Science.gov

Sample records for maternal protein-restricted rats

  1. Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat.

    PubMed

    Torres, Nimbe; Bautista, Claudia J; Tovar, Armando R; Ordáz, Guillermo; Rodríguez-Cruz, Maricela; Ortiz, Victor; Granados, Omar; Nathanielsz, Peter W; Larrea, Fernando; Zambrano, Elena

    2010-02-01

    Suboptimal developmental environments program offspring to lifelong metabolic problems. The aim of this study was to determine the impact of protein restriction in pregnancy on maternal liver lipid metabolism at 19 days of gestation (dG) and its effect on fetal brain development. Control (C) and restricted (R) mothers were fed with isocaloric diets containing 20 and 10% of casein. At 19 dG, maternal blood and livers and fetal livers and brains were collected. Serum insulin and leptin levels were determinate in mothers. Maternal and fetal liver lipid and fetal brain lipid quantification were performed. Maternal liver and fetal brain fatty acids were quantified by gas chromatography. In mothers, liver desaturase and elongase mRNAs were measured by RT-PCR. Maternal body and liver weights were similar in both groups. However, fat body composition, including liver lipids, was lower in R mothers. A higher fasting insulin at 19 dG in the R group was observed (C = 0.2 +/- 0.04 vs. R = 0.9 +/- 0.16 ng/ml, P < 0.01) and was inversely related to early growth retardation. Serum leptin in R mothers was significantly higher than that observed in C rats (C = 5 +/- 0.1 vs. R = 7 +/- 0.7 ng/ml, P < 0.05). In addition, protein restriction significantly reduced gene expression in maternal liver of desaturases and elongases and the concentration of arachidonic (AA) and docosahexanoic (DHA) acids. In fetus from R mothers, a low body weight (C = 3 +/- 0.3 vs. R = 2 +/- 0.1 g, P < 0.05), as well as liver and brain lipids, including the content of DHA in the brain, was reduced. This study showed that protein restriction during pregnancy may negatively impact normal fetal brain development by changes in maternal lipid metabolism. PMID:19920218

  2. Developmental Programming of Cardiovascular Disease Following Intrauterine Growth Restriction: Findings Utilising A Rat Model of Maternal Protein Restriction

    PubMed Central

    Zohdi, Vladislava; Lim, Kyungjoon; Pearson, James T.; Black, M. Jane

    2014-01-01

    Over recent years, studies have demonstrated links between risk of cardiovascular disease in adulthood and adverse events that occurred very early in life during fetal development. The concept that there are embryonic and fetal adaptive responses to a sub-optimal intrauterine environment often brought about by poor maternal diet that result in permanent adverse consequences to life-long health is consistent with the definition of “programming”. The purpose of this review is to provide an overview of the current knowledge of the effects of intrauterine growth restriction (IUGR) on long-term cardiac structure and function, with particular emphasis on the effects of maternal protein restriction. Much of our recent knowledge has been derived from animal models. We review the current literature of one of the most commonly used models of IUGR (maternal protein restriction in rats), in relation to birth weight and postnatal growth, blood pressure and cardiac structure and function. In doing so, we highlight the complexity of developmental programming, with regards to timing, degree of severity of the insult, genotype and the subsequent postnatal phenotype. PMID:25551250

  3. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    PubMed

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. PMID:26586904

  4. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    PubMed

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. PMID:26763577

  5. Maternal protein reserves and their influence on lactational performance in rats. 3. The effects of dietary protein restriction and stage of lactation on milk composition.

    PubMed

    Pine, A P; Jessop, N S; Oldham, J D

    1994-12-01

    The effects of severe protein restriction following parturition on the changes in rat milk composition during lactation were investigated using multiparous female Sprague-Dawley rats caged individually following mating and offered a high-protein diet (H; 215 g crude protein (N x 6.25; CP)/kg dry matter (DM)) ad lib. until parturition. Following parturition, half the females continued to receive diet H, whilst the remainder were offered a diet low in protein (L; 90 g CP/kg DM) ad lib. On days 2, 4, 8 and 12 of lactation groups of females from both dietary treatments were used to provide a milk sample. Milk samples were analysed for their lactose (enzymically), protein (binding to Coomassie blue), lipid (gravimetrically) and mineral (spectrophotometrically) contents. The milk lactose concentration of group H increased with stage of lactation (r2 0.85, P < 0.001). Such an increase was prevented by diet L, and from day 8 of lactation the milk lactose of group L was lower (P < 0.05) than in group H. Group H milk protein concentration did not change during lactation and averaged 90.7 mg/g. Dietary protein restriction reduced the milk protein concentration of group L so that on days 2, 4 and 12 of lactation it was lower (P < 0.05) than that of group H. On day 8 of lactation the milk protein concentration of group L had increased (P < 0.05) and was comparable with that of group H. For group H, milk lipid averaged 166.8 mg/g and was generally unchanged during lactation. Diet L increased (P < 0.01) the milk lipid concentration (205.5 mg/g) compared with diet H and this was also significant on days 4 and 8 of lactation (P < 0.05). Group L milk lipid concentration also increased between days 4 and 8 of lactation (P < 0.05). Milk Na concentration declined during lactation in both dietary groups (P < 0.01) but was unaffected by dietary treatment. Both milk Ca and P concentrations increased (P < 0.01) during lactation in both dietary groups, whilst protein restriction also increased the Ca and P concentrations (P < 0.05). Milk K and Mg concentrations were unaffected by dietary treatment or stage of lactation. This significant alteration in the milk composition of severely protein-restricted dams, while possibly favouring the disposal of greater quantities of energy-yielding nutrients, suggests that equations developed for the estimation of milk production in rats cannot be used under such conditions. PMID:7827003

  6. Maternal protein restriction induces alterations in hepatic tumor necrosis factor-α/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring

    PubMed Central

    Liu, Xiaomei; Qi, Ying; Tian, Baoling; Chen, Dong; Gao, Hong; Xi, Chunyan; Xing, Yanlin; Yuan, Zhengwei

    2014-01-01

    It is well recognized that adverse events in utero impair fetal development and lead to the development of obesity and metabolic syndrome in adulthood. To investigate the mechanisms linking impaired fetal growth to increased cholesterol, an important clinical risk factor characterizing the metabolic syndrome and cardiovascular disease, we examined the impact of maternal undernutrition on tumor necrosis factor-α (TNF-α)/c-jun N-terminal kinase (JNK) signaling pathway and the cholesterol 7α-hydroxylase (CYP7A1) expression in the livers of the offspring with a protein restriction model. The male offspring with intrauterine growth restriction (IUGR) caused by the isocaloric low-protein diet showed decreased liver weight at birth and augmented circulation and hepatic cholesterol levels at 40 weeks of age. Maternal undernutrition significantly upregulated cytokine TNF-α expression and JNK phospholytion levels in the livers from fetal age to adulthood. Elevated JNK phospholytion could be linked to downregulated hepatocyte nuclear factor-4α and CYP7A1 expression, subsequently led to higher hepatic cholesterol. This work demonstrated that intrauterine malnutrition-induced IUGR might result in intrinsic disorder in hepatic TNF-α/CYP7A1 signaling, and contribute to the development of hypercholesterolemia in later life. PMID:25120278

  7. Gestational protein restriction alters cell proliferation in rat placenta.

    PubMed

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; de Sousa Righi, Eloá Fernanda; Catisti, Rosana

    2016-04-01

    We recently showed that gestational protein restriction (GPR) alters the structure of the rat placenta on day 19 of gestation (dG). The aim of the study was to investigate the spatial and temporal immunolocalization of proliferating cell antigen Ki67 in normal and GPR placental development. Pregnant Wistar rats were divided into two groups: normal (NP, 17 % casein) or low-protein diet (LP, 6 % casein). Placentas and fetus were collected and weighed at 15, 17, 19 and 21 dG. Morphological, morphometric and ultrastructural analyses were performed. Immunoperoxidase was used to identify nuclear antigen Ki67 in placental sections. We observed a significant reduction in the number of trophoblast giant cells and glycogen cells in the LP group. Placental weight was significantly reduced only at 17 dG in the LP group, in parallel to a decrease in glycogen cells. From 15 to 21 dG, the thickness of the junctional zone (JZ) decreased in NP and LP animals, while that of the labyrinth zone (LZ) increased in parallel to a reduction in the number of proliferating cells in this LZ zone. GPR significantly inhibits cell proliferation in the JZ, especially at 15 and 17 dG. The ultrastructural appearance of the cytoplasm of giant and cytotrophoblastic cells indicates degeneration from 15 to 21 dG and this effect is enhanced in LP animals suggesting early aging. Offspring of NP dams were significantly heavier than offspring of LP dams at 21 dG. GPR causes modifications in specific regions of the placenta, cell proliferation inhibition and fetal growth restriction. PMID:26779652

  8. Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375.

    PubMed

    Dumortier, Olivier; Hinault, Charlotte; Gautier, Nadine; Patouraux, Stéphanie; Casamento, Virginie; Van Obberghen, Emmanuel

    2014-10-01

    The intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined. In rats, restriction of protein during gestation alters the development of the endocrine pancreas and favors the occurrence of T2D later in life. Here we evaluate the potential role of perturbed microRNA (miRNA) expression in the decreased β-cell mass and insulin secretion characterizing progeny of pregnant dams fed a low-protein (LP) diet. miRNA profiling shows increased expression of several miRNAs, including miR-375, in the pancreas of fetuses of mothers fed an LP diet. The expression of miR-375 remains augmented in neoformed islets derived from fetuses and in islets from adult (3-month-old) progeny of mothers fed an LP diet. miR-375 regulates the proliferation and insulin secretion of dissociated islet cells, contributing to the reduced β-cell mass and function of progeny of mothers fed an LP diet. Remarkably, miR-375 normalization in LP-derived islet cells restores β-cell proliferation and insulin secretion. Our findings suggest the existence of a developmental memory in islets that registers intrauterine protein restriction. Hence, pancreatic failure after in utero malnutrition could result from transgenerational transmission of miRNA misexpression in β-cells. PMID:24834976

  9. Elucidation of thrifty features in adult rats exposed to protein restriction during gestation and lactation.

    PubMed

    Qasem, Rani J; Yablonski, Elizabeth; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2012-03-20

    Since the introduction of the thrifty phenotype hypothesis, the potential traits of thrift have been described in increasingly broad terms but biochemical and behavioral evidence of thrift has not been well demonstrated. The objective of our studies was to use a rodent model to identify features of thrift programmed by early life protein restriction. Robust programming of thrifty features requires a thrifty nutritional environment during the entire window of developmental plasticity. Therefore, pregnant rats were exposed to a low protein diet throughout the window of developmental plasticity spanning the period of gestation and lactation and its effects on energy acquisition, storage and expenditure in the adult offspring were examined. Maternal protein restriction reduced birth weight and produced long term reductions in body and organ weights in the offspring. Low protein offspring demonstrated an increased drive to seek food as evidenced by hyperphagia that was mediated by changes in plasma leptin and ghrelin levels. Hyperphagia was accompanied by increased efficiency in converting caloric intake into body mass. The higher feed efficiency was mediated by greater insulin sensitivity. Energy expenditure of low protein offspring in locomotion was not affected either in the light or dark phase. However, low protein offspring exhibited higher resting and basal metabolic rates as evidenced by higher core body temperature in the fed and fasted states. The increased thermogenesis was not mediated by thyroid hormones but by an increased sympathetic nervous system drive as reflected by a lower areal bone mineral density and bone mineral content and lower plasma adiponectin and triglyceride levels. Elevated thermogenesis in the low protein offspring possibly offsets the effects of hyperphagia, minimizes their chances of weight gain, and improves survivability. This constellation of metabolic features in the low protein offspring will maximize survival potential in a post natal environment of nutritional scarcity and constitute a thrifty phenotype. PMID:22210394

  10. Metabolic and Genomic Response to Dietary Isocaloric Protein Restriction in the Rat*

    PubMed Central

    Kalhan, Satish C.; Uppal, Sonal O.; Moorman, Jillian L.; Bennett, Carole; Gruca, Lourdes L.; Parimi, Prabhu S.; Dasarathy, Srinivasan; Serre, David; Hanson, Richard W.

    2011-01-01

    We have examined hepatic, genomic, and metabolic responses to dietary protein restriction in the non-pregnant Sprague-Dawley rat. Animals were pair-fed either a 6 or 24% casein-based diet for 710 days. At the end of the dietary period, a microarray analysis of the liver was performed, followed by validation of the genes of interest. The rates of appearance of phenylalanine, methionine, serine, and glucose and the contribution of pyruvate to serine and glucose were quantified using tracer methods. Plasma and tissue amino acid levels, enzyme activities, and metabolic intermediates were measured. Protein restriction resulted in significant differential expression of a number of genes involved in cell cycle, cell differentiation, transport, transcription, and metabolic processes. RT-PCR showed that the expression of genes involved in serine biosynthesis and fatty acid oxidation was higher, and those involved in fatty acid synthesis and urea synthesis were lower in the liver of protein-restricted animals. Free serine and glycine levels were higher and taurine levels lower in all tissues examined. Tracer isotope studies showed an ?50% increase in serine de novo synthesis. Pyruvate was the primary (?90%) source of serine in both groups. Transmethylation of methionine was significantly higher in the protein-restricted group. This was associated with a higher S-adenosylmethionine/S-adenosylhomocysteine ratio and lower cystathione ?-synthase and cystathionine ?-lyase activity. Dietary isocaloric protein restriction results in profound changes in hepatic one-carbon metabolism within a short period. These may be related to high methylation demands placed on the organism and caused by possible changes in cellular osmolarity as a result of the efflux of the intracellular taurine. PMID:21147771

  11. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny

    PubMed Central

    Guzmn, C; Cabrera, R; Crdenas, M; Larrea, F; Nathanielsz, P W; Zambrano, E

    2006-01-01

    Recent studies demonstrate long-term programming of function of specific organ systems resulting from suboptimal environments during fetal life and development up to weaning. Nutrient restriction during pregnancy and lactation impairs overall fetal growth and development. We determined the effects of maternal protein restriction (MPR; 50% normal protein intake) during fetal development and/or lactation in rats on the function and ageing of the reproductive system of female progeny. Rats were fed either a control 20% casein diet (C) or a restricted diet (R) of 10% casein during pregnancy. After delivery mothers received either C or R diet until weaning to provide four groups, CC, RR, CR and RC. We report data on female offspring only. After weaning pups were fed the C diet. MPR increased maternal progesterone, corticosterone, oestradiol and testosterone concentrations at 19 days gestation. Reproductive and somatic phenotype was altered as pup birth weight was decreased, and ano-genital distance was increased by MPR. Pup corticosterone was decreased at 2 days postnatal (PN) life. Vaginal opening and timing of the first oestrus were delayed in RR and CR and these differences were not related to body weight. At 21 days PN oestradiol in RR and CR and progesterone in RR were reduced; at 70 days PN luteinizing hormone (LH) in all restricted groups was reduced in dioestrus while follicle stimulating hormone (FSH) was unchanged. Cycle length increased between 140 days and 1 year in RR and CR but remained unchanged in CC, providing evidence of premature ageing of reproductive function. Fertility rates declined over the same period in the three experimental groups but not CC. MPR in one of the two experimental periods, either pregnancy or lactation, resulted in decreased pup survival compared with CC and RR. These data show that MPR results in delayed sexual maturation and premature ageing of reproductive function. PMID:16497715

  12. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth

    PubMed Central

    Barbeito-Andrés, Jimena; Klenin, Natasha; Cross, James C.; Hallgrímsson, Benedikt

    2016-01-01

    Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth. PMID:27018791

  13. Effects of protein restriction, melatonin administration, and short daylength on brain benzodiazepine receptors in prepubertal male rats

    SciTech Connect

    Kennaway, D.J.; Royles, P.; Webb, H.; Carbone, F.

    1988-01-01

    The possibility that there are changes in brain benzodiazepine binding sites controlled by photoperiod was investigated in two strains of male rats. The hypothesis was tested by 3H-diazepam binding studies in various brain regions of prepubertal rats maintained in 14 or 10 h of light or treated with late-afternoon injections of melatonin (50 micrograms/day). Protein restriction was applied during the experiment to sensitize the animals to the treatments. Under the conditions employed, rats kept in short daylength throughout or kept on long photoperiod and given late-afternoon melatonin injections showed evidence of delayed puberty (seminal vesicle, ventral prostate, and testis weight decreased by 45%, 55%, and 60% respectively, compared to control rats). Binding measurements were made 1 h before and 2 and 5 h after the onset of darkness in the pubertal (42-day-old) or experimentally prepubertal rats. In the rats of the Porton strain (for which protein restriction was obligatory for the gonadal response) there was no consistent treatment or time effects on specific binding of 3H-diazepam to washed membranes of the hypothalamus, midbrain, or striatum. Similarly, there were no differences in the stimulation of 3H-diazepam binding by 100 microM GABA or the inhibition of binding by 50 microM N-acetyl 5 methoxy kynurenamine. By contrast, in Wistar rats, specific binding to midbrain membranes was reduced 5 h after dark compared to 2 h (37% saline; 20% melatonin) and the extent of stimulation by GABA in the hypothalamus was increased 5 h after darkness (35.6% to 46.7% saline; 37.4% to 50% melatonin). Melatonin treatment resulted in significantly higher specific binding in the hypothalamus 2 h after dark (10%, control fed; 20%, protein restricted) but reduced the GABA induced stimulation of binding in the midbrain (35.5% to 25%, control fed; 33.7% to 23.5%, protein restricted).

  14. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring.

    PubMed

    de Oliveira, Júlio Cezar; Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; Mathias, Paulo Cezar de Freitas; de Moura, Egberto Gaspar

    2016-05-01

    Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071

  15. The effects of aging and maternal protein restriction during lactation on thymic involution and peripheral immunosenescence in adult mice

    PubMed Central

    Heppolette, Chantal A. A.; Chen, Jian-Hua; Carr, Sarah K.; Palmer, Donald B.; Ozanne, Susan E.

    2016-01-01

    Environmental factors such as nutrition during early life can influence long-term health, a concept termed developmental programming. Initial research was focused towards the effects on metabolic health but more recent studies have demonstrated effects on parameters such as lifespan and immunity. In this study we report that maternal protein restriction during lactation in mice, that is known to prolong lifespan, slows aging of the central and peripheral immune systems. Offspring of dams fed a postnatal low-protein (PLP) diet during lactation had a significant increase in thymic cellularity and T cell numbers across their lifespan compared to controls, and a less marked age-associated decrease in thymocyte cluster of differentiation (CD) 3 expression. PLP animals also demonstrated increased relative splenic cellularity, increased naïve: memory CD4+ and CD8+ T cell ratios, increased staining and density of germinal centres, and decreased gene expression of p16 in the spleen, a robust biomarker of aging. A slower rate of splenic aging in PLP animals would be expected to result in decreased susceptibility to infection and neoplasia. In conclusion nutritionally-induced slow postnatal growth leads to delayed aging of the adaptive immune system, which may contribute towards the extended lifespan observed in these animals. PMID:26843625

  16. Accelerated aging of reproductive capacity in male rat offspring of protein-restricted mothers is associated with increased testicular and sperm oxidative stress.

    PubMed

    Rodríguez-González, Guadalupe L; Reyes-Castro, Luis A; Vega, Claudia C; Boeck, Lourdes; Ibáñez, Carlos; Nathanielsz, Peter W; Larrea, Fernando; Zambrano, Elena

    2014-01-01

    Maternal protein restriction (MPR) in pregnancy causes life course organ dysfunction, but few studies link the developmental origins of disease hypothesis to early aging. Suboptimal developmental nutrition increases oxidative stress (OS) and male infertility, damaging sperm function. We hypothesized that MPR in pregnancy accelerates age-related changes in testicular and sperm function related to both maternal diet and increased testicular OS in rat offspring. We studied male rats whose pregnant mothers ate either control (C, 20 % casein) or restricted (R, 10 % casein) isocaloric diet. After birth, mothers and offspring ate C diet. Testes were retrieved at 19 days gestation and across the life course (postnatal day (PND) 21, 36, 110, and 850) to measure OS markers, antioxidant enzymes, serum FSH, LH, and testosterone, and PND 110 sperm OS and quality. Fertility rate was evaluated at PND 110, 450, and 850. Offspring showed age- and MPR-related changes in testosterone, testicular OS markers and antioxidant enzymes and fertility, and maternal diet-related OS and sperm antioxidant enzyme changes. Developmental programming is considered a key factor in predisposing to chronic disease. Our data show that programming also plays an important role in aging trajectory. This interaction is a little studied area in aging biology that merits more investigation. PMID:25354645

  17. Enhanced Mesenteric Arterial Responsiveness to Angiotensin II Is Androgen Receptor-Dependent in Prenatally Protein-Restricted Adult Female Rat Offspring1

    PubMed Central

    Sathishkumar, Kunju; Balakrishnan, Meena P.; Yallampalli, Chandrasekhar

    2014-01-01

    ABSTRACT Gestational protein restriction results in intrauterine growth restriction and hypertension in adult female growth-restricted rats. Enhanced vascular responsiveness to angiotensin II is observed, and blockade of the renin-angiotensin system abolishes hypertension in adult growth-restricted rats, suggesting that the renin-angiotensin system contributes to intrauterine growth restriction-induced hypertension. Moreover, growth-restricted adult rats have higher plasma testosterone levels, and antiandrogen treatment abolishes hypertension, indicating an important role for testosterone. We hypothesized that androgens may play a pivotal role in the enhanced responsiveness to Ang II and hypertension. Female offspring of pregnant rats fed 20% protein (control) or 6% protein diet (protein restricted), at 6 mo of age, were studied. Plasma testosterone and mean arterial pressure in protein-restricted offspring were significantly higher compared to controls. Flutamide treatment (10 mg/kg/day subcutaneously for 10 days) reduced mean arterial pressure in protein-restricted offspring but was without significant effect in controls. Vascular Agtr1/Agtr2 ratio was significantly higher in protein-restricted offspring, an effect that was reversed by flutamide. Flutamide treatment did not have any effect on Agtr1/Agtr2 ratio in controls. Enhanced contractile response to angiotensin II in mesenteric arteries was observed in protein-restricted offspring compared with control. Flutamide treatment reversed the enhanced contractile response to angiotensin II in protein-restricted offspring without significant effect in controls. Vascular reactivity to phenylephrine was similar between the control and protein-restricted offspring with and without flutamide treatment, suggesting that enhanced contractile response and flutamide's reversal effect is specific to angiotensin II. These results suggest that prenatally protein-restricted rats exhibit an enhanced responsiveness to angiotensin II that is testosterone-dependent. PMID:25550341

  18. Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring.

    PubMed

    Zheng, Shasha; Rollet, Michelle; Pan, Yuan-Xiang

    2012-09-01

    Maternal nutrition during pregnancy is an intrauterine factor that results in alteration of the offspring genome and associates with disease risk in the offspring. We investigated the impact of a maternal low-protein (LP) diet on the expression of glucose transporter 4 (GLUT4) in offspring skeletal muscle. GLUT4 is an insulin-regulated glucose transporter involved in insulin sensitivity and carbohydrate metabolism in muscle cells. We observed sex-dependent GLUT4 mRNA expression and increased GLUT4 protein content in female pup skeletal muscle with maternal LP. Analysis of transcriptional and epigenetic regulation of increased skeletal muscle GLUT4 expression in offspring rats revealed the regulatory mechanisms involved. The protein level of myocyte enhancer factor 2A (MEF2A), which has been known as an activator of GLUT4 transcription via the ability to carry out specific binding to the GLUT4 MEF2 binding sequence, increased in female pups whose mothers were fed a LP diet. Modifications of chromatin structure, including acetylated histone H3, acetylated histone H4 and di-methylated histone H3 at lysine 4, were detected at a significantly increased level at the GLUT4 promoter region in female pup muscle following a maternal LP diet. Glycogen content was also detected as up-regulated, accompanied by increased glycogen synthase in LP female offspring muscle. These results document that maternal protein restriction during pregnancy induces GLUT4 expression in female offspring skeletal muscle but not in males, which may indicate sex-dependent adaptation of glucose metabolism to a maternal LP diet. PMID:22079207

  19. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  20. The effect of dietary protein restriction on high dose gentamicin nephrotoxicity in rats.

    PubMed Central

    Whiting, P. H.; Power, D. A.; Petersen, J.; Innes, A.; Simpson, J. G.; Catto, G. R.

    1988-01-01

    Gentamicin (120 mg/kg/day) was administered for 10 days to Sprague-Dawley rats given either a low (5% w/w) or normal (18% w/w) protein diet. Serum protein concentrations remained normal in all rats during the study. Nephrotoxicity was slightly less severe in rats fed a low protein diet as shown by: (i) a mean creatinine clearance rate (14 +/- 4 ml/min) which was significantly greater than that (8 +/- 3 ml/min) recorded from the rats maintained on the normal diet (P less than 0.05); (ii) lower activities of urinary N-acetyl-beta-D glucosaminidase (NAG); and (iii) less marked histological changes. Mean tissue concentrations of gentamicin were considerably lower in both renal cortex and medulla from rats maintained on the low protein diet than from those animals on the normal diet (P less than 0.01 and P less than 0.05, respectively). These differences were, however, not reflected in the mean trough serum gentamicin concentrations which were not significantly different between the two groups. These results are discussed in relation to the proposed mechanisms involved in gentamicin-induced nephrotoxicity. PMID:3348958

  1. Maternal protein restriction affects gene expression profiles in the kidney at weaning with implications for the regulation of renal function and lifespan.

    PubMed

    Chen, Jian-Hua; Tarry-Adkins, Jane L; Matharu, Kieran; Yeo, Giles S H; Ozanne, Susan E

    2010-11-01

    Nutritionally induced alterations in early growth can influence health and disease in later adult life. We have demonstrated previously that low birthweight resulting from maternal protein restriction during pregnancy followed by accelerated growth in rodents was associated with shortened lifespan, whereas protein restriction and slow growth during lactation increased lifespan. Thus early life events can also have a long lasting impact on longevity. In the present study, we show that long-lived PLP (postnatal low protein) mice were protected from developing albuminuria, whereas short-lived recuperated mice demonstrated an age-dependent increase in albuminuria in old age. Microarray analysis of kidneys from 21-day-old mice revealed that gene expression profiles were differentially affected depending on whether protein restriction was imposed during pregnancy or lactation. The differentially expressed genes were involved in diverse biological functions such as cytoprotective functions, vitamin D synthesis, protein homoeostasis, regulation of antioxidant enzymes and cellular senescence. Significantly, up-regulation of Hmox1 (haem oxygenase 1) in kidneys from PLP mice suggests that tissues of long-lived mice are equipped with a better cytoprotective function. In contrast, up-regulation of Nuak2 (NUAK family, SNF1-like kinase 2) and down-regulation of Lonp2 (Lon peptidase 2), Foxo3a (forkhead box O3a), Sod1 (copper/zinc superoxide dismutase) and Sesn1 (sestrin 1) in the kidneys of recuperated offspring suggest that protein homoeostasis and resistance to oxidative stress are compromised, leading to accelerated cellular senescence in these shorter-lived mice. PMID:20528770

  2. Pre- and/or postnatal protein restriction in rats impairs learning and motivation in male offspring.

    PubMed

    Reyes-Castro, L A; Rodriguez, J S; Rodríguez-González, G L; Wimmer, R D; McDonald, T J; Larrea, F; Nathanielsz, P W; Zambrano, E

    2011-04-01

    Suboptimal developmental environments program offspring to lifelong health complications including affective and cognitive disorders. Little is known about the effects of suboptimal intra-uterine environments on associative learning and motivational behavior. We hypothesized that maternal isocaloric low protein diet during pregnancy and lactation would impair offspring associative learning and motivation as measured by operant conditioning and the progressive ratio task, respectively. Control mothers were fed 20% casein (C) and restricted mothers (R) 10% casein to provide four groups: CC, RR, CR, and RC (first letter pregnancy diet and second letter lactation diet), to evaluate effects of maternal diet on male offspring behavior. Impaired learning was observed during fixed ratio-1 operant conditioning in RC offspring that required more sessions to learn vs. the CC offspring (9.4±0.8 and 3.8±0.3 sessions, respectively, p<0.05). Performance in fixed ratio-5 conditioning showed the RR (5.4±1.1), CR (4.0±0.8), and RC (5.0±0.8) offspring required more sessions to reach performance criterion than CC offspring (2.5±0.5, p<0.05). Furthermore, motivational effects during the progressive ratio test revealed less responding in the RR (48.1±17), CR (74.7±8.4), and RC (65.9±11.2) for positive reinforcement vs. the CC offspring (131.5±7.5, p<0.05). These findings demonstrate negative developmental programming effects due to perinatal isocaloric low protein diet on learning and motivation behavior with the nutritional challenge in the prenatal period showing more vulnerability in offspring behavior. PMID:21078378

  3. Pre- and/or postnatal protein restriction in rats impairs learning and motivation in male offspring

    PubMed Central

    Reyes-Castro, LA; Rodriguez, JS; Rodríguez-González, GL; Wimmer, RD; McDonald, TJ; Larrea, F; Nathanielsz, PW; Zambrano, E

    2011-01-01

    Suboptimal developmental environments program offspring to lifelong health complications including affective and cognitive disorders. Little is known about the effects of suboptimal intra-uterine environments on associative learning and motivational behavior. We hypothesized that maternal isocaloric low protein diet during pregnancy and lactation would impair offspring associative learning and motivation as measured by operant conditioning and the progressive ratio task, respectively. Control mothers were fed 20% casein (C) and restricted mothers (R) 10% casein to provide four groups: CC, RR, CR, and RC (first letter pregnancy diet and second letter lactation diet), to evaluate effects of maternal diet on male offspring behavior. Impaired learning was observed during fixed ratio-1 operant conditioning in RC offspring that required more sessions to learn vs. the CC offspring (9.4 ± 0.8 and 3.8 ± 0.3 sessions, respectively, p<0.05). Performance in fixed ratio-5 conditioning showed the RR (5.4 ± 1.1), CR (4.0 ± 0.8), and RC (5.0 ± 0.8) offspring required more sessions to reach performance criterion than CC offspring (2.5 ± 0.5, p<0.05). Furthermore, motivational effects during the progressive ratio test revealed less responding in the RR (48.1 ± 17), CR (74.7 ± 8.4), and RC (65.9 ± 11.2) for positive reinforcement vs. the CC offspring (131.5 ± 7.5, p<0.05). These findings demonstrate negative developmental programming effects due to perinatal isocaloric low protein diet on learning and motivation behavior with the nutritional challenge in the prenatal period showing more vulnerability in offspring behavior. PMID:21078378

  4. Postnatal prebiotic fiber intake in offspring exposed to gestational protein restriction has sex-specific effects on insulin resistance and intestinal permeability in rats.

    PubMed

    Hallam, Megan C; Reimer, Raylene A

    2014-10-01

    Maternal protein restriction (PR) during pregnancy is known to have numerous adverse effects on offspring, including increased adiposity and impaired glucose tolerance later in life. A few studies have shown that this adverse programming can be reversed by dietary or hormonal therapies early in postnatal life. The objective of this study was to determine if a weaning diet high in prebiotic fiber could mitigate some of the negative effects of maternal PR, such as increased adiposity and impaired glucose tolerance. Wistar rats were fed a low- (8%) or normal- (20%) protein diet during pregnancy. Male and female pups were weaned onto control (C; 5% fiber, 20% protein) or high (prebiotic) fiber (HF; 21% wt:wt, 1:1 ratio oligofructose and inulin at 4-10 wk; 10% wt:wt, 1:1 ratio oligofructose and inulin at 10-24 wk; 17.3% protein) diets. At 24 wk of age, glucose tolerance, body composition, satiety hormones, gut microbiota, and markers of intestinal permeability were measured in the offspring. Maternal PR reduced offspring birth weight by 5% and lean mass by 9% compared with the C offspring (P < 0.007). HF-fed offspring had lower body weights and percentage body fat (∼23% in males, ∼19% in females) at 24 wk than did C offspring (P < 0.02). Compared with C pups, pups fed the HF diet had greater cecal Bifidobacterium spp. (>5-fold) and plasma concentrations of the gut trophic hormone glucagon-like peptide 2 (GLP-2) (P < 0.05). In male PR offspring fed the HF diet, insulin resistance measured by the homeostasis model assessment of insulin resistance was reduced by 81% compared with those fed the C diet (P = 0.02). In female PR offspring fed the HF diet, plasma endotoxin was greater and colonic tight junction protein 1 (Tjp1) expression was lower than in those fed the C diet. A high prebiotic fiber weaning diet mitigated increased adiposity and insulin resistance associated with maternal PR, which could improve health and decrease risk of chronic disease in offspring born to malnourished dams. However, the functional importance of sex-specific changes in markers of intestinal barrier function warrants further investigation. PMID:25080539

  5. Maternal protein restriction induces early-onset glucose intolerance and alters hepatic genes expression in the peroxisome proliferator-activated receptor pathway in offspring

    PubMed Central

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin

    2015-01-01

    Aims/Introduction Maternal undernutrition during pregnancy and/or lactation can alter the offspring's response to environmental challenges, and thus increases the risk of the development of metabolic diseases at a later age. However, whether maternal protein restriction can modulate glucose metabolism in the early life of offspring is less understood. Furthermore, we explored the potential underlying mechanisms that illustrate this phenotype. Materials and Methods To test this hypothesis, we examined the offspring of C57BL/6J mice at weaning to determine the effects of feeding their mothers a low-protein diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time polymerase chain reaction were utilized to explore the altered hepatic genes expression. Results The offspring of dams fed a low-protein diet had a lower birthweight and bodyweight, impaired glucose tolerance, decreased insulin sensitivity, and decreased serum cholesterol at weaning. Using gene array experiments, 253 differentially expressed genes were identified in the liver tissues of the offspring between the two groups. Bioinformatic analyses showed that all differentially expressed genes were mapped to 11 pathways. We focused on the ‘peroxisome proliferator-activated receptor signaling pathway,’ because peroxisome proliferator-activated receptors have emerged as central regulators of glucose and lipid homeostasis. Quantitative real-time polymerase chain reaction was utilized for the validation of genes in the pathway. Conclusions A maternal low-protein diet during pregnancy and lactation promotes early-onset glucose intolerance in the offspring mice, and the altered hepatic genes expression in peroxisome proliferator-activated receptor signaling pathway could play role in regulating this phenomenon. PMID:25969711

  6. Maternal metabolizable protein restriction during late gestation on uterine and umbilical blood flows and maternal and fetal amino acid concentrations near term in sheep.

    PubMed

    Lekatz, L A; Swanson, T J; Camacho, L E; Van Emon, M L; Schauer, C S; Maddock Carlin, K R; Hammer, C J; Lemley, C O; Vonnahme, K A

    2015-07-01

    To examine the effects of maternal metabolizable protein (MP) restriction during late gestation on uterine and umbilical blood flows, conceptus size, and amino acid concentrations in the uterine and umbilical vessels, 11 ewes with singleton pregnancies were assigned to one of three isocaloric diets formulated to provide 60% of MP (MP60), 80% of MP (MP80), or 100% of MP (MP100) requirements from days 100 to 130 of gestation. On day 130 of gestation, intraoperative uterine and umbilical blood flows were obtained as well as serum samples from the uterine artery, uterine vein, umbilical artery, and umbilical vein. Ewes on the MP60 diet had lighter (P=0.04) and smaller (P≤0.05) fetuses, but increased (P=0.02) uterine blood flow relative to fetal weight compared with MP100 ewes, with MP80 being intermediate. Umbilical blood flow was similar (P=0.70) across treatments. Glutamine, glycine, isoleucine, leucine, ornithine, serine, and valine concentrations were impacted (P≤0.02) by maternal treatment. While uterine flux of total serum nitrites was greater (P=0.03) in MP60 and MP80 ewes compared with MP100 ewes, fetal flux did not differ. Decreased maternal protein intake resulted in less (P<0.01) maternal cytochrome P450 1A enzyme activity. There were minimal impacts of maternal diet on steroid concentrations. Maternal dietary protein may alter fetal growth by impacting placental vasculature function and nutrient absorptive capabilities. PMID:26024963

  7. Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

    PubMed Central

    Reis, Sílvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, Bárbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, Márcia Queiroz

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation. PMID:25892856

  8. Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring.

    PubMed

    Hoile, Samuel P; Lillycrop, Karen A; Thomas, Nicola A; Hanson, Mark A; Burdge, Graham C

    2011-01-01

    There is considerable evidence for non-genomic transmission between generations of phenotypes induced by environmental exposures during development, although the mechanism is poorly understood. We investigated whether alterations in expression of the liver transcriptome induced in F1 offspring by feeding F0 dams a protein-restricted (PR) diet during pregnancy were passed with or without further change to two subsequent generations. The number of genes that differed between adult female offspring of F0 protein-restricted (PR) and protein-sufficient (PS) dams was F1 1,684 genes, F2 1,680 and F3 2,062. 63/113 genes that were altered in all three generations showed directionally opposite differences between generations. There was a trend toward increased proportions of up-regulated genes in F3 compared to F1. KEGG analysis showed that only the Adherens Junctions pathway was altered in all three generations. PR offspring showed altered fasting glucose homeostasis and changes in phosphoenolpyruvate carboxykinase promoter methylation and expression in all three generations. These findings show that dietary challenge during F0 pregnancy induced altered gene expression in all three generations, but relatively few genes showed transmission of altered expression between generations. For the majority of altered genes, these changes were not found in all generations, including some genes that were changed in F3 but not F1, or the direction and magnitude of difference between PR and PS differed between generations. Such variation may reflect differences between generations in the signals received by the fetus from the mother as a consequence of changes in the interaction between her phenotype and the environment. PMID:21750721

  9. Impaired β-cell function in the adult offspring of rats fed a protein-restricted diet during lactation is associated with changes in muscarinic acetylcholine receptor subtypes.

    PubMed

    Oliveira, Júlio C de; Miranda, Rosiane A; Barella, Luiz F; Torrezan, Rosana; Agostinho, Aryane R; Ribeiro, Tatiane A S; Franco, Claudinéia C S; Malta, Ananda; Tófolo, Laize P; Gravena, Clarice; Mathias, Paulo C F

    2014-01-28

    Impaired pancreatic β-cell function, as observed in the cases of early nutrition disturbance, is a major hallmark of metabolic diseases arising in adulthood. In the present study, we aimed to investigate the function/composition of the muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3, in the pancreatic islets of adult offspring of rats that were protein malnourished during lactation. Neonates were nursed by mothers that were fed either a low-protein (4 %, LP) or a normal-protein (23 %, NP) diet. Adult rats were pre-treated with anti-muscarinic drugs and subjected to the glucose tolerance test; the function and protein expression levels of M2mAChR and M3mAChR were determined. The LP rats were lean and hypoinsulinaemic. The selective M2mAChR antagonist methoctramine increased insulinaemia by 31 % in the NP rats and 155 % in the LP rats, and insulin secretion was increased by 32 % in the islets of the NP rats and 88 % in those of the LP rats. The selective M3mAChR antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide decreased insulinaemia by 63 % in the NP rats and 40 % in the LP rats and reduced insulin release by 41 % in the islets of the NP rats and 28 % in those of the LP rats. The protein expression levels of M2mAChR and M3mAChR were 57 % higher and 53 % lower, respectively, in the islets of the LP rats than in those of the NP rats. The expression and functional compositions of M2mAChR and M3mAChR were altered in the islets of the LP rats, as a result of metabolic programming caused by the protein-restricted diet, which might be another possible effect involved in the weak insulin secretion ability of the islets of the programmed adult rats. PMID:23841989

  10. Compensatory mammary growth following protein restriction during pregnancy and lactation increases early-onset mammary tumor incidence in rats.

    PubMed

    Fernandez-Twinn, D S; Ekizoglou, S; Gusterson, B A; Luan, Jian'an; Ozanne, S E

    2007-03-01

    Breast cancer incidence is increased in women with both high and low birth weight. The latter is also associated with hyperglycaemia, insulin resistance and type-2 diabetes, each of which independently increases breast cancer risk. We showed previously in our model of poor early-growth that pregnancy estradiol levels were raised while offspring developed type-2 diabetes. We hypothesized that nutritionally-induced poor early-growth influences breast cancer risk and investigated this in our model. Wistar rat dams were given either a control diet (20% casein) or an isocaloric low-protein (LP) diet (8% casein) throughout pregnancy and lactation. Offspring postnatal mammary gland development was assessed by morphometry. To identify potential growth mechanisms, we measured protein expression of receptors involved in insulin and hormone signaling, both in cleared mammary gland lysates and isolated epithelial cells. Mammary tumor incidence and latency (n=96) was monitored after three weekly intraperitoneal nitrosomethylurea injections (50 mg/kg body wt). LP offspring displayed reduced postnatal ductal branching and epithelial invasion at 3 weeks, followed by compensatory mammary growth 1 week later coinciding with increased protein expression of receptors to insulin, IGF-1 and estrogen. Significantly, early-mammary tumor incidence (0-16 weeks post-treatment) was doubled in LP offspring [RR, 2.13 (1.02, 4.45); P=0.046]. The data suggest that poor early nutrition has an important influence on the mammary primordium, and increases future susceptibility to breast cancer. Up-regulated growth factor and hormone signaling during compensatory mammary growth may mediate this increased susceptibility and present potential targets for intervention. PMID:16952910

  11. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats.

    PubMed

    Tarry-Adkins, J L; Martin-Gronert, M S; Chen, J-H; Cripps, R L; Ozanne, S E

    2008-06-01

    Low birth weight is associated with increased cardiovascular disease (CVD) in humans. Detrimental effects of low birth weight are amplified by rapid catch-up growth. Conversely, slow growth during lactation reduces CVD risk. Gestational protein restriction causes low birth weight, vascular dysfunction, and accelerated aging in rats. Atherosclerotic aortic tissue has shortened telomeres, and oxidative stress accelerates telomere shortening through generation of DNA single-strand breaks (ssbs). This study tested the hypothesis that maternal diet influences aortic telomere length through changes in DNA ssbs, antioxidant capacity, and oxidative stress. We used our models of gestational protein restriction followed by rapid catch-up growth (the recuperated group) and protein restriction during lactation (the postnatal low-protein [PLP] group). Southern blotting revealed fewer aortic DNA ssbs and subsequently fewer short telomeres (P<0.05) in the PLP group. This result was associated with reduced (P<0.01) 8-hydroxy-2-deoxyguanosine, a marker of oxidative stress. PLP animals expressed increased (P<0.01) manganese superoxide-dismutase, copper-zinc superoxide-dismutase, catalase, and glutathione-reductase. Age-dependent changes in antioxidant defense enzymes indicated more protection to oxidative stress in the PLP animals; conversely, recuperated animals demonstrated age-associated impairment of antioxidant defenses. We conclude that maternal diet has a major influence on aortic telomere length. This finding may provide a mechanistic link between early growth patterns and CVD. PMID:18230683

  12. Moderate protein restriction during pregnancy modifies the regulation of triacylglycerol turnover and leads to dysregulation of insulin's anti-lipolytic action.

    PubMed

    Holness, M J; Fryer, L G; Priestman, D A; Sugden, M C

    1998-07-25

    Moderate protein restriction throughout pregnancy in the rat leads to relative hyperlipidaemia and blunted insulin responsiveness of lipid fuel supply, and impairs foetal growth. The present study examined the basis for these changes. Isocaloric 8% (vs 20%) protein diets were provided throughout pregnancy. Rats were sampled at 19-20 days of gestation. Protein restriction enhanced triacylglycerol (TAG) secretion rates (estimated using Triton WR 1339) 1.6-fold (P < 0.05) in the post-absorptive state. Insulin infusion (4.2 mU/kg per min) decreased plasma TAG concentrations by 33% (P < 0.05) and 48% (P < 0.05) in control (C) and protein-restricted (PR) pregnant groups, an effect associated with suppression of TAG secretion by 42% (P < 0.05) and 51% (P < 0.01) respectively, in the C and PR groups. Since TAG concentrations decline more rapidly, while TAG secretion is enhanced, TAG utilisation during hyperinsulinaemia is enhanced in the PR group. We evaluated whether these changes were associated with dysregulation of lipolysis using adipocytes from two abdominal depots (mesenteric and parametrial). Noradrenaline-stimulated glycerol release was enhanced in parametrial adipocytes (by 40%; P < 0.05) from PR pregnant rats. The anti-lipolytic action of insulin at low concentrations (< or = 15 microU/ml) was impaired by protein restriction (adipocytes from both depots). There was no evidence for altered intra-hepatic regulation of fatty acid (FA) disposal at the level of carnitine palmitoyltransferase. Our results demonstrate increased post-absorptive production of non-carbohydrate energy substrates (TAG and FA) as a consequence of mild protein restriction during pregnancy. These adaptations contribute to a homeostatic strategy to reduce the maternal requirement for gluconeogenesis from available amino acids, optimising the foetal protein supply. Protein restriction also enhances TAG turnover during hyperinsulinaemia. This effect is not a consequence of abnormal regulation of hepatic lipid metabolism by insulin. PMID:9783899

  13. Early changes of hypothalamic angiotensin II receptors expression in gestational protein-restricted offspring: effect on water intake, blood pressure and renal sodium handling.

    PubMed

    de Lima, Marcelo Cardoso; Scabora, José Eduardo; Lopes, Agnes; Mesquita, Flávia Fernandes; Torres, Daniele; Boer, Patrícia Aline; Gontijo, José Antonio Rocha

    2013-09-01

    The current study examines changes in the postnatal hypothalamic angiotensin receptors by maternal protein restriction (LP), and its impact on in uteri programming of hypertension in adult life. The data show that LP male pup body weight was significantly reduced when compared to that of control (NP) pups. Also, immunoblotting analysis demonstrated a significantly decreased expression of type 1 AngII receptors (AT1R) in the entire hypothalamic tissue extract of LP rats at 12 days of age compared to age-matched NP offspring. Conversely, the expression of the type 2 AngII (AT2R) receptors in 12-day- and 16-week-old LP hypothalamus was significantly increased. The current data show the influence of central AngII administration on water consumption in a concentration-dependent fashion, but also demonstrate that the water intake response to AngII was strikingly attenuated in 16-week-old LP. These results may be related to decreased brain arginine vasopressin (AVP) expression appearing in maternal protein-restricted offspring. The present investigation shows an early decrease in fractional urinary sodium excretion in maternal protein-restricted offspring. The decreased fractional sodium excretion was accompanied by a fall in proximal sodium excretion and occurred despite unchanged creatinine clearance. These effects were associated with a significant enhancement in arterial blood pressure in the LP group, but the precise mechanism of these phenomena remains unknown. PMID:22936038

  14. Resource sharing in rat gestation: role of maternal cardiovascular hemodynamics.

    PubMed

    Blizard, D A; Folk, T G

    1990-06-01

    There is a substantial decrease in blood pressure (BP) in late pregnancy in the laboratory rat. It is so pronounced that manipulations that produce sustained elevations in BP in nonpregnant animals have little or no effect during pregnancy. It is commonly believed that this decrease in BP is a consequence of a large decrease in total peripheral resistance resulting from the passive combination of the placental vasculature with a preexisting maternal vasodilation. An alternative view is presented here. We suggest that, in small mammals like the laboratory rat, pregnancy severely challenges the ability of the maternal cardiovascular system to meet its metabolic demands, so that during the last stages of maturation of the low-resistance placental circulation delivery of vital metabolic or nutritional substances to the maternal vasculature becomes marginal. When the so-called maternal hemodynamic preservation threshold is reached, a pronounced and wide-spread vasodilation occurs to maintain adequate perfusion of maternal organs. The late-gestational decrease in BP thus reflects a dynamic interaction between the maternal and placental circulations rather than reflecting their passive combination. The hypothesis provides a framework for the integrated discussion of a number of important phenomena: the fact that hypertensive rats exhibit a larger decrease in BP in late gestation than normotensive rats; the existence of a positive association between litter size and the magnitude of the late-gestational decrease in BP; and, finally, the well-established ability of the food-restricted pregnant rat to compartmentalize its nutritional resources. PMID:2193546

  15. The capacity to develop maternal behavior is enhanced during aging in rats.

    PubMed

    Gonzalez, D E; Deis, R P

    1990-01-01

    The induction of maternal behavior (MB) in response to stimulation by pups was studied in aged rats (19-20 months old). We used virgin female rats, neonatally androgenized female rats and male rats. Both groups of female rats showed a constant estrous vaginal smear. Maternal responsiveness was compared with that of young rats (3-4 months old). Normal and androgenized female aged rats showed a very high percentage of immediate maternal responsiveness and 100% of the rats were fully maternal within 24 hr of testing. The percentage of cyclic and androgenized young rats showing MB were significantly lower. Chronic ovariectomy performed 17 months before testing but not acute ovariectomy abolished MB. Estrogen treatment (5 micrograms 15 hours before pup presentation) to chronically ovariectomized aged rats was not sufficient to reestablish significantly the capacity of the normal female aged rats to become short-latency maternal. Young and aged male rats showed no difference in maternal responsiveness to the presence of foster pups. The percentage of maternal aged male rats was significantly lower than that of the normal and androgenized aged female rats, whereas young male and female rats showed a similar level of MB, indicating a sex difference in the development of MB with age. In conclusion the high percentage of rats becoming maternal and the short-latency maternal responsiveness in aged female rats appears to be the result of a prolonged estrogen and/or prolactin stimulation. PMID:2362655

  16. Oxidative metabolism in fetal rat brain during maternal halothane anesthesia.

    PubMed

    Vannucci, R C; Wolf, J W

    1977-12-01

    The present study examines the effects of maternally administered halothane on fetal brain metabolism as determined by direct tissue analysis. Term pregnant rats were paralyzed, ventilated, and administered halothane in concentrations of 0.4, 1, or 2%. For comparison of fetal response to anesthetic agents, other maternal rats were administered pentobarbital (50 or 200 mg/kg). Dams receiving 0.4% halothane or 50 mg/kg pentobarbital remained normotensive, whereas 2% halothane or 200 mg/kg pentobarbital led to a 65% reduction in maternal blood pressure and a 3-fold increase in blood lactate. Fetal blood lactate tended to parallel the maternal lactacidemia. Fetuses of dams anesthetized with 0.4% halothane or 50 mg/kg pentobarbital exhibited concentrations of cerebral metabolities comparable to those of control animals. A 2% halothane level was associated with metabolic disturbances in fetal brain, indicative of cerebral hypoxia. Pentobarbital 200 mg/kg, although producing maternal hypotension and lactacidemia to a degree similar to 2% halothane, preserved a more optimal fetal cerebral energy state as reflected in a lower lactate/pyruvate ratio and normal ATP. The metabolic influence of pentobarbital may serve to protect the hypoxic fetus from neurological damage, an effect apparently not shared by maternally administered halothane. PMID:612447

  17. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT.
    C. Lau and J.M. Rogers, Reproductive Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA

    Perfluorooctane sulfonate (PFOS), an environmentally persistent compound used ...

  18. Central V1b receptor antagonism in lactating rats: impairment of maternal care but not of maternal aggression.

    PubMed

    Bayerl, D S; Klampfl, S M; Bosch, O J

    2014-12-01

    Maternal behaviour in rodents is mediated by the central oxytocin and vasopressin systems, amongst others. The role of vasopressin, acting via the V1a receptor (V1aR), on maternal care and maternal aggression has recently been described. However, a potential involvement of the V1b receptor (V1bR) in maternal behaviour has only been demonstrated in knockout mice. The present study aimed to examine the effects of central pharmacological manipulation of the V1bR on maternal behaviour in lactating Wistar rats. On pregnancy day 18, female rats were implanted with a guide cannula targeting the lateral ventricle. After parturition, dams received an acute central infusion of a specific V1bR agonist (d[Leu4,Lys8]VP) or V1bR antagonist (SSR149415) once daily, followed by observations of maternal care [lactation day (LD) 1], maternal motivation in the pup retrieval test (LD 2), anxiety-related behaviour on the elevated plus-maze (LD 3) and maternal aggression in the maternal defence test followed by maternal care monitoring (LD 4). Our data demonstrate that, under nonstress conditions, the V1bR antagonist decreased the occurrence of both nursing and mother-pup interaction, whereas the V1bR agonist did not affect either parameter. Under stress conditions (i.e. after the maternal defence test), mother-pup interaction was decreased by infusion of the V1bR antagonist. During the maternal defence test, neither treatment affected aggressive or non-aggressive behaviour. Finally, neither treatment altered maternal motivation or anxiety. In conclusion, central V1bR antagonism modulates aspects of maternal care but not of maternal aggression or maternal motivation in lactating rats. These findings further extend our knowledge on the vasopressin system as a vital mediator of maternal behaviour. PMID:25283607

  19. Long-term modification of the excretion of prostaglandin E(2) by fetal exposure to a maternal low protein diet in the rat.

    PubMed

    Sherman, R C; Jackson, A A; Langley-Evans, S C

    1999-01-01

    Prenatal exposure to maternal undernutrition in both humans and animals is associated with long-term changes in the structure, physiological functions and metabolism of key tissues and organs. This phenomenon, termed programming, is implicated in the aetiology of cardiovascular disease. Using an established rat model of hypertension programmed by prenatal protein restriction, assessment was made of the long-term influence of maternal diet upon prostaglandin metabolism. Pregnant rats were fed isoenergetic diets containing 18% casein (control) or 9% casein (low protein) from conception until littering. The offspring of these pregnancies were studied at day 20 of gestation, full-term gestation and at 4, 7 or 12 weeks postnatal age. Prostaglandin E(2) concentrations in plasma were similar in control and low-protein diet-exposed rats at 4 weeks of age. Urinary prostaglandin E(2) excretion was, however, significantly increased by prenatal undernutrition in rats at both 4 and 12 weeks postnatal age. The principal enzyme of prostaglandin E(2) degradation, 15-hydroxyprostaglandin dehydrogenase (PGDH) exhibited significantly lower activity in the kidneys of 4-week-old rats exposed to a maternal low-protein diet. This effect was transient and absent by 12 weeks postnatal age. There was also some evidence of an altered developmental profile of PGDH activity in the lungs of low-protein diet-exposed rats. These data are consistent with the long-term programming effects of the maternal diet upon renal prostaglandin metabolism. In the rat, increased local prostaglandin E(2) concentrations associated with impaired degradation may contribute to increased renovascular resistance and hypertension. PMID:10436308

  20. Supplementation of a maternal low-protein diet in rat pregnancy with folic acid ameliorates programming effects upon feeding behaviour in the absence of disturbances to the methionine-homocysteine cycle.

    PubMed

    Engeham, Sarah F; Haase, Andrea; Langley-Evans, Simon C

    2010-04-01

    Maternal protein restriction in rat pregnancy is associated with altered feeding behaviour in later life. When allowed to self-select their diet, rats subject to prenatal undernutrition show an increased preference for fatty foods. The main aim of the present study was to evaluate the contribution of folic acid in the maternal diet to programming of appetite, since disturbances of the folate and methionine-homocysteine cycles have been suggested to impact upon epigenetic regulation of gene expression and hence programme long-term physiology and metabolism. Pregnant rats were fed diets containing either 9 or 18 % casein by weight, with folate provided at either 1 or 5 mg/kg diet. Adult male animals exposed to low protein (LP) in fetal life exhibited increased preference for high-fat food. Providing the higher level of folate in the maternal diet prevented this effect of LP, but offspring of rats fed 18 % casein diet with additional folate behaved in a similar manner to LP-exposed animals. Among day 20 gestation fetuses, it was apparent that both protein restriction and maternal folate supplementation could have adverse effects upon placental growth. Examination of methionine-homocysteine and folate cycle intermediates, tissue glutathione concentrations and expression of mRNA for methionine synthase, DNA methyltransferase 1 and methyltetrahydrofolate reductase revealed no gross disturbances of folate and one-carbon metabolism in either maternal or fetal tissue. The present findings indicated that any role for DNA methylation in programming of physiology is not related to major perturbations of folate metabolism, and is likely to be gene-specific rather than genome-wide. PMID:19941678

  1. Can early protein restriction induce the development of binge eating?

    PubMed

    Fechine, Madge Farias; Borba, Tássia Karin; Cabral-Filho, José Eulálio; Bolaños-Jiménez, Francisco; Lopes-de-Souza, Sandra; Manhães-de-Castro, Raul

    2016-04-01

    We tested the hypothesis that perinatal undernourishment is a factor for binge eating. At 52 days rats born from dams fed on 17% protein (Control) or 8% protein (Undernourished) were distributed into four groups, two of which continued to be fed ad libitum chow and two were submitted to three consecutive Restricted/Refeeding (R/R) cycles. According to the following schedule: Control Naïve (from mothers fed 17% protein/no restriction phase); Control Restricted (from mothers fed 17% protein/restriction phase); Undernourished Naïve (from mothers fed 8% protein/no restriction phase); and Undernourished Restricted (from mothers fed 8% protein/restriction phase). Each cycle consisted of a restriction phase (in the first four days 40% of the mean daily individual chow intake was offered for consumption), followed by a refeeding phase (4 days of chow ad libitum). After the three cycles, all animals were subjected to a feeding test (chow diet and palatable food ad libitum for 24h). During the feeding test, the Undernourished Restricted demonstrated rebound hyperphagia during 2, 4 and 6h. These results suggest the perinatal undernourishment cannot contribute to a binge eating phenotype. PMID:26836391

  2. Metyrapone Alleviates Deleterious Effects of Maternal Food Restriction on Lung Development and Growth of Rat Offspring

    PubMed Central

    Paek, David S.; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S.

    2015-01-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. PMID:24916330

  3. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.

    PubMed

    Paek, David S; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S; Rehan, Virender K

    2015-02-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. PMID:24916330

  4. Effects of maternal obesity on fasting metabolism in newborn rats.

    PubMed

    Heng, J; Kliegman, R M

    1990-06-01

    Maternal obesity is a risk factor for subsequent fasting hypoglycemia in human infants after birth. To investigate further this problem, we employed an animal model of obesity to study neonatal extrauterine metabolic adaptations in pups of obese and lean rats. Female Sprague-Dawley rats were fed a 'cafeteria diet' to induce obesity prior to and during pregnancy. Prior to mating, the cafeteria fed rats were significantly heavier (449 v. 345 g, P less than 0.001) than the controls. Furthermore, weight gain during pregnancy and weight at term were also significantly greater in the obese rats even though they consumed less food during pregnancy. Pup weights and the number of pups per litter were similar between the two groups. Pups born to obese mothers demonstrated hypoglycemia after being fasted for 150 and 180 min when compared with control pups. Hepatic glycogen stores were increased in the fetus of pups born to obese mothers. Glycogen content in pups born to obese mothers declined minimally after birth and remained greater than hepatic glycogen values in control pups throughout the study. In addition to increased fetal storage of glycogen, fetal hepatic triglyceride content was augmented in pups of obese rats. These triglyceride stores declined and were mobilized during fasting after birth. In contrast, hepatic triglyceride content increased after birth among control rats. These results suggest that maternal obesity results in augmented fetal hepatic tissue stores of both glycogen and triglycerides. Hypoglycemia among pups of excessively obese mothers may be due to attenuated mobilization of hepatic glycogen.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2401587

  5. Prenatal exposure to fipronil disturbs maternal aggressive behavior in rats.

    PubMed

    Magalhães, Julia Z; Udo, Mariana S B; Sánchez-Sarmiento, Angélica M; Carvalho, Marcelo P N; Bernardi, Maria M; Spinosa, Helenice S

    2015-01-01

    Fipronil is a second-generation phenilpirazol insecticide that is used in agriculture and veterinary medicine for protection against fleas, ticks, ants, cockroaches and other pests. The insecticide blocks the chloride channels associated with the gamma-amino butyric acid (GABA) receptors in mammals and the chloride channels associated with the GABA and glutamate (Glu) receptors in insects. In this study, a commercial product that contain fipronil was administered orally to pregnant Wistar rats at dosages of 0.1, 1.0, or 10.0 mg/kg/day from the 6th to the 20th day of gestation (n=10 pregnant rats/group) to assess the maternal aggressive behavior (on the 6th day of lactation) and the histopathology of the ovaries and the thyroid gland of the dams. The fipronil caused a disturbance of the maternal aggressive behavior; the aggression against a male intruder decreased at the lowest dose, but increased at the highest dose, without interfering with the general activity of the dams in the open field test at either dose. The histopathological analysis revealed no abnormalities. The differential effects of fipronil behavior appeared to be a consequence of actions on central nervous system areas that control these behaviors. We suggest that fipronil acts on maternal aggressive behavior through GABA(A) receptors. PMID:26409903

  6. Effects of protein restriction during gestation and lactation on cell proliferation in the hippocampus and subventricular zone: functional implications. Protein restriction alters hippocampal/SVZ cell proliferation.

    PubMed

    Godoy, Mariana Araya de; Souza, Amanda Santos de; Lobo, Mônica Alves; Sampaio, Omar Vidal Kress; Moraes, Louise; Baldanza, Marcelo Ribeiro; Magri, Tatiana Przybylski Ribeiro; Wernerck de Castro, João Pedro Saar; Tavares do Carmo, Maria das Graças; Soares-Mota, Márcia; Rocha, Monica Santos; Mendez-Otero, Rosalia; Santiago, Marcelo Felippe

    2013-02-16

    There is no consensus about the effects of protein restriction on neurogenesis and behavior. Here, for the first time, we evaluated the effects of protein restriction during gestation and lactation, on the two major neurogenic regions of the adult brain, the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ), simultaneously. We also assessed different types of behavior relevant to each region. After mating, pregnant Wistar rats were divided into a control group (CG) that received a normal diet (20% protein); and a protein-restriction group (PRG) that received a low-protein diet (8% protein). After birth, the same diets were provided to the mother and pups until weaning, when some rats were analyzed and others received a normal-protein diet until adulthood. Different sets of rats were used for cellular and behavioral studies in juvenile or adult age. Brains were processed for immunohistochemistry anti-BrdU, anti-Ki67, or anti-pHisH3. Juvenile and adult rats from distinct litters also underwent several behavioral tests. Our data show that early protein restriction results in a reduction of hippocampal progenitors and deficits in object recognition during adult life. Moreover, longer periods of immobility in the tail suspension and in the forced swimming tests revealed that PRG rats show a depressive behavior at 21 days of age (P21) and in adulthood. Furthermore, we suggest that despite the reduced number/proliferation of neural stem cells (B and/or E cells) in SVZ there is a compensatory mechanism in which the progenitors (types C and A cells) proliferate in a higher rate, without affecting olfactory ability in adulthood. PMID:23123702

  7. Maternal diabetes affects cell proliferation in developing rat placenta.

    PubMed

    Zorn, T M T; Zúñiga, M; Madrid, E; Tostes, R; Fortes, Z; Giachini, F; San Martín, S

    2011-08-01

    Placentation starts with the formation of a spheroidal trophoblastic shell surrounding the embryo, thus facilitating both implantation into the uterine stroma and contact with maternal blood. Although it is known that diabetes increases the placental size and weight, the mechanisms responsible for this alteration are still poorly understood. In mammals, cellular proliferation occurs in parallel to placental development and it is possible that diabetes induces abnormal uncontrolled cell proliferation in the placenta similar to that seen in other organs (e.g. retina). To test this hypothesis, the objective of this work was to determine cell proliferation in different regions of the placenta during its development in a diabetic rat model. Accordingly, diabetes was induced on day 2 of pregnancy in Wistar rats by a single injection of alloxan (40 mg/kg i.v.). Placentas were collected on days 14, 17, and 20 postcoitum. Immunoperoxidase was used to identify Ki67 nuclear antigen in placental sections. The number of proliferating cells was determined in the total placental area as well as in the labyrinth, spongiotrophoblast and giant trophoblast cell regions. During the course of pregnancy, the number of Ki67 positive cells decreased in both control and diabetic rat placentas. However, starting from day 17 of pregnancy, the number of Ki67 positive cells in the labyrinth and spongiotrophoblast regions was higher in diabetic rat placentas as compared to control. The present results demonstrate that placentas from the diabetic rat model have a significantly higher number of proliferating cells in specific regions of the placenta and at defined developmental stages. It is possible that this increased cell proliferation promotes thickness of the placental barrier consequently affecting the normal maternal-fetal exchanges. PMID:21692037

  8. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    PubMed

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. PMID:27173459

  9. Lactating Rats Retain Nursing Behavior and Maternal Care in Space

    NASA Technical Reports Server (NTRS)

    Daly, Megan E.; Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    In 1997, suckling mammals were flown in space for the first time as part of the NIH.R3 experiment sponsored jointly by NIH (National Institutes of Health) and NASA. Six rat dams and litters (Rattus norvegicus) were launched on an eight-day Space Shuttle mission at each of three postnatal ages (P5, P8, and P15). Dams and litters (N = 10 pups/litter) were housed within modified Animal Enclosure Modules (AEMs). Comparisons were made to ground controls. Dams and litters were videotaped daily in flight. The P8 and P15 flight litters showed excellent survival (99%) and weight gain relative to AEM ground controls, whereas P5 litters showed reduced survival (0% and 60%, respectively) and weight gain (less than 40% AEM). To examine the possibility that failures of maternal care contributed to P5 results, we analyzed the dams' in-flight nursing, licking and retrieving from four video segments ranging from twelve to fifteen minutes in length with control data derived from multiple ground segments. Video analyses revealed clear evidence of maternal care in flight. For P5 dams, frequency and duration of nursing and licking bouts fell within or above one standard deviation of control values. Retrieving was noted in the P5 and P8 groups only. The observed results suggest that factors other than maternal care contributed to the low survival rates and body weight gains of the P5 flight offspring.

