested on 245 college women in late adolescence, and results showed that the

M. Howard Dignan

1965-01-01

324

Hypertension in pregnancy: changes in activin A maternal serum concentration.  

PubMed

Human placenta is the major source of activin A in maternal circulation. The aim of the present study was to evaluate maternal activin A serum concentration in pregnant women with chronic hypertension (n = 14), pregnancy-induced hypertension (n = 10) or pre-eclampsia (n = 16). In the group of pregnant women with chronic hypertension and of healthy pregnant women (n = 10) activin A was measured in samples collected longitudinally throughout gestation. Using a specific two-site enzyme-linked immunosorbent assay, it has been possible to measure maternal serum activin A concentration. In addition, the effect of recombinant human activin A administration on mean arterial pressure and heart rate in female rats have been also investigated. Mean +/- SEM of maternal serum activin A concentration in pre-eclamptic women (57.4 +/- 28.3 ng/ml), was significantly higher than in women with pregnancy-induced hypertension (14.8 +/- 10.5 ng/ml), chronic hypertension (10.3 +/- 5.4 ng/ml) or healthy control women (9.2 +/- 9.4 ng/ml) (P < 0.01). Serum activin A levels evaluated 2 weeks after anti-hypertensive treatment were not significantly different in pre-eclamptic women. Moreover, when exogenous recombinant human activin A was administered in female rats arterial pressure or frequency of heart rate did not change. The present study showed that maternal serum activin A concentration is abnormally high in patients with pre-eclampsia. Thus, since the patients with chronic hypertension or pregnancy-induced hypertension have activin A concentration in the normal range of values, activin A may be a prognostic marker of hypertension in pregnancy. PMID:7479615

Petraglia, F; Aguzzoli, L; Gallinelli, A; Florio, P; Zonca, M; Benedetto, C; Woodruff, K

1995-07-01

325

Maternal filicide in Turkey.  

PubMed

Filicide occurs in every socioeconomic stratum around the world. This study was conducted to evaluate motives, psychopathological aspects, and socio-demographic factors of 74 filicide cases of women in Turkey. Mean age of mothers, most of whom committed infanticide, was 26 years, and breakdown of criminal offenses are as follows: "to get rid of unwanted babies" (24.3%), "acute psychotic-type filicide" (21.6%), "fatal child abuse and neglect" (17.6%), "to get revenge" (12.2%), "protect the lonely child from the harm and badness after suicide" (10.8%), and "pity" (9.5%) motives. Results showed that maternal filicide cannot be reduced to only mental instability or environmental factors and indicates deficiencies in the capacity of the mothers' role in connecting with their child and with parenting skills. Finally, with regard to defendants' motives, similar factors that contribute to committing maternal filicide should be considered while making an assessment of the data and determining employee risk groups. PMID:25066272

Eke, Salih Murat; Basoglu, Saba; Bakar, Bulent; Oral, Gokhan

2015-01-01

326

Effects of maternal diabetes on trophoblast cells.  

PubMed

Diabetes mellitus (DM) is a health condition characterized by hyperglycemia over a prolonged period. There are three main types of DM: DM type 1 (DM1), DM2 and gestational DM (GDM). Maternal diabetes, which includes the occurrence of DM1 and DM2 during pregnancy or GDM, increases the occurrence of gesttional complications and adverse fetal outcomes. The hyperglycemic intrauterine environment affects not only the fetus but also the placental development and function in humans and experimental rodents. The underlying mechanisms are still unclear, but some evidence indicates alterations in trophoblast proliferation, apoptosis and cell cycle control in diabetes. A proper coordination of trophoblast proliferation, differentiation and invasion is required for placental development. Initially, increased expression of proliferative markers in junctional and labyrinth zones of rat placentas and villous cytotrophoblast, syncytiotrophoblast, stromal cells and fetal endothelial cells in human placentas is reported among diabetics. Moreover, reduced apoptotic index and expression of some apoptotic genes are described in placentas of GDM women. In addition, cell cycle regulators including cyclins and cyclin-dependent kinase inhibitors seem to be affected by the hyperglycemic environment. More studies are necessary to check the balance between proliferation, apoptosis and differentiation in trophoblast cells during maternal diabetes. PMID:25789116

Aires, Marlúcia Bastos; Dos Santos, Anne Carolline Veríssimo

2015-03-15

327

Effects of maternal diabetes on trophoblast cells  

PubMed Central

Diabetes mellitus (DM) is a health condition characterized by hyperglycemia over a prolonged period. There are three main types of DM: DM type 1 (DM1), DM2 and gestational DM (GDM). Maternal diabetes, which includes the occurrence of DM1 and DM2 during pregnancy or GDM, increases the occurrence of gesttional complications and adverse fetal outcomes. The hyperglycemic intrauterine environment affects not only the fetus but also the placental development and function in humans and experimental rodents. The underlying mechanisms are still unclear, but some evidence indicates alterations in trophoblast proliferation, apoptosis and cell cycle control in diabetes. A proper coordination of trophoblast proliferation, differentiation and invasion is required for placental development. Initially, increased expression of proliferative markers in junctional and labyrinth zones of rat placentas and villous cytotrophoblast, syncytiotrophoblast, stromal cells and fetal endothelial cells in human placentas is reported among diabetics. Moreover, reduced apoptotic index and expression of some apoptotic genes are described in placentas of GDM women. In addition, cell cycle regulators including cyclins and cyclin-dependent kinase inhibitors seem to be affected by the hyperglycemic environment. More studies are necessary to check the balance between proliferation, apoptosis and differentiation in trophoblast cells during maternal diabetes. PMID:25789116

Aires, Marlúcia Bastos; dos Santos, Anne Carolline Veríssimo

2015-01-01

328

Towards elimination of maternal deaths: maternal deaths surveillance and response.  

PubMed

Current methods for estimating maternal mortality lack precision, and are not suitable for monitoring progress in the short run. In addition, national maternal mortality ratios (MMRs) alone do not provide useful information on where the greatest burden of mortality is located, who is concerned, what are the causes, and more importantly what sub-national variations occur. This paper discusses a maternal death surveillance and response (MDSR) system. MDSR systems are not yet established in most countries and have potential added value for policy making and accountability and can build on existing efforts to conduct maternal death reviews, verbal autopsies and confidential enquiries. Accountability at national and sub-national levels cannot rely on global, regional and national retrospective estimates periodically generated from academia or United Nations organizations but on routine counting, investigation, sub national data analysis, long term investments in vital registration and national health information systems. Establishing effective maternal death surveillance and response will help achieve MDG 5, improve quality of maternity care and eliminate maternal mortality (MMR???30 per 100,000 by 2030). PMID:23279882

Hounton, Sennen; De Bernis, Luc; Hussein, Julia; Graham, Wendy J; Danel, Isabella; Byass, Peter; Mason, Elizabeth M

2013-01-01

329

Paying for maternity care.  

