Science.gov

Sample records for mathematical computing

  1. Experimental Mathematics and Computational Statistics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  2. The challenge of computer mathematics.

    PubMed

    Barendregt, Henk; Wiedijk, Freek

    2005-10-15

    Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics. PMID:16188610

  3. Mathematics and Computers for Teaching Engineering.

    ERIC Educational Resources Information Center

    Sancho, Purificacion Gonzales

    1986-01-01

    Discusses the present status of mathematics teaching for engineering students in Spain. Stresses the importance of mathematics (particularly numerical analysis) and computers to engineers in the future. Promotes the motivation of engineering students in the joint use of mathematics and computers. (TW)

  4. School Mathematics: New Ideas with Computers.

    ERIC Educational Resources Information Center

    National Inst. for Educational Research, Tokyo (Japan).

    The focus of this workshop involving people from 13 countries in Asia and the Pacific Region was on using computers to assist learning in mathematics. The report contains the following sections: (1) Introduction; (2) The Mathematics Curriculum: Innovation and Change; (3) The Mathematics Classroom: New Ideas with Computers; (4) Software: Quality…

  5. Computer Tutorial "Higher Mathematics" for Engineering Specialties.

    ERIC Educational Resources Information Center

    Slivina, Natalia A.; Krivosheev, Anatoly O.; Fomin, Sergey S.

    This paper presents a CD-ROM computer tutorial titled "Higher Mathematics," that contains 17 educational mathematical programs and is intended for use in Russian university engineering education. The first section introduces the courseware climate in Russia and outlines problems with commercially available universal mathematical packages. The…

  6. Computer Aided Learning of Mathematics: Software Evaluation

    ERIC Educational Resources Information Center

    Yushau, B.; Bokhari, M. A.; Wessels, D. C. J.

    2004-01-01

    Computer Aided Learning of Mathematics (CALM) has been in use for some time in the Prep-Year Mathematics Program at King Fahd University of Petroleum & Minerals. Different kinds of software (both locally designed and imported) have been used in the quest of optimizing the recitation/problem session hour of the mathematics classes. This paper…

  7. Reducing Mathematics Anxiety with Computer Assisted Instruction.

    ERIC Educational Resources Information Center

    Harris, Albert L.; Harris, Jacqueline M.

    1987-01-01

    Student, teacher, and teaching causes of mathematics anxiety are discussed. Computer-assisted instruction can reduce mathematics anxieties due to lack of confidence, negative attitudes, teacher bias, authoritarian teaching, lack of variety, lack of relationship with the real world, emphasis on memorization or on speed, or computer phobia. (MNS)

  8. Computer-Game-Based Tutoring of Mathematics

    ERIC Educational Resources Information Center

    Ke, Fengfeng

    2013-01-01

    This in-situ, descriptive case study examined the potential of implementing computer mathematics games as an anchor for tutoring of mathematics. Data were collected from middle school students at a rural pueblo school and an urban Hispanic-serving school, through in-field observation, content analysis of game-based tutoring-learning interactions,…

  9. Teaching Mathematics with Computers 9-12.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This publication is designed to show how computers can be used effectively in secondary school mathematics curricula. Section I provides a description of the various types of software that could be incorporated into the secondary school mathematics curriculum. Procedures for evaluating the software and using it in a classroom or laboratory…

  10. Verifying a Computer Algorithm Mathematically.

    ERIC Educational Resources Information Center

    Olson, Alton T.

    1986-01-01

    Presents an example of mathematics from an algorithmic point of view, with emphasis on the design and verification of this algorithm. The program involves finding roots for algebraic equations using the half-interval search algorithm. The program listing is included. (JN)

  11. Future Prospects for Computer-Assisted Mathematics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2005-10-26

    The recent rise of ''computer-assisted'' and ''experimental'' mathematics raises intriguing questions as to the future role of computation in mathematics. These results also draw into question the traditional distinctions that have been drawn between formal proof and computationally-assisted proof. This article explores these questions in the context of the growing consensus among computer technologists that Moore's Law is likely to continue unabated for quite some time into the future, producing hardware and software much more powerful than what is available today.

  12. Mathematical computer programs: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Computer programs, routines, and subroutines for aiding engineers, scientists, and mathematicians in direct problem solving are presented. Also included is a group of items that affords the same users greater flexibility in the use of software.

  13. Teaching Mathematics Using a Computer Algebra.

    ERIC Educational Resources Information Center

    Westermann, Thomas

    2001-01-01

    Demonstrates the principal concept and the application of MAPLE in mathematical education in various examples. Discusses lengthy and abstract topics like the convergence of Fourier series to a given function, performs the visualization of the wave equation in the case of a vibrating string, and computes the oscillations of an idealized skyscraper…

  14. Computational and mathematical models of microstructural evolution

    SciTech Connect

    Bullard, J.W.; Chen, L.Q.; Kalia, R.K.; Stoneham, A.M.

    1998-12-31

    This symposium was designed to bring together the foremost materials theorists and applied mathematicians from around the world to share and discuss some of the newest and most promising mathematical and computational tools for simulating, understanding, and predicting the various complex processes that occur during the evolution of microstructures. Separate abstracts were prepared for 25 papers.

  15. Mathematical challenges from theoretical/computational chemistry

    SciTech Connect

    1995-12-31

    The committee believes that this report has relevance and potentially valuable suggestions for a wide range of readers. Target audiences include: graduate departments in the mathematical and chemical sciences; federal and private agencies that fund research in the mathematical and chemical sciences; selected industrial and government research and development laboratories; developers of software and hardware for computational chemistry; and selected individual researchers. Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and computational/theoretical chemists. In Chapter 4 the committee has assembled a representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a subset of the target audiences listed above.

  16. Computational mathematics and physics of fusion reactors.

    PubMed

    Garabedian, Paul R

    2003-11-25

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  17. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  18. Amorphous computing: examples, mathematics and theory.

    PubMed

    Stark, W Richard

    2013-01-01

    The cellular automata model was described by John von Neumann and his friends in the 1950s as a representation of information processing in multicellular tissue. With crystalline arrays of cells and synchronous activity, it missed the mark (Stark and Hughes, BioSystems 55:107-117, 2000). Recently, amorphous computing, a valid model for morphogenesis in multicellular information processing, has begun to fill the void. Through simple examples and elementary mathematics, this paper begins a computation theory for this important new direction. PMID:23946719

  19. Computer Mathematical Tools: Practical Experience of Learning to Use Them

    ERIC Educational Resources Information Center

    Semenikhina, Elena; Drushlyak, Marina

    2014-01-01

    The article contains general information about the use of specialized mathematics software in the preparation of math teachers. The authors indicate the reasons to study the mathematics software. In particular, they analyze the possibility of presenting basic mathematical courses using mathematical computer tools from both a teacher and a student,…

  20. Computing Linear Mathematical Models Of Aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1991-01-01

    Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.

  1. Mathematical and computational models of plasma flows

    NASA Astrophysics Data System (ADS)

    Brushlinsky, K. V.

    Investigations of plasma flows are of interest, firstly, due to numerous applications, and secondly, because of their general principles, which form a special branch of physics: the plasma dynamics. Numerical simulation and computation, together with theoretic and experimental methods, play an important part in these investigations. Speaking on flows, a relatively dense plasma is mentioned, so its mathematical models appertain to the fluid mechanics, i.e., they are based on the magnetohydrodynamic description of plasma. Time dependent two dimensional models of plasma flows of two wide-spread types are considered: the flows across the magnetic field and those in the magnetic field plane.

  2. The Use of a Computer Algebra System in Capstone Mathematics Courses for Undergraduate Mathematics Majors.

    ERIC Educational Resources Information Center

    Harris, Gary A.

    2000-01-01

    Discusses the use of a computer algebra system in a capstone mathematics course for undergraduate mathematics majors preparing to teach secondary school mathematics. Provides sample exercises intended to demonstrate how the power of a computer algebra system such as MAPLE can contribute to desired outcomes including reinforcing and strengthening…

  3. High-Precision Computation and Mathematical Physics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2008-11-03

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  4. The Use of Computers in Mathematics Education: Bibliography, III. The Use of Computers in Mathematics Education Resource Series.

    ERIC Educational Resources Information Center

    Suydam, Marilyn N., Ed.

    This third paper in a set on computer usage in mathematics education provides an annotated listing of selected books, articles, and other documents on computers. Entries are organized by topics: the general educational role of computers; computer languages and programming; and mathematics instruction applications, including teaching about…

  5. Environmental studies: Mathematical, computational, and statistical analysis

    SciTech Connect

    Wheeler, M.F.

    1996-12-31

    The Summer Program on Mathematical, Computational, and Statistical Analyses in Environmental Studies held 6--31 July 1992 was designed to provide a much needed interdisciplinary forum for joint exploration of recent advances in the formulation and application of (A) environmental models, (B) environmental data and data assimilation, (C) stochastic modeling and optimization, and (D) global climate modeling. These four conceptual frameworks provided common themes among a broad spectrum of specific technical topics at this workshop. The program brought forth a mix of physical concepts and processes such as chemical kinetics, atmospheric dynamics, cloud physics and dynamics, flow in porous media, remote sensing, climate statistical, stochastic processes, parameter identification, model performance evaluation, aerosol physics and chemistry, and data sampling together with mathematical concepts in stiff differential systems, advective-diffusive-reactive PDEs, inverse scattering theory, time series analysis, particle dynamics, stochastic equations, optimal control, and others. Nineteen papers are presented in this volume. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Defining Computational Thinking for Mathematics and Science Classrooms

    ERIC Educational Resources Information Center

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  7. New computer system simplifies programming of mathematical equations

    NASA Technical Reports Server (NTRS)

    Reinfelds, J.; Seitz, R. N.; Wood, L. H.

    1966-01-01

    Automatic Mathematical Translator /AMSTRAN/ permits scientists or engineers to enter mathematical equations in their natural mathematical format and to obtain an immediate graphical display of the solution. This automatic-programming, on-line, multiterminal computer system allows experienced programmers to solve nonroutine problems.

  8. Defining Computational Thinking for Mathematics and Science Classrooms

    NASA Astrophysics Data System (ADS)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-02-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new urgency has come to the challenge of defining computational thinking and providing a theoretical grounding for what form it should take in school science and mathematics classrooms. This paper presents a response to this challenge by proposing a definition of computational thinking for mathematics and science in the form of a taxonomy consisting of four main categories: data practices, modeling and simulation practices, computational problem solving practices, and systems thinking practices. In formulating this taxonomy, we draw on the existing computational thinking literature, interviews with mathematicians and scientists, and exemplary computational thinking instructional materials. This work was undertaken as part of a larger effort to infuse computational thinking into high school science and mathematics curricular materials. In this paper, we argue for the approach of embedding computational thinking in mathematics and science contexts, present the taxonomy, and discuss how we envision the taxonomy being used to bring current educational efforts in line with the increasingly computational nature of modern science and mathematics.

  9. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  10. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  11. Computer Assisted Vocational Mathematics Workshops, Final Report 1981-82.

    ERIC Educational Resources Information Center

    Manchester Township District, Lakehurst, NJ.

    This final report contains some narrative material and the products of a project to design and conduct inservice training for vocational educators to enable them to incorporate the Computer Assisted Vocational Mathematics Program into their curriculum. (Computer Assisted Vocational Mathematics is designed to increase students' knowledge of applied…

  12. Creating Printed Materials for Mathematics with a Macintosh Computer.

    ERIC Educational Resources Information Center

    Mahler, Philip

    This document gives instructions on how to use a Macintosh computer to create printed materials for mathematics. A Macintosh computer, Microsoft Word, and objected-oriented (Draw-type) art program, and a function-graphing program are capable of producing high quality printed instructional materials for mathematics. Word 5.1 has an equation editor…

  13. The Computer as a Cultural Influence in Mathematical Learning.

    ERIC Educational Resources Information Center

    Noss, Richard

    1988-01-01

    Examined is the cultural impact--both actual and potential--of the computer on children's mathematical education. The ways in which the introduction of the computer does and will change the ambient space in which children learn mathematics is considered. (Author/PK)

  14. My Experience with Computers in a Linear Mathematics Course.

    ERIC Educational Resources Information Center

    Johnson, Clare F.

    1982-01-01

    The introduction of computer use in college mathematics classes for non-mathematics oriented students majoring in marketing, management, and other business-related fields is discussed. Results of a questionnaire of student opinions matched with pupil course grades is presented. It is noted students as a whole seemed satisfied with computer use.…

  15. Teaching Mathematics to Chemistry Students with Symbolic Computation

    ERIC Educational Resources Information Center

    Ogilvie, J. F.; Monagan, M. B.

    2007-01-01

    The teaching of mathematics courses to chemistry students that is strongly based on symbolic computation and allows an instructor to explore a topic or principle is reviewed. The mathematical software available, nominally for symbolic computation associated with numerical and graphical capabilities are highly developed and provides an invaluable…

  16. Computer-Assisted Mathematics: An Investigation of the Effectiveness of the Computer Used as a Tool to Learn Mathematics.

    ERIC Educational Resources Information Center

    Hatfield, Larry Lee

    Reported are the results of an investigation of the effects of programing a computer in a seventh grade mathematics class. Two treatments were conducted during two successive years. The students in the treatment group used the programing language BASIC to write computer algorithms following supplemental instruction. The mathematical content was…

  17. Computer-Based Mathematics Instructions for Engineering Students

    NASA Technical Reports Server (NTRS)

    Khan, Mustaq A.; Wall, Curtiss E.

    1996-01-01

    Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

  18. Use of the Computer in Solving Mathematics Problems.

    ERIC Educational Resources Information Center

    Brooks, Sarah

    Computer programing and problem-solving steps in mathematics are viewed to have related concepts. Some heuristics are compared with some suggestions for structured programing. The one fundamental difference between problem solving in general and when using the computer is seen as the computer solution must be finite. The computer is viewed as a…

  19. Computation and graphics in mathematical research

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1992-08-13

    This report discusses: The description of the GANG Project and results for prior research; the center for geometry, analysis, numerics and graphics; description of GANG Laboratory; software development at GANG; and mathematical and scientific research activities.

  20. GED Math--A Computer Assisted Mathematics Curriculum.

    ERIC Educational Resources Information Center

    Zellers, Robert W.; And Others

    The first document in this set is a final report titled "Preparation for the Mathematics GED Test: A Computer Based Program," which describes a project to develop a General Educational Development (GED) mathematics preparation program for the adult learner at the 9-12 grade level. The other two documents are a teacher's guide and a student…

  1. Girls Back Off Mathematics Again: The Views and Experiences of Girls in Computer-Based Mathematics.

    ERIC Educational Resources Information Center

    Vale, Colleen

    2002-01-01

    Presents the views and experiences of six girls in two co-educational mathematics classrooms in which computers were regularly used. Indicates a diversity of experiences and views and multiple gender identities. Discusses implications for social justice in mathematics in the age of the information super highway. (Author/KHR)

  2. Mathematical String Sculptures: A Case Study in Computationally-Enhanced Mathematical Crafts

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2007-01-01

    Mathematical string sculptures constitute an extremely beautiful realm of mathematical crafts. This snapshot begins with a description of a marvelous (and no longer manufactured) toy called Space Spider, which provided a framework with which children could experiment with string sculptures. Using a computer-controlled laser cutter to create frames…

  3. Experiences of Student Mathematics-Teachers in Computer-Based Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Karatas, Ilhan

    2011-01-01

    Computer technology in mathematics education enabled the students find many opportunities for investigating mathematical relationships, hypothesizing, and making generalizations. These opportunities were provided to pre-service teachers through a faculty course. At the end of the course, the teachers were assigned project tasks involving…

  4. Using Computers to Reinforce and Enrich the Mathematics Curriculum.

    ERIC Educational Resources Information Center

    Elgarten, Gerald H.

    1984-01-01

    Discusses a structured approach to teaching computer programing in secondary schools. The approach can be used in an introductory computer programing (literacy) course or as a method to teach computer programing in traditional mathematics courses. Two sample lesson summaries (related to temperature conversions) are included. (JN)

  5. Assessing Mathematics Automatically Using Computer Algebra and the Internet

    ERIC Educational Resources Information Center

    Sangwin, Chris

    2004-01-01

    This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…

  6. Basic mathematical function libraries for scientific computation

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1989-01-01

    Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.

  7. Beyond Computation: Improving Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Anderson, Jennifer M.; Olson, Jennifer S.; Wrobel, Margaret L.

    This action research describes a program for improving mathematical problem solving skills. The targeted population consisted of first grade students in a transient, middle class community as well as third and sixth grade students from a growing, middle to upper class in Illinois. The concerns of problem solving were documented through teacher…

  8. A mathematical model of a computational problem solving system

    NASA Astrophysics Data System (ADS)

    Aris, Teh Noranis Mohd; Nazeer, Shahrin Azuan

    2015-05-01

    This paper presents a mathematical model based on fuzzy logic for a computational problem solving system. The fuzzy logic uses truth degrees as a mathematical model to represent vague algorithm. The fuzzy logic mathematical model consists of fuzzy solution and fuzzy optimization modules. The algorithm is evaluated based on a software metrics calculation that produces the fuzzy set membership. The fuzzy solution mathematical model is integrated in the fuzzy inference engine that predicts various solutions to computational problems. The solution is extracted from a fuzzy rule base. Then, the solutions are evaluated based on a software metrics calculation that produces the level of fuzzy set membership. The fuzzy optimization mathematical model is integrated in the recommendation generation engine that generate the optimize solution.

  9. Students, Computers and Mathematics the Golden Trilogy in the Teaching-Learning Process

    ERIC Educational Resources Information Center

    García-Santillán, Arturo; Escalera-Chávez, Milka Elena; López-Morales, José Satsumi; Córdova Rangel, Arturo

    2014-01-01

    In this paper we examine the relationships between students' attitudes towards mathematics and technology, therefore, we take a Galbraith and Hines' scale (1998, 2000) about mathematics confidence, computer confidence, computer and mathematics interaction, mathematics motivation, computer motivation, and mathematics engagement. 164…

  10. Computation and graphics in mathematical research

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1993-06-01

    Current research is described on: grain boundaries and dislocations in compound polymers, boundary value problems for hypersurfaces constant Gaussian curvature, and discrete computational geometry. 19 refs, 4 figs.

  11. Soloworks: Computer-Based Laboratories for High School Mathematics.

    ERIC Educational Resources Information Center

    Dwyer, Thomas A.

    1975-01-01

    The Soloworks project is based on the belief that student-controlled computing is a promising innovation in secondary mathematics instruction. The Soloworks project is following up three years of experience in the Pittsburgh public school system with a new program encorporating both student-controlled computing and modern math curricula. The work…

  12. Computers in Science and Mathematics Education in the ASEAN Region.

    ERIC Educational Resources Information Center

    Talisayon, Vivien M.

    1989-01-01

    Compares policies and programs on computers in science and mathematics education in the six ASEAN countries: Brunei, Indonesia; Malaysia, Philippines, Singapore, and Thailand. Limits discussion to the computer as a teaching aid and object of study, attendant problems, and regional cooperation. (MVL)

  13. Output Devices, Computation, and the Future of Mathematical Crafts.

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2002-01-01

    The advent of powerful, affordable output devices offers the potential for a vastly expanded landscape of computationally-enriched mathematical craft activities in education. Craft activities have both intellectual and emotional affordances that are relatively lacking in "traditional" computer-based education. Describes three software applications…

  14. Retrospective Study on Mathematical Modeling Based on Computer Graphic Processing

    NASA Astrophysics Data System (ADS)

    Zhang, Kai Li

    Graphics & image making is an important field in computer application, in which visualization software has been widely used with the characteristics of convenience and quick. However, it was thought by modeling designers that the software had been limited in it's function and flexibility because mathematics modeling platform was not built. A non-visualization graphics software appearing at this moment enabled the graphics & image design has a very good mathematics modeling platform. In the paper, a polished pyramid is established by multivariate spline function algorithm, and validate the non-visualization software is good in mathematical modeling.

  15. Inaccuracies of trigonometric functions in computer mathematical libraries

    NASA Astrophysics Data System (ADS)

    Ito, Takashi; Kojima, Sadamu

    Recent progress in the development of high speed computers has enabled us to perform larger and faster numerical experiments in astronomy. However, sometimes the high speed of numerical computation is achieved at the cost of accuracy. In this paper we show an example of accuracy loss by some mathematical functions on certain computer platforms in Astronomical Data Analysis Center, National Astronomical Observatory of Japan. We focus in particular on the numerical inaccuracy in sine and cosine functions, demonstrating how accuracy deterioration emerges. We also describe the measures that we have so far taken against these numerical inaccuracies. In general, computer vendors are not eager to improve the numerical accuracy in the mathematical libraries that they are supposed to be responsible for. Therefore scientists have to be aware of the existence of numerical inaccuracies, and protect their computational results from contamination by the potential errors that many computer platforms inherently contain.

  16. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  17. Mathematical modelling in the computer-aided process planning

    NASA Astrophysics Data System (ADS)

    Mitin, S.; Bochkarev, P.

    2016-04-01

    This paper presents new approaches to organization of manufacturing preparation and mathematical models related to development of the computer-aided multi product process planning (CAMPP) system. CAMPP system has some peculiarities compared to the existing computer-aided process planning (CAPP) systems: fully formalized developing of the machining operations; a capacity to create and to formalize the interrelationships among design, process planning and process implementation; procedures for consideration of the real manufacturing conditions. The paper describes the structure of the CAMPP system and shows the mathematical models and methods to formalize the design procedures.

  18. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis

    PubMed Central

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-01-01

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  19. Computed tomographic beam-hardening artefacts: mathematical characterization and analysis.

    PubMed

    Park, Hyoung Suk; Chung, Yong Eun; Seo, Jin Keun

    2015-06-13

    This paper presents a mathematical characterization and analysis of beam-hardening artefacts in X-ray computed tomography (CT). In the field of dental and medical radiography, metal artefact reduction in CT is becoming increasingly important as artificial prostheses and metallic implants become more widespread in ageing populations. Metal artefacts are mainly caused by the beam-hardening of polychromatic X-ray photon beams, which causes mismatch between the actual sinogram data and the data model being the Radon transform of the unknown attenuation distribution in the CT reconstruction algorithm. We investigate the beam-hardening factor through a mathematical analysis of the discrepancy between the data and the Radon transform of the attenuation distribution at a fixed energy level. Separation of cupping artefacts from beam-hardening artefacts allows causes and effects of streaking artefacts to be analysed. Various computer simulations and experiments are performed to support our mathematical analysis. PMID:25939628

  20. Using Computers in Mathematics Teaching. A Collection of Case Studies.

    ERIC Educational Resources Information Center

    Ponte, Joao Pedro; And Others

    This collection of case studies of classroom experiences in middle and secondary schools throughout the European Community describes the use of computers in mathematics education. The 16 studies are organized in four main groups: (1) experience in geometry using educational software and Logo in grades 5-10; (2) arithmetic number concepts,…

  1. Algorithms, Computation and Mathematics (Fortran Supplement). Teacher's Commentary. Revised Edition.

    ERIC Educational Resources Information Center

    Charp, Sylvia; And Others

    This is the teacher's guide and commentary for the SMSG textbook Algorithms, Computation, and Mathematics (Fortran Supplement). The teacher's commentary provides background information for the teacher, suggestions for activities found in the Fortran Supplement, and answers for exercises and activities. The course is designed for high school…

  2. Proceedings, Conference on the Computing Environment for Mathematical Software

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Recent advances in software and hardware technology which make it economical to create computing environments appropriate for specialized applications are addressed. Topics included software tools, FORTRAN standards activity, and features of languages, operating systems, and hardware that are important for the development, testing, and maintenance of mathematical software.

  3. Computational Modeling and Mathematics Applied to the Physical Sciences.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    One aim of this report is to show and emphasize that in the computational approaches to most of today's pressing and challenging scientific and technological problems, the mathematical aspects cannot and should not be considered in isolation. Following an introductory chapter, chapter 2 discusses a number of typical problems leading to…

  4. Development of an Intelligent Instruction System for Mathematical Computation

    ERIC Educational Resources Information Center

    Kim, Du Gyu; Lee, Jaemu

    2013-01-01

    In this paper, we propose the development of a web-based, intelligent instruction system to help elementary school students for mathematical computation. We concentrate on the intelligence facilities which support diagnosis and advice. The existing web-based instruction systems merely give information on whether the learners' replies are…

  5. An Innovative Learning Model for Computation in First Year Mathematics

    ERIC Educational Resources Information Center

    Tonkes, E. J.; Loch, B. I.; Stace, A. W.