  10. Reduced brain corticotropin-releasing factor receptor activation is required for adequate maternal care and maternal aggression in lactating rats.

    PubMed

    Klampfl, Stefanie M; Neumann, Inga D; Bosch, Oliver J

    2013-09-01

    The brain corticotropin-releasing factor (CRF) system triggers a variety of neuroendocrine and behavioural responses to stress. Whether maternal behaviour and emotionality in lactation are modulated by CRF has rarely been investigated. In the present study, we measured CRF mRNA expression within the parvocellular part of the paraventricular nucleus in virgin and lactating Wistar rats bred for high (HAB) and low (LAB) anxiety-related behaviour or non-selected for anxiety (NAB). Further, we intracerebroventricularly infused synthetic CRF or the CRF receptor (CRF-R) antagonist D-Phe to manipulate CRF-R1/2 non-specifically in lactating HAB, LAB, and NAB dams, and monitored maternal care, maternal motivation, maternal aggression, and anxiety. The CRF mRNA expression in the parvocellular part of the paraventricular nucleus was higher in HAB vs. LAB rats independent of reproductive status. The lactation-specific decrease of CRF mRNA was confirmed in LAB and NAB dams but was absent in HAB dams. Intracerebroventricular CRF decreased maternal care under basal conditions in the home cage in all breeding lines and reduced attack behaviour in HAB and LAB dams during maternal defence. In contrast, D-Phe rescued maternal care after exposure to maternal defence in the home cage without influencing maternal aggression. Furthermore, D-Phe decreased and CRF tended to increase anxiety in HAB/NAB and LAB dams, respectively, suggesting an anxiogenic effect of CRF in lactating females. In conclusion, low CRF-R activation during lactation is an essential prerequisite for the adequate occurrence of maternal behaviour. PMID:23742269

  11. IFITM Proteins Restrict Viral Membrane Hemifusion

    PubMed Central

    Golfetto, Ottavia; Bungart, Brittani; Li, Minghua; Ding, Shilei; He, Yuxian; Liang, Chen; Lee, James C.; Gratton, Enrico; Cohen, Fredric S.; Liu, Shan-Lu

    2013-01-01

    The interferon-inducible transmembrane (IFITM) protein family represents a new class of cellular restriction factors that block early stages of viral replication; the underlying mechanism is currently not known. Here we provide evidence that IFITM proteins restrict membrane fusion induced by representatives of all three classes of viral membrane fusion proteins. IFITM1 profoundly suppressed syncytia formation and cell-cell fusion induced by almost all viral fusion proteins examined; IFITM2 and IFITM3 also strongly inhibited their fusion, with efficiency somewhat dependent on cell types. Furthermore, treatment of cells with IFN also markedly inhibited viral membrane fusion and entry. By using the Jaagsiekte sheep retrovirus envelope and influenza A virus hemagglutinin as models for study, we showed that IFITM-mediated restriction on membrane fusion is not at the steps of receptor- and/or low pH-mediated triggering; instead, the creation of hemifusion was essentially blocked by IFITMs. Chlorpromazine (CPZ), a chemical known to promote the transition from hemifusion to full fusion, was unable to rescue the IFITM-mediated restriction on fusion. In contrast, oleic acid (OA), a lipid analog that generates negative spontaneous curvature and thereby promotes hemifusion, virtually overcame the restriction. To explore the possible effect of IFITM proteins on membrane molecular order and fluidity, we performed fluorescence labeling with Laurdan, in conjunction with two-photon laser scanning and fluorescence-lifetime imaging microscopy (FLIM). We observed that the generalized polarizations (GPs) and fluorescence lifetimes of cell membranes expressing IFITM proteins were greatly enhanced, indicating higher molecularly ordered and less fluidized membranes. Collectively, our data demonstrated that IFITM proteins suppress viral membrane fusion before the creation of hemifusion, and suggested that they may do so by reducing membrane fluidity and conferring a positive spontaneous curvature in the outer leaflets of cell membranes. Our study provides novel insight into the understanding of how IFITM protein family restricts viral membrane fusion and infection. PMID:23358889

  12. Effect of dietary protein restriction on renal ammonia metabolism.

    PubMed

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Guo, Hui; Verlander, Jill W; Weiner, I David

    2015-06-15

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  13. Arginine Vasopressin V1a Receptor Antagonist Impairs Maternal Memory in Rats

    PubMed Central

    Nephew, Benjamin C.; Bridges, Robert S.

    2008-01-01

    Primiparous female rats rapidly respond to foster pups following an extended separation from pups after an initial maternal experience. This consolidation of maternal behavior has been referred to as maternal memory. The neurochemical regulation of maternal memory is not clearly understood. One neuropeptide that may mediate maternal memory is arginine vasopressin (AVP), a neuropeptide which is modulated around the time of parturition and has an established role in learning and memory processes. Thus, the present studies examine the possible involvement of AVP in the establishment of maternal memory in female rats. Pregnant rats were implanted with chronic cannulae connected to subcutaneous osmotic minipumps filled with a V1a receptor antagonist [d(CH2)5Tyr(Me)AVP, 0.1–12.5 ng/hr] or saline vehicle which were chronically infused either into the lateral ventricles or bilaterally into the medial amygdala beginning on day 18 of gestation. Both the osmotic pumps and the newborn pups were removed 24 hours following parturition. The effects of the V1a antagonist treatments on social recognition and maternal behavior were measured following parturition and maternal memory was assessed following a ten day separation from pups. Whereas none of the AVP treatments affected the initial establishment of maternal behavior postpartum, maternal memory was impaired in rats infused into the amygdala with the AVP antagonist (1.25 and 12.5 ng/hr). Social recognition was not impaired by intracerebroventricular infusion of either the 0.1 or 1.0 ng/hr dose of the V1a antagonist. The present results suggest a role for medial amygdaloid V1a receptors in the establishment of maternal memory. PMID:18620713

  14. Maternal-infant separation impedes changes in feeding behavior during estrous cycle of rats

    PubMed Central

    Iwasaki, Shinichi; Inoue, Koki

    2015-01-01

    Traumatic and stressful events during childhood are associated with the development of eating disorders. We conducted an animal study to test if association stress in childhood affects ingestive behavior later in life by using female rats that have an adjusted estrous cycle. First, electrical impedance of the vagina was conducted to test estrous cycle adjustment. Second, the effects of 6 h per day maternal separation from birth to weaning, which models a psychologically stressful experience in childhood, was used to test feeding behavior during an ovarian cycle in female adult rats with matched estrous cycles. Food and water intake in maternal separated and non-separated rats was measured in each estrous phase. Non-separated rats showed periodical changes, but maternal separated rats showed no significant changes in food and water intake during an estrous cycle. An opposing tendency for food and water intake was seen between maternal separated and non-separated rats. These observations suggest that electrical impedance of the vagina showed the highest value in the estrous phase of rats housed in a reversed light-dark cycle, and maternal separation was found to disturb changes in feeding behavior during the estrous cycle. PMID:26119792

  15. Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats.

    PubMed

    Paul, Katie B; Hedge, Joan M; Devito, Michael J; Crofton, Kevin M

    2010-12-01

    Disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. The present study tested the hypothesis that perinatal triclosan exposure of dams decreases thyroxine in dams and offspring prior to weaning. Pregnant Long-Evans rats received triclosan by oral gavage (0-300 mg/kg/d) in corn oil from gestational day (GD)6 through postnatal day (PND)21. Serum was obtained from pups on PND4, 14, and 21, and from dams on PND22. Serum thyroxine (T4) was reduced 31% in dams on PND22. In pups, a unique pattern of hypothyroxinemia was observed; serum T4 decreased 27% in PND4 pups with no significant reduction observed on PND14 or PND21. Comparable reductions of approximately 30% in serum T4 at 300 mg/kg/d for dams and PND4 neonates and a lack of effect at PND14 and PND21 suggest that toxicokinetic or toxicodynamic factors may have contributed to a reduced exposure or a reduced toxicological response during the lactation period. PMID:20954233

  16. Effects of maternal separation on the dietary preference and behavioral satiety sequence in rats.

    PubMed

    da Silva, M C; de Souza, J A; Dos Santos, L O; Pinheiro, I L; Borba, T K F; da Silva, A A M; de Castro, R M; de Souza, S L

    2014-06-01

    This study investigated the effects of maternal separation on the feeding behavior of rats. A maternal separation model was used on postnatal day 1 (PND1), forming the following groups: in the maternal separation (MS) group, pups were separated from their mothers each day from PND1 to PND14, whereas in the control (C) group pups were kept with their mothers. Subgroups were formed to study the effects of light and darkness: control with dark and light exposure, female and male (CF and CM), and maternal separation with dark and light exposure, female and male (SDF, SDM, SLF and SLM). Female rats had higher caloric intake relative to body weight compared with male controls in the dark period only (CF=23.30.5 v. CM=18.20.7, P<0.001). Macronutrient feeding preferences were observed, with male rats exhibiting higher caloric intake from a protein diet as compared with female rats (CF=4.10.7, n=8 v. CM=7.00.5, n=8, P<0.05) and satiety development was not interrupted. Female rats had a higher adrenal weight as compared with male rats independently of experimental groups and exhibited a higher concentration of serum triglycerides (n=8, P<0.001). The study indicates possible phenotypic adjustments in the structure of feeding behavior promoted by maternal separation, especially in the dark cycle. The dissociation between the mother's presence and milk intake probably induces adjustments in feeding behavior during adulthood. PMID:24901662

  17. Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates.

    PubMed

    Cutuli, Debora; Caporali, Paola; Gelfo, Francesca; Angelucci, Francesco; Laricchiuta, Daniela; Foti, Francesca; De Bartolo, Paola; Bisicchia, Elisa; Molinari, Marco; Farioli Vecchioli, Stefano; Petrosini, Laura

    2015-01-01

    Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity. PMID:25814946

  18. Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates

    PubMed Central

    Cutuli, Debora; Caporali, Paola; Gelfo, Francesca; Angelucci, Francesco; Laricchiuta, Daniela; Foti, Francesca; De Bartolo, Paola; Bisicchia, Elisa; Molinari, Marco; Farioli Vecchioli, Stefano; Petrosini, Laura

    2015-01-01

    Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity. PMID:25814946

  19. The effects of dopaminergic/serotonergic reuptake inhibition on maternal behavior, maternal aggression, and oxytocin in the rat.

    PubMed

    Johns, J M; Joyner, P W; McMurray, M S; Elliott, D L; Hofler, V E; Middleton, C L; Knupp, K; Greenhill, K W; Lomas, L M; Walker, C H

    2005-08-01

    Studies using dopaminergic and serotonergic agonists or antagonists implicate involvement of these systems in various aspects of early maternal behavior and postpartum aggression towards an intruder in rats, both of which are associated with the presence of oxytocin in specific brain regions. It is unclear however, if or how long-term uptake inhibition of either neurotransmitter system alone or in combination, affects oxytocin system dynamics or maternal behavior/aggression. Pregnant women frequently take drugs (antidepressants, cocaine) that induce long-term reuptake inhibition of dopamine and/or serotonin, thus it is important to understand these effects on behavior and biochemistry. Rat dams were treated throughout gestation with amfonelic acid, fluoxetine, or a combination of both, to investigate effects of reuptake inhibition of dopamine and serotonin systems respectively, on maternal behavior, aggression and oxytocin. The more appetitive aspects of maternal behavior (nesting, licking, touching) and activity were increased by the low dose of amfonelic acid, high dose of fluoxetine, or the high dose combination more than other treatments. Aggression was decreased by amfonelic acid and somewhat increased by fluoxetine. Dopamine uptake inhibition appears to have a strong effect on hippocampal oxytocin levels, while receptor dynamics may be more strongly affected by serotonin uptake inhibition. PMID:15996723

  20. Maternal Programming of Reproductive Function and Behavior in the Female Rat

    PubMed Central

    Cameron, Nicole M.

    2011-01-01

    Parental investment can be used as a forecast for the environmental conditions in which offspring will develop to adulthood. In the rat, maternal behavior is transmitted to the next generation through epigenetic modifications such as methylation and histone acetylation, resulting in variations in estrogen receptor alpha expression. Natural variations in maternal care also influence the sexual strategy adult females will adopt later in life. Lower levels of maternal care are associated with early onset of puberty as well as increased motivation to mate and greater receptivity toward males during mating. Lower levels of maternal care are also correlated with greater activity of the hypothalamus–pituitary–gonadal axis, responsible for the expression of these behaviors. Contrary to the transition of maternal care, sexual behavior cannot simply be explained by maternal attention, since adoption studies changed the sexual phenotypes of offspring born to low caring mothers but not those from high caring dams. Indeed, mothers showing higher levels of licking/grooming have embryos that are exposed to high testosterone levels during development, and adoption studies suggest that this androgen exposure may protect their offspring from lower levels of maternal care. We propose that in the rat, maternal care and the in utero environment interact to influence the reproductive strategy female offspring display in adulthood and that this favors the species by allowing it to thrive under different environmental conditions. PMID:22203802

  1. Cocaine disrupts pup-induced maternal behavior in juvenile and adult rats.

    PubMed

    Johns, Josephine M; McMurray, Matthew S; Hofler, Vivian E; Jarrett, Thomas M; Middleton, Christopher L; Elliott, Deborah L; Mirza, Raessa; Haslup, Amber; Elliott, Jay C; Walker, Cheryl H

    2007-01-01

    Impaired onset of maternal behavior in first generation rat dams was previously correlated with rearing by cocaine-treated dams and prenatal cocaine exposure. Pup-induced maternal behavior in non-lactating rats has not been examined with regard to cocaine exposure and rearing conditions. First generation male and female juveniles and young adult males reared by cocaine-treated or control dams and prenatally exposed to either cocaine or control conditions were tested for pup-induced maternal behavior at postnatal days 28 and 60. We now report disruptions in pup-induced maternal behavior in both 28 and 60 day old first generation offspring attributable to rearing condition and prenatal cocaine exposure. PMID:17698321

  2. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations.

    PubMed

    Thibodeaux, Julie R; Hanson, Roger G; Rogers, John M; Grey, Brian E; Barbee, Brenda D; Richards, Judy H; Butenhoff, John L; Stevenson, Lisa A; Lau, Christopher

    2003-08-01

    The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluoride and substituted perfluorooctane sulfonamido components found in many commercial and consumer applications. Pregnant Sprague-Dawley rats were given 1, 2, 3, 5, or 10 mg/kg PFOS daily by gavage from gestational day (GD) 2 to GD 20; CD-1 mice were similarly treated with 1, 5, 10, 15, and 20 mg/kg PFOS from GD 1 to GD 17. Controls received 0.5% Tween-20 vehicle (1 ml/kg for rats and 10 ml/kg for mice). Maternal weight gain, food and water consumption, and serum chemistry were monitored. Rats were euthanized on GD 21 and mice on GD 18. PFOS levels in maternal serum and in maternal and fetal livers were determined. Maternal weight gains in both species were suppressed by PFOS in a dose-dependent manner, likely attributed to reduced food and water intake. Serum PFOS levels increased with dosage, and liver levels were approximately fourfold higher than serum. Serum thyroxine (T4) and triiodothyronine (T3) in the PFOS-treated rat dams were significantly reduced as early as one week after chemical exposure, although no feedback response of thyroid-stimulating hormone (TSH) was observed. A similar pattern of reduction in T4 was also seen in the pregnant mice. Maternal serum triglycerides were significantly reduced, particularly in the high-dose groups, although cholesterol levels were not affected. In the mouse dams, PFOS produced a marked enlargement of the liver at 10 mg/kg and higher dosages. In the rat fetuses, PFOS was detected in the liver but at levels nearly half of those in the maternal counterparts, regardless of administered doses. In both rodent species, PFOS did not alter the numbers of implantations or live fetuses at term, although small deficits in fetal weight were noted in the rat. A host of birth defects, including cleft palate, anasarca, ventricular septal defect, and enlargement of the right atrium, were seen in both rats and mice, primarily in the 10 and 20 mg/kg dosage groups, respectively. Our results demonstrate both maternal and developmental toxicity of PFOS in the rat and mouse. PMID:12773773

  3. Moderate Exercise Attenuates Lipopolysaccharide-Induced Inflammation and Associated Maternal and Fetal Morbidities in Pregnant Rats

    PubMed Central

    Macdonald-Goodfellow, Shannyn K.; Surita, Fernanda G.; Pinto e Silva, João L.; Tayade, Chandrakant; Othman, Maha; Ozolinš, Terence R. S.

    2016-01-01

    Fetal growth restriction (FGR) and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS) on gestational days (GD) 13.5–16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation. PMID:27124733

  4. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats.

    PubMed

    Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie

    2015-11-01

    Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring. PMID:24753110

  5. Maternal and fetal tryptophan metabolism in gestating rats: effects of intrauterine growth restriction.

    PubMed

    Sano, Mitsue; Ferchaud-Roucher, Véronique; Kaeffer, Bertrand; Poupeau, Guillaume; Castellano, Blandine; Darmaun, Dominique

    2016-01-01

    L-Tryptophan (L-Trp) is a precursor for serotonin (5-HT) and nicotinamide adenine dinucleotide (NAD) synthesis. Both 5-HT and NAD may impact energy metabolism during gestation given that recent studies have demonstrated that increased 5-HT production is crucial for increasing maternal insulin secretion, and that sirtuin, an NAD(+)-dependent protein deacetylase, regulates endocrine signaling. Infants born with intrauterine growth restriction (IUGR) are at a higher risk of metabolic disease once they reach adulthood. IUGR is associated with altered maternal-fetal amino acid transfer. Whether IUGR affects L-Trp metabolism in mother and fetus has not been fully elucidated. Recently, we developed an analytical method using stable isotope-labeled L-Trp to explore the metabolism of L-Trp and its main metabolites, L-kynurenine (L-Kyn), 5-HT and quinolinic acid (QA). In this study, dams submitted to dietary protein restriction throughout gestation received intravenous infusions of stable isotope-labeled (15)N2-L-Trp to determine whether L-Trp metabolism is affected by IUGR. Samples were obtained from maternal, fetal and umbilical vein plasma, as well as the amniotic fluid (AF), placenta and liver of the mother and the fetus after isotope infusion. We observed evidence for active L-Trp transfer from mother to fetus, as well as de novo synthesis of 5-HT in the fetus. Plasma 5-HT was decreased in undernourished mothers. In IUGR fetuses, maternal-fetal L-Trp transfer remained unaffected, but conversion to QA was impaired, implying that NAD production also decreased. Whether such alterations in tryptophan metabolism during gestation have adverse consequences and contribute to the increased risk of metabolic disease in IUGR remains to be explored. PMID:26334345

  6. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    PubMed Central

    Wang, Qiong; Shao, Feng; Wang, Weiwen

    2015-01-01

    Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and non separated rats. However, in the mPFC, the BDNF expression was increased with age in the non separated rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male non-maternal separation (NMS) rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The present study shows unique age-differently changes on a molecular level induced by MS and advances the use of MS as a valid animal model to detect the underlying neurobiological mechanisms of mental disorders. PMID:26388728

  7. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats.

    PubMed

    Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  8. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats

    PubMed Central

    Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  9. Developmental Triclosan Exposure Decreases Maternal and Offspring Thyroxine in Rats*

    EPA Science Inventory

    Epidemiological and laboratory data have demonstrated that disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. In a short-term exposure paradigm, triclosan decreased systemic thyroxine (T4) concentr...

  10. Experience with pups sustains maternal responding in postpartum rats.

    PubMed

    Orpen, B G; Fleming, A S

    1987-01-01

    In these studies, we investigated the sustaining of postpartum maternal responsiveness through pup experience. In the first study, females were tested for maternal behavior at various times after pregnancy termination by Caesarean section (CS) at term. The females remained rapidly responsive to young for 7 days after pregnancy termination, but were no more responsive than virgins after 10 days. In the second study, females were allowed varying times of complete access to pups, beginning 24 hours after CS, and were tested for maternal behavior 10 days later. Females who retrieved and cared for pups for 30 minutes during exposure, remained rapidly maternal 10 days after CS; those who were allowed only 15 minutes of caring for pups did not. In the third study, females received 24 hours of exposure to distal sensory stimuli from pups, beginning 24 hours after CS. The proportion of females who became maternal within 24 hours of the beginning of maternal testing, 10 days after CS, was greater than that among females who received no exposure to pups. PMID:3615654

  11. Intrauterine Growth Restricted Rats Exercised before and during Pregnancy: Maternal and Perinatal Repercussions

    PubMed Central

    Corvino, S. B.; Volpato, G. T.; Rudge, M. V. C.; Damasceno, D. C.

    2015-01-01

    This study aimed at evaluating the effect of swimming before and during pregnancy on rats born with intrauterine growth restriction (IUGR) and their offspring. For this, nondiabetic and streptozotocin-induced severely diabetic (SD) pregnant rats were mated and generated offspring with appropriate (control, C) and small (IUGR) for pregnancy age, respectively. Following that, C and IUGR groups were further distributed into nonexercised control (C), exercised control (Cex), nonexercised IUGR (IUGR), and exercised IUGR (IUGRex). IUGR rats presented lower mating rate than control rats. Regardless of physical exercise IUGR rats presented decreased body weight from birth to lactation. At 90 days of life, IUGR rats presented glucose intolerance. Maternal organ weights were increased and relative adiposity of IUGRex rats was lower than Cex. IUGR and IUGRex offspring presented reduced body weight than C and Cex, respectively. IUGRex dams presented an increased rate of appropriate for pregnancy age newborns. IUGEex male and female offspring relative brain weight was increased compared with Cex. Therefore, swimming before and during pregnancy prevented glucose intolerance, reduced general adiposity, and increased maternal and offspring organ weight in rats, showing the benefit of physical exercise for IUGR rats. PMID:26345406

  12. Maternal licking by virgin and lactating rats: water transfer from pups.

    PubMed

    Gubernick, D J; Alberts, J R

    1985-04-01

    Rat dams provide water to their young via milk. Dams reclaim much of this water by licking the pups' anogenital areas, stimulating reflexive urination and consuming the pups' urine. Sensitized virgin rats, induced to act maternally do not provide water to pups, but they nevertheless lick them. To determine whether bidirectional transfer of water between the rat mother and her litter mediates maternal licking, water transfer from pups to sensitized virgins was compared with that to lactating dams. We used time-lapse video recordings to measure anogenital licking of pups. Sensitized virgins and lactating dams spent equivalent amounts of time licking the anogenital regions of test litters. We quantified the amount of water transferred from offspring to both virgins and dams by injecting pups with tritiated water and measuring the radioactive label in maternal plasma after interaction with a litter of 5-day-olds. Dams obtained more than twice as much urine from the litter in 4 hr than did the maternal virgins. Differences in the amount of water obtained from pups were due to differences in urine availability caused by the receipt of milk from the dams. When the dams' nipples were ligated, so that their pups received no milk, ligated dams and virgins consumed equivalent amounts of pup urine. Maternal licking and urine consumption are not dependent solely upon the bidirectional exchange of water between the dam and her offspring. PMID:4040255

  13. Toxic Effects of Maternal Zearalenone Exposure on Uterine Capacity and Fetal Development in Gestation Rats

    PubMed Central

    Zhang, Yuanyuan; Jia, Zhiqiang; Yin, Shutong; Gao, Rui; Qu, Zhe; Liu, Min; Nie, Shaoping

    2014-01-01

    The objectives of this study were to determine the effects of high-dose and early gestational exposure to zearalenone (ZEN) in female Sprague-Dawley (SD) rats, to correlate the maternal uterus with the fetus, and to explore the development and malformation of fetuses. Pregnant female SD rats were fed diets containing 0.3, 48.5, 97.6, or 146.0 mg/kg ZEN on gestational days (GDs) 0 through 7. All the females survived until GD 20, at which point a cesarean section was performed to harvest the organs, blood, and fetuses. The results indicated that exposure to ZEN during early gestation can impact the maternal reproductive capability. Delayed fetal development was directly linked to maternal toxicity. The toxic effects of ZEN caused early deaths more frequently than late deaths, and the deleterious effects lasted through the end of pregnancy. PMID:24357638

  14. FETAL DEVELOPMENT IN THE RAT FOLLOWING DISRUPTION OF MATERNAL RENAL FUNCTION DURING PREGNANCY

    EPA Science Inventory

    Pregnant Sprague Dawley rats were exposed on either gestation day 7, 9, 11 or 13 to mercuric chloride (1-4 mg/kg, subcutaneously) in order to evaluate maternal renal pathophysiology as a risk factor for abnormal embryonic and fetal development. ollowing exposure, the magnitude an...

  15. EFFECTS OF CHEMICALLY-INDUCED MATERNAL TOXICITY ON PRENATAL DEVELOPMENT IN THE RAT

    EPA Science Inventory

    The hypothesis that chemically-induced overt maternal toxicity induces a characteristic syndrome of adverse developmental effects in the rat was investigated. regnant animals (Sprague-Dawley strain) were dosed by oral gavage with one of a series of compounds on days 6 through 15 ...

  16. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON MATERNAL AND DEVELOPMENTAL THYROID STATUS IN THE RAT

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON MATERNAL AND DEVELOPMENTAL THYROID STATUS IN THE RAT. JR Thibodeaux1, R Hanson1, B Grey1, JM Rogers1, ME Stanton2, and C Lau1. 1Reproductive Toxicology Division; 2Neurotoxicology Division, NHEERL, ORD, US EPA, Research Triangle P...

  17. REPEATED MATERNAL SEPARATION IN THE NEONATAL RAT: CELLULAR MECHANISMS CONTRIBUTING TO BRAIN GROWTH SPARING

    EPA Science Inventory

    Separation of rat neonates from their dam has been shown to evoke acutely a variety of biochemical and physiological responses. n the current study, we examined whether these responses were extended to pups who were subject to daily episodes of maternal deprivation, and whether t...

  18. LATE GESTATIONAL ATRAZINE EXPOSURE DECREASES MATERNAL BEHAVIOR IN LONG-EVANS RATS

    EPA Science Inventory

    Late Gestational Atrazine Exposure Alters Maternal Nursing Behavior in Rats

    Jennifer L. Rayner1 and Suzanne E. Fenton2

    1 University of North Carolina at Chapel Hill, DESE, Chapel Hill, NC, and 2 USEPA/ ORD/NHEERL/Reproductive Toxicology Division, RTP, NC.

    At...

  19. Maternal Copper Deficiency Perpetuates Altered Vascular Function in Sprague-Dawley Rat Offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the consequences of maternal Cu (Cu) deficiency on the vascular function of offspring or on perpetuation of vascular effects to a second generation. We examined vascular functional responses in mesenteric arteries from Cu-deficient Sprague-Dawley rat dams and from offspring dir...

  20. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  1. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations

    EPA Science Inventory

    Abstract: The maternal and developmental toxicities of perfluorooctane sulfonate (PFOS, C8F17SO3-) were evaluated in the rat and mouse. PFOS is an environmentally persistent compound used as a surfactant and occurs as a degradation product of both perfluorooctane sulfonyl fluorid...

  2. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCATANE SULFONATE (PFOS) IN THE RAT

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT. C. Lau1, J.M. Rogers1, J.R. Thibodeaux1, R.G. Hanson1, B.E. Grey1, B.D. Barbee1, J.H. Richards2, J.L. Butenoff3. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, USEPA, Research Triangle Park, NC, 3...

  3. Effect of ethanol consumption during gestation on maternal-fetal amino acid metabolism in the rat

    SciTech Connect

    Lin, G.W.

    1981-01-01

    The distribution of /sup 14/C-alpha-aminoisobutyric acid (AIB), administered intravenously, in maternal, fetal and placental tissues was examined in the rat on gestation-day 21. Ethanol consumption during gestation (day 6 through 21) significantly reduced the uptake of AIB by the placenta and fetus while exerting no influence on maternal tissue AIB uptake. The concentration of fetal plasma free histidine was decreased 50% as a result of maternal ethanol ingestion, but the free histidine level of maternal plasma was not altered. Since no effect on protein content of fetal tissue could be detected, it is speculated that reduced histidine to the fetus might significantly alter the amounts of histamine and carnosine formed via their precursor. The significance of these findings in relation to the Fetal Alcohol Syndrome is discussed.

  4. Developmental toxicity of benzyl benzoate in rats after maternal exposure throughout pregnancy.

    PubMed

    Koçkaya, E Arzu; Kılıç, Aysun

    2014-01-01

    The maternal and fetal toxicity of benzyl benzoate, commonly used as antiparasitic insecticide, was evaluated in pregnant rats after a daily oral dose of 25 and 100 mg/kg. Biochemical, histopathological, and morphological examinations were performed. Dams were observed for maternal body weights and food and water consumption and subjected to caesarean section on (GD) 20. Maternal and fetal liver, kidney, heart, brain, and placenta were examined histopathologically under light microscope. Maternal and fetal liver and placenta were stained immunohistochemically for vascular endothelial growth factor (VEGF). Morphometric analysis of fetal body lengths, placental measurements, and fetal skeletal stainings was performed. Statistically significant alterations in biochemical parameters and placental and skeletal measurements were determined in treatment groups. In addition to histopathological changes, considerable differences were observed in the immunolocalization of VEGF in treatment groups. These results demonstrated that benzyl benzoate and its metabolites can transport to the placenta and eventually enter the fetuses. PMID:21922633

  5. Voluntary exercise reduces the neurotoxic effects of 6-hydroxydopamine in maternally separated rats

    PubMed Central

    Mabandla, Musa Vuyisile; Russell, Vivienne Ann

    2010-01-01

    Maternal separation has been associated with development of anxiety-like behaviour and learning impairments in adult rats. This has been linked to changes in brain morphology observed after exposure to high levels of circulating glucocorticoids during the stress-hyporesponsive period (P4 to P14). In the present study, adult rats that had been subjected to maternal separation (180 min/day for 14 days) during the stress-hyporesponsive period, received unilateral infusions of a small dose of 6-hydroxydopamine (6-OHDA, 5 μg/4 μl saline) into the medial forebrain bundle. The results showed that voluntary exercise had a neuroprotective effect in both non-stressed and maternally separated rats in that there was a decrease in forelimb akinesia (step test) and limb use asymmetry (cylinder test). Maternal separation increased forelimb akinesia and forelimb use asymmetry and reduced the beneficial effect of exercise on forelimb akinesia. It also reduced exploratory behaviour, consistent with anxiety-like behaviour normally associated with maternal separation. Exercise appeared to reduce dopamine neuron destruction in the lesioned substantia nigra when expressed as a percentage of the non-lesioned hemisphere. However, this appeared to be due to a compensatory decrease in completely stained tyrosine hydroxylase positive neurons in the contralateral, non-lesioned substantia nigra. In agreement with reports that maternal separation increases the 6-OHDA-induced loss of dopamine terminals in the striatum, there was a small increase in dopamine neuron destruction when expressed as a percentage of the non-lesioned hemisphere but there was no difference in dopamine cell number, suggesting that exposure to maternal separation did not exacerbate dopamine cell loss. PMID:20206210

  6. Polyinosinic/Polycytidylic Acid-mediated changes in maternal and fetal disposition of lopinavir in rats.

    PubMed

    Petrovic, Vanja; Piquette-Miller, Micheline

    2015-07-01

    Maintenance of optimal lopinavir (LPV) concentration is essential for effective antiretroviral therapy and prevention of mother-to-child transmission of human immunodeficiency virus. However, little is known about the effects of inflammation on the pharmacokinetics of this protease inhibitor and drug transporter substrate, particularly during gestation. Our objective was to study the effect of polyinosinic/polycytidylic acid [poly(I:C)], a viral mimetic, on key maternal drug transporters, and to examine the effect on maternal and fetal disposition of LPV in rats. Poly(I:C) (5.0 mg/kg i.p.) or saline vehicle was administered to pregnant Sprague-Dawley rats on gestational days 17-18. At 24 hours postinjection, all rats were administered LPV (10 mg/kg i.v.), and plasma and tissues were collected at 5-120 minutes postadministration. Plasma interferon-γ (IFN-γ) levels were measured by enzyme-linked immunosorbent assay, and transporter expression was measured via real-time polymerase chain reaction. Maternal plasma, hepatic, placental, and fetal LPV concentrations were determined by liquid chromatography-tandem mass spectrometry. Administration of poly(I:C) induced IFN-γ plasma levels and downregulated the expression of several important ATP-binding cassette (ABC) drug efflux transporters in the placenta and liver of pregnant rats, compared with controls (P < 0.05). Maternal LPV plasma concentration and area under the concentration-versus-time curve were significantly increased in the poly(I:C) group. Plasma protein binding was also significantly higher in poly(I:C)-treated rats. Pronounced increases in hepatic, placental, and fetal LPV tissue:unbound plasma concentrations were seen in the poly(I:C) group; however, absolute tissue concentrations were not changed. Since the majority of commonly used and clinically important antiretroviral drugs are known to be ABC transporter substrates, inflammation-mediated changes in transporter expression could affect their maternal disposition and fetal exposure. PMID:25887454

  7. Hypothermia after chronic mild stress exposure in rats with a history of postnatal maternal separations.

    PubMed

    Mrdalj, Jelena; Lundegaard Mattson, Ase; Murison, Robert; Konow Jellestad, Finn; Milde, Anne Marita; Pallesen, Ståle; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2014-03-01

    The circadian system develops and changes in a gradual and programmed process over the lifespan. Early in life, maternal care represents an important zeitgeber and thus contributes to the development of circadian rhythmicity. Exposure to early life stress may affect circadian processes and induce a latent circadian disturbance evident after exposure to later life stress. Disturbance of the normal regulation of circadian rhythmicity is surmised to be an etiological factor in depression. We used postnatal maternal separation in rats to investigate how the early life environment might modify the circadian response to later life unpredictable and chronic stress. During postnatal days 2-14, male Wistar rats (n = 8 per group) were daily separated from their mothers for a period of either 180 min (long maternal separation; LMS) or 10 min (brief maternal separation; BMS). In adulthood, rats were exposed to chronic mild stress (CMS) for 4 weeks. Body temperature, locomotor activity and heart rate were measured and compared before and after CMS exposure. LMS offspring showed a delayed body temperature acrophase compared to BMS offspring. Otherwise, adult LMS and BMS offspring demonstrated similar diurnal rhythms of body temperature, locomotor activity and heart rate. Exposure to CMS provoked a stronger and longer lasting hypothermia in LMS rats than in BMS rats. The thermoregulatory response appears to be moderated by maternal care following reunion, an observation made in the LMS group only. The results show that early life stress (LMS) in an early developmental stage induced a thermoregulatory disturbance evident upon exposure to unpredictable adult life stressors. PMID:24156523

  8. Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats

    PubMed Central

    Nephew, Benjamin C.; Bridges, Robert S.

    2008-01-01

    Maternal aggression is a robust type of aggression displayed by lactating female rats. Although arginine vasopressin (AVP) has been implicated in the control of male aggression, its involvement in maternal aggression has not been thoroughly investigated. Previous neuroanatomical studies suggest that AVP may mediate the display of aggression during lactation. In the current study, AVP and an AVP V1a receptor antagonist were centrally administered to primiparous rats on days 5 and 15 of lactation, and aggression, maternal behavior, and grooming were recorded. Although AVP did not affect the number of attacks or duration of aggression, it increased the latency to initiate aggression on day 5, in addition to decreasing maternal behavior and increasing grooming. Conversely, V1a antagonist treatment increased maternal aggression on both days of lactation, decreased maternal behavior on day 15, and decreased grooming on day 5. Thus, it appears that central AVP activity modulates maternal aggression, as well as maternal behavior and grooming behavior during lactation. PMID:18640147

  9. Evidence that the medial amygdala projects to the anterior/ventromedial hypothalamic nuclei to inhibit maternal behavior in rats.

    PubMed

    Sheehan, T; Paul, M; Amaral, E; Numan, M J; Numan, M

    2001-01-01

    The maternal behaviors shown by a rat that has given birth are not shown by a virgin female rat when she is first presented with young. This absence of maternal behavior in virgins has been attributed to the activity of a neural circuit that inhibits maternal behavior in nulliparae. The medial amygdala and regions of the medial hypothalamus such as the anterior and ventromedial hypothalamic nuclei have previously been shown to inhibit maternal behavior, in that lesions to these regions promote maternal responding. Furthermore, we have recently shown that these and other regions, such as the principal bed nucleus of the stria terminalis, the ventral lateral septum, and the dorsal premammillary nucleus, show higher pup-induced Fos-immunoreactivity in non-maternal rats exposed to pups than during the performance of maternal behavior, indicating that they too could be involved in preventing maternal responsiveness. The current study tested whether the medial amygdala projects to the anterior/ventromedial hypothalamic nuclei in a neural circuit that inhibits maternal behavior, as well as to see what other brain regions could participate in this circuit. Bilateral excitotoxic lesions of the medial amygdala, or of the anterior/ventromedial hypothalamic nuclei, promoted maternal behavior. Unilateral medial amygdala lesions caused a reduction of pup-induced Fos-immunoreactivity in the anterior/ventromedial hypothalamic nuclei in non-maternal rats ipsilateral to the lesion, as well as in the principal bed nucleus of the stria terminalis, ventral lateral septum, and dorsal premammillary nucleus. Finally, unilateral medial amygdala lesions paired with contralateral anterior/ventromedial hypothalamic nuclei lesions promoted maternal behavior, although ipsilateral lesion placements were also effective.Together, these results indicate that the medial amygdala projects to the anterior/ventromedial hypothalamic nuclei in a neural circuit that inhibits maternal behavior, and that the principal bed nucleus of the stria terminalis, ventral lateral septum, and dorsal premammillary nucleus could also be involved in this circuit. PMID:11566505

  10. Effects of Chronic Central Arginine Vasopressin (AVP) on Maternal Behavior in Chronically Stressed Rat Dams

    PubMed Central

    Coverdill, Alexander J.; McCarthy, Megan; Bridges, Robert S.; Nephew, Benjamin C.

    2012-01-01

    Exposure of mothers to chronic stressors during pregnancy or the postpartum period often leads to the development of depression, anxiety, or other related mood disorders. The adverse effects of mood disorders are often mediated through maternal behavior and recent work has identified arginine vasopressin (AVP) as a key neuropeptide hormone in the expression of maternal behavior in both rats and humans. Using an established rodent model that elicits behavioral and physiological responses similar to human mood disorders, this study tested the effectiveness of chronic AVP infusion as a novel treatment for the adverse effects of exposure to chronic social stress during lactation in rats. During early (day 3) and mid (day 10) lactation, AVP treatment significantly decreased the latency to initiate nursing and time spent retrieving pups, and increased pup grooming and total maternal care (sum of pup grooming and nursing). AVP treatment was also effective in decreasing maternal aggression and the average duration of aggressive bouts on day 3 of lactation. Central AVP may be an effective target for the development of treatments for enhancing maternal behavior in individuals exposed to chronic social stress. PMID:24349762

  11. Effects of maternal ethanol consumption on hepatic lipid biosynthesis in foetal and neonatal rats.

    PubMed Central

    Rawat, A K

    1978-01-01

    Effects of prolonged maternal ethanol consumption were studied on hepatic lipid content, on the rates of fatty acid synthesis and on the activities of enzymes involved in fatty acid synthesis in the livers of foetal and suckling neonatal rats. Prolonged maternal ethanol consumption resulted in a significant increase in the contents of hepatic total lipids, triacylglycerols and plasma unesterified fatty acids in foetal and neonatal rats. Studies in vitro with 3H2O showed that maternal ethanol consumption did not result in a significant change in its rate of incorporation into lipid fractions of foetal and neonatal livers. The rates of fatty acid synthesis showed a pronounced decrease immediately after birth, compared with the foetal stage, but increased in the adult animals. On the other hand, the highest rates of lipid oxidation were observed in the neonatal stage. Maternal ethanol consumption resulted in a significant decrease in the rates of [14C]palmitate oxidation to 14CO2 by both the foetal and neonatal livers. Maternal ethanol consumption did not result in an increase in the activities of any of the lipid-synthesizing enzymes tested throughout the period of development. Although increased fatty acid synthesis does not seem to be the mechanism for the accumulation of these lipids, decreased oxidation of the lipids may be partly responsible for the lipid accumulation. PMID:697753

  12. Release of Zn from maternal tissues in pregnant rats deficient in Zn or Zn and Ca

    SciTech Connect

    Hurley, L.S.; Masters, D.G.; Lonnerdal, B.; Keen, C.L.

    1986-03-05

    Earlier studies have shown that diets that increase tissue catabolism reduce the teratogenic effects of Zn deficiency. The hypothesis that Zn may be released from body tissues when the metabolic state is altered was further tested. Nonpregnant Sprague Dawley females were injected with Zn-65; after equilibration, the two major pools of Zn, bone and muscle, had different specific activities (SA), muscle being much higher. Females were mated and fed diets adequate in Zn and Ca (C) or deficient in Zn (ZnD) or deficient in both Zn and Ca (ZnCaD). Calculations using weight loss in ZnD and ZnCaD rats, Zn content of maternal bone and muscle, and total fetal Zn at term indicated that in ZnCaD rats a relatively small amount of Zn from bone early in pregnancy was sufficient to prevent abnormal organogenesis, but most fetal Zn came from breakdown of maternal muscle in the last 3 days of pregnancy. Isotope data supported this conclusion. SA of Zn in ZnD fetuses was equal and high, indicating that most Zn came from the same maternal tissue. High muscle SA prior to mating, and increased SA in tibia and liver during pregnancy suggest that muscle provided Zn for other maternal tissues as well as fetuses. In contrast, SA in C fetuses was less than 30% of that of the D groups, consistent with the earlier hypothesis that most fetal Zn in C rats is accrued directly from the diet.

  13. Pregnancy and maternal iron deficiency stimulate hepatic CRBPII expression in rats.

    PubMed

    Cottin, Sarah C; Gambling, Lorraine; Hayes, Helen E; Stevens, Valerie J; McArdle, Harry J

    2016-06-01

    Iron deficiency impairs vitamin A (VA) metabolism in the rat but the mechanisms involved are unknown and the effect during development has not been investigated. We investigated the effect of pregnancy and maternal iron deficiency on VA metabolism in the mother and fetus. 54 rats were fed either a control or iron deficient diet for 2weeks prior to mating and throughout pregnancy. Another 15 female rats followed the same diet and were used as non-pregnant controls. Maternal liver, placenta and fetal liver were collected at d21 for total VA, retinol and retinyl ester (RE) measurement and VA metabolic gene expression analysis. Iron deficiency increased maternal hepatic RE (P<.05) and total VA (P<.0001), fetal liver RE (P<.05), and decreased placenta total VA (P<.05). Pregnancy increased Cellular Retinol Binding Protein (CRBP)-II gene expression by 7 fold (P=.001), decreased VA levels (P=.0004) and VA metabolic gene expression (P<.0001) in the liver. Iron deficiency increased hepatic CRBPII expression by a further 2 fold (P=.044) and RBP4 by~20% (P=.005), increased RBPR2 and decreased CRBPII, LRAT, and TTR in fetal liver, while it had no effect on VA metabolic gene expression in the placenta. Hepatic CRBPII expression is increased by pregnancy and further increased by iron deficiency, which may play an important role in VA metabolism and homeostasis. Maternal iron deficiency also alters VA metabolism in the fetus, which is likely to have consequences for development. PMID:27142737

  14. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats.

    PubMed

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-01-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring's plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring's plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development. PMID:26633475

  15. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats

    PubMed Central

    Kabasakal Cetin, Arzu; Dasgin, Halil; Gülec, Atila; Onbasilar, İlyas; Akyol, Asli

    2015-01-01

    Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring’s plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring’s plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development. PMID:26633475

  16. Effect of fetal growth on maternal protein metabolism in postabsorptive rat

    SciTech Connect

    Ling, P.R.; Bistrian, B.R.; Blackburn, G.L.; Istfan, N.

    1987-03-01

    Rates of protein synthesis were measured in whole fetuses and maternal tissues at 17 and 20 days of gestation in postabsorptive rats using continuous infusion of L-(1-/sup 14/C)leucine. Fetal protein degradation rates were derived from the fractional rates of synthesis and growth. Whole-body (plasma) leucine kinetics in the mother showed a significant reduction of the fraction of plasma leucine oxidized in the mothers bearing older fetuses, a slight increase in the plasma flux, with total leucine oxidation and incorporation into protein remaining similar at the two gestational ages. Estimates of fractional protein synthesis in maternal tissues revealed an increase in placental and hepatic rates at 20 days of gestation, whereas the fractional synthetic rate in muscle remained unchanged. A model for estimation of the redistribution of leucine between plasma and tissues is described in detail. This model revealed a more efficient utilization of leucine in fetal protein synthesis in comparison with other maternal tissues, a greater dependency of the fetus on plasma supply of leucine, and a significant increase (2-fold) in the release of leucine from maternal muscle as the fetal requirements increased proportionately with its size. The latter conclusion, supported by nitrogen analysis and the ratio of bound-to-free leucine in maternal tissues, confirms the importance of maternal stores in maintaining the homeostasis of essential amino acids during late pregnancy.

  17. Maternal care interacts with prenatal stress in altering sexual dimorphism in male rats.

    PubMed

    Pérez-Laso, C; Ortega, E; Martín, J L R; Pérez-Izquierdo, M A; Gómez, F; Segovia, S; Del Cerro, M C R

    2013-09-01

    The present study analyzes the interaction between prenatal stress and mother's behavior on brain, hormonal, and behavioral development of male offspring in rats. It extends to males our previous findings, in females, that maternal care can alter behavioral dimorphism that becomes evident in the neonates when they mature. Experiment 1 compares the maternal behavior of foster mothers toward cross-fostered pups versus mothers rearing their own litters. Experiment 2 ascertains the induced "maternal" behavior of the male pups, derived from Experiment 1 when they reached maturity. The most striking effect was that the males non-exposed to the stress as fetuses and raised by stressed foster mothers showed the highest levels of "maternal" behavior of all the groups (i.e., induction of maternal behavior and retrieving behavior), not differing from the control, unstressed, female groups. Furthermore, those males showed significantly fewer olfactory bulb mitral cells than the control males that were non-stressed as fetuses and raised by their own non-stressed mothers. They also presented the lowest levels of plasma testosterone of all the male groups. The present findings provide evidence that prenatal environmental stress can "demasculinize" the behavior, brain anatomy and hormone secretion in the male fetuses expressed when they reach maturity. Moreover, the nature of the maternal care received by neonates can affect the behavior and physiology that they express at maturity. PMID:23994571

  18. Neonatally Induced Mild Diabetes in Rats and Its Effect on Maternal, Placental, and Fetal Parameters

    PubMed Central

    Sinzato, Yuri Karen; Volpato, Gustavo Tadeu; Iessi, Isabela Lovizutto; Bueno, Aline; Calderon, Iracema de Mattos Paranhos; Rudge, Marilza Vieira Cunha; Damasceno, Débora Cristina

    2012-01-01

    The aim of this study was to assess placental changes and reproductive outcomes in neonatally induced mild diabetic dams and fetal development in their offspring. At birth, female rats were assigned either to control or diabetic group (100 mg of streptozotocin/Kg, subcutaneously). At adulthood, the female rats were mated. During pregnancy, the blood glucose levels and glucose and insulin tolerance tests were performed. At term, maternal reproductive outcomes, fetal and placental weight, and placental morphology were analyzed. Diabetic rats had smaller number of living fetuses, implantations and corpora lutea, and increased rate of embryonic loss. Placenta showed morphometric alterations in decidua area. Our results showed that mild diabetes was sufficient to trigger alterations in maternal organism leading to impaired decidua development contributing to failure in embryonic implantation and early embryonic losses. Regardless placental decidua alteration, the labyrinth, which is responsible for the maternal-fetal exchanges, showed no morphometric changes contributing to an appropriate fetal development, which was able to maintain normal fetal weight at term in mild diabetic rats. Thus, this experimental model of diabetes induction at the day of birth was more effective to reproduce the reproductive alterations of diabetic women. PMID:22778712

  19. A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats.

    PubMed

    Sampath, Dayalan; Sabitha, K R; Hegde, Preethi; Jayakrishnan, H R; Kutty, Bindu M; Chattarji, Sumantra; Rangarajan, Govindan; Laxmi, T R

    2014-10-15

    As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6h daily/3d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus-amygdala-cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. PMID:25084041

  20. Maternal PUFA ω-3 Supplementation Prevents Neonatal Lung Injuries Induced by Hyperoxia in Newborn Rats.

    PubMed

    Sharma, Dyuti; Nkembi, Armande Subayi; Aubry, Estelle; Houeijeh, Ali; Butruille, Laura; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is one of the most common complications of prematurity, occurring in 30% of very low birth weight infants. The benefits of dietary intake of polyunsaturated fatty acids ω-3 (PUFA ω-3) during pregnancy or the perinatal period have been reported. The aim of this study was to assess the effects of maternal PUFA ω-3 supplementation on lung injuries in newborn rats exposed to prolonged hyperoxia. Pregnant female Wistar rats (n = 14) were fed a control diet (n = 2), a PUFA ω-6 diet (n = 6), or a PUFA ω-3 diet (n = 6), starting with the 14th gestation day. At Day 1, female and newborn rats (10 per female) were exposed to hyperoxia (O₂, n = 70) or to the ambient air (Air, n = 70). Six groups of newborns rats were obtained: PUFA ω-6/O₂ (n = 30), PUFA ω-6/air (n = 30), PUFA ω-3/O₂ (n = 30), PUFA ω-3/air (n = 30), control/O₂ (n = 10), and control/air (n = 10). After 10 days, lungs were removed for analysis of alveolarization and pulmonary vascular development. Survival rate was 100%. Hyperoxia reduced alveolarization and increased pulmonary vascular wall thickness in both control (n = 20) and PUFA ω-6 groups (n = 60). Maternal PUFA ω-3 supplementation prevented the decrease in alveolarization caused by hyperoxia (n = 30) compared to PUFA ω-6/O₂ (n = 30) or to the control/O₂ (n = 10), but did not significantly increase the thickness of the lung vascular wall. Therefore, maternal PUFA ω-3 supplementation may protect newborn rats from lung injuries induced by hyperoxia. In clinical settings, maternal PUFA ω-3 supplementation during pregnancy and during lactation may prevent BPD development after premature birth. PMID:26389878

  1. Maternal PUFA ω-3 Supplementation Prevents Neonatal Lung Injuries Induced by Hyperoxia in Newborn Rats

    PubMed Central

    Sharma, Dyuti; Subayi Nkembi, Armande; Aubry, Estelle; Houeijeh, Ali; Butruille, Laura; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2015-01-01

    Bronchopulmonary dysplasia (BPD) is one of the most common complications of prematurity, occurring in 30% of very low birth weight infants. The benefits of dietary intake of polyunsaturated fatty acids ω-3 (PUFA ω-3) during pregnancy or the perinatal period have been reported. The aim of this study was to assess the effects of maternal PUFA ω-3 supplementation on lung injuries in newborn rats exposed to prolonged hyperoxia. Pregnant female Wistar rats (n = 14) were fed a control diet (n = 2), a PUFA ω-6 diet (n = 6), or a PUFA ω-3 diet (n = 6), starting with the 14th gestation day. At Day 1, female and newborn rats (10 per female) were exposed to hyperoxia (O2, n = 70) or to the ambient air (Air, n = 70). Six groups of newborns rats were obtained: PUFA ω-6/O2 (n = 30), PUFA ω-6/air (n = 30), PUFA ω-3/O2 (n = 30), PUFA ω-3/air (n = 30), control/O2 (n = 10), and control/air (n = 10). After 10 days, lungs were removed for analysis of alveolarization and pulmonary vascular development. Survival rate was 100%. Hyperoxia reduced alveolarization and increased pulmonary vascular wall thickness in both control (n = 20) and PUFA ω-6 groups (n = 60). Maternal PUFA ω-3 supplementation prevented the decrease in alveolarization caused by hyperoxia (n = 30) compared to PUFA ω-6/O2 (n = 30) or to the control/O2 (n = 10), but did not significantly increase the thickness of the lung vascular wall. Therefore, maternal PUFA ω-3 supplementation may protect newborn rats from lung injuries induced by hyperoxia. In clinical settings, maternal PUFA ω-3 supplementation during pregnancy and during lactation may prevent BPD development after premature birth. PMID:26389878

  2. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism

    PubMed Central

    Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena

    2013-01-01

    BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers and offspring indicating the importance of body composition rather than weight in evaluations of metabolic status. PMID:23949616

  3. Cocaine treatment and prenatal environment interact to disrupt intergenerational maternal behavior in rats.

    PubMed

    Johns, Josephine M; Elliott, Deborah L; Hofler, Vivian E; Joyner, Paul W; McMurray, Matthew S; Jarrett, Thomas M; Haslup, Amber M; Middleton, Christopher L; Elliott, Jay C; Walker, Cheryl H

    2005-12-01

    The link between impaired maternal behavior (MB) and cocaine treatment could result from drug-induced decreases in maternal reactivity to offspring, prenatal drug exposure (PDE) in offspring that could alter their ability to elicit MB, or the interaction of both, which could subsequently impair MB of the 1st-generation dams. Following chronic or intermittent cocaine or saline treatment during gestation, rat dams rearing natural or cross-fostered litters were compared along with untreated dams for MB. Untreated 1st-generation females with differentially treated rearing dams and PDE were tested for MB with their natural litters. The authors report disruptions in MB in dams and their 1st-generation offspring, attributable to main and interaction effects of maternal treatment, litter PDE, and rearing experience. PMID:16420163

  4. Maternal ileal interpostion surgery confers metabolic improvements to offspring independent of effects on maternal body weight in UCD-T2DM rats

    PubMed Central

    Cummings, Bethany P.; Graham, James L.; Stanhope, Kimber L.; Chouinard, Michael L.; Havel, Peter J.

    2013-01-01

    Introduction Increasing numbers of people are undergoing bariatric surgery, of which approximately half are women in their child-bearing years. However, information on the long-term effects of maternal bariatric surgery in their children is lacking. Furthermore, since bariatric surgery is performed to reduce body weight, clinical studies have not been able to differentiate between benefits to the child due to maternal body weight loss versus other maternal postoperative metabolic changes. Therefore, we used the UCD-T2DM rat model of type 2 diabetes to test the hypothesis that maternal ileal interposition (IT) surgery would confer beneficial metabolic effects in offspring, independent of effects on maternal body weight. Materials and Methods IT surgery was performed on 2-month old prediabetic female UCD-T2DM rats. Females were bred 3 weeks after surgery and male pups were studied longitudinally. Results Maternal IT surgery resulted in decreased body weight in offspring compared with sham offspring (P<0.05). IT offspring exhibited improvements of glucose-stimulated insulin secretion and nutrient-stimulated GLP-2 secretion (P<0.05). Fasting plasma unconjugated bile acid concentrations were 4-fold lower in IT offspring compared with sham offspring at two months of age (P<0.001). Conclusion Overall, maternal IT surgery confers modest improvements of body weight and improves insulin secretion and nutrient-stimulated GLP-2 secretion in offspring in the UCD-T2DM rat model of type 2 diabetes, indicating that this is a useful model for investigating the weight-independent metabolic effects of maternal bariatric surgery. PMID:24036841

  5. Homocysteine homeostasis in the rat is maintained by compensatory changes in cystathionine ?-synthase, betaine-homocysteine methyltransferase, and phosphatidylethanolamine N-methyltransferase gene transcription occurring in response to maternal protein and folic acid intake during pregnancy and fat intake after weaning.

    PubMed

    Chmurzynska, Agata; Malinowska, Anna M

    2011-07-01

    The reactions of the methionine/homocysteine pathway are mediated by several enzymes, including phosphatidylethanolamine N-methyltransferase, cystathionine ?-synthase, and betaine-homocysteine methyltransferase. Homocysteine homeostasis is regulated by these enzymes. We hypothesized here that the protein and folic acid content in the maternal diet affects methionine/homocysteine metabolism in the progeny. To test this hypothesis, pregnant rats were fed a diet with normal protein and normal folic acid levels (a modified casein-based AIN-93G diet), a protein-restricted and normal folic acid diet, a protein-restricted and folic acid-supplemented diet, or a normal protein and folic acid-supplemented diet. The progeny were fed either the modified AIN-93G diet or a high-fat lard-based diet. Progeny were analyzed for expression of the phosphatidylethanolamine N-methyltransferase, cystathionine ?-synthase, and betaine-homocysteine methyltransferase genes in the liver and for serum homocysteine concentration. Interactions between prenatal and postnatal nutrition were also determined. The progeny of the dams fed the diets supplemented with folic acid showed decreased expression of all 3 genes (P < .001). An interaction effect between the protein and folic acid content in the maternal diet contributed to this down-regulation (P < .001), and the postweaning diet modified these effects. Serum homocysteine concentrations were approximately 15% higher in the male rats (P < .01), but neither prenatal nutrition nor the postweaning diet affected it significantly. We conclude that maternal diet during gestation has an important effect on the transcription level of these 3 genes, but changes in gene expression were not associated with significant changes in progeny homocysteine concentrations. PMID:21840474

  6. Trophoblast Invasion and Blood Vessel Remodeling Are Altered in a Rat Model of Lifelong Maternal Obesity

    PubMed Central

    Hayes, Emily K.; Tessier, Daniel R.; Percival, Michael E.; Holloway, Alison C.; Petrik, Jim J.; Gruslin, Andree

    2014-01-01

    Maternal obesity is associated with an increased risk of a number of pregnancy complications, including fetal demise, which may be linked to impaired placental development as a result of altered trophoblast invasion and vessel remodeling. Therefore, we examined these parameters in pregnant rats fed a control (normal weight) or high fat (HF) diet (obese) at 2 critical times of rat placental development. Early trophoblast invasion was increased by approximately 2-fold in HF-fed dams with a concomitant increase in the expression of matrix metalloproteinase 9 protein, a mediator of tissue remodeling and invasion. Furthermore, we observed significantly higher levels of smooth muscle actin surrounding the placental spiral arteries of HF-fed dams, suggesting impaired spiral artery remodeling. Taken together, the results of this study suggest that altered placental development is an important contributor to the poor pregnancy outcomes and increased fetal demise in our model of lifelong maternal obesity. PMID:24155067

  7. Effects of treadmill exercise-intensity on short-term memory in the rats born of the lipopolysaccharide-exposed maternal rats.

    PubMed

    Kim, Kijeong; Sung, Yun-Hee; Seo, Jin-Hee; Lee, Sang-Won; Lim, Baek-Vin; Lee, Choong-Yeol; Chung, Yong-Rak

    2015-12-01

    Maternal infection is an important factor causing neonatal brain injury and later developmental disability. In the present study, we investigated the effects of treadmill exercise intensity on short-term memory, hippocampal neurogenesis, and expression of brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor B (TrkB) in the rats born of lipopolysaccharide (LPS)-exposed maternal rats. The rats were divided into six groups: control group, mild-intensity exercise group, moderate-intensity exercise group, maternal LPS-exposed group, maternal LPS-exposed and mild-intensity exercise group, maternal LPS-exposed and moderate-intensity exercise group. The rats in the exercise groups were forced to run on a treadmill for 30 min 5 times a week for 4 weeks. The exercise load consisted of running at the speed of 8 m/min for the mild-intensity exercise groups and 14 m/min for moderate-intensity exercise groups. The latency in the step-down avoidance task was deter-mined for the short-term memory. Immunohistochemistry for 5-bro-mo-2'-deoxyuridine was performed to determine hippocampal cell proliferation and neurogenesis. Western blot analysis was performed for the detection of BDNF and TrkB expression. In the present study, tread-mill exercise improved short-term memory deteriorated by maternal LPS exposure. Treadmill exercise increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of the rats born of the LPS-exposed maternal rats. Treadmill exercise increased BDNF and TrkB expression in the hippocampus of the rats born of the LPS-exposed maternal rats. These effects of treadmill exercise were similarly appeared at both mild-intensity and moderate-intensity. PMID:26730379

  8. Effects of treadmill exercise-intensity on short-term memory in the rats born of the lipopolysaccharide-exposed maternal rats

    PubMed Central

    Kim, Kijeong; Sung, Yun-Hee; Seo, Jin-Hee; Lee, Sang-Won; Lim, Baek-Vin; Lee, Choong-Yeol; Chung, Yong-Rak

    2015-01-01

    Maternal infection is an important factor causing neonatal brain injury and later developmental disability. In the present study, we investigated the effects of treadmill exercise intensity on short-term memory, hippocampal neurogenesis, and expression of brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor B (TrkB) in the rats born of lipopolysaccharide (LPS)-exposed maternal rats. The rats were divided into six groups: control group, mild-intensity exercise group, moderate-intensity exercise group, maternal LPS-exposed group, maternal LPS-exposed and mild-intensity exercise group, maternal LPS-exposed and moderate-intensity exercise group. The rats in the exercise groups were forced to run on a treadmill for 30 min 5 times a week for 4 weeks. The exercise load consisted of running at the speed of 8 m/min for the mild-intensity exercise groups and 14 m/min for moderate-intensity exercise groups. The latency in the step-down avoidance task was deter-mined for the short-term memory. Immunohistochemistry for 5-bro-mo-2′-deoxyuridine was performed to determine hippocampal cell proliferation and neurogenesis. Western blot analysis was performed for the detection of BDNF and TrkB expression. In the present study, tread-mill exercise improved short-term memory deteriorated by maternal LPS exposure. Treadmill exercise increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of the rats born of the LPS-exposed maternal rats. Treadmill exercise increased BDNF and TrkB expression in the hippocampus of the rats born of the LPS-exposed maternal rats. These effects of treadmill exercise were similarly appeared at both mild-intensity and moderate-intensity. PMID:26730379

  9. 26Al incorporation into the tissues of suckling rats through maternal milk

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Kobayashi, K.; Tada, W.; Horikawa, T.; Matsuzaki, H.

    2004-08-01

    Aluminium (Al) is highly neurotoxic and inhibits prenatal and postnatal development of the brain in humans and experimental animals. However, Al incorporation into the brain of sucklings through maternal milk has not yet been well clarified because Al lacks a suitable isotope for radioactive tracer experiments. Using 26Al as a tracer, we measured 26Al incorporation into the brain of suckling rats by accelerator mass spectrometry. Lactating rats were subcutaneously injected with 26AlCl3 from day 1 to day 20 postpartum. Suckling rats were weaned from day 21 postpartum. From day 5 to day 20 postpartum, the 26Al levels measured in the brain, liver, kidneys and bone of suckling rats increased significantly. After weaning, the amounts of 26Al in the liver and kidneys decreased remarkably. However, the 26Al amount in the brain had diminished only slightly up to 140 days after weaning.

  10. Incorporation of labeled ribonucleic acid precursors into maternal and fetal rat tissues during pregnancy

    SciTech Connect

    Dorko, M.E.; Hayashi, T.T.

    1986-04-01

    Tritium-labeled ribonucleic acid precursors, including cytidine, uridine, and orotic acid, were injected into rats with dated pregnancies (14 to 21 days) and virgin rats. The acid-insoluble counts indicating incorporation into fetal and placental tissues showed that the highest incorporation occurred with cytidine, particularly earlier in pregnancy. In contrast, uridine demonstrated a minor degree of incorporation but displayed facile and enhanced transplacental passage with duration of pregnancy as represented by acid-soluble counts. Orotic acid was minimally used by both fetal and placental tissues. The incorporation of labeled precursors into maternal liver, heart, and kidney demonstrated varying responses during the course of pregnancy.