PubMed

The costs of prenatal care and the delivery of newborns are continuously increasing. In the 3 years since 1982 alone, the cost of a hospital delivery has increased approximately 40%. 40% of all births in the US are to women aged 18-24. These women compose the highest risk group for having complications of pregnancy. It is alarming that in 1984 more than 25% of these women had no form of insurance to cover the costs. Poor, minority, and unemployed women are most likely to lack coverage. The 3 basic types of coverage are individual or direct, employer's or indirect, and federal. Direct insurance is not always affordable and often provides incomplete coverage. Employer's insurance is often able to cover the costs of maternity care for many young women. However, a high rate of job turnover and the loss of a husband due to death or divorce excludes teenagers, widows, and divorcees from maintaining this type of indirect insurance. Federal insurance in the form of Medicaid has strict eligibility requirements. In nearly 1/2 the states one must be below the poverty level in order to be eligible, and the benefits vary among the states. In addition, many practitioners will not accept Medicaid as payment. The Aid to Families With Dependent Children is available in lieu of Medicaid, but only to single mothers who already have dependent children. The Maternal Child Health block grant is designed to equalize the differences in Medicaid eligibility among states and to give coverage to poor women who are ineligible for Medicaid. The individual states are allowed to allot the monies for this grant without qualifications for minimum services, with the result that it is unknown which women receive necessary services. PMID:3916182

Gold, R B; Kenney, A M

1985-01-01

330

[Maternal death: an avoidable tragedy].  

PubMed

Although statistics show that maternal mortality has declined during this century, high levels persist in the developing world. There are 100 to 1000 maternal deaths per 100,000 live births in developing countries, compared to 7 to 15 deaths per 100,000 live births in developed countries. Most of these deaths in developing countries are avoidable by effective maternal care interventions. A book edited by Unicamp on maternal mortality has made an important contribution to the debate that has been going on in scientific circles and among planners and health professionals. The quality of data for analysis of maternal mortality is implicated also because of erroneous classification of maternal deaths as nonmaternal, imprecision in the death certification, and omission of the status of pregnancy associated with illegal abortion. The identification of these errors means that medical files, hospital registers, family interviews, and autopsies have to be consulted. Research carried out in Sao Paulo demonstrated that at the end of the 1980s the maternal mortality rate was in fact 99.5/100,000 live births, whereas original records showed only 44.5/100,000 live births. Even in the United States during 1980-85, 33% of maternal deaths were underreported. In England the level of underreporting amounted to 41% during 1970-72. The World Health Organization has encouraged the formation of committees to study the prevention of maternal mortality. Two such committees were started in the state of Sao Paulo with the objectives of making professionals aware of the importance of accurate death records; immediate notification of maternal deaths to the regional committee; means from the proper authorities for the correction of deficiencies detected; and continuous evaluation of maternal mortality rates. The committee of Marilia, in the interior of the state of Sao Paulo, demonstrated that 72% of maternal deaths during 1986-88 were avoidable by medical-obstetrical means, prenatal care, or social assistance. 61% of deaths were attributed to cesarean section, which indicates the major risk of surgical complications. PMID:12286240

Ferreira, C E

1992-01-01

331

MATERNAL HYPOTHYROXENEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN OFFSPRING.  

EPA Science Inventory

MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711. While severe hypothyroidis...

332

Fetal programming by maternal obesity increases offspring’s susceptibility to obesity in later-life  

Technology Transfer Automated Retrieval System (TEKTRAN)

To examine whether exposure of the developing fetus to an obese mother during pregnancy increases the risk of obesity in the children in later-life, we have developed an overfeeding-based model of maternal obesity in rats by tube feeding of liquid diets directly into the stomach using total enteral ...

333

Prolactin, neurogenesis, and maternal behaviors.  

PubMed

Elevated prolactin during pregnancy increases neurogenesis in the subventricular zone of the lateral ventricle (SVZ) of the maternal brain. Evidence from our laboratory has shown that low prolactin in early pregnancy, and the consequent suppression of neurogenesis in the SVZ in the adult brain, is associated with increased postpartum anxiety and markedly impaired maternal behavior. Daughters of low prolactin mothers also display increased anxiety and a significant delay in the onset of puberty, which is associated with epigenetic changes in neuronal development (see Fig. 1). This suggests that, in rodents, low prolactin in early pregnancy exerts long-term effects that influence maternal mood postpartum, and offspring development. This mini-review aims to summarize the evidence showing that the prolactin-induced increase in SVZ neurogenesis during pregnancy underlies normal postpartum maternal interactions with pups. PMID:21820505

Larsen, C M; Grattan, D R

2012-02-01

334

Interactive Fly: Maternally transcribed genes  

NSDL National Science Digital Library

The maternally transcribed genes section of the award-winning and comprehensive site: Interactive fly. It thoroughly discusses genes, tissues, biochemical paths, and developmental processes in the fruit fly, Drosophila.

PhD Thomas B Brody (NIH Laboratory of Neurochemistry)

2006-11-13

335

Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine  

SciTech Connect

Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probed with {sup 32}P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus.

Wolverton, C.K.; Leaman, D.W.; White, M.E.; Ramsay, T.G. (Ohio State Univ., Columbus (United States))

1990-02-26

336

Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15.  

PubMed

Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria, decreased blood urea nitrogen levels, and renal lesions; however, the LPD retarded growth and decreased serum albumin levels. Supplementation with KA corrected these abnormalities and provided superior renal protection compared with protein restriction alone. The levels of Kruppel-like factor-15 (KLF15), a transcription factor shown to reduce cardiac fibrosis, were decreased in remnant kidneys. Protein restriction, which increased KLF15 levels in the normal kidney, partially recovered the levels of KLF15 in remnant kidney. The expression of KLF15 in mesangial cells was repressed by oxidative stress, transforming growth factor-?, and tumor necrosis factor (TNF)-?. The suppressive effect of TNF-? on KLF15 expression was mediated by TNF receptor-1 and nuclear factor-?B. Overexpression of KLF15 in mesangial and HEK293 cells significantly decreased fibronectin and type IV collagen mRNA levels. Furthermore, KLF15 knockout mice developed glomerulosclerosis following uninephrectomy. Thus, KLF15 may be an antifibrotic factor in the kidney, and its decreased expression may contribute to the progression of kidney disease. PMID:21248717

Gao, Xiang; Huang, Lianghu; Grosjean, Fabrizio; Esposito, Vittoria; Wu, Jianxiang; Fu, Lili; Hu, Huimin; Tan, Jiangming; He, Cijian; Gray, Susan; Jain, Mukesh K; Zheng, Feng; Mei, Changlin

2011-05-01

337

Maternity support workers and safety in maternity care in England.  

PubMed

Errors in health care may lead to poor outcomes or even death. In maternity care the issue is more acute as most women and babies are healthy--and mistakes can have devastating effects. In the last 20 years 'patient' safety in maternity care has received significant attention in terms of both policy and research. With few exceptions, the resultant publications have been aimed at health service managers or registered health professionals. However a substantial section of the workforce now consists of support workers who may receive minimal training. This article aims to serve as a reminder that everyone is responsible for the safety of maternity care, and the learning needs of unregistered care staff require attention to strengthen safety defences. PMID:25582004

Lindsay, Pat

2014-11-01

338

Maternal and perinatal brain aromatase: effects of dietary soy phytoestrogens.  