    2005-01-01

    MATLAB is a sophisticated software tool for numerical analysis and visualization. The University of Queensland has adopted Matlab as its official teaching package across large first year mathematics courses. In the past, the package has met severe resistance from students who have not appreciated their computational experience. Several main…

  6. A Non-Mathematical Technique for Teaching Binary Computer Concepts.

    ERIC Educational Resources Information Center

    Steele, Fred

    This document describes an aid invented by the author for teaching binary computer concepts in a data processing course for business students unfamiliar with mathematical concepts. It permits the instructor to simulate the inner, invisible operation of storing data electronically. The standard 8-bit "byte" is represented by a portable…

  7. A Review of Online Physical Sciences and Mathematics Databases. Part I: Physics, Mathematics, and Computer Science.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.

    1985-01-01

    The first of a three part series, this review covers the online bibliographic and numeric databases of physics, mathematics, and computer science. Two database directories are mentioned, and a table listing databases, producers, major subjects, and starting dates is appended. Fifteen references are provided. (EJS)

  8. Computational oncology - mathematical modelling of drug regimens for precision medicine.

    PubMed

    Barbolosi, Dominique; Ciccolini, Joseph; Lacarelle, Bruno; Barlési, Fabrice; André, Nicolas

    2016-04-01

    Computational oncology is a generic term that encompasses any form of computer-based modelling relating to tumour biology and cancer therapy. Mathematical modelling can be used to probe the pharmacokinetics and pharmacodynamics relationships of the available anticancer agents in order to improve treatment. As a result of the ever-growing numbers of druggable molecular targets and possible drug combinations, obtaining an optimal toxicity-efficacy balance is an increasingly complex task. Consequently, standard empirical approaches to optimizing drug dosing and scheduling in patients are now of limited utility; mathematical modelling can substantially advance this practice through improved rationalization of therapeutic strategies. The implementation of mathematical modelling tools is an emerging trend, but remains largely insufficient to meet clinical needs; at the bedside, anticancer drugs continue to be prescribed and administered according to standard schedules. To shift the therapeutic paradigm towards personalized care, precision medicine in oncology requires powerful new resources for both researchers and clinicians. Mathematical modelling is an attractive approach that could help to refine treatment modalities at all phases of research and development, and in routine patient care. Reviewing preclinical and clinical examples, we highlight the current achievements and limitations with regard to computational modelling of drug regimens, and discuss the potential future implementation of this strategy to achieve precision medicine in oncology. PMID:26598946

  9. Girls back off mathematics again: the views and experiences of girls in computer-based mathematics

    NASA Astrophysics Data System (ADS)

    Vale, Colleen

    2002-12-01

    The views and experiences of girls in two co-educational mathematics classrooms in which computers were regularly used were researched. Data were collected by observation and videotaping of lessons, questionnaire, and interviews of students and the teachers. In this paper case studies of six girls are presented. Their `stories' reveal a diversity of experiences and views and multiple gender identities. High achieving girls persisted as "outsiders within," other girls "backed off", and exceptional girls challenged gender stereotypes. Implications for social justice in mathematics in the age of the super highway are discussed.

  10. Research in mathematical theory of computation. [computer programming applications

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.

    1973-01-01

    Research progress in the following areas is reviewed: (1) new version of computer program LCF (logic for computable functions) including a facility to search for proofs automatically; (2) the description of the language PASCAL in terms of both LCF and in first order logic; (3) discussion of LISP semantics in LCF and attempt to prove the correctness of the London compilers in a formal way; (4) design of both special purpose and domain independent proving procedures specifically program correctness in mind; (5) design of languages for describing such proof procedures; and (6) the embedding of ideas in the first order checker.

  11. Mathematical and computer modeling of component surface shaping

    NASA Astrophysics Data System (ADS)

    Lyashkov, A.

    2016-04-01

    The process of shaping technical surfaces is an interaction of a tool (a shape element) and a component (a formable element or a workpiece) in their relative movements. It was established that the main objects of formation are: 1) a discriminant of a surfaces family, formed by the movement of the shape element relatively the workpiece; 2) an enveloping model of the real component surface obtained after machining, including transition curves and undercut lines; 3) The model of cut-off layers obtained in the process of shaping. When modeling shaping objects there are a lot of insufficiently solved or unsolved issues that make up a single scientific problem - a problem of qualitative shaping of the surface of the tool and then the component surface produced by this tool. The improvement of known metal-cutting tools, intensive development of systems of their computer-aided design requires further improvement of the methods of shaping the mating surfaces. In this regard, an important role is played by the study of the processes of shaping of technical surfaces with the use of the positive aspects of analytical and numerical mathematical methods and techniques associated with the use of mathematical and computer modeling. The author of the paper has posed and has solved the problem of development of mathematical, geometric and algorithmic support of computer-aided design of cutting tools based on computer simulation of the shaping process of surfaces.

  12. Prospective Turkish Primary Teachers' Views about the Use of Computers in Mathematics Education

    ERIC Educational Resources Information Center

    Dogan, Mustafa

    2012-01-01

    The use of computers and technology in mathematics education affects students' learning, achievements, and affective dimensions. This study explores prospective Turkish primary mathematics teachers' views about the use of computers in mathematics education. The sample comprised of 129 fourth-year prospective primary mathematics teachers from two…

  13. The transformation of aerodynamic stability derivatives by symbolic mathematical computation

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1975-01-01

    The formulation of mathematical models of aeronautical systems for simulation or other purposes, involves the transformation of aerodynamic stability derivatives. It is shown that these derivatives transform like the components of a second order tensor having one index of covariance and one index of contravariance. Moreover, due to the equivalence of covariant and contravariant transformations in orthogonal Cartesian systems of coordinates, the transformations can be treated as doubly covariant or doubly contravariant, if this simplifies the formulation. It is shown that the tensor properties of these derivatives can be used to facilitate their transformation by symbolic mathematical computation, and the use of digital computers equipped with formula manipulation compilers. When the tensor transformations are mechanised in the manner described, man-hours are saved and the errors to which human operators are prone can be avoided.

  14. Research in mathematics and computer science at Argonne

    SciTech Connect

    Pieper, G.W.

    1989-08-01

    This report reviews the research activities in the Mathematics and Computer Science Division at Argonne National Laboratory for the period January 1988 - August 1989. The body of the report gives a brief look at the MCS staff and the research facilities, and discusses various projects carried out in two major areas of research: analytical and numerical methods and advanced computing concepts. Projects funded by non-DOE sources are also discussed, and new technology transfer activities are described. Further information on division staff, visitors, workshops, and seminars is found in the appendices.

  15. War of Ontology Worlds: Mathematics, Computer Code, or Esperanto?

    PubMed Central

    Rzhetsky, Andrey; Evans, James A.

    2011-01-01

    The use of structured knowledge representations—ontologies and terminologies—has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies. PMID:21980276

  16. Talking while Computing in Groups: The Not-so-Private Functions of Computational Private Speech in Mathematical Discussions

    ERIC Educational Resources Information Center

    Zahner, William; Moschkovich, Judit

    2010-01-01

    Students often voice computations during group discussions of mathematics problems. Yet, this type of private speech has received little attention from mathematics educators or researchers. In this article, we use excerpts from middle school students' group mathematical discussions to illustrate and describe "computational private speech." We…

  17. [AERA. Dream machines and computing practices at the Mathematical Center].

    PubMed

    Alberts, Gerard; De Beer, Huub T

    2008-01-01

    Dream machines may be just as effective as the ones materialised. Their symbolic thrust can be quite powerful. The Amsterdam 'Mathematisch Centrum' (Mathematical Center), founded February 11, 1946, created a Computing Department in an effort to realise its goal of serving society. When Aad van Wijngaarden was appointed as head of the Computing Department, however, he claimed space for scientific research and computer construction, next to computing as a service. Still, the computing service following the five stage style of Hartree's numerical analysis remained a dominant characteristic of the work of the Computing Department. The high level of ambition held by Aad van Wijngaarden lead to ever renewed projections of big automatic computers, symbolised by the never-built AERA. Even a machine that was actually constructed, the ARRA which followed A.D. Booth's design of the ARC, never made it into real operation. It did serve Van Wijngaarden to bluff his way into the computer age by midsummer 1952. Not until January 1954 did the computing department have a working stored program computer, which for reasons of policy went under the same name: ARRA. After just one other machine, the ARMAC, had been produced, a separate company, Electrologica, was set up for the manufacture of computers, which produced the rather successful X1 computer. The combination of ambition and absence of a working machine lead to a high level of work on programming, way beyond the usual ideas of libraries of subroutines. Edsger W. Dijkstra in particular led the way to an emphasis on the duties of the programmer within the pattern of numerical analysis. Programs generating programs, known elsewhere as autocoding systems, were at the 'Mathematisch Centrum' called 'superprograms'. Practical examples were usually called a 'complex', in Dutch, where in English one might say 'system'. Historically, this is where software begins. Dekker's matrix complex, Dijkstra's interrupt system, Dijkstra and

  18. A Computational and Mathematical Model for Device Induced Thrombosis

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James

    2015-11-01

    Based on the Sorenson's model of thrombus formation, a new mathematical model describing the process of thrombus growth is developed. In this model the blood is treated as a Newtonian fluid, and the transport and reactions of the chemical and biological species are modeled using CRD (convection-reaction-diffusion) equations. A computational fluid dynamic (CFD) solver for the mathematical model is developed using the libraries of OpenFOAM. Applying the CFD solver, several representative benchmark problems are studied: rapid thrombus growth in vivo by injecting Adenosine diphosphate (ADP) using iontophoretic method and thrombus growth in rectangular microchannel with a crevice which usually appears as a joint between components of devices and often becomes nidus of thrombosis. Very good agreements between the numerical and the experimental results validate the model and indicate its potential to study a host of complex and practical problems in the future, such as thrombosis in blood pumps and artificial lungs.

  19. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  20. The Relationship between Computational Fluency and Student Success in General Studies Mathematics

    ERIC Educational Resources Information Center

    Hegeman, Jennifer; Waters, Gavin

    2012-01-01

    Many developmental mathematics programs emphasize computational fluency with the assumption that this is a necessary contributor to student success in general studies mathematics. In an effort to determine which skills are most essential, scores on a computational fluency test were correlated with student success in general studies mathematics at…

  1. A computational approach to developing mathematical models of polyploid meiosis.

    PubMed

    Rehmsmeier, Marc

    2013-04-01

    Mathematical models of meiosis that relate offspring to parental genotypes through parameters such as meiotic recombination frequency have been difficult to develop for polyploids. Existing models have limitations with respect to their analytic potential, their compatibility with insights into mechanistic aspects of meiosis, and their treatment of model parameters in terms of parameter dependencies. In this article I put forward a computational approach to the probabilistic modeling of meiosis. A computer program enumerates all possible paths through the phases of replication, pairing, recombination, and segregation, while keeping track of the probabilities of the paths according to the various parameters involved. Probabilities for classes of genotypes or phenotypes are added, and the resulting formulas are simplified by the symbolic-computation system Mathematica. An example application to autotetraploids results in a model that remedies the limitations of previous models mentioned above. In addition to the immediate implications, the computational approach presented here can be expected to be useful through opening avenues for modeling a host of processes, including meiosis in higher-order ploidies. PMID:23335332

  2. High-Precision Computation: Mathematical Physics and Dynamics

    SciTech Connect

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  3. Changing Pre-Service Mathematics Teachers' Beliefs about Using Computers for Teaching and Learning Mathematics: The Effect of Three Different Models

    ERIC Educational Resources Information Center

    Karatas, Ilhan

    2014-01-01

    This study examines the effect of three different computer integration models on pre-service mathematics teachers' beliefs about using computers in mathematics education. Participants included 104 pre-service mathematics teachers (36 second-year students in the Computer Oriented Model group, 35 fourth-year students in the Integrated Model…

  4. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988.

  5. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1986 through March 31, 1987 is summarized.

  6. Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April, 1986 through September 30, 1986 is summarized.

  7. Using a Computer Algebra System to Facilitate the Learning of Mathematical Induction

    ERIC Educational Resources Information Center

    McAndrew, Alasdair

    2010-01-01

    Mathematical induction is one of the major proof techniques taught to mathematics students in the first years of their undergraduate degrees. In addition to its importance to mathematics, induction is also required for computer science and related disciplines. However, even if the concepts of a proof by induction are taught and understood, many…

  8. Computer Assisted Instruction in Mathematics Can Improve Students' Test Scores: A Study.

    ERIC Educational Resources Information Center

    Brown, Frank

    This research assessed the academic impact of a computer-assisted instructional (CAI) software program to teach mathematics. The research hypothesis states that the use of the CAI program will produce superior academic achievement in mathematics for students who use the program compared to students instructed in mathematics without the program.…

  9. Variables that Affect Math Teacher Candidates' Intentions to Integrate Computer-Assisted Mathematics Education (CAME)

    ERIC Educational Resources Information Center

    Erdogan, Ahmet

    2010-01-01

    Based on Social Cognitive Carier Theory (SCCT) (Lent, Brown, & Hackett, 1994, 2002), this study tested the effects of mathematics teacher candidates' self-efficacy in, outcome expectations from, and interest in CAME on their intentions to integrate Computer-Assisted Mathematics Education (CAME). While mathematics teacher candidates' outcome…

  10. Reasoning with Computer Code: a new Mathematical Logic

    NASA Astrophysics Data System (ADS)

    Pissanetzky, Sergio

    2013-01-01

    A logic is a mathematical model of knowledge used to study how we reason, how we describe the world, and how we infer the conclusions that determine our behavior. The logic presented here is natural. It has been experimentally observed, not designed. It represents knowledge as a causal set, includes a new type of inference based on the minimization of an action functional, and generates its own semantics, making it unnecessary to prescribe one. This logic is suitable for high-level reasoning with computer code, including tasks such as self-programming, objectoriented analysis, refactoring, systems integration, code reuse, and automated programming from sensor-acquired data. A strong theoretical foundation exists for the new logic. The inference derives laws of conservation from the permutation symmetry of the causal set, and calculates the corresponding conserved quantities. The association between symmetries and conservation laws is a fundamental and well-known law of nature and a general principle in modern theoretical Physics. The conserved quantities take the form of a nested hierarchy of invariant partitions of the given set. The logic associates elements of the set and binds them together to form the levels of the hierarchy. It is conjectured that the hierarchy corresponds to the invariant representations that the brain is known to generate. The hierarchies also represent fully object-oriented, self-generated code, that can be directly compiled and executed (when a compiler becomes available), or translated to a suitable programming language. The approach is constructivist because all entities are constructed bottom-up, with the fundamental principles of nature being at the bottom, and their existence is proved by construction. The new logic is mathematically introduced and later discussed in the context of transformations of algorithms and computer programs. We discuss what a full self-programming capability would really mean. We argue that self

  11. Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science

    ERIC Educational Resources Information Center

    Macinko Kovac, Maja; Eret, Lidija

    2012-01-01

    This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…

  12. Effectiveness of Computer-Assisted Mathematics Education (CAME) over Academic Achievement: A Meta-Analysis Study

    ERIC Educational Resources Information Center

    Demir, Seda; Basol, Gülsah

    2014-01-01

    The aim of the current study is to determine the overall effects of Computer-Assisted Mathematics Education (CAME) on academic achievement. After an extensive review of the literature, studies using Turkish samples and observing the effects of Computer-Assisted Education (CAE) on mathematics achievement were examined. As a result of this…

  13. Students' Activity in Computer-Supported Collaborative Problem Solving in Mathematics

    ERIC Educational Resources Information Center

    Hurme, Tarja-riitta; Jarvela, Sanna

    2005-01-01

    The purpose of this study was to analyse secondary school students' (N = 16) computer-supported collaborative mathematical problem solving. The problem addressed in the study was: What kinds of metacognitive processes appear during computer-supported collaborative learning in mathematics? Another aim of the study was to consider the applicability…

  14. Examining Student Opinions on Computer Use Based on the Learning Styles in Mathematics Education

    ERIC Educational Resources Information Center

    Ozgen, Kemal; Bindak, Recep

    2012-01-01

    The purpose of this study is to identify the opinions of high school students, who have different learning styles, related to computer use in mathematics education. High school students' opinions on computer use in mathematics education were collected with both qualitative and quantitative approaches in the study conducted with a survey model. For…

  15. Evaluation of Computer-Assisted Instruction in Elementary Mathematics for Hearing-Impaired Students.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A sample of approximately 385 hearing-impaired elementary and secondary school students whose mathematical achievement ranged from second to sixth grades were examined to determine the effectiveness of a computer assisted elementary mathematics program on the acquisition of computational skills. The students selected were from a population of over…

  16. A Functional Analytic Approach To Computer-Interactive Mathematics

    PubMed Central

    2005-01-01

    Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed. PMID:15898471

  17. Mathematical and computational models of drug transport in tumours

    PubMed Central

    Groh, C. M.; Hubbard, M. E.; Jones, P. F.; Loadman, P. M.; Periasamy, N.; Sleeman, B. D.; Smye, S. W.; Twelves, C. J.; Phillips, R. M.

    2014-01-01

    The ability to predict how far a drug will penetrate into the tumour microenvironment within its pharmacokinetic (PK) lifespan would provide valuable information about therapeutic response. As the PK profile is directly related to the route and schedule of drug administration, an in silico tool that can predict the drug administration schedule that results in optimal drug delivery to tumours would streamline clinical trial design. This paper investigates the application of mathematical and computational modelling techniques to help improve our understanding of the fundamental mechanisms underlying drug delivery, and compares the performance of a simple model with more complex approaches. Three models of drug transport are developed, all based on the same drug binding model and parametrized by bespoke in vitro experiments. Their predictions, compared for a ‘tumour cord’ geometry, are qualitatively and quantitatively similar. We assess the effect of varying the PK profile of the supplied drug, and the binding affinity of the drug to tumour cells, on the concentration of drug reaching cells and the accumulated exposure of cells to drug at arbitrary distances from a supplying blood vessel. This is a contribution towards developing a useful drug transport modelling tool for informing strategies for the treatment of tumour cells which are ‘pharmacokinetically resistant’ to chemotherapeutic strategies. PMID:24621814

  18. Computational Technique for Teaching Mathematics (CTTM): Visualizing the Polynomial's Resultant

    ERIC Educational Resources Information Center

    Alves, Francisco Regis Vieira

    2015-01-01

    We find several applications of the Dynamic System Geogebra--DSG related predominantly to the basic mathematical concepts at the context of the learning and teaching in Brasil. However, all these works were developed in the basic level of Mathematics. On the other hand, we discuss and explore, with DSG's help, some applications of the polynomial's…

  19. Applied Mathematics via Student-Created Computer Graphics.

    ERIC Educational Resources Information Center

    Sloyer, Clifford; Smith, Lynn H.

    1983-01-01

    Describes topics and applications of five lessons dealing with applied mathematics (solving sequential optimization problems, queuing theory, graph theory, glyphs (pictorial techniques for displaying relationships among variables, medical mathematics). Design and evaluation of these materials which employ interactive graphics are also described.…

  20. Using Mental Computation Training to Improve Complex Mathematical Performance

    ERIC Educational Resources Information Center

    Liu, Allison S.; Kallai, Arava Y.; Schunn, Christian D.; Fiez, Julie A.

    2015-01-01

    Mathematical fluency is important for academic and mathematical success. Fluency training programs have typically focused on fostering retrieval, which leads to math performance that does not reliably transfer to non-trained problems. More recent studies have focused on training number understanding and representational precision, but few have…

  1. Discrete Mathematics in the Schools. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 36.

    ERIC Educational Resources Information Center

    Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.

    This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major effort now underway to…

  2. Future Directions in Computational Mathematics, Algorithms, and Scientific Software. Report of the Panel.

    ERIC Educational Resources Information Center

    Society for Industrial and Applied Mathematics, Philadelphia, PA.

    The critical role of computers in scientific advancement is described in this panel report. With the growing range and complexity of problems that must be solved and with demands of new generations of computers and computer architecture, the importance of computational mathematics is increasing. Multidisciplinary teams are needed; these are found…

  3. Roles of Computer Technology in the Mathematics Education of the Gifted.

    ERIC Educational Resources Information Center

    Grandgenett, Neal

    1991-01-01

    This article reviews technological advances in educational computer use and discusses applications for computers as tools, tutors, and tutees in mathematics education of gifted students. Computer-assisted instruction, artificial intelligence, multimedia, numeric processing, computer-aided design, LOGO, robotics, and hypercard software packages are…

  4. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexander; Khramushin, Vasily

    2016-02-01

    The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

  5. The Uses of Calculators and Computers in Mathematics Classes in Twenty Countries: Summary Report. Second International Mathematics Study.

    ERIC Educational Resources Information Center

    Jaji, Gail

    This document summarizes the findings of the Second International Mathematics Study relative to calculator and computer usage by students in 20 countries. Two target populations were identified. The data on these two populations were provided by three basic questionnaires: (1) a school questionnaire; (2) a teacher questionnaire; and (3) a student…

  6. The Use of Calculators and Computers in Mathematics Classes in Twenty Countries: A Source Document. Second International Mathematics Study.

    ERIC Educational Resources Information Center

    Jaji, Gail

    Presents a detailed discussion of the data collected on calculator and computer use in schools in 20 countries. The document includes discussion of: (1) school policy on calculator use; (2) description of populations A (8th grade students) and B (12th grade students) in the United States; (3) uses of calculators in subjects other than mathematics;…

  7. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    SciTech Connect

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  8. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    SciTech Connect

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  9. Computer Simulations: Inelegant Mathematics and Worse Social Science?

    ERIC Educational Resources Information Center

    Alker, Hayward R., Jr.

    1974-01-01

    Achievements, limitations, and difficulties of social science simulation efforts are discussed with particular reference to three examples. The pedagogical use of complementary developmental, philosophical, mathematical, and scientific approaches is advocated to minimize potential abuses of social simulation research. (LS)

  10. Electrical Circuits in the Mathematics/Computer Science Classroom.

    ERIC Educational Resources Information Center

    McMillan, Robert D.

    1988-01-01

    Shows how, with little or no electrical background, students can apply Boolean algebra concepts to design and build integrated electrical circuits in the classroom that will reinforce important ideas in mathematics. (PK)

  11. An Introduction to This Special Issue: Mathematical Learning in Computer Microworlds.

    ERIC Educational Resources Information Center

    Steffe, Leslie P.

    1994-01-01

    Introduces the idea of using computer microworlds--interactive software for exploration of specific concepts--for mathematics education, the theme of this issue's articles. Discusses their development and the advantages of their use. Suggests that they can be successfully used for interactive teaching or for interpreting mathematics textbooks,…

  12. Learning Achievement in Solving Word-Based Mathematical Questions through a Computer-Assisted Learning System

    ERIC Educational Resources Information Center

    Huang, Tzu-Hua; Liu, Yuan-Chen; Chang, Hsiu-Chen

    2012-01-01

    This study developed a computer-assisted mathematical problem-solving system in the form of a network instruction website to help low-achieving second- and third-graders in mathematics with word-based addition and subtraction questions in Taiwan. According to Polya's problem-solving model, the system is designed to guide these low-achievers…

  13. Lecturers' Perspectives on the Use of a Mathematics-Based Computer-Aided Assessment System

    ERIC Educational Resources Information Center

    Broughton, Stephen J.; Robinson, Carol L.; Hernandez-Martinez, Paul

    2013-01-01

    Computer-aided assessment (CAA) has been used at a university with one of the largest mathematics and engineering undergraduate cohorts in the UK for more than ten years. Lecturers teaching mathematics to first year students were asked about their current use of CAA in a questionnaire and in interviews. This article presents the issues that these…

  14. Opinions of Mathematics Teacher Candidates towards Applying 7E Instructional Model on Computer Aided Instruction Environments

    ERIC Educational Resources Information Center

    Yenilmez, Kursat; Ersoy, Mehmet

    2008-01-01

    The purpose of this study was to determine opinions of mathematics teacher candidates towards applying 7E instructional model on computer aided instruction environments. The descriptive case study model was used in this study. The sample of the study consists of 52 mathematics teacher candidates which were selected randomly from Eskisehir…

  15. Research in progress in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.

  16. Learning Mathematics by Designing, Programming, and Investigating with Interactive, Dynamic Computer-Based Objects

    ERIC Educational Resources Information Center

    Marshall, Neil; Buteau, Chantal

    2014-01-01

    As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…

  17. Secondary School Students' Attitudes towards Mathematics Computer--Assisted Instruction Environment in Kenya

    ERIC Educational Resources Information Center

    Mwei, Philip K.; Wando, Dave; Too, Jackson K.