  11. Effects of Maternal Linseed Oil Supplementation on Metabolic Parameters in Cafeteria Diet-induced Obese Rats.

    PubMed

    Benaissa, Nawel; Merzouk, Hafida; Merzouk, Sid Ahmed; Narce, Michel

    2015-04-01

    Because linseed oil may influence maternal and fetal metabolisms, we investigated its role in the modulation of lipid metabolism in cafeteria diet-induced obese rats and their offspring. Female Wistar rats were fed control or cafeteria food, which were either supplemented or not supplemented with linseed oil (5%) for 1 month before and during gestation. At parturition, serum and tissue lipids and enzyme activities were analyzed. Cafeteria diet induced adverse metabolic alterations in both mothers and offspring. Linseed oil improved metabolic status. In conclusion, linseed oil displayed health benefits by modulating tissue enzyme activities in both obese mothers and their newborns. PMID:25966756

  12. Maternal behavior as an early modulator of neurobehavioral offspring responses by Sprague-Dawley rats.

    PubMed

    Sequeira-Cordero, Andrey; Masís-Calvo, Marianela; Mora-Gallegos, Andrea; Fornaguera-Trías, Jaime

    2013-01-15

    Maternal care plays an important role as an early modeler of neurodevelopment and brain function, and its effects remain until adulthood. Such modeling or programming has shown to influence the stress response and represents a key susceptibility factor in the development of mood disorders. In order to characterize such process which is still not clear, male offspring were classified in animals with low, medium and high licking/grooming (LG) according to the maternal behavior. Juvenile animals were subjected to the open field test (OFT) and the forced swimming test (FST), and offspring of low and high LG mothers were compared. Seven days after the FST, neurochemical and gene expression analyses were carried out in order to identify possible changes on relevant targets. Maternal care did determine locomotor behaviors in the OFT, supporting an anxiogenic effect of low maternal investment. This effect seems to be associated with the serotonergic systems in both nucleus accumbens (NAc) and hippocampus (HPC), since offspring of low LG mothers showed decreased 5-HT neurotransmission in those brain regions compared with animals of high LG mothers. Furthermore, TrkB expression was higher in offspring of high LG compared to the group of low LG mothers, supporting its influence as a mechanistic intermediate of such effect, at least in the NAc. Taken together, these findings strongly support the influence of differential maternal care on the neurodevelopment and responsivity of juvenile rats. PMID:23018125

  13. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety.

    PubMed

    Cohen, Joshua L; Glover, Matthew E; Pugh, Phyllis C; Fant, Andrew D; Simmons, Rebecca K; Akil, Huda; Kerman, Ilan A; Clinton, Sarah M

    2015-01-01

    The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high versus low behavioral response to novelty and found that high-reactive (bred high-responder, bHR) rats displayed greater risk-taking, impulsivity and aggression relative to low-reactive (bred low-responder, bLR) rats, which showed high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable, but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior to the brain development and emotional behavior of bLR offspring. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine the effects on the following: (1) developmental gene expression in the hippocampus and amygdala and (2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain's developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. © 2015 S. Karger AG, Basel. PMID:25791846

  14. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety

    PubMed Central

    Cohen, Joshua L.; Glover, Matthew E.; Pugh, Phyllis C.; Fant, Andrew D.; Simmons, Rebecca K.; Akil, Huda; Kerman, Ilan A.; Clinton, Sarah M.

    2015-01-01

    The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high vs. low behavioral response to novelty and found that high reactive (bHR) rats display greater risk-taking, impulsivity, and aggression relative to low reactive (bLR) rats, which show high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior on bLR offspring’s brain development and emotional behavior. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine effects on: 1) developmental gene expression in the hippocampus and amygdala; and 2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain’s developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. PMID:25791846

  15. Maternal-fetal carnitine relationship and neonatal ketosis in the rat.

    PubMed

    Robles-Valdes, C; McGarry, J D; Foster, D W

    1976-10-10

    The concentration of ketone bodies in plasma and of carnitine in various maternal, fetal, and neonatal tissues was examined during the developmental period in rats. Plasma ketone levels were low in the fetus, increased 10-fold during the first 24 h postpartom, and thereafter gradually declined such that normal values were found at the end of the suckling period. An almost identical profile was observed for liver carnitine concentrations in the baby rats. The converse was true for heart tissue, the carnitine content of which was low at birth and steadily increased to adult levels with the time of suckling. The primary source of carnitine in neonatal tissues, at least during the first 2 to 3 days postpartum, was shown to be the mother rat whose liver and milk carnitine content was very high at this time and fell as nursing continued. Experiments in which the fate of [14C]butyrobetaine, the immediate precursor of carnitine, was followed after injection into nursing mother rats indicated movement of carnitine from maternal liver leads to maternal plasma leads to milk leads to neonatal tissues. The above findings support the view expressed earlier that one prerequisite for the development of a high ketogenic profile in liver may be an elevation in the tissue carnitine concentration. Additional factors, however, are clearly involved as evidenced by the observation that in the fed state perfused livers from nursing mother rats synthesized ketone bodies from oleic acid at low rates compared with those seen after a 24 h fast, despite the fact that tissue carnitine levels were equally elevated in both groups. This paradox is likely related to the fact that in the fed state such livers also contained large quantities of glycogen, depletion of which through fasting was accompanied by marked acceleration of ketogenesis from oleate. The data indicate, therefore, that maximal ketogenic capacity of the liver requires for its induction an increase in carnitine coupled with a decrease in glycogen content of the tissue. PMID:972150

  16. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1

    PubMed Central

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2016-01-01

    Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia. PMID:26718412

  17. Schisandra chinensis reverses visceral hypersensitivity in a neonatal-maternal separated rat model

    PubMed Central

    Yang, Jia-Ming; Xian, Yan-Fang; Ip, Paul SP; Wu, Justin CY; Lao, Lixing; Fong, Harry HS; Sung, Joseph JY; Berman, Brian; Yeung, John HK; Che, Chun-Tao

    2012-01-01

    Visceral hypersensitivity is an important characteristic feature of functional gastrointestinal disorders, such as irritable bowel syndrome (IBS). This study evaluated the effect of Schisandra chinensis on visceral hyperalgesia induced by neonatal maternal separation (NMS) in an IBS rat model. The visceromotor responses to colorectal balloon distension (CRD) were measured by abdominal withdrawal reflex (AWR) and electromyographic activities (EMG). NMS control rats (receiving vehicle) underwent aggravated visceral pain in response to CRD as compared to normal rats, evidenced by the reduced pain threshold, enhanced AWR scores and EMG responses. Treatment with a 70% ethanol extract of S. chinensis (0.3 g/kg and 1.5 g/kg per day) for seven days resulted in an increase in the pain threshold (NMS control: 19.1 ± 1.0 mmHg vs low-dose: 24.8 ± 1.3 mmHg and high-dose: 25.2 ± 1.8 mmHg, p<0.01), and abolished the elevated AWR and EMG responses to CRD in NMS rats (AUC values of EMG response curve were: 1952 ± 202 in NMS control group vs 1074 ± 90 in low-dose group and 1145 ± 92 in high-dose group, p<0.001), indicating that S. chinensis could reverse the visceral hypersensitivity induced by early-life stress event. The result of ELSA measurement shows that the elevated serotonin (5-HT) level in the distal colon of NMS rats returned to normal level after treatment with S. chinensis. Moreover, the increase in pain threshold in rats treated with S. chinensis was associated with a decline of the mRNA level of 5-HT3 receptor in the distal colon. All available results demonstrate that S. chinensis can reverse visceral hypersensitivity induced by neonatal-maternal separation, and the effect may be mediated through colonic 5-HT pathway in the rat. PMID:22230486

  18. Fetal and maternal effects of continual exposure of rats to 970-MHz circularly polarized microwaves

    SciTech Connect

    Berman, E.; Weil, C.; Phillips, P.A.; Carter, H.B.; House, D.E.

    1992-01-01

    Virtually continual exposure to970-MHz microwaves in circularly-polarized waveguides was used to elicit fetal responses in Sprague-Dawley rats during gestation. Two hundred fifty rats were exposed to microwave radiation at whole-body averaged specific absorption rates (SAR) of 0.07, 2.4, or 4.8 W/kg, or concurrently sham-irradiated for 22 h/day from the 1st through the 19th day of gestation. At SAR of 4.8 W/kg, only fetal body weight was significantly altered (-12%, P=.012). Two of twelve rats died during the exposure at SAR of 4.8 W/kg. Bred, but non-pregnant, rats that were exposed at SAR of 4.8 W/kg had significantly lower body weight gain than sham-irradiated rats; similar lower gain is assumed to have occurred in the pregnant rats exposed at SAR of 4.8 W/kg, and whose fetuses were significantly smaller. The authors conclude that continual gestational exposure at SAR of 4.8 (but not 2.4 or lower) W/kg induces fetal alterations. Apparently, deleterious maternal effects are associated with these fetal changes. Although colonic temperature was not measured in these rats, it is expected that exposure at 4.8 W/kg was hyperthermal.

  19. Maternal High Fat Diet Programs Rat Offspring Hypertension and Activates the Adipose Renin-Angiotensin System

    PubMed Central

    GUBERMAN, Cristiane; JELLYMAN, Juanita K.; HAN, Guang; ROSS, Michael G.; DESAI, Mina

    2014-01-01

    Objective Maternal high fat diet programs an increased risk of offspring obesity and systemic hypertension. Although the renal renin-angiotensin system (RAS) is known to regulate blood pressure, it is now recognized that the RAS is also activated in adipose tissue during obesity. We hypothesized that programmed offspring hypertension is associated with activation of the adipose tissue RAS in the offspring of obese rat dams. Study Design At 3 weeks of age, female rats were weaned to a high fat (HF: 60% k/cal; n=6) or control (control, 10% k/cal; n=6) diet. At 11 weeks of age, these rats were mated and continued on their respective diets during pregnancy. After birth, at 1 day of age, subcutaneous adipose tissue was collected, litter size was standardized and pups were cross-fostered to either control or HF dams, creating 4 study groups. At 21 days of age, offspring were weaned to control or HF diet. At 6 months of age, body fat and blood pressure were measured. Thereafter, subcutaneous and retroperitoneal adipose tissue was harvested from male offspring. Protein expression of adipose tissue RAS components were determined by Western Blotting. Results Maternal high fat diet induced early and persistent alterations in offspring adipose RAS components. These changes were dependent upon the period of exposure to the maternal high fat diet, were adipose tissue specific (subcutaneous and retroperitoneal), and were exacerbated by a postnatal high fat diet. Maternal high fat diet increased adiposity and blood pressure in offspring, regardless of the period of exposure. Conclusion These findings suggest that programmed adiposity and activation of the adipose tissue RAS are associated with hypertension in offspring of obese dams. PMID:23743273

  20. Transplacental passage of 26Al from pregnant rats to fetuses and 26Al transfer through maternal milk to suckling rats

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Matsuzaki, H.; Kobayashi, T.; Tada, W.; Ohki, Y.; Kakimi, S.; Kobayashi, K.

    2000-10-01

    Aluminium (Al) is toxic to the growth of fetuses and sucklings. However, the incorporation of Al into fetuses and sucklings in the periods of gestation and lactation has not been well clarified because Al lacks a suitable isotope for a tracer experiment. In this study, we used 26Al (a radioisotope of Al with half-life of 716,000 yr) as a tracer, and measured 26Al incorporation into fetuses and sucklings by accelerator mass spectrometry (AMS). To investigate Al incorporation into fetuses through transplacental passage, 26Al ( 26AlCl 3) was subcutaneously injected into pregnant rats on day 15 of gestation. 26Al was also subcutaneoulsy injected into lactating rats from day 1 to day 20 postpartum. By day 20 of gestation, 0.2% of the 26Al injected into a pregnant rat had been transferred to the fetuses, and 26Al was detected in the brain and liver of the fetuses. On day 9 postpartum, high levels of 26Al were demonstrated in the brain, liver, kidneys and blood of suckling rats. It is concluded that 26Al subcutaneously injected into pregnant rats and/or lactating rats is incorporated into their offspring through transplacental passage and/or maternal milk.

  1. Angiotensin II is required to induce exaggerated salt sensitivity in Dahl rats exposed to maternal separation

    PubMed Central

    Loria, Analia S; Pollock, David M; Pollock, Jennifer S

    2015-01-01

    We previously reported that maternal separation, rat model of early life stress, enhances pressor responses to acute and chronic stressors. The aims of this study were to determine whether Dahl salt-sensitive (DS) rats subjected to maternal separation (MatSep-DS) as compared to normally reared DS (Ctl-DS) rats show exaggerated blood pressure responses to acute behavioral stressors, such as restraint stress or air jet stress (AJS), or, hypertensive stimuli including chronic high-salt diet (4% NaCl) and angiotensin II (AngII) infusion (200 ng/Kg/min) during 1 week. MatSep was performed in male DS rats for 3 h/day from postnatal days 2–14. At 8 weeks of age, rats were implanted with telemetry transmitters and allowed to recover. Mean arterial pressure (MAP) was not different between MatSep-DS and Ctl-DS rats at baseline (120 ± 2 mmHg vs. 118 ± 1 mmHg, n = 4–8). Blood pressure responses during AJS and restraint stress were not different between MatSep-DS and Ctl-DS at 3 min. However, blood pressure recovery from AJS was significantly impaired in MatSep-DS rats compared to Ctl-DS rats (P < 0.05). 3-h stress-induced similar responses in MatSep and Ctl-DS rats. Chronic blood pressure responses to AngII infusion in rats fed a high-salt diet displayed enhanced MAP in MatSep-DS when compared with Ctl-DS rats (167 ± 5 mmHg vs. 152 ± 2 mmHg, pinteraction <0.05). However, MAP increased similarly in both groups in response to AngII infusion or high-salt diet separately. Renal parameters such as proteinuria, urine flow rate, and urine electrolytes were not different between groups in response to each treatment. In summary, salt sensitivity induces exaggerated blood pressor responses only in presence of AngII due to early life stress. PMID:25999404

  2. Effects of Love Canal soil extracts on maternal health and fetal development in rats

    SciTech Connect

    Silkworth, J.B.; Tumasonis, C.; Briggs, R.G.; Narang, A.S.; Narang, R.S.; Rej, R.; Stein, V.; McMartin, D.N.; Kaminsky, L.S.

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  3. The effects of Love Canal soil extracts on maternal health and fetal development in rats.

    PubMed

    Silkworth, J B; Tumasonis, C; Briggs, R G; Narang, A S; Narang, R S; Rej, R; Stein, V; McMartin, D N; Kaminsky, L S

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity. PMID:3781137

  4. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Baer, L. A.; Daunton, N. G.; Wade, C. E.

    2001-01-01

    A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Recent spaceflight and centrifugation studies demonstrate that reproduction and ontogenesis in mammals are amenable to study under gravitational conditions that deviate considerably from those typically experienced on Earth (1 x g). In the present study, we tested the hypothesis that maternal reproductive experience determines neonatal outcome following gestation and birth under increased (hyper) gravity. Primigravid and bigravid female rats and their offspring were exposed to 1.5 x g centrifugation from Gestational Day 11 either through birth or through the first postnatal week. On the day of birth, litter sizes were identical across gravity and parity conditions, although significantly fewer live neonates were observed among hypergravity-reared litters born to primigravid dams than among those born to bigravid dams (82% and 94%, respectively; 1.0 x g controls, 99%). Within the hypergravity groups, neonatal mortality was comparable across parity conditions from Postnatal Day 1 through Day 7, at which time litter sizes stabilized. Maternal reproductive experience ameliorated neonatal losses during the first 24 h after birth but not on subsequent days, and neonatal mortality was associated with changes in maternal care patterns. These results indicate that repeated maternal reproductive experience affords protection against neonatal losses during exposure to increased gravity. Differential mortality of neonates born to primigravid versus bigravid dams denotes gravitational load as one environmental mechanism enabling the expression of parity-related variations in birth outcome.

  5. The influence of natural variations in maternal care on play fighting in the rat.

    PubMed

    Parent, Carine I; Meaney, Michael J

    2008-12-01

    Naturally occurring variations in maternal care in the rat influence the sensitivity of offspring to stress in adulthood. The offspring of mothers that show lower levels of pup licking/grooming (i.e., low-LG mothers) demonstrate enhanced responses to stress and increased anxiety compared to those of high-LG mothers. Low-LG offspring are also more sensitive to the influence of environmental enrichment than high-LG offspring. This study examined play fighting in the juvenile offspring of high-LG and low-LG dams in a multiple-play partners housing environment. Male offspring from low-LG dams demonstrated a significantly higher frequency of pouncing, pinning and aggressive social grooming than did high-LG males and high-LG and low-LG females. Consistent with earlier reports, male pups engaged in more play fighting than did females and maternal care was associated with differences in play fighting but only in males. Lower levels of stimulation in the form of LG from the dam during perinatal development may thus increase sensitivity for the stimulating effects of play behavior in periadolescence, in part explaining the increased solicitation of play fighting through increased pouncing in the male offspring of the low-LG mothers. These findings identify a possible influence of variations in maternal care on play fighting and suggest that maternal care in the perinatal period influence social interactions during periadolescence. PMID:18846499

  6. Characterization of maternal transfer of decabromodiphenyl ether (BDE-209) administered to pregnant Sprague-Dawley rats.

    PubMed

    Cai, Yunmei; Zhang, Wenbing; Hu, Junjie; Sheng, Guoying; Chen, Dunjin; Fu, Jiamo

    2011-01-01

    To evaluate maternal transfer of decabromodiphenyl ether (BDE-209), Sprague-Dawley rats were given daily oral doses of 5 μmol/kgb.w. BDE-209 in peanut oil from gestation day (GD) 7 to postpartum day (PD) 4. BDE-209 was increased temporally in maternal blood, placenta, fetuses and neonates. Furthermore, more BDE-209 was found in neonate whole-body samples obtained during lactational period (PD 4) than in that of fetal whole-body samples during pregnancy GD 15 and 21. Overall an increase was observed over time for nona-BDE levels in maternal blood and placenta, but these congeners were decreased in fetuses or neonates. Slight changes were observed for octa-BDEs in both maternal blood and placenta while a significant decrease was observed in the fetuses or neonates for BDE-196 and 198/203. These results demonstrated that BDE-209 and its metabolites can transport to the placenta and milk, and eventually enter the fetuses and/or the neonates. PMID:20851178

  7. Maternal Subclinical Hypothyroidism Impairs Neurodevelopment in Rat Offspring by Inhibiting the CREB Signaling Pathway.

    PubMed

    Zhang, Yuanyuan; Fan, Yuxin; Yu, Xiaohui; Wang, Xinyi; Bao, Suqing; Li, Jiashu; Fan, Chenling; Shan, Zhongyan; Teng, Weiping

    2015-08-01

    Thyroid hormone is indispensable for fetal brain development, and maternal thyroid hormone deficiency is thought to result in severe and irreversible brain impairments in learning and memory. Epidemiological and animal studies by our group had shown that maternal subclinical hypothyroidism had significant negative impact on neurodevelopment. But, the underlying mechanisms responsible for these neurological alterations remain unclear. In the present study, we performed thyroidectomy and injected L-T4 daily in Wistar rats to induce maternal subclinical hypothyroidism. Our data indicated that the pups from subclinical group showed prolonged latencies during the learning process in the Morris water maze as compared to the control group. Transcription factor cAMP response element-binding protein (CREB) signaling pathway is closely associated with synaptic plasticity, learning, and memory. Consistent with behavioral results, Western blotting also showed decreased activation of three important upstream modulators of CREB signaling pathway: phospho-mitogen-activated protein kinases (P-ERK1/2), phospho-calcium-dependent-calmodulin kinase IV (P-CaMKIV), phospho-serine/threonine protein kinase AKT(P-AKT), as well as total CREB and phospho-CREB as compared to the control at postnatal day 7 (PND 7) in hippocampus. Our findings suggested that decreased activation of the CREB signaling pathway in pups was related to impairments of cognitive function caused by maternal subclinical hypothyroidism. PMID:25193019

  8. Influence of maternal dietary fat upon rat pups.

    PubMed

    Borgman, R F; Bursey, R G; Caffrey, B C

    1975-06-01

    Mother rats were fed purified rations containing different fats during gestation and lactation and at 1 day after parturition. Litter sizes were reduced to 2 male and 2 female pups. The behavior and the brain chemical composition of these selected pups were compared with similarly selected pups from dams fed a commercial ration. All offspring were fed a commercial ration after weaning. Pups from dams fed 20% safflower oil were similar to controls. Feeding 20% cocoa butter to dams resulted in pups with reduced exploratory activity and with a rapid learning performance in a T-maze, employing the aversive stimulation of an electrical shock. Feeding dams a fat-free ration produced pups which had reduced rates of growth, small brains at 2 months of age, and low brain concentrations of cholesterol, DNA, and RNA. PMID:1147334

  9. Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring.

    PubMed

    Cassella, Sarah N; Hemmerle, Ann M; Lundgren, Kerstin H; Kyser, Tara L; Ahlbrand, Rebecca; Bronson, Stefanie L; Richtand, Neil M; Seroogy, Kim B

    2016-03-01

    Activation of the maternal innate immune system, termed "maternal immune activation" (MIA), represents a common environmental risk factor for schizophrenia. Whereas evidence suggests dysregulation of GABA systems may underlie the pathophysiology of schizophrenia, a role for MIA in alteration of GABAergic systems is less clear. Here, pregnant rats received either the viral mimetic polyriboinosinic-polyribocytidilic acid or vehicle injection on gestational day 14. Glutamic acid decarboxylase-67 (GAD67) mRNA expression was examined in male offspring at postnatal day (P)14, P30 and P60. At P60, GAD67 mRNA was elevated in hippocampus and thalamus and decreased in prefrontal cortex of MIA offspring. MIA-induced alterations in GAD expression could contribute to the pathophysiology of schizophrenia. PMID:26830319

  10. Effects of maternal ethanol ingestion on uptake of glucose alanine analogs in fetal rats

    SciTech Connect

    Snyder, A.K.; Singh, S.P.; Pullen, G.L.

    1986-05-01

    The distribution of maternally-derived glucose and alanine has been studied in selected tissues of fetuses from ethanol-fed (EF) rats (30% of caloric intake throughout gestation). Controls received diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation, 2 ..mu..Ci /sup 3/H 2-deoxyglucose (DG) and 1 ..mu..Ci /sup 14/C ..cap alpha..-aminoisobutyric acid (AIB) were administered i.v. to each rat. One hour later, maternal blood, placenta, and fetal blood, liver, lung and brain were sampled for /sup 3/H and /sup 14/C activities. When compared to either control group, the mean /sup 14/C AIB activities of tissues from EF animals were reduced from 19 to 46%, with the greatest effect seen in the brain (3.7 +/- 0.1, 7.2 +/- 0.3 and 6.9 +/- 1.3 dpm/mg in EF, PF and AF fetuses respectively). In addition, the ratios of tissue:plasma /sup 14/C were reduced (p < 0.01 or lower) in the EF fetal tissues and placenta. Maternal ethanol ingestion reduced the /sup 3/H 2-DG content of placenta (p < 0.05) and of brain (38.6 + 1.2, 48.1 +/- 1.2 and 47.2 +/- 1.2 in EF, PF and AF, p < 0.001). Brain weight showed significant positive correlations with AIB content (r = 0.466, p < 0.001) and with 2-DG content (r = 0.267, p < 0.01). Impaired uptake of maternally-derived nutrients may play a significant role in the effects of ethanol in utero.

  11. Effect of advanced maternal age on pregnancy outcomes and vascular function in the rat.

    PubMed

    Care, Alison S; Bourque, Stephane L; Morton, Jude S; Hjartarson, Emma P; Davidge, Sandra T

    2015-06-01

    Advanced maternal age is becoming increasingly common in Western societies and is associated with increased maternal and fetal morbidity and mortality. We hypothesized that aging results in impaired vascular function in pregnancy because of increased vascular oxidative stress and resultant scavenging of nitric oxide in both uterine and systemic arteries, causing reduced uteroplacental perfusion and poor pregnancy outcomes. Using aged rats (9.5 months), we investigated the effect of a delayed first natural pregnancy on pregnancy outcomes and uterine and mesenteric artery function on gestational day 20. Delayed pregnancy in the rat reduced fertility by 46%, reduced litter size by 36%, caused fetal growth restriction, increased placental weight, and increased maternal systolic blood pressure (by 16 mm Hg). Uterine arteries from aged dams displayed reduced constriction to phenylephrine (young: 14.3±0.94 mN/mm versus aged: 11.4±0.5 mN/mm, P=0.02) and potassium chloride (124 mmol/L; young: 21.8±1.27 mN/mm versus aged: 14.2±1.7 mN/mm; P=0.01). Methacholine-induced vasodilation was similar in uterine arteries from young and aged dams. However, mesenteric arteries from aged dams had a greater nitric oxide and a reduced endothelial-derived hyperpolarization contribution to methacholine-mediated vasodilation compared with young dams. Both uterine and mesenteric arteries from aged dams had greater active myogenic responses, with area under the curve increased by 228% and 151%, in aged uterine and mesenteric arteries, respectively. These results demonstrate that vascular function is altered at an advanced maternal age and provides further insights into the risks of poor pregnancy outcomes observed in women who delay pregnancy. PMID:25916720

  12. Additive effects of maternal iron deficiency and prenatal immune activation on adult behaviors in rat offspring.

    PubMed

    Harvey, Louise; Boksa, Patricia

    2014-08-01

    Both iron deficiency (ID) and infection are common during pregnancy and studies have described altered brain development in offspring as a result of these individual maternal exposures. Given their high global incidence, these two insults may occur simultaneously during pregnancy. We recently described a rat model which pairs dietary ID during pregnancy and prenatal immune activation. Pregnant rats were placed on iron sufficient (IS) or ID diets from embryonic day 2 (E2) until postnatal day 7, and administered the bacterial endotoxin, lipopolysaccharide (LPS) or saline on E15/16. In this model, LPS administration on E15 caused greater induction of the pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-α, in ID dams compared to IS dams. This suggested that the combination of prenatal immune activation on a background of maternal ID might have more adverse neurodevelopmental consequences for the offspring than exposure to either insult alone. In this study we used this model to determine whether combined exposure to maternal ID and prenatal immune activation interact to affect juvenile and adult behaviors in the offspring. We assessed behaviors relevant to deficits in humans or animals that have been associated with exposure to either maternal ID or prenatal immune activation alone. Adult offspring from ID dams displayed significant deficits in pre-pulse inhibition of acoustic startle and in passive avoidance learning, together with increases in cytochrome oxidase immunohistochemistry, a marker of metabolic activity, in the ventral hippocampus immediately after passive avoidance testing. Offspring from LPS treated dams showed a significant increase in social behavior with unfamiliar rats, and subtle locomotor changes during exploration in an open field and in response to amphetamine. Surprisingly, there was no interaction between effects of the two insults on the behaviors assessed, and few observed alterations in juvenile behavior. Our findings show that long-term effects of maternal ID and prenatal LPS were additive, such that offspring exposed to both insults displayed more adult behavioral abnormalities than offspring exposed to one alone. PMID:24930842

  13. Oleamide restores sleep in adult rats that were subjected to maternal separation.

    PubMed

    Reyes Prieto, Nidia M; Romano López, Antonio; Pérez Morales, Marcel; Pech, Olivia; Méndez-Díaz, Mónica; Ruiz Contreras, Alejandra E; Prospéro-García, Oscar

    2012-12-01

    Maternal separation (MS) induces a series of changes in rats' behavior; among them a reduction in spontaneous sleep. One potentially impaired system is the endocannabinoid system (eCBs), since it contributes to generate sleep. To investigate if there are situations early in life that affect the eCBs, which would contribute to make rats vulnerable to suffering insomnia, we studied the rodent model of MS. Rats were separated from their mothers for 3h-periods daily, from postnatal day (PND) 2 to PND 16. Once they gained 250g of body weight (adult rats), they were implanted with electrodes to record the sleep-waking cycle (SWC). MS rats and non-MS (NMS) siblings were assigned to one of the following groups: vehicle, oleamide (OLE, an agonist of the cannabinoid receptor 1, CB1R), OLE+AM251 (an antagonist of the CB1R) and AM251 alone. Expression of the CBR1 receptor was also analyzed in the frontal cortex (FCx) and in the hippocampus (HIP) of both NMS and MS rats. Results indicated that MS induced a reduction in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep with the consequent increase in waking (W) as compared to NMS siblings. OLE normalized the SWC, and AM251 blocked such an effect. CB1R expression was reduced in the FCx and in the HIP of MS rats. Our results indicate that MS reduces sleep and CB1R expression and OLE improves sleep in adult rats. PMID:22975223

  14. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood

    PubMed Central

    Breivik, Torbjørn; Gundersen, Yngvar; Murison, Robert; Turner, Jonathan D; Muller, Claude P; Gjermo, Per; Opstad, Kristian

    2015-01-01

    Background and Objective: Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Material and Methods: Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Results: Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Conclusion: Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis. PMID:25713634

  15. Effects of fasting during pregnancy on maternal and fetal weight and body composition in well-nourished and undernourished rats.

    PubMed

    Lederman, S A; Rosso, P

    1981-10-01

    The effect of a 2-day fast on fetal and maternal weight and composition was determined in ad libitum-fed and food-restricted pregnant and non-pregnant rats. Fasting between days 17 and 19 of gestation resulted in a greater loss of net maternal body weight in ad libitum-fed pregnant than in nonpregnant rats, and also a greater loss of body fat. In contrast, food-restricted pregnant rats, also fasted from day 17 to day 19 of gestation, maintained their net body weight and body fat during the fast as did nonpregnant rats fasted for the same length of time. Fetal weight was not significantly reduced by fasting in the ad libitum-fed rats but was reduced by 25% in the previously food-restricted rats. The results demonstrate that prior maternal nutritional status strongly influences the effects of fasting on the fetus and that maternal nutrient stores are not mobilized for fetal utilization even when fetal growth is markedly impaired. PMID:7288505

  16. Exposure to repeated maternal aggression induces depressive-like behavior and increases startle in adult female rats

    PubMed Central

    Bourke, Chase H.; Neigh, Gretchen N.

    2011-01-01

    The stress response is a multifaceted physiological reaction that engages a wide range of systems. Animal studies examining stress and the stress response employ diverse methods as stressors. While many of these stressors are capable of inducing a stress response in animals, a need exists for an ethologically relevant stressor for female rats. The purpose of the current study was to use an ethologically relevant social stressor to induce behavioral alterations in adult female rats. Adult (postnatal day 90) female Wistar rats were repeatedly exposed to lactating Long Evans female rats to simulate chronic stress. After six days of sessions, intruder females exposed to defeat were tested in the sucrose consumption test, the forced swim test, acoustic startle test, elevated plus maze, and open field test. At the conclusion of behavioral testing, animals were restrained for 30 minutes and trunk blood was collected for assessment of serum hormones. Female rats exposed to maternal aggression exhibited decreased sucrose consumption, and impaired coping behavior in the forced swim test. Additionally, female rats exposed to repeated maternal aggression exhibited an increased acoustic startle response. No changes were observed in female rats in the elevated plus maze or open field test. Serum hormones were unaltered due to repeated exposure to maternal aggression. These data indicate the importance of the social experience in the development of stress-related behaviors: an acerbic social experience in female rats precipitates the manifestation of depressive-like behaviors and an enhanced startle response. PMID:22093902

  17. Brain orexins and wake regulation in rats exposed to maternal deprivation.

    PubMed

    Feng, Pingfu; Vurbic, Drina; Wu, Zhenzhen; Strohl, Kingman P

    2007-06-18

    Maternal deprivation (MD) is a neonatal stressor that leads to behavioral and molecular manifestations of chronic stress in adulthood. Recent evidence has suggested that stress may impact wake regulation through corticotropin-releasing hormone (CRH) and the orexinergic system. We studied the wake/sleep features and brain levels of orexin and orexin receptors in adult rats neonatally subjected to either ten days of MD or a control procedure from postnatal day 4. At 3 months of age, one set of rats from both groups underwent 48 h of polysomnographic recording. All rats (including those that did not undergo surgery) were subsequently sacrificed for ELISA, radioimmunoassay and western blot measurement of orexins, orexin receptors and CRH in multiple brain regions. Neonatal MD induced an increase of total wake time (decreased total sleep) during the light period, which corresponds to human night time. This increase was specifically composed of quiet wake, while a small but significant decrease of active wake was observed during the dark period. At the molecular level, MD led to increased hypothalamic CRH and orexin A, and frontal cortical orexin 1 receptors (OX1R). However, hippocampal orexin B was reduced in the MD group. Our study discovered for the first time that the adult MD rat has sleep and neurobiological features of hyperarousal, which is typical in human insomnia. We concluded that neonatal MD produces adult hyperarousal in sleep physiology and neurobiology, and that the adult MD rat could be a model of insomnia with an orexinergic mechanism. PMID:17466285

  18. Inactivation Or Inhibition Of Neuronal Activity In The Medial Prefrontal Cortex Largely Reduces Pup Retrieval And Grouping in Maternal Rats

    PubMed Central

    Febo, Marcelo; Felix-Ortiz, Ada C.; Johnson, Tehya R.

    2010-01-01

    Previous research suggests that the maternal medial prefrontal cortex (mPFC) may play a role in maternal care and that cocaine sensitization before pregnancy can affect neuronal activity within this region. The present work was carried out to test whether the mPFC does actually play a role in the expression of maternal behaviors in the rats and to understand what specific behaviors this cortical area may modulate. In the first experiment, tetrodotoxin (TTX) was used to chemically inactivate the mPFC during tests for maternal behavior latencies. Lactating rats were tested on postpartum day 79. The results of this first experiment indicate that there is a large effect of TTX-induced inactivation on retrieval behavior latencies. TTX nearly abolished the expression of maternal retrieval of pups without significantly impairing locomotor activity. In the second experiment, GABA-mediated inhibition was used to test maternal behavior latencies and durations of maternal and other behaviors in postpartum dams. In agreement with experiment 1, it was observed that dams capable of retrieving are rendered incapable by inhibition in the mPFC. GABA-mediated inhibition in the mPFC largely reduced retrieval without altering other indices of maternal care and non-specific behavior such as ambulation time, self-grooming, and inactivity. Moreover, in both experiments dams were able to establish contact with pups within seconds. The overall results indicate that the mPFC may play an active role in modulating maternal care, particularly retrieval behavior. External factors that affect the function of the frontal cortical site may result in significant impairments in maternal goal-directed behavior as reported in our earlier work. PMID:20156425

  19. Effect of protein restriction during brooding on spontaneous turkey cardiomyopathy.

    PubMed

    Breeding, S W; McRee, W A; Ficken, M D; Ferket, P R

    1994-01-01

    The effect of early protein restriction on poult performance and mortality due to spontaneous turkey cardiomyopathy were examined in a facility that historically had a high incidence of the condition. Two thousand male turkey poults were divided into two equal subgroups for the first 4 weeks of life: one received standard commercial rations for the first 4 weeks (high-protein subgroup), and the other received rations with a protein content approximately 70% of the first subgroup (low-protein subgroup). Rations were the same after 4 weeks of age (standard commercial rations). At 16 weeks of age, turkeys in the low-protein subgroup weighed an average of 12.32 kilograms (27.1 pounds), whereas turkeys in the high-protein subgroup weighed an average of 12.73 kilograms (28.0 pounds). Total mortality for the low-protein subgroup was 10.1%, whereas total mortality for the high-protein subgroup was 15.7%. Total mortality due to spontaneous turkey cardiomyopathy in the high-protein subgroup was greater than twice that in the low-protein subgroup (10.4% versus 4.6%). These results show that lowering the protein content of the feed in the first 4 weeks significantly reduces mortality due to spontaneous turkey cardiomyopathy, but body weight gain is also reduced. PMID:7980290

  20. Release of mercury from dental amalgam fillings in pregnant rats and distribution of mercury in maternal and fetal tissues.

    PubMed

    Takahashi, Y; Tsuruta, S; Hasegawa, J; Kameyama, Y; Yoshida, M

    2001-06-21

    Mercury vapor released from a single amalgam restoration in pregnant rats and mercury concentrations in maternal and fetal rat tissues were studied. Dental treatment was given on day 2 of pregnancy. Mercury concentration in air sample drawn from the metabolism chamber with the rat was measured serially for 24 h on days 2, 8 and 15 of pregnancy. An average mercury concentration in the air samples from the rats given amalgam restorations was 678.6+/-167.5 ng/day on day 2. The average mercury concentration in the air samples tended to decline as time elapsed but a marked amount (423.2+/-121.5 ng/day) was observed even on day 15. The amount of mercury in the air samples increased 7--20-fold after chewing. The placement of the single amalgam restoration (3.8--5.5 mg in weight) increased the levels of mercury approximately three to 6 times in the maternal brain, liver, lung, placenta and 20 times in the kidneys. The highest mercury concentration among fetal organs was found in the liver, followed by the kidneys and brain. Mercury concentrations in maternal organs and fetal liver were significantly higher than those of the controls, and concentrations in maternal whole blood, erythrocytes and plasma, and in fetal whole blood were also significantly higher. Mercury concentrations in the fetal brain, liver, kidneys and whole blood were lower than those of the maternal tissues. PMID:11516521

  1. Impairment of Central Chemoreception in Neonatal Rats Induced by Maternal Cigarette Smoke Exposure during Pregnancy

    PubMed Central

    Lei, Fang; Yan, Xiang; Zhao, Fusheng; Zhang, Senfeng; Zhang, Qilan; Zhou, Hua; Zheng, Yu

    2015-01-01

    It has been postulated that prenatal cigarette smoke exposure (CSE) increases the risk for sudden infant death syndrome. The victims of infant death syndrome suffer from respiratory abnormalities, such as central apnea, diminished chemoreflex and alteration in respiratory pattern during sleep. However, no experimental evidence on CSE model exists to confirm whether prenatal CSE gives rise to reduction of neonatal central chemoreception in in vitro preparations in absence of peripheral sensory feedback. The aim of the present study was to test the hypothesis that maternal CSE during pregnancy depresses central chemoreception of the neonatal rats. The pregnant rats were divided into two groups, control (n = 8) and CSE (n = 8). Experiments were performed on neonatal (0–3days) rat pups. Fictive respiratory activity was monitored by recording the rhythmic discharge from the hypoglossal rootlets of the medullary slices obtained from the neonatal rats. The burst frequency (BF) and integrated amplitude (IA) of the discharge were analyzed. Their responses to acidified artificial cerebrospinal fluid (aCSF) were tested to indicate the change of the central chemosensitivity. Under condition of perfusing with standard aCSF (pH 7.4), no significant difference was detected between the two groups in either BF or IA (P>0.05). Under condition of perfusing with acidified aCSF (pH 7.0), BF was increased and IA was decreased in both groups (P<0.01). However, their change rates in the CSE group were obviously smaller than that in the control group, 66.98 ± 10.11% vs. 143.75 ± 15.41% for BF and −22.38 ± 2.51% vs. −44.90 ± 3.92% for IA (P<0.01). In conclusion, these observations, in a prenatal CSE model, provide important evidence that maternal smoking during pregnancy exerts adverse effects on central chemoreception of neonates. PMID:26333001

  2. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes.

    PubMed

    Aires, M B; Santos, J R A; Souza, K S; Farias, P S; Santos, A C V; Fioretto, E T; Maria, D A

    2015-08-01

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers. PMID:26176314

  3. Maternal treatment of spontaneously hypertensive rats with pentaerythritol tetranitrate reduces blood pressure in female offspring.

    PubMed

    Wu, Zhixiong; Siuda, Daniel; Xia, Ning; Reifenberg, Gisela; Daiber, Andreas; Münzel, Thomas; Förstermann, Ulrich; Li, Huige

    2015-01-01

    Pentaerythritol tetranitrate is devoid of nitrate tolerance and shows no reproductive or developmental toxicity in animal studies. Recently, pentaerythritol tetranitrate has been demonstrated to reduce the risk of intrauterine growth restriction and the risk of preterm birth in women with abnormal placental perfusion. This study was conducted to test the perinatal programming effect of pentaerythritol tetranitrate in spontaneously hypertensive rats, a rat model of genetic hypertension. Parental spontaneously hypertensive rats were treated with pentaerythritol tetranitrate (50 mg/kg per day) during pregnancy and lactation periods; the offspring received standard chow without pentaerythritol tetranitrate after weaning. Maternal treatment with pentaerythritol tetranitrate had no effect on blood pressure in male offspring. In the female offspring, however, a persistent reduction in blood pressure was observed at 6 and 8 months. This long-lasting effect was accompanied by an upregulation of endothelial nitric oxide synthase, mitochondrial superoxide dismutase, glutathione peroxidase 1, and heme oxygenase 1 in the aorta of 8-month-old female offspring, which was likely to result from epigenetic changes (enhanced histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation) and transcriptional activation (enhanced binding of DNA-directed RNA polymerase II to the transcription start site of the genes). In organ chamber experiments, the endothelium-dependent, nitric oxide-mediated vasodilation to acetylcholine was enhanced in aorta from female offspring of the pentaerythritol tetranitrate-treated parental spontaneously hypertensive rats. In conclusion, maternal pentaerythritol tetranitrate treatment leads to epigenetic modifications, gene expression changes, an improvement of endothelial function and a persistent blood pressure reduction in the female offspring. PMID:25385760

  4. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    PubMed Central

    Aires, M.B.; Santos, J.R.A.; Souza, K.S.; Farias, P.S.; Santos, A.C.V.; Fioretto, E.T.; Maria, D.A.

    2015-01-01

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers. PMID:26176314

  5. The stress of maternal separation causes misprogramming in the postnatal maturation of rat resistance arteries.

    PubMed

    Reho, John J; Fisher, Steven A

    2015-11-01

    We examined the effect of stress in the first 2 wk of life induced by brief periods of daily maternal separation on developmental programming of rat small resistance mesenteric arteries (MAs). In MAs of littermate controls, mRNAs encoding mediators of vasoconstriction, including the α1a-adrenergic receptor, smooth muscle myosin heavy chain, and CPI-17, the inhibitory subunit of myosin phosphatase, increased from after birth through sexual [postnatal day (PND) 35] and full maturity, up to ∼80-fold, as measured by quantitative PCR. This was commensurate with two- to fivefold increases in maximum force production to KCl depolarization, calcium, and the α-adrenergic agonist phenylephrine, and increasing systolic blood pressure. Rats exposed to maternal separation stress as neonates had markedly accelerated trajectories of maturation of arterial contractile gene expression and function measured at PND14 or PND21 (weaning), 1 wk after the end of the stress protocol. This was suppressed by the α-adrenergic receptor blocker terazosin (0.5 mg·kg ip(-1)·day(-1)), indicating dependence on stress activation of sympathetic signaling. Due to the continued maturation of MAs in control rats, by sexual maturity (PND35) and into adulthood, no differences were observed in arterial function or response to a second stressor in rats stressed as neonates. Thus early life stress misprograms resistance artery smooth muscle, increasing vasoconstrictor function and blood pressure. This effect wanes in later stages, suggesting plasticity during arterial maturation. Further studies are indicated to determine whether stress in different periods of arterial maturation may cause misprogramming persisting through maturity and the potential salutary effect of α-adrenergic blockade in suppression of this response. PMID:26371173

  6. Weaning initiates a rapid and powerful anabolic phase in the rat maternal skeleton.

    PubMed

    Miller, Scott C; Anderson, Brian L; Bowman, Beth M

    2005-07-01

    Maternal skeletal mineral lost during lactation is rapidly restored after weaning. The purposes of this study were to determine when increases of bone formation occur after weaning, whether the expanding osteoblast population is derived from proliferating progenitors, and to relate these skeletal changes to known endocrine events at weaning. Female rats were allowed to complete one reproductive cycle. Half of these rats were mated a second time and allowed to lactate for 20 days. The other half served as an age-matched, normal estrus cycling comparison group. One day after weaning, the dams and their comparison group were given four injections of bromodeoxyuridine (BrdU) at 8-h intervals. Indices of bone formation and the kinetics of BrdU-labeled cells were measured in lumbar vertebral cancellous bone. At 2 days after weaning, cancellous bone formation rates were substantially greater than those in the nonmated rats. Indices of bone formation more than doubled from the second to seventh day after weaning. At 25 h after the first BrdU injection in the postweaned rats, considerable numbers of labeled cells were observed on or near the bone surface, with about 17% of the osteoblast population labeled. Labeled osteoblasts peaked at 20%-24% compared with 4% in the normal estrus cycling group. Immediately following weaning, there is a profound increase in the osteoblast population in maternal cancellous bone. Many, if not most of these newly formed osteoblasts were derived from proliferating progenitors. It is possible that the endocrine milieu of lactation expands or primes the osteoprogenitor pool for this rapid anabolic phase. PMID:15788754

  7. Neuroendocrine basis of thermally regulated maternal responses to young in the rat.

    PubMed

    Woodside, B; Jans, J E

    1988-01-01

    Over the first two weeks postpartum there is a decline in the amount of time that the rat dam spends with her young, resulting from a decrease in the duration of each nest bout. The duration of each nest bout is limited by the rate of rise of maternal temperature when she huddles with her litter. This pattern of mother-young contact is dependent on the dam's hormonal status, because adrenalectomised dams fail to show the expected decline in mother-young contact over time. Ovariectomy, on the other hand, does not have any effect on this behavior. Replacement therapy with glucocorticoids or placing the dam in a warm (25 degrees C) ambience reinstates the normal pattern of mother-litter contact in adrenalectomised-ovariectomised dams. These data suggest that the elevated level of serum glucocorticoids in lactating dams affects maternal behavior by increasing maternal heat load, thereby making the dam vulnerable to an acute rise in temperature when huddling with her young. Prolactin suppression also results in an increase in contact time between mother and young, but only in the second week postpartum. The effects of prolactin suppression are reversed by progesterone replacement or placing prolactin-suppressed females in a warm ambience. However, progesterone is ineffective in restoring the normal pattern of mother-litter contact in adrenalectomised females. These findings suggest that progesterone raises the thermal set point, thereby permitting the thermogenic effects of glucocorticoids to occur. PMID:3287419

  8. Maternal hyperglycemia at different stages of gestation and its effects on male reproductive functions in rats.

    PubMed

    Akindele, O O; Kunle-Alabi, O T; Udofia, U A; Ahmed, T T; Raji, Y

    2015-12-01

    The critical period during which maternal hyperglycemia predisposes offspring to develop reproductive disorders in adult life is not known. The relationship between maternal hyperglycemia at different stages and reproductive functions of male offspring was investigated. A single intraperitoneal injection of alloxan (90 mg/kg body weight) was administered at gestation days (GD) 1, 8 and 15. Animals were subsequently given 10% glucose solution daily as drinking water until parturition. All male pups were sacrificed on the 63rd day of postnatal life. Birth weight, anogenital distance index (AGDi), testes descent day, preputial separation day, sperm profile, serum testosterone, luteinizing hormone and follicle-stimulating hormone levels and the histology of the testis were assessed. Data significance test was based on 95% confidence interval. GD1 pups showed a significant increase in mean birth weight, whereas GD8 pups and GD15 pups had significantly reduced birth weight as compared with control. AGDi was significantly increased in GD8 and GD15 pups. Testes descent and preputial separation in all the experimental groups were significantly earlier. There was a significant reduction in sperm count and viability in GD8 offspring. Sperm motility was reduced in all test groups. Testosterone level was reduced in all test groups. Histology of the testis showed varying degrees of pathologies. It was deduced from this study that maternal hyperglycemia caused alterations in reproductive functions in male offspring of Wistar rats irrespective of the period of gestation involved, although GD8 pups were most severely affected. PMID:26496962

  9. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    PubMed

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P < 0.05) induced in the delayed implantation uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication. PMID:26685865

  10. Adaptive significance of natural variations in maternal care in rats: a translational perspective

    PubMed Central

    Beery, Annaliese K.; Francis, Darlene D.

    2011-01-01

    A wealth of data from the last fifty years documents the potency of early life experiences including maternal care on developing offspring. A majority of this research has focused on the developing stress axis and stress-sensitive behaviors in hopes of identifying factors impacting resilience and risk-sensitivity. The power of early life experience to shape later development is profound and has the potential to increase fitness of individuals for their environments. Current findings in a rat maternal care paradigm highlight the complex and dynamic relation between early experiences and a variety of outcomes. In this review we propose adaptive hypotheses for alternate maternal strategies and resulting offspring phenotypes, and ways to distinguish between these hypotheses. We also provide evidence underscoring the critical role of context in interpreting the adaptive significance of early experiences. If our goal is to identify risk-factors relevant to humans, we must better explore the role of the social and physical environment in our basic animal models. PMID:21458485

  11. Functional mapping of the neural circuitry of rat maternal motivation: effects of site-specific transient neural inactivation.

    PubMed

    Pereira, M; Morrell, J I

    2011-11-01

    The present review focuses on recent studies from our laboratory examining the neural circuitry subserving rat maternal motivation across postpartum. We employed a site-specific neural inactivation method by infusion of bupivacaine to map the maternal motivation circuitry using two complementary behavioural approaches: unconditioned maternal responsiveness and choice of pup- over cocaine-conditioned incentives in a concurrent pup/cocaine choice conditioned place preference task. Our findings revealed that, during the early postpartum period, distinct brain structures, including the medial preoptic area, ventral tegmental area and medial prefrontal cortex infralimbic and anterior cingulate subregions, contribute a pup-specific bias to the motivational circuitry. As the postpartum period progresses and the pups grow older, it is further revealed that maternal responsiveness becomes progressively less dependent on the medial preoptic area and medial prefrontal cortex infralimbic activity, and more distributed in the maternal circuitry, such that additional network components, including the medial prefrontal cortex prelimbic subregion, are recruited with maternal experience, and contribute to the expression of late postpartum maternal behaviour. Collectively, our findings provide strong evidence that the remarkable ability of postpartum females to successfully care for their developing infants is subserved by a distributed neural network that carries out efficient and dynamic processing of complex, constantly changing incoming environmental and pup-related stimuli, ultimately allowing the progression of appropriate expression and waning of maternal responsiveness across the postpartum period. PMID:21815954

  12. Environmental prenatal stress alters sexual dimorphism of maternal behavior in rats.

    PubMed

    Pérez-Laso, Carmen; Segovia, Santiago; Martín, José Luis R; Ortega, Esperanza; Gómez, Francisco; Del Cerro, M Cruz R

    2008-03-01

    The prenatal external environment can affect fetuses, altering the maternal behavior that they express when mature. In the present study, environmental prenatal stress (EPS) was applied to pregnant rats in their final week of gestation, and when their female offspring reached maturity, the long latency effect of the stress on those offspring was ascertained on their induced maternal behavior (MB), accessory olfactory bulb (AOB) morphology and plasma levels of ACTH and corticosterone (Cpd B). EPS reduced: the percentage of these virgins that showed induced MB, their retrieval of foster pups, the time spent crouching, and the quality of nest building; it also increased the incidence of their cannibalism of foster pups. The EPS-treated females presented a male-like pattern of induced MB. They showed increased plasma levels of ACTH and Cpd B and increased numbers of mitral cells in the AOB. These findings provide evidence that stress applied to the pregnant rat produces long-lasting behavioral, neuroanatomical and hormonal alterations in the female offspring that can be observed when they reach maturity. PMID:17980921

  13. Maternal condition reduces fear behaviors but not the endocrine response to an emotional threat in virgin female rats.

    PubMed

    Agrati, D; Zuluaga, M J; Fernández-Guasti, A; Meikle, A; Ferreira, A

    2008-01-01

    Lactating dams and maternal virgin females are less fearful in behavioral tests compared with non-maternal animals, suggesting that maternal condition per se reduces the negative value of threatening stimuli. In addition, lactating females exhibit a diminished hypothalamic-pituitary-adrenal response to potential environmental threats. Can the maternal condition, independently of the endocrine profile of lactation, promote a reduction in the behavioral as well as in the endocrine response to an emotional stressor? To answer this question, anxiety-related and fear behaviors as well as the levels of corticosterone were evaluated in response to a bright-lit open field-loud noise model in maternal and non-maternal non-ovariectomized virgin females and lactating dams in the presence of the pups. Maternal animals, both lactating and virgin, presented an increased exploration of the bright-lit open field and a significant reduction of fear behaviors, indicated by the decreased flight and immobility responses to the subsequent activation of a loud noise, in comparison to non-maternal virgins. Interestingly, maternal virgin females, as non-maternal rats, showed high corticosterone plasma levels, in contrast to the lower endocrine response exhibited by lactating dams when confronted to this threat. Present results suggest that maternal condition allows females to take risks when caring for their young, a behavioral strategy that is independent of the reduced hypothalamic-pituitary-adrenal axis response characteristic of lactation. This evidence points towards a clear dissociation in the mechanisms regulating behavioral and endocrine responses to emotional stressors during motherhood. PMID:18021777

  14. Early maternal deprivation-induced modifications in the neurobiological, neurochemical and behavioral profile of adult rats.

    PubMed

    Rentesi, Georgia; Antoniou, Katerina; Marselos, Marios; Syrrou, Marika; Papadopoulou-Daifoti, Zeta; Konstandi, Maria

    2013-05-01

    Early maternal deprivation (MD) is an animal model of neurodevelopmental stress associated with a variety of abnormalities during adulthood. The present study investigated specific behavioral, neurochemical and neurobiological parameters related to dopaminergic and serotonergic function in adult rats subjected to early life MD. Behavioral responses, including the reaction to novelty, the response to d-amphetamine (d-AMP) and the susceptibility to apomorphine (APO) were evaluated in adulthood. Dopamine (DA) and serotonin (5-HT) levels, their metabolites along with their turnover ratios were assessed in distinct rat brain regions. The impact of MD on DARPP-32 protein, D2 and 5-HT2A receptor expression was also estimated in the same brain regions during adulthood. Our results indicated that MD rats were more reactive to novelty behavior and more sensitive to dopaminergic agonists compared to controls. MD rats displayed elevated dopaminergic and serotonergic function in the amygdala and prefrontal cortex, whereas in the striatum only the dopaminergic activity was also increased. Interestingly, MD induced a region-dependent modulation of D2, 5-HT2A receptor and DARPP-32 protein expression. Our findings clearly indicated that early MD stress produces long term behavioral impairments and region-dependent modifications in various neurochemical and neurobiological indices of dopaminergic and serotonergic function in brain regions holding critical roles in the pathophysiology of central nervous system disorders. PMID:23395600

  15. Chronic cannabinoid treatment during young adulthood induces sex-specific behavioural deficits in maternally separated rats.

    PubMed

    Klug, Maren; van den Buuse, Maarten

    2012-08-01

    A combination of early neurodevelopmental disruptions and young-adult cannabis use may lead to the development of neuropsychiatric disorders. The aim of this study was to investigate in adult Wistar rats (12-14 weeks of age) the long-term 'two hit' behavioural effects of chronic young-adult treatment with the cannabinoid receptor agonist, CP55,940 (0.2 mg/kg, 8-10 weeks of age) in combination with maternal separation (MS) (3 h every day from postnatal days 2-14). Two weeks after chronic CP55,940 treatment had ceased, baseline locomotor activity was reduced in male, but not female rats and irrespective of MS. In male rats only, the combination of MS and cannabinoid exposure, but not either 'hit' alone, induced a significant decrease in sucrose preference. In contrast, in male rats both MS and CP55,940 treatment reduced time spent on the open arms of the plus maze or centre time in the open field and this was most pronounced after a combination of these 'hits'. Prepulse inhibition was reduced by MS in both sexes but there was no additional effect of CP55,940 treatment. Memory performance in the Y-maze and novel object recognition test was not affected by either of the two 'hits'. These results indicate that early developmental disruptions and young-adult cannabis use on their own or in combination can differentially and sex-specifically affect behaviours related to neuropsychiatric disorders. PMID:22610052

  16. Chronic Nicotine Exposure Abolishes Maternal Systemic and Renal Adaptations to Pregnancy in Rats

    PubMed Central

    Ferreira, Vanessa Meira; Passos, Clevia Santos; Maquigussa, Edgar; Pontes, Roberto Braz; Bergamaschi, Cassia Toledo; Campos, Ruy Ribeiro; Boim, Mirian Aparecida

    2016-01-01

    Pregnancy is characterized by maternal systemic and intrarenal vasodilation, leading to increases in the renal plasma flow (RPF) and glomerular filtration rate (GFR). These responses are mainly mediated by nitric oxide (NO) and relaxin. The impact of cigarette smoking on the maternal adaptations to pregnancy is unclear. Here we evaluated the effects of chronic exposure to nicotine on systemic and intrarenal parameters in virgin (V) and 14-day pregnant (P) Wistar rats. V and P groups received saline or nicotine (6 mg·kg-1·day-1) respectively, via osmotic minipumps for 28 days, starting 14 days before pregnancy induction. Nicotine induced a 10% increase in blood pressure in the V group and minimized the characteristic pregnancy-induced hypotension. Renal sympathetic nerve activity (rSNA) and baroreflex sensitivity were impaired by nicotine mainly in the P group, indicating that the effect of nicotine on blood pressure was not mediated by nervous system stimulation. Nicotine had no effect on GFR in the V rats but reduced GFR of the P group by 30%. Renal expression of sodium and water transporters was downregulated by nicotine, resulting in increased fractional sodium excretion mainly in the P group, suggesting that nicotine compromised the sodium and water retention required for normal gestation. There was a reduction in the expression of inducible NO synthase (iNOS) in both the kidney tissue and renal artery, as well as in the expression of the relaxin receptor (LGR7). These results clearly show that nicotine induced deleterious effects in both virgin and pregnant animals, and abolished the maternal capacity to adapt to pregnancy. PMID:26914675

  17. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats

    PubMed Central

    Moussaoui, Nabila; Larauche, Muriel; Biraud, Mandy; Molet, Jenny; Million, Mulugeta; Mayer, Emeran; Taché, Yvette

    2016-01-01

    A few studies indicate that limited nesting stress (LNS) alters maternal behavior and the hypothalamic pituitary adrenal (HPA) axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control) from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate–dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%), self-grooming (69%), and putting the pups back to the nest (167%). LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring. PMID:27149676

  18. Effect of maternal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Marcelino, Thiago Beltram; de Lemos Rodrigues, Patrícia Idalina; Miguel, Patrícia Maidana; Netto, Carlos Alexandre; Pereira Silva, Lenir Orlandi; Matté, Cristiane

    2015-10-01

    Pregnancy is a critical period for brain metabolic programming, being affected by individual environment, such as nutrition, stress, and physical exercise. In this context, we previously reported a cerebral antioxidant upregulation and mitochondrial biogenesis in the offspring delivered from exercised mothers, which could provide neuroprotection against neonatal insults. Hypoxia-ischemia (HI) encephalopathy is one of the most studied models of neonatal brain injury; disrupting motor, cognitive, and learning abilities. Physiopathology includes oxidative stress, allied to mitochondria energy production failure, glutamatergic excitotoxicity, and cell death. In this study we evaluated the effect of maternal swimming during pregnancy on offspring׳s brain oxidative status evaluated fourteen days after HI stablishment. Swimming exercise was performed by female adult rats one week before and during pregnancy, in controlled environment. Their offspring was submitted to HI on postnatal day 7, and the brain samples for biochemical assays were obtained in the weaning. Contrary to our expectations, maternal exercise did not prevent the oxidative alterations observed in brain from HI-rats. In a general way, we found a positive modulation in the activities of antioxidant enzymes, measured two weeks after HI, in hippocampus, striatum, and cerebellum of pups delivered from exercised mothers. Reactive species levels were modulated differently in each structure evaluated. Considering the scenery presented, we concluded that HI elicited a neurometabolic adaptation in both brain hemispheres, particularly in hippocampus, parietal cortex, and cerebellum; while striatum appears to be most damaged. The protocol of aerobic maternal exercise was not enough to fully prevent HI-induced brain damages. PMID:26119914

  19. Chronic Nicotine Exposure Abolishes Maternal Systemic and Renal Adaptations to Pregnancy in Rats.

    PubMed

    Ferreira, Vanessa Meira; Passos, Clevia Santos; Maquigussa, Edgar; Pontes, Roberto Braz; Bergamaschi, Cassia Toledo; Campos, Ruy Ribeiro; Boim, Mirian Aparecida

    2016-01-01

    Pregnancy is characterized by maternal systemic and intrarenal vasodilation, leading to increases in the renal plasma flow (RPF) and glomerular filtration rate (GFR). These responses are mainly mediated by nitric oxide (NO) and relaxin. The impact of cigarette smoking on the maternal adaptations to pregnancy is unclear. Here we evaluated the effects of chronic exposure to nicotine on systemic and intrarenal parameters in virgin (V) and 14-day pregnant (P) Wistar rats. V and P groups received saline or nicotine (6 mg·kg-1·day-1) respectively, via osmotic minipumps for 28 days, starting 14 days before pregnancy induction. Nicotine induced a 10% increase in blood pressure in the V group and minimized the characteristic pregnancy-induced hypotension. Renal sympathetic nerve activity (rSNA) and baroreflex sensitivity were impaired by nicotine mainly in the P group, indicating that the effect of nicotine on blood pressure was not mediated by nervous system stimulation. Nicotine had no effect on GFR in the V rats but reduced GFR of the P group by 30%. Renal expression of sodium and water transporters was downregulated by nicotine, resulting in increased fractional sodium excretion mainly in the P group, suggesting that nicotine compromised the sodium and water retention required for normal gestation. There was a reduction in the expression of inducible NO synthase (iNOS) in both the kidney tissue and renal artery, as well as in the expression of the relaxin receptor (LGR7). These results clearly show that nicotine induced deleterious effects in both virgin and pregnant animals, and abolished the maternal capacity to adapt to pregnancy. PMID:26914675

  20. Blunted behavioral and molecular responses to chronic mild stress in adult rats with experience of infancy maternal separation.

    PubMed

    Shu, Chang; Xiao, Ling; Tang, Jihua; Wang, Gaohua; Zhang, Xueping; Wang, Xiaoping

    2015-01-01

    Childhood adversity has profound and persistent effects on brain functions and has been implicated in the etiology of depression. Brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) play critical roles during brain development to maintain neuronal function and structural integrity in adulthood. We therefore investigated the long-term effects of early life adversity on the depression-related behavior and the expression of BDNF and CREB in the hippocampus. Male Sprague-Dawley newborn rats were subjected to maternal separation for 3 h/day on postnatal days 2-14. After the postnatal day 90, rats with or without the experience of infancy maternal separation received a series of unpredictable chronic mild stress (CMS) for 21 days. Sucrose preference and spontaneous activity in the open field test were recorded, and the expression of BDNF and CREB in the hippocampus was measured by real-time RT-PCR and Western blot analyses. Before exposure to CMS, the rats with maternal separation showed the significant decreases in sucrose preference, spontaneous activity, and hippocampal expression of BDNF and CREB, compared to the animals without maternal separation. In contrast, the rats without maternal separation showed greater decreases of the above indictors after CMS, the levels of which were lower than those observed in the rats with maternal separation. Thus, early life adversity leads to long-term decreases in the capacity of enjoying sweetness, spontaneous activity, and hippocampal expression of BDNF and CREB. Moreover, childhood neglect may decrease the neurobehavioral plasticity, thereby blunting the responses to adulthood stress and increasing the susceptibility to depression. PMID:25742865

  1. Developmental immunotoxicity of lead in the rat: influence of maternal diet.

    PubMed

    Chen, Suping; Golemboski, Karen; Piepenbrink, Michael; Dietert, Rodney

    2004-03-26

    The effect of maternal dietary protein intake on lead-induced developmental immunotoxicity was studied in female Fischer 344 rats receiving lead acetate (250 ppm) or sodium acetate (control) in the drinking water during breeding and pregnancy until parturition. Dams were fed isocaloric diets (either 20% casein or 10% casein) from 2 wk prior to mating until the end of lactation. After weaning, dams and female offspring were given the 20% casein diet and regular water. Immune function was assessed in dams at 8 wk postpartum and in offspring at 13 wk of age. Dams showed no marked difference in any of the immune endpoints examined, regardless of diet or lead treatment. In contrast, lead exposure during early development produced a subsequent significant reduction of both the delayed-type hypersensitivity response and interferon gamma production in adult offspring independent of maternal diet. Lead-exposed offspring from the high-dietary-protein group had significantly elevated production of both interleukin-4 and tumor necrosis factor alpha(TNF-alpha) with increased relative spleen weight and a decreased body weight compared to offspring in the lead control group. In contrast, lead-exposed offspring from dams receiving the low-protein diet had no marked change in TNF-alpha levels, relative spleen weight, or body weight, while interleukin-4 levels were significantly reduced compared with the lead control group. In conclusion, maternal dietary protein intake can modulate the immunotoxic effects of lead exposure during early development. This occurred at levels of protein intake and doses of lead exposure that produced no detectable effect on the maternal immune system. PMID:14742095

  2. Prenatal exposure to integerrimine N-oxide impaired the maternal care and the physical and behavioral development of offspring rats.