PubMed

Phytoestrogens are extensively investigated for their potential to prevent many hormone-dependent cancers and age-related diseases, however little is known about their effects in brain. Brain aromatase and plasma phytoestrogen levels were determined in Sprague-Dawley rats fed a phytoestrogen-rich diet during pregnancy/lactation. Ingested phytoestrogens cross the placenta and become concentrated in maternal milk as evident from high infantile plasma concentrations. Dietary phytoestrogens, however, do not alter brain aromatase during pregnancy/lactation or perinatal development. PMID:11248356

Weber, K S; Setchell, K D; Lephart, E D

2001-02-28

339

Postzygotic Maternal Influences and the Maternal-Embryonic Relationship of Viviparous Fishes  

Microsoft Academic Search

SYNOPSIS. Viviparous reproduction in fishes provides opportunities for maternal phenotypic modifications to influence offspring phenotype fol- lowing fertilization. Various physiological adaptations associated with the maintenance and control of prenatal embryonic development may provide the means by which postnatal phenotype is impacted by maternal phe- notype. It is widely recognized that postzygotic maternal influences may be mediated through the maternal-embryonic trophic

JULIAN LOMBARDI

1996-01-01

340

Effects of maternal dietary olive oil on pathways involved in diabetic embryopathy.  

PubMed

Maternal diabetes induces a pro-oxidant/pro-inflammatory intrauterine environment related to the induction of congenital anomalies. Peroxisome proliferator activated receptors (PPARs) are transcription factors that regulate antioxidant and anti-inflammatory pathways. We investigated whether maternal diets supplemented with olive oil, enriched in oleic acid, a PPAR agonist, can regulate the expression of PPAR system genes, levels of lipoperoxidation and activity of matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) in embryos and decidua from diabetic rats. The embryos and decidua from diabetic rats showed reduced expression of PPARs and increased concentration of lipoperoxidation, MMPs and TIMPs, whereas the maternal treatments enriched in olive oil increased PPAR? in embryos and PPAR? and PPAR?-coactivator-1? expression in decidua, and increased TIMPs concentrations and decreased lipoperoxidation and MMPs activity in both tissues. Thus, maternal diets enriched in olive oil can regulate embryonic and decidual PPAR system genes expression and reduce the pro-oxidant/pro-inflammatory environment during rat early organogenesis. PMID:25246140

Higa, Romina; Roberti, Sabrina Lorena; Musikant, Daniel; Mazzucco, María Belén; White, Verónica; Jawerbaum, Alicia

2014-09-22

341

Role of Late Maternal Thyroid Hormones in Cerebral Cortex Development: An Experimental Model for Human Prematurity  

PubMed Central

Hypothyroxinemia affects 35–50% of neonates born prematurely (12% of births) and increases their risk of suffering neurodevelopmental alterations. We have developed an animal model to study the role of maternal thyroid hormones (THs) at the end of gestation on offspring's cerebral maturation. Pregnant rats were surgically thyroidectomized at embryonic day (E) 16 and infused with calcitonin and parathormone (late maternal hypothyroidism [LMH] rats). After birth, pups were nursed by normal rats. Pups born to LMH dams, thyroxine treated from E17 to postnatal day (P) 0, were also studied. In developing LMH pups, the cortical lamination was abnormal. At P40, heterotopic neurons were found in the subcortical white matter and in the hippocampal stratum oriens and alveus. The Zn-positive area of the stratum oriens of hippocampal CA3 was decreased by 41.5% showing altered mossy fibers’ organization. LMH pups showed delayed learning in parallel to decreased phosphorylated cAMP response element-binding protein (pCREB) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression in the hippocampus. Thyroxine treatment of LMH dams reverted abnormalities. In conclusion, maternal THs are still essential for normal offspring's neurodevelopment even after onset of fetal thyroid function. Our data suggest that thyroxine treatment of premature neonates should be attempted to compensate for the interruption of the maternal supply. PMID:19812240

Navarro, D.; Ausó, E.; Varea, E.; Rodríguez, A. E.; Ballesta, J. J.; Salinas, M.; Flores, E.; Faura, C. C.; Morreale de Escobar, G.

2010-01-01

342

Maternal immune transfer in mollusc.  

PubMed

Maternal immunity refers to the immunity transferred from mother to offspring via egg, playing an important role in protecting the offspring at early life stages and contributing a trans-generational effect on offspring's phenotype. Because fertilization is external in most of the molluscs, oocytes and early embryos are directly exposed to pathogens in the seawater, and thus maternal immunity could provide a better protection before full maturation of their immunological systems. Several innate immune factors including pattern recognition receptors (PRRs) like lectins, and immune effectors like lysozyme, lipopolysaccharide binding protein/bacterial permeability-increasing proteins (LBP/BPI) and antioxidant enzymes have been identified as maternally derived immune factors in mollusc eggs. Among these immune factors, some maternally derived lectins and antibacterial factors have been proved to endue mollusc eggs with effective defense ability against pathogen infection, while the roles of other factors still remain untested. The physiological condition of mollusc broodstock has a profound effect on their offspring fitness. Many other factors such as nutrients, pathogens, environment conditions and pollutants could exert considerable influence on the maternal transfer of immunity. The parent molluscs which have encountered an immune stimulation endow their offspring with a trans-generational immune capability to protect them against infections effectively. The knowledge on maternal transfer of immunity and the trans-generational immune effect could provide us with an ideal management strategy of mollusc broodstock to improve the immunity of offspring and to establish a disease-resistant family for a long-term improvement of cultured stocks. PMID:24858027

Wang, Lingling; Yue, Feng; Song, Xiaorui; Song, Linsheng

2015-02-01

343

Maternity telehealth: ringing the changes.  

PubMed

This article describes NHS Scotland's Maternity telehealth options project and the implementation of the recommendations made. This 17-month project resulted in the development of national documentation for recording telehealth calls; the development of a self-directed eLearning tool on maternity telehealth call structure which was made available to all health boards in Scotland; a comprehensive programme of training on telehealth for student midwives; a programme of 'Train-the-trainer' events for qualified midwives to enable the cascade of learning throughout the service. The project also involved collaboration with Health Scotland, signposting for women to contact the appropriate caregiver at the appropriate time. PMID:24386706

Finlay, Dorothy; Brown, Sheona

2013-12-01

344

Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life.  