    2012-01-01

    This paper reports the results of research conducted in six classes (Form IV) with 205 students with a sample of 94 respondents. Data represent students' statements that describe (a) the role of Mathematics teachers in a computer-assisted instruction (CAI) environment and (b) effectiveness of CAI in Mathematics instruction. The results indicated…

  18. Theory-Based Interactive Mathematics Instruction: Development and Validation of Computer-Video Modules.

    ERIC Educational Resources Information Center

    Henderson, Ronald W.; And Others

    Theory-based prototype computer-video instructional modules were developed to serve as an instructional supplement for students experiencing difficulty in learning mathematics, with special consideration given to students underrepresented in mathematics (particularly women and minorities). Modules focused on concepts and operations for factors,…

  19. A Center for Academic Excellence in Mathematics, Science, and Computer Learning. Final Report.

    ERIC Educational Resources Information Center

    McIntyre, Patrick J.; Walton, Karen Doyle

    This is a report of a model resource center for science and mathematics teachers which is committed to developing excellence in mathematics, science, and computer learning. Long-range goals of the center include: providing inservice workshops to 500 or more teachers per year on campus; an equivalent amount of instruction off-campus; to provide…

  20. Examining the Use of Computer Algebra Systems in University-Level Mathematics Teaching

    ERIC Educational Resources Information Center

    Lavicza, Zsolt

    2009-01-01

    The use of Computer Algebra Systems (CAS) is becoming increasingly important and widespread in mathematics research and teaching. In this paper, I will report on a questionnaire study enquiring about mathematicians' use of CAS in mathematics teaching in three countries; the United States, the United Kingdom, and Hungary. Based on the responses…

  1. A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics

    ERIC Educational Resources Information Center

    Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.

    2005-01-01

    This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…

  2. Improving Mathematics Learning of Kindergarten Students through Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Foster, Matthew E.; Anthony, Jason L.; Clements, Doug H.; Sarama, Julie; Williams, Jeffrey M.

    2016-01-01

    This study evaluated the effects of a mathematics software program, the Building Blocks software suite, on young children's mathematics performance. Participants included 247 Kindergartners from 37 classrooms in 9 schools located in low-income communities. Children within classrooms were randomly assigned to receive 21 weeks of computer-assisted…

  3. Getting from x to y without Crashing: Computer Syntax in Mathematics Education

    ERIC Educational Resources Information Center

    Jeffrey, David J.

    2010-01-01

    When we use technology to teach mathematics, we hope to focus on the mathematics, restricting the computer software systems to providing support for our pedagogy. It is a matter of common experience, however, that students can become distracted or frustrated by the quirks of the particular software system being used. Here, experience using the…

  4. Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.; Naismith, Laura

    2008-01-01

    We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…

  5. THE COMPUTER AS AN AID IN TEACHING MATHEMATICS, AN INSTRUCTIONAL BULLETIN, GRADES 7-10.

    ERIC Educational Resources Information Center

    LERNER, SEYMOUR

    THIS GUIDE EXPLAINS HOW A COMPUTER MIGHT BE USED IN MATHEMATICS EDUCATION IN CONJUNCTION WITH THE REGULAR COURSE OF STUDY. STARTING WITH THE PREMISE THAT A CHILD WHO LEARNS TO OPERATE A COMPUTER IS LED BY HIS NEW SELF ESTEEM TOWARD A GREATER INTEREST IN HIS COURSES, THE AUTHORS STATE THAT COMPUTER EDUCATION WILL ALSO MEET THESE OBJECTIVES--(1)…

  6. Students' Mathematics Word Problem-Solving Achievement in a Computer-Based Story

    ERIC Educational Resources Information Center

    Gunbas, N.

    2015-01-01

    The purpose of this study was to investigate the effect of a computer-based story, which was designed in anchored instruction framework, on sixth-grade students' mathematics word problem-solving achievement. Problems were embedded in a story presented on a computer as computer story, and then compared with the paper-based version of the same…

  7. Physics, Computer Science and Mathematics Division. Annual report, 1 January-31 December 1979

    SciTech Connect

    Lepore, J.V.

    1980-09-01

    This annual report describes the research work carried out by the Physics, Computer Science and Mathematics Division during 1979. The major research effort of the Division remained High Energy Particle Physics with emphasis on preparing for experiments to be carried out at PEP. The largest effort in this field was for development and construction of the Time Projection Chamber, a powerful new particle detector. This work took a large fraction of the effort of the physics staff of the Division together with the equivalent of more than a hundred staff members in the Engineering Departments and shops. Research in the Computer Science and Mathematics Department of the Division (CSAM) has been rapidly expanding during the last few years. Cross fertilization of ideas and talents resulting from the diversity of effort in the Physics, Computer Science and Mathematics Division contributed to the software design for the Time Projection Chamber, made by the Computer Science and Applied Mathematics Department.

  8. The Role of Language Comprehension and Computation in Mathematical Word Problem Solving among Students with Different Levels of Computation Achievement

    ERIC Educational Resources Information Center

    Guerriero, Tara Stringer

    2010-01-01

    The purpose of this study was to examine how selected linguistic components (including consistency of relational terms and extraneous information) impact performance at each stage of mathematical word problem solving (comprehension, equation construction, and computation accuracy) among students with different levels of computation achievement. …

  9. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  10. Trigonometry--Mathematical Curricular Areas and Instructional Computing.

    ERIC Educational Resources Information Center

    Frandsen, Henry

    1981-01-01

    The computer has enormous potential for enhancing the secondary trigonometry curriculum. Areas that can be improved through use of the computer include: solutions of triangles, inductive investigations of functions, graphs of functions, and solution of trigonometric identities. (JN)

  11. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    SciTech Connect

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  12. Using the Tower of Hanoi puzzle to infuse your mathematics classroom with computer science concepts

    NASA Astrophysics Data System (ADS)

    Marzocchi, Alison S.

    2016-07-01

    This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi puzzle. These concepts include, but are not limited to, conditionals, iteration, and recursion. Lessons, such as the one proposed in this article, are easily implementable in mathematics classrooms and extracurricular programmes as they are good candidates for 'drop in' lessons that do not need to fit into any particular place in the typical curriculum sequence. As an example for readers, the author describes how she used the puzzle in her own Number Sense and Logic course during the federally funded Upward Bound Math/Science summer programme for college-intending low-income high school students. The article explains each computer science term with real-life and mathematical examples, applies each term to the Tower of Hanoi puzzle solution, and describes how students connected the terms to their own solutions of the puzzle. It is timely and important to expose mathematics students to computer science concepts. Given the rate at which technology is currently advancing, and our increased dependence on technology in our daily lives, it has become more important than ever for children to be exposed to computer science. Yet, despite the importance of exposing today's children to computer science, many children are not given adequate opportunity to learn computer science in schools. In the United States, for example, most students finish high school without ever taking a computing course. Mathematics lessons, such as the one described in this article, can help to make computer science more accessible to students who may have otherwise had little opportunity to be introduced to these increasingly important concepts.

  13. A Computer Based Education (CBE) Program for Middle School Mathematics Intervention

    ERIC Educational Resources Information Center

    Gulley, Bill

    2009-01-01

    A Computer Based Education (CBE) program for intervention mathematics was developed, used, and modified over a period of three years in a computer lab at an Arizona Title I middle school. The program is described along with a rationale for the need, design, and use of such a program. Data was collected in the third year and results of the program…

  14. Effects of Computer Graphics Types and Epistemological Beliefs on Students' Learning of Mathematical Concepts.

    ERIC Educational Resources Information Center

    Lin, Chi-Hui

    2002-01-01

    Describes a study that determined the implications of computer graphics types and epistemological beliefs with regard to the design of computer-based mathematical concept learning with elementary school students in Taiwan. Discusses the factor structure of the epistemological belief questionnaire, student performance, and students' attitudes…

  15. Computer-Aided Instruction in Mathematics Remediation at a Community College

    ERIC Educational Resources Information Center

    Brocato, Mary Anne

    2009-01-01

    Over the past ten years, traditional lecture style delivery has given way to computer-aided instruction (CAI) in post-secondary education. Developmental mathematics courses have been one of the most widely used applications. At a small community college in the Mississippi Delta, a computer assisted version of Intermediate Algebra was implemented.…

  16. Projects Using a Computer Algebra System in First-Year Undergraduate Mathematics

    ERIC Educational Resources Information Center

    Rosenzweig, Martin

    2007-01-01

    This paper illustrates the use of computer-based projects in two one-semester first-year undergraduate mathematics classes. Developed over a period of years, the approach is one in which the classes are organised into work-groups, with computer-based projects being undertaken periodically to illustrate the class material. These projects are…

  17. Adding It Up: Is Computer Use Associated with Higher Achievement in Public Elementary Mathematics Classrooms?

    ERIC Educational Resources Information Center

    Kao, Linda Lee

    2009-01-01

    Despite support for technology in schools, there is little evidence indicating whether using computers in public elementary mathematics classrooms is associated with improved outcomes for students. This exploratory study examined data from the Early Childhood Longitudinal Study, investigating whether students' frequency of computer use was related…

  18. Using Mathematics to Bridge the Gap between Biology and Computer Science

    ERIC Educational Resources Information Center

    Hammerman, Natalie; Tolvo, Anthony; Goldberg, Robert

    2004-01-01

    The rapid rate of expansion of the disciplines of biotechnology, genomics, and bioinformatics emphasizes the increased interdependency between computer science and biology, with mathematics serving as the bridge between these disciplines. This paper demonstrates this inter-relationship within the context of a computational model for a biological…

  19. A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)

    ERIC Educational Resources Information Center

    Bradford, Russell; Davenport, James H.; Sangwin, Chris

    2010-01-01

    A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…

  20. Computational Fluency Performance Profile of High School Students with Mathematics Disabilities

    ERIC Educational Resources Information Center

    Calhoon, Mary Beth; Emerson, Robert Wall; Flores, Margaret; Houchins, David E.

    2007-01-01

    The purpose of this descriptive study was to develop a computational fluency performance profile of 224 high school (Grades 9-12) students with mathematics disabilities (MD). Computational fluency performance was examined by grade-level expectancy (Grades 2-6) and skill area (whole numbers: addition, subtraction, multiplication, division;…

  1. Physics, Computer Science and Mathematics Division. Annual report, January 1-December 31, 1980

    SciTech Connect

    Birge, R.W.

    1981-12-01

    Research in the physics, computer science, and mathematics division is described for the year 1980. While the division's major effort remains in high energy particle physics, there is a continually growing program in computer science and applied mathematics. Experimental programs are reported in e/sup +/e/sup -/ annihilation, muon and neutrino reactions at FNAL, search for effects of a right-handed gauge boson, limits on neutrino oscillations from muon-decay neutrinos, strong interaction experiments at FNAL, strong interaction experiments at BNL, particle data center, Barrelet moment analysis of ..pi..N scattering data, astrophysics and astronomy, earth sciences, and instrument development and engineering for high energy physics. In theoretical physics research, studies included particle physics and accelerator physics. Computer science and mathematics research included analytical and numerical methods, information analysis techniques, advanced computer concepts, and environmental and epidemiological studies. (GHT)

  2. Why Mathematical Computer Simulations Are the New Laboratory for Scientists.

    PubMed

    Buscema, Massimo

    2015-01-01

    In this paper, we introduce a new powerful scientific paradigm to understand natural and cultural processes. This new paradigm is based on two fundamental keywords: Data, as representative sample of the process we need to analyze, and Artificial Adaptive Systems, as a new mathematical technique able to make explicit the nonlinearity embedded in the process. We will try to make explicit these concepts analyzing how the distribution of events into the physical space may reveal the hidden logic connecting these events together. PMID:26361911

  3. Going Around On Circles: Mathematics and Computer Art. Part 2.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Gordon, Florence S.

    1984-01-01

    Discusses properties of epicycloids. (The easiest way to picture them is to think of a piece of radioactive bubble gum attached to a wheel which is rolling around the outside of a larger wheel.) Includes a computer program (TRS-80 color computer) that will graph any epicycloid with integer values for the radii. (JN)

  4. Studies in Mathematics, Volume 22. Studies in Computer Science.

    ERIC Educational Resources Information Center

    Pollack, Seymour V., Ed.

    The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The Development of Computer…

  5. Fractal Explorations in Secondary Mathematics, Science, and Computer Science.

    ERIC Educational Resources Information Center

    Egnatoff, William J.

    1991-01-01

    Fractal geometry is introduced through examples of computational exploration of coastlines, self-similar curves, random walks, and population growth. These explorations, which include the construction of algorithms and the subsequent development and application of simple computer programs, lend themselves to self-directed study and advanced…

  6. Prediction of State Mandated Assessment Mathematics Scores from Computer Based Mathematics and Reading Preview Assessments

    ERIC Educational Resources Information Center

    Costa-Guerra, Boris

    2012-01-01

    The study sought to understand whether MAPs computer based assessment of math and language skills using MAPs reading scores can predict student scores on the NMSBA. A key question was whether or not the prediction can be improved by including student language skill scores. The study explored the effectiveness of computer based preview assessments…

  7. Examining Functions in Mathematics and Science Using Computer Interfacing.

    ERIC Educational Resources Information Center

    Walton, Karen Doyle

    1988-01-01

    Introduces microcomputer interfacing as a method for explaining and demonstrating various aspects of the concept of function. Provides three experiments with illustrations and typical computer graphic displays: pendulum motion, pendulum study using two pendulums, and heat absorption and radiation. (YP)

  8. Computer simulation of the mathematical modeling involved in constitutive equation development: Via symbolic computations

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Tan, H. Q.; Dong, X.

    1989-01-01

    Development of new material models for describing the high temperature constitutive behavior of real materials represents an important area of research in engineering disciplines. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved and error prone; thus intelligent application of symbolic systems to facilitate this tedious process can be of significant benefit. A computerized procedure (SDICE) capable of efficiently deriving potential based constitutive models, in analytical form is presented. This package, running under MACSYMA, has the following features: partial differentiation, tensor computations, automatic grouping and labeling of common factors, expression substitution and simplification, back substitution of invariant and tensorial relations and a relational data base. Also limited aspects of invariant theory were incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). Finally not only calculation of flow and/or evolutionary laws were accomplished but also the determination of history independent nonphysical coefficients in terms of physically measurable parameters, e.g., Young's modulus, was achieved. The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet predefined order and simplify expressions so as to limit expression growth. Results are displayed when applicable utilizing index notation.

  9. Improving science and mathematics education with computational modelling in interactive engagement environments

    NASA Astrophysics Data System (ADS)

    Neves, Rui Gomes; Teodoro, Vítor Duarte

    2012-09-01

    A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

  10. Computational Psychiatry: towards a mathematically informed understanding of mental illness

    PubMed Central

    Huys, Quentin J M; Roiser, Jonathan P

    2016-01-01

    Computational Psychiatry aims to describe the relationship between the brain's neurobiology, its environment and mental symptoms in computational terms. In so doing, it may improve psychiatric classification and the diagnosis and treatment of mental illness. It can unite many levels of description in a mechanistic and rigorous fashion, while avoiding biological reductionism and artificial categorisation. We describe how computational models of cognition can infer the current state of the environment and weigh up future actions, and how these models provide new perspectives on two example disorders, depression and schizophrenia. Reinforcement learning describes how the brain can choose and value courses of actions according to their long-term future value. Some depressive symptoms may result from aberrant valuations, which could arise from prior beliefs about the loss of agency (‘helplessness’), or from an inability to inhibit the mental exploration of aversive events. Predictive coding explains how the brain might perform Bayesian inference about the state of its environment by combining sensory data with prior beliefs, each weighted according to their certainty (or precision). Several cortical abnormalities in schizophrenia might reduce precision at higher levels of the inferential hierarchy, biasing inference towards sensory data and away from prior beliefs. We discuss whether striatal hyperdopaminergia might have an adaptive function in this context, and also how reinforcement learning and incentive salience models may shed light on the disorder. Finally, we review some of Computational Psychiatry's applications to neurological disorders, such as Parkinson's disease, and some pitfalls to avoid when applying its methods. PMID:26157034

  11. Introducing Computer Algebra to School Teachers of Mathematics

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2007-01-01

    Since the last decade, the use of computer algebra systems at the Hong Kong school level is still very limited. Among various reasons behind, the lack of exposure of this kind of software to local school teachers should be taken into account. In this article, we describe how to introduce MAPLE in a BEd module of a local teacher-training programme.…

  12. A Functional Analytic Approach to Computer-Interactive Mathematics

    ERIC Educational Resources Information Center

    Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M.; Ninness, Sharon K.

    2005-01-01

    Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on…

  13. Motivating Computer Engineering Freshmen through Mathematical and Logical Puzzles

    ERIC Educational Resources Information Center

    Parhami, B.

    2009-01-01

    As in many other fields of science and technology, college students in computer engineering do not come into full contact with the key ideas and challenges of their chosen discipline until the third year of their studies. This situation poses a problem in terms of keeping the students motivated as they labor through their foundational, basic…

  14. Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution

    ERIC Educational Resources Information Center

    Subramanian, Venkat R.

    2006-01-01

    High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…

  15. Computational Psychiatry: towards a mathematically informed understanding of mental illness.

    PubMed

    Adams, Rick A; Huys, Quentin J M; Roiser, Jonathan P

    2016-01-01

    Computational Psychiatry aims to describe the relationship between the brain's neurobiology, its environment and mental symptoms in computational terms. In so doing, it may improve psychiatric classification and the diagnosis and treatment of mental illness. It can unite many levels of description in a mechanistic and rigorous fashion, while avoiding biological reductionism and artificial categorisation. We describe how computational models of cognition can infer the current state of the environment and weigh up future actions, and how these models provide new perspectives on two example disorders, depression and schizophrenia. Reinforcement learning describes how the brain can choose and value courses of actions according to their long-term future value. Some depressive symptoms may result from aberrant valuations, which could arise from prior beliefs about the loss of agency ('helplessness'), or from an inability to inhibit the mental exploration of aversive events. Predictive coding explains how the brain might perform Bayesian inference about the state of its environment by combining sensory data with prior beliefs, each weighted according to their certainty (or precision). Several cortical abnormalities in schizophrenia might reduce precision at higher levels of the inferential hierarchy, biasing inference towards sensory data and away from prior beliefs. We discuss whether striatal hyperdopaminergia might have an adaptive function in this context, and also how reinforcement learning and incentive salience models may shed light on the disorder. Finally, we review some of Computational Psychiatry's applications to neurological disorders, such as Parkinson's disease, and some pitfalls to avoid when applying its methods. PMID:26157034

  16. Effects of Physical Activity on Mathematical Computation among Young Children.

    ERIC Educational Resources Information Center

    Gabbard, Carl; Barton, Joel

    1979-01-01

    When 106 second-grade children were tested for simple computation ability in various conditions of induced physical exertion (no exertion v 20, 30, 40, or 50 minutes of activity), significantly higher scores were observed after the 50-minute treatment, and no significant differences were noted between male and female scores. (Author/RL)

  17. Computer-Integrated Instruction Inservice Notebook: Secondary School Mathematics.

    ERIC Educational Resources Information Center

    Franklin, Sharon, Ed.; Strudler, Neal, Ed.

    The purpose of this notebook is to assist educators who are designing and implementing inservice education programs to facilitate the effective use of computer integrated instruction (CII) in schools. The book is divided into the following five sections: (1) Effective Inservice (a brief summary of inservice literature focused on inservice…

  18. Research in mathematics and computer science, March 1, 1991--September 30, 1992

    SciTech Connect

    Pieper, G.W.

    1992-10-01

    This report discusses the following topics in mathematics and computer science at Argonne National Laboratory: Harnessing the Power; Modeling Piezoelectric Crystals; A Two-Way Street; The Challenge Is On; A True Molecular Engineering Capability; CHAMMPions Attack Climate Issues; Studying Vortex Dynamics; Studying Vortex Structure; Providing Reliable and Fast Derivatives; Automating Reasoning for Scientific Problem Solving; Optimization and Mathematical Programming; Scalable Algorithms for Linear Algebra; Reliable Core Software; Computing Phylogenetic Trees; Managing Life-Critical Systems; Interacting with Data through Visualization; New Tools for New Technologies.

  19. Mathematical model partitioning and packing for parallel computer calculation

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.; Milner, Edward J.

    1986-01-01

    This paper deals with the development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system. The identification of computational parallelism within the model equations is discussed. A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. Next, an algorithm which packs the equations into a minimum number of processors is described. The results of applying the packing algorithm to a turboshaft engine model are presented.

  20. An Invitation to the Mathematics of Topological Quantum Computation

    NASA Astrophysics Data System (ADS)

    Rowell, E. C.

    2016-03-01

    Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials.

  1. The Influence of Computers and Informatics on Mathematics and Its Teaching. Science and Technology Education Series, 44.

    ERIC Educational Resources Information Center

    Cornu, Bernard, Ed.; Ralston, Anthony, Ed.

    In 1985 the International Commission on Mathematical Instruction (ICMI) published the first edition of a book of studies on the topic of the influence of computers on mathematics and the teaching of mathematics. This document is an updated version of that book and includes five articles from the 1985 ICMI conference at Strasbourg, France; reports…

  2. A Longitudinal Evaluation of Mathematical Computational Abilities of New Hampshire's Eighth Graders: 1963-1967, Final Report.

    ERIC Educational Resources Information Center

    Austin, Gilbert R.

    The purpose of this study was to evaluate the effects of using different mathematics textbooks on the mathematical computational ability of students as a method of assessing the effectiveness of different mathematics instruction. This study resulted from a 1963 report which discussed the results of the New Hampshire Statewide Eighth Grade Testing…

  3. Symbolic Computation in a Constructive Approach to Methods of Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Lopez, Robert

    2001-10-01

    Mastery of the discipline of physics requires not only expertise and intuition in science, but also a measure of competence in mathematical understanding and technique. In fact, courses in methods of mathematical physics are important stepping-stones to progress in physics education. In this talk, we shall illustrate the role that a computer algebra system can play in a more efficient and effective mastery of mathematical techniques needed in the physics curriculum. To do this, we will present a series of examples taken from the undergraduate math curriculum at RHIT where the author has just published Advanced Engineering Mathematics, a new applied math book based on the availability of a computer algebra system. We will discuss the solution of boundary value problems, including the wave equation on the finite string, the heat equation in a finite rod and cylinder, and the potential equation in rectangles, disks, and spheres. We will also discuss coupled oscillators and normal modes. Finally, we will discuss the calculus of variations and Hamilton's principle, setting up and solving the single and double plane pendulum problems, and the spherical pendulum problem. Throughout, we will show how the use of modern computer tools makes so much more mathematics available to the student, and makes it so much easier to obtain physical insights.

  4. Group theory and biomolecular conformation: I. Mathematical and computational models

    PubMed Central

    Chirikjian, Gregory S

    2010-01-01

    Biological macromolecules, and the complexes that they form, can be described in a variety of ways ranging from quantum mechanical and atomic chemical models, to coarser grained models of secondary structure and domains, to continuum models. At each of these levels, group theory can be used to describe both geometric symmetries and conformational motion. In this survey, a detailed account is provided of how group theory has been applied across computational structural biology to analyze the conformational shape and motion of macromolecules and complexes. PMID:20827378

  5. Effective Computer-Aided Assessment of Mathematics; Principles, Practice and Results

    ERIC Educational Resources Information Center

    Greenhow, Martin

    2015-01-01

    This article outlines some key issues for writing effective computer-aided assessment (CAA) questions in subjects with substantial mathematical or statistical content, especially the importance of control of random parameters and the encoding of wrong methods of solution (mal-rules) commonly used by students. The pros and cons of using CAA and…

  6. Design and Implementation of an Integrated Computer Working Environment for Doing Mathematics and Science

    ERIC Educational Resources Information Center

    Heck, Andre; Kedzierska, Ewa; Ellermeijer, Ton

    2009-01-01

    In this paper we report on the sustained research and development work at the AMSTEL Institute of the University of Amsterdam to improve mathematics and science education at primary and secondary school level, which has lead amongst other things to the development of the integrated computer working environment Coach 6. This environment consists of…

  7. Teachers' Use of Computational Tools to Construct and Explore Dynamic Mathematical Models

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron

    2011-01-01

    To what extent does the use of computational tools offer teachers the possibility of constructing dynamic models to identify and explore diverse mathematical relations? What ways of reasoning or thinking about the problems emerge during the model construction process that involves the use of the tools? These research questions guided the…

  8. Pedagogical Factors Affecting Integration of Computers in Mathematics Instruction in Secondary Schools in Kenya

    ERIC Educational Resources Information Center

    Wanjala, Martin M. S.; Aurah, Catherine M.; Symon, Koros C.