    PubMed

    Sandini, Thaísa M; Udo, Mariana S B; Reis-Silva, Thiago M; Bernardi, Maria Martha; Spinosa, Helenice de S

    2014-08-01

    Plants that contain pyrrolizidine alkaloids (PAs) have been reported as contaminants of pastures and food, as well as being used in herbal medicine. PAs are responsible for poisoning events in livestock and human beings. The aim of this present study was to evaluate effects of prenatal exposure to integerrimine N-oxide, the main PA found in the butanolic residue (BR) of Senecio brasiliensis, on both physical and behavioral parameters of Wistar rat offspring. The toxicity and maternal behavior were also evaluated. For this, pregnant Wistar rats received integerrimine N-oxide from the BR of Senecio brasiliensis, by gavage, on gestational days 6-20 (during organogenesis and fetal development period) at doses of 3, 6 and 9 mg/kg. During treatment, maternal body weight gain, and food and water intake were evaluated. After parturition, maternal behavior and aggressive maternal behavior were analyzed. In addition, physical development and behavioral assessments were observed in both male and female pups. Results showed that prenatal exposure to integerrimine N-oxide of S. brasiliensis induced maternal toxicity, impairment in maternal behavior and aggressive maternal behavior, mainly in the highest dose group. Between sexes comparison of pups showed loss of body weight, delayed physical development such as pinna detachment, hair growth, eruption of incisor teeth, eye and vaginal openings. These pups also showed a delay of palmar grasp, surface righting reflex, negative geotaxis and auditory startle reflexes. Thus, prenatal exposure to integerrimine N-oxide induces maternal toxicity, impairment of maternal care and delayed in physical and behavioral development of the offspring. PMID:24881561

  3. Prenatal exposure to maternal voluntary exercise during pregnancy provides protection against mild chronic postnatal hypoxia in rat offspring.

    PubMed

    Akhavan, Maziar Mohammad; Foroutan, Tahereh; Safari, Manouchehr; Sadighi-Moghaddam, Bizhan; Emami-Abarghoie, Mitra; Rashidy-Pour, Ali

    2012-01-01

    Postnatal hypoxia is a main cause of neuronal damage in newborn. However, our understanding of the possible preventive or therapeutic methods to reduce the harmful effects of hypoxia is still primary. Pregnant rats were provided with running wheels during their pregnancy. On PND4 (postnatal day 4)to PND8, the rat pups were exposed to postnatal chronic hypoxia (11% O(2), 89% N(2)) in an air-tight plastic chamber for a period of six hours per day. The number of neurons and also angiogenesis in hippocampus were studied. Postnatal exposure to mild hypoxia decreased the number of the neurons in all studied regions of the hippocampus CA1, CA3 (cornu ammonis), DG(dentate gyrus) and SUB(cubiculum) in rat pups. In other words the number of the neurons in rat pups born from voluntary exercise group was not significantly less than control group in CA1, CA3 and DG regions. So maternal Voluntary exercise during pregnancy increases the blood vessel density in the DG region of the hippocampus of the rat pups. In this study for the first time we provide evidences that show the protective effect of maternal voluntary exercise during pregnancy on rat offspring against postnatal hypoxia. We revealed that maternal exercise during pregnancy increases the hippocampal neuron number and angiogenesis in offspring. PMID:22186335

  4. Maternal Separation Enhances Neuronal Activation and Cardiovascular Responses to Acute Stress in Borderline Hypertensive Rats

    PubMed Central

    Sanders, Brian J.; Anticevic, Alan

    2007-01-01

    There is much evidence suggesting early life events, such has handling or repeated separations from the nest, can have a long term effect on the biological and behavioral development of rats. The current study examined the effect of repeated maternal separation (MS) on the behavioral, cardiovascular, and neurobiological responses to stress in subjects vulnerable to environmental stressors as adults. Borderline hypertensive rats (BHR), which are the first generation offspring of spontaneously hyperternsive and Wistar-Kyoto rats, were separated from the dams for 3 hours per day from post-natal day 1 through 14. Non-separated controls remained in the home cage. When allowed to explore the open field chamber for 60 minutes as adults, MS subjects had significantly greater locomotor activity compared to controls. All subjects were exposed to 30 minutes of restraint stress during which time mean arterial pressure (MAP) and heart rate (HR) were measured. Although both groups had comparable increases in MAP, MS animals displayed significantly higher HR throughout the stress period. Finally, MS subjects had significantly more stress-induced Fos positive cells, an estimate of neuronal activation, in the central nucleus of the amygdala (CeA), paraventricular nucleus of the hypothalamus (PVN), and the bed nucleus of the stria terminalis (BNST), each of which plays an important role in organizing the biobehavioral response to stress. These results suggest that maternal separation can further enhance stress reactivity in this model and may represent a useful approach for studying the relationship between early life events and future vulnerability to stressful situations. PMID:17604851

  5. Long Lasting Microvascular Tone Alteration in Rat Offspring Exposed In Utero to Maternal Hyperglycaemia

    PubMed Central

    Vessières, Emilie; Dib, Abdallah; Bourreau, Jennifer; Lelièvre, Eric; Custaud, Marc-Antoine; Lelièvre-Pégorier, Martine; Loufrani, Laurent; Henrion, Daniel; Fassot, Céline

    2016-01-01

    Epidemiologic studies have demonstrated that cardiovascular risk is not only determined by conventional risk factors in adulthood, but also by early life events which may reprogram vascular function. To evaluate the effect of maternal diabetes on fetal programming of vascular tone in offspring and its evolution during adulthood, we investigated vascular reactivity of third order mesenteric arteries from diabetic mother offspring (DMO) and control mother offspring (CMO) aged 3 and 18 months. In arteries isolated from DMO the relaxation induced by prostacyclin analogues was reduced in both 3- and 18-month old animals although endothelium (acetylcholine)-mediated relaxation was reduced in 18-month old DMO only. Endothelium-independent (sodium nitroprusside) relaxation was not affected. Pressure-induced myogenic tone, which controls local blood flow, was reduced in 18-month old CMO compared to 3-month old CMO. Interestingly, myogenic tone was maintained at a high level in 18-month old DMO even though agonist-induced vasoconstriction was not altered. These perturbations, in 18-months old DMO rats, were associated with an increased pMLC/MLC, pPKA/PKA ratio and an activated RhoA protein. Thus, we highlighted perturbations in the reactivity of resistance mesenteric arteries in DMO, at as early as 3 months of age, followed by the maintenance of high myogenic tone in older rats. These modifications are in favour of excessive vasoconstrictor tone. These results evidenced a fetal programming of vascular functions of resistance arteries in adult rats exposed in utero to maternal diabetes, which could explain a re-setting of vascular functions and, at least in part, the occurrence of hypertension later in life. PMID:26756337

  6. Exercise partially reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine lesioned rat brain

    PubMed Central

    Dimatelis, JJ; Hendricks, S; Hsieh, J; Vlok, NM; Bugarith, K; Daniels, WMU; Russell, VA

    2012-01-01

    Animals subjected to maternal separation stress during the early stages of development display behavioural, endocrine and growth factor abnormalities that mirror the clinical findings in anxiety/depression. In addition, maternal separation has been shown to exacerbate the behavioural deficits induced by 6-hydroxydopamine (6-OHDA) in a rat model of Parkinson's disease. In contrast, voluntary exercise reduced the detrimental effects of 6-OHDA in the rat model. The beneficial effects of exercise appeared to be largely due to compensation in the non-lesioned hemisphere. The aim of the present study was to investigate whether voluntary exercise for 3 weeks could reverse the effects of maternal separation in rats challenged with the neurotoxin 6-OHDA infused into the medial forebrain bundle after 1 week of exercise, at postnatal day 60 (P60). The rats were killed 2 weeks later, at P74. Their brains were dissected and the hippocampus rapidly removed for proteomic analysis - isobaric tagging (iTRAQ) and quantification of peptides by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Maternal separation up-regulated hippocampal proteins functionally involved in energy metabolism (nucleoside diphosphate kinase B, enolase, triosephosphate isomerase) and synaptic plasticity (alpha-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere. Exercise reversed many of these changes by down-regulating the levels of hippocampal proteins functionally associated with energy metabolism (nucleoside diphosphate kinase B, enolase, triosephosphate isomerase) and synaptic plasticity (alpha-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere of rats subjected to maternal separation. Exercise and maternal separation therefore appeared to have opposing effects on the hippocampus in the non-lesioned hemisphere of the rat brain. Exercise seemed to partially reverse the effects of maternal separation stress on these proteins in the non-lesioned hemisphere. The partial reversal of maternal separation-induced proteins by exercise in the non-lesioned side sheds some insight into the mechanism by which exercise alters the molecular role players involved in determining the consequences of early life stress. PMID:22636255

  7. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...

  8. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat

    PubMed Central

    Elmes, Matthew; Szyszka, Alexandra; Pauliat, Caroline; Clifford, Bethan; Daniel, Zoe; Cheng, Zhangrui; Wathes, Claire; McMullen, Sarah

    2015-01-01

    Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways. PMID:25876907

  9. Effects of running wheel training on adult obese rats programmed by maternal prolactin inhibition.

    PubMed

    Boaventura, G; Casimiro-Lopes, G; Pazos-Moura, C C; Oliveira, E; Lisboa, P C; Moura, E G

    2013-10-01

    The inhibition of maternal prolactin production in late lactation leads to metabolic syndrome and hypothyroidism in adult offspring. Physical training is a therapeutic strategy that could prevent or reverse this condition. We evaluated the effects of a short-duration low-intensity running wheel training program on the metabolic and hormonal alterations in rats. Lactating Wistar rats were treated with bromocriptine (Bro, 1 mg twice a day) or saline on days 19, 20, and 21 of lactation, and the training of offspring began at 35 days of age. Offspring were divided into sedentary and trained controls (C-Sed and C-Ex) and sedentary and trained Bro-treated rats (Bro-Sed and Bro-Ex). Chronic exercise delayed the onset of weight gain in Bro-Ex offspring, and the food intake did not change during the experimental period. At 180 days, visceral fat mass was higher (+46%) in the Bro-Sed offspring than in C-Sed and Bro-Ex rats. As expected, running capacity was higher in trained animals. Most parameters observed in the Bro-Sed offspring were consistent with hypothyroidism and metabolic syndrome and were reversed in the Bro-Ex group. Chronic exercise did not influence the muscle glycogen in the C-Ex group; however, liver glycogen was higher (+30%) in C-Ex group and was unchanged in both Bro offspring groups. Bro-Ex animals had higher plasma lactate dehydrogenase levels, indicating skeletal muscle damage and intolerance of the training program. Low-intensity chronic training is able to normalize many clinical aspects in Bro animals; however, these animals might have had a lower threshold for exercise adaptation than the control rats. PMID:23863192

  10. Stress-Induced Visceral Hypersensitivity in Maternally Separated Rats Can Be Reversed by Peripherally Restricted Histamine-1-Receptor Antagonists

    PubMed Central

    Stanisor, Oana I.; van Diest, Sophie A.; Yu, Zhumei; Welting, Olaf; Bekkali, Noor; Shi, Jing; de Jonge, Wouter J.; Boeckxstaens, Guy E.; van den Wijngaard, Rene M.

    2013-01-01

    Background The histamine-1 receptor (H1R) antagonist ketotifen increased the threshold of discomfort in hypersensitive IBS patients. The use of peripherally restricted and more selective H1R antagonists may further improve treatment possibilities. We examined the use of fexofenadine and ebastine to reverse post-stress visceral hypersensitivity in maternally separated rats. Methods The visceromotor response to colonic distension was assessed in adult maternally separated and nonhandled rats pre- and 24 hours post water avoidance. Subsequently rats were treated with vehicle alone or different dosages of fexofenadine (1.8 and 18 mg/kg) or ebastine (0.1 and 1.0 mg/kg) and re-evaluated. Colonic tissue was collected to assess relative RMCP-2 and occludin expression levels by Western blot and histamine-1 receptor by RT-qPCR. β-hexosaminidase release by RBL-2H3 cells was used to establish possible mast cell stabilizing properties of the antagonists. Key results Water avoidance only induced enhanced response to distension in maternally separated rats. This response was reversed by 1.8 and 18 mg/kg fexofenadine. Reversal was also obtained by 1.0 but not 0.1 mg/kg ebastine. RMCP-2 expression levels were comparable in these two ebastine treatment groups but occludin was significantly higher in 1.0 mg/kg treated rats. There were no differences in histamine-1 receptor expression between nonhandled and maternally separated rats. Fexofenadine but not ebastine showed mast cell stabilizing quality. Conclusions Our results indicate that the peripherally restricted 2nd generation H1-receptor antagonists fexofenadine and ebastine are capable of reversing post stress visceral hypersensitivity in rat. These data justify future IBS patient trials with these well tolerated compounds. PMID:23776699

  11. Maternal-pup interaction disturbances induce long-lasting changes in the newborn rat pulmonary vasculature.

    PubMed

    Shifrin, Yulia; Sadeghi, Sina; Pan, Jingyi; Jain, Amish; Fajardo, Andres F; McNamara, Patrick J; Belik, Jaques

    2015-11-15

    The factors accounting for the pathological maintenance of a high pulmonary vascular (PV) resistance postnatally remain elusive, but neonatal stressors may play a role in this process. Cross-fostering in the immediate neonatal period is associated with adult-onset vascular and behavioral changes, likely triggered by early-in-life stressors. In hypothesizing that fostering newborn rats induces long-lasting PV changes, we evaluated them at 14 days of age during adulthood and compared the findings with animals raised by their biological mothers. Fostering resulted in reduced maternal-pup contact time when compared with control newborns. At 2 wk of age, fostered rats exhibited reduced pulmonary arterial endothelium-dependent relaxation secondary to downregulation of tissue endothelial nitric oxide synthase expression and tetrahydrobiopterin deficiency-induced uncoupling. These changes were associated with neonatal onset-increased ANG II receptor type 1 expression, PV remodeling, and right ventricular hypertrophy that persisted into adulthood. The pulmonary arteries of adult-fostered rats exhibited a higher contraction dose response to ANG II and thromboxane A2, the latter of which was abrogated by the oxidant scavenger Tempol. In conclusion, fostering-induced neonatal stress induces long-standing PV changes modulated via the renin-angiotensin system. PMID:26342088

  12. Maternal metallothionein and zinc after acute ethanol exposure during gestation in the rat

    SciTech Connect

    Harris, J.E. )

    1992-02-26

    Acute exposure of the rat fetus to ethanol at critical periods can cause growth retardation and brain damage; the mechanism(s) is not known. Ethanol may cause redistribution of maternal zinc which results in fetal zinc deficiency and subsequent interruption of growth and development. The purpose was to determine if acute ethanol administration to the pregnant rat alters Zn and the Zn binding protein metallothionein (MT) in selected tissues. On gestational day (gd) 14, eighteen pregnant Sprague-Dawley rats were divided into groups. By intragastric tube, ethanol treated dams were given ethanol and pairfed controls were given a 0.85% NaCl solution. On gd 15, intragastric feedings were repeated. Throughout, the Lieber-DeCarli control diet was fed (adlibitum to untreated controls and ethanol treated dams and in appropriate quantities to pair fed controls). Blood ethanol concentrations at 90 minutes after the ethanol dose were 154 {plus minus} 46 and 265 {plus minus} 110 mg% on gd 14 and 15, respectively.

  13. Postnatal maternal separation modifies the response to an obesogenic diet in adulthood in rats

    PubMed Central

    Paternain, Laura; Martisova, Eva; Milagro, Fermín I.; Ramírez, María J.; Martínez, J. Alfredo; Campión, Javier

    2012-01-01

    SUMMARY An early-life adverse environment has been implicated in the susceptibility to different diseases in adulthood, such as mental disorders, diabetes and obesity. We analyzed the effects of a high-fat sucrose (HFS) diet for 35 days in adult female rats that had experienced 180 minutes daily of maternal separation (MS) during lactancy. Changes in the obesity phenotype, biochemical profile, levels of glucocorticoid metabolism biomarkers, and the expression of different obesity- and glucocorticoid-metabolism-related genes were analyzed in periovaric adipose tissue. HFS intake increased body weight, adiposity and serum leptin levels, whereas MS decreased fat pad masses but only in rats fed an HFS diet. MS reduced insulin resistance markers but only in chow-fed rats. Corticosterone and estradiol serum levels did not change in this experimental model. A multiple gene expression analysis revealed that the expression of adiponutrin (Adpn) was increased owing to MS, and an interaction between HFS diet intake and MS was observed in the mRNA levels of leptin (Lep) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a). These results revealed that early-life stress affects the response to an HFS diet later in life, and that this response can lead to phenotype and transcriptomic changes. PMID:22773756

  14. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    PubMed

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. PMID:26592720

  15. Oxidative Stress in Maternal Blood and Placenta From Mild Diabetic Rats

    PubMed Central

    Spada, Ana Paula Machado; Sinzato, Yuri Karen; Campos, Kleber Eduardo; Faria, Priscila Afonso; Dallaqua, Bruna; Calderon, Iracema Mattos Paranhos; Rudge, Marilza Vieira Cunha; Rodrigues, Tiago

    2014-01-01

    The aim of the present study was at evaluating the effects of oxidative stress in blood and placenta of mild diabetic Wistar rats. At birth, Wistar rats received citrate buffer (nondiabetic group, n = 15) and another group received streptozotocin (100 mg/kg, subcutaneous) to induce mild diabetes (diabetic, n = 15). The glycemia of these pregnant adult female rats were evaluated at days 0, 7, 14, and 21 of pregnancy, and at term pregnancy, the blood and placental samples were collected for oxidative stress measurements. The mild diabetes caused glycemia superior to 120 mg/dL during pregnancy, increased superoxide dismutase, glutathione peroxidase, glutathione reductase activities, and malondialdehyde levels in the blood, and catalase activity in the placenta. Thus, mild diabetes increased activities of antioxidant substances aiming at defending against the exacerbated oxidative stress but were not enough. The placenta also answered to diabetic milieu and increased antioxidant defense, showing that even a mild hyperglycemia was enough to cause placental and maternal blood changes. PMID:24458484

  16. Combined Norepinephrine/Serotonergic Reuptake Inhibition: Effects on Maternal Behavior, Aggression, and Oxytocin in the Rat

    PubMed Central

    Cox, Elizabeth Thomas; Jarrett, Thomas Merryfield; McMurray, Matthew Stephen; Greenhill, Kevin; Hofler, Vivian E.; Williams, Sarah Kaye; Joyner, Paul Wayland; Middleton, Christopher L.; Walker, Cheryl H.; Johns, Josephine M.

    2011-01-01

    Background: Few systematic studies exist on the effects of chronic reuptake of monoamine neurotransmitter systems during pregnancy on the regulation of maternal behavior (MB), although many drugs act primarily through one or more of these systems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation on subsequent MB in rodents indicated significant alterations in postpartum maternal care, aggression, and oxytocin levels. In this study, we extended our studies to include chronic gestational treatment with desipramine or amitriptyline to examine differential effects of reuptake inhibition of norepinephrine and combined noradrenergic and serotonergic systems on MB, aggression, and oxytocin system changes. Methods: Pregnant Sprague-Dawley rats were treated throughout gestation with saline or one of three doses of either desipramine, which has a high affinity for the norepinephrine monoamine transporter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin monoamine transporters. MB and postpartum aggression were assessed on postpartum days 1 and 6 respectively. Oxytocin levels were measured in relevant brain regions on postpartum day 7. Predictions were that amitriptyline would decrease MB and increase aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was expected to decrease with increased aggression. Results: Amitriptyline and desipramine differentially reduced MB, and at higher doses reduced aggressive behavior. Hippocampal oxytocin levels were lower after treatment with either drug but were not correlated with specific behavioral effects. These results, in combination with previous findings following gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight the diverse effects of multiple monoamine systems thought to be involved in maternal care. PMID:21713063

  17. Chronic Binge Alcohol Exposure During Pregnancy Impairs Rat Maternal Uterine Vascular Function

    PubMed Central

    Subramanian, Kaviarasan; Naik, Vishal D.; Sathishkumar, Kunju; Yallampalli, Chandrashekar; Saade, George R.; Hankins, Gary D.; Ramadoss, Jayanth

    2014-01-01

    Background Alcohol exposure during pregnancy results in an array of structural and functional abnormalities called Fetal Alcohol Spectrum Disorders (FASD). Alcohol dysregulates the exquisite coordination and regulation of gestational adaptations at the level of the uterine vasculature. We herein hypothesized that chronic binge-like alcohol impairs maternal uterine artery reactivity to vasoconstrictors and dilators and that alcohol-induced vascular dysfunction is dependent on the endothelium. Methods We utilized a once-daily binge alcohol (4.5 g/kg body weight) exposure paradigm (gestational day (GD) 7-17) in a pregnant rat model system and investigated primary uterine artery function in response to vasoconstrictors and vasodilators utilizing wire myography. Results Alcohol (peak blood alcohol concentration, 216 mg/dl) produced uterine vascular dysfunction in the absence of grossly observable growth deficits in maternal and fetal body weights, fetal crown-rump length and placental weight. Alcohol did not produce altered uterine vascular reactivity to α1 adrenergic agonist phenylephrine or the prostanoid thromboxane. However, alcohol specifically impaired endothelium-dependent acetylcholine (Ach)-mediated uterine artery vasodilation but exogenous endothelium-independent vasodilators like sodium nitroprusside exhibited no alcohol effect; Ach significantly decreased vessel relaxation (P=0.003; ↓pD2 (negative log molar Ach concentration producing the half maximum response), −7.004±0.215 vs. −6.310±0.208; EMax (maximal Ach response), 92% vs. 75%). Conclusion We conclude that moderate alcohol exposure impairs uterine vascular function in pregnant mothers. Alcohol specifically impairs endothelium-dependent agonist-induced uterine artery vasodilation. In summary, the maternal uterine compartment may play a significant role in the pathogenesis of FASD. Thus, the mechanistic targets of alcohol at the level of both the mother and the fetus need to be considered in order to develop effective therapeutic treatment strategies for FASD. PMID:24962648

  18. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    SciTech Connect

    Hayden, L.J.; Goeden, H.; Roth, S.H. )

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and in the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.

  19. PKC alpha mediates maternal touch regulation of growth-related gene expression in infant rats.

    PubMed

    Schanberg, Saul M; Ingledue, Vickie F; Lee, Joanna Y; Hannun, Yusuf A; Bartolome, Jorge V

    2003-06-01

    During short-term periods of separation of rat pups from their mothers, the loss of certain sensory signals suppresses the increase in ornithine decarboxylase (ODC) gene expression induced by the growth-promoting hormones prolactin (PRL) and growth hormone (GH). Here, we identify a molecular mechanism through which maternal separation (MS) curtails ODC expression. Our results demonstrate that the absence of specific tactile stimuli provided by the mother limits PRL-evoked stimulation of ODC biosynthesis by interfering with sn-1,2-diacylglycerol's (DAG) ability to activate protein kinase Calpha (PKCalpha) and consequently c-myc mRNA and max mRNA expression. The proteins encoded by these proto-oncogenes function as direct transactivators of the ODC gene. As ODC activity is obligatory for normal cell replication and differentiation, PKCalpha activation by DAG represents an important control point at which 'nurturing touch' regulates growth and development of the neonate. Such a mechanism can explain the maladaptive consequences of disrupting mother-infant tactile interactions as occurs in isolated premature babies. Also, it could provide a basis for developing therapeutic interventions to maximize growth potential in children failing-to-thrive despite normal maternal care. PMID:12700701

  20. Maternal behavior: activation of the central oxytocin receptor system in parturient rats?

    PubMed

    Lin, Shi Hua; Kiyohara, Toshikazu; Sun, Bing

    2003-08-01

    Parturition plays a critical role in the full expression of maternal behavior in postpartum females, yet the precise mechanism remains unclear. Here we examined the role of parturition in the activation of Fos and FosB in the central oxytocin receptor (OTR) system in rats. Although expression of FosB, not Fos, was seen in the piriform cortex (Pir) and caudate putamen of virgin and pregnant females, activation of Fos and FosB with extensive co-localization was found in the medial preoptic area, the bed nucleus of the stria terminalis and Pir of parturient brain. This parturition induced activation of Fos and FosB was identified in the central OTR-expressing cells as well as in oxytocinergic neurons. Our data provide direct evidence, for the first time, that parturition activates Fos and FosB in the central OTR system. We propose that Fos and FosB may have comparable functions on initiating maternal behavior at parturition. PMID:12960760

  1. Influence of maternal ethanol ingestion on copper utilization during gestation and lactation in the rat

    SciTech Connect

    Baek, J.H.; Cerklewski, F.L.

    1986-03-05

    A factorial experiment was conducted to determine the influence of ethanol intake (30% of Kcal) on the utilization of copper (Cu) at two dietary levels of Cu during gestation and lactation in the rat. Cu levels in the liquid diet were adjusted to provide either 60% of the minimum requirement or a more than adequate intake. Both ethanol and low Cu depressed dam liver Cu, but the lowest concentration was produced when ethanol and low Cu were combined. Although only ethanol depressed pup liver Cu concentration, the effects observed in dams were reflected in pup Cu content of the metallothionein fraction eluted from a Sephadex G-75 column. Otherwise, neither the metallothionein content of maternal intestinal cells nor that of pup liver affected the outcome of ethanol-antagonized Cu utilization. Effects of ethanol on Cu status of dams and pups cannot be defined as a simple C deficiency even though liver iron was elevated because the ferroxidase activity of dam ceruloplasmin was enhanced rather than inhibited by ethanol which is in agreement with observations made in alcoholics. The authors results are more consistent with a possible enhancing effect of ethanol on biliary excretion of Cu. Exactly why ethanol would have this effect in dams is not defined by available data. In pups, however, maternal ethanol ingestion caused a 30% increase in pup plasma corticosterone, a steroid known to enhance loss of neonatal liver Cu by way of biliary excretion.

  2. Maternal micronutrient deficiency leads to alteration in the kidney proteome in rat pups.

    PubMed

    Ahmad, Shadab; Basak, Trayambak; Anand Kumar, K; Bhardwaj, Gourav; Lalitha, A; Yadav, Dilip K; Chandak, Giriraj Ratan; Raghunath, Manchala; Sengupta, Shantanu

    2015-09-01

    Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India. PMID:25982389

  3. Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood

    PubMed Central

    Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.

    2012-01-01

    Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784

  4. Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats.

    PubMed

    Zhao, Qiuying; Peng, Cheng; Wu, Xiaohui; Chen, Yubo; Wang, Cheng; You, Zili

    2014-08-01

    Although sleep complaints are very common among pregnant women, the potential adverse effects of sleep disturbance on the offspring are not well studied. Growing evidence suggests that maternal stress can induce an inflammatory environment on the fetal development. But people are not sure about the consequences of prenatal stress such as the inflammatory responses induced by maternal sleep deprivation (MSD). In the present study, we investigated the effects of MSD on long-term behavioral and cognitive consequences in offspring and its underlying inflammatory response pathway. The pregnant Wistar rats received prolonged sleep deprivation (72h) on gestational day (GD) 4, 9, and 18, respectively. The post-natal day (PND) 21 offspring showed impaired hippocampus-dependent spatial learning and memory in the Morris Water Maze task and anhedonia in sucrose preference experiment. Quantification of BrdU(+) and DCX(+) cells revealed a significant decrease in hippocampus neurogenesis in prepuberty offspring, especially for the late MSD (GD 18) group. Real-time RT-PCR showed that after MSD, the expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα) increased in the hippocampus of offspring on PND 1, 7, 14 and 21, whereas anti-inflammatory cytokine IL-10 reduced at the same time. Immunofluorescence found that the cells of activated microglia were higher in the brains of MSD offspring. Taken together, these results suggested that the MSD-induced inflammatory response is an important factor for neurogenesis impairment and neurobehavioral outcomes in prepuberty offspring. PMID:24769004

  5. Maternal Hyperglycemia Directly and Rapidly Induces Cardiac Septal Overgrowth in Fetal Rats

    PubMed Central

    Gordon, Erin E.; Reinking, Benjamin E.; Hu, Shanming; Yao, Jianrong; Kua, Kok L.; Younes, Areej K.; Wang, Chunlin; Segar, Jeffrey L.; Norris, Andrew W.

    2015-01-01

    Cardiac septal overgrowth complicates 10–40% of births from diabetic mothers, but perplexingly hyperglycemia markers during pregnancy are not reliably predictive. We thus tested whether fetal exposure to hyperglycemia is sufficient to induce fetal cardiac septal overgrowth even in the absence of systemic maternal diabetes. To isolate the effects of hyperglycemia, we infused glucose into the blood supply of the left but not right uterine horn in nondiabetic pregnant rats starting on gestational day 19. After 24 h infusion, right-sided fetuses and dams remained euglycemic while left-sided fetuses were moderately hyperglycemic. Echocardiograms in utero demonstrated a thickened cardiac septum among left-sided (glucose-exposed, 0.592 ± 0.016 mm) compared to right-sided (control, 0.482 ± 0.016 mm) fetuses. Myocardial proliferation was increased 1.5 ± 0.2-fold among left-sided compared to right-sided fetuses. Transcriptional markers of glucose-derived anabolism were not different between sides. However, left-sided fetuses exhibited higher serum insulin and greater JNK phosphorylation compared to controls. These results show that hyperglycemic exposure is sufficient to rapidly induce septal overgrowth even in the absence of the myriad other factors of maternal diabetes. This suggests that even transient spikes in glucose may incite cardiac overgrowth, perhaps explaining the poor clinical correlation of septal hypertrophy with chronic hyperglycemia. PMID:26064981

  6. Evaluation of neonatally-induced mild diabetes in rats: Maternal and fetal repercussions

    PubMed Central

    2010-01-01

    Many experimental studies have been performed to evaluate mild diabetes effects. However, results are divergent regarding glycemia and insulin measurement, fetal macrossomia, and placental weights. The aim was to investigate repercussions of neonatally-induced mild diabetes on the maternal organism and presence of congenital defects in their offspring in other mild diabetes model. On the day of birth, female offspring were distributed into two groups: Group streptozotocin (STZ): received 100 mg STZ/kg body weight, and Control Group: received vehicle in a similar time period. Maternal weights and glycemias were determined at days 0, 7, 14 and 21 of pregnancy. At day 21 of pregnancy, the rats were anesthetized and a laparotomy was performed to weigh and analyze living fetuses and placentas. The fetuses were classified as small (SPA), appropriate (APA) and large (LPA) for pregnancy age. Fetuses were also analyzed for the presence of external anomalies and processed for skeletal anomaly and ossification sites analysis. Statistical significance was considered as p < 0.05. In STZ group, there was increased glycemia at 0 and 14 days of pregnancy, lower weights throughout pregnancy, higher placental weight and index, an increased proportion of fetuses classified as SPA and LPA, and their fetuses presented with an increased frequency of abnormal sternebra, and absent cervical nuclei, which were not enough to cause the emergence of skeletal anomalies. Thus, this study shows that mild diabetes altered fetal development, characterized by intrauterine growth restriction. Further, the reached glycemia does not lead to any major congenital defects in the fetuses of streptozotocin-induced mild diabetic rats. PMID:20529353

  7. Maternal Oxytocin Administration Before Birth Influences the Effects of Birth Anoxia on the Neonatal Rat Brain.

    PubMed

    Boksa, Patricia; Zhang, Ying; Nouel, Dominique

    2015-08-01

    Ineffective contractions and prolonged labor are common birth complications in primiparous women, and oxytocin is the most common agent given for induction or augmentation of labor. Clinical studies in humans suggest oxytocin might adversely affect the CNS response to hypoxia at birth. In this study, we used a rat model of global anoxia during Cesarean section birth to test if administering oxytocin to pregnant dams prior to birth affects the acute neonatal CNS response to birth anoxia. Anoxic pups born from dams pre-treated with intravenous injections or infusions of oxytocin before birth showed significantly increased brain lactate, a metabolic indicator of CNS hypoxia, compared to anoxic pups from dams pre-treated with saline. Anoxic pups born from dams given oxytocin before birth also showed decreased brain ATP compared to anoxic pups from saline dams. Direct injection of oxytocin to postnatal day 2 rat pups followed by exposure to anoxia also resulted in increased brain lactate and decreased brain ATP, compared to anoxia exposure alone. Oxytocin pre-treatment of the dam decreased brain malondialdehyde, a marker of lipid peroxidation, as well as protein kinase C activity, both in anoxic pups and controls, suggesting oxytocin may reduce aspects of oxidative stress. Finally, when dams were pretreated with indomethacin, a cyclooxygenase (COX) inhibitor, maternal oxytocin no longer potentiated effects of anoxia on neonatal brain lactate, suggesting this effect of oxytocin may be mediated via prostaglandin production or other COX-derived products. The results indicate that maternal oxytocin administration may have multiple acute effects on CNS metabolic responses to anoxia at birth. PMID:26108713

  8. Behavioral and pharmacological investigation of anxiety and maternal responsiveness of postpartum female rats in a pup elevated plus maze.

    PubMed

    Yang, Yu; Qin, Jingxue; Chen, Weihai; Sui, Nan; Chen, Hong; Li, Ming

    2015-10-01

    The present study investigated the validity of a novel pup-based repeated elevated plus maze task to detect reduced anxiety and increased maternal responsiveness in postpartum female rats and explored the roles of dopamine D2, serotonin transporter and GABA/benzodiazepine receptors in the mediation of these processes. Sprague-Dawley postpartum or nulliparous female rats were tested 4 times every other day on postpartum days 4, 6 and 8 in an elevated plus maze with 4 pups or 4 pup-size erasers placed on each end of the two open arms. When tested with erasers, untreated postpartum mother rats entered the open arms proportionally more than nulliparous rats. They also tended to spend more time in the open arms, indicating reduced anxiety. When tested with pups, postpartum rats retrieved pups into the closed arms, entered the open arms and closed arms more and had a higher moving speed than nulliparous rats, indicating increased maternal responsiveness. Both haloperidol (0.1 or 0.2 mg/kg, sc) and fluoxetine (5 or 10 mg/kg, ip) dose- and time-dependently decreased the percentage of time spent in the open arms and speed, but did not affect the percentage of open arm entries. Diazepam (1.0 or 2.0 mg/kg, ip) did not affect pup retrieval, open arm time/entry in lactating rats. Thus, the percentage of open arm entries appears to be the most sensitive measure of anxiety in postpartum female rats, while speed could be used to index maternal responsiveness to pups, which are likely mediated by the dopamine D2 and serotonin transporter systems. PMID:26159828

  9. Influence of maternal cadmium exposure or fetal cadmium injection on hepatic metallothionein concentrations in the fetal rat

    SciTech Connect

    Sasser, L.B.; Kelman, B.J.; Levin, A.A.; Miller, R.K.

    1985-01-01

    The ability of Cd to induce the synthesis of fetal hepatic metallothionein (MT) was investigated in rat fetuses exposed to Cd throughout gestation via the mother's drinking water or injected directly with Cd through the uterine wall on Day 18 of gestation. On Day 21 all dams were killed and fetal and maternal tissues were removed. Tissue MT, Zn, Cu, and Cd concentrations were measured. Fetal hepatic Cd concentration was increased only at the high maternal Cd exposure, whereas Zn concentration was significantly reduced by Cd exposure. Both fetal liver and kidney MT were reduced following maternal Cd exposure. Unlike maternal hepatic MT, fetal hepatic MT was not increased after maternal Cd exposure nor did the direct injection of Cd into the 18 days of gestation fetus induce fetal MT synthesis. These data suggest that fetal rat liver is incapable of synthesizing MT in response to Cd, possibly because Cd is not transported to the site of MT synthesis in the fetal system. Furthermore, neither the route of exposure, the duration of prenatal Cd exposure, nor the stage of gestation appear to account for the differences observed between fetal and adult hepatic MT induction by Cd. 47 references, 6 tables.

  10. Effects of Maternal Caffeine Consumption on Ovarian Follicle Development in Wistar Rats Offspring

    PubMed Central

    Dorostghoal, Mehran; Mahabadi, Mahmood Khaksari; Adham, Sahar

    2011-01-01

    Background In recent years concerns have been raised about human reproductive disorders, specially the effects of environmental factors on human fertility and pregnancy outcome. Therefore, the present study was designed to assess the effects of maternal caffeine consumption on ovarian follicles development in rat offspring. Methods 60 pregnant female rats were randomly divided into a control and two experimental groups. The rats in the two experimental groups received caffeine via drinking water during gestation (26 and 45 mg/kg) and lactation (25 and 35 mg/kg). The ovaries of the offspring were removed at 7, 14, 28, 60, 90 and 120 days after birth, and fixed in Bouin's solution. By preparing serial tissue sections, structural changes in ovarian follicles and corpora lutea were studied during postnatal development. Results The weight of ovaries decreased significantly (p<0.05) in the high dose caffeine-treated group at all stages of postnatal development. Significant (p<0.05) decreases were seen in the number of primordial follicles from day 7 to 120 after birth in the high dose caffeine-treated group. Moreover, the number of primary and secondary follicles decreased significantly on days 7, 14 and 28 as did the number of antral follicles on days 14 and 28 after birth (p<0.05) in the high dose caffeine-treated group. The diameter of secondary and antral follicles decreased significantly (p<0.05) in high dose caffeine-treated group on the early days of postnatal development. No statistically significant differences were seen in the number of corpora lutea between the groups. Conclusion The present study shows that caffeine consumption during gestation and lactation affects the early stages of ovarian follicle development and reduces reproductive efficiency in the offspring of Wistar rats. PMID:23926495

  11. An imbalance in the methionine content of the maternal diet reduces postnatal growth in the rat.

    PubMed

    Rees, William D; Hay, Susan M; Cruickshank, Morven

    2006-06-01

    The pregnant rat fed a low-protein diet has become widely used as a model system in the study of the prenatal programming of adult metabolism and disease. When pregnant rats of the hooded Lister strain were fed semisynthetic diets containing 18% or 9% casein supplemented with 0.5% dl-methionine, there was significant postnatal mortality in the group fed the low-protein diet. In a second experiment, dams were fed diets containing 9% casein supplemented with varying concentrations of dl-methionine up to 0.4% (w/w) and compared with a group fed a diet containing 18% casein supplemented with 0.5% dl-methionine. At birth, the pups from dams fed the low-protein diets supplemented with 0.2% dl-methionine or greater were significantly smaller than those of the dams fed the diet containing 18% protein. By 25 weeks of age, the body weight of the offspring of dams fed the low-protein diet supplemented with 0.2% or 0.3% dl-methionine were approximately 10% lower than those in the control group of offspring from dams fed 18% protein supplemented with 0.5% dl-methionine. There were corresponding changes in the weights of the major organs. These data suggest that increasing the dl-methionine supplement in the low-protein diet retards the growth of the fetus and affects the mature adult body weight. In contrast to the findings of other studies that used different formulas of the low-protein diet, the glucose tolerance in the offspring was unaffected by the protein content of the maternal diet at all levels of dl-methionine supplementation. These results suggest that the changes in metabolism of the offspring result from interactions between protein, lipids, and carbohydrates in the maternal diet, rather than a consequence of postnatal growth retardation per se and highlight the importance of considering all components of the maternal diet in the programming mechanism. PMID:16713436

  12. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat

    PubMed Central

    2014-01-01

    Background There is evidence that nanoparticles (NP) cross epithelial and endothelial body barriers. We hypothesized that gold (Au) NP, once in the blood circulation of pregnant rats, will cross the placental barrier during pregnancy size-dependently and accumulate in the fetal organism by 1. transcellular transport across the hemochorial placenta, 2. transcellular transport across amniotic membranes 3. transport through ~20 nm wide transtrophoblastic channels in a size dependent manner. The three AuNP sizes used to test this hypothesis are either well below, or of similar size or well above the diameters of the transtrophoblastic channels. Methods We intravenously injected monodisperse, negatively charged, radio-labelled 1.4 nm, 18 nm and 80 nm 198AuNP at a mass dose of 5, 3 and 27 ?g/rat, respectively, into pregnant rats on day 18 of gestation and in non-pregnant control rats and studied the biodistribution in a quantitative manner based on the radio-analysis of the stably labelled 198AuNP after 24 hours. Results We observed significant biokinetic differences between pregnant and non-pregnant rats. AuNP fractions in the uterus of pregnant rats were at least one order of magnitude higher for each particle size roughly proportional to the enlarged size and weight of the pregnant uterus. All three sizes of 198AuNP were found in the placentas and amniotic fluids with 1.4 nm AuNP fractions being two orders of magnitude higher than those of the larger AuNP on a mass base. In the fetuses, only fractions of 0.0006 (30 ng) and 0.00004 (0.1 ng) of 1.4 nm and 18 nm AuNP, respectively, were detected, but no 80 nm AuNP (<0.000004 (<0.1 ng)). These data show that no AuNP entered the fetuses from amniotic fluids within 24 hours but indicate that AuNP translocation occurs across the placental tissues either through transtrophoblastic channels and/or via transcellular processes. Conclusion Our data suggest that the translocation of AuNP from maternal blood into the fetus is NP-size dependent which is due to mechanisms involving (1) transport through transtrophoblastic channels ¿ also present in the human placenta ¿ and/or (2) endocytotic and diffusive processes across the placental barrier. PMID:25928666

  13. Effect of essential oil from Citrus aurantium in maternal reproductive outcome and fetal anomaly frequency in rats.

    PubMed

    Volpato, Gustavo T; Francia-Farje, Luis A D; Damasceno, Débora C; Oliveira, Renata V; Hiruma-Lima, Clélia A; Kempinas, Wilma G

    2015-03-01

    Citrus aurantium L., commonly known as bitter orange, is widely used in folk medicine, but there is little data in the literature about the effects on pregnancy. The aim of the present study was to evaluate the influence of essential oil obtained from fruits of Citrus aurantium on the maternal reproductive outcome and fetal anomaly incidence in rats. Pregnant Wistar rats were randomized into four groups (n minimum = 12 animals/group): G1 = control, G2 to G4 = treated with essential oil from C. aurantium at dose 125, 250 and 500 mg/kg, respectively. Rats were orally treated, by gavage, with plant essential oil or vehicle during pre-implantation and organogenic period (gestational day 0-14). On gestational day 20 the rats were anaesthetized and the gravid uterus was weighed with its contents and the fetuses were analyzed. Results showed that the treated group with 500 mg/kg presented decreased placental weights and placental index, although the treatment with bitter orange essential oil did not show any alteration in maternal reproductive performance, toxicological effect, changes in ossification sites, and malformation index. In conclusion, the treatment of Citrus aurantium essential oil was not teratogenic and did not alter the maternal reproductive outcome. PMID:25806990

  14. Maternal separation exaggerates spontaneous recovery of extinguished contextual fear in adult female rats.

    PubMed

    Xiong, Gui-Jing; Yang, Yuan; Wang, Li-Ping; Xu, Lin; Mao, Rong-Rong

    2014-08-01

    Early life stress increases the risk of posttraumatic stress disorders (PTSD). Patients with PTSD show impaired extinction of traumatic memory, and in women, this occurs more often when PTSD is preceded by child trauma. However, it is still unclear how early life stress accounts for extinction impairment. Here, we studied the effects of maternal separation (MS, postnatal day 2 to 14) on contextual fear extinction in adult female rats. Additionally, to examine changes in synaptic function affected by MS, we measured long-term potentiation (LTP) in prefrontal cortex and hippocampus in vitro, both of which have been implicated in fear extinction. We found that adult female rats had been subjected to MS exhibited significant spontaneous recovery of fear to the extinguished context. Furthermore, MS exposure resulted in LTP impairment in both infralimbic prefrontal cortex layer 2/3-layer 5 and hippocampal SC-CA1 pathways. Interestingly, no obvious effects of MS on contextual fear conditioning, fear recall as well as extinction training and recall were observed. Innate fear in the elevated plus maze or open field test remained nearly unaffected. These findings provided the first evidence that MS may exaggerate spontaneous recovery after contextual fear extinction, for which LTP impairment in the medial prefrontal cortex and hippocampus may be responsible, thereby possibly leading to impaired extinction associated with PTSD. PMID:24746487

  15. Effects of Maternal Dietary Restriction of Vitamin B-6 on Neocortex Development in Rats

    NASA Astrophysics Data System (ADS)

    Groziak, Susan Marie

    The aim of this investigation was to quantitate the effects of a dietary restriction in Vitamin B-6 during gestation or gestation and lactation on neurogenesis, neuron longevity and neuron differentiation in the neocortex of rats. Sprague Dawley female rats were fed, ad libitum, a Vitamin B-6 free diet (AIN 76) supplemented with 0.0 or 0.6 mg pyridoxine (PN)/kg diet during gestation followed by a control level of 7.0 mg PN/kg diet during lactation, or were fed the Vitamin B-6 free diet supplemented with 0.6 or 7.0 mg PN/kg diet throughout gestation and lactation. The neocortex of progeny of these animals were examined at 30 days of age employing light and electron microscopy. Analyses of neurogenesis, neuron longevity and differentiation of neurons (size of somata, dendritic arborization and spine density in Golgi Cox preparations, and synaptic density in E.M. preparations) were conducted. Each of the Vitamin B-6 restricted treatments adversely affected neurogenesis, neuron longevity and neuron differentiation. The degree of adverse effects paralleled the severity (dose or duration) of the restriction imposed. Expressed as percentage reduction from control values, the findings indicated that neuron longevity and differentiation of neurons in the neocortex were more severely affected than neurogenesis by a maternal dietary restriction in Vitamin B-6.

  16. Maternal separation increases methamphetamine-induced damage in the striatum in male, but not female rats.

    PubMed

    Hensleigh, Emily; Pritchard, Laurel M

    2015-12-15

    Methamphetamine abuse impacts the global economy through costs associated with drug enforcement, emergency room visits, and treatment. Previous research has demonstrated early life stress, such as childhood abuse, increases the likelihood of developing a substance abuse disorder. However, the effects of early life stress on neuronal damage induced by binge methamphetamine administration are unknown. We aimed to elucidate the effects of early life stress on methamphetamine induced dopamine damage in the striatum. Pups were separated from dams for 3h per day during the first two weeks of development or 15 min for control. In adulthood, rats received either subcutaneous 0.9% saline or 5.0mg/kg METH injections every 2h for a total of four injections. Rectal temperatures were taken before the first injection and 1h after each subsequent injection. Seven days after treatment, rats were euthanized and striatum was collected for quantification of tyrosine hydroxylase (TH) and dopamine transporters (DAT) content by Western blot. Methamphetamine significantly elevated core body temperature in males and decreased striatal DAT and TH content, and this effect was potentiated by early life stress. Females did not exhibit elevated core body temperatures or changes in DAT or TH in either condition. Results indicate maternal separation increases methamphetamine induced damage, and females are less susceptible to methamphetamine induced damage. PMID:25535855

  17. The maternal separation paradigm and adult emotionality and cognition in male and female Wistar rats.

    PubMed

    Lehmann, J; Pryce, C R; Bettschen, D; Feldon, J

    1999-12-01

    A single 24-h maternal separation (MS) in the rat during the stress hyporesponsive period alters adult behavior and neuroendocrine stress response. The age of the animal at MS might be a crucial factor for effects in adulthood. We report here on adult behavioral effects of MS performed on postnatal day 4 (MS4), 9 (MS9), or 18 (MS18) in male and female Wistar rats. Unrelated subjects were used to avoid confounding litter effects. Subjects were tested on paradigms of unconditioned fear/anxiety, i.e., open field and elevated plus-maze, and on paradigms involving learning in an aversive situation, i.e., conditioned freezing, active avoidance, and water maze. In line with our predictions we obtained (a) sex differences that were consistent with enhanced fear/anxiety in males relative to females, (b) evidence that MS4 yielded deficits in active avoidance learning and conditioned freezing (trend level), whereas MS9 yielded enhanced active avoidance and water maze learning, (c) evidence (at trend level) that these effects of MS are greater in males than in females. There was no evidence for an effect of MS on paradigms of unconditioned fear/anxiety. We conclude that MS, irrespective of the age at separation, does not provide a robust environmental model of modified behavior in aversive situations. PMID:10593193

  18. Exposure to stimulatory CpG oligonucleotides during gestation induces maternal hypertension and excess vasoconstriction in pregnant rats.

    PubMed

    Goulopoulou, Styliani; Wenceslau, Camilla F; McCarthy, Cameron G; Matsumoto, Takayuki; Webb, R Clinton

    2016-04-15

    Bacterial infections increase risk for pregnancy complications, such as preeclampsia and preterm birth. Unmethylated CpG DNA sequences are present in bacterial DNA and have immunostimulatory effects. Maternal exposure to CpG DNA induces fetal demise and craniofacial malformations; however, the effects of CpG DNA on maternal cardiovascular health have not been examined. We tested the hypothesis that exposure to synthetic CpG oligonucleotides (ODNs) during gestation would increase blood pressure and cause vascular dysfunction in pregnant rats. Pregnant and nonpregnant female rats were treated with CpG ODN (ODN 2395) or saline (Veh) starting on gestationalday 14or corresponding day for the nonpregnant groups. Exposure to CpG ODN increased systolic blood pressure in pregnant (Veh: 121 ± 2 mmHg vs. ODN 2395: 134 ± 2 mmHg,P< 0.05) but not in nonpregnant rats (Veh: 111 ± 2 mmHg vs. ODN 2395: 108 ± 5 mmHg,P> 0.05). Mesenteric resistance arteries from pregnant CpG ODN-treated rats had increased contractile responses to U46619 [thromboxane A2(TxA2) mimetic] compared with arteries from vehicle-treated rats [Emax(%KCl), Veh: 87 ± 4 vs. ODN 2395: 104 ± 4,P< 0.05]. Nitric oxide synthase (NOS) inhibition increased contractile responses to U46619, and CpG ODN treatment abolished this effect in arteries from pregnant ODN 2395-treated rats. CpG ODN potentiated the involvement of cyclooxygenase (COX) to U46619-induced contractions. In conclusion, exposure to CpG ODN during gestation induces maternal hypertension, augments resistance artery contraction, increases the involvement of COX-dependent mechanisms and reduces the contribution of NOS-dependent mechanisms to TxA2-induced contractions in mesenteric resistance arteries. PMID:26873968

  19. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    SciTech Connect

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun; Yu, Hong; He, Xiaohua; Zhang, Baifang; Zhang, Yuanzhen; Feng, Jianghua; Wang, Hui

    2014-03-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by {sup 1}H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal metabonome alterations were associated with glucocorticoid elevation. • Maternal metabonomes were altered at early stage after caffeine exposure. • Maternal glucocorticoid and associated metabolites may be involved in fetal programming.

  20. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    PubMed Central

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  1. The influence of early maternal care on perceptual attentional set shifting and stress reactivity in adult rats.

    PubMed

    Sakhai, Samuel A; Saxton, Katherine; Francis, Darlene D

    2016-01-01

    Stress influences a wide variety of outcomes including cognitive processing. In the rat, early life maternal care can influence developing offspring to affect both stress reactivity and cognitive processes in adulthood. The current study assessed if variations in early life maternal care can influence cognitive performance on a task, the ability to switch cognitive sets, dependent on the medial prefrontal cortex. Early in life, offspring was reared under High or Low maternal Licking conditions. As adults, they were trained daily and then tested on an attentional set-shifting task (ASST), which targets cognitive flexibility in rodents. Stress-sensitive behavioral and neural markers were assayed before and after the ASST. High and Low Licking offspring performed equally well on the ASST despite initial, but not later, differences in stress axis functioning. These results suggest that early life maternal care does not impact the accuracy of attentional set-shifting in rats. These findings may be of particular importance for those interested in the relationship between early life experience and adult cognitive function. PMID:26289990

  2. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome.

    PubMed

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-07-15

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. PMID:25922055

  3. Functional connectivity in prenatally stressed rats with and without maternal treatment with ladostigil, a brain-selective monoamine oxidase inhibitor.

    PubMed

    Goelman, G; Ilinca, R; Zohar, I; Weinstock, M

    2014-09-01

    Stress during pregnancy in humans is known to be a risk factor for neuropsychiatric disorders in the offspring. Prenatal stress in rats caused depressive-like behavior that was restored to that of controls by maternal treatment with ladostigil (8.5 mg/kg per day), a brain-selective monoamine oxidase (MAO) inhibitor that prevented increased anxiety-like behavior in stressed mothers. Ladostigil inhibited maternal striatal MAO-A and -B by 45-50% at the time the pups were weaned. Using resting state-functional connectivity magnetic resonance imaging on rat male offspring of control mothers, and mothers stressed during gestation with and without ladostigil treatment, we identified neuronal connections that differed between these groups. The percentage of significant connections within a predefined predominantly limbic network in control rats was 23.3 within the right and 22.0 within the left hemisphere. Prenatal stress disturbed hemispheric symmetry, resulting in 30.2 and 21.6%, significant connections in the right and left hemispheres, respectively, but this was fully restored in the maternal ladostigil group to 24.6% in both hemispheres. All connections that were modified in prenatally stressed rats and restored by maternal drug treatment were associated with the dopaminergic system. Specifically, we observed that restoration of the connections of the right nucleus accumbens shell with frontal areas, the cingulate, septum and motor and sensory cortices, and those of the right globus pallidus with the infra-limbic and the dentate gyrus, were most important for prevention of depressive-like behavior. PMID:24862938

  4. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity

    PubMed Central

    Glastras, Sarah J.; Chen, Hui; McGrath, Rachel T.; Zaky, Amgad A.; Gill, Anthony J.; Pollock, Carol A.; Saad, Sonia

    2016-01-01

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring. PMID:27004609

  5. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.

    PubMed

    Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia

    2016-01-01

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring. PMID:27004609

  6. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats.

    PubMed

    Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C

    2015-07-01

    Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. PMID:26163152

  7. Trophoblast-decidual cell interactions and establishment of maternal blood circulation in the parietal yolk sac placenta of the rat.

    PubMed

    Welsh, A O; Enders, A C

    1987-02-01

    Implantation sites from rats were studied on days 6, 7, and 8 of pregnancy to determine the sequence of events in the formation of blood spaces in the trophoblast that is part of the parietal wall of the yolk sac placenta and to determine how trophoblast gains access to maternal blood. The maternal blood flowing through these spaces is the source of nutrients that reach the embryo via the visceral endoderm. Tissues were prepared for light microscopy, scanning electron microscopy, and transmission electron microscopy. Trophoblast blood spaces are derived from the lateral intercellular spaces of trophoblast cells and are present in a collapsed condition until day 8, when maternal vessels are tapped by trophoblast. These spaces then contain circulating maternal blood, and trophoblast cells reflect adaptations for metabolic exchange including thinning of trophoblast covering Reichert's membrane and the appearance of numerous fenestrations, with and without diaphragms, in the areas where trophoblast is attenuated. Between days 6 and 7 decidual cells appear to form a barrier between the maternal circulation and trophoblast. On day 7, however, decidual cell processes penetrate the residual uterine luminal epithelial basal lamina, and then the decidual cells that are juxtaposed to trophoblast undergo degradative changes that resemble apoptosis. There is condensation of cytoplasmic contents, fragmentation of the cells, and phagocytosis of the fragments by trophoblast. Some decidual cells are interposed between endothelial cells in the walls of maternal vessels as early as day 7. Trophoblast may gain access to the maternal vessels by replacing decidual cells or by direct imposition of trophoblast cell processes between endothelial cells. PMID:3578838

  8. Effects of Maternal Diet and Exercise during Pregnancy on Glucose Metabolism in Skeletal Muscle and Fat of Weanling Rats

    PubMed Central

    Raipuria, Mukesh; Bahari, Hasnah; Morris, Margaret J.

    2015-01-01

    Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring. PMID:25853572

  9. In utero glucocorticoid exposure reduces fetal skeletal muscle mass in rats independent of effects on maternal nutrition

    PubMed Central

    Gokulakrishnan, Ganga; Estrada, Irma J.; Sosa, Horacio A.

    2012-01-01

    Maternal stress and undernutrition can occur together and expose the fetus to high glucocorticoid (GLC) levels during this vulnerable period. To determine the consequences of GLC exposure on fetal skeletal muscle independently of maternal food intake, groups of timed-pregnant Sprague-Dawley rats (n = 7/group) were studied: ad libitum food intake (control, CON); ad libitum food intake with 1 mg dexamethasone/l drinking water from embryonic day (ED)13 to ED21 (DEX); pair-fed (PF) to DEX from ED13 to ED21. On ED22, dams were injected with [3H]phenylalanine for measurements of fetal leg muscle and diaphragm fractional protein synthesis rates (FSR). Fetal muscles were analyzed for protein and RNA contents, [3H]phenylalanine incorporation, and MuRF1 and atrogin-1 (MAFbx) mRNA expression. Fetal liver tyrosine aminotransferase (TAT) expression was quantified to assess fetal exposure to GLCs. DEX treatment reduced maternal food intake by 13% (P < 0.001) and significantly reduced placental mass relative to CON and PF dams. Liver TAT expression was elevated only in DEX fetuses (P < 0.01). DEX muscle protein masses were 56% and 70% than those of CON (P < 0.01) and PF (P < 0.05) fetuses, respectively; PF muscles were 80% of CON (P < 0.01). Muscle FSR decreased by 35% in DEX fetuses (P < 0.001) but were not different between PF and CON. Only atrogin-1 expression was increased in DEX fetus muscles. We conclude that high maternal GLC levels and inadequate maternal food intake impair fetal skeletal muscle growth, most likely through different mechanisms. When combined, the effects of decreased maternal intake and maternal GLC intake on fetal muscle growth are additive. PMID:22422665

  10. The mother as hunter: significant reduction in foraging costs through enhancements of predation in maternal rats.

    PubMed

    Kinsley, Craig Howard; Blair, Jamie C; Karp, Natalie E; Hester, Naomi W; McNamara, Ilan M; Orthmeyer, Angela L; McSweeney, Molly C; Bardi, Massimo M; Karelina, Kate; Christon, Lillian M; Sirkin, Maxwell R; Victoria, Lindsay W; Skurka, Danielle J; Fyfe, Christian R; Hudepohl, Margaret B; Felicio, Luciano F; Franssen, R Adam; Meyer, Elizabeth E A; da Silva, Ilton S; Lambert, Kelly G

    2014-09-01

    In previous laboratory investigations, we have identified enhanced cognition and reduced stress in parous rats, which are likely adaptations in mothers needing to efficiently exploit resources to maintain, protect and provision their immature offspring. Here, in a series of seven behavioral tests on rats, we examined a natural interface between cognition and resource gathering: predation. Experiment 1 compared predatory behavior (toward crickets) in age-matched nulliparous mothers (NULLs) and postpartum lactating mothers (LACTs), revealing a highly significant enhancement of predation in LACT females (mean = -65s in LACTs, vs. -270s in NULLs). Experiment 2 examined the possibility that LACTs, given their increased metabolic rate, were hungrier, and thus more motivated to hunt; doubling the length of time of food deprivation in NULLs did not decrease their predatory latencies. Experiments 3-5, which examined sensory regulation of the effect, indicated that olfaction (anosmia), audition (blockade with white noise), and somatosensation (trimming the vibrissae) appear to play little role in the behavioral enhancement observed in the LACTs; Experiment 6 examined the possibility that visual augmentations may facilitate the improvements in predation; testing LACTs in a 0-lux environment eliminated the behavioral advantage (increasing their latencies from -65s to -212s), which suggests that temporary augmentation to the visual system may be important, and with hormone-neural alterations therein a likely candidate for further study. In contrast, testing NULLS in the 0-lux environment had the opposite effect, reducing their latency to catch the cricket (from -270s to -200s). Finally, Experiment 7 examined the development of predatory behavior in Early-pregnant (PREG), Mid-PREG, and Late-PREG females. Here, we observed a significant enhancement of predation in Mid-PREG and Late-PREG females--at a time when maternity-associated bodily changes would be expected to diminish predation ability--relative to NULLs. Therefore, as with the increasing reports of enhancements to the maternal brain, it is apparent that meaningful behavioral adaptations occur that likewise promote the survival of the mother and her infants at a crucial stage of their lives. PMID:25240277

  11. Antagonism of V1b receptors promotes maternal motivation to retrieve pups in the MPOA and impairs pup-directed behavior during maternal defense in the mpBNST of lactating rats.

    PubMed

    Bayerl, Doris S; Kaczmarek, Veronika; Jurek, Benjamin; van den Burg, Erwin H; Neumann, Inga D; Gaßner, Barbara M; Klampfl, Stefanie M; Bosch, Oliver J

    2016-03-01

    Recent studies using V1b receptor (V1bR) knockout mice or central pharmacological manipulations in lactating rats highlighted the influence of this receptor for maternal behavior. However, its role in specific brain sites known to be important for maternal behavior has not been investigated to date. In the present study, we reveal that V1bR mRNA (qPCR) and protein levels (Western blot) within either the medial preoptic area (MPOA) or the medial-posterior part of the bed nucleus of the stria terminalis (mpBNST) did not differ between virgin and lactating rats. Furthermore, we characterized the effects of V1bR blockade via bilateral injections of the receptor subtype-specific antagonist SSR149415 within the MPOA or the mpBNST on maternal behavior (maternal care under non-stress and stress conditions, maternal motivation to retrieve pups in a novel environment, maternal aggression) and anxiety-related behavior in lactating rats. Blocking V1bR within the MPOA increased pup retrieval, whereas within the mpBNST it decreased pup-directed behavior, specifically licking/grooming the pups, during the maternal defense test. In addition, immediately after termination of the maternal defense test, V1bR antagonism in both brain regions reduced nursing, particularly arched back nursing. Anxiety-related behavior was not affected by V1bR antagonism in either brain region. In conclusion our data indicate that V1bR antagonism significantly modulates different aspects of maternal behavior in a brain region-dependent manner. PMID:26747375

  12. Analgesic effects of JCM-16021 on neonatal maternal separation-induced visceral pain in rats

    PubMed Central

    Bian, Zhao-Xiang; Zhang, Man; Han, Quan-Bin; Xu, Hong-Xi; Sung, Joseph JY

    2010-01-01

    AIM: To investigate the pharmacological effect of JCM-16021, a Chinese herbal formula, and its underlying mechanisms. METHODS: JCM-16021 is composed of seven herbal plant materials. All raw materials of the formula were examined according to the quality control criteria listed in the Chinese Pharmacopeia (2005). In a neonatal maternal separation (NMS) model, male Sprague-Dawley rats were submitted to daily maternal separation from postnatal day 2 to day 14, or no specific handling (NH). Starting from postnatal day 60, rats were administered JCM-16021 (2, 4, 8 g/kg per day) orally twice a day for 28 d. Pain threshold pressure and electromyographic activities of external oblique muscles in response to colorectal distention recorded with a Power Lab System (AD Instruments International), were tested as pain indices. Changes in serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the colon of rats were analyzed; the enterochromaffin cell numbers and serotonin transporter in the colon of rats were also evaluated with an immunohistochemistry method. RESULTS: NMS treatment significantly reduced pain threshold pressure (37.4 ± 1.4 mmHg), as compared to that of NH rats (57.7 ± 1.9 mmHg, P < 0.05). After JCM-16021 treatment, the pain threshold pressure significantly increased when compared to that before treatment (34.2 ± 0.9 mmHg vs 52.8 ± 2.3 mmHg in the high dose group, 40.2 ± 1.6 mmHg vs 46.5 ± 1.3 mmHg in the middle dose group, and 39.3 ± 0.7 mmHg vs 46.5 ± 1.6 mmHg in the low dose group, P < 0.05). Also JCM-16021 significantly and dose-dependently decreased electromyographic activity to the graded colorectal distension (CRD), (the mean ΔAUC values were: 0.17 ± 0.03, 0.53 ± 0.15, 1.06 ± 0.18, 1.22 ± 0.24 in the high dose group; 0.23 ± 0.04, 0.68 ± 0.17, 1.27 ± 0.26, 1.8 ± 0.3 in the middle dose group; and 0.29 ± 0.06, 0.8 ± 0.16, 1.53 ± 0.24, 2.1 ± 0.21 in the low dose group for the pressures 20, 40, 60, 80 mmHg), as compared to the NMS vehicle group. The mean ΔAUC values were: 0.57 ± 0.12, 1.33 ± 0.18, 2.57 ± 0.37, 3.08 ± 0.37 for the pressures 20, 40, 60, 80 mmHg (P < 0.05). JCM-16021 treatment significantly reduced the 5-HT concentrations (from high, middle and low dosage groups: 60.25 ± 5.98 ng/100 mg, 60.32 ± 4.22 ng/100 mg, 73.31 ± 7.65 ng/100 mg), as compared to the NMS vehicle groups (93.11 ± 9.85 ng/100 mg, P < 0.05); and increased the 5-HIAA concentrations (after treatment, from high, middle and low dosage groups: 54.24 ± 3.27 ng/100 mg, 50.34 ± 1.26 ng/100 mg, 51.37 ± 2.13 ng/100 mg) when compared to that in the NMS vehicle group (51.75 ± 1.98 ng/100 mg, P < 0.05); but did not change the enterochromaffin cell numbers in the colon of rats. In addition, NMS rats had higher SERT expression (n = 10) than NH rats (n = 8, P < 0.05). JCM-16021 treatment significantly decreased SERT expression when compared to the NMS group (P < 0.01-0.001). CONCLUSION: JCM-16021 can attenuate visceral hypersensitivity, and this analgesic effect may be mediated through the serotonin signaling pathway in the colon of rats. PMID:20143462

  13. Insulin Like Growth Factor 2 Expression in the Rat Brain Both in Basal Condition and following Learning Predominantly Derives from the Maternal Allele

    PubMed Central

    Ye, Xiaojing; Kohtz, Amy; Pollonini, Gabriella; Riccio, Andrea; Alberini, Cristina M.