PubMed

Brain docosahexaenoic acid (DHA, 22:6n-3) accumulates rapidly during brain development and is essential for normal neurological function. The aim of this study was to evaluate whether brain development was the critical period in which DHA deficiency leads to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress later in life. Rats were exposed to an n-3 fatty acid-deficient diet or the same diet supplemented with fish oil as an n-3 fatty acid-adequate diet either throughout the preweaning period from embryo to weaning at 3 weeks old or during the postweaning period from 3 to 10 weeks old. Exposure to the n-3 fatty acid-deficient diet during the preweaning period resulted, at weaning, in a significant decrease in hypothalamic DHA levels and a reduced male offspring body weight. DHA deficiency during the preweaning period significantly increased and prolonged restraint stress-induced changes in colonic temperature and serum corticosterone levels, caused a significant increase in GABA(A) antagonist-induced heart rate changes and enhanced depressive-like behavior in the forced swimming test and anxiety-like behavior in the plus-maze test in later life. These effects were not seen in male rats fed the n-3 fatty acid-deficient diet during the postweaning period. These results suggest that brain development is the critical period in which DHA deficiency leads to excessive HPA responses to stress and elevated behavioral indices of depression and anxiety in adulthood. We propose that these effects of hypothalamic DHA deficiency during brain development may involve a GABA(A) receptor-mediated mechanism. PMID:22818715

Chen, Hui-Feng; Su, Hui-Min

2013-01-01

345

Prenatal Maternal Stress Programs Infant Stress Regulation  

ERIC Educational Resources Information Center

Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…

Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.

2011-01-01

346

Maternal programming of defensive responses through sustained effects on gene expression.  

PubMed

There are profound maternal effects on individual differences in defensive responses and reproductive strategies in species ranging literally from plants to insects to birds. Maternal effects commonly reflect the quality of the environment and are most likely mediated by the quality of the maternal provision (egg, propagule, etc.), which in turn determines growth rates and adult phenotype. In this paper we review data from the rat that suggest comparable forms of maternal effects on defensive responses stress, which are mediated by the effects of variations in maternal behavior on gene expression. Under conditions of environmental adversity maternal effects enhance the capacity for defensive responses in the offspring. In mammals, these effects appear to 'program' emotional, cognitive and endocrine systems towards increased sensitivity to adversity. In environments with an increased level of adversity, such effects can be considered adaptive, enhancing the probability of offspring survival to sexual maturity; the cost is that of an increased risk for multiple forms of pathology in later life. PMID:16513241

Zhang, Tie-Yuan; Bagot, Rose; Parent, Carine; Nesbitt, Cathy; Bredy, Timothy W; Caldji, Christian; Fish, Eric; Anisman, Hymie; Szyf, Moshe; Meaney, Michael J

2006-07-01

347

Maternal Depression and Adolescent Behavior  

MedlinePLUS

... child pairs, tracking their general health and social environment from the child’s preschool years until they reached the age of 16 to 17. They looked closely at exposure to maternal depressive symptoms at various stages of youth development. At the start, only mothers filled out questionnaires. ...

348

Maternal Employment and Adolescent Development  

Microsoft Academic Search

This study investigates how maternal employment is related to the outcomes of 10 and 11 year olds, controlling for a wide variety of child, mother and family characteristics. The results suggest that limited amounts of work by mothers benefit youths who are relatively \\

Christopher J. Ruhm

2005-01-01

349

University of Sussex Maternity Guide  

E-print Network

. Work during maternity leave and keeping in touch 10 15. What do I need to do to ensure entitlement leave and pay 12 #12;1 1 Introduction 1.1 This guide is designed to help you if you are considering starting or adding to your family, or if you are already expecting a baby. It gives advice on the steps you

Sussex, University of

350

Maternal Bodies in Visual Culture  

Microsoft Academic Search

Simultaneously one and two, intimate and public, hidden and on display, the maternal body occupies a site of multiple interest and investments for the individual and for the collective. As a process that occurs within a woman's body, pregnancy is structurally located in the personal and private sphere, but is always also public property, signified and signifying through social and

Rosemary Betterton

351

UNIVERSITY OF ABERDEEN MATERNITY PROCEDURE  

E-print Network

to start. In line with current legislation, you must take a period of two weeks compulsory maternity leave are encouraged to inform your line manager, or arrange to meet your Human Resources Adviser if you prefer arrangements are available, you will be allowed leave on full pay for as long as the risk remains. #12

Levi, Ran

352

Links between maternal health and NCDs.  

PubMed

Non-communicable diseases (NCDs) and maternal health are closely linked. NCDs such as diabetes, obesity and hypertension have a significant adverse impact on maternal health and pregnancy outcomes, and through the mechanism of intrauterine programming maternal health impacts the burden of NCDs in future generations. The cycle of vulnerability to NCDs is repeated with increasing risk accumulation in subsequent generations. This article discusses the impact, interlinkages and advocates for integration of services for maternal and child health, NCD care and prevention and health promotion to sustainably improve maternal health as well address the rising burden of NCDs. PMID:25199858

Kapur, Anil

2015-01-01

353

Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation.  

PubMed

Previous studies demonstrated that stimulant drugs, such as cocaine or amphetamine, administered during gestation or lactation may attenuate maternal behavior in rats. The effect of methamphetamine (MA), a drug whose usage has increased lately, on maternal behavior has not yet been investigated. The present study tested the effect of MA (5 mg/kg daily) administered prior to, during and after gestation on maternal behavior. Regularity of the estrous cycle, the incidence of impregnation, and the weight gain was compared between groups (control, saline- and MA-treated). Maternal behavior was examined using two tests: Observation test (without disturbance of the mother and pups) and Retrieval test (with short separation of pups from the mother). All tests were conducted prior to dosing each day. In the Observation test, MA decreased the blanket position of active nursing, while increasing passive nursing. There were no MA-induced changes in other maternal activities such as mother being in the nest, in contact with pups, or grooming pups. MA increased some non-maternal activities, such as drinking, eating, and sleeping, while decreasing stereotypic behavior (sniffing and rearing) when compared to controls. In the Retrieval test, MA-treated mothers were slower in retrieving the first pup, returning the first pup into the nest, and returning all pups into the nest. Interestingly, there were differences in maternal behavior also in saline-treated mothers relative to controls. Saline-treated mothers spent more time in the nest and groomed pups more than controls or MA-treated mothers. In conclusion, the present study demonstrates a novel finding that MA administered during pre-mating, gestational and lactational periods has a negative effect on maternal behavior toward pups. PMID:15808793

Slamberová, Romana; Charousová, Petra; Pometlová, Marie

2005-01-01

354

Effect of postnatal maternal protein intake on prenatal programming of hypertension.  

PubMed

This study examined whether postnatal maternal dietary protein deprivation during the time of nursing can program hypertension when the offspring are studied as adults. Rats were fed either a 6% or 20% protein diet during the second half of pregnancy and continued on the same diet while rats were nursing their pups. The neonates of all of the rats were cross-fostered to a different mother and studied as adults. Adult rats that had a normal prenatal environment but were reared by mothers fed a low-protein diet until weaning (20%-6%) were hypertensive, had a higher renal Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) and Na(+)-Cl(-) cotransporter (NCC) protein abundance yet a comparable number of glomeruli, and had higher plasma renin and angiotensin II levels compared to control (20%-20%). Rats whose mothers were fed a 6% protein diet and cross-fostered to a different rat fed a 6% protein diet until weaning (6%-6%) were hypertensive, had elevated plasma renin and angiotensin II levels, and had a reduction in nephron number but had NKCC2 and NCC levels comparable to 20% to 20% offspring. The 6% to 20% had blood pressure and glomerular numbers comparable to 20% to 20% rats. The hypertension resulting from prenatal dietary protein deprivation can be normalized by improving the postnatal environment. Combined prenatal and postnatal maternal dietary protein deprivation and maternal dietary protein deprivation while nursing alone (20%-6%) results in hypertension, but the mechanism for the hypertension in these groups is different. PMID:24740990

Siddique, Khurrum; Guzman, German Lozano; Gattineni, Jyothsna; Baum, Michel

2014-12-01

355

Maternal non-phenylketonuric mild hyperphenylalaninemia.  