    2015-01-01

    The paper reports findings of a study which sought to examine the pedagogical factors that affect the integration of computers in mathematics instruction as perceived by teachers in secondary schools in Kenya. This study was based on the Technology Acceptance Model (TAM). A descriptive survey design was used for this study. Stratified and simple…

  9. Beyond Cognitive Increase: Investigating the Influence of Computer Programming on Perception and Application of Mathematical Skills

    ERIC Educational Resources Information Center

    Rich, Peter J.; Bly, Neil; Leatham, Keith R.

    2014-01-01

    This study aimed to provide first-hand accounts of the perceived long-term effects of learning computer programming on a learner's approach to mathematics. These phenomenological accounts, garnered from individual interviews of seven different programmers, illustrate four specific areas of interest: (1) programming provides context for many…

  10. Introducing Laptops to Children: An Examination of Ubiquitous Computing in Grade 3 Reading, Language, and Mathematics

    ERIC Educational Resources Information Center

    Bernard, Robert M.; Bethel, Edward Clement; Abrami, Philip C.; Wade, C. Anne

    2007-01-01

    This study examines the achievement outcomes accompanying the implementation of a Grade 3 laptop or so-­called "ubiquitous computing" program in a Quebec school district. CAT­3 reading, language, and mathematics batteries were administered at the end of Grade 2 and again at the end of Grade 3, after the first year of computer…

  11. A Meta-Analysis of the Effects of Computer Technology on School Students' Mathematics Learning

    ERIC Educational Resources Information Center

    Li, Qing; Ma, Xin

    2010-01-01

    This study examines the impact of computer technology (CT) on mathematics education in K-12 classrooms through a systematic review of existing literature. A meta-analysis of 85 independent effect sizes extracted from 46 primary studies involving a total of 36,793 learners indicated statistically significant positive effects of CT on mathematics…

  12. A Relational Frame and Artificial Neural Network Approach to Computer-Interactive Mathematics

    ERIC Educational Resources Information Center

    Ninness, Chris; Rumph, Robin; McCuller, Glen; Vasquez III, Eleazar; Harrison, Carol; Ford, Angela M.; Capt, Ashley; Ninness, Sharon K.; Bradfield, Anna

    2005-01-01

    Fifteen participants unfamiliar with mathematical operations relative to reflections and vertical and horizontal shifts were exposed to an introductory lecture regarding the fundamentals of the rectangular coordinate system and the relationship between formulas and their graphed analogues. The lecture was followed immediately by computer-assisted…

  13. Science-Technology Coupling: The Case of Mathematical Logic and Computer Science.

    ERIC Educational Resources Information Center

    Wagner-Dobler, Roland

    1997-01-01

    In the history of science, there have often been periods of sudden rapprochements between pure science and technology-oriented branches of science. Mathematical logic as pure science and computer science as technology-oriented science have experienced such a rapprochement, which is studied in this article in a bibliometric manner. (Author)

  14. Incorporating Partial Credit in Computer-Aided Assessment of Mathematics in Secondary Education

    ERIC Educational Resources Information Center

    Ashton, Helen S.; Beevers, Cliff E.; Korabinski, Athol A.; Youngson, Martin A.

    2006-01-01

    In a mathematical examination on paper, partial credit is normally awarded for an answer that is not correct, but, nevertheless, contains some of the correct working. Assessment on computer normally marks an incorrect answer wrong and awards no marks. This can lead to discrepancies between marks awarded for the same examination given in the two…

  15. The Impact of Computer-Assisted Instruction on Mathematics Achievement of Underachieving Fifth-Grade Students

    ERIC Educational Resources Information Center

    Bruce-Simmons, Christine

    2013-01-01

    This study examined the impact of computer-assisted instruction on the mathematics performance of underachieving fifth-grade students in a rural school district in South Carolina. The instructional technology program ([IF) is South Carolina's response to addressing the needs of its young, struggling math students. The 449 fifth-grade students in…

  16. Transitioning the GED[R] Mathematics Test to Computer with and without Accommodations: A Pilot Project

    ERIC Educational Resources Information Center

    Patterson, Margaret Becker; Higgins, Jennifer; Bozman, Martha; Katz, Michael

    2011-01-01

    We conducted a pilot study to see how the GED Mathematics Test could be administered on computer with embedded accessibility tools. We examined test scores and test-taker experience. Nineteen GED test centers across five states and 216 randomly assigned GED Tests candidates participated in the project. GED candidates completed two GED mathematics…

  17. Mathematics, Science, and Computer Science Evaluation Report 1984-85. OEA Evaluation Report. Final Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn. Office of Educational Assessment.

    This evaluation report of the Staff Developmnent Program in Science, Mathematics, and Computer Science for 1984-85 contains four chapters. Chapter 1 describes program background and objectives, the scope of the evaluation, and evaluation procedures. These procedures included: (1) memoranda announcing programs; (2) project documents; (3) course…

  18. Introducing a Computer Algebra System in Mathematics Education--Empirical Evidence from Germany

    ERIC Educational Resources Information Center

    Schmidt, Karsten; Kohler, Anke; Moldenhauer, Wolfgang

    2009-01-01

    This paper reports on the effects the use of a pocket calculator-based computer algebra system (CAS) has on the performance in mathematics of grade 11 students in Germany. A project started at 8 of about one hundred upper secondary schools in the federal state of Thuringia in 1999; 3 years later the former restrictions on the use of technology in…

  19. Training North Carolina's Secondary Mathematics Teachers for the Implementation of Computers in Their Classrooms.

    ERIC Educational Resources Information Center

    Shotsberger, Paul G.

    This report describes the need for a state-level inservice education program for secondary mathematics public school teachers in North Carolina, in order to enable them to effectively implement computer use in classrooms. A decision model for policy analysis was used to determine optimal strategy for the program. Following a review of the…

  20. Effective Teacher Qualities from International Mathematics, Science, and Computer Teachers' Perspectives

    ERIC Educational Resources Information Center

    Sahin, Alpaslan; Adiguzel, Tufan

    2014-01-01

    The purpose of this study is to investigate how international teachers, who were from overseas but taught in the United States, rate effective teacher qualities in three domains; personal, professional, and classroom management skills. The study includes 130 international mathematics, science, and computer teachers who taught in a multi-school…

  1. Computational Skills, Working Memory, and Conceptual Knowledge in Older Children with Mathematics Learning Disabilities

    ERIC Educational Resources Information Center

    Mabbott, Donald J.; Bisanz, Jeffrey

    2008-01-01

    Knowledge and skill in multiplication were investigated for late elementary-grade students with mathematics learning disabilities (MLD), typically achieving age-matched peers, low-achieving age-matched peers, and ability-matched peers by examining multiple measures of computational skill, working memory, and conceptual knowledge. Poor…

  2. Effects of Peer versus Computer-Assisted Drill on Mathematics Response Rates

    ERIC Educational Resources Information Center

    Cates, Gary L.

    2005-01-01

    This study investigated the functional relationship between student accurate response levels and two mathematics drill procedures using a BCBC across participant's single case research design (in this case, "B" represents peer drill and "C" represents computer drill). Each of four elementary school students was randomly assigned to one of two…

  3. Inquiry Based-Computational Experiment, Acquisition of Threshold Concepts and Argumentation in Science and Mathematics Education

    ERIC Educational Resources Information Center

    Psycharis, Sarantos

    2016-01-01

    Computational experiment approach considers models as the fundamental instructional units of Inquiry Based Science and Mathematics Education (IBSE) and STEM Education, where the model take the place of the "classical" experimental set-up and simulation replaces the experiment. Argumentation in IBSE and STEM education is related to the…

  4. Connecting Expectations and Values: Students' Perceptions of Developmental Mathematics in a Computer-Based Learning Environment

    ERIC Educational Resources Information Center

    Jackson, Karen Latrice Terrell

    2014-01-01

    Students' perceptions influence their expectations and values. According to Expectations and Values Theory of Achievement Motivation (EVT-AM), students' expectations and values impact their behaviors (Eccles & Wigfield, 2002). This study seeks to find students' perceptions of developmental mathematics in a mastery learning computer-based…

  5. Secondary School Mathematics, Chapter 21, Rigid Motions and Vectors, Chapter 22, Computer and Programs. Teacher's Commentary.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    The teacher's guide for the eleventh unit in this SMSG series covers the chapter on rigid motions and vectors and the chapter on computers and programs. The overall purpose for each of the chapters is described, the prerequisite knowledge needed by students is specified, the mathematical development of each chapter is detailed, behavioral…

  6. Factors Influencing the Integration of Computer Algebra Systems into University-Level Mathematics Education

    ERIC Educational Resources Information Center

    Lavicza, Zsolt

    2007-01-01

    Computer Algebra Systems (CAS) are increasing components of university-level mathematics education. However, little is known about the extent of CAS use and the factors influencing its integration into university curricula. Pre-university level studies suggest that beyond the availability of technology, teachers' conceptions and cultural elements…

  7. Gender Differences in Preschool Children's Recall of Competitive and Noncompetitive Computer Mathematics Games

    ERIC Educational Resources Information Center

    Wei, Fang-Yi Flora; Hendrix, Katherine Grace

    2009-01-01

    This study investigated whether competitive and noncompetitive educational mathematics computer games influence four- to seven-year-old boys' and girls' recall of game-playing experience. A qualitative analysis was performed to investigate what preschool children may have learned through their selective recall of game-playing experience. A…

  8. The Use of Information Technologies for Education in Science, Mathematics, and Computers. An Agenda for Research.

    ERIC Educational Resources Information Center

    Educational Technology Center, Cambridge, MA.

    Developed to guide the research of the Educational Technology Center, a consortium based at Harvard Graduate School of Education, this report addresses the use of new information technologies to enrich, extend, and transform current instructional practice in science, mathematics, and computer education. A discussion of the basic elements required…

  9. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  10. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  11. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  12. The Effects of Computer-Assisted Instruction on the Mathematics Performance and Classroom Behavior of Children with ADHD

    ERIC Educational Resources Information Center

    Mautone, Jennifer A.; DuPaul, George J.; Jitendra, Asha K.

    2005-01-01

    The present study examines the effects of computer-assisted instruction (CAI) on the mathematics performance and classroom behavior of three second-through fourth-grade students with ADHD. A controlled case study is used to evaluate the effects of the computer software on participants' mathematics performance and on-task behavior. Participants'…

  13. Proceedings: Workshop on advanced mathematics and computer science for power systems analysis

    SciTech Connect

    Esselman, W.H.; Iveson, R.H. )

    1991-08-01

    The Mathematics and Computer Workshop on Power System Analysis was held February 21--22, 1989, in Palo Alto, California. The workshop was the first in a series sponsored by EPRI's Office of Exploratory Research as part of its effort to develop ways in which recent advances in mathematics and computer science can be applied to the problems of the electric utility industry. The purpose of this workshop was to identify research objectives in the field of advanced computational algorithms needed for the application of advanced parallel processing architecture to problems of power system control and operation. Approximately 35 participants heard six presentations on power flow problems, transient stability, power system control, electromagnetic transients, user-machine interfaces, and database management. In the discussions that followed, participants identified five areas warranting further investigation: system load flow analysis, transient power and voltage analysis, structural instability and bifurcation, control systems design, and proximity to instability. 63 refs.

  14. Fourth SIAM conference on mathematical and computational issues in the geosciences: Final program and abstracts

    SciTech Connect

    1997-12-31

    The conference focused on computational and modeling issues in the geosciences. Of the geosciences, problems associated with phenomena occurring in the earth`s subsurface were best represented. Topics in this area included petroleum recovery, ground water contamination and remediation, seismic imaging, parameter estimation, upscaling, geostatistical heterogeneity, reservoir and aquifer characterization, optimal well placement and pumping strategies, and geochemistry. Additional sessions were devoted to the atmosphere, surface water and oceans. The central mathematical themes included computational algorithms and numerical analysis, parallel computing, mathematical analysis of partial differential equations, statistical and stochastic methods, optimization, inversion, homogenization and renormalization. The problem areas discussed at this conference are of considerable national importance, with the increasing importance of environmental issues, global change, remediation of waste sites, declining domestic energy sources and an increasing reliance on producing the most out of established oil reservoirs.

  15. Consortium for Mathematics in the Geosciences (CMG++): Promoting the application of mathematics, statistics, and computational sciences to the geosciences

    NASA Astrophysics Data System (ADS)

    Mead, J.; Wright, G. B.

    2013-12-01

    The collection of massive amounts of high quality data from new and greatly improved observing technologies and from large-scale numerical simulations are drastically improving our understanding and modeling of the earth system. However, these datasets are also revealing important knowledge gaps and limitations of our current conceptual models for explaining key aspects of these new observations. These limitations are impeding progress on questions that have both fundamental scientific and societal significance, including climate and weather, natural disaster mitigation, earthquake and volcano dynamics, earth structure and geodynamics, resource exploration, and planetary evolution. New conceptual approaches and numerical methods for characterizing and simulating these systems are needed - methods that can handle processes which vary through a myriad of scales in heterogeneous, complex environments. Additionally, as certain aspects of these systems may be observable only indirectly or not at all, new statistical methods are also needed. This type of research will demand integrating the expertise of geoscientist together with that of mathematicians, statisticians, and computer scientists. If the past is any indicator, this interdisciplinary research will no doubt lead to advances in all these fields in addition to vital improvements in our ability to predict the behavior of the planetary environment. The Consortium for Mathematics in the Geosciences (CMG++) arose from two scientific workshops held at Northwestern and Princeton in 2011 and 2012 with participants from mathematics, statistics, geoscience and computational science. The mission of CMG++ is to accelerate the traditional interaction between people in these disciplines through the promotion of both collaborative research and interdisciplinary education. We will discuss current activities, describe how people can get involved, and solicit input from the broader AGU community.

  16. Research on Mega-Math: Discrete mathematics and computer science for children. Final report

    SciTech Connect

    Fellows, M.R.

    1995-06-26

    The objective of the subcontract was to provide further research on the approach to mathematics education embodied in the workbook ``This is Mega-Mathematics!`` essentially produced under the subcontract and its preceding informal (alas!) cooperative arrangements. The workbook is now widely and freely distributed on the Internet under the copyright of the Los Alamos National Labs. This research was to consist of: (1) the development and dissemination of materials, (2) experimentation with use of the materials in classroom visits and other events, (3) communication of the ideas embodied in the materials to various forums concerned with mathematics education reform, (4) the development of connections to the computer games industry, (5) the development of new workbook-type materials, (6) publications, (7) the development of connections to Science Museums, (8) the development of uses of the Internet to make MegaMath materials and ideas available through that medium, (9) the stimulation of and coordination with other projects in mathematics education reform. All of these objectives have been accomplished in what should be regarded as one of the most interesting and cost-effective projects ever undertaken in mathematics education, a testimony to the vision and creative imagination of the Los Alamos Labs.

  17. An Analysis of Mathematics Interventions: Increased Time-on-Task Compared with Computer-Assisted Mathematics Instruction

    ERIC Educational Resources Information Center

    Calhoun, James M., Jr.

    2011-01-01

    Student achievement is not progressing on mathematics as measured by state, national, and international assessments. Much of the research points to mathematics curriculum and instruction as the root cause of student failure to achieve at levels comparable to other nations. Since mathematics is regarded as a gate keeper to many educational…

  18. Formative questioning in computer learning environments: a course for pre-service mathematics teachers

    NASA Astrophysics Data System (ADS)

    Akkoç, Hatice

    2015-11-01

    This paper focuses on a specific aspect of formative assessment, namely questioning. Given that computers have gained widespread use in learning and teaching, specific attention should be made when organizing formative assessment in computer learning environments (CLEs). A course including various workshops was designed to develop knowledge and skills of questioning in CLEs. This study investigates how pre-service mathematics teachers used formative questioning with technological tools such as Geogebra and Graphic Calculus software. Participants are 35 pre-service mathematics teachers. To analyse formative questioning, two types of questions are investigated: mathematical questions and technical questions. Data were collected through lesson plans, teaching notes, interviews and observations. Descriptive statistics of the number of questions in the lesson plans before and after the workshops are presented. Examples of two types of questions are discussed using the theoretical framework. One pre-service teacher was selected and a deeper analysis of the way he used questioning during his three lessons was also investigated. The findings indicated an improvement in using technical questions for formative purposes and that the course provided a guideline in planning and using mathematical and technical questions in CLEs.

  19. Concentrator optical characterization using computer mathematical modelling and point source testing

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; John, S. L.; Trentelman, G. F.

    1984-01-01

    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.

  20. Mathematical model for steady state, simple ampholyte isoelectric focusing: Development, computer simulation and implementation

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.; Allgyer, T. T.

    1979-01-01

    The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.

  1. Saturday Academay of Computing and Mathematics (SACAM) at the Oak Ridge National Laboratory

    SciTech Connect

    Clark, D.N. )

    1991-01-01

    To be part of the impending Information Age, our students and teachers must be trained in the use of computers, logic, and mathematics. The Saturday Academy of Computing and Mathematics (SACAM) represents one facet of Oak Ridge National Laboratory's (ORNL) response to meet the challenge. SACAM attempts to provide the area's best high school students with a creative program that illustrates how researchers are using computing and mathematics tools to help solve nationally recognized problems in virtually all scientific fields. Each SACAM program is designed as eight 3-hour sessions. Each session outlines a current scientific question or research area. Sessions are presented on a Saturday morning by a speaker team of two to four ORNL scientists (mentors) working in that particular field. Approximately four students and one teacher from each of ten area high schools attend the eight sessions. Session topics cover diverse problems such as climate modeling cryptography and cryptology, high-energy physics, human genome sequencing, and even the use of probability in locating people lost in a national forest. Evaluations from students, teachers, and speakers indicate that the program has been well received, and a tracking program is being undertaken to determine long-range benefits. An analysis of the program's successes and lessons learned is presented as well as resources required for the program.

  2. Physics, computer science and mathematics division. Annual report, 1 January - 31 December 1982

    SciTech Connect

    Jackson, J.D.

    1983-08-01

    Experimental physics research activities are described under the following headings: research on e/sup +/e/sup -/ annihilation; research at Fermilab; search for effects of a right-handed gauge boson; the particle data center; high energy astrophysics and interdisciplinary experiments; detector and other research and development; publications and reports of other research; computation and communication; and engineering, evaluation, and support operations. Theoretical particle physics research and heavy ion fusion research are described. Also, activities of the Computer Science and Mathematics Department are summarized. Publications are listed. (WHK)

  3. Arithmetic Computation Scores: or Can Children in Modern Mathematics Programs Really Compute?

    ERIC Educational Resources Information Center

    Garigliano, Leonard J.

    1975-01-01

    Responding to publicity about declining computation scores on standardized tests, the author conducted a study comparing October with May testing and timed with untimed tests. He concluded that students today are able to compute but do so more slowly than earlier students and earn higher scores on applications and concepts. (SD)

  4. A Study of Pre-Service Teachers' Attitudes about Computers and Mathematics Teaching: The Impact of Web-Based Instruction

    ERIC Educational Resources Information Center

    Lin, Cheng-Yao

    2008-01-01

    This study explored the efficacy of web-based instruction in topics in elementary school mathematics in fostering teachers' confidence and competence in using instructional technology, and thereby promoting more positive attitudes toward using computers and Internet resources in the mathematics classroom. The results indicated that students who…

  5. What Is the Predict Level of Which Computer Using Skills Measured in PISA for Achievement in Mathematics

    ERIC Educational Resources Information Center

    Ziya, Engin; Dogan, Nuri; Kelecioglu, Hulya

    2010-01-01

    This study aims at determining the extent to which computer using skills specified in Project for International Students Evaluation (PISA) 2006 predict Turkish students' achievement in mathematics. Apart from questions on mathematics, science and reading competencies, a student questionnaire, a school questionnaire and a parent questionnaire were…

  6. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

    ERIC Educational Resources Information Center

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-01-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

  7. Technical Problems in Implementing University-Level Computer-Assisted Instruction in Mathematics and Science: Second Annual Report.

    ERIC Educational Resources Information Center

    Levine, Arvin; And Others

    Difficulties in implementing the EXCHECK/Voice Oriented Curriculum Author Language (VOCAL) System, a general program designed for university-level computer-assisted instruction in mathematics and science written in the VOCAL language, are presented in terms of informal mathematical procedures, audio and prosodic features, and a schedule of…

  8. Computer Aided Assessment of Mathematics for Undergraduates with Specific Learning Difficulties--Issues of Inclusion in Policy and Practice

    ERIC Educational Resources Information Center

    Perkin, Glynis; Beacham, Nigel; Croft, Anthony

    2007-01-01

    This paper opens up a debate about policy and practice in computer-assisted assessment (CAA) of mathematics for undergraduates with specific learning difficulties e.g. dyslexia. Guidelines for designing assessments for such students are emerging and some may be transferable to CAA. Whether mathematics brings with it particular issues is unclear.…

  9. The Effect of Computer Based Instructional Technique for the Learning of Elementary Level Mathematics among High, Average and Low Achievers

    ERIC Educational Resources Information Center

    Afzal, Muhammad Tanveer; Gondal, Bashir; Fatima, Nuzhat

    2014-01-01

    The major objective of the study was to elicit the effect of three instructional methods for teaching of mathematics on low, average and high achiever elementary school students. Three methods: traditional instructional method, computer assisted instruction (CAI) and teacher facilitated mathematics learning software were employed for the teaching…

  10. Comparison of the Effects of Computer-Based Practice and Conceptual Understanding Interventions on Mathematics Fact Retention and Generalization

    ERIC Educational Resources Information Center

    Kanive, Rebecca; Nelson, Peter M.; Burns, Matthew K.; Ysseldyke, James

    2014-01-01

    The authors' purpose was to determine the effects of computer-based practice and conceptual interventions on computational fluency and word-problem solving of fourth- and fifth-grade students with mathematics difficulties. A randomized pretest-posttest control group design found that students assigned to the computer-based practice…

  11. Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation

    SciTech Connect

    Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S

    2013-01-31

    A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)

  12. An interdisciplinary collaboration between computer engineering and mathematics/bilingual education to develop a curriculum for underrepresented middle school students

    NASA Astrophysics Data System (ADS)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-12-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.

  13. Neural Mechanisms Underlying the Computation of Hierarchical Tree Structures in Mathematics

    PubMed Central

    Nakai, Tomoya; Sakai, Kuniyoshi L.

    2014-01-01

    Whether mathematical and linguistic processes share the same neural mechanisms has been a matter of controversy. By examining various sentence structures, we recently demonstrated that activations in the left inferior frontal gyrus (L. IFG) and left supramarginal gyrus (L. SMG) were modulated by the Degree of Merger (DoM), a measure for the complexity of tree structures. In the present study, we hypothesize that the DoM is also critical in mathematical calculations, and clarify whether the DoM in the hierarchical tree structures modulates activations in these regions. We tested an arithmetic task that involved linear and quadratic sequences with recursive computation. Using functional magnetic resonance imaging, we found significant activation in the L. IFG, L. SMG, bilateral intraparietal sulcus (IPS), and precuneus selectively among the tested conditions. We also confirmed that activations in the L. IFG and L. SMG were free from memory-related factors, and that activations in the bilateral IPS and precuneus were independent from other possible factors. Moreover, by fitting parametric models of eight factors, we found that the model of DoM in the hierarchical tree structures was the best to explain the modulation of activations in these five regions. Using dynamic causal modeling, we showed that the model with a modulatory effect for the connection from the L. IPS to the L. IFG, and with driving inputs into the L. IFG, was highly probable. The intrinsic, i.e., task-independent, connection from the L. IFG to the L. IPS, as well as that from the L. IPS to the R. IPS, would provide a feedforward signal, together with negative feedback connections. We indicate that mathematics and language share the network of the L. IFG and L. IPS/SMG for the computation of hierarchical tree structures, and that mathematics recruits the additional network of the L. IPS and R. IPS. PMID:25379713

  14. International Symposium on Computational Electronics—Physical Modeling, Mathematical Theory, and Numerical Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yiming

    2007-12-01

    This symposium is an open forum for discussion on the current trends and future directions of physical modeling, mathematical theory, and numerical algorithm in electrical and electronic engineering. The goal is for computational scientists and engineers, computer scientists, applied mathematicians, physicists, and researchers to present their recent advances and exchange experience. We welcome contributions from researchers of academia and industry. All papers to be presented in this symposium have carefully been reviewed and selected. They include semiconductor devices, circuit theory, statistical signal processing, design optimization, network design, intelligent transportation system, and wireless communication. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!