    2015-01-01

    Insulin like growth factor 2 (Igf2) is known as a maternally imprinted gene involved in growth and development. Recently, Igf2 was found to also be regulated and required in the adult rat hippocampus for long-term memory formation, raising the question of its allelic regulation in adult brain regions following experience and in cognitive processes. We show that, in adult rats, Igf2 is abundantly expressed in brain regions involved in cognitive functions, like hippocampus and prefrontal cortex, compared to the peripheral tissues. In contrast to its maternal imprinting in peripheral tissues, Igf2 is mainly expressed from the maternal allele in these brain regions. The training-dependent increase in Igf2 expression derives proportionally from both parental alleles, and, hence, is mostly maternal. Thus, Igf2 parental expression in the adult rat brain does not follow the imprinting rules found in peripheral tissues, suggesting differential expression regulation and functions of imprinted genes in the brain. PMID:26495851

  14. Maternal milk reduces severity of necrotizing enterocolitis and increases intestinal IL-10 in a neonatal rat model.

    PubMed

    Dvorak, Bohuslav; Halpern, Melissa D; Holubec, Hana; Dvorakova, Katerina; Dominguez, Jessica A; Williams, Catherine S; Meza, Yolanda G; Kozakova, Hana; McCuskey, Robert S

    2003-03-01

    Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Maternal milk has been suggested to be partially protective against NEC; however, the mechanisms of this protection are not defined. The aim of this study was to examine the effect(s) of artificial feeding of rat milk (RM)-versus cow milk-based rat milk substitute (RMS) on the development of NEC in a neonatal rat model and elucidate the role of inflammatory cytokines in NEC pathogenesis. Newborn rats were artificially fed with either collected RM or RMS. Experimental NEC was induced by exposure to asphyxia and cold stress and evaluated by histologic scoring of damage in ileum. Intestinal cytokine mRNA expression was determined by real-time PCR. Cytokine histologic localization was performed by confocal microscopy. Similar to human NEC, artificial feeding of RM reduces the incidence and severity of NEC injury in neonatal rats. Freezing and thawing of collected RM did not eliminate the protective effect of maternal milk. Ileal IL-10 expression was significantly increased in the RM group compared with RMS. Increased IL-10 peptide production was detected in the RM group with signal localized predominantly in the cytoplasm of villus epithelial cells. These results suggest that the protective effect of maternal milk is associated with increased production of anti-inflammatory IL-10 in the site of injury. Better understanding of the mechanisms underlying these protective effects could be beneficial either in the prevention of NEC or in the development of future therapeutic strategies to cure NEC. PMID:12595590

  15. Maternal flaxseed diet during lactation changes adrenal function in adult male rat offspring.

    PubMed

    Figueiredo, Mariana Sarto; da Conceição, Ellen Paula Santos; de Oliveira, Elaine; Lisboa, Patricia Cristina; de Moura, Egberto Gaspar

    2015-10-14

    Flaxseed (Linum usitatissimum L.) has been a focus of interest in the field of functional foods because of its potential health benefits. However, we hypothesised that maternal flaxseed intake during lactation could induce several metabolic dysfunctions in adult offspring. In the present study, we aimed to characterise the adrenal function of adult offspring whose dams were supplemented with whole flaxseed during lactation. At birth, lactating Wistar rats were divided into two groups: rats from dams fed the flaxseed diet (FLAX) with 25% of flaxseed and controls dams. Pups received standard diet after weaning and male offspring were killed at age 180 days old to collect blood and tissues. We evaluated body weight and food intake during development, corticosteronaemia, adrenal catecholamine content, hepatic cholesterol, TAG and glycogen contents, and the protein expression of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), 11-β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and adrenaline β2 receptor at postnatal day 180 (PN180). After weaning, pups from the FLAX group had a higher body weight (+10 %) and food intake (+10%). At PN180, the FLAX offspring exhibited higher serum corticosterone (+48%) and lower adrenal catecholamine ( - 23%) contents, lower glycogen ( - 30%), higher cholesterol (4-fold increase) and TAG (3-fold-increase) contents in the liver, and higher 11β-HSD1 (+62%) protein expression. Although the protein expression of hypothalamic CRH was unaffected, the FLAX offspring had lower protein expression of pituitary ACTH ( - 34%). Therefore, induction of hypercorticosteronaemia by dietary flaxseed during lactation may be due to an increased hepatic activation of 11β-HSD1 and suppression of ACTH. The changes in the liver fat content of the FLAX group are suggestive of steatosis, in which hypercorticosteronaemia may play an important role. Thus, it is recommended that lactating women restrict the intake of flaxseed during lactation. PMID:26337632

  16. The effect of protein restriction on the progression of renal insufficiency

    SciTech Connect

    Ihle, B.U.; Becker, G.J.; Whitworth, J.A.; Charlwood, R.A.; Kincaid-Smith, P.S. )

    1989-12-28

    Dietary protein intake may be an important determinant of the rate of decline in renal function in patients with chronic renal insufficiency. We conducted a prospective, randomized study of the efficacy of protein restriction in slowing the rate of progression of renal impairment. The study lasted 18 months and included 64 patients with serum creatinine concentrations ranging from 350 to 1000 micromol per liter. The patients were randomly assigned to follow either a regular diet or an isocaloric protein-restricted diet (0.4 g of protein per kilogram of the body weight per day). Blood-pressure levels and the balance between calcium and phosphate were similar in the two groups. End-stage renal failure developed in 9 of the 33 patients (27 percent) who followed the regular diet during the study, as compared with 2 of the 31 patients (6 percent) who followed the protein-restricted diet (P less than 0.05). The mean (+/- SE) glomerular filtration rate, as measured by the clearance of 51Cr bound to EDTA, fell from 0.25 +/- 0.03 to 0.10 +/- 0.05 ml per second (P less than 0.01) in the group on the regular diet, whereas it fell from 0.23 +/- 0.04 to 0.20 +/- 0.05 ml per second (P not significant) in the group on the protein-restricted diet. We conclude that dietary protein restriction is effective in slowing the rate of progression of chronic renal failure.

  17. Sildenafil Treatment Ameliorates the Maternal Syndrome of Preeclampsia and Rescues Fetal Growth in the Dahl Salt-Sensitive Rat.

    PubMed

    Gillis, Ellen E; Mooney, Jennifer N; Garrett, Michael R; Granger, Joey P; Sasser, Jennifer M

    2016-03-01

    Preeclampsia, a hypertensive disorder of pregnancy, is detrimental to both mother and fetus. There is currently no effective treatment, but sildenafil, a phosphodiesterase-5 inhibitor, has been proposed as a potential therapy to reduce blood pressure and improve uteroplacental perfusion in preeclamptic patients. We hypothesized that sildenafil would improve the maternal syndrome and fetal outcomes in the Dahl S rat model of superimposed preeclampsia. Dahl S rats were mated, and half received sildenafil (50 mg/kg per day, via food) from day 10 through day 20 of pregnancy. The untreated Dahl S rats had a significant rise in blood pressure and a 2-fold increase in urinary protein excretion from baseline to late pregnancy; however, sildenafil-treated Dahl S rats exhibited ≈40 mm Hg drops in blood pressure with no rise in protein excretion. Sildenafil also increased creatinine clearance and reduced nephrinuria and glomerulomegaly. Sildenafil treatment reduced the uterine artery resistance index during late pregnancy in the Dahl S rat and improved fetal outcomes (survival, weight, and litter size). In addition, 19% of all pups were resorbed in untreated rats, with no incidence of resorptions observed in the treated group. Furthermore, tumor necrosis factor-α, endothelin-1, and oxidative stress, which are characteristically increased in women with preeclampsia and in experimental models of the disease, were reduced in treated rats. These data suggest that sildenafil improves the maternal syndrome of preeclampsia and blood flow to the fetoplacental unit, providing preclinical evidence to support the hypothesis that phosphodiesterase type 5 inhibition may be an important therapeutic target for the treatment of preeclampsia. PMID:26729752

  18. Maternal Obesity Caused by Overnutrition Exposure Leads to Reversal Learning Deficits and Striatal Disturbance in Rats

    PubMed Central

    Wu, Ting; Deng, Shining; Li, Wei-Guang; Yu, Yongguo; Li, Fei; Mao, Meng

    2013-01-01

    Maternal obesity caused by overnutrition during pregnancy increases susceptibility to metabolic risks in adulthood, such as obesity, insulin resistance, and type 2 diabetes; however, whether and how it affects the cognitive system associated with the brain remains elusive. Here, we report that pregnant obesity induced by exposure to excessive high fatty or highly palatable food specifically impaired reversal learning, a kind of adaptive behavior, while leaving serum metabolic metrics intact in the offspring of rats, suggesting a much earlier functional and structural defects possibly occurred in the central nervous system than in the metabolic system in the offspring born in unfavorable intrauterine nutritional environment. Mechanically, we found that above mentioned cognitive inflexibility might be associated with significant striatal disturbance including impaired dopamine homeostasis and disrupted leptin signaling in the adult offspring. These collective data add a novel perspective of understanding the adverse postnatal sequelae in central nervous system induced by developmental programming and the related molecular mechanism through which priming of risk for developmental disorders may occur during early life. PMID:24223863

  19. Influence of the destabilisation of the maternal digestive microflora on that of the newborn rat.

    PubMed

    Brunel, A; Gouet, P

    1993-01-01

    By destabilising the digestive flora of pregnant rats by antibiotic treatment, it was shown that part of the digestive microflora of the neonate originated from the maternal faeces. A mixture of ampicillin, bacitracin neomycin and streptomycin associated with nystatin were administered ad libitum at three different times, 1-3, 3-5, and more than 5 days before the estimated date of littering. For each treatment, samples were taken from the faeces, teats, and vagina of dams and from the digestive tracts of neonates aged between 6 and 120 h, and analysed for the presence of staphylococci, enterococci, lactobacilli and coliform bacteria. Antibiotic treatment reduced digestive flora populations to levels lower than 10(2) g-1 but had less effect on the vaginal and cutaneous mammary flora. In the digestive microflora of the neonate, the enterococci were unevenly affected, whereas the staphylococci were considerably decreased and the lactobacilli almost completely eliminated; coliform bacteria were found sporadically and in small numbers. The traces of antibiotics found in milk are not sufficient to explain these modifications. Counts made in control animals on media fed the same antibiotic concentrations were not modified. This work underlined the awful consequences for the newborn of a serious perturbation of the mother flora and the necessity of its presence for a normal installation of the digestive microflora of the newborn. PMID:8513029

  20. Maternal exercise during pregnancy reduces risk of mammary tumorigenesis in rat offspring.

    PubMed

    Camarillo, Ignacio G; Clah, Leon; Zheng, Wei; Zhou, Xuanzhu; Larrick, Brienna; Blaize, Nicole; Breslin, Emily; Patel, Neal; Johnson, Diamond; Teegarden, Dorothy; Donkin, Shawn S; Gavin, Timothy P; Newcomer, Sean

    2014-11-01

    Breast cancer is the most common cancer among women. Emerging research indicates that modifying lifestyle factors during pregnancy may convey long-term health benefits to offspring. This study was designed to determine whether maternal exercise during pregnancy leads to reduced mammary tumorigenesis in female offspring. Pregnant rats were randomly assigned to exercised and sedentary groups, with the exercised group having free access to a running wheel and the sedentary group housed with a locked wheel during pregnancy. Female pups from exercised or sedentary dams were weaned at 21 days of age and fed a high fat diet without access to a running wheel. At 6 weeks, all pups were injected with the carcinogen N-methyl-N-nitrosourea. Mammary tumor development in all pups was monitored for 15 weeks. Pups from exercised dams had a substantially lower tumor incidence (42.9%) compared with pups from sedentary dams (100%). Neither tumor latency nor histological grade differed between the two groups. These data are the first to demonstrate that exercise during pregnancy potentiates reduced tumorigenesis in offspring. This study provides an important foundation towards developing more effective modes of behavior modification for cancer prevention. PMID:24950432

  1. EFFECTS ON THE FETAL RAT INTESTINE OF MATERNAL MALNUTRITION AND EXPOSURE TO NITROFEN (2,4-DICHLOROPHENYL-P-NITROPHENYL ETHER)

    EPA Science Inventory

    The effects of maternal protein-energy malnutrition and exposure to nitrofen on selected aspects of intestinal morphology and function were studied in the fetal rat. Pregnant rats were fed, throughout gestation, diets containing 24% or 6% casein as the sole source of protein. Red...

  2. A methyl-seq analyses of rat offspring liver reveals maternal obesity-induced alterations in dna methylation status at weaning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure to maternal obesity (MO) increases the risk of obesity in adult-life. MO was induced in rats by overfeeding via total enteral nutrition. Male offspring from obese rats gain greater body weight, fat mass and develop insulin resistance when fed high fat diets. However the mechanisms underlyin...

  3. Increased Mesohippocampal Dopaminergic Activity and Improved Depression-Like Behaviors in Maternally Separated Rats Following Repeated Fasting/Refeeding Cycles

    PubMed Central

    Jahng, Jeong Won; Yoo, Sang Bae; Kim, Jin Young; Kim, Bom-Taeck; Lee, Jong-Ho

    2012-01-01

    We have previously reported that rats that experienced 3 h of daily maternal separation during the first 2 weeks of birth (MS) showed binge-like eating behaviors with increased activity of the hypothalamic-pituitary-adrenal axis when they were subjected to fasting/refeeding cycles repeatedly. In this study, we have examined the psychoemotional behaviors of MS rats on the fasting/refeeding cycles, together with their brain dopamine levels. Fasting/refeeding cycles normalized the ambulatory activity of MS rats, which was decreased by MS experience. Depression-like behaviors, but not anxiety, by MS experience were improved after fasting/refeeding cycles. Fasting/refeeding cycles did not significantly affect the behavioral scores of nonhandled (NH) control rats. Fasting/refeeding cycles increased dopamine levels not only in the hippocampus but also in the midbrain dopaminergic neurons in MS rats, but not in NH controls. Results demonstrate that fasting/refeeding cycles increase the mesohippocampal dopaminergic activity and improve depression-like behaviors in rats that experienced MS. Together with our previous paper, it is suggested that increased dopamine neurotransmission in the hippocampus may be implicated in the underlying mechanisms by which the fasting/refeeding cycles induce binge-like eating and improve depression-like behaviors in MS rats. PMID:22934157

  4. Prenatal exposure to escitalopram and/or stress in rats: a prenatal stress model of maternal depression and its treatment

    PubMed Central

    Bourke, Chase H.; Capello, Catherine F.; Rogers, Swati M.; Yu, Megan L.; Boss-Williams, Katherine A.; Weiss, Jay M.; Stowe, Zachary N.; Owens, Michael J.

    2014-01-01

    Rationale A rigorously investigated model of stress and antidepressant administration during pregnancy is needed to evaluate possible effects on the mother. Objective The objective of this study was to develop a model of clinically relevant prenatal exposure to an antidepressant and stress during pregnancy to evaluate the effects on maternal care behavior. Results Female rats implanted with 28 day osmotic minipumps delivering the SSRI escitalopram throughout pregnancy had serum escitalopram concentrations in a clinically observed range (17-65 ng/mL). A separate cohort of pregnant females exposed to a chronic unpredictable mild stress paradigm on gestational days 10-20 showed elevated baseline (305 ng/mL), and acute stress-induced (463 ng/mL), plasma corticosterone concentrations compared to unstressed controls (109 ng/mL). A final cohort of pregnant dams were exposed to saline (control), escitalopram, stress, or stress and escitalopram to determine the effects on maternal care. Maternal behavior was continuously monitored over the first 10 days post parturition. A reduction of 35% in maternal contact and 11% in nursing behavior was observed due to stress during the light cycle. Licking and grooming behavior was unaffected by stress or drug exposure in either the light or dark cycle. Conclusions These data indicate that: 1) clinically relevant antidepressant treatment during human pregnancy can be modeled in rats using escitalopram; 2) chronic mild stress can be delivered in a manner that does not compromise fetal viability; and 3) neither of these prenatal treatments substantially altered maternal care post parturition. PMID:23436130

  5. Maternal Nicotine Exposure Leads to Impaired Disulfide Bond Formation and Augmented Endoplasmic Reticulum Stress in the Rat Placenta

    PubMed Central

    Wong, Michael K.; Nicholson, Catherine J.; Holloway, Alison C.; Hardy, Daniel B.

    2015-01-01

    Maternal nicotine exposure has been associated with many adverse fetal and placental outcomes. Although underlying mechanisms remain elusive, recent studies have identified that augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. Moreover, ER function depends on proper disulfide bond formation—a partially oxygen-dependent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases. Given that nicotine compromised placental development in the rat, and placental insufficiency has been associated with poor disulfide bond formation and ER stress, we hypothesized that maternal nicotine exposure leads to both placental ER stress and impaired disulfide bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous injections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2α, Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia (Hif1α), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylated eIF2α, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of augmented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally, elevated expression of Hif1α and GCN2 (p<0.05) indicate hypoxia and amino acid deprivation in nicotine-exposed placentas, respectively, which may also cause impaired disulfide bond formation and augmented ER stress. This study is the first to link maternal nicotine exposure with both placental ER stress and disulfide bond impairment in vivo, providing novel insight into the mechanisms underlying nicotine exposure during pregnancy on placental health. PMID:25811377

  6. Diabetes in Old Male Offspring of Rat Dams Fed a Reduced Protein Diet

    PubMed Central

    Dorling, Matthew W.; Pawlak, Dorota B.; Ozanne, Susan E.; Hales, C. Nicholas

    2001-01-01

    Restricted fetal growth is associated with increased risk for the future development of Type 2 diabetes in humans. The study aim was to assess the glucose tolerance of old (seventeen months) male rats, which were growth restricted in early life due to maternal protein restriction during gestation and lactation. Rat mothers were fed diets containing either 20% or 8% protein and all offspring weaned onto a standard rat diet. In old-age fasting plasma glucose concentrations were significantly higher in the low protein offspring: 8.4 (1.3)mmol/l v. 5.3 (1.3)mmol/l (p = 0.005), Areas under the curves were increased by 67% for glucose (p = 0.01) and 81% for insulin (p = 0.01) in these rats in intravenous glucose tolerance tests, suggesting (a degree of) insulin resistance. These results show that early growth retardation due to maternal protein restriction leads to the development of diabetes in old male rat offspring. The diabetes is predominantly associated with insulin resistance. PMID:12369717

  7. Maternal low-protein diet causes body weight loss in male, neonate Sprague-Dawley rats involving UCP-1-mediated thermogenesis.

    PubMed

    Claycombe, Kate J; Vomhof-DeKrey, Emilie E; Roemmich, James N; Rhen, Turk; Ghribi, Othman

    2015-07-01

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT thermogenesis and BW of offspring in utero is not yet known. We fed obese-prone Sprague-Dawley dams 8% LP or 20% normal protein (NP) diets for 3 weeks prior to breeding and through pregnancy. BW and gene expression of interscapular BAT (iBAT) thermogenic markers were measured in male fetal (gestation day 18) and neonatal (day 0 or 1) offspring. BW of neonatal LP males was lower than NP males but no difference was observed in females. Gene and protein expression of UCP-1 and transcription factors PRDM16 and PPARα in iBAT were 2- to 6-fold greater in LP than in NP male neonatal offspring. FNDC5, a precursor of irisin and activator of thermogenesis, was expressed 2-fold greater in neonatal LP iBAT than NP males. However, fetal iBAT UCP-1, PRDM16, PPARα and irisin mRNA did not differ between LP and NP groups. Maternal LP diet had no effects on placental irisin and UCP-2 expression. These results suggest that prenatal protein restriction increases the risk for low BW through mechanisms affecting full-term offspring iBAT thermogenesis but not greatly altering fetal iBAT or placental thermogenesis. PMID:25858881

  8. Histamine acting on the basolateral amygdala reverts the impairment of aversive memory of rats submitted to neonatal maternal deprivation.

    PubMed

    Benetti, Fernando; da Silveira, Clarice Kras Borges; Rosa, Jessica; Izquierdo, Ivan

    2015-02-01

    Recent findings suggest a role of brain histamine in the regulation of memory consolidation, particularly in one-trial inhibitory avoidance (IA) learning and that disruption in the mother infant relationship i.e. maternal deprivation induces cognitive deficits. We investigate whether histamine itself, and histaminergic compounds given into the basolateral amygdala (BLA) immediately post-training can affect retention (24 h after training) of one-trial (IA) in rats submitted to early postnatal maternal deprivation. In all cases, deprived (Dep) animals had lower retention scores than non-deprived controls (N-dep). Histamine induced memory enhancement on its own in N-dep animals and was able to overcome the deleterious effect of Dep. The effects by SKF-91488 is similar to histamine. The H3 agonist, imetit mimetized the enhancing effects of histamine; neither agonist H1 pyridylethylamine nor the H2 dimaprit had any effect. Ranitidine and thioperamide (50 nmol) co-infused with histamine (10 nmol) fully blocked the restorative effect of histamine on retention in Dep animals. Thioperamide, in addition, blocked the enhancing effect of histamine on memory of the N-dep animals as well. None of the drugs used given into BLA had any effect on open-field or elevated plus-maze behavior in N-dep or Dep rats. Our results are limited to experimental design in rats. Extrapolation i.e. in humans requires further experimentations. The present results suggest that the memory deficit induced by early postnatal maternal deprivation in rats may at least in part be due to an impairment of histamine H3 receptor-mediated mediated mechanisms in the BLA. PMID:25257105

  9. Maternal flaxseed diet during pregnancy or lactation increases female rat offspring's susceptibility to carcinogen-induced mammary tumorigenesis.

    PubMed

    Khan, Galam; Penttinen, Pauliina; Cabanes, Anna; Foxworth, Aaron; Chezek, Antonia; Mastropole, Kristen; Yu, Bin; Smeds, Annika; Halttunen, Teemu; Good, Carolyn; Mkel, Sari; Hilakivi-Clarke, Leena

    2007-01-01

    Flaxseed contains several dietary components that have been linked to low breast cancer risk; i.e., n-3 polyunsaturated fatty acids (PUFAs), lignans and fiber, but it also contains detectable levels of cadmium, a heavy metal that activates the estrogen receptor (ER). Since estrogenic exposures early in life modify susceptibility to develop breast cancer, we wondered whether maternal dietary intake of 5% or 10% flaxseed during pregnancy or lactation (between postpartum days 5 and 25) might affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis in the rat offspring. Our data indicated that both in utero and postnatal 5% and 10% flaxseed exposures shortened mammary tumor latency, and 10% flaxseed exposure increased tumor multiplicity, compared to the controls. Further, when assessed in 8-week-old rats, in utero 10% flaxseed exposure increased lobular ER-alpha protein levels, and both in utero and postnatal flaxseed exposures dose-dependently reduced ER-beta protein levels in the terminal end buds (TEBs) lobules and ducts. Exposures to flaxseed did not alter the number of TEBs or affect cell proliferation within the epithelial structures. In a separate group of immature rats that were fed 5% defatted flaxseed diet (flaxseed source different than in the diets fed to pregnant or lactating rats) for 7 days, cadmium exposure through the diet was six-fold higher than allowed for humans by World Health Organization, and cadmium significantly accumulated in the liver and kidneys of the rats. It remains to be determined whether the increased mammary cancer in rats exposed to flaxseed through a maternal diet in utero or lactation was caused by cadmium present in flaxseed, and whether the reduced mammary ER-beta content was causally linked to increased mammary cancer risk among the offspring. PMID:17398067

  10. Maternal Stress Combined with Terbutaline Leads to Comorbid Autistic-Like Behavior and Epilepsy in a Rat Model.

    PubMed

    Bercum, Florencia M; Rodgers, Krista M; Benison, Alex M; Smith, Zachariah Z; Taylor, Jeremy; Kornreich, Elise; Grabenstatter, Heidi L; Dudek, F Edward; Barth, Daniel S

    2015-12-01

    Human autism is comorbid with epilepsy, yet, little is known about the causes or risk factors leading to this combined neurological syndrome. Although genetic predisposition can play a substantial role, our objective was to investigate whether maternal environmental factors alone could be sufficient. We examined the independent and combined effects of maternal stress and terbutaline (used to arrest preterm labor), autism risk factors in humans, on measures of both autistic-like behavior and epilepsy in Sprague-Dawley rats. Pregnant dams were exposed to mild stress (foot shocks at 1 week intervals) throughout pregnancy. Pups were injected with terbutaline on postnatal days 2-5. Either maternal stress or terbutaline resulted in autistic-like behaviors in offspring (stereotyped/repetitive behaviors and deficits in social interaction or communication), but neither resulted in epilepsy. However, their combination resulted in severe behavioral symptoms, as well as spontaneous recurrent convulsive seizures in 45% and epileptiform spikes in 100%, of the rats. Hippocampal gliosis (GFAP reactivity) was correlated with both abnormal behavior and spontaneous seizures. We conclude that prenatal insults alone can cause comorbid autism and epilepsy but it requires a combination of teratogens to achieve this; testing single teratogens independently and not examining combinatorial effects may fail to reveal key risk factors in humans. Moreover, astrogliosis may be common to both teratogens. This new animal model of combined autism and epilepsy permits the experimental investigation of both the cellular mechanisms and potential intervention strategies for this debilitating comorbid syndrome. PMID:26631470

  11. Methyl donor supplementation in rats reverses the deleterious effect of maternal separation on depression-like behaviour.

    PubMed

    Paternain, Laura; Martisova, Eva; Campión, Javier; Martínez, J Alfredo; Ramírez, Maria J; Milagro, Fermin I

    2016-02-15

    Adverse early life events are associated with altered stress responsiveness and metabolic disturbances in the adult life. Dietary methyl donor supplementation could be able to reverse the negative effects of maternal separation by affecting DNA methylation in the brain. In this study, maternal separation during lactation reduced body weight gain in the female adult offspring without affecting food intake, and altered total and HDL-cholesterol levels. Also, maternal separation induced a cognitive deficit as measured by NORT and an increase in the immobility time in the Porsolt forced swimming test, consistent with increased depression-like behaviour. An 18-week dietary supplementation with methyl donors (choline, betaine, folate and vitamin B12) from postnatal day 60 also reduced body weight without affecting food intake. Some of the deleterious effects induced by maternal separation, such as the abnormal levels of total and HDL-cholesterol, but especially the depression-like behaviour as measured by the Porsolt test, were reversed by methyl donor supplementation. Also, the administration of methyl donors increased total DNA methylation (measured by immunohistochemistry) and affected the expression of insulin receptor in the hippocampus of the adult offspring. However, no changes were observed in the DNA methylation status of insulin receptor and corticotropin-releasing hormone (CRH) promoter regions in the hypothalamus. In summary, methyl donor supplementation reversed some of the deleterious effects of an early life-induced model of depression in rats and altered the DNA methylation profile in the brain. PMID:26628207

  12. Evaluation of rat in vivo fetal-to-maternal transfer clearances of various xenobiotics by umbilical perfusion.

    PubMed

    Nishimura, Tomohiro; Takanohashi, Tatsuya; Tomi, Masatoshi; Horikoshi, Miho; Higuchi, Kei; Sai, Yoshimichi; Nakashima, Emi

    2013-09-01

    It is important to address the tissue permeability of drugs, particularly in tissues that have a blood-tissue barrier, in terms of both lipophilicity and the contribution of transporters. Here, we employed umbilical perfusion in rats to evaluate in vivo fetal-to-maternal transfer clearances of various xenobiotics. We measured fetal-to-maternal clearance (CLfm ) of 23 compounds, which have a broad range of lipophilicity. Drugs for which CLfm was more than 300 µL/(mL min) belonged exclusively to Biopharmaceutical Drug Disposition Classification System (BDDCS) class 1 (highly permeable) and those for which CLfm was less than 50 µL/(mL min) belonged exclusively to BDDCS class 3 (poorly permeable). For most drugs, CLfm values were broadly consistent with lipophilicity. However, CLfm of digoxin was saturable and was inhibited by verapamil, suggesting that P-glycoprotein (P-gp)-mediated efflux has a substantially effect on measured clearance. CLfm of mitoxantrone continued to increase slightly at high concentrations of mitoxantrone, but placental-to-maternal clearance of mitoxantrone was saturable, implying that Bcrp1 contributes to mitoxantrone efflux across the placenta. Thus, we measured CLfm by umbilical perfusion and examined the relationship between CLfm and lipophilicity of xenobiotics. Fetal-to-maternal transport clearances measured in this study will be helpful to understand the characteristics of the blood-placental barrier. PMID:23620249

  13. Postnatal undernutrition in rats: attempts to develop alternative methods to food deprive pups without maternal behavioral alteration.

    PubMed

    Codo, W; Carlini, E A

    1979-09-01

    Two methods were investigated as attempts to undernourish rat pups without the disturbances in maternal behavior that accompany the procedures used to date for this purpose. In the 1st method, a litter of 12 pups was raised by both a lactating mother and a "sensitized" female. The sensitized female was provided under the assumption that she could correct for the deficit in maternal care when 1 mother raises a large litter. The results showed that the pups raised by the 2 females were constantly removed by the females from each other's nests; the females engaged in constant fighting and showed altered maternal behavior. As a consequence the pups lost more weight than control underfed young. The 2nd method consisted of removing 6-8 nipples from virgin females which were mated 10 days later. After delivery these females raised litters of 6 pups. Their maternal behavior was equal to that of unoperated controls, and at weaning the pups had 20-50% less body weight. This method could be useful to study undernutrition effects on behavior, without confounding experimental variables. PMID:488531

  14. Maternal Contact Differentially Modulates Central and Peripheral Oxytocin in Rat Pups During a Brief Regime of Mother–Pup Interaction that Induces a Filial Huddling Preference

    PubMed Central

    Kojima, S.; Stewart, R. A.; Demas, G. E.; Alberts, J. R.

    2014-01-01

    Central oxytocin mediates the acquisition of a filial preference for maternal odour in rat pups, manifested by their huddling preferences. The present study was designed to examine whether maternal care modulates oxytocin concentrations in rat pups and, if so, how different types of maternal contact are associated with the pups’ oxytocin concentrations. Pairs of 14-day-old littermates were removed from their home cage for 1 h and then placed with a lactating foster mother for 2 h, or they remained isolated at room temperature. Enzyme immunoassays revealed that maternal care and maternal separation can differentially modulate pups’ oxytocin concentrations. Both hypothalamic and serum oxytocin increased during the 1-h separation. Pups placed with a foster mother after the separation maintained the same concentrations in the hypothalamus and serum through the fostering period. By contrast, pups placed with no mother showed a further increase in hypothalamic oxytocin but serum oxytocin decreased. Behavioural analyses revealed that skin-to-skin contact with the mother, but not simple physical contact or maternal licking / grooming, was positively correlated with the pups’ hypothalamic oxytocin concentrations. These neuroendocrine data match previous findings showing that skin-to-skin contact with mother facilitates the acquisition of the pups’ huddling preference for a maternally-associated odour. Taken together, the present study suggests that maternal skin-to-skin contact stimulates pups’ central oxytocin, at the same time as creating the conditions for inducing a preference for maternal odour and establishing a social affiliation in rat pups; the natural schedule of maternal separation and reunion may modulate pups’ oxytocin concentrations, providing scaffolding for the acquisition of their filial huddling preference. PMID:22260655

  15. Increased white matter neuron density in a rat model of maternal immune activation - Implications for schizophrenia.

    PubMed

    Duchatel, Ryan J; Jobling, Phillip; Graham, Brett A; Harms, Lauren R; Michie, Patricia T; Hodgson, Deborah M; Tooney, Paul A

    2016-02-01

    Interstitial neurons are located among white matter tracts of the human and rodent brain. Post-mortem studies have identified increased interstitial white matter neuron (IWMN) density in the fibre tracts below the cortex in people with schizophrenia. The current study assesses IWMN pathology in a model of maternal immune activation (MIA); a risk factor for schizophrenia. Experimental MIA was produced by an injection of polyinosinic:polycytidylic acid (PolyI:C) into pregnant rats on gestational day (GD) 10 or GD19. A separate control group received saline injections. The density of neuronal nuclear antigen (NeuN(+)) and somatostatin (SST(+)) IWMNs was determined in the white matter of the corpus callosum in two rostrocaudally adjacent areas in the 12week old offspring of GD10 (n=10) or GD19 polyI:C dams (n=18) compared to controls (n=20). NeuN(+) IWMN density trended to be higher in offspring from dams exposed to polyI:C at GD19, but not GD10. A subpopulation of these NeuN(+) IWMNs was shown to express SST. PolyI:C treatment of dams induced a significant increase in the density of SST(+) IWMNs in the offspring when delivered at both gestational stages with more regionally widespread effects observed at GD19. A positive correlation was observed between NeuN(+) and SST(+) IWMN density in animals exposed to polyI:C at GD19, but not controls. This is the first study to show that MIA increases IWMN density in adult offspring in a similar manner to that seen in the brain in schizophrenia. This suggests the MIA model will be useful in future studies aimed at probing the relationship between IWMNs and schizophrenia. PMID:26385575

  16. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    SciTech Connect

    Ronco, Ana Maria; Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel; Saez, Daniel; Hirsch, Sandra; Zepeda, Ramiro; Llanos, Miguel N.

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  17. Maternal high-fat diet increases independent feeding in pre-weanling rat pups.

    PubMed

    Kojima, Sayuri; Catavero, Christina; Rinaman, Linda

    2016-04-01

    In laboratory settings, the adult offspring of rodent dams that are maintained on high-fat diet (HFD) before conception and/or during pregnancy/lactation display an increased incidence of obese phenotypic markers, including increased body weight and adiposity, reduced leptin sensitivity, and impaired glucose tolerance. In rat pups raised by dams consuming HFD, these obese markers emerge during the first postnatal week. Since the week-old offspring of HFD dams consume excess amounts of milk during experimental tests of independent feeding (i.e., intake away from the dam), we hypothesized that maternal diet affects suckling and/or independent ingestion by pups in the home-cage environment. In the present study, this hypothesis was tested by conducting detailed analyses of ingestive behaviors expressed by pups in the home cage. Pups raised by dams consuming HFD displayed an earlier onset of independent feeding and more amounts of calorie intake from solid food during the third postnatal week compared to pups raised by dams consuming regular chow, with no diet-related differences in suckling behavior. Independent ingestion by pups in both diet groups was most frequently observed after nursing, with offspring of HFD dams engaged more frequently in post-nursing independent feeding episodes compared to offspring of chow-fed dams, particularly when the prior nursing episode was nutritive (i.e., including milk receipt by pups). We conclude that early-life exposure to HFD enhances the facilitative effect of nutritive suckling on independent feeding in pups, promoting increased caloric intake from solid food in the home-cage environment. PMID:26873412

  18. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation

    PubMed Central

    Gareau, Mélanie G; Jury, Jennifer; MacQueen, Glenda; Sherman, Philip M; Perdue, Mary H

    2007-01-01

    Background We previously showed that neonatal maternal separation (MS) of rat pups causes immediate and long‐term changes in intestinal physiology. Aim To examine if administration of probiotics affects MS‐induced gut dysfunction. Methods MS pups were separated from the dam for 3 h/day from days 4 to 19; non‐separated (NS) pups served as controls. Twice per day during the separation period, 108 probiotic organisms (two strains of Lactobacillus species) were administered to MS and NS pups; vehicle‐treated pups received saline. Studies were conducted on day 20, when blood was collected for corticosterone measurement as an indication of hypothalamus–pituitary–adrenal (HPA) axis activity, and colonic function was studied in tissues mounted in Ussing chambers. Ion transport was indicated by baseline and stimulated short‐circuit current (Isc); macromolecular permeability was measured by flux of horseradish peroxidase (HRP) across colonic tissues; and bacterial adherence/penetration into the mucosa was quantified by culturing tissues in selective media. Colonic function and host defence were also evaluated at day 60. Results Isc and HRP flux were significantly higher in the colon of MS versus NS pups. There was increased adhesion/penetration of total bacteria in MS pups, but a significant reduction in Lactobacillus species. Probiotic administration ameliorated the MS‐induced gut functional abnormalities and bacterial adhesion/penetration at both day 20 and 60, and reduced the elevated corticosterone levels at day 20. Conclusions The results indicate that altered enteric flora are responsible for colonic pathophysiology. Probiotics improve gut dysfunction induced by MS, at least in part by normalisation of HPA axis activity. PMID:17339238

  19. Importance of maternal diabetes on the chronological deregulation of the intrauterine development: an experimental study in rat.

    PubMed

    Salazar García, Marcela; Reyes Maldonado, Elba; Revilla Monsalve, María Cristina; Villavicencio Guzmán, Laura; Reyes López, Alfonso; Sánchez-Gómez, Concepción

    2015-01-01

    We investigated whether maternal diabetes induced in rats using streptozotocin (STZ) on Day 5 of pregnancy affects the intrauterine developmental timeline. A total of 30 pregnant Sprague-Dawley diabetic rats (DRs) and 20 control rats (CRs) were used to obtain 21-day fetuses (F21) and newborn (NB) pups. Gestational age, weight, and body size were recorded as were the maxillofacial morphometry and morphohistological characteristics of the limbs. In DRs, pregnancy continued for ∼1.7 days, and delivery occurred 23 days postcoitus (DPC). In this group, the number of pups was lower, and 13% had maxillofacial defects. F21 in the DR group had lower weights and were smaller; moreover, the morphological characteristics of the maxillofacial structures, derived from the neural crest, were discordant with their chronological gestational age, resembling 18- to 19-day-old fetuses. These deficiencies were counterbalanced in NB pups. We conclude that hyperglycemia, which results from maternal diabetes and precedes embryo implantation, deregulates the intrauterine developmental timeline, restricts embryo-fetal growth, and primarily delays the remodeling and maturation of the structures derived from neural crest cells. PMID:25756053

  20. Maternal behavior induced in male rats by bilateral lesions of the bed nucleus of the accessory olfactory tract.

    PubMed

    Izquierdo, M A; Collado, P; Segovia, S; Guillamón, A; del Cerro, M C

    1992-10-01

    In the present study, we investigate the effect of bilateral electrolytic lesions of the bed nucleus of the accessory olfactory tract (BAOT) in male Wistar rats that did not have care-pups experience, using a test of induced maternal behavior. Consistent with our previous findings in virgin female rats (10), there was a significantly shorter sensitization (3 days) and retrieval (2 days) latencies in the BAOT-lesioned group than in the sham-lesioned and intact-control male groups (12 days for both). Based on these findings, we propose that BAOT, a sexually dimorphic nucleus of the vomeronasal system, exerts an inhibitory modulation in the expression of parental behavior in male and female virgin rats. It may do so by maintaining an olfactory-based tonic inhibition of maternal behavior, thereby resulting in the adults' tonic avoidance of the pups until this inhibition is abolished by lesion, or reduced or overridden by appropriate hormonal and/or sensory influences. PMID:1409941

  1. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    PubMed Central

    Tain, You-Lin; Sheen, Jiunn-Ming; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Mao-Meng; Hsu, Chien-Ning; Lin, Yu-Ju; Kuo, Kuang-Che; Huang, Li-Tung

    2015-01-01

    Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M), rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS), to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification. PMID:26696906

  2. Interactions between protein and vegetable oils in the maternal diet determine the programming of the insulin axis in the rat.

    PubMed

    Maloney, Christopher A; Lilley, Christina; Czopek, Alicja; Hay, Susan M; Rees, William D

    2007-05-01

    The available evidence suggests that metabolic control mechanisms are programmed early in life. Previous studies of pregnant rats fed low-protein diets have suggested that the vegetable oils used in the experimental diets influence the outcome. The present study investigated the offspring of female rats fed semi-synthetic diets containing either 180 or 90g casein/kg with 70 g/kg (w/w) of either corn oil or soya oil during gestation. During lactation, the dams received stock diet, and the offspring were subsequently weaned onto the stock diet. The offspring of dams fed the low-protein diets were smaller at birth. At 25 weeks of age, the offspring were subjected to an oral glucose tolerance test. In the offspring of dams fed the diet containing soya oil, the area under the insulin curve was affected by the protein content of the maternal diet. There was no effect of protein on the area under the insulin curve in the offspring of dams fed the diet prepared with corn oil. There were no differences in plasma glucose concentrations. The levels of mRNA for acetyl-CoA carboxylase- in the livers of female offspring were affected by the protein and oil content of the maternal diet. The level of carnitine palmitoyl transferase mRNA was affected by the protein content of the maternal diet. The present study suggests that PUFA in the maternal diet can interact with protein metabolism to influence the development of the offspring. This may involve the higher content of alpha-linolenic acid in soya oil compared with corn oil. PMID:17408526

  3. Toxic Effects of Maternal Zearalenone Exposure on Intestinal Oxidative Stress, Barrier Function, Immunological and Morphological Changes in Rats

    PubMed Central

    Liu, Min; Gao, Rui; Meng, Qingwei; Zhang, Yuanyuan; Bi, Chongpeng; Shan, Anshan

    2014-01-01

    The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses. PMID:25180673

  4. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta.

    PubMed

    Reynolds, Clare M; Vickers, Mark H; Harrison, Claudia J; Segovia, Stephanie A; Gray, Clint

    2015-05-01

    Maternal high fat and salt consumption are associated with developmental programming of disease in adult offspring. Inadequacies in placental nutrient transport may explain these 'programmed effects'. Diet-induced inflammation may have detrimental effects on placental function leading to alteration of key nutrient transporters. We examined the effects of maternal high fat and/or salt diets on markers of placental nutrient transport and inflammation. Sprague-Dawley rats were assigned to (1) control (CD; 1% Salt 10% kcal from fat); (2) high salt (SD; 4% salt, 10% kcal from fat); (3) high fat (HF; 1% Salt 45% kcal from fat) or (4) high fat high salt (HFSD; 4% salt, 45% kcal from fat) 21 days prior to and throughout gestation. At embryonic day 18, dams were killed by isoflurane anesthesia followed by decapitation; placenta/fetuses were weighed, sexed, and collected for molecular analysis. Maternal SD, HF, and HFSD consumption decreased weight of placenta derived from male offspring; however, weight of placenta derived from female offspring was only reduced with maternal HF diet. This was associated with increased expression of LPL, SNAT2, GLUT1, and GLUT4 in placenta derived from male offspring suggesting increased fetal exposure to free fatty acids and glucose. Maternal SD, HF, and HFSD diet consumption increased expression of proinflammatory mediators IL-1β, TNFα, and CD68 in male placenta. Our results suggest that a proinflammatory placental profile results in detrimental alterations in nutrient transport which may contribute to the developmental origins of cardio-metabolic disturbances in offspring throughout life. PMID:25991721

  5. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta

    PubMed Central

    Reynolds, Clare M; Vickers, Mark H; Harrison, Claudia J; Segovia, Stephanie A; Gray, Clint

    2015-01-01

    Maternal high fat and salt consumption are associated with developmental programming of disease in adult offspring. Inadequacies in placental nutrient transport may explain these ‘programmed effects’. Diet-induced inflammation may have detrimental effects on placental function leading to alteration of key nutrient transporters. We examined the effects of maternal high fat and/or salt diets on markers of placental nutrient transport and inflammation. Sprague–Dawley rats were assigned to (1) control (CD; 1% Salt 10% kcal from fat); (2) high salt (SD; 4% salt, 10% kcal from fat); (3) high fat (HF; 1% Salt 45% kcal from fat) or (4) high fat high salt (HFSD; 4% salt, 45% kcal from fat) 21 days prior to and throughout gestation. At embryonic day 18, dams were killed by isoflurane anesthesia followed by decapitation; placenta/fetuses were weighed, sexed, and collected for molecular analysis. Maternal SD, HF, and HFSD consumption decreased weight of placenta derived from male offspring; however, weight of placenta derived from female offspring was only reduced with maternal HF diet. This was associated with increased expression of LPL, SNAT2, GLUT1, and GLUT4 in placenta derived from male offspring suggesting increased fetal exposure to free fatty acids and glucose. Maternal SD, HF, and HFSD diet consumption increased expression of proinflammatory mediators IL-1β, TNFα, and CD68 in male placenta. Our results suggest that a proinflammatory placental profile results in detrimental alterations in nutrient transport which may contribute to the developmental origins of cardio-metabolic disturbances in offspring throughout life. PMID:25991721

  6. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats.

    PubMed

    Beery, Annaliese K; McEwen, Lisa M; MacIsaac, Julia L; Francis, Darlene D; Kobor, Michael S

    2016-01-01

    This article is part of a Special Issue "Parental Care". Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr DNA methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by "high" licking-grooming (HL) and "low" licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr DNA methylation was significantly lower at multiple CpGs in the blood of LL versus HL males, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in DNA methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr DNA methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences across tissues are not supported for individual variation in Oxtr methylation. PMID:26122287

  7. COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*

    PubMed Central

    Caffrey, Martha K.; Febo, Marcelo

    2013-01-01

    BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

  8. Generational reproductive outcomes in Wistar rats maternally exposed to Ricinus communis oil at different stages of gestation.

    PubMed

    Salami, S A; Raji, Y

    2015-10-01

    Fetal programming hypothesis presupposes that stimulus or insult acting during critical periods of uterine growth and development may permanently alter tissue structure and function. Ricinus communis oil (RCO) has been reported to possess/used as laxative, labor-inducing and estrogenic properties. Generational reproductive effects of maternal exposure to RCO was investigated in rats. A total of 25 pregnant rats randomly assigned to five equal groups were treated with distilled water (control, group 1), RCO (950 mg/kg p.o.) during gestation days (GD) 1-7, 7-14, 14-21 and 1-21, respectively. Birth weight, morphometric data, anogenital distance (AGD), pubertal age, sperm parameters, hormonal profile, organ weight and histopathology were determined in the first (F1) and second (F2) filial generations. Results showed a significant decrease (P<0.05) in birth weight/morphometric data in male pups from the GD 1-7 and 7-14 groups. AGD decreased significantly in RCO-treated F1 males. Pubertal age of F1 females decreased significantly (P<0.05) compared with controls. At postnatal day 90, F1 males from the RCO-treated group showed significant decrease in testis weight, body weight, sperm count, motility and normal morphology. Testosterone levels were significantly decreased in RCO-treated F1 males, which also showed testicular interstitial edema and epididymal hypospermia. Only pubertal indexes were altered in F2 rats. Maternal exposure to RCO at early gestation periods impaired androgen-mediated reproductive end points in the first generation of rats. RCO exhibits endocrine disrupting capabilities. PMID:26118402

  9. Effects of environmental stress during pregnancy on maternal and fetal plasma corticosterone and progesterone in the rat

    SciTech Connect

    Fleming, D.E.; Rhees, R.W.; Williams, S.R.; Kurth, S.M.

    1986-03-01

    Prenatal stress applied during a presumed critical period (third trimester) for sexual differentiation of the brain has been shown to alter development and influence sexual behavior. This experiment was designed to study the effects of environmental stress (restraint/illumination/heat) on maternal and fetal plasma corticosterone and progesterone titers. These hormones were studied since corticosterone has been shown to alter brain differentiation and progesterone has anti-androgen properties and since the secretion of both from the adrenal cortex is stimulated by ACTH. Plasma corticosterone and progesterone titers of both stressed and control gravid rats and their fetuses were measured on gestational days 18 and 20 by radioimmunoassay. Prenatal stress significantly reduced fetal body weight and fetal adrenal weight. Maternal pituitary weight was significantly increased. Prenatal stress caused a significant elevation in maternal corticosterone and progesterone titers and in fetal corticosterone titers. There was no difference between prenatal stressed and control fetal plasma progesterone levels. These data demonstrate that environmental stress significantly increases adrenal activity beyond that brought about naturally by pregnancy, and therefore may modify sequential hormonal events during fetal development.

  10. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning.

    PubMed

    Franco, J G; Fernandes, T P; Rocha, C P D; Calvio, C; Pazos-Moura, C C; Lisboa, P C; Moura, E G; Trevenzoli, I H

    2012-11-01

    Maternal nutritional status affects the future development of offspring. Both undernutrition and overnutrition in critical periods of life (gestation or lactation) may cause several hormonal changes in the pups and programme obesity in the adult offspring. We have shown that hyperleptinaemia during lactation results in central leptin resistance, higher adrenal catecholamine secretion, hyperthyroidism, and higher blood pressure and heart rate in the adult rats. Here, we evaluated the effect of a maternal isocaloric high-fat diet on breast milk composition and its impact on leptinaemia, energy metabolism, and adrenal and thyroid function of the offspring at weaning. We hypothesised that the altered source of fat in the maternal diet even under normal calorie intake would disturb the metabolism of the offspring. Female Wistar rats were fed a normal (9% fat; C group) or high-fat diet (29% fat as lard; HF group) for 8 weeks before mating and during pregnancy and lactation. HF mothers presented increased total body fat content after 8 weeks (+27%, P < 0.05) and a similar fat content at the end of lactation. In consequence, the breast milk from the HF group had higher concentration of protein (+18%, P < 0.05), cholesterol (+52%, P < 0.05) and triglycerides (+86%, P < 0.05). At weaning, HF offspring had increased body weight (+53%, P < 0.05) and adiposity (2 fold, P < 0.05), which was associated with lower ?3-adrenoreceptor content in adipose tissue (-40%, P < 0.05). The offspring also presented hyperglycaemia (+30%, P < 0.05) and hyperleptinaemia (+62%, P < 0.05). In the leptin signalling pathway in the hypothalamus, we found lower p-STAT3/STAT3 (-40%, P < 0.05) and SOCS3 (-55%, P < 0.05) content in the arcuate nucleus, suggesting leptin resistance. HF offspring also had higher adrenal catecholamine content (+17%, P < 0.05), liver glycogen content (+50%, P < 0.05) and hyperactivity of the thyroid axis at weaning. Our results suggest that a high fat diet increases maternal body fat and this additional energy is transferred to the offspring during lactation, since at weaning the dams had normal fat and the pups were obese. The higher fat and protein concentrations in the breast milk seemed to induce early overnutrition in the HF offspring. In addition to storing energy as fat, the HF offspring had a larger reserve of glycogen and hyperglycaemia that may have resulted from increased gluconeogenesis. Hyperleptinaemia may stimulate both adrenal medullary and thyroid function, which may contribute to the development of cardiovascular diseases. These early changes induced by the maternal high-fat diet may contribute to development of metabolic syndrome. PMID:22869015

  11. Intrauterine Growth Restricted Rats Exercised at Pregnancy: Maternal-Fetal Repercussions.

    PubMed

    Corvino, S B; Netto, A O; Sinzato, Y K; Campos, K E; Calderon, I M P; Rudge, M V C; Volpato, G T; Zambrano, E; Damasceno, D C

    2015-08-01

    To evaluate the effect of swimming in pregnant rats born with intrauterine growth restriction (IUGR) and their offspring, IUGR rats were obtained using the streptozotocin-induced severe diabetic (SD) rats. In this study, the nondiabetic parental generation presented 10 rats and diabetic parental generation presented 116 rats. Of these, the mated nondiabetic female rats were 10 and the number of diabetic rats was 45. In relation to term pregnancy, there were 10 animals in the nondiabetic group and 15 rats in the diabetic group. In the offspring of SD rats (IUGR group), 43 females were classified as small for pregnancy age, 19 rats were classified as appropriate for pregnancy age, and 0 female was classified as large for pregnancy age. The nondiabetic and SD pregnant rats generated offspring with appropriate (control [C]) and small (IUGR) weight for pregnancy age, respectively. At adult life, the C group was maintained as nonexercised C group and IUGR rats were distributed into 2 subgroups, namely, nonexercised (IUGR) and exercised (IUGRex). The rate of mated rats in the IUGR group was reduced compared to the C group. During pregnancy, the IUGR rats presented hyperinsulinemia, impaired reproductive outcomes, decreased body weight, hypertriglyceridemia, and hyperlactacidemia. The IUGRex presented reduced insulin and triglyceride levels. Thus, swimming improved lipid metabolism and increased insulin sensitivity. However, the offspring showed retarded growth, reinforcing the need to stimulate the exercise practice in women under supervision with different professional expertise to promote appropriate gestational conditions and improve perinatal outcomes. PMID:25761405

  12. Effect of maternal alcohol and nicotine intake, individually and in combination, on fetal growth in the rat

    SciTech Connect

    Leichter, J. )

    1991-03-15

    The effect of maternal ethanol and nicotine administration, separately and in combination, on fetal growth of rats was studied. Nicotine was administered by gavage for the entire gestational period. Alcohol was given in drinking water for 4 weeks prior to mating and 30% throughout gestation. Appropriate pair-fed and ad libitum control animals were included to separate the effect of ethanol and nicotine on the outcome of pregnancy from those produced by the confounding variables of malnutrition. Body weights of fetuses exposed to alcohol alone or in combination with nicotine were significantly lower than those of the pair-fed and ad libitum controls. However, the difference in fetal body weight between the alcohol plus nicotine and the alcohol alone group was not significant. Similarly, in the rats administered nicotine only, fetal weight was not significantly different compared to control animals. The results of this study indicate that maternal alcohol intake impairs fetal growth and nicotine does not, regardless whether it is administered separately or in combination with alcohol for the entire gestational period.

  13. Structural equation modeling and nested ANOVA: Effects of lead exposure on maternal and fetal growth in rats

    SciTech Connect

    Hamilton, J.D. ); O'Flaherty, E.J.; Shukla, R.; Gartside, P.S. ); Ross, R. )

    1994-01-01

    This study provided an assessment of the effects of lead on early growth in rats based on structural equation modeling and nested analysis of variance (ANOVA). Structural equation modeling showed that lead in drinking water (250, 500, or 1000 ppm) had a direct negative effect on body weight and tail length (i.e., growth) in female rats during the first week of exposure. During the following 2 weeks of exposure, high correlation between growth measurements taken over time resulted in reduced early postnatal growth. By the fourth week of exposure, reduced growth was not evident. Mating began after 8 weeks of exposure, and exposure continued during gestation. Decreased fetal body weight was detected when the effects of litter size, intrauterine position, and sex were controlled in a nested ANOVA. Lead exposure did not appear to affect fetal skeletal development, possibly because lead did not alter maternal serum calcium and phosphorus levels. The effect of lead on individual fetal body weight suggests that additional studies are needed to examine the effect of maternal lead exposure on fetal development and early postnatal growth. 24 refs., 4 figs., 6 tabs.

  14. Treatment with a Monoclonal Antibody against Methamphetamine and Amphetamine Reduces Maternal and Fetal Rat Brain Concentrations in Late Pregnancy

    PubMed Central

    White, Sarah J.; Hendrickson, Howard P.; Atchley, William T.; Laurenzana, Elizabeth M.; Gentry, W. Brooks; Williams, D. Keith; Owens, S. Michael

    2014-01-01

    We hypothesized that treatment of pregnant rat dams with a dual reactive monoclonal antibody (mAb4G9) against (+)-methamphetamine [METH; equilibrium dissociation rate constant (KD) = 16 nM] and (+)-amphetamine (AMP; KD = 102 nM) could confer maternal and fetal protection from brain accumulation of both drugs of abuse. To test this hypothesis, pregnant Sprague-Dawley rats (on gestational day 21) received a 1 mg/kg i.v. METH dose, followed 30 minutes later by vehicle or mAb4G9 treatment. The mAb4G9 dose was 0.56 mole-equivalent in binding sites to the METH body burden. Pharmacokinetic analysis showed baseline METH and AMP elimination half-lives were congruent in dams and fetuses, but the METH volume of distribution in dams was nearly double the fetal values. The METH and AMP area under the serum concentration-versus-time curves from 40 minutes to 5 hours after mAb4G9 treatment increased >7000% and 2000%, respectively, in dams. Fetal METH serum did not change, but AMP decreased 23%. The increased METH and AMP concentrations in maternal serum resulted from significant increases in mAb4G9 binding. Protein binding changed from ∼15% to > 90% for METH and AMP. Fetal serum protein binding appeared to gradually increase, but the absolute fraction bound was trivial compared with the dams. mAb4G9 treatment significantly reduced METH and AMP brain values by 66% and 45% in dams and 44% and 46% in fetuses (P < 0.05), respectively. These results show anti-METH/AMP mAb4G9 therapy in dams can offer maternal and fetal brain protection from the potentially harmful effects of METH and AMP. PMID:24839971

  15. Disruptions in the hypothalamic-pituitary-gonadal axis in rat offspring following prenatal maternal exposure to lipopolysaccharide.

    PubMed

    Izvolskaia, Marina S; Tillet, Yves; Sharova, Viktoria S; Voronova, Svetlana N; Zakharova, Lyudmila A

    2016-03-01

    Postnatal treatment with bacterial endotoxin lipopolysaccharide (LPS) changes the activity of the hypothalamic-pituitary-gonadal (HPG) axis and the gonadotropin-releasing hormone (GnRH) surge in rats. Exposure to an immune challenge in the critical periods of development has profound and long-lasting effects on the stress response, immune, metabolic, and reproductive functions. Prenatal LPS treatment delays the migration of GnRH neurons associated with increased cytokine release in maternal and fetal compartments. We investigated the effects of a single maternal exposure to LPS (18 μg/kg, i.p.) on day 12 (embryonic day (E)12) of pregnancy on reproductive parameters in rat offspring. Hypothalamic GnRH content, plasma luteinizing hormone (LH), testosterone, and estradiol concentrations were measured in both male and female offsprings at different stages of postnatal development by RIA and ELISA (n = 10 each per group). Body weight and in females day of vaginal opening (VO) were recorded. In offspring exposed to LPS prenatally, compared with controls, body weight was decreased in both sexes at P5 and P30; in females, VO was delayed; hypothalamic GnRH content was decreased at postnatal days 30-60 (P30-P60) in both sexes; plasma LH concentration was decreased at P14-P60 in females; plasma concentrations of testosterone/estradiol were increased at P14 in females, and plasma estradiol was increased at P14 in males. Hence activation of the maternal immune system by LPS treatment at a prenatal critical period leads to decreased GnRH and LH levels in pre- and postpubertal life and sex steroid imbalance in the prepubertal period, and delayed sexual maturation of female offspring. PMID:26941006

  16. Intergenerational effects of cocaine on maternal aggressive behavior and brain oxytocin in rat dams.

    PubMed

    McMurray, M S; Joyner, P W; Middleton, C W; Jarrett, T M; Elliott, D L; Black, M A; Hofler, V E; Walker, C H; Johns, J M

    2008-09-01

    Gestational cocaine treatment results in significantly increased maternal aggression towards an intruder by postpartum day six, while acute postpartum treatment dose dependently decreases maternal aggressive (MA) behavior. Both increased and decreased aggression in the cocaine-treated dams are correlated with either decreased or increased levels of oxytocin in the amygdala, respectively. The current study was an effort to determine whether the effect of gestational cocaine on maternal aggression is transient or would continue into the postpartum period; whether an intermittent cocaine treatment regimen, which incorporates gestational and postpartum intermittent cocaine treatment, would differ from chronic daily gestational treatment; and finally, whether next generation female offspring of cocaine-treated or control dams would have altered MA behavior and oxytocin system changes attributable to either prenatal drug exposure, rearing condition or both. We now report no increase in maternal aggression following chronic gestational treatment and significantly lower levels of aggression in intermittently treated dams on postpartum day eight, with no significant effects in either group on postpartum day 12. Young adult female offspring of the cocaine-treated and control dams, who reared their own natural litters and were tested on postpartum day eight for maternal aggression, had higher levels of maternal aggression towards an intruder attributable to both prenatal cocaine exposure and rearing condition. Higher aggression in cocaine-reared next generation dams was associated with lower levels of oxytocin in the amygdala. Intergenerational effects of cocaine were apparent with respect to aggression and oxytocin system changes. PMID:18609307

  17. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat

    PubMed Central

    Cerf, Marlon E.; Herrera, Emilio

    2016-01-01

    Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status. PMID:26742067

  18. Periaqueductal gray μ and κ opioid receptors determine behavioral selection from maternal to predatory behavior in lactating rats.

    PubMed

    Klein, Marianne Orlandini; Cruz, Aline de Mello; Machado, Franciele Corrêa; Picolo, Gisele; Canteras, Newton Sabino; Felicio, Luciano Freitas

    2014-11-01

    Every mother must optimize her time between caring for her young and her subsistence. The rostro lateral portion of the periaqueductal grey (rlPAG) is a critical site that modulates the switch between maternal and predatory behavior. Opioids play multiple roles in both maternal behavior and this switching process. The present study used a pharmacological approach to evaluate the functional role of rlPAG μ and κ opioid receptors in behavioral selection. Rat dams were implanted with a guide cannula in the rlPAG and divided into three experiments in which we tested the role of opioid agonists (Experiment 1), the influence of μ and κ opioid receptor blockade in the presence of morphine (Experiment 2), and the influence of μ and κ opioid receptor blockade (Experiment 3). After behavioral test, in Experiment 4, we evaluated rlPAG μ and κ receptor activation in all Experiments 1-3. The results showed that massive opioidergic activation induced by morphine in the rlPAG inhibited maternal behavior without interfering with predatory hunting. No behavioral changes and no receptor activation were promoted by the specific agonist alone. However, κ receptor blockade increased hunting behavior and increased the level of μ receptor activation in the rlPAG. Thus, endogenous opioidergic tone might be modulated by a functional interaction between opioid receptor subtypes. Such a compensatory receptor interaction appears to be relevant for behavioral selection among motivated behaviors. These findings indicate a role for multiple opioid receptor interactions in the modulation of behavioral selection between maternal and predatory behaviors in the PAG. PMID:25116253

  19. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat.

    PubMed

    Cerf, Marlon E; Herrera, Emilio

    2016-01-01

    Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs). We therefore determined the maternal fatty acid (FA) profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1), second (HF2), or third (HF3) week, or for all three weeks (HFG) of gestation. Total maternal plasma non-esterified fatty acid (NEFA) concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA) was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA) proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status. PMID:26742067

  20. Dimethadione embryotoxicity in the rat is neither correlated with maternal systemic drug concentrations nor embryonic tissue levels.

    PubMed

    Ozolinš, Terence R S; Weston, Andrea D; Perretta, Anthony; Thomson, Jason J; Brown, Nigel A

    2015-11-15

    Pregnant rats treated with dimethadione (DMO), the N-demethylated metabolite of the anticonvulsant trimethadione, produce offspring having a 74% incidence of congenital heart defects (CHD); however, the incidence of CHD has high inter-litter variability (40-100%) that presents a challenge when studying the initiating events prior to the presentation of an abnormal phenotype. We hypothesized that the variability in CHD incidence was the result of differences in maternal systemic concentrations or embryonic tissue concentrations of DMO. To test this hypothesis, dams were administered 300 mg/kg DMO every 12h from the evening of gestational day (GD) 8 until the morning of GD 11 (six total doses). Maternal serum levels of DMO were assessed on GD 11, 12, 13, 14, 15, 18 and 21. Embryonic tissue concentrations of DMO were assessed on GD 11, 12, 13 and 14. In a separate cohort of GD 12 embryos, DMO concentrations and parameters of growth and development were assessed to determine if tissue levels of DMO were correlated with these endpoints. Embryos were exposed directly to different concentrations of DMO with whole embryo culture (WEC) and their growth and development assessed. Key findings were that neither maternal systemic concentrations nor tissue concentrations of DMO identified embryos that were sensitive or resistant to DMO in vivo. Direct exposure of embryos to DMO via WEC also failed to show correlations between embryonic concentrations of DMO with developmental outcomes in vitro. We conclude that neither maternal serum nor embryonic tissue concentrations of DMO predict embryonic outcome. PMID:26375719

  1. Protein restriction in hepatic encephalopathy is appropriate for selected patients: a point of view

    PubMed Central

    Morgan, Timothy

    2014-01-01

    Since the late nineteenth century, protein restriction has been shown to improve hepatic encephalopathy. However, malnutrition has been described in up to 60 % of cirrhotic patients and is associated with increased mortality. Furthermore, emerging clinical evidence has revealed that a large proportion of cirrhotic patients may tolerate normal protein intake. However, approximately one third of cirrhotic patients with hepatic encephalopathy may need a short course of protein restriction, in addition to maximum medical therapy, to ameliorate the clinical course of their hepatic encephalopathy. For patients with chronic hepatic encephalopathy who are protein-sensitive, modifying their sources of nitrogen by using more vegetable protein, less animal protein, and branched-chain amino acids may improve their encephalopathy without further loss of lean body mass. In conclusion, among cirrhotics with hepatic encephalopathy, modulation of normal protein intake must take into account the patients hepatic reserve, severity of hepatic encephalopathy, and current nutritional status. PMID:25525477

  2. 1,25(OH) sub 2 D sub 3 and Ca-binding protein in fetal rats: Relationship to the maternal vitamin D status

    SciTech Connect

    Verhaeghe, J.; Thomasset, M.; Brehier, A.; Van Assche, F.A.; Bouillon, R. Institut National de la Sante et de la Recherche Medical )

    1988-04-01

    The autonomy and functional role of fetal 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) were investigated in nondiabetic and diabetic BB rats fed diets containing 0.85% calcium-0.7% phosphorus or 0.2% calcium and phosphorus and in semistarved rats on the low calcium-phosphorus diet. The changes in maternal and fetal plasma 1,25(OH){sub 2}D{sub 3} were similar: the levels were increased by calcium-phosphorus restriction and decreased by diabetes and semistarvation. Maternal and fetal 1,25(OH){sub 2}D{sub 3} levels were correlated. The vitamin D-dependent calcium-binding proteins (CaBP{sub 9K} and CaBP{sub 28K}) were measured in multiple maternal and fetal tissues and in the placenta of nondiabetic, diabetic, and calcium-phosphorus-restricted rats. The distributions of CaBP{sub 9K} and CaBP{sub 28K} in the pregnant rat were similar to that of the growing rat. The increased maternal plasma 1,25(OH){sub 2}D{sub 3} levels in calcium-phosphorus-restricted rats were associated with higher duodenal CaBP{sub 9K} and renal CaBPs, but placental CaBP{sub 9K} was not different. In diabetic pregnant rats, duodenal CaBP{sub 9K} was not different. In diabetic pregnant rats, duodenal CaBP{sub 9K} tended to be lower, while renal CaBPs were normal; placental CaBP{sub 9K} was decreased. The results indicate that in the rat fetal 1,25(OH){sub 2}D{sub 3} depends on maternal 1,25(OH){sub 2}D{sub 3} or on factors regulating maternal 1,25(OH){sub 2}D{sub 3}. The lack of changes in fetal CaBP in the presence of altered fetal plasma 1,25(OH){sub 2}D{sub 3} levels confirms earlier data showing that 1,25(H){sub 2}D{sub 3} has a limited hormonal function during perinatal development in the rat.