PubMed

Unlike maternal phenylketonuria (PKU) which produces severe birth defects when untreated during pregnancy, maternal non-PKU mild hyperphenylalaninemia (MHP) has a less severe impact but whether it is benign or may have long-term consequences for offspring has been unclear. From an international survey of maternal MHP we obtained information about 86 mothers (blood phenylalanine (Phe) 150-720 mumol/l), their 219 untreated pregnancies and 173 offspring. Spontaneous fetal loss and congenital anomalies were no more frequent than normally expected. Median Z-scores for birth length and birth head circumference and offspring IQ (100), however, were significantly lower for maternal Phe > 400 mumol/l than for maternal Phe < 400 mumol/l, in which the median offspring IQ was 108. Data on maternal MHP from the prospective Maternal PKU Collaborative Study (MPKUCS) are as yet incomplete but seem to be conforming to the general pattern of the international survey. We conclude that maternal blood Phe levels above 400 mumol/l in maternal MHP are associated with lower birth measurements and slightly lower offspring IQ. It would seem that dietary intervention to lower the maternal Phe levels to below 400 mumol/l might be indicated in maternal MHP pregnancies with the higher blood Phe levels. PMID:8828603

Levy, H L; Waisbren, S E; Lobbregt, D; Allred, E; Leviton, A; Koch, R; Hanley, W B; Rouse, B; Matalon, R; de la Cruz, F

1996-07-01

356

Effect of Maternal Steroid on Developing Diaphragm Integrity  

PubMed Central

Antenatal steroids reduce the severity of initial respiratory distress of premature newborn babies but may have an adverse impact on other body organs. The study aimed to examine the effect of maternal steroids on postnatal respiratory muscle function during development and elucidate the mechanisms underlying the potential myopathy in newborn rats. Pregnant rats were treated with intramuscular injections of 0.5 mg/kg betamethasone 7 d and 3 d before birth. Newborn diaphragms were dissected for assessment of contractile function at 2 d, 7 d or 21 d postnatal age (PNA), compared with age-matched controls. The expression of myosin heavy chain (MHC) isoforms and atrophy-related genes and activity of intracellular molecular signalling were measured using quantitative PCR and/or Western blot. With advancing PNA, neonatal MHC gene expression decreased progressively while MHC IIb and IIx isoforms increased. Protein metabolic signalling showed high baseline activity at 2 d PNA, and significantly declined at 7 d and 21 d. Antenatal administration of betamethasone significantly decreased diaphragm force production, fatigue resistance, total fast fibre content and anabolic signalling activity (Akt and 4E-BP1) in 21 d diaphragm. These responses were not observed in 2 d or 7 d postnatal diaphragm. Results demonstrate that maternal betamethasone treatment causes postnatal diaphragmatic dysfunction at 21 d PNA, which is attributed to MHC II protein loss and impairment of the anabolic signalling pathway. Developmental modifications in MHC fibre composition and protein signalling account for the age-specific diaphragm dysfunction. PMID:24681552

Song, Yong; Demmer, Denise L.; Pinniger, Gavin J.; Lavin, Tina; MacMillan, Mia V.; Pillow, Jane J.; Bakker, Anthony J.

2014-01-01

357

Maternal Undernutrition Programs Offspring Adrenal Expression of Steroidogenic Enzymes  

PubMed Central

The aim of this study was to determine the influence of maternal undernutrition (MUN) on maternal and offspring adrenal steoridogenic enzymes. Pregnant Sprague-Dawley rats were 50% food-restricted from day 10 of gestation until delivery. Control animals received ad libitum food. Offspring were killed on day 1 of life (P1) and at 9 months. We determined the messenger RNA (mRNA) expression of steroidogneic enzymes by real-time reverse transcriptase polymerized chain reaction (RT-PCR). Maternal undernutrition inhibited maternal adrenal expression of P450 cholesterol side-chain cleavage enzyme (CYP11A1), 11 beta-hydroxylase (CYP11B1), aldosterone synthase (CYP11B2), and adrenocorticotropic hormone (ACTH) receptor (ACTH-R; MC2 gene) compared with control offspring. There was a marked downregulation in the expression of CYP11B1, CYP11B2, 11 ?-hydroxysteroid dehydrogenase type 1 and 2 (HSD1 and HSD2), CYP11A1, ACTH receptor, steroidogenic acute regulatory protein (STAR), and mineralocorticoid receptor (MCR; NR3C2 gene) mRNA in P1 MUN offspring (both genders), with no changes in glucocorticoid receptor (GCR). Quantitative immunohistochemical analysis confirmed the PCR data for GCR and MCR in P1 offspring and demonstrated lower expression of leptin receptor protein (Ob-Ra/Ob-Rb) and mRNA in P1 MUN offspring. In 9-month adult male MUN offspring, the expression of HSD1, CYP11A1, CYP11B2, Ob-Ra/Ob-Rb, and GCR mRNA were significantly upregulated with a trend toward an increase in ACTH-R and a decrease in 17 alpha-hydroxylase (CYP17A1) expression. In adult female MUN offspring, similar to males, the expression of CYP11A1, ACTH-R, and Ob-Rb mRNA were increased, whereas GCR and CYP17A1 mRNA were decreased. These results indicate that the adrenal gland is a target of nutritional programming. In utero undernutrition has a global suppressive effect on maternal and P1 offspring adrenal steroidogenic enzymes in association with reduced circulating corticosterone levels in P1 offspring, which may be secondary to a negative feedback from elevated maternal GC levels and or leptin levels in MUN dams. Gender-specific differences in steroidogenic enzyme expression were found in adult MUN offspring. The common finding of increased ACTH receptor expression in MUN adults of both genders suggests an increased sensitivity of these offspring to stress. PMID:21566243

Khorram, Naseem M.; Magee, Thomas R.; Wang, Chen; Desai, Mina; Ross, Michael; Khorram, Omid

2011-01-01

358

KIDNEY MORPHOLOGY AND FUNCTION IN THE YOUNG OF RATS MALNOURISHED AND EXPOSED TO NITROFEN DURING PREGNANCY  

EPA Science Inventory

The separate and combined effects of prenatal protein deficiency (65 casein) and prenatal nitrofen exposure (12.5 mg/kg on gestational days 7-21) on renal morphology in the 21-day fetal and postnatal rat were examined. Maternal protein deprivation reduced maternal feed intake, fe...

359

Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats  

PubMed Central

During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics. PMID:25210695

Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

2014-01-01

360

Maternal methyl donors supplementation during lactation prevents the hyperhomocysteinemia induced by a high-fat-sucrose intake by dams.  