  15. Effects of Computer-Mediated versus Teacher-Mediated Instruction on the Mathematical Word Problem-Solving Performance of Third-Grade Students with Mathematical Difficulties

    ERIC Educational Resources Information Center

    Leh, Jayne M.; Jitendra, Asha K.

    2013-01-01

    This study compared the effectiveness of computer-mediated instruction (CMI) and teacher-mediated instruction (TMI) on the word problem-solving performance of students struggling in mathematics. Both conditions integrated cognitive modeling that focused on the problem structure using visual representations with critical instructional elements…

  16. Research in mathematics and computer science at Argonne, September 1989--February 1991

    SciTech Connect

    Pieper, G.W.

    1991-03-01

    This report reviews the research activities in the Mathematics and Computer Science Division at Argonne National Laboratory for the period September 1989 through February 1991. The body of the report gives a brief look at the MCS staff and the research facilities and then discusses the diverse research projects carried out in the division. Projects funded by non-DOE sources are also discussed, and new technology transfer activities are described. Further information on staff, visitors, workshops, and seminars is found in the appendixes.

  17. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    PubMed

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor. PMID:26234709

  18. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate

    NASA Astrophysics Data System (ADS)

    Dridi, G.; Julien, R.; Hliwa, M.; Joachim, C.

    2015-08-01

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  19. Geometry, analysis, and computation in mathematics and applied sciences. Final report

    SciTech Connect

    Kusner, R.B.; Hoffman, D.A.; Norman, P.; Pedit, F.; Whitaker, N.; Oliver, D.

    1995-12-31

    Since 1993, the GANG laboratory has been co-directed by David Hoffman, Rob Kusner and Peter Norman. A great deal of mathematical research has been carried out here by them and by GANG faculty members Franz Pedit and Nate Whitaker. Also new communication tools, such as the GANG Webserver have been developed. GANG has trained and supported nearly a dozen graduate students, and at least half as many undergrads in REU projects.The GANG Seminar continues to thrive, making Amherst a site for short and long term visitors to come to work with the GANG. Some of the highlights of recent or ongoing research at GANG include: CMC surfaces, minimal surfaces, fluid dynamics, harmonic maps, isometric immersions, knot energies, foam structures, high dimensional soap film singularities, elastic curves and surfaces, self-similar curvature evolution, integrable systems and theta functions, fully nonlinear geometric PDE, geometric chemistry and biology. This report is divided into the following sections: (1) geometric variational problems; (2) soliton geometry; (3) embedded minimal surfaces; (4) numerical fluid dynamics and mathematical modeling; (5) GANG graphics and mathematical software; (6) description of the computational and visual analysis facility; and (7) research by undergraduates and GANG graduate seminar.

  20. Mathematical and computational model for the analysis of micro hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Stoia-Djeska, Marius; Mingireanu, Florin

    2012-11-01

    The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.

  1. ICPSEF: a user's manual for the computer mathematical model of the ICPP purex solvent extraction system

    SciTech Connect

    Bendixsen, C L

    1982-11-01

    A computer-based mathematical program, ICPSEF, was developed for the first-cycle extraction system at the Idaho Chemical Processing Plant (ICPP). At the ICPP, spent nuclear fuels are processed to recover unfissioned uranium. The uranium is recovered from aqueous solutions in a pulse column, solvent extraction system using tributyl phosphate (TBP) solvent (purex process). A previously developed SEPHIS-MOD4 computer program was added to and modified to provide a model for the ICPP system. Major modifications included addition of: (1) partial theoretical stages to permit more accurate modeling of ICPP columns, (2) modeling ammonium hydroxide neutralization of nitric acid in a scrubbing column, and (3) equilibrium data for 5 to 10 vol % TBP. The model was verified by comparison with actual operating data. Detailed instructions for using the ICPSEF model and sample results of the model are included.

  2. Computer Support for Learning Mathematics: A Learning Environment Based on Recreational Learning Objects

    ERIC Educational Resources Information Center

    Lopez-Morteo, Gabriel; Lopez, Gilberto

    2007-01-01

    In this paper, we introduce an electronic collaborative learning environment based on Interactive Instructors of Recreational Mathematics (IIRM), establishing an alternative approach for motivating students towards mathematics. The IIRM are educational software components, specializing in mathematical concepts, presented through recreational…

  3. The Effect of a Computer Based Story on 6th Grade Students' Mathematics Word Problem Solving Achievement

    ERIC Educational Resources Information Center

    Gunbas, Nilgun

    2012-01-01

    The purpose of this study was to investigate the effect of a computer-based story on sixth grade students' mathematics word problem solving achievement. Problems were embedded in a story presented on a computer, and then compared to a paper-based story and to a condition that presented the problems as typical, isolated words problems. One hundred…

  4. Can Teachers in Primary Education Implement a Metacognitive Computer Programme for Word Problem Solving in Their Mathematics Classes?

    ERIC Educational Resources Information Center

    de Kock, Willem D.; Harskamp, Egbert G.

    2014-01-01

    Teachers in primary education experience difficulties in teaching word problem solving in their mathematics classes. However, during controlled experiments with a metacognitive computer programme, students' problem-solving skills improved. Also without the supervision of researchers, metacognitive computer programmes can be beneficial in a…

  5. Promoting Transfer of Mathematics Skills through the Use of a Computer-Based Instructional Simulation Game and Advisement.

    ERIC Educational Resources Information Center

    Van Eck, Richard

    This study looked at the effect of contextual advisement and competition on transfer of mathematics skills in a computer-based instructional simulation game and simulation in which game participants helped their "aunt and uncle" fix up a house. Competition referred to whether or not the participant was playing against a computer character, and…

  6. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    NASA Astrophysics Data System (ADS)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  7. Computer Related Mathematics and Science Curriculum Materials - A National Science Foundation Cooperative College-School Science Program in Computing Science Education.

    ERIC Educational Resources Information Center

    Feng, Chuan C.

    Reported is the Cooperative College-School Science Program in Computing Science Education which was conducted by the University of Colorado Department of Civil Engineering in the summer of 1967. The program consisted of two five-week terms. The course work was composed of two formal lecture courses in Computer Related Mathematics and Computer…

  8. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1981

    SciTech Connect

    Birge, R.W.

    1982-12-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1981. During the year under review the Division devoted roughly half its effort to the final construction stages of the Time Projection Chamber and other equipment for the PEP-4 facility at SLAC. The year was marked by the successful passage of milestone after milestone - the two-sector test of the TPC with cosmic rays in July 1981, the full TPC test in November 1981, and the roll-in onto the PEP beam line on 6 January 1982. In other e/sup +/e/sup -/ experiments, the Mark II detector continued its productive data-taking at PEP. In other areas, the final stages of data analysis, particularly for the structure functions, proceeded for the inelastic muon scattering experiment performed at Fermilab, a muon polarimeter experiment was developed and mounted at TRIUMF to probe for the presence of right-handed currents in muon decay, and the design and then construction began of fine-grained hadron calorimeters for the end caps of the Colliding Detector Facility at Fermilab. The Particle Data Group intensified its activities, despite financial constraints, as it proceeded toward production of a new edition of its authoritative Review of Particle Properties early in 1982. During 1981 the Theoretical Physics Group pursued a diverse spectrum of research in its own right and also interacted effectively with the experimental program. Research and development continued on the segmented mirror for the ten-meter telescope proposed by the University of California. Activities in the Computer Science and Mathematics Department encompassed networking, database management, software engineering, and computer graphics, as well as basic research in nonlinear phenomena in combustion and fluid flow.

  9. Applied & Computational MathematicsChallenges for the Design and Control of Dynamic Energy Systems

    SciTech Connect

    Brown, D L; Burns, J A; Collis, S; Grosh, J; Jacobson, C A; Johansen, H; Mezic, I; Narayanan, S; Wetter, M

    2011-03-10

    The Energy Independence and Security Act of 2007 (EISA) was passed with the goal 'to move the United States toward greater energy independence and security.' Energy security and independence cannot be achieved unless the United States addresses the issue of energy consumption in the building sector and significantly reduces energy consumption in buildings. Commercial and residential buildings account for approximately 40% of the U.S. energy consumption and emit 50% of CO{sub 2} emissions in the U.S. which is more than twice the total energy consumption of the entire U.S. automobile and light truck fleet. A 50%-80% improvement in building energy efficiency in both new construction and in retrofitting existing buildings could significantly reduce U.S. energy consumption and mitigate climate change. Reaching these aggressive building efficiency goals will not happen without significant Federal investments in areas of computational and mathematical sciences. Applied and computational mathematics are required to enable the development of algorithms and tools to design, control and optimize energy efficient buildings. The challenge has been issued by the U.S. Secretary of Energy, Dr. Steven Chu (emphasis added): 'We need to do more transformational research at DOE including computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years.' On July 8-9, 2010 a team of technical experts from industry, government and academia were assembled in Arlington, Virginia to identify the challenges associated with developing and deploying newcomputational methodologies and tools thatwill address building energy efficiency. These experts concluded that investments in fundamental applied and computational mathematics will be required to build enabling technology that can be used to realize the target of 80% reductions in energy consumption. In addition the

  10. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    NASA Astrophysics Data System (ADS)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents

  11. The Hewlett-Packard HP-41CV Hand-Held Computer as a Medium for Teaching Mathematics to Fire Control Systems Repairers. Research Report 1408.

    ERIC Educational Resources Information Center

    Boldovici, John A.; Scott, Thomas D.

    A study compared the benefits of using the Hewlett-Packard HP-41CV hand-held computer, as opposed to conventional training without computers, in teaching mathematics to fire control systems repairers. Thirty soldiers in a course to train fire control systems repairers received training in technical mathematics using the hand-held computer, whereas…

  12. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    NASA Astrophysics Data System (ADS)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  13. Learner Perceptions of the Introduction of Computer-Assisted Learning in Mathematics at a Peri-Urban School in South Africa

    ERIC Educational Resources Information Center

    Hartley, M. Shaheed; Treagust, David F.

    2014-01-01

    This study responded to a national call to improve the outcomes in mathematics in the Grade 12 matriculation examination in South Africa by reporting learners' perceptions of the introduction of computer-assisted learning in their mathematics classrooms. Three Grade 12 mathematics classes in a peri-urban school in South Africa were visited…

  14. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    NASA Astrophysics Data System (ADS)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents

  15. Subsurface pressure profiling: a novel mathematical paradigm for computing colony pressures on substrate during fungal infections

    PubMed Central

    Patra, Subir; Banerjee, Sourav; Terejanu, Gabriel; Chanda, Anindya

    2015-01-01

    Colony expansion is an essential feature of fungal infections. Although mechanisms that regulate hyphal forces on the substrate during expansion have been reported previously, there is a critical need of a methodology that can compute the pressure profiles exerted by fungi on substrates during expansion; this will facilitate the validation of therapeutic efficacy of novel antifungals. Here, we introduce an analytical decoding method based on Biot’s incremental stress model, which was used to map the pressure distribution from an expanding mycelium of a popular plant pathogen, Aspergillus parasiticus. Using our recently developed Quantitative acoustic contrast tomography (Q-ACT) we detected that the mycelial growth on the solid agar created multiple surface and subsurface wrinkles with varying wavelengths across the depth of substrate that were computable with acousto-ultrasonic waves between 50 MHz–175 MHz. We derive here the fundamental correlation between these wrinkle wavelengths and the pressure distribution on the colony subsurface. Using our correlation we show that A. parasiticus can exert pressure as high as 300 KPa on the surface of a standard agar growth medium. The study provides a novel mathematical foundation for quantifying fungal pressures on substrate during hyphal invasions under normal and pathophysiological growth conditions. PMID:26262897

  16. The Impact of Computer Assisted Instruction on Seventh-Grade Students' Mathematics Achievement

    ERIC Educational Resources Information Center

    Tienken, Christopher H.; Wilson, Michael J.

    2007-01-01

    The perceived problem of low mathematics achievement is a concern to education leaders at all levels of PK-16 education. Results from various research raise concerns about mathematics learning of U.S. middle school students. Education leaders search for interventions to address issues related to improving mathematics achievement. This article…

  17. Progress report No. 56, October 1, 1979-September 30, 1980. [Courant Mathematics and Computing Lab. , New York Univ

    SciTech Connect

    1980-10-01

    Research during the period is sketched in a series of abstract-length summaries. The forte of the Laboratory lies in the development and analysis of mathematical models and efficient computing methods for the rapid solution of technological problems of interest to DOE, in particular, the detailed calculation on large computers of complicated fluid flows in which reactions and heat conduction may be taking place. The research program of the Laboratory encompasses two broad categories: analytical and numerical methods, which include applied analysis, computational mathematics, and numerical methods for partial differential equations, and advanced computer concepts, which include software engineering, distributed systems, and high-performance systems. Lists of seminars and publications are included. (RWR)

  18. Experiences with a Self-Paced Computer Studies Course in the Education of Mathematics Teachers for Secondary Schools in Ireland.

    ERIC Educational Resources Information Center

    O'Donoghue, J.; Bajpai, A. C.

    1979-01-01

    Describes experiences with a Keller-style computer studies course for future mathematics teachers. Aspects of the implementation are detailed, the motivation for thoughts behind the course are discussed, and the evaluation of student performance is supplemented by students' reactions to the course as measured by a semantic differential.…

  19. Winning the Popularity Contest: Researcher Preference When Selecting Resources for Civil Engineering, Computer Science, Mathematics and Physics Dissertations

    ERIC Educational Resources Information Center

    Dotson, Daniel S.; Franks, Tina P.

    2015-01-01

    More than 53,000 citations from 609 dissertations published at The Ohio State University between 1998-2012 representing four science disciplines--civil engineering, computer science, mathematics and physics--were examined to determine what, if any, preferences or trends exist. This case study seeks to identify whether or not researcher preferences…

  20. Primary Trainee Teachers' Attitudes to and Use of Computer and Technology in Mathematics: The Case of Turkey

    ERIC Educational Resources Information Center

    Dogan, Mustafa

    2010-01-01

    This study explores Turkish primary mathematics trainee teachers' attitudes to computer and technology. A survey was conducted with a self constructed questionnaire. Piloting, factor and reliability ([alpha] = 0.94) analyses were performed. The final version of the questionnaire has three parts with a total of 48 questions including a Likert type…

  1. Effectiveness of Computer Animation and Geometrical Instructional Model on Mathematics Achievement and Retention among Junior Secondary School Students

    ERIC Educational Resources Information Center

    Gambari, A. I.; Falode, C. O.; Adegbenro, D. A.

    2014-01-01

    This study investigated the effectiveness of computer animation and geometry instructional model on mathematics achievement and retention on Junior Secondary School Students in Minna, Nigeria. It also examined the influence of gender on students' achievement and retention. The research was a pre-test post-test experimental and control group…

  2. The Language Factor in Elementary Mathematics Assessments: Computational Skills and Applied Problem Solving in a Multidimensional IRT Framework

    ERIC Educational Resources Information Center

    Hickendorff, Marian

    2013-01-01

    The results of an exploratory study into measurement of elementary mathematics ability are presented. The focus is on the abilities involved in solving standard computation problems on the one hand and problems presented in a realistic context on the other. The objectives were to assess to what extent these abilities are shared or distinct, and…

  3. An Evaluation into the Views of Candidate Mathematics Teachers over "Tablet Computers" to be Applied in Secondary Schools

    ERIC Educational Resources Information Center

    Aksu, Hasan Hüseyin

    2014-01-01

    This study aims to investigate, in terms of different variables, the views of prospective Mathematics teachers on tablet computers to be used in schools as an outcome of the Fatih Project, which was initiated by the Ministry of National Education. In the study, scanning model, one of the quantitative research methods, was used. In the population…

  4. Characteristics of Computational Thinking about the Estimation of the Students in Mathematics Classroom Applying Lesson Study and Open Approach

    ERIC Educational Resources Information Center

    Promraksa, Siwarak; Sangaroon, Kiat; Inprasitha, Maitree

    2014-01-01

    The objectives of this research were to study and analyze the characteristics of computational thinking about the estimation of the students in mathematics classroom applying lesson study and open approach. Members of target group included 4th grade students of 2011 academic year of Choomchon Banchonnabot School. The Lesson plan used for data…

  5. From boring to scoring - a collaborative serious game for learning and practicing mathematical logic for computer science education

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina

    2013-06-01

    In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."

  6. Computational physics and applied mathematics capability review June 8-10, 2010

    SciTech Connect

    Lee, Stephen R

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial

  7. Mathematical and computational models of the retina in health, development and disease.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina confers upon us the gift of vision, enabling us to perceive the world in a manner unparalleled by any other tissue. Experimental and clinical studies have provided great insight into the physiology and biochemistry of the retina; however, there are questions which cannot be answered using these methods alone. Mathematical and computational techniques can provide complementary insight into this inherently complex and nonlinear system. They allow us to characterise and predict the behaviour of the retina, as well as to test hypotheses which are experimentally intractable. In this review, we survey some of the key theoretical models of the retina in the healthy, developmental and diseased states. The main insights derived from each of these modelling studies are highlighted, as are model predictions which have yet to be tested, and data which need to be gathered to inform future modelling work. Possible directions for future research are also discussed. Whilst the present modelling studies have achieved great success in unravelling the workings of the retina, they have yet to achieve their full potential. For this to happen, greater involvement with the modelling community is required, and stronger collaborations forged between experimentalists, clinicians and theoreticians. It is hoped that, in addition to bringing the fruits of current modelling studies to the attention of the ophthalmological community, this review will encourage many such future collaborations. PMID:27063291

  8. Mathematical and computational studies of the stability of axisymmetric annular capillary free surfaces

    NASA Technical Reports Server (NTRS)

    Albright, N.; Concus, P.; Karasalo, I.

    1977-01-01

    Of principal interest is the stability of a perfectly wetting liquid in an inverted, vertical, right circular-cylindrical container having a concave spheroidal bottom. The mathematical conditions that the contained liquid be in stable static equilibrium are derived, including those for the limiting case of zero contact angle. Based on these results, a computational investigation is carried out for a particular container that is used for the storage of liquid fuels in NASA Centaur space vehicles, for which the axial ratio of the container bottom is 0.724. It is found that for perfectly wetting liquids the qualitative nature of the onset of instability changes at a critical liquid volume, which for the Centaur fuel tank corresponds to a mean fill level of approximately 0.503 times the tank's radius. Small-amplitude periodic sloshing modes for this tank were calculated; oscillation frequencies or growth rates are given for several Bond numbers and liquid volumes, for normal modes having up to six angular nodes.

  9. Coupled Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations

    PubMed Central

    Epstein, Joshua M.; Parker, Jon; Cummings, Derek; Hammond, Ross A.

    2008-01-01

    Background In classical mathematical epidemiology, individuals do not adapt their contact behavior during epidemics. They do not endogenously engage, for example, in social distancing based on fear. Yet, adaptive behavior is well-documented in true epidemics. We explore the effect of including such behavior in models of epidemic dynamics. Methodology/Principal Findings Using both nonlinear dynamical systems and agent-based computation, we model two interacting contagion processes: one of disease and one of fear of the disease. Individuals can “contract” fear through contact with individuals who are infected with the disease (the sick), infected with fear only (the scared), and infected with both fear and disease (the sick and scared). Scared individuals–whether sick or not–may remove themselves from circulation with some probability, which affects the contact dynamic, and thus the disease epidemic proper. If we allow individuals to recover from fear and return to circulation, the coupled dynamics become quite rich, and can include multiple waves of infection. We also study flight as a behavioral response. Conclusions/Significance In a spatially extended setting, even relatively small levels of fear-inspired flight can have a dramatic impact on spatio-temporal epidemic dynamics. Self-isolation and spatial flight are only two of many possible actions that fear-infected individuals may take. Our main point is that behavioral adaptation of some sort must be considered. PMID:19079607

  10. Mathematics Word Problem Solving: An Investigation into Schema-Based Instruction in a Computer-Mediated Setting and a Teacher-Mediated Setting with Mathematically Low-Performing Students

    ERIC Educational Resources Information Center

    Leh, Jayne

    2011-01-01

    Substantial evidence indicates that teacher-delivered schema-based instruction (SBI) facilitates significant increases in mathematics word problem solving (WPS) skills for diverse students; however research is unclear whether technology affordances facilitate superior gains in computer-mediated (CM) instruction in mathematics WPS when compared to…

  11. Coordinating Formal and Informal Aspects of Mathematics in a Computer Based Learning Environment

    ERIC Educational Resources Information Center

    Skouras, A. S.

    2006-01-01

    The introduction of educational technology to school classes promises--through the students' active engagement with mathematical concepts--the creation of teaching and learning opportunities in mathematics. However, the way technological tools are used in the teaching practice as a means of human thought and action remains an unsettled matter as…

  12. Polyhedral Sculpture: The Path from Computational Artifact to Real-World Mathematical Object.

    ERIC Educational Resources Information Center

    Eisenberg, Michael; Nishioka, Ann

    Mathematics educators often despair at math's austere, "abstract" reputation. This paper describes recent work in developing an application named "HyperGami," which is designed to integrate both the abstract and"real-world" aspects of mathematics by allowing children to design and construct polyhedral models and sculptures. Children use formal…

  13. My Entirely Plausible Fantasy: Early Mathematics Education in the Age of the Touchscreen Computer

    ERIC Educational Resources Information Center

    Ginsburg, Herbert P.

    2014-01-01

    This paper offers an account of what early mathematics education could look like in an age of young digital natives. Each "Tubby," as the tablets are called, presents Nicole (our generic little child) with stimulating mathematics microworlds, from which, beginning at age 3, she can learn basic math concepts, as well as methods of…

  14. Improving Pupils' Mathematical Communication Abilities through Computer-Supported Reciprocal Peer Tutoring

    ERIC Educational Resources Information Center

    Yang, Euphony F. Y.; Chang, Ben; Cheng, Hercy N. H.; Chan, Tak-Wai

    2016-01-01

    This study examined how to foster pupils' mathematical communication abilities by using tablet PCs. Students were encouraged to generate math creations (including mathematical representation, solution, and solution explanation of word problems) as their teaching materials and reciprocally tutor classmates to increase opportunities for mathematical…

  15. A Constructivist Computational Tool to Assist in Learning Primary School Mathematical Equations

    ERIC Educational Resources Information Center

    Figueira-Sampaio, Aleandra da Silva; dos Santos, Eliane Elias Ferreira; Carrijo, Gilberto Arantes

    2009-01-01

    In constructivist principles, learning is a process in which individuals construct knowledge. Research in Mathematics Education looks for ways to make mathematics education less dry and more attractive. When solving polynomial equations of the first degree, it is very common for teachers to work with the mistaken idea of "changing the sign" when…

  16. The Influence of Computer-Assisted Instruction on Eighth Grade Mathematics Achievement

    ERIC Educational Resources Information Center

    Tienken, Christopher H.; Maher, James A.

    2008-01-01

    The issue of lower than expected mathematics achievement is a concern to education leaders and policymakers at all levels of the U.S. PK-12 education system. The purpose of this quantitative, quasi-experimental study was to determine if there was a measurable difference in achievement on the mathematics section of the state test for students (n =…

  17. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

    ERIC Educational Resources Information Center

    Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

    2010-01-01

    2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

  18. A Caribbean Pre-Service Mathematics Teacher's Impetus to Integrate Computer Technology in His Practice

    ERIC Educational Resources Information Center

    Clarke, Pier Junor

    2009-01-01

    This article presents a case study of one pre-service secondary school mathematics (PSSM) teacher taken from a larger study within an English-speaking Caribbean context. The major goal of the larger study was to investigate the experiences and perceptions of the PSSM teachers as they explored the graphing calculator and mathematics software in…

  19. Design and Use of Computer Tools for Interactive Mathematical Activity (TIMA).

    ERIC Educational Resources Information Center

    Steffe, Leslie P.; Olive, John

    2002-01-01

    Explains TIMA (Tools for Interactive Mathematical Activity), that were designed to provide elementary schools children with contexts in which they could enact mathematical operations. Discusses differences from drill and practice software; provides examples of how the TIMA were used by children to engage in cognitive play; and emphasizes the…

  20. Computation and graphics in mathematical research. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1992-08-13

    This report discusses: The description of the GANG Project and results for prior research; the center for geometry, analysis, numerics and graphics; description of GANG Laboratory; software development at GANG; and mathematical and scientific research activities.