  3. Gestational protein restriction impairs insulin-regulated glucose transport mechanisms in gastrocnemius muscles of adult male offspring.

    PubMed

    Blesson, Chellakkan S; Sathishkumar, Kunju; Chinnathambi, Vijayakumar; Yallampalli, Chandrasekhar

    2014-08-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet-exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet-fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor substrate-1, and AS160 phosphorylation and impaired glucose transporter type 4 translocation. PMID:24797633

  4. Fish oil supplementation of maternal rats on an n-3 fatty acid-deficient diet prevents depletion of maternal brain regional docosahexaenoic acid levels and has a postpartum anxiolytic effect.

    PubMed

    Chen, Hui-Feng; Su, Hui-Min

    2012-03-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are the major polyunsaturated fatty acids (PUFA) in the neuronal membrane. Most DHA and AA accumulation in the brain occurs during the perinatal period via placenta and milk. This study examined whether maternal brain levels of DHA and AA are depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring and evaluated the effects of the reproductive cycle on serotonin metabolism and of fish oil (FO) on postpartum anxiety. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet without or with FO supplementation, which provided 0.37% of the energy source as n-3 PUFA, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina, while AA depletion was seen only in the hypothalamus, hippocampus and frontal cortex. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. FO supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that FO supplementation may be beneficial for postpartum anxiety in women on an n-3 PUFA-deficient diet. PMID:21543216

  5. Enhanced Maternal Aggression and Associated Changes in Neuropeptide Gene Expression in Multiparous Rats

    PubMed Central

    Nephew, Benjamin C.; Bridges, Robert S.; Lovelock, Dennis F.; Byrnes, Elizabeth M.

    2009-01-01

    While it has often been speculated that prior reproductive experience improves subsequent maternal care, few studies have examined specific changes in behavior during a first versus second lactation. During lactation mothers display heightened aggression toward male intruders, purportedly to protect vulnerable young. In the current study, maternal aggression was examined in primiparous and age-matched, multiparous females on postpartum days 5 (PPD5) and PPD15. Expression of oxytocin (OXT), oxytocin receptor (OXT-R), arginine vasopressin (AVP), arginine vasopressin V1a receptors (V1a), and corticotrophin releasing hormone (CRH) mRNA was measured following aggression testing at both time points using real-time quantitative PCR (qPCR) in brain regions previously implicated in the regulation of maternal aggression. Multiparity significantly enhanced maternal aggression on PPD5 but not on PPD15. In addition, this increased aggression was associated with region and gene specific changes in mRNA expression. These findings indicate that reproductive experience enhances maternal aggression, an effect that may be mediated by region specific alterations in neuropeptidergic activity. The adaptations observed in multiparous females provide an innate model for the study of neuroplasticity in the regulation of aggression. PMID:19824761

  6. Maternal low protein diet leads to placental angiogenic compensation via dysregulated M1/M2 macrophages and TNFa expression in Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A maternal low-protein (LP) diet results in low birth weight, increased offspring rapid adipose tissue catch-up growth, adult obesity, and insulin resistance in Sprague-Dawley rats. The placenta plays key roles in nutrient transport and fetal growth. Placental function is dependent on regulation of ...

  7. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  8. Vasopressin V1a, but not V1b, receptors within the PVN of lactating rats mediate maternal care and anxiety-related behaviour.

    PubMed

    Bayerl, Doris S; Hönig, Jennifer N; Bosch, Oliver J

    2016-05-15

    The brain neuropeptide arginine-vasopressin (AVP) mediates a wide range of social behaviours via its V1a (V1aR) but also its V1b receptor (V1bR). With respect to maternal behaviour, V1bR are still less investigated, whereas V1aR have been shown repeatedly to trigger maternal behaviour, depending on the brain region. Here, we aimed to study the role of both V1aR and V1bR within the hypothalamic paraventricular nucleus (PVN), a major source of AVP, in maternal care (lactation day (LD) 1), maternal motivation in the pup retrieval test (LD 3) and anxiety-related behaviour on the elevated plus maze (EPM; LD 5) by acute local infusion of receptor subtype-specific antagonists for V1aR (d(CH2)5Tyr(Me)(2)AVP) or V1bR (SSR149415). Furthermore, we compared V1bR expression in the PVN of virgin versus lactating rats (LD 4). Our results demonstrate that within the PVN neither V1bR mRNA (qPCR) nor protein (Western Blot) content differed between virgin and lactating rats. Regarding behaviour, acute antagonism of V1aR, but not of V1bR, decreased the occurrence of nursing as well as anxiety-related behaviour as reflected by higher percentage of time spent on and of entries into the open arms of the EPM. Maternal motivation was not affected by any treatment. In summary, we demonstrate subtype-specific involvement of V1 receptors within the PVN in mediating various maternal behaviours. The lack of effects after V1bR blockade reveals that AVP acts mainly via V1aR in the PVN, at least in lactating rats, to mediate maternal care and anxiety. PMID:26909846

  9. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats.

    PubMed

    Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A; Viveros, Maria-Paz

    2015-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect. PMID:26382238

  10. Heightened fear in response to a safety cue and extinguished fear cue in a rat model of maternal immune activation

    PubMed Central

    Sangha, Susan; Greba, Quentin; Robinson, Paul D.; Ballendine, Stephanie A.; Howland, John G.

    2014-01-01

    Maternal immune activation (MIA) during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia and autism in the offspring. Hence, changes in an array of behaviors, including behavioral flexibility, consistent with altered functioning of cortico-limbic circuits have been reported in rodent models of MIA. Surprisingly, previous studies have not examined the effect of MIA on the extinction of fear conditioning which depends on cortico-limbic circuits. Thus, we tested the effects of treating pregnant Long Evans rats with the viral mimetic polyI:C (gestational day 15; 4 mg/kg; i.v.) on fear conditioning and extinction in the male offspring using two different tasks. In the first experiment, we observed no effect of polyI:C treatment on the acquisition or extinction of a classically conditioned fear memory in a non-discriminative auditory cue paradigm. However, polyI:C-treated offspring did increase contextual freezing during the recall of fear extinction in this non-discriminative paradigm. The second experiment utilized a recently developed task to explicitly test the ability of rats to discriminate among cues signifying fear, reward, and safety; a task that requires behavioral flexibility. To our surprise, polyI:C-treated rats acquired the task in a manner similar to saline-treated rats. However, upon subsequent extinction training, they showed significantly faster extinction of the freezing response to the fear cue. In contrast, during the extinction recall test, polyI:C-treated offspring showed enhanced freezing behavior before and after presentation of the fear cue, suggesting an impairment in their ability to regulate fear behavior. These behavioral results are integrated into the literature suggesting impairments in cortico-limbic brain function in the offspring of rats treated with polyI:C during pregnancy. PMID:24847231

  11. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats

    PubMed Central

    Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A.; Viveros, Maria-Paz

    2015-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect. PMID:26382238

  12. Central neural responses to restraint stress are altered in rats with an early life history of repeated brief maternal separation

    PubMed Central

    Banihashemi, Layla; O’Neill, Elizabeth J.; Rinaman, Linda

    2011-01-01

    Repeated brief maternal separation (i.e., 15 minutes daily, MS15) of rat pups during the first one to two postnatal weeks enhances active maternal care received by the pups and attenuates their later behavioral and neuroendocrine responses to stress. In previous work, we found that MS15 also alters the developmental assembly and later structure of central neural circuits that control autonomic outflow to the viscera, suggesting that MS15 may alter central visceral circuit responses to stress. To examine this, juvenile rats with a developmental history of either MS15 or no separation (NS) received microinjection of retrograde neural tracer, FluoroGold (FG), into the hindbrain dorsal vagal complex (DVC). After one week, FG-injected rats and surgically intact littermates were exposed to either a 15-minute restraint stress or an unrestrained control condition, and then perfused one hour later. Brain tissue sections from surgically-intact littermates were processed for Fos alone or in combination with phenotypic markers to examine stress-induced activation of neurons within the paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), and hindbrain DVC. Compared to NS controls, MS15 rats displayed less restraint-induced Fos activation within the dorsolateral BNST (dBNST), the caudal PVN, and noradrenergic neurons within the caudal DVC. To examine whether these differences corresponded with altered neural inputs to the DVC, sections from tracer-injected rats were double-labeled for FG and Fos to quantify retrogradely-labeled neurons within hypothalamic and limbic forebrain regions of interest, and the proportion of these neurons activated after restraint. Only the dBNST displayed a significant effect of postnatal experience on restraint-induced Fos activation of DVC-projecting neurons. The distinct regional effects of MS15 on stress-induced recruitment of neurons within hypothalamic, limbic forebrain, and hindbrain regions has interesting implications for understanding how early life experience shapes the functional organization of stress-responsive circuits. PMID:21736922

  13. CRF-R1 activation in the anterior-dorsal BNST induces maternal neglect in lactating rats via an HPA axis-independent central mechanism

    PubMed Central

    Klampfl, Stefanie M.; Brunton, Paula J.; Bayerl, Doris S.; Bosch, Oliver J.

    2016-01-01

    Adequate maternal behavior in rats requires minimal corticotropin-releasing factor receptor (CRF-R) activation in the medial-posterior bed nucleus of the stria terminalis (mpBNST). Based on the architectural heterogeneity of the BNST and its distinct inter-neural connectivity, we tested whether CRF-R manipulation in another functional part, the anterior-dorsal BNST (adBNST), differentially modulates maternal behavior. We demonstrate that in the adBNST, activation of CRF-R1 reduced arched back nursing (ABN) and nursing, whereas activation of CRF-R2 resulted in an initial reduction in nursing but significantly increased the incidence of ABN 5 h after the treatment. Following stressor exposure, which is detrimental to maternal care, ABN tended to be protected by CRF-R1 blockade. Maternal motivation, maternal aggression, and anxiety were unaffected by any manipulation. Furthermore, under basal and stress conditions, activation of adBNST CRF-R1 increased plasma ACTH and corticosterone concentrations, whereas stimulation of adBNST CRF-R2 increased basal plasma ACTH and corticosterone concentrations, but blocked the stress-induced increase in plasma corticosterone secretion. Moreover, both the CRF-R1 and -R2 antagonists prevented the stress-induced increase in plasma corticosterone secretion. Importantly, elevated levels of circulating corticosterone induced by intra-adBNST administration of CRF-R1 or -R2 agonist did not impact maternal care. Finally, Crf mRNA expression in the adBNST was increased during lactation; however, Crfr1 mRNA expression was similar between lactating and virgin rats. In conclusion, maternal care is impaired by adBNST CRF-R1 activation, and this appears to be the result of a central action, rather than an effect of elevated circulating levels of CORT. These data provide new insights into potential causes of disturbed maternal behavior postpartum. PMID:26630389

  14. Influence of Maternal Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Socioemotional Behaviors in Offspring Rats

    PubMed Central

    Nguyen, Anh T.N.; Nishijo, Muneko; Hori, Etsuro; Nguyen, Nui M.; Pham, Tai T.; Fukunaga, Kohji; Nakagawa, Hideaki; Tran, Anh H.; Nishijo, Hisao

    2013-01-01

    Effects of dioxins on cognitive functions were reported in previous studies conducted in humans and animals. In the present study, we investigated the influence of dioxin exposure during pregnancy on social interaction and on the activity of offspring, which are related to neurodevelopmental disturbances. In addition, we analyzed neurochemical alterations of the limbic system of rat brains to suggest one mechanism of dioxin effects on brain function. We believe that this manuscript is suitable for publication in Environmental Health Insights because it provides an interesting topic for a wide global audience. To clarify the relationships between maternal dioxin exposure and socioemotional functions of rat offspring, dams were given TCDD (1.0 ?g/kg) on gestational day 15. Social interactions and forced swimming time were compared between TCDD-exposed and control offspring in each gender. Frequency and duration of locomotion were higher, and durations per one behavior of proximity and social contact were significantly lower in the exposed males, while only the duration of proximity was lower in the exposed females. Forced swimming time on the first day was significantly longer in the exposed males. In the limbic system of the rat brain, the levels and/or activity of CaMKII? were decreased in males and were increased in females in the exposed offspring. These results suggest that prenatal TCDD exposure induces hyperactivity and socioemotional deficits, particularly in the male offspring due to alterations in CaMKII? activity in the limbic system of the brain. PMID:23493046

  15. RAT PLACENTATION: AN EXPERIMENTAL MODEL FOR INVESTIGATING THE HEMOCHORIAL MATERNAL-FETAL INTERFACE

    PubMed Central

    Soares, Michael J.; Chakraborty, Damayanti; Rumi, M.A. Karim; Konno, Toshihiro; Renaud, Stephen J.

    2011-01-01

    The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research. PMID:22284666

  16. FETAL ANEMIA FOLLOWING MATERNAL EXPOSURE TO 5-FLUOROURACIL IN THE RAT

    EPA Science Inventory

    This study examined dose-dependent changes in fetal hematology after maternal 5-FU exposure (0, 20, 30, 40 mg/kg on GD14) to assess 1) hematopoiesis as a potential target for its developmental toxicity, and 2) the significance of the resultant fetal anemia to developmental outcom...

  17. Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity at conception increases the risk of offspring obesity, thus propagating an intergenerational vicious cycle. Male offspring born to obese dams are hyper-responsive to high fat diets, gaining greater body weight, fat mass and additional metabolic sequelae compared to lean controls. ...

  18. Effect of maternal obesity on fetal bone development in the rat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological studies show that quality of nutrition during intrauterine and postnatal early life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...

  19. Gestational ethanol and nicotine exposure: effects on maternal behavior, oxytocin, and offspring ethanol intake in the rat.

    PubMed

    McMurray, M S; Williams, S K; Jarrett, T M; Cox, E T; Fay, E E; Overstreet, D H; Walker, C H; Johns, J M

    2008-01-01

    Alcohol consumption and smoking during pregnancy is common, despite the known adverse effects of these drugs on fetal development. Though studies on the effects of each drug separately are published, little is known about the effect of concurrent use of alcohol and nicotine in humans or in preclinical models. In this report, we examined the impact of continuous gestational exposure to both ethanol via liquid diet and nicotine via an osmotic minipump on maternal behavior, offspring ethanol intake, and oxytocin levels in a rat model. Dams were tested for the onset of maternal behavior with litters of unexposed surrogate pups and then killed to examine oxytocin levels within specific brain regions. Drug-exposed offspring reared by surrogate dams were tested for ethanol intake at either adolescence or adulthood, and oxytocin levels were measured in relevant brain regions after behavioral tests. Dams exhibited minor deficits in maternal care, which were associated with lower oxytocin levels in both the ventral tegmental and medial preoptic areas compared to control dams. Prenatal exposure altered sex-specific ethanol intake, with differential effects at adolescence and adulthood. Oxytocin system changes were also apparent in the ventral tegmental and medial preoptic regions of drug-exposed adolescent and adult offspring. These results suggest that dam treatment with ethanol and nicotine can somewhat negatively affect the early rearing environment, and that prenatal exposure to both of these drugs results in drinking behavior differing from what would be expected from either drug alone. Oxytocin's possible involvement in the mediation of these effects is highlighted. PMID:18664381

  20. Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience?

    PubMed Central

    Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Garrido, Pedro; Zelena, Dóra; Monasterio, Nela; Armario, Antonio; Nadal, Roser

    2014-01-01

    Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces “detrimental” effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a “substitute” mother. The maternal care of biological and “substitute” mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the “substitute” mother did not exhibit overt maltreatment. A mixture of “detrimental” and “beneficial” effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may “buffer” the effects of ELS in a context-dependent manner. PMID:24616673

  1. Maternal undernutrition leads to elevated hepatic triglycerides in male rat offspring due to increased expression of lipoprotein lipase.

    PubMed

    Zhu, Wei-Fen; Zhu, Jian-Fang; Liang, Li; Shen, Zheng; Wang, Ying-Min

    2016-05-01

    Small for gestational age (SGA) at birth increases the risk of developing metabolic syndrome, which encompasses various symptoms including hypertriglyceridemia. The aim of the present study was to determine whether maternal undernutrition during pregnancy may lead to alterations in hepatic triglyceride content and the gene expression levels of hepatic lipoprotein lipase (LPL) in SGA male offspring. The present study focused on the male offspring in order to prevent confounding factors, such as estrus cycle and hormone profile. Female Sprague Dawley rats were arbitrarily assigned to receive an ad libitum chow diet or 50% food restricted diet from pregnancy day 1 until parturition. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to measure the gene expression levels of hepatic LPL at day 1 and upon completion of the third week of age. Chromatin immunoprecipitation quantified the binding activity of liver X receptor‑α (LXR‑α) gene to the LXR response elements (LXRE) on LPL promoter and LPL epigenetic characteristics. At 3 weeks of age, SGA male offspring exhibited significantly elevated levels of hepatic triglycerides, which was concomitant with increased expression levels of LPL. Since LPL is regulated by LXR‑α, the expression levels of LXR‑α were detected in appropriate for gestational age and SGA male offspring. Maternal undernutrition during pregnancy led to an increase in the hepatic expression levels of LXR‑α, and enriched binding to the putative LXR response elements in the LPL promoter regions in 3‑week‑old male offspring. In addition, enhanced acetylation of histone H3 [H3 lysine (K)9 and H3K14] was detected surrounding the LPL promoter. The results of the present study indicated that maternal undernutrition during pregnancy may lead to an increase in hepatic triglycerides, via alterations in the transcriptional and epigenetic regulation of the LPL gene. PMID:27035287

  2. Gestational Ethanol and Nicotine Exposure: Effects on Maternal Behavior, Oxytocin, and Offspring Ethanol Intake in the Rat

    PubMed Central

    McMurray, M.S.; Williams, S.K.; Jarrett, T.M.; Cox, E.T.; Fay, E.E.; Overstreet, D.H.; Walker, C.H.; Johns, J.M.

    2008-01-01

    Alcohol consumption and smoking during pregnancy is common, despite the known adverse effects of these drugs on fetal development. Though studies on the effects of each drug separately are published, little is known about the effect of concurrent use of alcohol and nicotine in humans or in preclinical models. In this report, we examined the impact of continuous gestational exposure to both ethanol via liquid diet and nicotine via an osmotic minipump on maternal behavior, offspring ethanol intake, and oxytocin levels in a rat model. Dams were tested for the onset of maternal behavior with litters of unexposed surrogate pups and then killed to examine oxytocin levels within specific brain regions. Drug-exposed offspring reared by surrogate dams were tested for ethanol intake at either adolescence or adulthood, and oxytocin levels were measured in relevant brain regions after behavioral tests. Dams exhibited minor deficits in maternal care, which were associated with lower oxytocin levels in both the ventral tegmental and medial preoptic areas compared to control dams. Prenatal exposure altered sex-specific ethanol intake, with differential effects at adolescence and adulthood. Oxytocin system changes were also apparent in the ventral tegmental and medial preoptic regions of drug-exposed adolescent and adult offspring. These results suggest that dam treatment with ethanol and nicotine can somewhat negatively affect the early rearing environment, and that prenatal exposure to both of these drugs results in drinking behavior differing from what would be expected from either drug alone. Oxytocin’s possible involvement in the mediation of these effects is highlighted. PMID:18664381

  3. Ethanol exposure during late gestation and nursing in the rat: effects upon maternal care, ethanol metabolism and infantile milk intake.

    PubMed

    Pueta, Mariana; Abate, Paula; Haymal, Olga B; Spear, Norman E; Molina, Juan C

    2008-11-01

    Ethanol experiences, during late gestation as well as during nursing, modify the behavioral dynamics of the dam/pup dyad, and leads to heightened ethanol intake in the offspring. This study focuses on: a) behavioral and metabolic changes in intoxicated dams with previous exposure to ethanol during pregnancy and b) infantile consumption of milk when the dam is either under the effects of ethanol or sober. Pregnant rats received water, 1.0 or 2.0 g/kg ethanol, and were administered with water or ethanol during the postpartum period. Intoxication during nursing disrupted the capability of the dam to retrieve the pups and to adopt a crouching posture. These disruptions were attenuated when dams had exposure to ethanol during pregnancy. Ethanol experiences during gestation did not affect pharmacokinetic processes during nursing, whereas progressive postpartum ethanol experience resulted in metabolic tolerance. Pups suckling from intoxicated dams, with previous ethanol experiences, ingested more milk than did infants suckling from ethanol-intoxicated dams without such experience. Ethanol gestational experience results in subsequent resistance to the drug's disruptions in maternal care. Consequently, better maternal care by an intoxicated dam with ethanol experience during gestation facilitates access of pups to milk which could be contaminated with ethanol. PMID:18602418

  4. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats.

    PubMed

    Hallam, Megan C; Reimer, Raylene A

    2016-01-01

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05). Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation. PMID:26784224

  5. Maternal immune activation produces neonatal excitability defects in offspring hippocampal neurons from pregnant rats treated with poly I:C

    PubMed Central

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Maternal immune activation (MIA) resulting from prenatal exposure to infectious pathogens or inflammatory stimuli is increasingly recognized to play an important etiological role in neuropsychiatric disorders with neurodevelopmental features. MIA in pregnant rodents induced by injection of the synthetic double-stranded RNA, Poly I:C, a mimic of viral infection, leads to a wide spectrum of behavioral abnormalities as well as structural and functional defects in the brain. Previous MIA studies using poly I:C prenatal treatment suggested that neurophysiological alterations occur in the hippocampus. However, these investigations used only juvenile or adult animals. We postulated that MIA-induced alterations could occur earlier at neonatal/early postnatal stages. Here we examined the neurophysiological properties of cultured pyramidal-like hippocampal neurons prepared from neonatal (P0-P2) offspring of pregnant rats injected with poly I:C. Offspring neurons from poly I:C-treated mothers exhibited significantly lower intrinsic excitability and stronger spike frequency adaptation, compared to saline. A similar lower intrinsic excitability was observed in CA1 pyramidal neurons from hippocampal slices of two weeks-old poly I:C offspring. Cultured hippocampal neurons also displayed lower frequency of spontaneous firing, higher charge transfer of IPSCs and larger amplitude of miniature IPSCs. Thus, maternal immune activation leads to strikingly early neurophysiological abnormalities in hippocampal neurons. PMID:26742695

  6. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    PubMed Central

    Hallam, Megan C.; Reimer, Raylene A.

    2016-01-01

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05). Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation. PMID:26784224

  7. Maternal immune activation produces neonatal excitability defects in offspring hippocampal neurons from pregnant rats treated with poly I:C.

    PubMed

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Maternal immune activation (MIA) resulting from prenatal exposure to infectious pathogens or inflammatory stimuli is increasingly recognized to play an important etiological role in neuropsychiatric disorders with neurodevelopmental features. MIA in pregnant rodents induced by injection of the synthetic double-stranded RNA, Poly I:C, a mimic of viral infection, leads to a wide spectrum of behavioral abnormalities as well as structural and functional defects in the brain. Previous MIA studies using poly I:C prenatal treatment suggested that neurophysiological alterations occur in the hippocampus. However, these investigations used only juvenile or adult animals. We postulated that MIA-induced alterations could occur earlier at neonatal/early postnatal stages. Here we examined the neurophysiological properties of cultured pyramidal-like hippocampal neurons prepared from neonatal (P0-P2) offspring of pregnant rats injected with poly I:C. Offspring neurons from poly I:C-treated mothers exhibited significantly lower intrinsic excitability and stronger spike frequency adaptation, compared to saline. A similar lower intrinsic excitability was observed in CA1 pyramidal neurons from hippocampal slices of two weeks-old poly I:C offspring. Cultured hippocampal neurons also displayed lower frequency of spontaneous firing, higher charge transfer of IPSCs and larger amplitude of miniature IPSCs. Thus, maternal immune activation leads to strikingly early neurophysiological abnormalities in hippocampal neurons. PMID:26742695

  8. SENSITIVITY OF FETAL RAT TESTICULAR STEROIDOGENESIS TO MATERNAL PROCHLORAZ EXPOSURE AND THE UNDERLYING MECHANISM OF INHIBITION

    EPA Science Inventory

    Since prochloraz (PCZ) is an imidazole fungicide that inhibits gonadal steroidogenesis and antagonizes the androgen receptor (AR), we hypothesized that pubertal exposure to PCZ would delay male rat reproductive development. Sprague Dawley rats were dosed by gavage with 0, 31.3, ...

  9. FETAL AND MATERNAL EFFECTS OF CONTINUAL EXPOSURE OF RATS TO 970-MHZ CIRCULARLY-POLARIZED MICROWAVES

    EPA Science Inventory

    Virtually continual exposure to 970-MHz microwaves in circularly-polarized waveguides was used to elicit fetal responses in Sprague-Dawley rats during gestation. wo hundred fifty rats were exposed to microwave radiation at whole-body averaged specific absorption rates (SAR) of 0....

  10. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    PubMed

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. PMID:24604340

  11. Maternal low-level lead exposure reduces the expression of PSA-NCAM and the activity of sialyltransferase in the hippocampi of neonatal rat pups.

    PubMed

    Hu, Qiansheng; Fu, Hongjun; Ren, Tieling; Wang, Shuyu; Zhou, Wei; Song, Hong; Han, Yifan; Dong, Shengzhang

    2008-07-01

    Highly polysialylated neural cell adhesion molecule (PSA-NCAM) is transiently expressed specifically in newly generated cells, and is important for cell migration and neurite outgrowth. Developmental lead (Pb) exposure has been considered to affect the expression of PSA-NCAM, which contributes to the neurotoxicity of Pb exposure. However, the effect of maternal low-level Pb exposure on the expression of PSA-NCAM in neonatal rat pups has not been reported. In the present study, female Wistar rats were exposed to vehicle or different dosages of lead chloride (0.5-4mM PbCl2) 2 weeks before and during pregnancy. This exposure protocol resulted in neonatal rat pups blood Pb levels up to 12.12+/-0.38 microg/dl, and hippocampal Pb levels up to 9.22+/-0.81 microg/g at postnatal day 1 (PND 1). Immunohistochemistry analysis and Western blot analysis revealed that the expressions of PSA-NCAM and NCAM in the hippocampi of neonatal rat pups at PND 1 were significantly reduced by the maternal low-level Pb exposures. Furthermore, the mRNA levels of NCAM and polysialyltransferases (STX and PST), measured by the fluorescent real-time quantitative RT-PCR, dosage-dependently and significantly decreased by 13.26-37.62%, 25.17-59.67%, and 10.78-47.81%, respectively. In addition, the sialyltransferase activity in neonatal rat pups was significantly reduced by 6.23-32.50% in the presence of the low-level Pb exposure, too. Taken together, these results suggest that maternal low-level Pb exposure reduces the expression of PSA-NCAM, NCAM, and the activity of sialyltransferase in the hippocampi of neonatal rat pups, which might contribute to the learning and memory impairments in the developmental pups following maternal low-level Pb exposure. PMID:18499259

  12. Oxytocin mediates the acquisition of filial, odor-guided huddling for maternally-associated odor in preweanling rats

    PubMed Central

    Kojima, Sayuri; Alberts, Jeffrey R.

    2011-01-01

    The present study was designed to examine possible roles of oxytocin (OT) in the acquisition of a filial huddling preference in preweanling rats. We used a procedure in which a scented, foster mother can induce an odor-guided huddling preference in preweanling pups, following a single, 2-h-long co-habitation (Kojima & Alberts, 2009, 2011). This single, discrete period for preference learning enables us to observe the mother-pup interactions that establish the pups’ preferences and to intervene with experimental manipulations. Four, 14-day-old littermates interacted with a scented foster mother that provided maternal care during a 2-h session. Two of the pups were pretreated with an intracerebroventricular injection of OT or an oxytocin antagonist (OTA), and the others received a vehicle injection. Filial preference for a maternally-paired odor was measured in a huddling test the next day. OT is necessary for acquisition of the filial preference: Odor learning was blocked in the pups treated with OTA, but not in their vehicle-treated littermates who experienced the same mother at the same time. Injection with exogenous OT did not augment the pups’ preference. Manipulating pups’ central OT also altered the contact interactions of the mother and pups. When some pups received OT, mother-litter aggregations formed as frequently and with similar combinations of bodies, but contact aggregations were significantly more cohesive than when some pups in the litter received OTA. We discuss dual, behavioral and neuroendocrine roles of OT in social learning by preweanling rats. PMID:21872599

  13. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    PubMed

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent approaches towards the experimental simulation of congenital and early-age-occurring hypothyroidism. PMID:24972880

  14. Changes in Astroglial Markers in a Maternal Immune Activation Model of Schizophrenia in Wistar Rats are Dependent on Sex

    PubMed Central

    de Souza, Daniela F.; Wartchow, Krista M.; Lunardi, Paula S.; Brolese, Giovana; Tortorelli, Lucas S.; Batassini, Cristiane; Biasibetti, Regina; Gonçalves, Carlos-Alberto

    2015-01-01

    Data from epidemiological studies suggest that prenatal exposure to bacterial and viral infection is an important environmental risk factor for schizophrenia. The maternal immune activation (MIA) animal model is used to study how an insult directed at the maternal host can have adverse effects on the fetus, leading to behavioral and neurochemical changes later in life. We evaluated whether the administration of LPS to rat dams during late pregnancy affects astroglial markers (S100B and GFAP) of the offspring in later life. The frontal cortex and hippocampus were compared in male and female offspring on postnatal days (PND) 30 and 60. The S100B protein exhibited an age-dependent pattern of expression, being increased in the frontal cortex and hippocampus of the MIA group at PND 60, while at PND 30, male rats presented increased S100B levels only in the frontal cortex. Considering that S100B secretion is reduced by elevation of glutamate levels, we may hypothesize that this early increment in frontal cortex tissue of males is associated with elevated extracellular levels of glutamate and glutamatergic hypofunction, an alteration commonly associated with SCZ pathology. Moreover, we also found augmented GFAP in the frontal cortex of the LPS group at PND 30, but not in the hippocampus. Taken together data indicate that astroglial changes induced by MIA are dependent on sex and brain region and that these changes could reflect astroglial dysfunction. Such alterations may contribute to our understanding of the abnormal neuronal connectivity and developmental aspects of SCZ and other psychiatric disorders. PMID:26733814

  15. Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease

    PubMed Central

    2014-01-01

    Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

  16. Effects of early maternal separation on biobehavioral and neuropathological markers of Alzheimer's disease in adult male rats.

    PubMed

    Martisova, Eva; Aisa, Bárbara; Guereñu, Gorka; Ramírez, María Javier

    2013-05-01

    Stress has been described as a risk factor for the development of Alzheimer´s disease (AD). In the present work we aim to study the validity of an experimental model of neonatal chronic stress in order to recapitulate the main hallmarks of AD. Male Wistar rats that were separated daily from the dam during the first 3 weeks of life (maternal separation, MS) showed in adulthood cognitive deficits novel object recognition test. In the hippocampus of MS rats, increases in both Aβ40 and Aβ42 levels, the principal constituent of amyloid plaques observed in AD, were accompanied by increased expression of the cleaving enzyme BACE1. Hyperphosphorylation of Tau associated to increased activation of the tau kinase JNK1 was also found. Decreased cell number in the hippocampus was observed in stressed rats, as a consequence of both decreased cell proliferation and increased apoptotic death. Decreases in BDNF and in the synaptic markers synaptophysin and PSD-95 were also found in MS rats. All these effects could be related to an HPA axis hyperactivity, as reflected in significant increases in corticosterone levels and decreases in glucocorticoid receptor expression. Further, SHSY5Y neuroblastoma cells treated with corticosterone showed increased BACE1, pTau and pJNK1 expression. In addition, venlafaxine, an antidepressant able to modulate HPA axis activity, reversed all the above cited deleterious effects of chronic stress, both in vivo and in vitro. It is proposed that the MS model can be considered as an appropriate experimental model for the study of sporadic AD. PMID:23305081

  17. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty

    PubMed Central

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2015-01-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium–Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  18. Maternal and postweaning folic acid supplementation interact to influence body weight, insulin resistance, and food intake regulatory gene expression in rat offspring in a sex-specific manner.

    PubMed

    Huot, Pedro S P; Ly, Anna; Szeto, Ignatius M Y; Reza-López, Sandra A; Cho, Daniel; Kim, Young-In; Anderson, G Harvey

    2016-04-01

    Maternal intake of multivitamins or folic acid above the basal dietary requirement alters the growth and metabolic trajectory of rat offspring. We hypothesized that a modest increase in the folic acid content of maternal diets would alter the offspring's metabolic phenotype, and that these effects could be corrected by matching the folic acid content of the offspring's diet with that of the maternal diet. Female Sprague-Dawley rats were placed on a control or a 2.5× folic acid-supplemented diet prior to mating and during pregnancy and lactation. At weaning, pups from each maternal diet group were randomized to the control or to the 2.5× folic acid-supplemented diet for 25 weeks. Male pups from dams fed the folic acid-supplemented diet were 3.7% heavier than those from control-fed dams and had lower mRNA expression for leptin receptor Obrb isoform (Lepr) (11%) and Agouti-related protein (Agrp) (14%). In contrast, female pups from folic acid-supplemented dams were 5% lighter than those from control-fed dams and had lower proopiomelanocortin (Pomc) (42%), Lepr (32%), and Agrp (13%), but higher neuropeptide Y (Npy) (18%) mRNA expression. Folic acid supplementation ameliorated the alterations induced by maternal folic acid supplementation in male pups and led to the lowest insulin resistance, but the effects were smaller in female pups and led to the highest insulin resistance. In conclusion, maternal folic acid supplementation at 2.5× the control level was associated with alterations in body weight and hypothalamic gene expression in rat offspring in a sex-specific manner, and some of these effects were attenuated by postweaning folic acid supplementation. PMID:26989972

  19. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty.

    PubMed

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2016-06-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium-Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  20. Maternal serum omentin-1 profile is similar in humans and in the rat animal model.

    PubMed

    Garcés, María F; Ruíz-Linares, Carlos E; Vallejo, Sergio A; Peralta, Jhon J; Sanchez, Elizabeth; Ortiz-Rovira, Alexsandra; Curtidor, Yurani; Parra, Mario O; Leal, Luis G; Alzate, Juan P; Acosta, Bernarda Jineth; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E

    2015-09-01

    Omentin-1 is an adipocytokine with anti-inflammatory activity that has been associated with different metabolic disorders. The aim of this study is to investigate the serum profiles of omentin-1 throughout human and rat pregnancy. Serum omentin-1 levels were determined by ELISA in a prospective cohort study of healthy pregnant women (n=40) during the three trimesters of pregnancy and in twenty healthy non-pregnant women during the follicular and luteal phase of the menstrual cycle. In addition, serum omentin-1 levels were measured in rats during different periods of pregnancy (gestational days 8, 12, 16, 19, and 21) and in an age-matched control (virgin) group of rats (n=12rats/group). Finally, immunohistochemistry was used to demonstrate the presence of omentin-1 protein in human and rat placenta. Omentin-1 immunoreactivity was detected in cytotrophoblasts, syncytiotrophoblasts, sparse Hofbauer cells, and endothelial cells of the stem villi of human placenta. Additionally, it was detected in the labyrinthine trophoblast and yolk sac layer of the rat placenta. Human and rat serum omentin-1 levels were significantly lower in the late gestational period when compared with the non-pregnant women and virgin rats (p<0.05). Serum omentin-1 changes were not significant throughout the gestation in both species (p>0.05). Human serum omentin-1 levels have an inverse relationship with triglyceride levels during pregnancy. Our findings have not determined the exact role of omentin-1 during pregnancy, concerning the metabolic control of triglycerides and other energy sources. Whether omentin-1 decrease implies a regulatory function is still not clear. Further studies are needed to address this issue and determine the role of omentin-1 in metabolic adaptations during normal human and rat pregnancy. PMID:26144294

  1. Effect of Maternal Probiotic Intervention on HPA Axis, Immunity and Gut Microbiota in a Rat Model of Irritable Bowel Syndrome

    PubMed Central

    Barouei, Javad; Moussavi, Mahta; Hodgson, Deborah M.

    2012-01-01

    Objective To examine whether maternal probiotic intervention influences the alterations in the brain-immune-gut axis induced by neonatal maternal separation (MS) and/or restraint stress in adulthood (AS) in Wistar rats. Design Dams had free access to drinking water supplemented with Bifidobacterium animalis subsp lactis BB-12® (3×109 CFU/mL) and Propionibacterium jensenii 702 (8.0×108 CFU/mL) from 10 days before conception until postnatal day (PND) 22 (weaning day), or to control ad lib water. Offspring were subjected to MS from PND 2 to 14 or left undisturbed. From PND 83 to 85, animals underwent 30 min/day AS, or were left undisturbed as controls. On PND 24 and 86, blood samples were collected for corticosterone, ACTH and IgA measurement. Colonic contents were analysed for the composition of microflora and luminal IgA levels. Results Exposure to MS significantly increased ACTH levels and neonatal fecal counts of aerobic and anaerobic bacteria, E. coli, enterococci and clostridia, but reduced plasma IgA levels compared with non-MS animals. Animals exposed to AS exhibited significantly increased ACTH and corticosterone levels, decreased aerobic bacteria and bifidobacteria, and increased Bacteroides and E. coli counts compared to non-AS animals. MS coupled with AS induced significantly decreased anaerobes and clostridia compared with the non-stress adult controls. Maternal probiotic intervention significantly increased neonatal corticosterone levels which persisted until at least week 12 in females only, and also resulted in elevated adult ACTH levels and altered neonatal microflora comparable to that of MS. However, it improved plasma IgA responses, increased enterococci and clostridia in MS adults, increased luminal IgA levels, and restored anaerobes, bifidobacteria and E. coli to normal in adults. Conclusion Maternal probiotic intervention induced activation of neonatal stress pathways and an imbalance in gut microflora. Importantly however, it improved the immune environment of stressed animals and protected, in part, against stress-induced disturbances in adult gut microflora. PMID:23071537

  2. Novel insights about the mechanism of visceral hypersensitivity in maternally separated rats.

    PubMed

    Bian, Z X

    2012-07-01

    Visceral hypersensitivity (VHS) is one of the most important characteristics of functional gastrointestinal disorders, including irritable bowel syndrome (IBS). Stress, whether physical or psychological, is known to be a crucial factor for inducing and maintaining visceral sensitivity in humans and rodents, but how stress induces VHS is not fully understood. In a recent study published in Neurogastroenterology and Motility, Wouters et al. demonstrate, for the first time, that maternal separation induces activation of periaqueductal gray (PAG), the hippocampus and the somatosensory cortex concomitantly with increased deactivation of the pre-frontal cortex. The findings provide insight on the role of maternal separation in inducing regional cerebral blood flow changes and cerebral plasticity. These novel insights on the role of central activation in the modulation of stress-induced VHS add to our growing understanding of the mechanisms that underlie VHS and suggest potential new drug development targets in stress-related diseases, including IBS. PMID:22709237

  3. FIRING PATTERNS OF MATERNAL RAT PRELIMBIC NEURONS DURING SPONTANEOUS CONTACT WITH PUPS

    PubMed Central

    Febo, Marcelo

    2012-01-01

    Extracellular single unit activity was recorded from medial prefrontal cortex (mPFC) of postpartum dams over the course of 3 days while they engaged in spontaneous pup-directed behaviors and non-specific exploratory behavior. Out of 109 units identified over the course of the experiment, 15 units were observed to be pup-responsive and 15 increased their discharge rates non-specifically while not attending to pups. An association between neuronal activity and typical maternal behaviors (e.g., retrieval, pup-grooming, nursing) was not observed. Instead, brief bouts of snout contact with pups were accompanied by phasic increases and decreases in spike rates. The observed pup contact responsive cells might play a role in processing of sensory feedback from pups or the transmission of modulatory output to other subcortical maternal brain areas. PMID:22643133

  4. Role of neuronal nitric oxide synthase in colonic distension-induced hyperalgesia in distal colon of neonatal maternal separated male rats

    PubMed Central

    Tjong, Yung-Wui; Ip, Siu-Po; Lao, Lixing; Wu, Justin; Fong, Harry HS; Sung, Joseph JY; Berman, Brian; Che, Chun-Tao

    2011-01-01

    Background Nitric oxide (NO) is implicated in the pathogenesis of irritable bowel syndrome (IBS) but the underlying mechanism is unclear. Thus, the aim of the present study is to examine the role of NO synthase (NOS) expression in the distal colon of neonatal maternal separation (NMS) model rats employed in IBS studies. Methods Male neonates of Sprague-Dawley rats were randomly assigned into NMS and normal control (N) groups. Rats of NMS group were subjected to 3-hr daily maternal separation on postnatal day 2–21. Rats were administrated non-selective NOS inhibitor L-NAME (100mg/kg), selective neuronal NOS (nNOS) inhibitor 7NINA (10mg/kg), selective inducible NOS (iNOS) inhibitor, endothelial NOS (eNOS) inhibitor (10mg/kg) or Vechicle (Veh; distilled water) intraperitoneally 1 hour prior to the experiment for the test and control groups, respectively. Key results The amount of NO was significantly higher in the NMS Veh rats compared with unseparated N rats. Western-blotting and real-time quantitative PCR studies showed that protein and mRNA expression of nNOS were higher in the NMS group than that in the N rats; whereas no significant change in iNOS and eNOS was found in either groups. NMS Veh rats showed low pain threshold and increased electromyogram (EMG) activity in response to colonic distension stimuli. L-NAME and 7NINA increased pain threshold pressure and attenuated EMG activity in the NMS rats. In addition, L-NAME and 7-NINA substantially reduced oxidative marker malondialdehyde level in NMS rats. Conclusions & Inferences NMS increased the NO generation by nNOS upregulation that interact with reactive oxygen species contributing to the visceral hypersensitivity in IBS. PMID:21410601

  5. EFFECTS ON THE FETUS OF MATERNAL BENOMYL EXPOSURE IN THE PROTEIN-DEPRIVED RAT

    EPA Science Inventory

    The separate and combined effects of protein deprivation and benomyl ((methyl 1-butylcarbomoyl)2-benzimidazole carbamate) exposure were studied in the pregnant rat fed a diet containing 24% (control) or 8% (deficient) casein throughout gestation. Within each diet group, subgroups...

  6. Brief maternal deprivation of rats reduces hepatic mixed function oxidase activities

    SciTech Connect

    Vesell, E.S. ); Heubel, F.; Netter, K.J. )

    1989-01-01

    Deprivation of pups from mother and sibs for 3 min daily from day 5 today 41 of life reduced activities of 4 hepatic mixed function oxidases (MFO) expressed per mg protein in male rats compared to unhandled control rats. These decreases, though generally small, 22.4% and under, reached statistical significance for the substrates aminopyrine, benzphetamine and ethoxycoumarin. This handling procedure did not consistently affect the inductive response to phenobarbital. Previously ignored as a source of variability in response to xenobiotics, handling appears from these results to merit further investigation as such a factor in uninduced rats. Differences among rats in handling could contribute to large day-to-day variations in their metabolism of xenobiotics.

  7. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment.

    PubMed

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1(+) microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU(+)/DCX(+) cells. Minocycline reduced Iba1(+) cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  8. Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat.

    PubMed

    Matthews, Keith; Robbins, Trevor W

    2003-01-01

    Depression is a major public health concern, representing one of the most significant causes of disability and morbidity. Despite significant advances in the definition of specific cognitive, emotional and neural dysfunctions that are associated with depression, there has been frustratingly little progress in the elucidation of plausible aetiological and pathophysiological mechanisms. The complex, multi-system dysfunctions of depressive illness do not lend themselves to hypothesis-driven, systematic manipulation in patients. For this reason, there is a need to develop valid and reliable models of affective psychopathology in laboratory animals. In this paper, we review briefly some of our previous work demonstrating that a specific periodic neonatal maternal separation procedure leads to a robust constellation of behavioural changes in the adult rat that resemble core aspects of human depressive psychopathology. We also present data from a study of the adult effects of the same manipulation on electrical intracranial self-stimulation behaviour. These data further support the hypothesis that it is possible to model vulnerability to anhedonia in the adult rat by manipulation of early experience. PMID:12732222

  9. Changes in intestinal glucocorticoid sensitivity in early life shape the risk of epithelial barrier defect in maternal-deprived rats.

    PubMed

    Moussaoui, Nabila; Braniste, Viorica; Ait-Belgnaoui, Afifa; Gabanou, Mlissa; Sekkal, Soraya; Olier, Maiwenn; Thodorou, Vassilia; Martin, Pascal G P; Houdeau, Eric

    2014-01-01

    Glucocorticoids (GC) contribute to human intestine ontogeny and accelerate gut barrier development in preparation to birth. Rat gut is immature at birth, and high intestinal GC sensitivity during the first two weeks of life resembles that of premature infants. This makes suckling rats a model to investigate postpartum impact of maternal separation (MS)-associated GC release in preterm babies, and whether GC sensitivity may shape MS effects in immature gut. A 4 hours-MS applied once at postnatal day (PND)10 enhanced plasma corticosterone in male and female pups, increased by two times the total in vivo intestinal permeability (IP) to oral FITC-Dextran 4 kDa (FD4) immediately after the end of MS, and induced bacterial translocation (BT) to liver and spleen. Ussing chamber experiments demonstrated a 2-fold increase of permeability to FD4 in the colon immediately after the end of MS, but not in the ileum. Colonic permeability was not only increased for FD4 but also to intact horseradish peroxidase 44 kDa in MS pups. In vivo, the glucocorticoid receptor (GR) antagonist RU486 or ML7 blockade of myosin light chain kinase controlling epithelial cytoskeleton contraction prevented MS-induced IP increase to oral FD4 and BT. In addition, the GR agonist dexamethasone dose-dependently mimicked MS-increase of IP to oral FD4. In contrast, MS effects on IP to oral FD4 and BT were absent at PND20, a model for full-term infant, characterized by a marked drop of IP to FD4 in response to dexamethasone, and decreased GR expression in the colon only compared to PND10 pups. These results show that high intestinal GC responsiveness in a rat model of prematurity defines a vulnerable window for a post-delivery MS, evoking immediate disruption of epithelial integrity in the large intestine, and increasing susceptibility to macromolecule passage and bacteremia. PMID:24586321

  10. Changes in Intestinal Glucocorticoid Sensitivity in Early Life Shape the Risk of Epithelial Barrier Defect in Maternal-Deprived Rats

    PubMed Central

    Moussaoui, Nabila; Braniste, Viorica; Ait-Belgnaoui, Afifa; Gabanou, Mélissa; Sekkal, Soraya; Olier, Maiwenn; Théodorou, Vassilia; Martin, Pascal G. P.; Houdeau, Eric

    2014-01-01

    Glucocorticoids (GC) contribute to human intestine ontogeny and accelerate gut barrier development in preparation to birth. Rat gut is immature at birth, and high intestinal GC sensitivity during the first two weeks of life resembles that of premature infants. This makes suckling rats a model to investigate postpartum impact of maternal separation (MS)-associated GC release in preterm babies, and whether GC sensitivity may shape MS effects in immature gut. A 4 hours-MS applied once at postnatal day (PND)10 enhanced plasma corticosterone in male and female pups, increased by two times the total in vivo intestinal permeability (IP) to oral FITC-Dextran 4 kDa (FD4) immediately after the end of MS, and induced bacterial translocation (BT) to liver and spleen. Ussing chamber experiments demonstrated a 2-fold increase of permeability to FD4 in the colon immediately after the end of MS, but not in the ileum. Colonic permeability was not only increased for FD4 but also to intact horseradish peroxidase 44 kDa in MS pups. In vivo, the glucocorticoid receptor (GR) antagonist RU486 or ML7 blockade of myosin light chain kinase controlling epithelial cytoskeleton contraction prevented MS-induced IP increase to oral FD4 and BT. In addition, the GR agonist dexamethasone dose-dependently mimicked MS-increase of IP to oral FD4. In contrast, MS effects on IP to oral FD4 and BT were absent at PND20, a model for full-term infant, characterized by a marked drop of IP to FD4 in response to dexamethasone, and decreased GR expression in the colon only compared to PND10 pups. These results show that high intestinal GC responsiveness in a rat model of prematurity defines a vulnerable window for a post-delivery MS, evoking immediate disruption of epithelial integrity in the large intestine, and increasing susceptibility to macromolecule passage and bacteremia. PMID:24586321

  11. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    PubMed Central

    Borengasser, Sarah J.; Faske, Jennifer; Kang, Ping; Blackburn, Michael L.; Badger, Thomas M.

    2014-01-01

    The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life. PMID:25336449

  12. Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Maternal Separation

    PubMed Central

    Lee, Jong-Ho; Kim, Jin Young

    2014-01-01

    Background This study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF) during adolescence on the adverse behavioral outcome of neonatal maternal separation. Methods Male Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS) or left undisturbed (nonhandled, NH). Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF). Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay. Results Daily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only) compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it. Conclusion Prolonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA) axis. PMID:25031890

  13. Effects of maternal vitamin B6 deficiency and over-supplementation on DNA damage and oxidative stress in rat dams and their offspring.

    PubMed

    Almeida, Mara Ribeiro; Venâncio, Vinícius Paula; Aissa, Alexandre Ferro; Darin, Joana Darc Castania; Pires Bianchi, Maria Lourdes; Antunes, Lusânia Maria Greggi

    2015-06-01

    Vitamin B6 is a cofactor for more than 140 essential enzymes and plays an important role in maternal health and fetal development. The goal of this study was to investigate the effects of maternal vitamin B6 on DNA damage and oxidative stress status in rat dams and their offspring. Female Wistar rats were randomly assigned to three dietary groups fed a standard diet (control diet), a diet supplemented with 30 mg/kg of vitamin B6, or a deficient diet (0 mg/kg of vitamin B6) for 10 weeks before and during mating, pregnancy and lactation. The dams were euthanized at weaning, and their male pups were euthanized either 10 days or 100 days after birth. We found that maternal vitamin B6 deficiency increased the micronucleus frequency in peripheral blood and bone marrow cells and also increased the concentration of hepatic TBARS (thiobarbituric acid reactive substances) in newborn pups (10 days old). In conclusion, maternal 5- to 6-fold over-supplementation of vitamin B6 had no adverse effects, however its deficiency may induce chromosomal damage and hepatic lipid peroxidation in the offspring. PMID:25818462

  14. Maternal dietary fat affects milk fatty acid profile and impacts on weight gain and thermogenic capacity of suckling rats.

    PubMed

    Priego, Teresa; Sánchez, Juana; García, Ana Paula; Palou, Andreu; Picó, Catalina

    2013-05-01

    We aimed to assess the effects of maternal supplementation with the main fat sources used in the human Western diet (olive oil, butter, margarine) on milk FA composition and on plasma FA profile of offspring, and to determine whether it may influence body-weight-gain (BWG) and adiposity of offspring during the suckling period. Wistar rats were supplemented with the different fat sources from day 14 of gestation and throughout lactation. Olive oil-supplemented dams showed the highest proportion of oleic-acid in milk, with no changes in plasma. Their offspring also showed the highest proportion of this FA in plasma, lower BWG during the suckling period, and higher levels of UCP1 in brown adipose tissue (BAT) at weaning. Margarine-supplemented dams showed the highest percentage of PUFA in milk, and a similar tendency was found in plasma of their offspring. Butter-supplemented dams displayed higher proportion of saturated FA (SFA) in milk compared to other fat-supplemented dams, but lower than controls. Control offspring also showed higher proportion of SFA in plasma and greater BWG during the suckling period than fat-supplemented groups. Significant correlations were found between the relative content of some milk FA and BWG of offspring, in particular, oleic-acid levels correlated negatively with BWG and positively with UCP1 levels. These results show that maternal dietary source of fat affects milk FA composition and circulating FA profile, as could be expected, but also BWG and thermogenic capacity of offspring during the suckling period. An effect of oleic-acid stimulating BAT thermogenic capacity of suckling pups is proposed. PMID:23417844

  15. Maternal saturated-fat-rich diet promotes leptin resistance in fetal liver lipid catabolism and programs lipid homeostasis impairments in the liver of rat offspring.

    PubMed

    Mazzucco, María Belén; Fornes, Daiana; Capobianco, Evangelina; Higa, Romina; Jawerbaum, Alicia; White, Verónica

    2016-01-01

    We aimed to analyze if an overload of saturated fat in maternal diet induced lipid metabolic impairments in livers from rat fetuses that persist in the offspring and to identify potential mechanisms involving fetal leptin resistance. Female rats were fed either a diet enriched in 25% of saturated fat (SFD rats) or a regular diet (controls). Fetuses of 21days of gestation and offspring of 21 and 140days of age were obtained and plasma and liver were kept for further analysis. Livers from a group of control and SFD fetuses were cultured in the presence or absence of leptin. Leptin or vehicle was administered to control fetuses during the last days of gestation and, on day 21, fetal livers and plasma were obtained. Lipid levels were assessed by thin-layer chromatography and mRNA gene expression of CPT1, ACO and PPARα by RT-PCR. Liver lipid levels were increased and CPT1 and ACO were down-regulated in fetuses and offspring from SFD rats compared to controls. After the culture with leptin, control fetal livers showed increased ACO and CPT1 expression and decreased lipid levels, while fetal livers from SFD rats showed no changes. Fetal administration of leptin induced a decrease in ACO and no changes in CPT1 expression. In summary, our results suggest that a saturated fat overload in maternal diet induces fetal leptin resistance in liver lipid catabolism, which might be contributing to liver lipid alterations that are sustained in the offspring. PMID:26383539

  16. EFFECTS ON THE FETUS OF MATERNAL NITROFEN EXPOSURE IN THE PROTEIN-DEPRIVED RAT

    EPA Science Inventory

    The separate and combined effects of protein deprivation and nitrofen exposure were studied in the pregnant rat. Animals were fed diets containing 24, 8, 6 or 4% casein throughout gestation. Within each diet group, sub-groups were gavage-fed with 12.5 (lower dose) and 25 (higher ...

  17. OFFSPRING MORTALITY AND MATERNAL LUNG PATHOLOGY IN FEMALE RATS FED HEXACHLOROBENZENE

    EPA Science Inventory

    Female Sprague-Dawley CD rats were fed 0, 60, 80, 100, 120 and 140 ppm hexachlorobenzene (HCB) continuously in the diet and 2 successive litters raised. These doses were selected to range from approximately the no observable effect level to lethality in suckling offspring of trea...

  18. Assessment of the perinatal effects of maternal ingestion of Ipomoea carnea in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is believed that I. carnea toxicosis induces abnormal embryogenesis in livestock. Studies with rats treated with I. carnea aqueous fraction (AF) during gestation, revealed litters with decreased body weight, but the characteristic vacuolar lesions promoted by swainsonine, its main toxic principle...

  19. Maternal mobile phone exposure adversely affects the electrophysiological properties of Purkinje neurons in rat offspring.

    PubMed

    Haghani, M; Shabani, M; Moazzami, K

    2013-10-10

    Electromagnetic field (EMF) radiations emitted from mobile phones may cause structural damage to neurons. With the increased usage of mobile phones worldwide, concerns about their possible effects on the nervous system are rising. In the present study, we aimed to elucidate the possible effects of prenatal EMF exposure on the cerebellum of offspring Wistar rats. Rats in the EMF group were exposed to 900-MHz pulse-EMF irradiation for 6h per day during all gestation period. Ten offspring per each group were evaluated for behavioral and electrophysiological evaluations. Cerebellum-related behavioral dysfunctions were analyzed using motor learning and cerebellum-dependent functional tasks (Accelerated Rotarod, Hanging and Open field tests). Whole-cell patch clamp recordings were used for electrophysiological evaluations. The results of the present study failed to show any behavioral abnormalities in rats exposed to chronic EMF radiation. However, whole-cell patch clamp recordings revealed decreased neuronal excitability of Purkinje cells in rats exposed to EMF. The most prominent changes included afterhyperpolarization amplitude, spike frequency, half width and first spike latency. In conclusion, the results of the present study show that prenatal EMF exposure results in altered electrophysiological properties of Purkinje neurons. However, these changes may not be severe enough to alter the cerebellum-dependent functional tasks. PMID:23906636

  20. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring

    PubMed Central

    Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.

    2015-01-01

    Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired immune sensing. PMID:26562417

  1. Developmental Timing of the Effects of Maternal Care on Gene Expression and Epigenetic Regulation of Hormone Receptor Levels in Female Rats

    PubMed Central

    Peña, Catherine Jensen; Neugut, Y. Dana

    2013-01-01

    Maternal care experienced during postnatal development has enduring effects on neuroendocrine function and behavior. Previous studies in rats have illustrated the effect of maternal licking/grooming (LG) on hormone receptors and maternal behavior of adult female offspring associated with altered DNA methylation. However, the developmental timing of these effects, which provide insight into the cellular and molecular pathways through which early experience alters later behavior, had not been explored. Here, we demonstrate the developmental emergence of these outcomes and use cross-fostering to identify sensitive periods for these effects. Estrogen receptor (ER)α and ERβ mRNA levels within the medial preoptic area (MPOA) of the hypothalamus were increased by postnatal day (PN)21 in female offspring of high LG dams; LG-associated increases in oxytocin receptor mRNA levels were observed beyond the weaning period. Quantification of ERα-immunoreactivity indicated a high degree of neuroanatomical specificity of LG effects within the MPOA that were observed by PN6. Reduced DNA methylation and histone 3 lysine 9 tri-methylation and increased histone 3 lysine 4 tri-methylation at the ERα gene promoter (Esr1) were detected at PN21 in high LG female offspring. Latency to engage in maternal behavior toward donor pups was significantly shorter among high LG females. Cross-fostering revealed that maternal sensitization and MPOA ERα levels are sensitive to maternal care experienced before but not after PN10. Differential windows of plasticity were identified for ERβ and oxytocin receptor mRNA levels. These studies contribute significantly to our understanding of the molecular, neurobiological, and behavioral pathways through which variation in maternal behavior is transmitted from one generation to the next. PMID:24002038

  2. Nutrient-Dependent Requirement for SOD1 in Lifespan Extension by Protein Restriction in Drosophila melanogaster

    PubMed Central

    Sun, Xiaoping; Komatsu, Toshimitsu; Lim, Jinhwan; Laslo, Mara; Yolitz, Jason; Wang, Cecilia; Poirier, Luc; Alberico, Thomas; Zou, Sige

    2012-01-01

    Summary Reactive oxygen species (ROS) modulate aging and aging-related diseases. Dietary composition is critical in modulating lifespan. However, how ROS modulate dietary effects on lifespan remains poorly understood. Superoxide dismutase 1 (SOD1) is a major cytosolic enzyme responsible for scavenging superoxides. Here we investigated the role of SOD1 in lifespan modulation by diet in Drosophila. We found that a high sugar-low protein (HS-LP) diet or low-calorie diet with low-sugar content, representing protein restriction, increased lifespan but not resistance to acute oxidative stress in wild-type flies, relative to a standard base diet. A low sugar-high protein diet had an opposite effect. Our genetic analysis indicated that SOD1 overexpression or dfoxo deletion did not alter lifespan patterns of flies responding to diets. However, sod1 reduction blunted lifespan extension by the HS-LP diet but not the low-calorie diet. HS-LP and low-calorie diets both reduced target-of-rapamycin (TOR) signaling and only the HS-LP diet increased oxidative damage. sod1 knockdown did not affect phosphorylation of S6 kinase, suggesting that SOD1 acts in parallel with or downstream of TOR signaling. Surprisingly rapamycin decreased lifespan in sod1 mutant but not wild-type males fed the standard, HS-LP and low calorie diets, whereas antioxidant N-acetylcysteine only increased lifespan in sod1 mutant males fed the HS-LP diet, when compared to diet-matched controls. Our findings suggest that SOD1 is required for lifespan extension by protein restriction only when dietary sugar is high, and support the context-dependent role of ROS in aging and caution the use of rapamycin and antioxidants in aging interventions. PMID:22672579

  3. Stereotypic behavioral response of rat fetuses to acute hypoxia is altered by maternal alcohol consumption.

    PubMed

    Smotherman, W P; Robinson, S R

    1987-10-01

    Transient compression of the umbilical cord has been implicated as a potential cause of unexplained brain damage and/or fetal death. We induced acute fetal hypoxia by compressing the umbilical cord of the fetal rat with a microvascular clamp. Direct observation of fetal behavior immediately after cord compression identified a three-phase behavioral response to acute hypoxia, consisting of an initial suppression in motor activity, a brief period of hyperactivity, and a secondary suppression of movement. All three phases occurred in less than 2 minutes from the onset of hypoxia. The stereotypic hypoxic response of rat fetuses may be adaptive as a means of removing mechanical sources of umbilical cord compression. Among fetuses exposed to alcohol in utero, the response to hypoxia was diminished in intensity and duration. Because of their altered hypoxic response, alcohol-exposed fetuses may therefore be at greater risk from transient cord compression in utero. PMID:3674174

  4. Sex-specific effects of neonatal exposures to low levels of cadmium through maternal milk on development and immune functions of juvenile and adult rats.

    PubMed

    Pillet, Stéphane; Rooney, Andrew A; Bouquegneau, Jean-Marie; Cyr, Daniel G; Fournier, Michel

    2005-05-01

    Cadmium (Cd) is a major environmental contaminant. Although immunotoxic effects have been associated with Cd exposure, the inconsistency of experimental results underlines the need of an experimental approach more closely related to environmental conditions. We investigated the effects of exposing neonatal Sprague-Dawley rats to environmentally relevant doses of Cd through maternal milk. Dams received 10 parts per billion (ppb) or 5 parts per million (ppm) Cd chloride (CdCl2) in drinking water from parturition until the weaning of the pups. Half of the offspring was sampled at weaning time. The remaining juvenile rats received water without addition of Cd until adulthood. Cd accumulation in kidneys of juvenile rats fed from dams exposed to Cd indicated the transfer of the metal from mother to pups through maternal milk. This neonatal exposure resulted in decreased body, kidney and spleen weights of just weaned females but not of males. This effect was more pronounced in the less exposed females fed from dams exposed to 10 ppb Cd, which also displayed lower hepatic metallothionein-1 (MT-1) mRNA levels. The effect of Cd exposure on body and organ weights did not persist to adulthood. In contrast, we observed gender-specific effects of neonatal Cd exposure on the cytotoxic activity of splenic NK-cells of both juvenile and adult rats. Cd also strongly inhibited the proliferative response of Con A-stimulated thymocytes in both male and female adult rats 5 weeks after the cessation of Cd exposure. These immunotoxic effects were observed at doses much lower than those reported to produce similar effects when exposure occurred during adulthood. In conclusion, neonatal exposures to environmentally relevant levels of Cd through maternal milk represent a critical hazard liable to lead to both transitory and persistent immunotoxic effects. PMID:15795064

  5. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet.