PubMed

Maternal perinatal nutrition may program offspring metabolic features. Epigenetic regulation is one of the candidate mechanisms that may be affected by maternal dietary methyl donors intake as potential controllers of plasma homocysteine levels. Thirty-two Wistar pregnant rats were randomly assigned into four dietary groups during lactation: control, control supplemented with methyl donors, high-fat-sucrose and high-fat-sucrose supplemented with methyl donors. Physiological outcomes in the offspring were measured, including hepatic mRNA expression and global DNA methylation after weaning. The newborns whose mothers were fed the obesogenic diet were heavier longer and with a higher adiposity and intrahepatic fat content. Interestingly, increased levels of plasma homocysteine induced by the maternal high-fat-sucrose dietary intake were prevented in both sexes by maternal methyl donors supplementation. Total hepatic DNA methylation decreased in females due to maternal methyl donors administration, while Dnmt3a hepatic mRNA levels decreased accompanying the high-fat-sucrose consumption. Furthermore, a negative association between Dnmt3a liver mRNA levels and plasma homocysteine concentrations was found. Maternal high-fat-sucrose diet during lactation could program offspring obesity features, while methyl donors supplementation prevented the onset of high hyperhomocysteinemia. Maternal dietary intake also affected hepatic DNA methylation metabolism, which could be linked with the regulation of the methionine-homocysteine cycle. PMID:24351826

Cordero, Paul; Milagro, Fermin I; Campion, Javier; Martinez, J Alfredo

2013-01-01

361

Elevated maternal cortisol leads to relative maternal hyperglycemia and increased stillbirth in ovine pregnancy.  

PubMed

In normal pregnancy, cortisol increases; however, further pathological increases in cortisol are associated with maternal and fetal morbidities. These experiments were designed to test the hypothesis that increased maternal cortisol would increase maternal glucose concentrations, suppress fetal growth, and impair neonatal glucose homeostasis. Ewes were infused with cortisol (1 mg·kg(-1)·day(-1)) from day 115 of gestation to term; maternal glucose, insulin, ovine placental lactogen, estrone, progesterone, nonesterified free fatty acids (NEFA), ?-hydroxybutyrate (BHB), and electrolytes were measured. Infusion of cortisol increased maternal glucose concentration and slowed the glucose disappearance after injection of glucose; maternal infusion of cortisol also increased the incidence of fetal death at or near parturition. The design of the study was altered to terminate the study prior to delivery, and post hoc analysis of the data was performed to test the hypothesis that maternal metabolic factors predict the fetal outcome. In cortisol-infused ewes that had stillborn lambs, plasma insulin was increased relative to control ewes or cortisol-infused ewes with live lambs. Maternal cortisol infusion did not alter maternal food intake or plasma NEFA, BHB, estrone, progesterone or placental lactogen concentrations, and it did not alter fetal body weight, ponderal index, or fetal organ weights. Our study suggests that the adverse effect of elevated maternal cortisol on pregnancy outcome may be related to the effects of cortisol on maternal glucose homeostasis, and that chronic maternal stress or adrenal hypersecretion of cortisol may create fetal pathophysiology paralleling some aspects of maternal gestational diabetes. PMID:24920731

Keller-Wood, Maureen; Feng, Xiaodi; Wood, Charles E; Richards, Elaine; Anthony, Russell V; Dahl, Geoffrey E; Tao, Sha

2014-08-15

362

Effect of Maternal Care on Hearing Onset Induced by Developmental Changes in the Auditory Periphery  

PubMed Central

Handling (H) and cross-fostering (CF) rodent pups during postnatal development triggers changes in maternal behavior which in turn trigger long-term physiological changes in the offspring. However, less is known about the short-term effects of H and CF on infant development. In this study we hypothesized that manipulations of maternal care affect the onset of hearing in Wistar rats. To test this hypothesis we obtained auditory brainstem responses (ABRs) and micro-CT x-ray scans to measure changes in the development of the auditory periphery in H and CF pups manipulated at postnatal day (P)1, P5, or P9. We found evidence of changes in hearing development in H and CF pups compared with naive pups, including changes in the percentage of animals with ABRs during development, a decrease in ABR thresholds between P13 and P15, and anatomical results consistent with an accelerated formation of the middle ear cavity and opening of the ear canal. Biochemical measurements showed elevated levels of thyroid hormone in plasma from naive and CF pups. These results provide evidence that manipulations of maternal care accelerate hearing onset in Wistar rats. Understanding the mechanisms by which maternal care affects hearing onset opens new opportunities to study experience-dependent development of mammalian hearing. PMID:24671998

Adise, Shana; Saliu, Aminat; Maldonado, Natalia; Khatri, Vivek; Cardoso, Luis

2014-01-01

363

Maternal phenylketonuria: an international study.  

PubMed

Maternal phenylketonuria (PKU) syndrome results in multiple congenital anomalies in the offspring, usually consisting of microcephaly, intrauterine growth retardation, dysmorphology, and congenital heart disease. Pregnancies treated preconceptionally with a phenylalanine-restricted diet and control of maternal blood phenylalanine levels within the recommended range result in normal offspring. However, in this 15-year study, several significant factors resulted in microcephaly in 27% of the offspring, and 7% exhibited serious congenital heart disease. These results occurred chiefly in women with mean IQ scores of 83 associated with low socioeconomic status and decreased educational achievement. Another important factor associated with suboptimal control of blood phenylalanine levels during pregnancy was the fact that most pregnancies were not carefully planned and occurred in women off dietary treatment with phenylalanine-restricted products. These results indicate that greater effort must be developed to assist women with PKU in remaining on diet during their reproductive years. It appears that continued adherence to the diet, resulting in normal maternal intelligence, is an important contribution to improved fetal development. PMID:11001815

Koch, R; Hanley, W; Levy, H; Matalon, R; Rouse, B; Trefz, F; Guttler, F; Azen, C; Friedman, E; Platt, L; de la Cruz, F

2000-01-01

364

Introduction Evolution of maternal effects: past and present  

E-print Network

Introduction Evolution of maternal effects: past and present 1. A BRIEF HISTORY OF `MATERNAL true for the subfield of maternal effects evolution. The study of maternal effects has a long history of Maternal effects as adaptations by Oxford University Press (Mousseau & Fox 1998a). On a geological time

Badyaev, Alex

365

Maternal self-esteem, exposure to lead, and child neurodevelopment  

Microsoft Academic Search

The notion that maternal personality characteristics influence cognitive development in their children has been grounded in stress moderation theory. Maternal personality traits, such as self-esteem, may buffer maternal stressors or lead to improved maternal–child interactions that directly impact neurodevelopment. This can be extended to suggest that maternal personality may serve to attenuate or exacerbate the effects of other neurotoxicants, although

Pamela J. Surkan; Lourdes Schnaas; Rosalind J. Wright; Martha M. Téllez-Rojo; Héctor Lamadrid-Figueroa; Howard Hu; Mauricio Hernández-Avila; David C. Bellinger; Joel Schwartz; Estela Perroni; Robert O. Wright

2008-01-01

366

Adoption, ART, and a re-conception of the maternal body: toward embodied maternity.  