  1. A mathematical analysis of the GW0 method for computing electronic excited energies of molecules

    NASA Astrophysics Data System (ADS)

    Cancés, Eric; Gontier, David; Stoltz, Gabriel

    2016-06-01

    This article is concerned with the GW method for finite electronic systems. In the first step, we provide a mathematical framework for the usual one-body operators that appear naturally in many-body perturbation theory. We then give a rigorous mathematical formulation of the GW0 equations, and study the well-posedness of these equations, proving the existence of a unique solution in a perturbative regime.

  2. Development of mathematical models and numerical methods for aerodynamic design on multiprocessor computers

    NASA Astrophysics Data System (ADS)

    Maksimov, F. A.; Churakov, D. A.; Shevelev, Yu. D.

    2011-02-01

    Complex-geometry design and grid generation are addressed. The gasdynamic equations are solved, and the numerical results are compared with experimental data. For aerodynamic problems, a suite of mathematical and information technology tools is proposed for the support and management of geometric models of actual objects. Based on the mathematical modeling methods developed, numerical experiments can be performed for a wide class of geometric forms and the aerodynamic properties of aircraft can be predicted with allowance for the viscosity effects.

  3. Experimental Mathematics and Mathematical Physics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Zudilin, Wadim

    2009-06-26

    One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.

  4. Improved mathematical and computational tools for modeling photon propagation in tissue

    NASA Astrophysics Data System (ADS)

    Calabro, Katherine Weaver

    Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy

  5. An Application of Programming and Mathematics: Writing a Computer Graphing Program.

    ERIC Educational Resources Information Center

    Waits, Bert; Demana, Franklin

    1988-01-01

    Suggests computer graphing as a topic for computer programing. Reviews Apple II computer graphics information and gives suggestions for writing the programs. Presents equations to help place information onto the screen with proper coordinates. (MVL)

  6. Mathematical Geology.

    ERIC Educational Resources Information Center

    McCammon, Richard B.

    1979-01-01

    The year 1978 marked a continued trend toward practical applications in mathematical geology. Developments included work in interactive computer graphics, factor analysis, the vanishing tons problem, universal kriging, and resource estimating. (BB)

  7. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    SciTech Connect

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  8. Computer-Aided Assessment Questions in Engineering Mathematics Using "MapleTA"[R

    ERIC Educational Resources Information Center

    Jones, I. S.

    2008-01-01

    The use of "MapleTA"[R] in the assessment of engineering mathematics at Liverpool John Moores University (JMU) is discussed with particular reference to the design of questions. Key aspects in the formulation and coding of questions are considered. Problems associated with the submission of symbolic answers, the use of randomly generated numbers…

  9. Bridging the Gap between Mathematical Conjecture and Proof through Computer-Supported Cognitive Conflicts

    ERIC Educational Resources Information Center

    Lee, Chun-Yi; Chen, Ming-Puu

    2008-01-01

    In many mathematical problems, students can feel that the universality of a conjecture or a formula is validated by their experiment and experience. In contrast, students generally do not feel that deductive explanations strengthen their conviction that a conjecture or a formula is true. In order to cope up with students' conviction based only on…

  10. Effects of Computer-Assisted Instruction on Reading and Mathematics Achievement of Chapter 1 Students.

    ERIC Educational Resources Information Center

    Zollman, Alan; And Others

    Two parallel studies were conducted to determine whether students' achievement in reading and/or mathematics would be affected by the use of Education Systems Corporation (ESC) Software for Chapter 1 students. Students in the experimental groups used the software twice a week during a period of one school year, with 561 Chapter 1 students in…

  11. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  12. Preventive Support for Kindergarteners Most At-Risk for Mathematics Difficulties: Computer-Assisted Intervention

    ERIC Educational Resources Information Center

    Salminen, Jonna; Koponen, Tuire; Räsänen, Pekka; Aro, Mikko

    2015-01-01

    Weaknesses in early number skills have been found to be a risk factor for later difficulties in mathematical performance. Nevertheless, only a few intervention studies with young children have been published. In this study, the responsiveness to early support in kindergarteners with most severe difficulties was examined with two different computer…

  13. Structural, Linguistic and Topic Variables in Verbal and Computational Problems in Elementary Mathematics.

    ERIC Educational Resources Information Center

    Beardslee, Edward C.; Jerman, Max E.

    Five structural, four linguistic and twelve topic variables are used in regression analyses on results of a 50-item achievement test. The test items are related to 12 topics from the third-grade mathematics curriculum. The items reflect one of two cases of the structural variable, cognitive level; the two levels are characterized, inductive…

  14. Computation, Exploration, Visualisation: Reaction to MATLAB in First-Year Mathematics.

    ERIC Educational Resources Information Center

    Cretchley, Patricia; Harman, Chris; Ellerton, Nerida; Fogarty, Gerard

    This paper describes a model for effective incorporation of technology into the learning experience of a large and diverse group of students in first-semester first-year tertiary mathematics. It describes the introduction of elementary use of MATLAB, in a course offered both on-campus and at a distance. The diversity of the student group is…

  15. Effects of Mathematics Computer Games on Special Education Students' Multiplicative Reasoning Ability

    ERIC Educational Resources Information Center

    Bakker, Marjoke; van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander

    2016-01-01

    This study examined the effects of a teacher-delivered intervention with online mathematics mini-games on special education students' multiplicative reasoning ability (multiplication and division). The games involved declarative, procedural, as well as conceptual knowledge of multiplicative relations, and were accompanied with teacher-led lessons…

  16. Learning Mathematics with Interactive Whiteboards and Computer-Based Graphing Utility

    ERIC Educational Resources Information Center

    Erbas, Ayhan Kursat; Ince, Muge; Kaya, Sukru

    2015-01-01

    The purpose of this study was to explore the effect of a technology-supported learning environment utilizing an interactive whiteboard (IWB) and NuCalc graphing software compared to a traditional direct instruction-based environment on student achievement in graphs of quadratic functions and attitudes towards mathematics and technology. Sixty-five…

  17. A Constructivist Computational Platform to Support Mathematics Education in Elementary School

    ERIC Educational Resources Information Center

    Garcia, I.; Pacheco, C.

    2013-01-01

    Many courses for elementary school are based upon teacher presentation and explanation of basic topics, rather than allowing students to develop their own knowledge. This traditional model may turn elementary-level lessons into an extremely theoretical, boring and non-effective process. In this context, research in mathematics elementary education…

  18. Treatment of control data in lunar phototriangulation. [application of statistical procedures and development of mathematical and computer techniques

    NASA Technical Reports Server (NTRS)

    Wong, K. W.

    1974-01-01

    In lunar phototriangulation, there is a complete lack of accurate ground control points. The accuracy analysis of the results of lunar phototriangulation must, therefore, be completely dependent on statistical procedure. It was the objective of this investigation to examine the validity of the commonly used statistical procedures, and to develop both mathematical techniques and computer softwares for evaluating (1) the accuracy of lunar phototriangulation; (2) the contribution of the different types of photo support data on the accuracy of lunar phototriangulation; (3) accuracy of absolute orientation as a function of the accuracy and distribution of both the ground and model points; and (4) the relative slope accuracy between any triangulated pass points.

  19. [The use of personal computers for the mathematical processing of the results of chemical-toxicological studies].

    PubMed

    Popandopulo, P Kh; Ushbaev, K U; Savchenko, A A

    1991-01-01

    Three programs in BASIC and SUPER BASIC language for personal computer are suggested. The first program makes it possible to calculate the degree of substance extraction and factor of its distribution between two liquid immiscible phases. The second program is designed to make calculations on distribution of substance in the organs of experimental animals. The third program is designed to determine specific and molar factors of light absorption. Results of calculations are presented as tables. Programs can be also used in mathematical processing of results obtained in the course of scientific research. PMID:1759288

  20. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  1. "Hole-in-the-Wall" Computer Kiosks Foster Mathematics Achievement--A Comparative Study

    ERIC Educational Resources Information Center

    Inamdar, Parimala; Kulkarni, Arun

    2007-01-01

    Earlier work at unsupervised playground computer kiosks in rural India, popularly called "hole-in-the-wall", showed that children exposed to these kiosks learn to use computers on their own and that they are able to clear school examinations in computer science, without any classroom teaching for it. Extending this, our recent research work…

  2. Secondary School Mathematics, Chapter 21, Rigid Motions and Vectors, Chapter 22, Computers and Programs. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    Transformation geometry topics are covered in one chapter of Unit 11 of this SMSG series. Work with translations, reflections, rotations, and composition of motions is included; vectors are briefly discussed. The chapter on computers and programming deals with recent history and uses of of the computer, organization of a digital computer, an…

  3. Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program

    SciTech Connect

    Not Available

    1990-12-01

    The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

  4. A computer-based ``laboratory`` course in mathematical methods for science and engineering: The Legendre Polynomials module. Final report

    SciTech Connect

    Silbar, R.R.

    1998-09-28

    WhistleSoft, Inc., proposed to convert a successful pedagogical experiment into multimedia software, making it accessible to a much broader audience. A colleague, Richard J. Jacob, has been teaching a workshop course in mathematical methods at Arizona State University (ASU) for lower undergraduate science majors. Students work at their own pace through paper-based tutorials containing many exercises, either with pencil and paper or with computer tools such as spreadsheets. These tutorial modules cry out for conversion into an interactive computer-based tutorial course that is suitable both for the classroom and for self-paced, independent learning. WhistleSoft has made a prototype of one such module, Legendre Polynomials, under Subcontract (No F97440018-35) with the Los Alamos Laboratory`s Technology Commercialization Office for demonstration and marketing purposes.

  5. Computation and graphics in mathematical research. Progress report, September 15, 1992--September 15, 1993

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1993-06-01

    Current research is described on: grain boundaries and dislocations in compound polymers, boundary value problems for hypersurfaces constant Gaussian curvature, and discrete computational geometry. 19 refs, 4 figs.

  6. The Identification, Implementation, and Evaluation of Critical User Interface Design Features of Computer-Assisted Instruction Programs in Mathematics for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Seo, You-Jin; Woo, Honguk

    2010-01-01

    Critical user interface design features of computer-assisted instruction programs in mathematics for students with learning disabilities and corresponding implementation guidelines were identified in this study. Based on the identified features and guidelines, a multimedia computer-assisted instruction program, "Math Explorer", which delivers…

  7. Theoretical studies in isoelectric focusing. [mathematical modeling and computer simulation for biologicals purification process

    NASA Technical Reports Server (NTRS)

    Mosher, R. A.; Palusinski, O. A.; Bier, M.

    1982-01-01

    A mathematical model has been developed which describes the steady state in an isoelectric focusing (IEF) system with ampholytes or monovalent buffers. The model is based on the fundamental equations describing the component dissociation equilibria, mass transport due to diffusion and electromigration, electroneutrality, and the conservation of charge. The validity and usefulness of the model has been confirmed by using it to formulate buffer systems in actual laboratory experiments. The model has been recently extended to include the evolution of transient states not only in IEF but also in other modes of electrophoresis.

  8. Mathematical model and software complex for computer simulation of field emission electron sources

    SciTech Connect

    Nikiforov, Konstantin

    2015-03-10

    The software complex developed in MATLAB allows modelling of function of diode and triode structures based on field emission electron sources with complex sub-micron geometry, their volt-ampere characteristics, calculating distribution of electric field for educational and research needs. The goal of this paper is describing the physical-mathematical model, calculation methods and algorithms the software complex is based on, demonstrating the principles of its function and showing results of its work. For getting to know the complex, a demo version with graphical user interface is presented.

  9. Possible Applications of Computer Oriented Problem Solving Methods to Mathematics Education.

    ERIC Educational Resources Information Center

    Hunt, Earl B.; And Others

    This report consists of five separate papers. The first is an extensive review of the "state of the art" in computer simulation and artificial intelligence. This review states that artificial intelligence and computer simulation have accomplished a great deal, with particular attention to findings relevant to psychology. The second paper is an…

  10. Computer-Assisted Instruction in Mathematics and Language Arts for the Deaf. Final Report.

    ERIC Educational Resources Information Center

    Fletcher, J. D.; Suppes, Patrick

    A three-year project supported research, development and evaluation of computer-assisted instruction (CAI) for hearing impaired, or deaf, children. Over 4,000 students from 15 schools for the deaf in five states participated in the effort. Although students received CAI in algebra, logic, computer programing and basic English, the skill subjects…

  11. UTILIZATION OF COMPUTER FACILITIES IN THE MATHEMATICS AND BUSINESS CURRICULUM IN A LARGE SUBURBAN HIGH SCHOOL.

    ERIC Educational Resources Information Center

    RENO, MARTIN; AND OTHERS

    A STUDY WAS UNDERTAKEN TO EXPLORE IN A QUALITATIVE WAY THE POSSIBLE UTILIZATION OF COMPUTER AND DATA PROCESSING METHODS IN HIGH SCHOOL EDUCATION. OBJECTIVES WERE--(1) TO ESTABLISH A WORKING RELATIONSHIP WITH A COMPUTER FACILITY SO THAT ABLE STUDENTS AND THEIR TEACHERS WOULD HAVE ACCESS TO THE FACILITIES, (2) TO DEVELOP A UNIT FOR THE UTILIZATION…

  12. Formative Questioning in Computer Learning Environments: A Course for Pre-Service Mathematics Teachers

    ERIC Educational Resources Information Center

    Akkoç, Hatice

    2015-01-01

    This paper focuses on a specific aspect of formative assessment, namely questioning. Given that computers have gained widespread use in learning and teaching, specific attention should be made when organizing formative assessment in computer learning environments (CLEs). A course including various workshops was designed to develop knowledge and…

  13. A Dataset from TIMSS to Examine the Relationship between Computer Use and Mathematics Achievement

    ERIC Educational Resources Information Center

    Kadijevich, Djordje M.

    2015-01-01

    Because the relationship between computer use and achievement is still puzzling, there is a need to prepare and analyze good quality datasets on computer use and achievement. Such a dataset can be derived from TIMSS data. This paper describes how this dataset can be prepared. It also gives an example of how the dataset may be analyzed. The…

  14. Is Students' Computer Use at Home Related to Their Mathematical Performance at School?

    ERIC Educational Resources Information Center

    Wittwer, Jorg; Senkbeil, Martin

    2008-01-01

    Recent research has provided evidence that students' computer use at home is positively associated with their performance at school. However, most of the previous studies have failed to take into account the multiple determination of school performance and, in addition, to explain why using computers at home should benefit students' academic…

  15. Orchestrating the XO Computer with Digital and Conventional Resources to Teach Mathematics

    ERIC Educational Resources Information Center

    Díaz, A.; Nussbaum, M.; Varela, I.

    2015-01-01

    Recent research has suggested that simply providing each child with a computer does not lead to an improvement in learning. Given that dozens of countries across the world are purchasing computers for their students, we ask which elements are necessary to improve learning when introducing digital resources into the classroom. Understood the…

  16. Mathematical Epistemologies at Work.

    ERIC Educational Resources Information Center

    Noss, Richard

    2002-01-01

    Investigates young people's expression of mathematical ideas with a computer, the nature of mathematical practices, and the problem of mathematical meaning from cognitive and socio-cultural perspectives. Describes a mathematical activity system designed for learning and the role of digital technologies in helping to understand and reshape the…

  17. Effect of anti-virus software on infectious nodes in computer network: A mathematical model

    NASA Astrophysics Data System (ADS)

    Mishra, Bimal Kumar; Pandey, Samir Kumar

    2012-07-01

    An e-epidemic model of malicious codes in the computer network through vertical transmission is formulated. We have observed that if the basic reproduction number is less than unity, the infected proportion of computer nodes disappear and malicious codes die out and also the malicious codes-free equilibrium is globally asymptotically stable which leads to its eradication. Effect of anti-virus software on the removal of the malicious codes from the computer network is critically analyzed. Analysis and simulation results show some managerial insights that are helpful for the practice of anti-virus in information sharing networks.

  18. Computer Simulation of a Queuing System in a Mathematical Modeling Course.

    ERIC Educational Resources Information Center

    Eyob, Ephrem

    1990-01-01

    The results of a simulation model of a queuing system are reported. Use in an introductory quantitative analysis course to enhance students' computer and quantitative modeling knowledge is described. (CW)

  19. Prospects of a mathematical theory of human behavior in complex man-machine systems tasks. [time sharing computer analogy of automobile driving

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Rouse, W. B.

    1978-01-01

    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.

  20. Mathematical model and computation of heat distribution for LED heat sink

    NASA Astrophysics Data System (ADS)

    Zhu, J. X.; Sun, L. X.

    2016-05-01

    The light-emitting diode (LED) has many advantages over conventional lighting including lower energy consumption, longer lifetime, improved physical robustness, smaller size, and faster switching. It is noted, however, that its efficiency and lifetime will be degraded severely when it is operated at high temperature. Both previous simulations and experimental results have already indicated that the heat transfer in vertical direction of the LED lamp by conduction is the critical component. In this paper, a simplified mathematical model of the heat source and the conduction distribution for the LED heat sink is developed to estimate the heat distribution in the spherical coordinate system, which can be used for the shape optimization design. Furthermore, the model of the heat conduction equation is solved numerically with the explicit finite-difference method (EFDM). Several numerical simulations show that the model performs well when considering the real situation, so our method is feasible and effective.

  1. A mathematical model for a distributed attack on targeted resources in a computer network

    NASA Astrophysics Data System (ADS)

    Haldar, Kaushik; Mishra, Bimal Kumar

    2014-09-01

    A mathematical model has been developed to analyze the spread of a distributed attack on critical targeted resources in a network. The model provides an epidemic framework with two sub-frameworks to consider the difference between the overall behavior of the attacking hosts and the targeted resources. The analysis focuses on obtaining threshold conditions that determine the success or failure of such attacks. Considering the criticality of the systems involved and the strength of the defence mechanism involved, a measure has been suggested that highlights the level of success that has been achieved by the attacker. To understand the overall dynamics of the system in the long run, its equilibrium points have been obtained and their stability has been analyzed, and conditions for their stability have been outlined.

  2. Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton.

    PubMed

    Eren, Ezgi Can; Gautam, Natarajan; Dixit, Ram

    2012-03-01

    There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with quantitative data from biological experiments in order to test the validity of the models and to further improve them. It is our hope that this review will serve to provide guidelines for how to combine quantitative and experimental techniques to develop higher-level models of the plant cytoskeleton in the future. PMID:22266809

  3. The Effects of a Computer-Assisted Teaching Material, Designed According to the ASSURE Instructional Design and the ARCS Model of Motivation, on Students' Achievement Levels in a Mathematics Lesson and Their Resulting Attitudes

    ERIC Educational Resources Information Center

    Karakis, Hilal; Karamete, Aysen; Okçu, Aydin

    2016-01-01

    This study examined the effects that computer-assisted instruction had on students' attitudes toward a mathematics lesson and toward learning mathematics with computer-assisted instruction. The computer software we used was based on the ASSURE Instructional Systems Design and the ARCS Model of Motivation, and the software was designed to teach…

  4. Text Integration and Mathematical Connections: A Computer Model of Arithmetic Word Problem Solving.

    ERIC Educational Resources Information Center

    LeBlanc, Mark D.; Weber-Russell, Sylvia

    1996-01-01

    A growing body of empirical and theoretical work indicates that young children (grades K-3) have difficulties solving word problems because of deficient language and text comprehension strategies. Describes a computer simulation designed to model working memory demands in "bottom-up" comprehension of arithmetic word problems, offering a…

  5. Students' Relationship to Technology and Conceptions of Mathematics while Learning in a Computer Algebra System Environment

    ERIC Educational Resources Information Center

    Meagher, Michael

    2012-01-01

    The research presented here is a group case study of students learning calculus in a Computer Algebra System (CAS) environment which examines the following research questions: What are students' perceptions of the role of technology in their learning? What is the students' relationship to CAS? What is the effect of learning in a CAS environment on…

  6. Instructional Variables in Computer Programming. Indiana Mathematical Psychology Program. Final Report.

    ERIC Educational Resources Information Center

    Mayer, Richard E.

    The final report of this study describes the objectives and plan of attack used for determining how novice students learn to interact with a computer and how instruction can result in meaningful learning. Changes to the original plans and significant outcomes are mentioned. The final report concludes with abstracts of research findings on the…

  7. ICT Resources in the Teaching of Mathematics: Between Computer and School Technologies. A Case-Study

    ERIC Educational Resources Information Center

    Bosco, Alejandra

    2004-01-01

    This article is based on a research project called "Information and communications technology (ICT) resources in school organizational and symbolic technology: a case-study" which was carried out in a primary school in Barcelona, Spain. The research looked at various interactions that took place between the computer as a teaching tool, the…

  8. Students' Attitudes towards Mathematics and Computers When Using DERIVE in the Learning of Calculus Concepts.

    ERIC Educational Resources Information Center

    Machin, Matias Camacho; Rivero, Ramon Depool

    2002-01-01

    Analyzes Likert attitude questionnaires given to 28 engineering students during their first semester at a Venezuelan university. Investigates the evolution of students' attitudes when in laboratory sessions using the DERIVE Computer Algebra System (CAS). Suggests that use of DERIVE symbolic calculus software has a positive influence on attitudes…

  9. Adult Science Learners' Mathematical Mistakes: An Analysis of Responses to Computer-Marked Questions

    ERIC Educational Resources Information Center

    Jordan, Sally

    2014-01-01

    Inspection of thousands of student responses to computer-marked assessment questions has brought insight into the errors made by adult distance learners of science. Most of the questions analysed were in summative use and required students to construct their own response. Both of these things increased confidence in the reliability of the…

  10. Enhancing the Mathematics Performance of College Bound Students Combining Computer Animation with Text and Narration.

    ERIC Educational Resources Information Center

    Mahmood, Salma Jesmin

    In 1985 The Texas Higher Education Coordinating Board (THECB) conducted an extensive investigation of student academic readiness for Texas' institutions of higher education. From the study it was learned that 30% of the students were unable to read, write or compute at desired performance levels. The state's response was the Texas Academic Skills…

  11. The Effect of Using Computer Animations and Activities about Teaching Patterns in Primary Mathematics

    ERIC Educational Resources Information Center

    Aktas, Mine; Bulut, Mehmet; Yuksel, Tugba

    2011-01-01

    In this study it is investigated that teaching of different pattern types by using computer animations and activities. The sample of this study was 28 eighth grade students in second semester of 2010-2011 educational years. They are at public school in Ankara. The one group pre-test post-test design was used for research methodology. Data were…

  12. Assessing the Impact of Computer Programming in Understanding Limits and Derivatives in a Secondary Mathematics Classroom

    ERIC Educational Resources Information Center

    de Castro, Christopher H.

    2011-01-01

    This study explored the development of student's conceptual understandings of limit and derivative when utilizing specifically designed computational tools. Fourteen students from a secondary Advanced Placement Calculus AB course learned and explored the limit and derivative concepts from differential calculus using visualization tools in the…

  13. The Unified English Braille Code: Examination by Science, Mathematics, and Computer Science Technical Expert Braille Readers

    ERIC Educational Resources Information Center

    Holbrook, M. Cay; MacCuspie, P. Ann

    2010-01-01

    Braille-reading mathematicians, scientists, and computer scientists were asked to examine the usability of the Unified English Braille Code (UEB) for technical materials. They had little knowledge of the code prior to the study. The research included two reading tasks, a short tutorial about UEB, and a focus group. The results indicated that the…

  14. The benefits of computer-generated feedback for mathematics problem solving.

    PubMed

    Fyfe, Emily R; Rittle-Johnson, Bethany

    2016-07-01

    The goal of the current research was to better understand when and why feedback has positive effects on learning and to identify features of feedback that may improve its efficacy. In a randomized experiment, second-grade children received instruction on a correct problem-solving strategy and then solved a set of relevant problems. Children were assigned to receive no feedback, immediate feedback, or summative feedback from the computer. On a posttest the following day, feedback resulted in higher scores relative to no feedback for children who started with low prior knowledge. Immediate feedback was particularly effective, facilitating mastery of the material for children with both low and high prior knowledge. Results suggest that minimal computer-generated feedback can be a powerful form of guidance during problem solving. PMID:27082020

  15. Multi-Strain Deterministic Chaos in Dengue Epidemiology, A Challenge for Computational Mathematics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Kooi, Bob W.; Stollenwerk, Nico

    2009-09-01

    Recently, we have analysed epidemiological models of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever, known as antibody dependent enhancement (ADE). These models show a rich variety of dynamics through bifurcations up to deterministic chaos. Including temporary cross-immunity even enlarges the parameter range of such chaotic attractors, and also gives rise to various coexisting attractors, which are difficult to identify by standard numerical bifurcation programs using continuation methods. A combination of techniques, including classical bifurcation plots and Lyapunov exponent spectra has to be applied in comparison to get further insight into such dynamical structures. Especially, Lyapunov spectra, which quantify the predictability horizon in the epidemiological system, are computationally very demanding. We show ways to speed up computations of such Lyapunov spectra by a factor of more than ten by parallelizing previously used sequential C programs. Such fast computations of Lyapunov spectra will be especially of use in future investigations of seasonally forced versions of the present models, as they are needed for data analysis.