    PubMed

    Camargo, Rafael L; Batista, Thiago M; Ribeiro, Rosane A; Branco, Renato C S; Da Silva, Priscilla M R; Izumi, Clarice; Araujo, Thiago R; Greene, Lewis J; Boschero, Antonio C; Carneiro, Everardo M

    2015-11-01

    Malnutrition programs the neuroendocrine axis by disruption of food-intake control, leading to obesity. Taurine (Tau) is neuroprotective and improves anorexigenic actions in the hypothalamus. We evaluated the hypothalamic gene-expression profile and food-intake control in protein-restricted mice submitted to a high-fat diet (HFD) and Tau supplementation. Mice were fed on a control (14 % protein-C) or a protein-restricted diet (6 % protein-R) for 6 weeks. Thereafter, mice received, or not, HFD for 8 weeks (CH and RH) with or without 5 % Tau supplementation (CHT and RHT). Protein restriction led to higher food intake, but calories were matched to controls. Excessive calorie intake occurred in HFD mice and this was prevented by Tau supplementation only in the CH group. Additionally, RH and CH mice developed hypothalamic leptin resistance, which was prevented by Tau. Global alterations in the expressions of genes involved in hypothalamic metabolism, cellular defense, apoptosis and endoplasmic reticulum stress pathways were induced by dietary manipulations and Tau treatment. The orexigenic peptides NPY and AgRP were increased by protein restriction and lowered by the HFD. The anorexigenic peptide Pomc was increased by HFD, and this was prevented by Tau only in CH mice. Thus, food intake was disrupted by dietary protein restriction and obesity. HFD-induced alterations were not enhanced by previous protein deficiency, but the some beneficial effects of Tau supplementation upon food intake were blunted by protein restriction. Tau effects upon feeding behavior control are complex and involve interactions with a vast gene network, preventing hypothalamic leptin resistance. PMID:26133737

  6. Maternal immune activation by polyriboinosinic-polyribocytidilic acid injection produces synaptic dysfunction but not neuronal loss in the hippocampus of juvenile rat offspring.

    PubMed

    Oh-Nishi, Arata; Obayashi, Shigeru; Sugihara, Izumi; Minamimoto, Takafumi; Suhara, Tetsuya

    2010-12-01

    It has been suggested that maternal immune activation increases the risk of psychiatric disorders such as schizophrenia in offspring. There are many reports about hippocampal structural pathology in schizophrenia. Antipsychotic drug administration in adolescence prevented postpubertal hippocampal structural pathology in the maternal immune activation animal model. These findings suggest the possibility that maternal immune activation induces hippocampal dysfunction in juvenile offspring. To test this hypothesis, we investigated hippocampal function in juvenile offspring of maternal immune activation model rat. A synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C; 4 mg/kg/day, I.P.) was injected to pregnant rats on gestation days 15 and 17, in order to cause immune activation by stimulating Toll-like receptor 3. Hippocampal synaptic function and morphology in their juvenile offspring (postnatal days 28-31) were compared to those in vehicle-injected control offspring. Field responses were recorded in the hippocampal CA1 region by stimulating commissural/Schaffer collaterals. Pre-synaptic fiber volley amplitudes (mV) and field excitatory post-synaptic potential slopes (mV/ms) were significantly lower in treated offspring. In addition, short-term synaptic plasticity, namely, the paired-pulse facilitation ratio, was significantly higher and long-term synaptic plasticity (long-term potentiation) was significantly impaired in treated offspring. Furthermore, major pre-synaptic protein (synaptophysin) expressions were decreased, but not major post-synaptic proteins (GluR1, GluR2/3, and NR1), in hippocampal CA1 of treated offspring, whereas neuronal loss was not detected in the hippocampal CA1-CA3 regions. These results indicate that maternal immune activation leads to synaptic dysfunction without neuronal loss in the hippocampus of juvenile offspring, and this may be one of the early stages of schizophrenia pathologies. PMID:20863817

  7. Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring.

    PubMed

    Pileggi, C A; Segovia, S A; Markworth, J F; Gray, C; Zhang, X D; Milan, A M; Mitchell, C J; Barnett, M P G; Roy, N C; Vickers, M H; Reynolds, C M; Cameron-Smith, D

    2016-03-01

    A high-saturated-fat diet (HFD) during pregnancy and lactation leads to metabolic disorders in offspring concomitant with increased adiposity and a proinflammatory phenotype in later life. During the fetal period, the impact of maternal diet on skeletal muscle development is poorly described, despite this tissue exerting a major influence on life-long metabolic health. This study investigated the effect of a maternal HFD on skeletal muscle anabolic, catabolic, and inflammatory signaling in adult rat offspring. Furthermore, the actions of maternal-supplemented conjugated linoleic acid (CLA) on these measures of muscle phenotype were investigated. A purified control diet (CD; 10% kcal fat), a CD supplemented with CLA (CLA; 10% kcal fat, 1% total fat as CLA), a high-fat (HFD; 45% kcal fat from lard), or a HFD supplemented with CLA (HFCLA; 45% kcal fat from lard, 1% total fat as CLA) was fed ad libitum to female Sprague-Dawley rats for 10 days before mating and throughout gestation and lactation. Male offspring received a standard chow diet from weaning, and the gastrocnemius was collected for analysis at day 150. Offspring from HF and HFCLA mothers displayed lower muscular protein content accompanied by elevated monocyte chemotactic protein-1, IL-6, and IL-1β concentrations. Phosphorylation of NF-κBp65 (Ser(536)) and expression of the catabolic E3 ligase muscle ring finger 1 (MuRF1) were increased in HF offspring, an effect reversed by maternal CLA supplementation. The present study demonstrates the importance of early life interventions to ameliorate the negative effects of poor maternal diet on offspring skeletal muscle development. PMID:26632603

  8. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity

    SciTech Connect

    Miki, Takanori; Liu, Jun-Qian; Ohta, Ken-ichi; Suzuki, Shingo; Kusaka, Takashi; Warita, Katsuhiko; Yokoyama, Toshifumi; Jamal, Mostofa; Ueki, Masaaki; Yakura, Tomiko; Tamai, Motoki; Sumitani, Kazunori; Hosomi, Naohisa; Takeuchi, Yoshiki

    2013-12-06

    Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of β3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved by separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.

  9. Extensive juvenile "babysitting" facilitates later adult maternal responsiveness, decreases anxiety, and increases dorsal raphe tryptophan hydroxylase-2 expression in female laboratory rats.

    PubMed

    Harding, Kaitlyn M; Lonstein, Joseph S

    2016-05-01

    Pregnancy and parturition can dramatically affect female neurobiology and behavior. This is especially true for laboratory-reared rodents, in part, because such rearing prevents a host of developmental experiences that females might undergo in nature, including juvenile alloparenting. We examined the effect of chronic exposure to pups during post-weaning juvenile life (days 22-36) on adult maternal responsiveness, anxiety-related behaviors, and dorsal raphe tryptophan hydroxylase-2 (TPH2) and serotonin transporter (SERT) levels in nulliparous rats. Adult females with juvenile alloparental experience showed significantly faster sensitized maternal responsiveness, less anxiety, and more dorsal raphe TPH2. Juvenile alloparenting did not affect females' later social novelty and preference behaviors toward adults, suggesting their increased interest in pups did not extend to all social partners. In a second experiment, suckling a pregnant dam (achieved by postpartum estrus reinsemination), interacting with her after standard laboratory weaning age, and a 3-day exposure to younger siblings also reduced juvenile females' later anxiety but did not affect maternal responsiveness or TPH2. Thus, extensive juvenile "babysitting" can have long-term effects reminiscent of pregnancy and parturition on maternal responsiveness and anxiety, and these effects may be driven by upregulated serotonin. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 492-508, 2016. PMID:26806471

  10. Effects of maternally exposed colouring food additives on cognitive performance in rats.

    PubMed

    Doguc, Duygu Kumbul; Ceyhan, Betul Mermi; Ozturk, Mustafa; Gultekin, Fatih

    2013-08-01

    Artificial food colourings and additives (AFCAs) have long been suggested to adversely affect the learning and behaviour in children. In this study, we aimed to provide additional data to clarify the possible side effects of colouring additives on behaviour and memory. We administered acceptable daily intake values of AFCAs as a mixture (Eritrosin, Ponceau 4R, Allura Red AC, Sunset Yellow FCF, Tartrazin, Amaranth, Brilliant Blue, Azorubin and Indigotin) to female rats before and during gestation and then tested their effects on behaviour and on spatial working memory in their offspring. Effects on spatial learning and memory were evaluated by Morris water maze, behavioural effects were evaluated by open-field test and forced swim test. Our results showed that commonly used artificial food colourings have no adverse effects on spatial working memory and did not create a depressive behaviour in offspring. But they showed a few significant effects on locomotor activity as AFCAs increased some parameters of locomotor activity. PMID:22323474

  11. Effect of voluntary alcohol consumption on Maoa expression in the mesocorticolimbic brain of adult male rats previously exposed to prolonged maternal separation.

    PubMed

    Bendre, M; Comasco, E; Nylander, I; Nilsson, K W

    2015-01-01

    Discordant associations between monoamine oxidase A (MAOA) genotype and high alcohol drinking have been reported in human and non-human primates. Environmental influences likely moderate genetic susceptibility. The biological basis for this interplay remains elusive, and inconsistencies call for translational studies in which conditions can be controlled and brain tissue is accessible. The present study investigated whether early life stress and subsequent adult episodic alcohol consumption affect Maoa expression in stress- and reward-related brain regions in the rat. Outbred Wistar rats were exposed to rearing conditions associated with stress (prolonged maternal separation) or no stress during early life, and given free choice between alcohol and/or water in adulthood. Transcript levels of Maoa were assessed in the ventral tegmental area, nucleus accumbens (NAc), medial prefrontal cortex, cingulate cortex, amygdala and dorsal striatum (DS). Blood was collected to assess corticosterone levels. After alcohol consumption, lower blood corticosterone and Maoa expression in the NAc and DS were found in rats exposed to early life stress compared with control rats. An interaction between early life stress and voluntary alcohol intake was found in the NAc. Alcohol intake before death correlated negatively with Maoa expression in DS in high alcohol-drinking rats exposed to early life stress. Maoa expression is sensitive to adulthood voluntary alcohol consumption in the presence of early life stress in outbred rats. These findings add knowledge of the molecular basis of the previously reported associations between early life stress, MAOA and susceptibility to alcohol misuse. PMID:26645625

  12. Melatonin ameliorates oxidative damage induced by maternal lead exposure in rat pups.

    PubMed

    Bazrgar, Maryam; Goudarzi, Iran; Lashkarbolouki, Taghi; Elahdadi Salmani, Mahmoud

    2015-11-01

    During the particular period of cerebellum development, exposure to lead (Pb) decreases cerebellum growth and can result in selective loss of neurons. The detection and prevention of Pb toxicity is a major international public health priorities. This research study was conducted to evaluate the effects of melatonin, an effective antioxidant and free radical scavenger, on Pb induced neurotoxicity and oxidative stress in the cerebellum. Pb exposure was initiated on gestation day 5 with the addition of daily doses of 0.2% lead acetate to distilled drinking water and continues until weaning. Melatonin (10mg/kg) was given once daily at the same time. 21 days after birth, several antioxidant enzyme activities including superoxide dismutase (SOD) and glutathione peroxidase (GPx) were assayed. Thiobarbituric acid reactive substance (TBARS) levels were measured as a marker of lipid peroxidation. Rotarod and locomotor activity tests were performed on postnatal days (PDs) 31-33 and a histological study was performed after completion of behavioral measurements on PD 33. The results of the present work demonstrated that Pb could induce lipid peroxidation, increase TBARS levels and decrease GPx and SOD activities in the rat cerebellum. We also observed that Pb impaired performance on the rotarod and locomotor activities of rats. However, treatment with melatonin significantly attenuated the motoric impairment and lipid peroxidation process and restored the levels of antioxidants. Histological analysis indicated that Pb could decrease Purkinje cell count and melatonin prevented this toxic effect. These results suggest that treatment with melatonin can improve motor deficits and oxidative stress by protecting the cerebellum against Pb toxicity. PMID:26197271

  13. Maternal deprivation disrupts mitochondrial energy homeostasis in the brain of rats subjected to ketamine-induced schizophrenia.

    PubMed

    Zugno, Alexandra Ioppi; Pacheco, Felipe Damázio; Budni, Josiane; de Oliveira, Mariana Bittencourt; Canever, Lara; Heylmann, Alexandra Stephanie; Wessler, Patrícia Gomes; da Rosa Silveira, Flávia; Mastella, Gustavo Antunes; Gonçalves, Cinara Ludwig; Freitas, Karoline V; de Castro, Adalberto Alves; Streck, Emilio L; Quevedo, João

    2015-08-01

    Maternal deprivation (MD) appears to be one of the environmental factors involved in the pathophysiology of schizophrenia. A widely used animal model of the schizophrenia involves the administration of ketamine, a dissociative anesthetic, NMDA receptors noncompetitive antagonist, that induce symptoms such as schizophrenia. To clarify the molecular mechanism of schizophrenia induced by MD, we investigated alterations in energetic metabolism, oxidative stress and neurotrophic factor levels in the brain of rats following MD and/or a single administration of ketamine during adulthood. Male Wistar rats were subjected to MD for 10 days. Additionally, these animals received acute ketamine (5, 15 or 25 mg/kg by intraperitoneal route, i.p.) during adulthood, and 30 min later, they were killed and the prefrontal cortex (PFC), the hippocampus and the striatum were removed for molecular analyses. Ketamine 25 mg/kg and/or MD and Ketamine 15 and 5 mg/kg with MD decreased the creatine kinase (CK) activity in the hippocampus. The enzyme activity of succinate dehydrogenase (SDH) in the Krebs cycle had increased in the striatum following the administration of ketamine 25 mg/kg, MD per se or MD plus ketamine 5 and 15 mg/kg. MD per se or MD combined with ketamine in different doses increased the activity of mitochondrial complexes. The PFC of animals subjected to MD and administered with ketamine 5 mg/kg exhibited increased protein carbonyl content. In the hippocampus, ketamine 15 mg/kg, ketamine 25 mg/kg and MD each increased the carbonyl content. In the striatum, the TBARS levels were increased by the administration of ketamine 25 mg/kg. Finally, in the hippocampus, MD alone or in combination with ketamine reduced the Nerve Growth Factor (NGF) levels; however, the Brain-derived Neurotrophic Factor (BDNF) levels were unaltered. In the present study, we suggest that MD increased the risk of psychotic symptoms in adulthood, altering different parameters of energy and oxidative stress. Our results suggest that adverse experiences occurring early in life may sensitize specific neurocircuits to subsequent stressors, inducing vulnerability, and may help us understand the pathophysiological mechanisms involved in this disorder. PMID:25920483

  14. In utero and lactational exposure to blueberry via maternal diet promotes mammary epithelial differentiation in prepubescent female rats.

    PubMed

    Wu, Xianli; Rahal, Omar; Kang, Jie; Till, S Renee; Prior, Ronald L; Simmen, Rosalia C M

    2009-11-01

    Early developmental events influence the fine tuning of later susceptibility to adult diseases. Diet is a determinant of breast cancer risk, and our previous studies showed that diet-mediated changes in transcriptional programs promote early mammary gland differentiation. Although consumption of fruits is considered to elicit multiple health benefits, little is known on whether associated bioactive components modify the early differentiation program in developing mammary glands. Here, we evaluated the hypothesis that early exposure (in utero and lactational) to blueberry through maternal diet enhances mammary epithelial differentiation in female offspring. Pregnant Sprague-Dawley rats beginning at gestation day 4 were fed American Institute of Nutrition-based diets containing casein and whole blueberry powders added to casein at 2.5%, 5.0%, and 10% weight/weight. Female pups at weaning were evaluated for growth and mammary tissue parameters. Blueberry at 5% dose increased body and adipose fat weights, relative to the other diets. Mammary branch density and terminal end bud size were highest for the 5% blueberry group, whereas terminal end bud numbers were not affected by all diets. Mammary ductal epithelial cells of the 5% blueberry group had lower nuclear phosphorylated histone 3 and higher nuclear tumor suppressor phosphatase and tensin homolog deleted in chromosome 10 (PTEN) levels than the casein group. Although sera of both diet groups had similar antioxidant capacity, 5% blueberry sera elicited higher nuclear PTEN accumulation in human MCF-10A mammary epithelial cells. Our studies identify developing mammary glands as early targets of blueberry-associated bioactive components, possibly through systemic effects on epithelial PTEN signaling. PMID:19932869

  15. Maternal taurine supplementation in the late pregnant rat stimulates postnatal growth and induces obesity and insulin resistance in adult offspring

    PubMed Central

    Hultman, Karin; Alexanderson, Camilla; Mannerås, Louise; Sandberg, Mats; Holmäng, Agneta; Jansson, Thomas

    2007-01-01

    An adequate supply of taurine during fetal life is important for normal beta-cell development and insulin action. An altered availability of taurine may programme glucose metabolism in utero and result in type 2 diabetes in adult age. We examined whether maternal taurine supplementation in late pregnant rats affects postnatal growth, adult body composition, insulin sensitivity and endogenous insulin secretion in intrauterine growth restricted (IUGR) and normal offspring. Uterine artery ligation or sham operations were performed on gestational day (GD) 19. Taurine supplementation was given to half of the dams from GD 18 until term, resulting in four groups of offspring: sham (n = 22), sham/taurine (n = 22), IUGR (n = 22) and IUGR/taurine (n = 24). The offspring were studied at 12 weeks of age. In offspring with normal birth weight, fetal taurine supplementation markedly stimulated postnatal growth. In sham/taurine females, fat depots, plasma free fatty acid and leptin concentrations were increased, and insulin sensitivity was reduced. Insulin sensitivity was unaltered in IUGR and IUGR/taurine offspring. However, whereas IUGR offspring showed little catch-up growth, 50% of IUGR/taurine animals displayed complete catch-up at 12 weeks of age, and these animals had increased fat depots and reduced insulin sensitivity. In conclusion, taurine supplementation in late gestation resulted in accelerated postnatal growth, which was associated with adult obesity and insulin resistance in both IUGR and normal offspring. This effect was particularly evident in females. These data suggest that fetal taurine availability is an important determinant for postnatal growth, insulin sensitivity and fat accumulation. PMID:17204495

  16. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb.

    PubMed

    Raineki, C; De Souza, M A; Szawka, R E; Lutz, M L; De Vasconcellos, L F T; Sanvitto, G L; Izquierdo, I; Bevilaqua, L R; Cammarota, M; Lucion, A B

    2009-03-01

    Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age. PMID:19138731

  17. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats

    PubMed Central

    Iglesias, Inmaculada; Albasanz, Jose Luis

    2014-01-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine. PMID:25538864

  18. Effect of maternal exposure to Tityus bahiensis scorpion venom during lactation on the offspring of rats.

    PubMed

    Martins, Adriana do Nascimento; Nencioni, Ana Leonor Abrahão; Dorce, Ana Leticia Coronado; Paulo, Maria Eliza F V; Frare, Eduardo Osório; Dorce, Valquíria Abrão Coronado

    2016-01-01

    Scorpion stings are a public health problem in Brazil and lactating women may be affected. We aimed to study the effects of Tityus bahiensis venom in the offspring of rats treated during lactation. Mothers received a subcutaneous injection of saline (1.0ml/kg) or venom (2.5mg/kg) or an intraperitoneal injection of LPS (lipopolysaccharide) (100μg/kg) on postnatal (PN) days 2 (PN2), 10 (PN10) or 16 (PN16). The offspring were evaluated during the childhood and adulthood. Pups showed a delay in physical and reflexological development, and a decrease in motor activity. Adults displayed low anxiety. There was an increase in the number of viable neuronal cells in hippocampal areas CA1 and CA4. The levels of IFN-γ (interferon-gamma) increased in the experimental groups. Several of the parameters analyzed showed important differences between the sexes. Thus, the scorpion venom affects the development in the offspring of mothers envenomed during the lactation. PMID:26746106

  19. Growth, development and activity in rat offspring following maternal drug exposure.

    PubMed

    Martin, J C; Martin, D C; Radow, B; Sigman, G

    1976-05-01

    Seventy-nine Sprague-Dawley derived primimparous rats were injected subcutaneously throughout pregnancy and the nursing period with either (1) 30 mg/kg of pure nicotine, (2) 5.0 mg/kg methamphetamine HCL, (3) saline vehicle, or, (4) non-injected. Vital and developmental measures were taken on the offspring throughout the nursing period and for one additional week. Metamphetamine-injected females had a shorter, and nicotine-injected females a longer gestational period, and both gained less weight over the 21-day period than the control groups. The pups of methamphetamine and nicotine dams were significantly underweight at birth and the 28 day postnatal period and exhibited developmental delay. Male offspring were divided into behavioral, aging, and autopsy on Day 28. Male offspring of methamphetamine-injected dams remained significantly lighter in weight for the first 15 months of life (aging groups). Their counterparts in the behavioral groups and the offspring of non-injected dams exhibited significantly greater activity for eight of the first twelve monthly assessments which began at 90 days of age. Additional vital, performance, and sensory measures will continue throughout the lifespan of the animals. PMID:1017447

  20. Maternal Exposure to Low Levels of Corticosterone during Lactation Protects against Experimental Inflammatory Colitis-Induced Damage in Adult Rat Offspring

    PubMed Central

    Petrella, Carla; Giuli, Chiara; Agostini, Simona; Bacquie, Valérie; Zinni, Manuela; Theodorou, Vassilia; Broccardo, Maria; Casolini, Paola; Improta, Giovanna

    2014-01-01

    Opposing emotional events (negative/trauma or positive/maternal care) during the postnatal period may differentially influence vulnerability to the effects of stress later in life. The development and course of intestinal disorders such as inflammatory bowel disease are negatively affected by persistent stress, but to date the role of positive life events on these pathologies has been entirely unknown. In the present study, the effect of early life beneficial experiences in the development of intestinal dysfunctions, where inflammation and stress stimuli play a primary role, was investigated. As a “positive” experimental model we used adult male rat progeny nursed by mothers whose drinking water was supplemented with moderate doses of corticosterone (CORT) (0.2 mg/ml) during the lactation period. Such animals have been generally shown to cope better with different environmental situations during life. The susceptibility to inflammatory experimental colitis induced by intracolonic infusion of TNBS (2,4,6-trinitrobenzenesulphonic acid) was investigated in CORT-nursed rats in comparison with control rats. This mild increase in maternal corticosterone during lactation induced, in CORT-nursed rats, a long lasting protective effect on TNBS-colitis, characterized by improvements in some indices of the disease (increased colonic myeloperoxidase activity, loss of body weight and food intake) and by the involvement of endogenous peripheral pathways known to participate in intestinal disorder development (lower plasma corticosterone levels and colonic mast cell degranulation, alterations in the colonic expression of both corticotrophin releasing factor/CRF and its receptor/CRH-1R). All these findings contribute to suggesting that the reduced vulnerability to TNBS-colitis in CORT-nursed rats is due to recovery from the colonic mucosal barrier dysfunction. Such long lasting changes induced by mild hormonal manipulation during lactation, making the adult also better adapted to colonic inflammatory stress, constitute a useful experimental model to investigate the etiopathogenetic mechanisms and therapeutic treatments of some gastrointestinal diseases. PMID:25405993

  1. Maternal exposure to low levels of corticosterone during lactation protects against experimental inflammatory colitis-induced damage in adult rat offspring.

    PubMed

    Petrella, Carla; Giuli, Chiara; Agostini, Simona; Bacquie, Valérie; Zinni, Manuela; Theodorou, Vassilia; Broccardo, Maria; Casolini, Paola; Improta, Giovanna

    2014-01-01

    Opposing emotional events (negative/trauma or positive/maternal care) during the postnatal period may differentially influence vulnerability to the effects of stress later in life. The development and course of intestinal disorders such as inflammatory bowel disease are negatively affected by persistent stress, but to date the role of positive life events on these pathologies has been entirely unknown. In the present study, the effect of early life beneficial experiences in the development of intestinal dysfunctions, where inflammation and stress stimuli play a primary role, was investigated. As a "positive" experimental model we used adult male rat progeny nursed by mothers whose drinking water was supplemented with moderate doses of corticosterone (CORT) (0.2 mg/ml) during the lactation period. Such animals have been generally shown to cope better with different environmental situations during life. The susceptibility to inflammatory experimental colitis induced by intracolonic infusion of TNBS (2,4,6-trinitrobenzenesulphonic acid) was investigated in CORT-nursed rats in comparison with control rats. This mild increase in maternal corticosterone during lactation induced, in CORT-nursed rats, a long lasting protective effect on TNBS-colitis, characterized by improvements in some indices of the disease (increased colonic myeloperoxidase activity, loss of body weight and food intake) and by the involvement of endogenous peripheral pathways known to participate in intestinal disorder development (lower plasma corticosterone levels and colonic mast cell degranulation, alterations in the colonic expression of both corticotrophin releasing factor/CRF and its receptor/CRH-1R). All these findings contribute to suggesting that the reduced vulnerability to TNBS-colitis in CORT-nursed rats is due to recovery from the colonic mucosal barrier dysfunction. Such long lasting changes induced by mild hormonal manipulation during lactation, making the adult also better adapted to colonic inflammatory stress, constitute a useful experimental model to investigate the etiopathogenetic mechanisms and therapeutic treatments of some gastrointestinal diseases. PMID:25405993

  2. Behavioral alterations in rat offspring following maternal immune activation and ELR-CXC chemokine receptor antagonism during pregnancy: implications for neurodevelopmental psychiatric disorders.

    PubMed

    Ballendine, Stephanie A; Greba, Quentin; Dawicki, Wojciech; Zhang, Xiaobei; Gordon, John R; Howland, John G

    2015-03-01

    Research suggests that maternal immune activation (MIA) during pregnancy increases the risk of neurodevelopmental disorders including schizophrenia and autism in the offspring. Current theories suggest that inflammatory mediators including cytokines and chemokines may underlie the increased risk of these disorders in humans. For example, elevated maternal interleukin-8 (IL-8) during pregnancy is associated with increased risk of schizophrenia in the offspring. Given this association, the present experiments examined ELR-CXC chemokines CXCL1 and CXCL2, rodent homologues of human IL-8, and activation of their receptors (CXCR1 and CXCR2) in an established rodent model of MIA. Pregnant Long Evans rats were treated with the viral mimetic polyinosinic-polycytidylic acid (polyI:C; 4 mg/kg, i.v.) on gestational day 15. Protein analysis using multiplex assays and ELISA showed that polyI:C significantly increased maternal serum concentrations of interleukin-1β, tumor necrosis factor, and CXCL1 3h after administration. Subsequent experiments tested the role of elevated maternal CXCL1 on behavior of the offspring by administering a CXCR1/CXCR2 antagonist (G31P; 500 μg/kg, i.p.; 1h before, 48 and 96 h after polyI:C treatment). The male offspring of dams treated with polyI:C demonstrated subtle impairments in prepulse inhibition (PPI), impaired associative and crossmodal recognition memory, and altered behavioral flexibility in an operant test battery. While G31P did not completely reverse the behavioral impairments caused by polyI:C, it enhanced PPI during adolescence and strategy set-shifting and reversal learning during young adulthood. These results suggest that while polyI:C treatment significantly increases maternal CXCL1, elevations of this chemokine are not solely responsible for the effects of polyI:C on the behavior of the offspring. PMID:25445065

  3. Dynamic changes in lipids and proteins of maternal, fetal, and pup blood and milk during perinatal development in CD and Wistar rats.

    PubMed

    McMullin, Tami S; Lowe, Ezra R; Bartels, Michael J; Marty, Mary Sue

    2008-10-01

    An understanding of the physiological factors that regulate perinatal dosimetry is essential to improve the ability of physiologically based (PB) pharmacokinetic (PK) models to predict chemical risks to children. However, the impact of changing maternal/offspring physiology on PK during gestation and lactation remains poorly understood. This research determined lipid and protein changes in blood, milk and amniotic fluid of CD and Wistar dams, fetuses and neonates to improve the precision of perinatal PBPK modeling. Samples were collected from time-mated CD dams, fetuses, and pups on gestation day (GD) 18 and 20 (sperm positive = GD 0) or lactation day 0 (day of birth), 1, 3, 5, 10, 15, and 20 (n > or = 5 per time point). Fewer time points were sampled in Wistar rats, which showed similar patterns to CDs. Relative to nonpregnant dams, maternal serum protein levels (albumin, total protein and globulin) each decreased by approximately 20% during late gestation, whereas maternal serum lipids (triglycerides, low density lipoproteins, and phospholipids) increased up to fourfold. These physiological changes can impact maternal PK of both protein-bound and lipophilic chemicals. During lactation, triglycerides in milk were greater than 100-fold higher than maternal serum, favoring the disposition of lipophilic chemicals into milk and potentially increasing neonatal rodent exposure during critical stages of postnatal development. Serum protein levels in pups were two- to threefold lower than adults at birth, which may increase the bioavailability of protein-bound compounds. These data will aid in the interpretation of perinatal toxicity studies and improve the accuracy of predictive perinatal PBPK models. PMID:18593729

  4. A maternal high fat diet has long-lasting effects on skeletal muscle lipid and PLIN protein content in rat offspring at young adulthood.

    PubMed

    MacPherson, Rebecca E K; Castelli, Laura M; Miotto, Paula M; Frendo-Cumbo, Scott; Milburn, Amanda; Roy, Brian D; LeBlanc, Paul J; Ward, Wendy E; Peters, Sandra J

    2015-02-01

    A maternal high fat diet (HFD) can have adverse effects on skeletal muscle development. Skeletal muscle PLIN proteins (PLIN2, 3 and 5) are thought to play critical roles in lipid metabolism, however effects of HFD on PLIN and lipases (HSL, ATGL, CGI-58) in mothers as well as their offspring have yet to be investigated. The primary objective of this study was to determine whether maternal HFD would influence skeletal muscle lipase and PLIN protein content in offspring at weaning (19 d) and young adulthood (3 mo). Female rats (28 d old, n = 9/group) were fed control (CON, AIN93G, 7% soybean oil) or HFD (AIN93G, 20% lard) for 10 weeks prior to mating and throughout pregnancy and lactation. All offspring were weaned to CON [n = 18/group, 1 female and 1 male pup per litter were studied at weaning (19 d) and 3 mo of age]. There was no effect of sex for the main outcomes measured in plantaris, therefore male and female data was combined. Maternal HFD resulted in higher triacylglycerol content in pups at 3 mo (p < 0.05), as well as in the dams (p = 0.015). Maternal HFD resulted in higher PLIN5 content in pups at weaning and 3 mo (p = 0.05). PLIN2 and PLIN5 content decreased at 3 mo versus weaning (p < 0.001). HFD dams had a higher PLIN3 content (p = 0.016). Diet had no effect on ATGL, CGI-58, or HSL content. In conclusion, exposure to a maternal HFD resulted in higher skeletal muscle lipid and PLIN5 content in plantaris of offspring through to young adulthood. PMID:25552350

  5. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance

    SciTech Connect

    Witek-Janusek, L.

    1986-08-01

    Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24 h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.

  6. Maternal low protein diet causes body weight loss in male, neonate Sprague-Dawley rats involving UCP-1 mediated thermogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  7. Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk of obesity in adulthood is strongly influenced by maternal body composition. Here we examined the hypothesis that maternal obesity influences white adipose tissue (WAT) transcriptome and increases propensity for adipogenesis in the offspring, prior to the development of obesity, using an es...

  8. In utero glucocorticoid (GLC) exposure and maternal undernutrition reduce fetal skeletal muscle mass by different mechanisms in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both maternal undernutrition and exposure of the fetus to above normal levels of GLC impair skeletal muscle growth. The degree to which the effects of maternal undernutrition on fetal skeletal muscle growth are a direct result of nutrient deficit or secondary to the presence of above normal GLC leve...

  9. Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat.

    PubMed

    Sherman, R C; Langley-Evans, S C

    1998-04-01

    1. Associations of intrauterine exposure to maternal undernutrition with later hypertension and coronary heart disease in the human population have been duplicated in the rat. Fetal exposure to low protein diets produces offspring that develop raised systolic blood pressure by the age of weaning. This animal model of 'programmed' hypertension was used to investigate the role of the renin-angiotensin system in the initiation and maintenance of high blood pressure. 2. Pregnant rats were fed diets containing 18 or 9% casein from conception until littering. The offspring from these pregnancies were administered captopril either between 2 and 4 weeks of age, or from 10 to 12 weeks of age. 3. The feeding of low protein diets in pregnancy had no effect upon the reproductive ability of female rats and the offspring generated were of normal birthweight. By 4 weeks of age the male and female offspring of low-protein-fed dams had systolic blood pressures that were 24-25 mmHg higher than those of rats exposed to a control diet in utero. 4. Treatment of 10-week-old female offspring with captopril for 2 weeks indicated that angiotensin II formation may play a role in the maintenance of high blood pressure in low-protein-exposed rats. While captopril had no significant effect upon systolic pressures of rats exposed to the control diet in intrauterine life, the systolic blood pressures of low-protein animals rapidly declined by 31 mmHg. 5. Administration of captopril to male and female offspring between 2 and 4 weeks of age exerted long-term effects upon systolic blood pressure. Eight weeks after cessation of treatment, at an age where maximal blood pressures are achieved, captopril-treated, low-protein-exposed rats had similar blood pressures to normotensive rats exposed to the protein-replete diet in utero. 6. In conclusion, we have demonstrated that the elevation of adult blood pressure associated with fetal exposure to a maternal low-protein diet, is prevented by early administration of an angiotensin-converting enzyme inhibitor. The actions of angiotensin II in the late suckling period may be a critical determinant of long-term cardiovascular functions in these animals. PMID:9640343

  10. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain.

    PubMed Central

    Calvo, R; Obregón, M J; Ruiz de Oña, C; Escobar del Rey, F; Morreale de Escobar, G

    1990-01-01

    To study the protective effects of maternal thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in congenital hypothyroidism, we gave pregnant rats methimazole (MMI), an antithyroid drug that crosses the placenta, and infused them with three different doses of T4 or T3. The concentrations of both T4 and T3 were determined in maternal and fetal plasma and tissues (obtained near term) by specific RIAs. Several thyroid hormone-dependent biological end-points were also measured. MMI treatment resulted in marked fetal T4 and T3 deficiency. Infusion of T4 into the mothers increased both these pools in a dose-dependent fashion. There was a preferential increase of T3 in the fetal brain. Thus, with a T4 dose maintaining maternal euthyroidism, fetal brain T3 reached normal values, although fetal plasma T4 was 40% of normal and plasma TSH was high. The infusion of T3 pool into the mothers increased the total fetal extrathyroidal T3 pool in a dose-dependent fashion. The fetal T4 pools were not increased, however, and this deprived the fetal brain (and possibly the pituitary) of local generation of T3 from T4. As a consequence, fetal brain T3 deficiency was not mitigated even when dams were infused with a toxic dose of T3. The results show that (a) there is a preferential protection of the brain of the hypothyroid fetus from T3 deficiency; (b) maternal T4, but not T3, plays a crucial role in this protection, and (c) any condition which lowers maternal T4 (including treatment with T3) is potentially harmful for the brain of a hypothyroid fetus. Recent confirmation of transplacental passage of T4 in women at term suggests that present results are relevant for human fetuses with impairment of thyroid function. Finding signs of hypothyroidism at birth does not necessarily mean that the brain was unprotected in utero, provided maternal T4 is normal. It is crucial to realize that maintainance of maternal "euthyroidism" is not sufficient, as despite hypothyroxinemia, the mothers may be clinically euthyroid if their T3 levels are normal. Images PMID:2394838

  11. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    PubMed

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task). Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation) and associative (spatial learning) mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning) and increases BDNF levels and cell numbers in the hippocampal formation of offspring. PMID:26771675

  12. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring

    PubMed Central

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task). Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation) and associative (spatial learning) mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning) and increases BDNF levels and cell numbers in the hippocampal formation of offspring. PMID:26771675

  13. Maternal High-Fat Diet during Pregnancy and Lactation Influences Obestatin and Ghrelin Concentrations in Milk and Plasma of Wistar Rat Dams and Their Offspring

    PubMed Central

    Słupecka, Monika; Romanowicz, Katarzyna; Woliński, Jarosław

    2016-01-01

    The study aims to establish the effect of a maternal high-fat diet on obestatin concentration, total ghrelin, and ghrelin/obestatin ratio during pregnancy and lactation of Wistar rats and their offspring in the first 21 days of life. On the mating day, females were randomly allocated and fed either a high-fat diet (30% of fat; HF) or breeding diet (5% fat; BD) till the 21st day of lactation. Hormones were analyzed in the blood plasma and milk of rat dams as well as in the blood plasma of their offspring. HF resulted in a significant decrease in obestatin level on the 14th day of lactation and elevation on the 21st day. Plasma obestatin in HFD offspring was significantly higher than in BD ones. HF diet did not significantly affect dam plasma ghrelin until the 21st day of lactation. The ghrelin concentrations in milk after both diets were significantly lower than in blood plasma. Milk ghrelin in HF dams was significantly higher than in the BD ones. Plasma ghrelin from HF offspring was significantly higher than that from BD dams. Our results demonstrate that a maternal HF diet during pregnancy and lactation influences ghrelin and obestatin level in both dams and their offspring. PMID:27127509

  14. Female-dependent impaired fear memory of adult rats induced by maternal separation, and screening of possible related genes in the hippocampal CA1.

    PubMed

    Sun, Xiu-Min; Tu, Wen-Qiang; Shi, Yan-Wei; Xue, Li; Zhao, Hu

    2014-07-01

    Early life stress is one of the major susceptible factors for stress-related pathologies like posttraumatic stress disorder (PTSD). Recent studies in rats suggest that rather than being overall unfavorable, early life stress may prepare the organism to perform optimally to stressful environments later in life. In this study, severely adverse early life stress was conducted by six consecutive hours of maternal separation (MS), from PND1 to PND21, and contextual fear conditioning model was used on PND90 to mimic the second stress in adulthood and the re-experiencing symptom of PTSD. It was observed that in this investigation pups experienced MS showed decreased sensibility to contextual fear conditioning in adulthood, and there sex plays an important role. For example, female rats suffered MS had much lower freezing than males and controls. Meanwhile, Morris water maze test indicated that MS did not impair rat's performance of spatial learning and memory. Furthermore, suppression subtractive hybridization (SSH) was used to screen the related genes of fear memory, by examining the changes of mRNA expression in CA1 area between female MS and control rats after contextual fear conditioning. Finally, nine up-regulated and one down-regulated genes, including β2-MG, MAF, Nd1-L, TorsinA and MACF1 gene were found in this study. It is assumed that the TorsinA, MACF1 and Nd1-L gene may contribute to the decreased sensitivity of PTSD induced by MS. PMID:24667363

  15. Maternal hypoxia increases the susceptibility of adult rat male offspring to high-fat diet-induced nonalcoholic fatty liver disease.

    PubMed

    Su, Yi-Ming; Lv, Guo-Rong; Xie, Jing-Xian; Wang, Zhen-Hua; Lin, Hui-Tong

    2013-11-01

    Exposure to an adverse intrauterine environment increases the risk for adult metabolic syndrome. However, the influence of prenatal hypoxia on the risk of fatty liver disease in offspring is unclear. The purpose of the present study was to evaluate the role of reduced fetal oxygen on the development and severity of high-fat (HF) diet-induced nonalcoholic fatty liver disease (NAFLD). Based on design implicating 2 factors, ie, maternal hypoxia (MH) and postnatal HF diet, blood lipid and insulin levels, hepatic histology, and potential molecular targets were evaluated in male Sprague Dawley rat offspring. MH associated with postnatal HF diet caused a significant increase in plasma concentration of triglycerides, free fatty acids, low-density lipoprotein cholesterol, and insulin. Histologically, a more severe form of NAFLD with hepatic inflammation, hepatic resident macrophage infiltration, and progression toward nonalcoholic steatohepatitis was observed. The lipid homeostasis changes and insulin resistance caused by MH plus HF were accompanied by a significant down-regulation of insulin receptor substrate 2 (IRS-2), phosphoinositide-3 kinase p110 catalytic subunit, and protein kinase B. In MH rats, insulin-stimulated IRS-2 and protein kinase B (AKT) phosphorylation were significantly blunted as well as insulin suppression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Meanwhile, a significant up-regulation of lipogenic pathways was noticed, including sterol-regulatory element-binding protein-1 and fatty acid synthase in liver. Our results indicate that maternal hypoxia enhances dysmetabolic liver injury in response to an HF diet. Therefore, the offspring born in the context of maternal hypoxia may require special attention and follow-up to prevent the early development of NAFLD. PMID:24002036

  16. Chronic Maternal Vitamin B12 Restriction Induced Changes in Body Composition & Glucose Metabolism in the Wistar Rat Offspring Are Partly Correctable by Rehabilitation

    PubMed Central

    Kumar, Kalle Anand; Lalitha, Anumula; Reddy, Umakar; Chandak, Giriraj Ratan; Sengupta, Shantanu; Raghunath, Manchala

    2014-01-01

    Maternal under-nutrition increases the risk of developing metabolic diseases. We studied the effects of chronic maternal dietary vitamin B12 restriction on lean body mass (LBM), fat free mass (FFM), muscle function, glucose tolerance and metabolism in Wistar rat offspring. Prevention/reversibility of changes by rehabilitating restricted mothers from conception or parturition and their offspring from weaning was assessed. Female weaning Wistar rats (n = 30) were fed ad libitum for 12 weeks, a control diet (n = 6) or the same with 40% restriction of vitamin B12 (B12R) (n = 24); after confirming deficiency, were mated with control males. Six each of pregnant B12R dams were rehabilitated from conception and parturition and their offspring weaned to control diet. While offspring of six B12R dams were weaned to control diet, those of the remaining six B12R dams continued on B12R diet. Biochemical parameters and body composition were determined in dams before mating and in male offspring at 3, 6, 9 and 12 months of their age. Dietary vitamin B12 restriction increased body weight but decreased LBM% and FFM% but not the percent of tissue associated fat (TAF%) in dams. Maternal B12R decreased LBM% and FFM% in the male offspring, but their TAF%, basal and insulin stimulated glucose uptake by diaphragm were unaltered. At 12 months age, B12R offspring had higher (than controls) fasting plasma glucose, insulin, HOMA-IR and impaired glucose tolerance. Their hepatic gluconeogenic enzyme activities were increased. B12R offspring had increased oxidative stress and decreased antioxidant status. Changes in body composition, glucose metabolism and stress were reversed by rehabilitating B12R dams from conception, whereas rehabilitation from parturition and weaning corrected them partially, highlighting the importance of vitamin B12 during pregnancy and lactation on growth, muscle development, glucose tolerance and metabolism in the offspring. PMID:25398136

  17. Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases RAGE expression, augments hippocampal excitability, and alters behavior of the offspring.

    PubMed

    Chandna, A R; Kuhlmann, N; Bryce, C A; Greba, Q; Campanucci, V A; Howland, J G

    2015-09-10

    Maternal diabetes during pregnancy may increase the risk of neurodevelopmental disorders in the offspring by increasing inflammation. A major source of inflammatory signaling observed in diabetes is activation of the receptor for advanced glycation end-products (RAGE), and increased RAGE expression has been reported in psychiatric disorders. Thus, we sought to examine whether maternal diabetes creates a proinflammatory state, triggered largely by RAGE signaling, that alters normal brain development and behavior of the offspring. We tested this hypothesis in rats using the streptozotocin (STZ; 50mg/kg; i.p.) model of diabetes induced during mid-pregnancy. Following STZ treatment, we observed a significant increase in RAGE protein expression in the forebrain of the offspring (postnatal day 1). Data obtained from whole-cell patch clamping of hippocampal neurons in cultures from the offspring of STZ-treated dams revealed a striking increase in excitability. When tested in a battery of behavioral tasks in early adulthood, the offspring of STZ-treated dams had significantly lower prepulse inhibition, reduced anxiety-like behavior, and altered object-place preference when compared to control offspring. In an operant-based strategy set-shifting task, STZ offspring did not differ from controls on an initial visual discrimination or reversal learning but took significantly longer to shift to a new strategy (i.e., set-shift). Insulin replacement with an implantable pellet in the dams reversed the effects of maternal diabetes on RAGE expression, hippocampal excitability, prepulse inhibition and object-place memory, but not anxiety-like behavior or set-shifting. Taken together, these results suggest that chronic maternal hyperglycemia alters normal hippocampal development and behavior of the offspring, effects that may be mediated by increased RAGE signaling in the fetal brain. PMID:26151680

  18. Maternal high-fat diet-induced programing of gut taste receptor and inflammatory gene expression in rat offspring is ameliorated by CLA supplementation.

    PubMed

    Reynolds, Clare M; Segovia, Stephanie A; Zhang, Xiaoyuan D; Gray, Clint; Vickers, Mark H

    2015-10-01

    Consumption of a high-fat (HF) diet during pregnancy and lactation influences later life predisposition to obesity and cardiometabolic disease in offspring. The mechanisms underlying this phenomenon remain poorly defined, but one potential target that has received scant attention and is likely pivotal to disease progression is that of the gut. The present study examined the effects of maternal supplementation with the anti-inflammatory lipid, conjugated linoleic acid (CLA), on offspring metabolic profile and gut expression of taste receptors and inflammatory markers. We speculate that preventing high-fat diet-induced metainflammation improved maternal metabolic parameters conferring beneficial effects on adult offspring. Sprague Dawley rats were randomly assigned to a purified control diet (CD; 10% kcal from fat), CD with CLA (CLA; 10% kcal from fat, 1% CLA), HF (45% kcal from fat) or HF with CLA (HFCLA; 45% kcal from fat, 1% CLA) throughout gestation and lactation. Plasma/tissues were taken at day 24 and RT-PCR was carried out on gut sections. Offspring from HF mothers were significantly heavier at weaning with impaired insulin sensitivity compared to controls. This was associated with increased plasma IL-1? and TNF? concentrations. Gut Tas1R1, IL-1?, TNF?, and NLRP3 expression was increased and Tas1R3 expression was decreased in male offspring from HF mothers and was normalized by maternal CLA supplementation. Tas1R1 expression was increased while PYY and IL-10 decreased in female offspring of HF mothers. These results suggest that maternal consumption of a HF diet during critical developmental windows influences offspring predisposition to obesity and metabolic dysregulation. This may be associated with dysregulation of taste receptor, incretin, and inflammatory gene expression in the gut. PMID:26493953

  19. Maternal high-fat diet-induced programing of gut taste receptor and inflammatory gene expression in rat offspring is ameliorated by CLA supplementation

    PubMed Central

    Reynolds, Clare M; Segovia, Stephanie A; Zhang, Xiaoyuan D; Gray, Clint; Vickers, Mark H

    2015-01-01

    Consumption of a high-fat (HF) diet during pregnancy and lactation influences later life predisposition to obesity and cardiometabolic disease in offspring. The mechanisms underlying this phenomenon remain poorly defined, but one potential target that has received scant attention and is likely pivotal to disease progression is that of the gut. The present study examined the effects of maternal supplementation with the anti-inflammatory lipid, conjugated linoleic acid (CLA), on offspring metabolic profile and gut expression of taste receptors and inflammatory markers. We speculate that preventing high-fat diet-induced metainflammation improved maternal metabolic parameters conferring beneficial effects on adult offspring. Sprague Dawley rats were randomly assigned to a purified control diet (CD; 10% kcal from fat), CD with CLA (CLA; 10% kcal from fat, 1% CLA), HF (45% kcal from fat) or HF with CLA (HFCLA; 45% kcal from fat, 1% CLA) throughout gestation and lactation. Plasma/tissues were taken at day 24 and RT-PCR was carried out on gut sections. Offspring from HF mothers were significantly heavier at weaning with impaired insulin sensitivity compared to controls. This was associated with increased plasma IL-1β and TNFα concentrations. Gut Tas1R1, IL-1β, TNFα, and NLRP3 expression was increased and Tas1R3 expression was decreased in male offspring from HF mothers and was normalized by maternal CLA supplementation. Tas1R1 expression was increased while PYY and IL-10 decreased in female offspring of HF mothers. These results suggest that maternal consumption of a HF diet during critical developmental windows influences offspring predisposition to obesity and metabolic dysregulation. This may be associated with dysregulation of taste receptor, incretin, and inflammatory gene expression in the gut. PMID:26493953

  20. Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on Post-Operative Pain in Sprague-Dawley Rat Offspring

    PubMed Central

    Knaepen, Liesbeth; Rayen, Ine; Charlier, Thierry D.; Fillet, Marianne; Houbart, Virginie; van Kleef, Maarten; Steinbusch, Harry W.; Patijn, Jacob; Tibboel, Dick; Joosten, Elbert A.; Pawluski, Jodi L.

    2013-01-01

    Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system. PMID:23437400

  1. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    PubMed

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats. PMID:25452472

  2. Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction.

    PubMed

    Alexandre-Gouabau, Marie-Cécile F; Bailly, Emilie; Moyon, Thomas L; Grit, Isabelle C; Coupé, Bérengère; Le Drean, Gwenola; Rogniaux, Hélène J; Parnet, Patricia

    2012-02-01

    Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation. PMID:21429728

  3. Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats.

    TOXLINE Toxicology Bibliographic Information

    Mallinson JE; Sculley DV; Craigon J; Plant R; Langley-Evans SC; Brameld JM

    2007-08-01

    This study assessed the impact of reduced dietary protein during specific periods of fetal life upon muscle fibre development in young rats. Pregnant rats were fed a control or low-protein (LP) diet at early (days 0-7 gestation, LPEarly), mid (days 8-14, LPMid), late (days 15-22, LPLate) or throughout gestation (days 0-22, LPAll). The muscle fibre number and composition in soleus and gastrocnemius muscles of the offspring were studied at 4 weeks of age. In the soleus muscle, both the total number and density of fast fibres were reduced in LPMid females (P = 0.004 for both, Diet x Sex x Fibre type interactions), while both the total number and density of glycolytic (non-oxidative) fibres were reduced in LPEarly, LPMid and LPLate (but not LPAll) offspring compared with controls (P < 0.001 for both, Diet x Fibre type interaction). In the gastrocnemius muscle, only the density of oxidative fibres was reduced in LPMid compared with control offspring (P = 0.019, Diet x Fibre type interaction), with the density of slow fibres being increased in LPAll males compared with control (P = 0.024, Diet x Sex x Fibre type interaction). There were little or no effects of maternal diet on fibre type diameters in the two muscles. In conclusion, a maternal low-protein diet mainly during mid-pregnancy reduced muscle fibre number and density in 4-week-old rats, but there were muscle-specific differences in the fibre types affected.

  4. Fetal exposure to a maternal low-protein diet during mid-gestation results in muscle-specific effects on fibre type composition in young rats

    PubMed Central

    Mallinson, Joanne E.; Sculley, Dean V.; Craigon, Jim; Plant, Richard; Langley-Evans, Simon C.; Brameld, John M.

    2007-01-01

    This study assessed the impact of reduced dietary protein during specific periods of fetal life upon muscle fibre development in young rats. Pregnant rats were fed a control or low-protein (LP) diet at early (days 0-7 gestation, LPEarly), mid (days 8-14, LPMid), late (days 15-22, LPLate) or throughout gestation (days 0-22, LPAll). The muscle fibre number and composition in soleus and gastrocnemius muscles of the offspring were studied at 4 weeks of age. In the soleus muscle, both the total number and density of fast fibres were reduced in LPMid females (P=0·004 for both, Diet × Sex × Fibre type interactions), while both the total number and density of glycolytic (non-oxidative) fibres were reduced in LPEarly, LPMid and LPLate (but not LPAll) offspring compared with controls (P<0·001 for both, Diet × Fibre type interaction). In the gastrocnemius muscle, only the density of oxidative fibres was reduced in LPMid compared with control offspring (P=0·019, Diet × Fibre type interaction), with the density of slow fibres being increased in LPAll males compared with control (P=0·024, Diet × Sex × Fibre type interaction). There were little or no effects of maternal diet on fibre type diameters in the two muscles. In conclusion, a maternal low-protein diet mainly during mid-pregnancy reduced muscle fibre number and density in 4-week-old rats, but there were muscle-specific differences in the fibre types affected. PMID:17391556

  5. Oral Leptin Treatment in Suckling Rats Ameliorates Detrimental Effects in Hypothalamic Structure and Function Caused by Maternal Caloric Restriction during Gestation

    PubMed Central

    Konieczna, Jadwiga; Garca, Ana Paula; Snchez, Juana; Palou, Mariona; Palou, Andreu; Pic, Catalina

    2013-01-01

    A poor prenatal environment brings about perturbations in leptin surge and hypothalamic circuitry that program impaired ability to regulate energy homeostasis in adulthood. Here, using a rat model of moderate maternal caloric restriction during gestation, we aimed to investigate whether leptin supplementation with physiological doses throughout lactation is able to ameliorate the adverse developmental malprogramming effects exerted in offspring hypothalamus structure and function. Three groups of male and female rats were studied: the offspring of ad libitum fed dams (controls), the offspring of 20% calorie restricted dams during the first part of pregnancy (CR), and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Animals were sacrificed on postnatal day 25. Morphometric and immunohistochemical studies on arcuate (ARC) and paraventicular (PVN) nucleus were performed and hypothalamic expression levels of selected genes were determined. In CR males, leptin treatment restored, at least in part, the number of immunoreactive neuropeptide Y (NPY+) cells in ARC, the total number of cells in PVN, hypothalamic NPY, cocaine- and amphetamine-regulated transcript (CART) and suppressor of cytokine signalling-3 (SOCS-3) mRNA levels, and plasma leptin levels, which were decreased in CR animals. CR-Leptin males showed higher hypothalamic long-form leptin receptor (ObRb) mRNA levels, compared to control and CR animals. In CR females, leptin treatment reverted the increased number of cells in ARC and cell density in ARC and PVN, and reduced hypothalamic SOCS-3 mRNA expression to levels similar to controls. Leptin treatment also reverted the increased relative area of NPY+ fibers in the PVN occurring in CR animals. In conclusion, leptin supplementation throughout lactation is able to revert, at least partly, most of the developmental effects on hypothalamic structure and function caused by moderate maternal caloric restriction during gestation, and hence making this metabolic malprogramming reversible to some extent. PMID:24312379

  6. Maternal use of flaxseed oil during pregnancy and lactation prevents morphological alterations in pancreas of female offspring from rat dams with experimental diabetes

    PubMed Central

    Correia-Santos, André Manoel; Vicente, Gabriela C; Suzuki, Akemi; Pereira, Aline D; dos Anjos, Juliana S; Lenzi-Almeida, Kátia C; Boaventura, Gilson T

    2015-01-01

    Nutritional recommendations have promoted the increased need to consume n-3 polyunsaturated fatty acids. Flaxseed is the richest dietary source of n-3 fatty acids among plant sources and is widely used for its edible oil. This study aimed to investigate whether maternal use of flaxseed oil has effects on pancreas morphology in the female offspring of diabetic mothers. Female Wistar rats (n = 12) were induced into diabetes by a high-fat diet and low dose of streptozotocin. After confirmation of the diabetes, rats were mated, and once pregnancy was confirmed, they were allocated into three groups (n = 6): high-fat group (HG); flaxseed oil group (FOG); and control group (CG) (non-diabetic rats). At weaning, female offspring (n = 6/group) received standard chow diet. The animals were euthanized at 180 days. Pancreas was collected for histomorphometric and immunohistochemistry analysis. HG showed hypertrophy of pancreatic islets (P < 0.0001), whereas FOG offspring had islets with smaller diameters compared to HG (P < 0.0001). HG offspring showed higher percentage of larger (P = 0.0061) and lower percentage of smaller islets (P = 0.0036). HG showed lower islet insulin immunodensity at 180 days (P < 0.0001), whereas FOG was similar to CG (P < 0.0001). Flaxseed oil reduced the damage caused by maternal hyperglycaemia, promoting normal pancreas histomorphometry and β-cell mass in female offspring. PMID:25808815

  7. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay

    PubMed Central

    Barreau, Frederick; Cartier, Christel; Leveque, Mathilde; Ferrier, Laurent; Moriez, Raphael; Laroute, Valerie; Rosztoczy, Andras; Fioramonti, Jean; Bueno, Lionel

    2007-01-01

    Neonatal maternal deprivation (NMD) increases gut paracellular permeability (GPP) through mast cells and nerve growth factor (NGF), and modifies corticotrophin-releasing factor (CRF) and corticosterone levels. CRF, corticosterone and mast cells are involved in stress-induced mucosal barrier impairment. Consequently, this study aimed to specify whether corticosteronaemia and colonic expression of both preproCRF and CRF are modified by NMD, and to determine if altered expression may participate in the elevated GPP in connection with NGF and mast cells. Male Wistar rat pups were either separated from postnatal days 2–14, or left undisturbed with their dam. At 12 weeks of age, adult rats were treated with mifepristone (an antagonist of corticoid receptors), α-helical CRF(9-41) (a non-specific CRF receptor antagonist), or SSR-125543 (CRF-R1 receptor antagonist). We also determined corticosteronaemia and both colonic preproCRF and CRF expression. Then, control rats were treated by CRF, doxantrazole (mast cell stabilizer), BRX-537A (a mast cell activator) and anti-NGF antibody. NMD did not modify colonic CRF level but increased colonic preproCRF expression and corticosteronaemia. Peripheral CRF, via CRF-R1 receptor, but not corticosterone, was involved in the elevated GPP observed in these rats, through a mast-cell-mediated mechanism, since the increase of GPP induced by exogenous CRF was abolished by doxantrazole. Anti-NGF antibody treatment also reduced the elevated GPP induced by CRF or BRX-537A. CRF acts through CRF-R1 receptors to stimulate NGF release from mast cells, which participates in the elevated GPP observed in NMD adult rats. This suggests that early traumatic experience induced neuro-endocrine dysfunction, involved in alterations of gut mucosal barrier. PMID:17234701

  8. Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation

    PubMed Central

    2012-01-01

    Background Irritable bowel syndrome (IBS) is characterized by chronic visceral hyperalgesia (CVH) that manifested with persistent or recurrent abdominal pain and altered bowel movement. However, the pathogenesis of the CVH remains unknown. The aim of this study was to investigate roles of endogenous hydrogen sulfide (H2S) producing enzyme cystathionine beta-synthetase (CBS) and p65 nuclear factor-kappa B subunits in CVH. Results CVH was induced by neonatal maternal deprivation (NMD) in male rats on postnatal days 2–15 and behavioral experiments were conducted at the age of 7–15 weeks. NMD significantly increased expression of CBS in colon-innervating DRGs from the 7th to 12th week. This change in CBS express is well correlated with the time course of enhanced visceromoter responses to colorectal distention (CRD), an indicator of visceral pain. Administration of AOAA, an inhibitor of CBS, produced a dose-dependent antinociceptive effect on NMD rats while it had no effect on age-matched healthy control rats. AOAA also reversed the enhanced neuronal excitability seen in colon-innervating DRGs. Application of NaHS, a donor of H2S, increased excitability of colon-innervating DRG neurons acutely dissociated from healthy control rats. Intrathecal injection of NaHS produced an acute visceral hyperalgesia. In addition, the content of p65 in nucleus was remarkably higher in NMD rats than that in age-matched controls. Intrathecal administration of PDTC, an inhibitor of p65, markedly reduced expression of CBS and attenuated nociceptive responses to CRD. Conclusion The present results suggested that upregulation of CBS expression, which is mediated by activation of p65, contributes to NMD-induced CVH. This pathway might be a potential target for relieving CVH in patients with IBS. PMID:23249427

  9. Maternal microchimerism

    PubMed Central

    Ye, Jody; Vives-Pi, Marta; Gillespie, Kathleen M

    2014-01-01

    Increased levels of non-inherited maternal HLA alleles have been detected in the periphery of children with type 1 diabetes and an increased frequency of maternal cells have been identified in type 1 diabetes pancreas. It is now clear that the phenotype of these cells is pancreatic,1 supporting the hypothesis that maternal cells in human pancreas are derived from multipotent maternal progenitors. Here we hypothesize how increased levels of maternal cells could play a role in islet autoimmunity. PMID:25093746

  10. Visceral hyperalgesia induced by neonatal maternal separation is associated with nerve growth factor-mediated central neuronal plasticity in rat spinal cord.

    PubMed

    Chung, E K Y; Zhang, X-J; Xu, H-X; Sung, J J Y; Bian, Z-X

    2007-11-01

    Neonatal maternal separation (NMS) has been shown to trigger alterations in neuroendocrine, neurochemical and sensory response to nociceptive stimuli along the brain-gut axis. These alterations may be the result of a cascade of events that are regulated by neurotrophic factors. Nerve growth factor (NGF), a member of the neurotrophin family, is essential for the development and maintenance of sensory neurons and for the formation of central pain circuitry. The present study aimed to investigate whether NMS causes changes in neuronal plasticity and the relationship of these changes in plasticity with the expression of NGF and its high affinity tyrosine kinase receptor A (TrkA) in the lumbosacral spinal cord in adult rats. Male Wistar rat pups were either subjected to 180 min daily of NMS or not handled (NH) for 13 consecutive days. The expression of NGF and TrkA was examined in NH and NMS rats with or without colorectal distention (CRD) as determined by Western blot analysis and immunohistochemistry. The present results of Western blot analysis indicated NMS and CRD have a significant effect on NGF protein level in the lumbosacral spinal cord of rats. Assessments of optical densities revealed that NMS enhanced TrkA-ir fiber densities in laminae I-III and laminae V-VI of rats in both conditions with or without CRD. Double immunofluorescence revealed that TrkA co-expressed with calcitonin gene-related peptide (CGRP) in afferent fibers, while no significant difference in terms of the intensity of TrkA-ir in these fibers was found among groups. Quantitative analysis of TrkA-ir neurons indicated a significant interactive effect of NMS and CRD on the mean number of TrkA-ir neurons in laminae V-VI of rats, in which significant difference was found between NMS+CRD and NH+CRD. Double immunofluorescence of TrkA and Fos showed that CRD has a significant effect on TrkA expression in Fos-positive neurons in laminae V-VI and lamina X of rats, while no significant difference was found between NMS+CRD and NH+CRD. These results demonstrate that NMS induced alterations in NGF protein level and TrkA expression in adult rat spinal cord and indicate that NGF is a crucial mediator for the changes in neuronal plasticity that occur in NMS-induced visceral hyperalgesia. PMID:17913374

  11. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones-neurotransmitters and adenosinergic system interactions.

    PubMed

    Ahmed, O M; Abd El-Tawab, S M; Ahmed, R G

    2010-10-01

    The adequate functioning of the maternal thyroid gland plays an important role to ensure that the offspring develop normally. Thus, maternal hypo- and hyperthyroidism are used from the gestation day 1 to lactation day 21, in general, to recognize the alleged association of offspring abnormalities associated with the different thyroid status. In maternal rats during pregnancy and lactation, hypothyroidism in one group was performed by antithyroid drug, methimazole (MMI) that was added in drinking water at concentration 0.02% and hyperthyroidism in the other group was induced by exogenous thyroxine (T4) (from 50 microg to 200 microg/kg body weight) intragastric administration beside adding 0.002% T4 to the drinking water. The hypothyroid and hyperthyroid states in mothers during pregnancy and lactation periods were confirmed by measuring total thyroxine (TT4) and triiodothyronine (TT3) at gestational day 10 and 10 days post-partum, respectively; the effect was more pronounced at the later period than the first. In offspring of control maternal rats, the free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations were pronouncedly increased as the age progressed from 1 to 3 weeks. In hypothyroid group, a marked decrease in serum FT3, FT4 and GH levels was observed while there was a significant increase in TSH level with age progress as compared with the corresponding control. The reverse pattern to latter state was recorded in hyperthyroid group. The thyroid gland of offspring of hypothyroid group, exhibited some histopathological changes as luminal obliteration of follicles, hyperplasia, fibroblastic proliferation and some degenerative changes throughout the experimental period. The offspring of hyperthyroid rats showed larger and less thyroid follicles with flattened cell lining epithelium, decreased thyroid gland size and some degenerative changes along the experimental period. On the other hand, the biochemical data revealed that in control offspring, the levels of iodothyronine 5'-monodeiodinase (5'-DI), monoamines, gamma-aminobutyric acid (GABA), acetylcholinesterase (AchE), ATPase-enzymes (Na(+),K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) follow a synchronized course of development in all investigated brain regions (cerebrum, cerebellum and medulla oblongata). In addition, the depression in 5'-DI activity, monoamines levels with age progress in all investigated regions, was more pronounced in hypothyroid offspring, while they were increased significantly in hyperthyroid ones in comparison with their respective controls. Conversely, the reverse pattern was recorded in level of the inhibitory transmitter, GABA while there was a disturbance in AchE and ATPases activities in both treated groups along the experimental period in all studied regions. In conclusion, the hypothyroid status during pregnancy and lactation produced inhibitory effects on monoamines, AchE and ATPases and excitatory actions on GABA in different brain regions of the offspring while the hyperthyroid state induced a reverse effect. Thus, the maternal hypothyroidism and hyperthyroidism may cause a number of biochemical disturbances in different brain regions of their offspring and may lead to a pathophysiological state. These alterations were age dependent. PMID:20599606

  12. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  13. Higher Hepatic miR-29 Expression in Undernourished Male Rats During the Postnatal Period Targets the Long-Term Repression of IGF-1.