PubMed

We criticize a view of maternity that equates the natural with the genetic and biological and show how such a practice overdetermines the maternal body and the maternal experience for women who are mothers through adoption and ART (Assisted Reproductive Technologies). As an alternative, we propose a new framework designed to rethink maternal bodies through the lens of feminist embodiment. Feminist embodied maternity, as we call it, stresses the particularity of experience through subjective embodiment. A feminist embodied maternity emphasizes the physical relations of the subjective lived-body rather than the genetic or biological connections. Instead of universalizing claims about the maternal body, embodied maternity looks to communicable experiences and empathetic understanding. PMID:17111556

Brakman, Sarah-Vaughan; Scholz, Sally J

2006-01-01

367

Antenatal maternal stress alters functional brain responses in adult offspring during conditioned fear  

Microsoft Academic Search

Antenatal maternal stress has been shown in rodent models and in humans to result in altered behavioral and neuroendocrine responses, yet little is known about its effects on functional brain activation. Pregnant female rats received a daily foot-shock stress or sham-stress two days after testing plug-positive and continuing for the duration of their pregnancy. Adult male offspring (age 14weeks) with

Theodore R. Sadler; Peter T. Nguyen; Jun Yang; Tina K. Givrad; Emeran A. Mayer; Jean-Michel I. Maarek; David R. Hinton; Daniel P. Holschneider

2011-01-01

368

Estimation of direct additive, maternal additive, heterotic and maternal heterotic effects from crossbreeding goats in Kenya  

E-print Network

ESTIMATION OF DIRECT ADDITIVE, MATERNAL ADDITIVE, HETEROTIC AND MATERNAL HETEROTIC EFFECTS FROM CROSSBREEDING GOATS IN KENYA A Thesis by CAMILLIJS OSUNDO AJJJJYA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 t'Jajor Subject: Animal Breeding ESTIMATION OF DIRECT ADDITIVE, MATERNAL ADDITIVE, HETEROTIC AND MATERNAL HETEROTIC EFFECTS FROM CROSSBREEDING GOATS IN KENYA A Thesis CAMILLUS OSUNDO AHUYA...

Ahuya, Camillus Osundo

1987-01-01

369

Maternal Fructose Intake Induces Insulin Resistance and Oxidative Stress in Male, but Not Female, Offspring  

PubMed Central

Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol) throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24?h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity) were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers) were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny.

Rodríguez, Lourdes; Otero, Paola; Panadero, María I.; Rodrigo, Silvia; Álvarez-Millán, Juan J.; Bocos, Carlos

2015-01-01

370

The Neuroendocrinology of Primate Maternal Behavior  

PubMed Central

In nonhuman primates and humans, similar to other mammals, hormones are not strictly necessary for the expression of maternal behavior, but nevertheless influence variation in maternal responsiveness and parental behavior both within and between individuals. A growing number of correlational and experimental studies have indicated that high circulating estrogen concentrations during pregnancy increase maternal motivation and responsiveness to infant stimuli, while effects of prepartum or postpartum estrogens and progestogens on maternal behavior are less clear. Prolactin is thought to play a role in promoting paternal and alloparental care in primates, but little is known about the relationship between this hormone and maternal behavior. High circulating cortisol levels appear to enhance arousal and responsiveness to infant stimuli in young, relatively inexperienced female primates, but interfere with the expression of maternal behavior in older and more experienced mothers. Among neuropeptides and neurotransmitters, preliminary evidence indicates that oxytocin and endogenous opioids affect maternal attachment to infants, including maintenance of contact, grooming, and responses to separation. Brain serotonin affects anxiety and impulsivity, which in turn may affect maternal behaviors such as infant retrieval or rejection of infants’ attempts to make contact with the mother. Although our understanding of the neuroendocrine correlates of primate maternal behavior has grown substantially in the last two decades, very little is known about the mechanisms underlying these effects, e.g., the extent to which these mechanisms may involve changes in perception, emotion, or cognition. PMID:20888383

Saltzman, Wendy; Maestripieri, Dario

2010-01-01

371

Demonstrating programme impact on maternal mortality.  

PubMed

Reducing maternal mortality if one of the primary goals of safe mother hood programmes in developing countries. Maternal mortality is not, however, a feasible outcome indicator with which to judge the success of these programmes. This is due to an unfortunate combination of obstacles to measurement--some general to assessing the mortality impact of health programmes and some peculiar to estimating maternal mortality. There is a need to promote alternative views and measures of programme success, and alternative uses for information on maternal deaths. PMID:10155877

Graham, W J; Filippi, V A; Ronsmans, C

1996-03-01

372

The Effect of Maternal Depressive Symptomatology on Maternal Behaviors Associated With Child Health  

Microsoft Academic Search

National prevalence rates for depression among women are twofold compared with those of men, with women of childbearing age at greatest risk. Maternal depression not only negatively affects the health of the mother but may also influence the health and development of her offspring. This study examined the relationship between maternal depression and its influence on certain maternal behaviors associated

Jenn Leiferman

2002-01-01

373

Maternal Psychiatric Disorders, Parenting, and Maternal Behavior in the Home during the Child Rearing Years  

ERIC Educational Resources Information Center

Data from the Children in the Community Study, a community-based longitudinal study, were used to investigate associations between maternal psychiatric disorders and child-rearing behaviors. Maternal psychiatric symptoms and behavior in the home were assessed in 782 families during the childhood and adolescence of the offspring. Maternal anxiety,…

Johnson, Jeffrey G.; Cohen, Patricia; Kasen, Stephanie; Brook, Judith S.

2006-01-01

374

Maternal and Adolescent Temperament as Predictors of Maternal Affective Behavior during Mother-Adolescent Interactions  

ERIC Educational Resources Information Center

This study examined maternal and early adolescent temperament dimensions as predictors of maternal emotional behavior during mother-adolescent interactions. The sample comprised 151 early adolescents (aged 11-13) and their mothers (aged 29-57). Adolescent- and mother-reports of adolescent temperament and self-reports of maternal temperament were…

Davenport, Emily; Yap, Marie B. H.; Simmons, Julian G.; Sheeber, Lisa B.; Allen, Nicholas B.

2011-01-01

375

Evidence from Maternity Leave Expansions of the Impact of Maternal Care on Early Child Development  

ERIC Educational Resources Information Center

We study the impact of maternal care on early child development using an expansion in Canadian maternity leave entitlements. Following the leave expansion, mothers who took leave spent 48-58 percent more time not working in their children's first year of life. This extra maternal care primarily crowded out home-based care by unlicensed…

Baker, Michael; Milligan, Kevin

2010-01-01

376

Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.  

PubMed

Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

2012-01-01

377

Brain oxytocin correlates with maternal aggression: Link to anxiety   

E-print Network

The oxytocinergic system is critically involved in the regulation of maternal behavior, which includes maternal aggression. Because aggression has been linked to anxiety, we investigated the maternal aggression and the ...