  16. A Mathematical and Computational Approach for Integrating the Major Sources of Cell Population Heterogeneity

    PubMed Central

    Stamatakis, Michail; Zygourakis, Kyriacos

    2010-01-01

    Several approaches have been used in the past to model heterogeneity in bacterial cell populations, with each approach focusing on different source(s) of heterogeneity. However, a holistic approach that integrates all the major sources into a comprehensive framework applicable to cell populations is still lacking. In this work we present the mathematical formulation of a cell population master equation (CPME) that describes cell population dynamics and takes into account the major sources of heterogeneity, namely stochasticity in reaction, DNA-duplication, and division, as well as the random partitioning of species contents into the two daughter cells. The formulation also takes into account cell growth and respects the discrete nature of the molecular contents and cell numbers. We further develop a Monte Carlo algorithm for the simulation of the stochastic processes considered here. To benchmark our new framework, we first use it to quantify the effect of each source of heterogeneity on the intrinsic and the extrinsic phenotypic variability for the well-known two-promoter system used experimentally by Elowitz et al. (2002). We finally apply our framework to a more complicated system and demonstrate how the interplay between noisy gene expression and growth inhibition due to protein accumulation at the single cell level can result in complex behavior at the cell population level. The generality of our framework makes it suitable for studying a vast array of artificial and natural genetic networks. Using our Monte Carlo algorithm, cell population distributions can be predicted for the genetic architecture of interest, thereby quantifying the effect of stochasticity in intracellular reactions or the variability in the rate of physiological processes such as growth and division. Such in silico experiments can give insight into the behavior of cell populations and reveal the major sources contributing to cell population heterogeneity. PMID:20685607

  17. Reactant conversion in homogeneous turbulence: Mathematical modeling, computational validations and practical applications

    NASA Technical Reports Server (NTRS)

    Madnia, C. K.; Frankel, S. H.; Givi, P.

    1992-01-01

    Closed form analytical expressions are obtained for predicting the limited rate of reactant conversion in a binary reaction of the type F + rO yields (1 + r) Product in unpremixed homogeneous turbulence. These relations are obtained by means of a single point Probability Density Function (PDF) method based on the Amplitude Mapping Closure. It is demonstrated that with this model, the maximum rate of the reactants' decay can be conveniently expressed in terms of definite integrals of the Parabolic Cylinder Functions. For the cases with complete initial segregation, it is shown that the results agree very closely with those predicted by employing a Beta density of the first kind for an appropriately defined Shvab-Zeldovich scalar variable. With this assumption, the final results can also be expressed in terms of closed form analytical expressions which are based on the Incomplete Beta Functions. With both models, the dependence of the results on the stoichiometric coefficient and the equivalence ratio can be expressed in an explicit manner. For a stoichiometric mixture, the analytical results simplify significantly. In the mapping closure, these results are expressed in terms of simple trigonometric functions. For the Beta density model, they are in the form of Gamma Functions. In all the cases considered, the results are shown to agree well with data generated by Direct Numerical Simulations (DNS). Due to the simplicity of these expressions and because of nice mathematical features of the Parabolic Cylinder and the Incomplete Beta Functions, these models are recommended for estimating the limiting rate of reactant conversion in homogeneous reacting flows. These results also provide useful insights in assessing the extent of validity of turbulence closures in the modeling of unpremixed reacting flows. Some discussions are provided on the extension of the model for treating more complicated reacting systems including realistic kinetics schemes and multi-scalar mixing

  18. Mathematical Visualization

    ERIC Educational Resources Information Center

    Rogness, Jonathan

    2011-01-01

    Advances in computer graphics have provided mathematicians with the ability to create stunning visualizations, both to gain insight and to help demonstrate the beauty of mathematics to others. As educators these tools can be particularly important as we search for ways to work with students raised with constant visual stimulation, from video games…

  19. Partitioning and packing mathematical simulation models for calculation on parallel computers

    NASA Technical Reports Server (NTRS)

    Arpasi, D. J.; Milner, E. J.

    1986-01-01

    The development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system is described. Degrees of parallelism (i.e., coupling between the equations) and their impact on parallel processing are discussed. The problem of identifying computational parallelism within sets of closely coupled equations that require the exchange of current values of variables is described. A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. An algorithm which packs the equations into a minimum number of processors is also described. The results of the packing algorithm when applied to a turbojet engine model are presented in terms of processor utilization.

  20. The Interpretative Flexibility, Instrumental Evolution, and Institutional Adoption of Mathematical Software in Educational Practice: The Examples of Computer Algebra and Dynamic Geometry

    ERIC Educational Resources Information Center

    Ruthven, Kenneth

    2008-01-01

    This article examines three important facets of the incorporation of new technologies into educational practice, focusing on emergent usages of the mathematical tools of computer algebra and dynamic geometry. First, it illustrates the interpretative flexibility of these tools, highlighting important differences in ways of conceptualizing and…

  1. The Motivational Effects of Specific Teaching Activities and Computer Use for Science Learning: Findings from the Third International Mathematics and Science Study (TIMSS).

    ERIC Educational Resources Information Center

    House, J. Daniel

    2002-01-01

    Investigated the relationship between the use of specific instructional activities and classroom experiences and student motivation for learning science based on 13-year-old students in Ireland from the Third International Mathematics and Science Study (TIMSS). Highlights include correlation between computer use and student enjoyment; and gender…

  2. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    ERIC Educational Resources Information Center

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  3. Exemplary Projects. Mathematics-Science, Computer Learning and Foreign Languages. A Collection of Projects Funded through Title II of The Education for Economic Security Act.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This document is a collection of over 80 exemplary project summaries from projects funded in 39 states and the District of Columbia through Title II of the Education for Economic Security Act. The subject areas covered by these projects are limited to mathematics, science, foreign language, and computer learning. Each summary includes a…

  4. The Effect of Emphasizing Mathematical Structure in the Acquisition of Whole Number Computation Skills (Addition and Subtraction) By Seven- and Eight-Year Olds: A Clinical Investigation.

    ERIC Educational Resources Information Center

    Uprichard, A. Edward; Collura, Carolyn

    This investigation sought to determine the effect of emphasizing mathematical structure in the acquisition of computational skills by seven- and eight-year-olds. The meaningful development-of-structure approach emphasized closure, commutativity, associativity, and the identity element of addition; the inverse relationship between addition and…

  5. The Relationship between Computer-Assisted Instruction and Alternative Programs to Enhance Fifth-Grade Mathematics Success on the Annual Texas Assessment of Knowledge and Skills

    ERIC Educational Resources Information Center

    Tucker, Tommy Howard

    2009-01-01

    The purpose of this study was to determine the relationship between using computer-assisted instruction (CAI) size and success on the Texas Assessment of Knowledge and Skills (TAKS) mathematics exam with fifth-grade students in Texas compared to the effect of alternative improvement approaches used by a control group. Research explored the use of…

  6. Linear Equations and Rap Battles: How Students in a Wired Classroom Utilized the Computer as a Resource to Coordinate Personal and Mathematical Positional Identities in Hybrid Spaces

    ERIC Educational Resources Information Center

    Langer-Osuna, Jennifer

    2015-01-01

    This paper draws on the constructs of hybridity, figured worlds, and cultural capital to examine how a group of African-American students in a technology-driven, project-based algebra classroom utilized the computer as a resource to coordinate personal and mathematical positional identities during group work. Analyses of several vignettes of small…

  7. Have Basic Mathematical Skills Grown Obsolete in the Computer Age: Assessing Basic Mathematical Skills and Forecasting Performance in a Business Statistics Course

    ERIC Educational Resources Information Center

    Noser, Thomas C.; Tanner, John R.; Shah, Situl

    2008-01-01

    The purpose of this study was to measure the comprehension of basic mathematical skills of students enrolled in statistics classes at a large regional university, and to determine if the scores earned on a basic math skills test are useful in forecasting student performance in these statistics classes, and to determine if students' basic math…

  8. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  9. The Talent Development Middle School. An Elective Replacement Approach to Providing Extra Help in Math--The CATAMA Program (Computer- and Team-Assisted Mathematics Acceleration). Report No. 21.

    ERIC Educational Resources Information Center

    Mac Iver, Douglas J.; Balfanz, Robert; Plank, Stephen B.

    In Talent Development Middle Schools, students needing extra help in mathematics participate in the Computer- and Team-Assisted Mathematics Acceleration (CATAMA) course. CATAMA is an innovative combination of computer-assisted instruction and structured cooperative learning that students receive in addition to their regular math course for about…

  10. The effects of home computer access and social capital on mathematics and science achievement among Asian-American high school students in the NELS:88 data set

    NASA Astrophysics Data System (ADS)

    Quigley, Mark Declan

    The purpose of this researcher was to examine specific environmental, educational, and demographic factors and their influence on mathematics and science achievement. In particular, the researcher ascertained the interconnections of home computer access and social capital, with Asian American students and the effect on mathematics and science achievement. Coleman's theory on social capital and parental influence was used as a basis for the analysis of data. Subjects for this study were the base year students from the National Education Longitudinal Study of 1988 (NELS:88) and the subsequent follow-up survey data in 1990, 1992, and 1994. The approximate sample size for this study is 640 ethnic Asians from the NELS:88 database. The analysis was a longitudinal study based on the Student and Parent Base Year responses and the Second Follow-up survey of 1992, when the subjects were in 12th grade. Achievement test results from the NELS:88 data were used to measure achievement in mathematics and science. The NELS:88 test battery was developed to measure both individual status and a student's growth in a number of achievement areas. The subject's responses were analyzed by principal components factor analysis, weights, effect sizes, hierarchial regression analysis, and PLSPath Analysis. The results of this study were that prior ability in mathematics and science is a major influence in the student's educational achievement. Findings from the study support the view that home computer access has a negative direct effect on mathematics and science achievement for both Asian American males and females. None of the social capital factors in the study had either a negative or positive direct effect on mathematics and science achievement although some indirect effects were found. Suggestions were made toward increasing parental involvement in their children's academic endeavors. Computer access in the home should be considered related to television viewing and should be closely

  11. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    SciTech Connect

    Lee, Stephen R

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations

  12. Mathematical Epistemologies at Work.

    ERIC Educational Resources Information Center

    Noss, Richard

    In this paper, I draw together a corpus of findings derived from two sources: studies of students using computers to learn mathematics, and research into the use of mathematics in professional practice. Using this as a basis, I map some elements of a theoretical framework for understanding the nature of mathematical knowledge in use, and how it is…

  13. Revisiting Mathematics Manipulative Materials

    ERIC Educational Resources Information Center

    Swan, Paul; Marshall, Linda

    2010-01-01

    It is over 12 years since "APMC" published Bob Perry and Peter Howard's research on the use of mathematics manipulative materials in primary mathematics classrooms. Since then the availability of virtual manipulatives and associated access to computers and interactive whiteboards have caused educators to rethink the use of mathematics manipulative…

  14. Applied Vocational Mathematics.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    Developed for use in teaching a two-semester, one-unit course, this course guide is intended to aid the high school instructor in teaching mathematical problem-solving and computational skills to vocational education students. The state-adopted textbook for general mathematics III, "Applied General Mathematics" serves as the major resource…

  15. And So It Grows: Using a Computer-Based Simulation of a Population Growth Model to Integrate Biology & Mathematics

    ERIC Educational Resources Information Center

    Street, Garrett M.; Laubach, Timothy A.

    2013-01-01

    We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.

  16. A Cognitive Analysis of Developmental Mathematics Students' Errors and Misconceptions in Real Number Computations and Evaluating Algebraic Expressions

    ERIC Educational Resources Information Center

    Titus, Freddie

    2010-01-01

    Fifty percent of college-bound students graduate from high school underprepared for mathematics at the post-secondary level. As a result, thirty-five percent of college students take developmental mathematics courses. What is even more shocking is the high failure rate (ranging from 35 to 42 percent) of students enrolled in developmental…

  17. Mathematical model of computer-programmed intermittent dual countercurrent chromatography applied to hydrostatic and hydrodynamic equilibrium systems.

    PubMed

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-08-28

    Dual high-speed countercurrent chromatography (dual CCC) literally permits countercurrent flow of two immiscible solvent phases continuously through the coiled column for separation of solutes according to their partition coefficients. Application of this technique has been successfully demonstrated by separation of analytes by gas-liquid and liquid-liquid two-phase systems. However, the method cannot be directly applied to the system with a set of coiled columns connected in series, since the countercurrent process is interrupted at the junction between the columns. However, this problem can be solved by intermittent dual CCC by eluting each phase alternately through the opposite ends of the separation column. This mode of application has an advantage over the conventional dual CCC in that the method can be applied to all types of CCC systems including hydrostatic equilibrium systems such as toroidal coil CCC and centrifugal partition chromatography. Recently, the application of this method to high-speed CCC (hydrodynamic system) has been demonstrated for separation of natural products by Hewitson et al. using a set of conventional multilayer coil separation columns connected in series. Here, we have developed a mathematical model for this intermittent dual CCC system to predict retention time of the analytes, and using a simplified model system the validity of the model is justified by a series of basic studies on both hydrodynamic and hydrostatic CCC systems with a computer-programmed single sliding valve. The present method has been successfully applied to spiral tube assembly high-speed CCC (hydrodynamic system) and toroidal coil CCC (hydrostatic system) for separation of DNP-amino acid samples with two biphasic solvent systems composed of hexane-ethyl acetate-methanol-0.1M hydrochloric acid (1:1:1:1 and 4:5:4:5, v/v). PMID:19640542

  18. A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data

    PubMed Central

    Hart, Christopher E.; Sharenbroich, Lucas; Bornstein, Benjamin J.; Trout, Diane; King, Brandon; Mjolsness, Eric; Wold, Barbara J.

    2005-01-01

    Analysis of large-scale gene expression studies usually begins with gene clustering. A ubiquitous problem is that different algorithms applied to the same data inevitably give different results, and the differences are often substantial, involving a quarter or more of the genes analyzed. This raises a series of important but nettlesome questions: How are different clustering results related to each other and to the underlying data structure? Is one clustering objectively superior to another? Which differences, if any, are likely candidates to be biologically important? A systematic and quantitative way to address these questions is needed, together with an effective way to integrate and leverage expression results with other kinds of large-scale data and annotations. We developed a mathematical and computational framework to help quantify, compare, visualize and interactively mine clusterings. We show that by coupling confusion matrices with appropriate metrics (linear assignment and normalized mutual information scores), one can quantify and map differences between clusterings. A version of receiver operator characteristic analysis proved effective for quantifying and visualizing cluster quality and overlap. These methods, plus a flexible library of clustering algorithms, can be called from a new expandable set of software tools called CompClust 1.0 (). CompClust also makes it possible to relate expression clustering patterns to DNA sequence motif occurrences, protein–DNA interaction measurements and various kinds of functional annotations. Test analyses used yeast cell cycle data and revealed data structure not obvious under all algorithms. These results were then integrated with transcription motif and global protein–DNA interaction data to identify G1 regulatory modules. PMID:15886390

  19. The United State-Japan Seminar on Computer Use in School Mathematics. Proceedings. (Honolulu, Hawaii, July 15-19, 1991).

    ERIC Educational Resources Information Center

    Becker, Jerry P., Ed.; Miwa, Tatsuro, Ed.

    The purpose of a seminar attended by mathematics educators from the United States and Japan was to explore ways that use of technology in teaching problem solving can improve student learning. The following presentations were made: (1) "A Report of U.S.-Japan Cross-cultural Research on Students' Problem-Solving Behavior," (T. Miwa and T. Fujii);…

  20. Modelling for Schools/Colleges. South Bank Research Series in Mathematical/Computing Education 1. An External Paper.

    ERIC Educational Resources Information Center

    Kapadia, Ramesh, Ed.; Kyffin, Huw, Ed.

    This document consists of seven chapters. The first chapter analyzes the modeling process and gives reasons for introducing a modeling approach in classrooms, arguing that students will develop more confident and positive attitudes toward mathematics. The next five chapters contain case studies, which focus, respectively on: whether it is more…

  1. Whole-Class Scaffolding for Learning to Solve Mathematics Problems Together in a Computer-Supported Environment

    ERIC Educational Resources Information Center

    Abdu, Rotem; Schwarz, Baruch; Mavrikis, Manolis

    2015-01-01

    We investigate teachers' practices in a whole-class context when they scaffold students' learning in situations where students use technologies that facilitate group learning to solve mathematical problems in small groups. We describe teachers' practices in order to evaluate their contribution to "Whole-Class Scaffolding" in the context…

  2. How Readability and Topic Incidence Relate to Performance on Mathematics Story Problems in Computer-Based Curricula

    ERIC Educational Resources Information Center

    Walkington, Candace; Clinton, Virginia; Ritter, Steven N.; Nathan, Mitchell J.

    2015-01-01

    Solving mathematics story problems requires text comprehension skills. However, previous studies have found few connections between traditional measures of text readability and performance on story problems. We hypothesized that recently developed measures of readability and topic incidence measured by text-mining tools may illuminate associations…

  3. A Computer-Assisted Framework Based on a Cognitivist Learning Theory for Teaching Mathematics in the Early Primary Years

    ERIC Educational Resources Information Center

    Moradmand, Nasrin; Datta, Amitava; Oakley, Grace

    2012-01-01

    With the world moving rapidly into digital media and information, the ways in which learning activities in mathematics can be created and delivered are changing. However, to get the best results from the integration of ICTs in education, any application's design and development needs to be based on pedagogically appropriate principles, in terms of…

  4. Significant Developments in the Use of Computers in School Mathematics: A Sourcebook for Administrators, Teachers, and Teacher Educators.

    ERIC Educational Resources Information Center

    Moran, Thomas Patrick

    This study provides a critical review of developments in the use of computer extended instruction (CEI), and practical guidelines for implementing a computer system in a school. The study examined special projects, proposals, recommendations, and position papers. Literature reviewed was synthesized under three broad headings: (1) computer hardware…

  5. Advanced Mathematical Thinking in a Technological Workplace.

    ERIC Educational Resources Information Center

    Magajna, Zlatan; Monaghan, John

    2003-01-01

    Examines the use of mathematics in a computer-aided design and manufacturing setting, whether this mathematics is related to school mathematics, how technicians understand this mathematics, and the role of technology in the technicians' mathematics-related problem solving activities. Focuses on technician's calculations of the interval volume of…

  6. Quality Teaching in Mathematics

    ERIC Educational Resources Information Center

    Ediger, Marlow

    2012-01-01

    The best teaching possible needs to accrue in the mathematics curriculum. Pupils also need to become proficient in using mathematics in every day situations in life. Individuals buy goods and services. They pay for these in different ways, including cash. Here, persons need to be able to compute the total cost of items purchased and then pay for…

  7. Teaching Mathematics Using Steplets

    ERIC Educational Resources Information Center

    Bringslid, Odd; Norstein, Anne

    2008-01-01

    This article evaluates online mathematical content used for teaching mathematics in engineering classes and in distance education for teacher training students. In the EU projects Xmath and dMath online computer algebra modules (Steplets) for undergraduate students assembled in the Xmath eBook have been designed. Two questionnaires, a compulsory…

  8. Mathematical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on theoretical and applied mathematics are introduced. The articles cover information that might be of interest to workers in statistics and information theory, computational aids that could be used by scientists and engineers, and mathematical techniques for design and control.

  9. Mathematics Underground

    ERIC Educational Resources Information Center

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  10. Linear equations and rap battles: how students in a wired classroom utilized the computer as a resource to coordinate personal and mathematical positional identities in hybrid spaces

    NASA Astrophysics Data System (ADS)

    Langer-Osuna, Jennifer

    2015-03-01

    This paper draws on the constructs of hybridity, figured worlds, and cultural capital to examine how a group of African-American students in a technology-driven, project-based algebra classroom utilized the computer as a resource to coordinate personal and mathematical positional identities during group work. Analyses of several vignettes of small group dynamics highlight how hybridity was established as the students engaged in multiple on-task and off-task computer-based activities, each of which drew on different lived experiences and forms of cultural capital. The paper ends with a discussion on how classrooms that make use of student-led collaborative work, and where students are afforded autonomy, have the potential to support the academic engagement of students from historically marginalized communities.

  11. The Importance of Computational Skill for Answering Items in a Mathematics Problem-Solving Test: Implications for Construct Validity.

    ERIC Educational Resources Information Center

    Forsyth, Robert Al; Ansley, Timothy N.

    1982-01-01

    The importance of computational skill for answering items in the quantitative thinking subtest of the Iowa Tests of Educational Development was investigated. Results show that computational skill is not a major factor contributing to the examinee's score on the subtest. (Author/GK)

  12. Mathematics in the Mende Culture: Its General Implication for Mathematics Teaching.

    ERIC Educational Resources Information Center

    Bockarie, Alex

    1993-01-01

    Mathematics that exists in the Mende culture, an African tribe in Sierra Leone, includes counting, computation, ratios, fractions, forecasting games, and mathematical applications. Presents The Mende representations of these concepts and discusses implications of their integration into mathematics teaching. (MDH)

  13. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.

    PubMed

    Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B

    2015-12-01

    The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. PMID:26061385

  14. A New Start for Mathematics Curriculum.

    ERIC Educational Resources Information Center

    Tucker, Alan

    Arguing that a major re-thinking of the mathematics curriculum is needed, this paper urges two-year colleges to take the lead in curriculum revision. Section I suggests that the pre-calculus orientation of high school mathematics may be inappropriate, viewing mathematics related to computers and dependent on computers for computation as more…

  15. Using Information Technology in Mathematics Education.

    ERIC Educational Resources Information Center

    Tooke, D. James, Ed.; Henderson, Norma, Ed.

    This collection of essays examines the history and impact of computers in mathematics and mathematics education from the early, computer-assisted instruction efforts through LOGO, the constructivist educational software for K-9 schools developed in the 1980s, to MAPLE, the computer algebra system for mathematical problem solving developed in the…

  16. Description of a mathematical model and computer simulation of separation of the nose cap from the solid rocket booster

    NASA Technical Reports Server (NTRS)

    Schwaniger, A. J., Jr.; Murphree, H. I.

    1982-01-01

    A system of equations which models the motion of the Solid Rocket Booster Nose Cap upon separation is described. The computer program which utilizes these equations to generate nose cap trajectories is described in detail. Application of the program to simulate a rocket sled test of the nose cap separation is discussed and the results of the applications are presented. With the information given a user should be able to exercise the computer program with a minimum of effort.

  17. Mathematics, Anyone?

    ERIC Educational Resources Information Center

    Reys, Robert; Reys, Rustin

    2011-01-01

    In their dual roles as mathematics teachers and tennis coaches, the authors have worked with tennis players who have never thought about how a knowledge of mathematics might help them become "better" tennis players. They have also worked with many mathematics students who have never considered how much mathematics is associated with tennis. This…

  18. Mathematical Modeling of Complex Reaction Systems for Computer-Aided Control and its Illustration on Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Amiryan, A.

    2015-12-01

    Modeling of sequential process has its own importance in Atmospheric Chemistry. Numerical calculations which allow to predict separate stages and components of chemical reaction make possible the reaction management, such is the new and perspective direction in chemical researches. Chemical processes basically pass multiple simple stages where various atoms and radicals participate. The complex chain of chemical reactionary systems complicates their research and the research is impossible without new methods of mathematical simulation and high technologies which allow not only to explain results of experiments but also to predict dynamics of processes. A new program package is suggested for solving research problems of chemical kinetics. The program is tested on different illustrative examples on Atmospheric Chemistry and installed in various scientific and educational institutions.