    PubMed

    Sohi, Gurjeev; Revesz, Andrew; Ramkumar, Julie; Hardy, Daniel B

    2015-09-01

    A nutritional mismatch in postnatal life of low birth weight offspring increases the risk of developing the metabolic syndrome. Moreover, this is associated with decreased hepatic Igf1 expression, leading to impaired growth and metabolism. Previously, we have demonstrated that the timing of nutritional restoration in perinatal life can differentially program hepatic gene expression. Although microRNAs also play an important role in silencing gene expression, to date, the impact of a nutritional mismatch in neonatal life on their long-term expression has not been evaluated. Given the complementarity of miR-29 to the 3' untranslated region of Igf1, we examined how protein restoration in maternal protein restriction rat offspring influences hepatic miR-29 and Igf1 expression in adulthood. Pregnant Wistar rats were designated into 1 of 4 dietary regimes: 20% protein (control), 8% protein during lactation only (LP-Lact), 8% protein during gestation only (LP1) or both (LP2). The steady-state expression of hepatic miR-29 mRNA significantly increased in LP2 offspring at postnatal day 21 and 130, and this was inversely related to hepatic Igf1 mRNA and body weight. Interestingly, this reciprocal association was stronger in LP-Lact offspring at postnatal day 21. Functional relevance of this in vivo relationship was evaluated by transfection of miR-29 mimics in neonatal Clone 9 rat hepatoma cells. Transfection with miR-29 suppressed Igf1 expression by 12 hours. Collectively, these findings implicate that nutritional restoration after weaning (post liver differentiation) in maternal protein restriction rat offspring fails to prevent long-term impaired growth, in part, due to miR-29 suppression of hepatic Igf1 expression. PMID:26151354

  14. Maternal Nutrient Restriction Alters Ca2+ Handling Properties and Contractile Function of Isolated Left Ventricle Bundles in Male But Not Female Juvenile Rats.

    PubMed

    Harvey, Thomas J; Murphy, Robyn M; Morrison, Janna L; Posterino, Giuseppe S

    2015-01-01

    Intrauterine growth restriction (IUGR), defined as a birth weight below the 10th centile, may be caused by maternal undernutrition, with evidence that IUGR offspring have an increased risk of cardiovascular disease (CVD) in adulthood. Calcium ions (Ca2+) are an integral messenger for several steps associated with excitation-contraction coupling (ECC); the cascade of events from the initiation of an action potential at the surface membrane, to contraction of the cardiomyocyte. Any changes in Ca2+ storage and release from the sarcoplasmic reticulum (SR), or sensitivity of the contractile apparatus to Ca2+ may underlie the mechanism linking IUGR to an increased risk of CVD. This study aimed to explore the effects of maternal nutrient restriction on cardiac function, including Ca2+ handling by the SR and force development by the contractile apparatus. Juvenile Long Evans hooded rats born to Control (C) and nutrient restricted (NR) dams were anaesthetized for collection of the heart at 10-12 weeks of age. Left ventricular bundles from male NR offspring displayed increased maximum Ca2+-activated force, and decreased protein content of troponin I (cTnI) compared to C males. Furthermore, male NR offspring showed a reduction in rate of rise of the caffeine-induced Ca2+ force response and a decrease in the protein content of ryanodine receptor (RYR2). These physiological and biochemical findings observed in males were not evident in female offspring. These findings illustrate a sex-specific effect of maternal NR on cardiac development, and also highlight a possible mechanism for the development of hypertension and hypertrophy in male NR offspring. PMID:26406887

  15. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat.

    PubMed

    McNeil, Christopher J; Hay, Susan M; Rucklidge, Garry J; Reid, Martin D; Duncan, Gary J; Rees, William D

    2009-11-01

    Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues. PMID:19566968

  16. Maternal Nutrient Restriction Alters Ca2+ Handling Properties and Contractile Function of Isolated Left Ventricle Bundles in Male But Not Female Juvenile Rats

    PubMed Central

    Murphy, Robyn M.; Morrison, Janna L.

    2015-01-01

    Intrauterine growth restriction (IUGR), defined as a birth weight below the 10th centile, may be caused by maternal undernutrition, with evidence that IUGR offspring have an increased risk of cardiovascular disease (CVD) in adulthood. Calcium ions (Ca2+) are an integral messenger for several steps associated with excitation-contraction coupling (ECC); the cascade of events from the initiation of an action potential at the surface membrane, to contraction of the cardiomyocyte. Any changes in Ca2+ storage and release from the sarcoplasmic reticulum (SR), or sensitivity of the contractile apparatus to Ca2+ may underlie the mechanism linking IUGR to an increased risk of CVD. This study aimed to explore the effects of maternal nutrient restriction on cardiac function, including Ca2+ handling by the SR and force development by the contractile apparatus. Juvenile Long Evans hooded rats born to Control (C) and nutrient restricted (NR) dams were anaesthetized for collection of the heart at 10–12 weeks of age. Left ventricular bundles from male NR offspring displayed increased maximum Ca2+-activated force, and decreased protein content of troponin I (cTnI) compared to C males. Furthermore, male NR offspring showed a reduction in rate of rise of the caffeine-induced Ca2+ force response and a decrease in the protein content of ryanodine receptor (RYR2). These physiological and biochemical findings observed in males were not evident in female offspring. These findings illustrate a sex-specific effect of maternal NR on cardiac development, and also highlight a possible mechanism for the development of hypertension and hypertrophy in male NR offspring. PMID:26406887

  17. A Combination Supplement of Fructo- and Xylo-Oligosaccharides Significantly Abrogates Oxidative Impairments and Neurotoxicity in Maternal/Fetal Milieu Following Gestational Exposure to Acrylamide in Rat.

    PubMed

    Krishna, Gokul; Divyashri, Gangaraju; Prapulla, S G; Muralidhara

    2015-09-01

    Prebiotic oligosaccharides are demonstrated to confer a wide spectrum of physiological benefits during pregnancy. In view of this, focused attempts are being directed towards understanding their role as modulators of brain chemistry and behavior. Epidemiological studies have identified that exposure to neurotoxins during prenatal/early life can profoundly impact neurodevelopment/function. In this context, we have tested the hypothesis that a combination of prebiotic supplements during gestation has the propensity to attenuate acrylamide (ACR) induced oxidative impairments, mitochondrial dysfunction and neurotoxicity in maternal and fetal brain of rats. To achieve this, pregnant dams given oral supplements of a combination of fructo- and xylooligosaccharides (FOS + XOS, 3 g/kg/day) during gestation days (GD 0-19) were exposed to ACR (200 ppm in drinking water, GD 6-19). The behavioral analysis revealed that ACR dams fed prebiotics displayed higher exploratory behavior in the open field test. The prenatal evaluation showed that ACR-induced decrements of placental/fetal weights were markedly restored with prebiotic feeding. Prebiotics significantly offset markers of oxidative stress, restored enzymic antioxidants, cholinergic and mitochondrial function in the maternal and fetal brain. Concomitantly, prebiotics restored ACR-induced depletion in the levels of dopamine and γ-aminobutyric acid in the maternal cortex that positively correlated with cecal bacterial numbers. Collectively, these data suggest that prenatal prebiotic oligosaccharide supplements protect developing brain against oxidative stress-mediated neurotoxicity. While the underlying mechanism/s by which prebiotics abrogate the impact of neurotoxicants in the developing brain merits further studies, we speculate that it may be mediated predominantly through attenuation of oxidative stress and proliferation of enteric microbiota. PMID:26248513

  18. Immunotoxic effects of exposure of rats to xenobiotics via maternal lactation. Part I 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed Central

    Badesha, J. S.; Maliji, G.; Flaks, B.

    1995-01-01

    Exposure of lactating female Leeds rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a reduction in the body, spleen and liver weights of their male offspring at 130 days of age. None of the total administered doses (0.2, 1.0 or 5.0 micrograms/kg b.wt over 18 days) induced thymic atrophy in the offspring of either sex as adults. Most of the growth inhibition occurred during the suckling period and the effect was near maximal following maternal exposure to the lowest dose of TCDD. After this dose, at post-natal day 130 the body weights of the female offspring remained depressed, while those of the males had recovered to untreated control values. Maternal exposure to TCDD affected the immunocompetence of the adult offspring: in vitro T cell dependent and T cell independent responses and mitogen induced in vitro production of interleukin 1 (IL-1) and interleukin 2 (IL-2) were suppressed at post-natal day 130. The total dose of TCDD that has to be administered to dams over an 18-day nursing period in order to reduce the humoral responses of their offspring as adults by 50% of the maximum was estimated to be in the range 0.3-1.0 micrograms/kg b.wt to the antigens SRBC, DNP-Ficoll or TNP-LPS and 3.5-3.9 micrograms/kg b.wt. to the antigen LPS. PMID:8652363

  19. Developmental stress and lead (Pb): Effects of maternal separation and/or Pb on corticosterone, monoamines, and blood Pb in rats.

    PubMed

    Amos-Kroohs, Robyn M; Graham, Devon L; Grace, Curtis E; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Vorhees, Charles V; Williams, Michael T

    2016-05-01

    The level of lead (Pb) exposure in children has decreased dramatically since restrictions on its use were implemented. However, even with restrictions, children are exposed to Pb and still present with cognitive and behavioral deficits. One prominent aspect of the exposome of these children is that many come from low social economic status (SES) conditions, and low SES is associated with stress. In order to compare the combined effects of early stress and Pb, Sprague-Dawley rats were exposed to vehicle or Pb either alone or in combination with maternal separation stress during brain development (i.e., postnatal day (P)4-P11, P19, or P28). Maternally separated/isolated pups had lower body and thymus weights during exposure and had increased levels of blood Pb compared with vehicle controls. Isolation, but not Pb, affected the response to an acute stressor (standing in shallow water) when assessed on P19 and P29, but not earlier on P11. Interactions of Pb and isolation were found on monoamines in the neostriatum, hippocampus, and hypothalamus on turnover but not on levels, and most changes were on dopamine turnover. Isolation had greater short-term effects than Pb. Interactions were dependent on age, sex, and acute stress. PMID:26943976

  20. Gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters retinoid homeostasis in maternal and perinatal tissues of the Holtzman rat

    SciTech Connect

    Kransler, Kevin M. Tonucci, David A. McGarrigle, Barbara P. Napoli, Joseph L. Olson, James R.

    2007-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), one of the most widely studied environmental contaminants, causes a variety of adverse health effects including teratogenesis and altered development which may be related to disruptions in retinoid homeostasis. The purpose of this study was to determine the effect that gestational administration of TCDD has on retinoid homeostasis in both pregnant Holtzman rats and developing fetuses and neonates. A single oral dose of TCDD (0, 1.5, 3, or 6 {mu}g/kg) was administered to pregnant rats on gestation day 10, with fetuses analyzed on gestation days 17 and 20, and neonates analyzed on post natal day 7. Exposure to TCDD generally produced decreases in the concentrations of retinyl esters, such as retinyl palmitate, and retinol in maternal and perinatal liver and lung, while increasing levels in the maternal kidney. Additionally, perinatal hepatic retinol binding protein 1-dependent retinyl ester hydrolysis was also decrease by TCDD. Sensitivity of the developing perinates to TCDD appeared to have an age-related component demonstrated by an increased rate of mortality and significant alterations to body weight and length on post natal day 7 relative to that observed at gestation day 20. A unique observation made in this study was a significant decrease in lung weight observed in the perinates exposed to TCDD. Taken together, these data demonstrate that TCDD significantly alters retinoid homeostasis in tissues of the developing fetus and neonate, suggesting that their unique sensitivity to TCDD may at least be in part the result of altered retinoid homeostasis.

  1. Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats

    PubMed Central

    van Hasselt, Felisa N.; de Visser, Leonie; Tieskens, Jacintha M.; Cornelisse, Sandra; Baars, Annemarie M.; Lavrijsen, Marla; Krugers, Harm J.; van den Bos, Ruud; Joëls, Marian

    2012-01-01

    Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures. PMID:22693577

  2. Long-term effects of maternal exposure to Di (2-ethylhexyl) Phthalate on sperm and testicular parameters in Wistar rats offspring

    PubMed Central

    Dorostghoal, Mehran; Moazedi, Ahmad Ali; Zardkaf, Adel

    2012-01-01

    Background: Phthalate esters have been shown to cause reproductive toxicity in both developing and adult animals. Objective: This study was designed to assess long-term effects of maternal exposure to Di (2-ethylhexyl) Phthalate (DEHP) on reproductive ability of both neonatal and adult male offspring. Materials and Methods: 60 female rats randomly divided in four equal groups; vehicle control and three treatment groups that received 10, 100 and 500 mg/kg/day DEHP via gavage during gestation and lactation. At different ages after birth, the volumes of testes were measured by Cavellieri method, testes weights recorded and epididymal sperm samples were assessed for number and gross morphology of spermatozoa. Following tissue processing, seminiferous tubules diameter and germinal epithelium height evaluated with morphometric techniques. Results: Mean testis weight decreased significantly (p<0.05) in 500 mg/kg/day dose group from 28 to 150 days after birth. Significant decreases were seen in total volumes of testis in 100 (p<0.05) and 500 (p<0.01) mg/kg/day doses groups until 150 days after birth. Seminiferous tubules diameter and germinal epithelium height decreased significantly in 100 (p<0.05) and 500 (p<0.01) mg/kg/day doses groups during postnatal development. Also, mean sperm density in 100 mg/kg/day (p<0.05) and 500 mg/kg/day (p<0.01) doses groups and percent of morphologically normal sperm in highest dose group (p<0.05) decreased significantly until 150 days after birth. Conclusion: Present study showed that maternal exposure to Di (2-ethylhexyl) Phthalate during gestation and lactation caused to permanent and dose-related reductions of sperm and testicular parameters in rats offspring. PMID:25242968

  3. Maternal junk-food feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring

    PubMed Central

    Ong, Z. Y.; Muhlhausler, B. S.

    2011-01-01

    Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal junk-food diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 160.6 vs. 110.8 g/kg/d; females: 191.3 vs. 130.4 g/kg/d; P<0.01). mRNA expression of ?-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.Ong, Z. Y., Muhlhausler, B. S. Maternal junk-food feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. PMID:21427213

  4. Early weaning by maternal prolactin inhibition leads to higher neuropeptide Y and astrogliosis in the hypothalamus of the adult rat offspring.

    PubMed

    Younes-Rapozo, Viviane; Moura, Egberto G; Manhães, Alex C; Peixoto-Silva, Nayara; de Oliveira, Elaine; Lisboa, Patricia C

    2015-02-14

    The suppression of prolactin production with bromocriptine (BRO) in the last 3 d of lactation reduces milk yield (early weaning) and increases the transfer of leptin through the milk, causing hyperleptinaemia in pups. In adulthood, several changes occur in the offspring as a result of metabolic programming, including overweight, higher visceral fat mass, hypothyroidism, hyperglycaemia, insulin resistance, hyperleptinaemia and central leptin resistance. In the present study, we investigated whether overweight rats programmed by early weaning with maternal BRO treatment have hypothalamic alterations in adulthood. We analysed the expression of neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), pro-opiomelanocortin (POMC) and α-melanocyte-stimulating hormone (α-MSH) by immunohistochemistry in the following hypothalamic nuclei: medial and lateral arcuate nucleus (ARC); paraventricular nucleus (PVN); lateral hypothalamus (LH). Additionally, we sought to determine whether these programmed rats exhibited hypothalamic inflammation as indicated by astrogliosis. NPY immunostaining showed a denser NPY-positive fibre network in the ARC and PVN (+82% in both nuclei) of BRO offspring. Regarding the anorexigenic neuropeptides, no difference was found for CART, POMC and α-MSH. The number of astrocytes was higher in all the nuclei of BRO rats. The fibre density of glial fibrillary acidic protein was also increased in both medial and lateral ARC (6·06-fold increase and 9·13-fold increase, respectively), PVN (5·75-fold increase) and LH (2·68-fold increase) of BRO rats. We suggest that early weaning has a long-term effect on the expression of NPY as a consequence of developmental plasticity, and the presence of astrogliosis indicates hypothalamic inflammation that is closely related to overweight and hyperleptinaemia observed in our model. PMID:25609154

  5. Influence of maternal ingestion of Aroclor 1254[reg sign] (PCB) or FireMaster BP-6[reg sign] (PBB) on unstimulated and stimulated corticosterone levels in young rats

    SciTech Connect

    Meserve, L.A.; Murray, B.A.; Landis, J.A. )

    1992-05-01

    The organohalides polychlorinated biphenyl (PCB) and polybrominated biphenyl (PBB) remain troublesome environmental pollutants. For example, the percentage of the population in which PCB is detectable in adipose tissue remains high. These compounds are of particular interest to residents of the North Central United States, especially in regions surrounding the Great Lakes where contaminated fish may be a regular component of the diet. Additionally, PBB was mistakenly fed to cattle and chickens in Michigan during the early 1970s, products of which were ingested by humans. Among the physiological effects of ingestion of PCB or PBB is the depression of thyroid status, which has been reported in adult humans, in adult experimental animals, and in the offspring of these animals. In adult rats, circulating levels of thyroid hormones are inversely proportional to dose of PCB or PBB in the diet. On the other hand, reports of effects of these organohalides on adrenocortical function remain equivocal, describing both PCB- and PBB-induced depression, and absence of effect in rats and monkeys. Despite the possible consequences of maternal ingestion of PCB or PBB on future generations, little work has been done previously to determine whether consumption of these materials by pregnant and lactating animals confers hypothyroidism on their offspring, and/or influences other mechanisms of endocrine control in the young. Since early studies showed that hypothyroidism induced by feeding pregnant rats the goitrogen thiouracil altered the functional capabilities in their young of the hypothalamus-pituitary-adrenal (HPA) axis, as revealed by circulating corticosterone levels, the present study was done to determine whether ingestion of either PCB (Aroclor 1254[reg sign]) or PBB (FireMaster BP-6[reg sign]) by pregnant and lactating rats resulted in depressed thyroid status and/or modified HPA axis function in their 15 day old young. 19 refs., 1 fig., 1 tab.

  6. Maternal separation in early life modifies anxious behavior and Fos and glucocorticoid receptor expression in limbic neurons after chronic stress in rats: effects of tianeptine.

    PubMed

    Trujillo, Verónica; Durando, Patricia E; Suárez, Marta M

    2016-01-01

    Early-life adversity can lead to long-term consequence persisting into adulthood. Here, we assess the implications of an adverse early environment on vulnerability to stress during adulthood. We hypothesized that the interplay between early and late stress would result in a differential phenotype regarding the number of neurons immunoreactive for glucocorticoid receptor (GR-ir) and neuronal activity as assessed by Fos immunoreactivity (Fos-ir) in brain areas related to stress responses and anxiety-like behavior. We also expected that the antidepressant tianeptine could correct some of the alterations induced in our model. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h during the first 3 weeks of life. As adults, the rats were exposed to chronic stress for 24 d and they were treated daily with tianeptine (10 mg/kg intraperitoneal) or vehicle (isotonic saline). Fos-ir was increased by MS in all structures analyzed. Chronic stress reduced Fos-ir in the hippocampus, but increased it in the paraventricular nucleus. Furthermore, chronic stress increased GR-ir in hippocampus (CA1) and amygdala in control non-MS rats. By contrast, when MS and chronic stress were combined, GR-ir was decreased in these structures. Additionally, whereas tianeptine did not affect Fos-ir, it regulated GR-ir in a region-dependent manner, in hippocampus and amygdala opposing in some cases the stress or MS effects. Furthermore, tianeptine reversed the MS- or stress-induced anxious behavior. The interplay between MS and chronic stress observed indicates that MS rats have a modified phenotype, which is expressed when they are challenged by stress in later life. PMID:26452320

  7. Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: implications for models of developmental programming

    PubMed Central

    2014-01-01

    Background Maternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment. In a rat model, both male and female offspring of undernourished mothers are programmed to become obese, however postnatal leptin treatment gives discordant results between males and females. Leptin treatment is able to rescue the adverse programming effects in the female offspring of undernourished mothers, but not in their male offspring. Additionally, in these rats, postnatal leptin treatment of offspring from normally-nourished mothers programmes their male offspring to develop obesity in later life, while there is no comparable effect in their female offspring. Results We show by microarray analysis of the female liver transcriptome that both maternal undernutrition and postnatal leptin treatment independently induce a similar thrifty transcriptional programme affecting carbohydrate metabolism, amino acid metabolism and oxidative stress genes. Paradoxically, however, the combination of both stimuli restores a more normal transcriptional environment. This demonstrates that “leptin reversal” is a global phenomenon affecting all genes involved in fetal programming by maternal undernourishment and leptin treatment. The thrifty transcriptional programme was associated with pro-inflammatory markers and downregulation of adaptive immune mediators, particularly MHC class I genes, suggesting a deficit in antigen presentation in these offspring. Conclusions We propose a revised model of developmental programming reconciling the male and female observations, in which there are two competing programmes which collectively drive liver transcription. The first element is a thrifty metabolic phenotype induced by early life growth restriction independently of leptin levels. The second is a homeostatic set point calibrated in response to postnatal leptin surge, which is able to over-ride the metabolic programme. This “calibration model” for the postnatal leptin surge, if applicable in humans, may have implications for understanding responses to catch-up growth in infants. Additionally, the identification of an antigen presentation deficit associated with metabolic thriftiness may relate to a previously observed correlation between birth season (a proxy for gestational undernutrition) and infectious disease mortality in rural African communities. PMID:24447410

  8. Variable Maternal Stress in Rats Alters Locomotor Activity, Social Behavior, and Recognition Memory in the Adult Offspring

    PubMed Central

    Wilson, Christina A.; Terry, Alvin V.

    2013-01-01

    Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral signs that are similar to those manifested in several neuropsychiatric disorders such as deficits in attention and inhibitory control, and impairments in memory-related task performance. The purpose of the study described here was to conduct a comprehensive battery of tests to further characterize the behavioral phenotype of PNS rats as well as to evaluate the sensitivity of the model to therapeutic interventions (i.e., to compounds previously shown to have therapeutic potential in neuropsychiatric disorders). The results of this study indicated that PNS in rats is associated with: 1) increased locomotor activity and stereotypic behaviors, 2) elevated sensitivity to the psychostimulant amphetamine, 3) increased aggressive behaviors toward both adult and juvenile rats and 4) delay-dependent deficits in recognition memory. There was no evidence that PNS rats exhibited deficits in other areas of motor function/learning, sensorimotor gating, spatial learning and memory, social withdrawal, or anhedonia. In addition, the results revealed that the second generation antipsychotic risperidone attenuated amphetamine-related increases in locomotor activity in PNS rats; however, the effect was not sustained over time. Furthermore, deficits in recognition memory in PNS rats were attenuated by the norepinephrine reuptake inhibitor, atomoxetine, but not by the α7 nicotinic acetylcholine receptor partial agonist, GTS-21. This study supports the supposition that important phenomenological similarities exist between rats exposed to PNS and patients afflicted with neuropsychiatric disorders thus further establishing the face validity of the model for evaluating potential therapeutic interventions. PMID:23287801

  9. The Effect of Neonatal Leptin Antagonism in Male Rat Offspring Is Dependent upon the Interaction between Prior Maternal Nutritional Status and Post-Weaning Diet

    PubMed Central

    Beltrand, J.; Sloboda, D. M.; Connor, K. L.; Truong, M.; Vickers, M. H.

    2012-01-01

    Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring. It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We investigated the effect of neonatal treatment with a leptin antagonist (LA) on growth and metabolism in offspring of mothers fed either a control or a high fat diet. Wistar rats were fed either a control (CON) or a high fat diet (MHF) during pregnancy and lactation. Male CON and MHF neonates received either saline (S) or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were weaned onto either a control or a high fat (hf) diet. At day 100, body composition, blood glucose, ?-hydroxybutyrate and plasma leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent upon interactions between maternal and post-weaning nutrition. PMID:22548153

  10. Specific effects of maternal zinc depletion or repletion on the deposition of zinc and metallothionein in newborn rat livers: a longitudinal study

    SciTech Connect

    Gallant, K.R.; Cherian, M.G.

    1986-03-05

    High levels of metallothionein (MT) have been reported in association with elevated zinc (Zn) in the livers of newborn rats. Previous studies in this laboratory have demonstrated that maternal Zn-deficiency (Zn-D) specifically reduces the storage of Zn as MT in one day old pup liver. To further investigate how dietary Zn levels influence the storage of Zn as MT, newborn Zn-D pups were allowed to suckle from Zn-sufficient (Zn-S) dams and vice versa. Pups were injected with 2.5 ..mu..Ci of Zn/sup 65/ and whole body retention monitored. Pups were sacrificed at varying time periods up to weaning and hepatic levels of Zn and MT were measured. A gradual increase in the abnormally low hepatic levels of Zn and MT was observed in Zn-D pups suckling from Zn-S dams up to about day 10. Zn-S pups suckling from Zn-D dams showed a much faster rate of decline of MT and Zn than in age-matched controls, suggesting a rapid turnover of Zn-MT. Whole body retention of Zn/sup 65/ was lower in the Zn-repleted pups than in the pups which were subjected to Zn-D postnatally. These results demonstrate that the Zn-MT levels fluctuate directly in response to the Zn status of the pups, supporting the role of MT as a Zn storage protein in newborn rats.

  11. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    PubMed

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-06-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p < 0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p < 0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p < 0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition. PMID:26479041

  12. Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring.

    PubMed

    Gugusheff, Jessica R; Bae, Sung Eun; Rao, Alexandra; Clarke, Iain J; Poston, Lucilla; Taylor, Paul D; Coen, Clive W; Muhlhausler, Beverly S

    2016-03-15

    Perinatal junk food exposure increases the preference for palatable diets in juvenile and adult rat offspring. Previous studies have implicated reduced sensitivity of the opioid pathway in the programming of food preferences; however it is not known when during development these changes in opioid signalling first emerge. This study aimed to determine the impact of a maternal junk food (JF) diet on mu-opioid receptor (MuR) expression and ligand binding in two key regions of the reward pathway, the nucleus accumbens (NAc) and the ventral tegmental area (VTA) in rats during the early suckling (postnatal day (PND) 1 and 7) and late suckling/early post-weaning (PND 21 and 28) periods. Female rats were fed either a JF or a control diet for two weeks prior to mating and throughout pregnancy and lactation. MuR expression in the VTA was significantly reduced in female JF offspring on PND 21 and 28 (by 32% and 57% respectively, P<0.05), but not at earlier time points (PND 1 and 7). MuR ligand binding was also reduced (by 22%, P<0.05) in the VTA of female JF offspring on PND 28. No effects of perinatal junk food exposure on MuR mRNA expression or binding were detected at these time points in male offspring. These findings provide evidence that the opioid signalling system is a target of developmental programming by the end of the third postnatal week in females, but not in males. PMID:26718219

  13. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring

    PubMed Central

    Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.

    2015-01-01

    BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689

  14. Inhibition of Na(+),K(+)-ATPase in the hypothalamus, pons and cerebellum of the offspring rat due to experimentally-induced maternal hypothyroidism.

    PubMed

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Tsela, Smaragda; Zissis, Konstantinos M; Kalafatakis, Konstantinos; Skandali, Nikolina; Voumvourakis, Konstantinos; Carageorgiou, Haris; Tsakiris, Stylianos

    2015-08-01

    Neurodevelopment is known to be particularly susceptible to thyroid hormone insufficiency and can result in extensive structural and functional deficits within the central nervous system (CNS), subsequently leading to the establishment of cognitive impairment and neuropsychiatric symptomatology. The current study evaluated the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism (as a suggestive multilevel experimental approach to the study of hypothyroidism-induced changes that has been developed and characterized by the authors) on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a CNS region-specific manner. The activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase in the offspring hypothalamus, cerebellum and pons were assessed. The study demonstrated that maternal exposure to PTU (0.05% w/v in the drinking water) during the critical periods of neurodevelopment can result in an inhibition of hypothalamic, pontine and cerebellar Na(+),K(+)-ATPase; a major marker of neuronal excitability and metabolic energy production as well as an important regulator of important systems of neurotransmission. On the other hand, no significant changes in the activities of the herein offspring CNS regions' AChE and Mg(2+)-ATPase were recorded. The observed Na(+),K(+)-ATPase inhibition: (i) is region-specific (and non-detectable in whole brain homogenetes), (ii) could constitute a central event in the pathophysiology of clinically-relevant hypothyroidism-associated developmental neurotoxicity, (iii) occurs under all examined experimental schemes, and (iv) certainly deserves further clarification at a molecular and histopathological level. As these findings are analyzed and compared to the available literature, they also underline the need for the adoption and further study of Na(+),K(+)-ATPase activity as a consistent neurochemical marker within the context of a systematic comparative study of existing (and novel) simulation approaches to congenital and early age hypothyroidism. PMID:25123521

  15. Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats

    PubMed Central

    Tran, Melanie; Gallo, Linda A.; Hanvey, Alanna N.; Jefferies, Andrew J.; Westcott, Kerryn T.; Cullen-McEwen, Luise A.; Gardner, David K.; Moritz, Karen M.

    2014-01-01

    Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic β-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes. PMID:24523338

  16. Effects of Post-coital Administration of Alkaloids from Senna alata (Linn. Roxb) Leaves on some Fetal and Maternal Outcomes of Pregnant Rats

    PubMed Central

    Yakubu, Musa Toyin; Musa, Isa Fakai

    2012-01-01

    Background The abortifacient claim of Senna alata (S. alata) was scientifically validated recently with alkaloids speculated to be the bioactive agent. This speculation is yet to be substantiated or refuted by scientific evidence. The present study was aimed to investigate the pregnancy terminating effects of the alkaloids from S. alata leaves. Methods Twenty four Pregnant rats (143.99±1.21 g) allocated randomly to four groups: A, B, C and D respectively received, 0.5 ml of distilled water, 250, 500 and 1000 mg/kg body weight of the S. alata extracted alkaloids orally, once daily from day 10 until day 18 post-coitum. The indices of abortifacient were evaluated at the end of the exposure period. The results were analyzed by both the analysis of variance and Duncan's multiple range test and p < 0.05 was considered as statistically significant. Results Thin-layer chromatographic separation produced five spots with Rf values of 0.28, 0.33, 0.39, 0.47 and 0.55 which gave positive reaction with Meyer's and Wagner's reagents, respectively. The number of implantation sites and corpora lutea, as well as the concentrations of FSH, LH, progesterone, weight of uterus, uterine/ body weight ratio, glucose and cholesterol decreased significantly (p < 0.05) whereas the resorption index, pre- and post-implantation losses, uterine protein content and alkaline phosphatase activity increased significantly. None of the alkaloid treated animals presented with provoked vaginal opening or bleeding except fetal deaths. The alkaloid decreased the maternal weight gain, as well as feed and water intake. Conclusion Overall, the alkaloids from S. alata leaves exhibited anti-implantation, anti-gonadotropic, anti-progesteronic, embryonic resorptive, feto-maternal toxic activities but not complete abortifacient. The alkaloids alone may not be the sole abortifacient bioactive agent in the leaf extract. PMID:23926548

  17. Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet.

    PubMed

    Maniam, Jayanthi; Morris, Margaret J

    2010-03-17

    While the effects of maternal separation on pups are well studied, the impact on dams has attracted little attention. The consumption of palatable food is known to dampen stress responses in animals, and emotions influence food choice in humans. Here we examined the early- and long-term impacts of maternal separation on behavioral profile of the dams, and the effects of palatable cafeteria high-fat diet (HFD). After littering, Sprague-Dawley female rats were subjected to prolonged separation, S180 (180 min) or brief separation, S15 (15 min/day) from postnatal days (PND) 2-14. At 4 weeks postpartum, half the dams were assigned to HFD. Anxiety and depression-like behaviors were assessed pre- and post-diet. Compared to S15 dams, S180 dams consuming chow demonstrated increased anxiety and depression-like behaviors assessed by elevated plus maze (EPM) and forced swim (FST) tests, respectively. These behavioral deficits were observed at 4 weeks, and persisted until 17 weeks postpartum. The S180 dams also had increased plasma corticosterone concentration compared to S15 dams, which coincided with increased hypothalamic CRH mRNA and reduced hippocampal GR mRNA expression, suggesting possible dysregulation of hypothalamic-pituitary-adrenal axis activity. Interestingly, continuous provision of HFD improved the behavioral deficits observed in S180 dams with significant reduction of hypothalamic CRH mRNA expression. These data are the first to describe long-term detrimental behavioral impacts of separation in dams, suggesting this may provide a model of postpartum depression. Moreover, they support the notion of long-term beneficial effects of 'comfort food' on stress responses. PMID:19896506

  18. Maternal overnutrition programs changes in the expression of skeletal muscle genes that are associated with insulin resistance and defects of oxidative phosphorylation in adult male rat offspring.

    PubMed

    Latouche, Celine; Heywood, Sarah E; Henry, Sarah L; Ziemann, Mark; Lazarus, Ross; El-Osta, Assam; Armitage, James A; Kingwell, Bronwyn A

    2014-03-01

    Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 2.5 (CD) vs 56.2 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 0.63 (CD) vs 1.02 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These data indicate that maternal overnutrition, even in the absence of prepregnancy obesity, can promote metabolic dysregulation and predispose offspring to type 2 diabetes. PMID:24381224

  19. Alterations in hepatic gene expression and genome-wide DNA methylation in rat offspring exposed to maternal obesity in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult offspring from obese (OB) rat dams gain greater body weight and fat mass than controls when fed HFD. At PND21, we examined energy expenditure (EE) (indirect calorimetry), hepatic gene expression (microarrays), and changes in genome-wide and global DNA methylation (enrichment-coupled DNA seque...

  20. Long lasting sex-specific effects upon behavior and S100b levels after maternal separation and exposure to a model of post-traumatic stress disorder in rats.

    PubMed

    Diehl, Luisa Amalia; Silveira, Patrícia Pelufo; Leite, Marina C; Crema, Leonardo Machado; Portella, Andre Krumel; Billodre, Mauro Nör; Nunes, Edelvan; Henriques, Thiago P; Fidelix-da-Silva, Linda Brenda; Heis, Marta D; Gonçalves, Carlos Alberto; Quillfeldt, Jorge Alberto; Dalmaz, Carla

    2007-05-01

    This study was undertaken to verify if repeated long-term separation from dams would affect the development of parameters related to post-traumatic stress disorder (PTSD) after animals are subjected to inescapable shock when adults. Wistar rats were subjected to repeated maternal separation during post-natal days 1-10. When adults, rats from both sexes were submitted to a PTSD model consisting of exposure to inescapable footshock, followed by situational reminders. We observed long-lasting effects of both interventions. Exposure to shock increased fear conditioning. Anxiety-like behavior was increased and exploratory activity decreased by both treatments, and these effects were more robust in males. Additionally, basal corticosterone in plasma was decreased, paralleling effects observed in PTSD patients. Levels of S100B protein in serum and cerebrospinal fluid (CSF) were measured. Levels in serum correlated with the effects observed in anxiety-like behavior, increasing in males exposed to shock, and presenting no effect in females. S100B in CSF was increased in females submitted to maternal separation during the neonatal period. These results suggest that, in rats, an early stress experience such as maternal separation may aggravate some effects of exposure to a stressor during adult age, and that this effect is sex-specific. Additionally, data suggest that the increased S100B levels, observed in serum, have an extracerebral origin, possibly mediated by an increase in the noradrenergic tonus. Increased S100B in brain could be related to its neurotrophic actions. PMID:17335785

  1. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction In animal models, maternal obesity (OB) leads to augmented risk of offspring OB. While placental function is influenced by maternal habitus, the effect of maternal obesity on the interacting zones of the placenta [the labyrinth (LZ), junctional (JZ) and metrial gland (MG)] remains unkno...

  2. Can maternal vitamin e supplementation prevent lung hypoplasia in the nitrofen-induced rat model of congenital diaphragmatic hernia?

    PubMed

    Beckman, David L; Cummings, James J; Katwa, Laxmansa C; Whitehurst, Marvin E

    2005-03-01

    Recent studies suggest a role for antioxidants in the prevention of pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH). We studied the effects of vitamin E in the nitrofen-rat model of CDH. After an initial fast, timed-pregnant Sprague-Dawley rats were gavage-fed nitrofen at gestational day 11 (term is 22 d). On the same day, one group was given a s.c. injection of vitamin E in alcohol; a second group was given an injection of alcohol alone. A third group received no treatment (control). Fetuses were delivered on day 21, and static pressure-volume curves were measured by immersion. Lungs were analyzed for total DNA and protein content by standard methods. A total of 203 fetuses were studied. Of 151 nitrofen-exposed fetuses, 77% had CDH; 92% of these were right-sided. CDH was present in 82% of vehicle-treated fetuses and 71% of vitamin E-treated fetuses (p=0.17). Nitrofen-exposed fetuses not only were smaller than control fetuses but also had disproportionately smaller lungs and poorer lung function, even when CDH was absent; however, lung function was worse when CDH was present. Vitamin E treatment did not improve either lung growth or function, although there was a trend toward less CDH. We have shown, for the first time, that the lung hypoplasia seen in nitrofen-exposed rat fetuses is associated with a dramatic reduction in static lung function, even when CDH is not present. Finally, our findings support the notion that lung hypoplasia in the nitrofen-rat model is independent of CDH formation. PMID:15611344

  3. EFFECTS OF MATERNAL FOOD RESTRICTION ON FETAL LUNG EXTRACELLULAR MATRIX DEPOSITION AND LONG TERM PULMONARY FUNCTION IN AN EXPERIMENTAL RAT MODEL

    PubMed Central

    Rehan, Virender K.; Sakurai, Reiko; Li, Yishi; Karadag, Ahmet; Corral, Julia; Bellusci, Saverio; Xue, Ying Ying; Belperio, John; Torday, John S.

    2011-01-01

    Intrauterine growth restriction (IUGR) increases the risk of respiratory compromise throughout postnatal life. However, the molecular mechanism(s) underlying the respiratory compromise in offspring following IUGR is not known. We hypothesized that IUGR following maternal food restriction (MFR) would affect extracellular matrix deposition in the lung, explaining the long-term impairment in pulmonary function in the IUGR offspring. Using a well-established rat model of MFR during gestation to produce IUGR pups, we found that at postnatal day 21, and at 9 months of age the expression and abundance of elastin and alpha smooth muscle actin (αSMA), two key extracellular matrix proteins, were increased in IUGR lungs when compared to controls (p<0.05, n = 6), as determined by both Western and immunohistochemistry analyses. Compared to controls, the MFR group showed no significant change in pulmonary resistance at baseline, but did have significantly decreased pulmonary compliance at 9 months (p<0.05 vs control, n=5). In addition, MFR lungs exhibited increased responsiveness to methacholine challenge. Furthermore, exposing cultured fetal rat lung fibroblasts to serum deprivation increased the expression of elastin and elastin-related genes, which was blocked by serum albumin supplementation, suggesting protein deficiency as the predominant mechanism for increased pulmonary elastin deposition in IUGR lungs. We conclude that accompanying the changes in lung function, consistent with bronchial hyperresponsiveness, expression of the key alveolar extracellular matrix proteins elastin and αSMA increased in the IUGR lung, thus providing a potential explanation for the compromised lung function in IUGR offspring. PMID:22058072

  4. Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro.

    PubMed

    Pampfer, S; Vanderheyden, I; McCracken, J E; Vesela, J; De Hertogh, R

    1997-12-01

    The morphogenetic function of the transient phase of cell death that occurs during blastocyst maturation is not known but it is thought that its regulation results from a delicate balance between survival and lethal signals in the uterine milieu. In this paper, we show that blastocysts from diabetic rats have a higher incidence of dead cells than control embryos. Differential lineage staining indicated that increased nuclear fragmentation occurred mainly in the inner cell mass. In addition, terminal transferase-mediated dUTP nick end labeling (TUNEL) demonstrated an increase in the incidence of non-fragmented DNA-damaged nuclei in these blastocysts. Analysis of the expression of clusterin, a gene associated with apoptosis, by quantitative reverse transcription-polymerase chain reaction detected an increase in the steady-state level of its transcripts in blastocysts from diabetic rats. In situ hybridization revealed that about half the cells identified as expressing clusterin mRNA exhibited signs of nuclear fragmentation. In vitro experiments demonstrated that high D-glucose increased nuclear fragmentation, TUNEL labeling and clusterin transcription. Tumor necrosis factor-alpha (TNF-alpha), a cytokine whose synthesis is up-regulated in the diabetic uterus, did not induce nuclear fragmentation nor clusterin expression but increased the incidence of TUNEL-positive nuclei. The data suggest that excessive cell death in the blastocyst, most probably resulting from the overstimulation of a basal suicidal program by such inducers as glucose and TNF-alpha, may be a contributing factor of the early embryopathy associated with maternal diabetes. PMID:9428419

  5. Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-A Receptor Alpha-Subunit in Adult Wistar Rats

    PubMed Central

    León Rodríguez, Diego Armando; Dueñas, Zulma

    2013-01-01

    Different models of rodent maternal separation (MS) have been used to investigate long-term neurobiological and behavioral changes, associated with early stress. However, few studies have involved the analysis of sex-related differences in central anxiety modulation. This study investigated whether MS during breastfeeding affected adult males and females in terms of anxiety and brain GABA-A receptor-alpha-subunit immunoreactivity. The brain areas analyzed were the amygdale (AM), hippocampus (HP), medial prefrontal cortex (mPFC), medial preoptic area (POA) and paraventricular nucleus (PVN). Rats were housed under a reversed light/dark cycle (lights off at 7∶00 h) with access to water and food ad libitum. Animals underwent MS twice daily during the dark cycle from postnatal day 1 to postnatal day 21. Behavior was tested when rats were 65–70 days old using the elevated plus maze and after brains were treated for immunohistochemistry. We found that separated females spent more time in the open arms and showed more head dipping behavior compared with controls. The separated males spent more time in the center of the maze and engaged in more stretching behavior than the controls. Immunohistochemistry showed that separated females had less immunostained cells in the HP, mPFC, PVN and POA, while separated males had fewer immunolabeled cells in the PFC, PVN and AM. These results could indicate that MS has gender-specific effects on anxiety behaviors and that these effects are likely related to developmental alterations involving GABA-A neurotransmission. PMID:23826356

  6. Effects of a maternal diet supplemented with chocolate and fructose beverage during gestation and lactation on rat dams and their offspring.

    PubMed

    Zhang, Zhi-Yun; Zeng, Jin-Jing; Kjaergaard, Marina; Guan, Ni; Raun, Kirsten; Nilsson, Cecilia; Wang, Ming-Wei

    2011-09-01

    1. Consumption of a high-fat and high-energy diet during pregnancy leads to a risk of long-term consequences on fetal development, as well as on the postnatal health of offspring. To investigate the effects of such a diet on fetal programming, we established a high-energy intake pregnant rat model using chocolate and fructose beverage as supplements to a normal chow diet. 2. Pregnant Sprague-Dawley rats were assigned to either chow (control) or a diet supplemented with chocolate and fructose beverage throughout gestation and lactation. The male F(1) pups received normal chow diet after weaning. Physiological or pathological changes in dams and pups (e.g. glucose and lipid metabolism) were evaluated. 3. The results showed that dams offered the high-fat (mainly from chocolate) and high-calorie diet during gestation consumed more energy and gained more weight than chow-fed dams. Over-consumption of chocolate reduced chow intake in dams, leading to low maternal protein supply. As a result, pups from these dams exhibited reduced birth weight that lasted until adulthood. The high-energy diet during lactation led to increased total body fat, as well as impaired liver function, in offspring; thus, the lactational diet is suggested to be a stronger determinant of offspring fat metabolism than gestational diet. 4. The results of the study suggest that over-supply of carbohydrates, such as chocolate and fructose, either during gestation or lactation has a negative impact on the well-being of offspring. PMID:21722163

  7. Transient suppression of late-stage neuronal progenitor cell differentiation in the hippocampal dentate gyrus of rat offspring after maternal exposure to nicotine.

    PubMed

    Ohishi, Takumi; Wang, Liyun; Akane, Hirotoshi; Shiraki, Ayako; Itahashi, Megu; Mitsumori, Kunitoshi; Shibutani, Makoto

    2014-02-01

    To examine the developmental exposure effect of nicotine (NIC) on hippocampal neurogenesis, pregnant Sprague-Dawley rats were treated with (-)-NIC hydrogen tartrate salt through drinking water at 2, 10 or 50 ppm from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, immunohistochemically doublecortin (Dcx)(+) cells increased at ≥10 ppm in the dentate subgranular zone (SGZ) as examined in male offspring; however, dihydropyrimidinase-like 3 (TUC4)(+) cells decreased at 2 ppm, and T box brain 2 (Tbr2)(+) cells were unchanged at any dose. Double immunohistochemistry revealed decreases in TUC4(+)/Dcx(+) and TUC4(+)/Dcx(-) cells, an increase in TUC4(-)/Dcx(+) cells at 2 and 10 ppm and an increase in Tbr2(-)/Dcx(+) cells at 50 ppm, suggesting an increase in type-3 progenitor cells at ≥2 ppm and decrease in immature granule cells at 2 and 10 ppm. The number of mature neuron-specific NeuN(-) progenitor cells expressing nicotinic acetylcholine receptor α7 in the SGZ and mRNA levels of Chrna7 and Chrnb2 in the dentate gyrus was unchanged at any dose, suggesting a lack of direct nicotinic stimulation on progenitor cells. In the dentate hilus, glutamic acid decarboxylase 67(+) interneurons increased at ≥10 ppm. All changes disappeared on PND 77. Therefore, maternal exposure to NIC reversibly affects hippocampal neurogenesis targeting late-stage differentiation in rat offspring. An increase in interneurons suggested that their activation affected granule cell differentiation. The lowest observed adverse effect level was at 2 ppm (0.091 mg/kg/day as a free base) by the affection of hippocampal neurogenesis at ≥2 ppm. PMID:23892646

  8. Maternal overweight induced by a diet with high content of saturated fat activates placental mTOR and eIF2alpha signaling and increases fetal growth in rats.

    PubMed

    Gaccioli, Francesca; White, Veronica; Capobianco, Evangelina; Powell, Theresa L; Jawerbaum, Alicia; Jansson, Thomas

    2013-10-01

    The mammalian target of rapamycin (mTOR) and the eukaryotic initiation factor 2 (eIF2) signaling pathways control protein synthesis in response to nutrient availability. Moreover, mTOR is a positive regulator of placental nutrient transport and is involved in the regulation of fetal growth. We hypothesized that maternal overweight, induced by a diet with high saturated fat content, i) up-regulates placental mTOR activity and nutrient transport, resulting in fetal overgrowth; ii) inhibits phosphorylation of eIF2 at its alpha subunit (eIF2alpha); and iii) leads to placental inflammation. Albino Wistar female rats were fed a control or high-saturated-fat (HF) diet for 7 wk before mating and during pregnancy. At gestational day 21, the HF diet significantly increased maternal and fetal triglyceride, leptin, and insulin (but not glucose) levels and maternal and fetal weights, and placental weights trended to increase. Phosphorylated 4EBP1 (T37/46 and S65) was significantly higher, and phosphorylated rpS6 (S235/236) tended to increase, in the placentas of dams fed an HF diet, indicating an activation of mTOR complex 1 (mTORC1). Phosphorylation of AMPK and eIF2alpha was reduced in the HF diet group compared to the control. The expression and activity of placental nutrient transporters and lipoprotein lipase (LPL), as well as the activation of inflammatory pathways, were not altered by the maternal diet. We conclude that maternal overweight induced by an HF diet stimulates mTORC1 activity and decreases eIF2alpha phosphorylation in rat placentas. We speculate that these changes may up-regulate protein synthesis and contribute to placental and fetal overgrowth. PMID:24006279

  9. THE TSC COMPLEX IS REQUIRED FOR THE BENEFITS OF DIETARY PROTEIN RESTRICTION ON STRESS RESISTANCE IN VIVO

    PubMed Central

    Harputlugil, Eylul; Hine, Christopher; Vargas, Dorathy; Robertson, Lauren; Manning, Brendan D.; Mitchell, James R.

    2014-01-01

    SUMMARY Protein restriction (PR) is important for the benefits of dietary restriction on longevity and stress resistance, but relevant nutrient sensors and downstream effectors in mammals remain poorly defined. We used PR-mediated protection from hepatic ischemia reperfusion injury to probe genetic requirements for evolutionarily conserved nutrient sensors GCN2 and mTORC1 in stress resistance. One week of PR reduced free amino acids and circulating growth factors, activating GCN2 and mTORC1 repressor TSC complex. However, while GCN2 was dispensable for PR-induced protection, hepatic TSC1 was required. PR improved hepatic insulin sensitivity in a TSC1-dependent manner prior to ischemia, facilitating increased pro-survival signaling and reduced apoptosis after reperfusion. These benefits were partially abrogated by pharmacological PI3K inhibition or genetic deletion of the insulin receptor in hepatocytes. In conclusion, improved insulin sensitivity upon short-term PR required TSC1, facilitated increased pro-survival signaling after injury, and contributed partially to PR-mediated resistance to clinically relevant ischemia reperfusion injury. PMID:25131199

  10. Effect of exercise and protein intake during pregnancy on maternal and fetal zinc content in the Sprague-Dawley rat

    SciTech Connect

    Asente, R.A.; Cameron, S.R.; Taper, L.J.

    1986-03-05

    Pregnant Sprague-Dawley rats (179) were divided into four groups: sedentary-standard protein diet, sedentary-high protein diet, exercising-standard protein diet and exercising-high protein diet. The standard protein diet contained 24.77% protein; all other nutrients were supplied in amounts required for normal parturition. After aclimitization, the exercising dams, regardless of diet, were forced to swim continuously for one and one-half hours/day until sacrifice. The four major groups were further subdivided into 28 groups, designated by three-day intervals according to gestational day - days 3, 6, 9, 12, 15, 18 and 21. Uterine tissues were analyzed for zinc; fetal and placental tissues were separated from uterine tissue for days 15 through 21 only. Uterine zinc was affected solely by gestation; absolute placental zinc values were lowest in the sedentary-high and exercising-low protein groups, while the exercising-high protein group possessed the greatest. No significant difference was detected in fetal zinc concentrations. Fetal tissues from exercising dams weighed significantly less than fetal tissue from the sedentary dams; and sedentary-high protein dams produced significantly more fetuses than the exercising-high protein dams. Both protein intake and exercise significantly affect normal parturition and zinc metabolism in the rat.

  11. Foxp2 mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal retrieval.

    PubMed

    Bowers, J Michael; Perez-Pouchoulen, Miguel; Edwards, N Shalon; McCarthy, Margaret M

    2013-02-20

    The FOXP2 gene is central to acquisition of speech and language in humans and vocal production in birds and mammals. Rodents communicate via ultrasonic vocalizations (USVs) and newborn pups emit distress USVs when separated from their dam, thereby facilitating their retrieval. We observed that isolated male rat pups emitted substantially more USV calls and these were characterized by a significantly lower frequency and amplitude compared with female rat pups. Moreover, the dam was more likely to first retrieve male pups back to the nest, then females. The amount of Foxp2 protein was significantly higher in multiple regions of the developing male brain compared with females and a reduction of brain Foxp2 by siRNA eliminated the sex differences in USVs and altered the order of pup retrieval. Our results implicate Foxp2 as a component of the neurobiological basis of sex differences in vocal communication in mammals. We extended these observations to humans, a species reported to have gender differences in language acquisition, and found the amount of FOXP2 protein in the left hemisphere cortex of 4-year-old boys was significantly lower than in age-matched girls. PMID:23426656

  12. Foxp2 mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal retrieval

    PubMed Central

    Bowers, J. Michael; Perez-Pouchoulen, Miguel; Edwards, N. Shalon; McCarthy, Margaret M.

    2013-01-01

    The FOXP2 gene is central to acquisition of speech and language in humans and vocal production in birds and mammals. Rodents communicate via ultrasonic vocalizations (USVs) and newborn pups emit distress USVs when separated from their dam, thereby facilitating their retrieval. We observed that isolated male rat pups emitted substantially more USV calls and these were characterized by a significantly lower frequency and amplitude compared to female rat pups. Moreover, the dam was more likely to first retrieve male pups back to the nest, then females. The amount of Foxp2 protein was significantly higher in multiple regions of the developing male brain compared to females and, a reduction of brain Foxp2 by siRNA eliminated the sex differences in USVs and altered the order of pup retrieval. Our results implicate Foxp2 as a component of the neurobiological basis of sex differences in vocal communication in mammals. We extended these observations to humans, a species reported to have gender differences in language acquisition, and found the amount of FOXP2 protein in the left hemisphere cortex of 4-year-old boys was significantly lower than in age-matched girls. PMID:23426656

  13. Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: influence of maternal Mg2+ supplementation.

    PubMed

    Wold, L E; Norby, F L; Hintz, K K; Colligan, P B; Epstein, P N; Ren, J

    2001-01-01

    Fetal alcohol syndrome (FAS) is often associated with cardiac hypertrophy and impaired ventricular function in a manner similar to postnatal chronic alcohol ingestion. Chronic alcoholism has been shown to lead to hypomagnesemia, and dietary Mg2+ supplementation was shown to ameliorate ethanol- induced cardiovascular dysfunction such as hypertension. However, the role of gestational Mg2+ supplementation on FAS-related cardiac dysfunction is unknown. This study was conducted to examine the influence of gestational dietary Mg2+ supplementation on prenatal ethanol exposure-induced cardiac contractile response at the ventricular myocyte level. Timed-pregnancy female rats were fed from gestation day 2 with liquid diets containing 0.13 g/L Mg2+ supplemented with ethanol (36%) or additional Mg2+ (0.52 g/L), or both. The pups were maintained on standard rat chow through adulthood, and ventricular myocytes were isolated and stimulated to contract at 0.5 Hz. Mechanical properties were evaluated using an IonOptix soft-edge system, and intracellular Ca2+ transients were measured as changes in fura-2 fluorescence intensity (Delta FFI). Offspring from all groups displayed similar growth curves. Myocytes from the ethanol group exhibited reduced cell length, enhanced peak shortening (PS), and shortened time to 90% relengthening (TR90) associated with a normal Delta FFI and time to PS (TPS). Mg2+ reverted the prenatal ethanol-induced alteration in PS and maximal velocity of relengthening. However, it shortened TPS and TR90, and altered the Delta FFI, as well as Ca2+ decay rate by itself. Additionally, myocytes from the ethanol group exhibited impaired responsiveness to increased extracellular Ca2+ or stimulating frequency, which were restored by gestational Mg2+ supplementation. These data suggest that although gestational Mg2+ supplementation may be beneficial to certain cardiac contractile dysfunctions in offspring of alcoholic mothers, caution must be taken, as Mg2+ supplementation affects cell mechanics itself. PMID:12213974

  14. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring.

    PubMed

    Mohammadipour, Abbas; Fazel, Alireza; Haghir, Hossein; Motejaded, Fatemeh; Rafatpanah, Houshang; Zabihi, Hoda; Hosseini, Mahmoud; Bideskan, Alireza Ebrahimzadeh

    2014-03-01

    Titanium dioxide nanoparticles (TiO2-NPs) are massively produced in the environment, and because of their wide usage, they are a potential risk of damage to human health. TiO2-NPs are often used as additives for paints, papers, and foods. The central nervous system (CNS), including hippocampal regions, is potentially susceptible targets for TiO2-NPs. This study aimed to determine the effects of exposure to TiO2-NPs during pregnancy on hippocampal cell proliferation and the learning and memory of offspring. Pregnant Wistar rats received intragastric TiO2-NPs (100 mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21. Animals in the control group received the same volume of distilled water via gavage. After delivery, the one-day-old neonates were deeply anesthetized and weighed. They were then killed and the brains of each group were collected. Sections of the brains from the rat offspring were stained using Ki-67 immunolabeling and the immunohistochemistry technique. Some of the male offspring (n=12 for each group) were weaned at postnatal day (PND21), and housed until adulthood (PND60). Then the learning and memory in animals of each group were evaluated using passive avoidance and Morris water maze tests. The immunolabeling of Ki-67 protein as a proliferating cell marker showed that TiO2-NPs significantly reduced cell proliferation in the hippocampus of the offspring (P<0.05). Moreover, both the Morris water maze test and the passive avoidance test showed that exposure to TiO2-NPs significantly impaired learning and memory in offspring (P<0.05). These results may provide basic experimental evidence for a better understanding of the neurotoxic effects of TiO2-NPs on neonatal and adult brains. PMID:24577229

  15. Maternal Immunization

    PubMed Central

    Chu, Helen Y.; Englund, Janet A.

    2014-01-01

    Maternal immunization has the potential to protect the pregnant woman, fetus, and infant from vaccine-preventable diseases. Maternal immunoglobulin G is actively transported across the placenta, providing passive immunity to the neonate and infant prior to the infant's ability to respond to vaccines. Currently inactivated influenza, tetanus toxoid, and acellular pertussis vaccines are recommended during pregnancy. Several other vaccines have been studied in pregnancy and found to be safe and immunogenic and to provide antibody to infants. These include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines. Other vaccines in development for potential maternal immunization include respiratory syncytial virus, herpes simplex virus, and cytomegalovirus vaccines. PMID:24799324

  16. Maternal phenylketonuria.

    PubMed

    Davidson, D C

    1989-01-01

    The exact mechanism of fetal damage in maternal phenylketonuria (PKU) is uncertain and although the fetus is heterozygotic for the gene coding for phenylalanine hydroxylase its immature hepatic enzyme system may be the reason for its inability to deal adequately with transplacental phenylalanine uptake. Several aspects of the management of maternal PKU are discussed and several case studies are presented. Dietary treatment should begin preconceptually despite evidence that post-conceptual treatment can have an acceptable outcome. Maternal recognition of the need for pre-conceptual treatment should increase with improvements in intellectual abilities of PKU girls resulting from neonatal screening and appropriate dietary management. PMID:2622813

  17. Maternal immunization.

    PubMed

    Chu, Helen Y; Englund, Janet A

    2014-08-15

    Maternal immunization has the potential to protect the pregnant woman, fetus, and infant from vaccine-preventable diseases. Maternal immunoglobulin G is actively transported across the placenta, providing passive immunity to the neonate and infant prior to the infant's ability to respond to vaccines. Currently inactivated influenza, tetanus toxoid, and acellular pertussis vaccines are recommended during pregnancy. Several other vaccines have been studied in pregnancy and found to be safe and immunogenic and to provide antibody to infants. These include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines. Other vaccines in development for potential maternal immunization include respiratory syncytial virus, herpes simplex virus, and cytomegalovirus vaccines. PMID:24799324

  18. Sex-dependent effects of early maternal deprivation on MDMA-induced conditioned place preference in adolescent rats: possible neurochemical correlates.

    PubMed

    Llorente-Berzal, Alvaro; Manzanedo, Carmen; Daza-Losada, Manuel; Valero, Manuel; López-Gallardo, Meritxell; Aguilar, María A; Rodríguez-Arias, Marta; Miñarro, José; Viveros, Maria-Paz

    2013-09-01

    The early neonatal stage constitutes a sensitive period during which exposure to adverse events can increase the risk of neuropsychiatric disorders. Maternal deprivation (MD) is a model of early life stress that induces long-term behavioural and physiological alterations, including susceptibility to different drugs of abuse. In the present study we have used the conditioned place preference (CPP) paradigm to address the influence of MD on the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in adolescent animals of both sexes. We have previously observed in adolescent rats that MD induces modifications in the serotonergic and endocannabinoid systems, which play a role in the rewarding effects of MDMA. In light of this evidence, we hypothesized that MD would alter the psychobiological consequences of exposure to MDMA. Neonatal Wistar rats underwent MD (24h, on PND 9) or were left undisturbed (controls). The animals were conditioned with 2.5mg/kg MDMA during the periadolescent period (PND 34-PND 43) and were tested in the open-field test at the end of adolescence (PND 60). Animals were sacrificed on PND 68-75 and levels of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid were measured in the striatum, hippocampus and cortex, while the expression of hippocampal CB1 cannabinoid receptor (CB1R) and circulating levels of corticosterone and leptin were also measured. Control males showed CPP after administration of MDMA. However, no MDMA-induced CPP was detected in control females or MD males, and MD had no effect on open field activity in any group. A reduction in striatal and cortical 5-HT levels, increased expression of hippocampal CB1R and a marked trend towards higher circulating leptin levels were observed in MDMA-treated MD males. Our results demonstrate for the first time that MD reduces the rewarding effects of MDMA in a sex-dependent manner. We propose that this effect is related, at least in part, with alterations of the serotonergic and cannabinoid systems. PMID:23246480

  19. Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat.

    PubMed

    Wattez, J-S; Delahaye, F; Barella, L F; Dickes-Coopman, A; Montel, V; Breton, C; Mathias, P; Foligné, B; Lesage, J; Vieau, D

    2014-04-01

    Undernutrition exposure during the perinatal period reduces the growth kinetic of the offspring and sensitizes it to the development of chronic adult metabolic diseases both in animals and in humans. Previous studies have demonstrated that a 50% maternal food restriction performed during the last week of gestation and during lactation has both short- and long-term consequences in the male rat offspring. Pups from undernourished mothers present a decreased intrauterine (IUGR) and extrauterine growth restriction. This is associated with a drastic reduction in their leptin plasma levels during lactation, and exhibit programming of their stress neuroendocrine systems (corticotroph axis and sympatho-adrenal system) in adulthood. In this study, we report that perinatally undernourished 6-month-old adult animals demonstrated increased leptinemia (at PND200), blood pressure (at PND180), food intake (from PND28 to PND168), locomotor activity (PND187) and altered regulation of glycemia (PND193). Cross-fostering experiments indicate that these alterations were prevented in IUGR offspring nursed by control mothers during lactation. Interestingly, the nutritional status of mothers during lactation (ad libitum feeding v. undernutrition) dictates the leptin plasma levels in pups, consistent with decreased leptin concentration in the milk of mothers subjected to perinatal undernutrition. As it has been reported that postnatal leptin levels in rodent neonates may have long-term metabolic consequences, restoration of plasma leptin levels in pups during lactation may contribute to the beneficial effects of cross-fostering IUGR offspring to control mothers. Collectively, our data suggest that modification of milk components may offer new therapeutic perspectives to prevent the programming of adult diseases in offspring from perinatally undernourished mothers. PMID:24847697

  20. Maternal intake of Omega-3 essential fatty acids improves long term potentiation in the dentate gyrus and Morris water maze performance in rats.

    PubMed

    Kavraal, Sehrazat; Oncu, Sena Kara; Bitiktas, Soner; Artis, A Seda; Dolu, Nazan; Gunes, Tamer; Suer, Cem

    2012-10-30

    Omega-3 fatty acid deprivation during development reduces performance in learning tasks, and dietary DHA supplementation improves learning ability and enhances long term memory in both young and old animals. However, little attention has been paid to the effect of maternal intake of Omega-3 fatty acids on hippocampal function in their pups. Randomly some of the pregnant dams were supplemented with Omega-3 essential fatty acid, others with tap-water, during pregnancy and breast-feeding by gavage daily. Spatial learning and memory was tested in Morris water maze. Field potentials from the dentate gyrus were recorded in response to medial perforant pathway in urethane-anesthetized pups. Omega-3-treated rats found the platform less traveled and closer to platform than control animals. However the pups from both groups show the same performance in retrieval task. No differences were found between corresponding animal groups in the input-output curves of the field potential slopes, suggesting no effect of Omega-3 supplementation on basal synaptic efficacy. Potentiation of population spike amplitude was much higher in pups of Omega-3 treated dams than control. Up to now Omega 3 fatty acid has been shown to be beneficial on the synaptic plasticity only under some pathological conditions. For the first time, we showed improved dentate gyrus-LTP and enhanced Morris water maze performance in healthy pups from healthy dams treated with Omega-3 fatty acids during pregnancy and breast-feeding period. Molecular studies are needed to explain Omega-3 effect on hippocampal synaptic plasticity. PMID:22981414

  1. Assessment of the Protective Role of Prenatal Zinc versus Insulin Supplementation on Fetal Cardiac Damage Induced by Maternal Diabetes in Rat Using Caspase-3 and KI67 Immunohistochemical Stains

    PubMed Central

    Shams, Ahmed S.; Mohammed, Mona H.; Loka, Mona M.; Abdel Rahman, Gamal M.

    2016-01-01

    Maternal diabetes mellitus (DM) affects early organogenesis. Metabolic disorders of DM are associated with a depleted zinc status. This study evaluated the effect of maternal DM on cardiac development of rat fetuses and protective roles of prenatal zinc versus insulin supplementation. Preg