Meddle, S. L.; Beiderbeck, D. I.; Douglas, A. J.; Neumann, I. D.; Bosch, O. J.

2005-01-01

378

Understanding Global Trends in Maternal Mortality  

PubMed Central

CONTEXT Despite the fact that most maternal deaths are preventable, maternal mortality remains high in many developing countries. Target A of Millennium Development Goal (MDG) 5 calls for a three-quarters reduction in the maternal mortality ratio (MMR) between 1990 and 2015. METHODS We derived estimates of maternal mortality for 172 countries over the period 1990–2008. Trends in maternal mortality were estimated either directly from vital registration data or from a hierarchical or multilevel model, depending on the data available for a particular country. RESULTS The annual number of maternal deaths worldwide declined by 34% between 1990 and 2008, from approximately 546,000 to 358,000 deaths. The estimated MMR for the world as a whole also declined by 34% over this period, falling from 400 to 260 maternal deaths per 100,000 live births. Between 1990 and 2008, the majority of the global burden of maternal deaths shifted from Asia to Sub-Saharan Africa. Differential trends in fertility, the HIV/ AIDS epidemic and access to reproductive health are associated with the shift in the burden of maternal deaths from Asia to Sub-Saharan Africa. CONCLUSIONS Although the estimated annual rate of decline in the global MMR in 1990–2008 (2.3%) fell short of the level needed to meet the MDG 5 target, it was much faster than had been thought previously. Targeted efforts to improve access to quality maternal health care, as well as efforts to decrease unintended pregnancies through family planning, are necessary to further reduce the global burden of maternal mortality. PMID:23584466

Zureick-Brown, Sarah; Newby, Holly; Chou, Doris; Mizoguchi, Nobuko; Say, Lale; Suzuki, Emi; Wilmoth, John

2013-01-01

379

Marathon Maternity Oral History Project  

PubMed Central

Abstract Objective To explore how birthing and maternity care are understood and valued in a rural community. Design Oral history research. Setting The rural community of Marathon, Ont, with a population of approximately 3500. Participants A purposive selection of mothers, grandmothers, nurses, physicians, and community leaders in the Marathon medical catchment area. Methods Interviews were conducted with a purposive sample, employing an oral history research methodology. Interviews were conducted non-anonymously in order to preserve the identity and personhood of participants. Interview transcripts were edited into short narratives. Oral histories offer perspectives and information not revealed in other quantitative or qualitative research methodologies. Narratives re-personalize and humanize medical research by offering researchers and practitioners the opportunity to bear witness to the personal stories affected through medical decision making. Main findings Eleven stand-alone narratives, published in this issue of Canadian Family Physician, form the project’s findings. Similar to a literary text or short story, they are intended for personal reflection and interpretation by the reader. Presenting the results of these interviews as narratives requires the reader to participate in the research exercise and take part in listening to these women’s voices. The project’s narratives will be accessible to readers from academic and non-academic backgrounds and will interest readers in medicine and allied health professions, medical humanities, community development, gender studies, social anthropology and history, and literature. Conclusion Sharing personal birthing experiences might inspire others to reevaluate and reconsider birthing practices and services in other communities. Where local maternity services are under threat, Marathon’s stories might contribute to understanding the meaning and challenges of local birthing, and the implications of losing maternity services in rural Canada. PMID:24452565

Orkin, Aaron; Newbery, Sarah

2014-01-01

380

Inhibition of self-grooming induced by sleep restriction in dam rats  

PubMed Central

Background & objectives: Sleep restriction is a common feature of modern lifestyle and its effects can be extended to pregnancy. Several neurobehavioural consequences of sleep restriction during pregnancy have been reported, among which stand out perinatal depression and maternal fatigue, however, its effects over mother-infant relationship warrant further investigation. Thus, this study was aimed to evaluate the effects of sleep restriction during pregnancy over maternal behaviour and maternal aggression through animal models. Methods: Eighteen 90-day-old female Wistar rats were distributed in two groups: (i) Control - not submitted to any manipulation during pregnancy, and (ii) Sleep restriction - submitted to sleep restriction during the entire pregnancy (21 days) through the multiple platforms technique. In the postpartum day 5, resident-intruder paradigm and the latencies test were performed to assess both maternal behaviour and maternal aggression. Results: The sleep-restricted females displayed grooming in less frequency and duration, and with higher latency when compared to normal animals, while maternal aggression and maternal behaviour parameters remained equivalent between groups. Interpretation & conclusions: Considering the maintenance of maternal behavioural parameters, the inhibition of grooming seems to exert an adaptive mechanism, enabling sleep-restricted rats to display maternal behaviour properly. PMID:23391800

Pires, Gabriel Natan; Alvarenga, Tathiana Aparecida; Maia, Lucas Oliveira; Mazaro-Costa, Renata; Tufik, Sergio; Andersen, Monica Levy

2012-01-01

381

Towards ending preventable maternal deaths by 2035.  

PubMed

Maternal mortality has been reduced by half from 1990 to 2010, yet a woman in sub-Saharan Africa has a lifetime risk of maternal death of 1 in 39 compared with around 1 in 10,000 in industrialized countries. Annual rates of reduction of maternal mortality of over 10% have been achieved in several countries. Highly cost-effective interventions exist and are being scaled up, such as family planning, emergency obstetric and newborn care, quality service delivery, midwifery, maternal death surveillance and response, and girls' education; however, coverage still remains low. Maternal mortality reduction is now high on the global agenda. We examined scenarios of reduction of maternal mortality by 2035. Ending preventable maternal deaths could be achieved in nearly all countries by 2035 with challenging yet realistic efforts: (1) massive scaling-up and skilling up of human resources for family planning and maternal health; (2) reaching every village in every district and every urban slum toward universal health coverage; (3) enhanced financing; (4) knowledge for action: enhanced monitoring, accountability, evaluation, and R&D. PMID:25565508

Bergevin, Yves; Fauveau, Vincent; McKinnon, Britt

2015-01-01

382

Appendix B: Maternal Behavior Q-Set.  

ERIC Educational Resources Information Center

Presents the Maternal Behavior Q-Set, a 90-item assessment that describes a wide range of maternal behavior including interactive style, her sensitivity to her infant's state, feeding interactions, and the extent to which the home reflects the infant's needs. (HTH)

Pederson, David R.; Moran, Greg

1995-01-01

383

Maternal Depression and Childhood Health Inequalities  

ERIC Educational Resources Information Center

An increasing body of literature documents considerable inequalities in the health of young children in the United States, though maternal depression is one important, yet often overlooked, determinant of children's health. In this article, the author uses data from the Fragile Families and Child Wellbeing Study (N = 4,048) and finds that maternal

Turney, Kristin

2011-01-01

384

NATIONAL MATERNAL AND INFANT HEALTH SURVEY (NMIHS)  

EPA Science Inventory

The National Maternal and Infant Health Survey (NMIHS) provides data on maternal and infant health, including prenatal care, birth weight, fetal loss, and infant mortality. The objective of the NMIHS is to collect data needed by Federal, State, and private researchers to study fa...

385