  19. A Review of the Literature on Computational Errors With Whole Numbers. Mathematics Education Diagnostic and Instructional Centre (MEDIC).

    ERIC Educational Resources Information Center

    Burrows, J. K.

    Research on error patterns associated with whole number computation is reviewed. Details of the results of some of the individual studies cited are given in the appendices. In Appendix A, 33 addition errors, 27 subtraction errors, 41 multiplication errors, and 41 division errors are identified, and the frequency of these errors made by 352…

  20. Does It Matter if I Take My Mathematics Test on Computer? A Second Empirical Study of Mode Effects in NAEP

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; Braswell, James; Oranje, Andreas; Sandene, Brent; Kaplan, Bruce; Yan, Fred

    2008-01-01

    This article describes selected results from the Math Online (MOL) study, one of three field investigations sponsored by the National Center for Education Statistics (NCES) to explore the use of new technology in NAEP. Of particular interest in the MOL study was the comparability of scores from paper- and computer-based tests. A nationally…

  1. Using Computer Supported Collaborative Learning Strategies for Helping Students Acquire Self-Regulated Problem-Solving Skills in Mathematics

    ERIC Educational Resources Information Center

    Lazakidou, Georgia; Retalis, Symeon

    2010-01-01

    The main objective of this paper is to investigate the effectiveness of a proposed computer-based instructional method in Primary Education for self-regulated problem solving. The proposed instructional method is based on Sternberg's model of problem solving within an authentic context. It consists of three main phases: observation, collaboration…

  2. San Elizario Bilingual Learning Community: An Application of Technology to Reading/Writing/Mathematics/Computer Literacy. Fourth Year Evaluation Report.

    ERIC Educational Resources Information Center

    Maltby, Gregory P.; And Others

    San Elizario, Texas, is a border community with a high poverty rate, overcrowded school conditions, and a 60% limited English proficiency (LEP) rate among school students. In 1984, the school district began a cooperative university and school system project to improve Hispanic LEP students' achievement through applied computer technology. In…

  3. Effects of Online Interaction via Computer-Mediated Communication (CMC) Tools on an E-Mathematics Learning Outcome

    ERIC Educational Resources Information Center

    Okonta, Olomeruom

    2010-01-01

    Recent research studies in open and distance learning have focused on the differences between traditional learning versus online learning, the benefits of computer-mediated communication (CMC) tools in an e-learning environment, and the relationship between online discussion posts and students' achievement. In fact, there is an extant…

  4. Mathematics, Vol. 3.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The third of three volumes of a mathematics training course for Navy personnel, this text emphasizes topics needed in understanding digital computers and computer programing. The text begins with sequences and series, induction and the binomial theorem, and continues with two chapters on statistics. Arithmetic operations in number systems other…

  5. Educating in Place: Mathematics and Technology

    ERIC Educational Resources Information Center

    Klein, Robert

    2007-01-01

    Mathematics education discourse routinely promotes the idea that mathematics is everywhere. That mathematics is everywhere seems a reasonable implication of "We all use math everyday." Modern technology, mostly in the form of computational devices and control systems, is often cited as evidence of the omnipresence of mathematics.…

  6. Mathematical Geology.

    ERIC Educational Resources Information Center

    Jones, Thomas A.

    1983-01-01

    Mathematical techniques used to solve geological problems are briefly discussed (including comments on use of geostatistics). Highlights of conferences/meetings and conference papers in mathematical geology are also provided. (JN)

  7. Mathematic Terminology.

    ERIC Educational Resources Information Center

    Hanh, Vu Duc, Ed.

    This document gives a listing of mathematical terminology in both the English and Vietnamese languages. Vocabulary used in algebra and geometry is included along with a translation of mathematical symbols. (DT)

  8. Mathematics disorder

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...

  9. Computer Corner.

    ERIC Educational Resources Information Center

    Smith, David A.; And Others

    1986-01-01

    APL was invented specifically as a mathematical teaching tool, and is an excellent vehicle for teaching mathematical concepts using computers. This article illustrates the use of APL in teaching many different topics in mathematics, including logic, set theory, functions, statistics, linear algebra, and matrices. (MNS)

  10. The reality of Mathematics

    NASA Astrophysics Data System (ADS)

    Ligomenides, Panos A.

    2009-05-01

    The power of mathematics is discussed as a way of expressing reasoning, aesthetics and insight in symbolic non-verbal communication. The human culture of discovering mathematical ways of thinking in the enterprise of exploring the understanding of the nature and the evolution of our world through hypotheses, theories and experimental affirmation of the scientific notion of algorithmic and non-algorithmic [`]computation', is examined and commended upon.

  11. Mathematics and linguistics

    SciTech Connect

    Landauer, C.; Bellman, K.L.

    1996-12-31

    In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.

  12. Technical Problems in Implementing University-Level Computer-Assisted Instruction in Mathematics and Science: First Annual Report. Technical Report No. 293.

    ERIC Educational Resources Information Center

    Blaine, Lee; And Others

    Difficulties in implementing the EXCHECK/VOCAL System, a general program for mathematics instruction written in the VOCAL language, are presented in terms of informal mathematics procedures, audio and prosodic features, and proposed research. References are appended. (CMV)

  13. The Greatest Mathematical Discovery?

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  14. Computer program for analysis of high speed, single row, angular contact, spherical roller bearing, SASHBEAN. Volume 2: Mathematical formulation and analysis

    NASA Technical Reports Server (NTRS)

    Aggarwal, Arun K.

    1993-01-01

    Spherical roller bearings have typically been used in applications with speeds limited to about 5000 rpm and loads limited for operation at less than about 0.25 million DN. However, spherical roller bearings are now being designed for high load and high speed applications including aerospace applications. A computer program, SASHBEAN, was developed to provide an analytical tool to design, analyze, and predict the performance of high speed, single row, angular contact (including zero contact angle), spherical roller bearings. The material presented is the mathematical formulation and analytical methods used to develop computer program SASHBEAN. For a given set of operating conditions, the program calculates the bearings ring deflections (axial and radial), roller deflections, contact areas stresses, depth and magnitude of maximum shear stresses, axial thrust, rolling element and cage rotational speeds, lubrication parameters, fatigue lives, and rates of heat generation. Centrifugal forces and gyroscopic moments are fully considered. The program is also capable of performing steady-state and time-transient thermal analyses of the bearing system.

  15. Rainforest Mathematics

    ERIC Educational Resources Information Center

    Kilpatrick, Jeremy

    2014-01-01

    This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

  16. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

  17. Career Oriented Mathematics, Teacher's Manual. [Includes Mastering Computational Skill: A Use-Based Program; Owning an Automobile and Driving as a Career; Retail Sales; Measurement; and Area-Perimeter.

    ERIC Educational Resources Information Center

    Mahaffey, Michael L.; McKillip, William D.

    This manual is designed for teachers using the Career Oriented Mathematics units on owning an automobile and driving as a career, retail sales, measurement, and area-perimeter. The volume begins with a discussion of the philosophy and scheduling of the program which is designed to improve students' attitudes and ability in computation by…

  18. Special Section: Cognition and Instruction in Mathematics.

    ERIC Educational Resources Information Center

    Mayer, Richard E., Ed.

    1989-01-01

    This special section on cognition and mathematics contains an introduction and 13 articles on advances in the psychology of mathematics learning. The articles focus on how students learn to solve mathematics problems, including arithmetic computation problems, arithmetic word problems, and computer programing problems. (SLD)

  19. Mathematical Modeling and Pure Mathematics

    ERIC Educational Resources Information Center

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  20. Theoretical Mathematics

    NASA Astrophysics Data System (ADS)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  1. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    NASA Astrophysics Data System (ADS)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  2. Explorations in Elementary Mathematical Modeling

    ERIC Educational Resources Information Center

    Shahin, Mazen

    2010-01-01

    In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…

  3. The Mathematics of Global Change

    ERIC Educational Resources Information Center

    Kreith, Kurt

    2011-01-01

    This paper is a descriptive and preliminary report on recent efforts to address two questions: 1) Can school mathematics be used to enhance our students' ability to understand their changing world? and 2) What role might computer technology play in this regard? After recounting some of the mathematical tools that led to a better understanding of…

  4. The Assessment of Mathematical Abilities.

    ERIC Educational Resources Information Center

    Osborn, Herbert H.

    1983-01-01

    A test was given to 322 secondary students to develop a profile of mathematical ability based on four components: computation, pattern recognition, logical reasoning, and symbolic manipulation. These profiles were compared to mathematics test scores; the results verified hypotheses about individual differences in mental processes and knowledge…

  5. Student Produced Advanced Mathematical Software.

    ERIC Educational Resources Information Center

    Hogben, Leslie

    The intent of this project was to develop a course for mathematics graduate students at Iowa State University. They would design and write computer programs for use by undergraduate mathematics students, and then offer the course and actually produce the software. Phase plane graphics for ordinary differential equations was selected as the topic.…

  6. The Mathematical Sciences in 2025

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    The mathematical sciences are part of nearly all aspects of everyday life--the discipline has underpinned such beneficial modern capabilities as Internet search, medical imaging, computer animation, numerical weather predictions, and all types of digital communications. "The Mathematical Sciences in 2025" examines the current state of the…

  7. Discrete Mathematics and Its Applications

    ERIC Educational Resources Information Center

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  8. Mathematics Education.

    ERIC Educational Resources Information Center

    Langbort, Carol, Ed.; Curtis, Deborah, Ed.

    2000-01-01

    The focus of this special issue is mathematics education. All articles were written by graduates of the new masters Degree program in which students earn a Master of Arts degree in Education with a concentration in Mathematics Education at San Francisco State University. Articles include: (1) "Developing Teacher-Leaders in a Masters Degree Program…

  9. Technical Mathematics.

    ERIC Educational Resources Information Center

    Flannery, Carol A.

    This manuscript provides information and problems for teaching mathematics to vocational education students. Problems reflect applications of mathematical concepts to specific technical areas. The materials are organized into six chapters. Chapter 1 covers basic arithmetic, including fractions, decimals, ratio and proportions, percentages, and…

  10. Innovative Mathematics.

    ERIC Educational Resources Information Center

    Siskiyou County Superintendent of Schools, Yreka, CA.

    The purpose of this project was to raise the mathematics skills of 100 mathematically retarded students in grades one through eight by one year through the development of an inservice strategy prepared by four teacher specialists. Also used in the study was a control group of 100 students chosen from the median range of stanines on pretest scores…

  11. Mathematics Scrapbook

    ERIC Educational Resources Information Center

    Prochazka, Helen

    2004-01-01

    One section of this "scrapbook" section describes Pythagoras' belief in the connections between music and mathematics -- that everything in the universe was a series of harmonies and regulated by music. Another section explains why Phythagoras felt it important for women to be encouraged to learn mathematics. At least 28 women were involved in his…

  12. New Technologies in Mathematics.

    ERIC Educational Resources Information Center

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  13. Mathematics for the Baker.

    ERIC Educational Resources Information Center

    Bogdany, Melvin

    The curriculum guide offers a course of training in the fundamentals of mathematics as applied to baking. Problems specifically related to the baking trade are included to maintain a practical orientation. The course is designed to help the student develop proficiency in the basic computation of whole numbers, fractions, decimals, percentage,…

  14. Verbalizing Mathematics Using APL.

    ERIC Educational Resources Information Center

    Matthews, George E.

    The nature of "A Programing Language" (APL) is viewed as unambiguous, consistent, and powerful. It is based on the notion of functions as imperative verbs, and is used by a small but growing number of mathematicians and computer programers. Three areas of mathematical activity are addressed: calculation of arithmetic expressions, evaluation of…

  15. The Language of Mathematics

    ERIC Educational Resources Information Center

    Bruun, Faye; Diaz, Joan M.; Dykes, Valerie J.

    2015-01-01

    Students may excel in computation, but their ability to apply their skills will suffer if they do not understand the math vocabulary used in instructions and story problems. This action research project examines two methods for strengthening students' ability to communicate mathematically: (1) Journal writing and peer discussion; and (2) The…

  16. Mathematical Education of Engineers.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    The seminar reported in this document examined the university mathematics courses which should be available to future engineers, and was especially concerned with the introduction of computer science education. There are four major sections. The first reports a survey of electrical engineers in the United Kingdom which investigated how often they…

  17. Audiovisual Materials in Mathematics.

    ERIC Educational Resources Information Center

    Raab, Joseph A.

    This pamphlet lists five thousand current, readily available audiovisual materials in mathematics. These are grouped under eighteen subject areas: Advanced Calculus, Algebra, Arithmetic, Business, Calculus, Charts, Computers, Geometry, Limits, Logarithms, Logic, Number Theory, Probability, Soild Geometry, Slide Rule, Statistics, Topology, and…

  18. Mathematics: Common Curriculum Goals.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This document defines what are considered to be the essentials in a strong mathematics program for the state of Oregon for grades K-12. The common curriculum goals are organized into nine content strands: (1) number and numeration; (2) appropriate computational skills; (3) problem solving; (4) geometry and visualization skills; (5) measurement;…

  19. Mathematics, Computation, and Psychic Intelligence.

    ERIC Educational Resources Information Center

    Moise, Edwin E.

    1984-01-01

    Defines psychic intelligence as an inclination all children possess to use whatever cognitive intelligence they have for learning, adaptive behavior, and pleasure; strongly suggests that algorithmic drill usually damages the mentality of children by stifling psychic intelligence; and discusses the use of pocket calculators to prevent this effect.…

  20. Mathematical Aspects of Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Duhr, Claude

    In these lectures we discuss some of the mathematical structures that appear when computing multi-loop Feynman integrals. We focus on a specific class of special functions, the so-called multiple polylogarithms, and introduce their Hopf algebra structure. We show how these mathematical concepts are useful in physics by illustrating on several examples how these algebraic structures are useful to perform analytic computations of loop integrals, in particular to derive functional equations among polylogarithms.

  1. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  2. Mathematical Astronomy in India

    NASA Astrophysics Data System (ADS)

    Plofker, Kim

    Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.

  3. Mathematics disorder

    MedlinePlus

    The child may have problems in school, including behavior problems and loss of self-esteem. Some children with mathematics disorder become anxious or afraid when given math problems, making the problem even worse.

  4. Mathematics Detective.

    ERIC Educational Resources Information Center

    Johnson, Jerry

    1997-01-01

    Presents 12 questions related to a given real-life situation about a man shaving and the number of hairs in his beard in order to help students see the connection between mathematics and the world around them. (ASK)

  5. Mathematical Games

    ERIC Educational Resources Information Center

    Gardner, Martin

    1978-01-01

    Describes the life and work of Charles Peirce, U.S. mathematician and philosopher. His accomplishments include contributions to logic, the foundations of mathematics and scientific method, and decision theory and probability theory. (MA)

  6. Handbook for spoken mathematics (Larry's speakeasy)

    SciTech Connect

    Chang, L.A.

    1983-01-01

    The handbook gives standardized verbal expressions for written symbolic mathematical expressions. It will be useful for those who read mathematics orally, those interested in voice synthesis for the computer, and those technical writers and transcribers who may need to verbalize mathematics. (GHT)

  7. College Preparatory Mathematics: Change from Within.

    ERIC Educational Resources Information Center

    Kysh, Judith M.

    1995-01-01

    The College Preparatory Mathematics: Change from Within Project (CPM) was created to develop a rich, integrated mathematics curriculum, based on the best current wisdom of how people learn and the mathematics needed in an era of computers, and involving teachers in materials development. (MKR)

  8. Mathematical vistas

    SciTech Connect

    Malkevitch, J. ); McCarthy, D. )

    1990-01-01

    The papers in this volume represent talks given at the monthly meetings of the Mathematics Section of the New York Academy of Sciences. They reflect the operating philosophy of the Section in its efforts to make a meaningful contribution to the mathematical life of a community that is exceedingly rich in cultural resources and intellectual opportunities. Each week during the academic year a dazzling abundance of mathematical seminars and colloquia is available in the New York metropolitan area. Most of these offer highly technical treatments intended for specialists. At the New York Academy we try to provide a forum of a different sort, where interesting ideas are presented in a congenial atmosphere to a broad mathematical audience. Many of the Section talks contain substantial specialized material, but we ask our speakers to include a strong expository component aimed at working mathematicians presumed to have no expert knowledge of the topic at hand. We urge speakers to try to provide the motivating interest they themselves would like to find in an introduction to a field other than their own. The same advice has been given to the authors of the present papers, with the goal of producing a collection that will be both accessible and stimulating to mathematical minds at large. We have tried to provide variety in the mathematical vistas offered; both pure and applied mathematics are well represented. Since the papers are presented alphabetically by author, some guidance seems appropriate as to what sorts of topics are treated, and where. There are three papers in analysis: those by Engber, Narici and Beckenstein, and Todd. Engber's deals with complex analysis on compact Riemann surfaces; Narici and Beckenstein provide an introduction to analysis on non-Archimendean fields; Todd surveys an area of contemporary functional analysis.

  9. Mathematical Perspectives

    SciTech Connect

    Glimm, J.

    2009-10-14

    Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.

  10. Laboratory Mathematics

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2004-01-01

    Computers were invented to help mathematicians perform long and complicated calculations more efficiently. By the time that a computing area became a familiar space in primary and secondary schools, the initial motivation for computer use had been submerged in the many other functions that modern computers now accomplish. Not only the mathematics…

  11. Some unsolved problems in discrete mathematics and mathematical cybernetics

    NASA Astrophysics Data System (ADS)

    Korshunov, Aleksei D.

    2009-10-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  12. Learning Mathematics.

    ERIC Educational Resources Information Center

    Lapointe, Archie E.; And Others

    In 1990-91, 20 countries (Brazil, Canada, China, England, France, Hungary, Ireland, Israel, Italy, Jordan, Korea, Mozambique, Portugal, Scotland, Slovenia, Soviet Union, Spain, Switzerland, Taiwan, and the United States) surveyed the mathematics and science performance of 13-year-old students (and 14 countries also assessed 9-year-olds in the same…

  13. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  14. Relevant Mathematics.

    ERIC Educational Resources Information Center

    Catterton, Gene; And Others

    This material was developed to be used with the non college-bound student in the senior high school. It provides the student with everyday problems and experiences in which practical mathematical applications are made. The package includes worksheets pertaining to letterhead invoices, sales slips, payroll sheets, inventory sheets, carpentry and…

  15. Using Blended Learning to Facilitate the Mathematical thought Processes of Primary School Learners in a Computer Laboratory: A Case Study in Calculating Simple Areas

    ERIC Educational Resources Information Center

    Naidoo, N.; Naidoo, R.

    2007-01-01

    Primary school learners' first encounters with mathematics in a traditional learning environment often create lifelong "math phobia."(Papert 1980) The situation in a country emerging from an oppressive education system designed to educationally disempower the majority of the population is much worse. The typical scenario in a previously…

  16. Balancing Chemical Reactions With Matrix Methods and Computer Assistance. Applications of Linear Algebra to Chemistry. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 339.

    ERIC Educational Resources Information Center

    Grimaldi, Ralph P.

    This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…

  17. The Effects of Pedagogical Agents on Mathematics Anxiety and Mathematics Learning

    ERIC Educational Resources Information Center

    Wei, Quan

    2010-01-01

    The purpose of this study was to investigate the impact of the mathematics anxiety treatment messages in a computer-based environment on ninth-grade students' mathematics anxiety and mathematics learning. The study also examined whether the impact of the treatment messages would be differentiated by learner's gender and by learner's prior…

  18. Secondary Schools Curriculum Guide, Mathematics, Grades 10-12. Revised.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    Behavioral objectives for grades 10 through 12 are specified for plane geometry, algebra, general mathematics, computer mathematics, slide rule mathematics, basic college mathematics, trigonometry, analytic geometry, calculus and probability. Most sections present material in terms of portions of a school year. At least one major objective is…

  19. Pre Service Teachers' Usage of Dynamic Mathematics Software

    ERIC Educational Resources Information Center

    Bulut, Mehmet; Bulut, Neslihan

    2011-01-01

    Aim of this study is about mathematics education and dynamic mathematics software. Dynamic mathematics software provides new opportunities for using both computer algebra system and dynamic geometry software. GeoGebra selected as dynamic mathematics software in this research. In this study, it is investigated that what is the usage of pre service…

  20. Mathematics Curriculum Guide. Mathematics IV.

    ERIC Educational Resources Information Center

    Gary City Public School System, IN.

    GRADES OR AGES: Grade 12. SUBJECT MATTER: Mathematics. ORGANIZATION AND PHYSICAL APPEARANCE: The subject matter is presented in four columns: major areas, significant outcomes, observations and suggestions, and films and references. The topics include: sets-relations-functions, circular functions, graphs of circular functions, inverses of circular…

  1. Teaching Mathematical Modeling in Mathematics Education

    ERIC Educational Resources Information Center

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  2. Symbolic-Graphical Calculators: Teaching Tools for Mathematics.

    ERIC Educational Resources Information Center

    Dick, Thomas P.

    1992-01-01

    Explores the role that symbolic-graphical calculators can play in the current calls for reform in the mathematics curriculum. Discusses symbolic calculators and graphing calculators in relation to problem solving, computational skills, and mathematics instruction. (MDH)

  3. Mathematizing Darwin.

    PubMed

    Edwards, A W F

    2011-03-01

    Ernst Mayr called the first part of the evolutionary synthesis the 'Fisherian synthesis' on account of the dominant role played by R.A. Fisher in forging a mathematical theory of natural selection together with J.B.S. Haldane and Sewall Wright in the decade 1922-1932. It is here argued that Fisher's contribution relied on a close reading of Darwin's work to a much greater extent than did the contributions of Haldane and Wright, that it was synthetic in contrast to their analytic approach and that it was greatly influenced by his friendship with the Darwin family, particularly with Charles's son Leonard. PMID:21423339

  4. Computational astrophysics

    NASA Technical Reports Server (NTRS)

    Miller, Richard H.

    1987-01-01

    Astronomy is an area of applied physics in which unusually beautiful objects challenge the imagination to explain observed phenomena in terms of known laws of physics. It is a field that has stimulated the development of physical laws and of mathematical and computational methods. Current computational applications are discussed in terms of stellar and galactic evolution, galactic dynamics, and particle motions.

  5. Computer Recreations.

    ERIC Educational Resources Information Center

    Dewdney, A. K.

    1989-01-01

    Discussed are three examples of computer graphics including biomorphs, Truchet tilings, and fractal popcorn. The graphics are shown and the basic algorithm using multiple iteration of a particular function or mathematical operation is described. An illustration of a snail shell created by computer graphics is presented. (YP)

  6. A Comparison of Boys' and Girls' Feelings of Self-Confidence in Arithmetic Computation. Mathematics Education Diagnostic and Instructional Centre (MEDIC) Report No. 3-76.

    ERIC Educational Resources Information Center

    Robitaille, David F.

    Boys' and girls' achievement in arithmetic computation was compared with their feelings of self-confidence in performing computations. A total of 2654 girls and 2786 boys from grades 5 through 8 in one school system participated. Each student was given a test to assess the degree of self-confidence in methods of performing the four basic…

  7. Evaluating Definite Integrals on a Computer Theory and Practice. Applications of Numerical Analysis. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 432.

    ERIC Educational Resources Information Center

    Wagon, Stanley

    This document explores two methods of obtaining numbers that are approximations of certain definite integrals. The methods covered are the Trapezoidal Rule and Romberg's method. Since the formulas used involve considerable calculation, a computer is normally used. Some of the problems and pitfalls of computer implementation, such as roundoff…

  8. Mathematical modeling in soil science

    NASA Astrophysics Data System (ADS)

    Tarquis, Ana M.; Gasco, Gabriel; Saa-Requejo, Antonio; Méndez, Ana; Andina, Diego; Sánchez, M. Elena; Moratiel, Rubén; Antón, Jose Manuel

    2015-04-01

    Teaching in context can be defined as teaching a mathematical idea or process by using a problem, situation, or data to enhance the teaching and learning process. The same problem or situation may be used many times, at different mathematical levels to teach different objectives. A common misconception exists that assigning/teaching applications is teaching in context. While both use problems, the difference is in timing, in purpose, and in student outcome. In this work, one problem situation is explored thoroughly at different levels of understanding and other ideas are suggested for classroom explorations. Some teachers, aware of the difficulties some students have with mathematical concepts, try to teach quantitative sciences without using mathematical tools. Such attempts are not usually successful. The answer is not in discarding the mathematics, but in finding ways to teach mathematically-based concepts to students who need them but who find them difficult. The computer is an ideal tool for this purpose. To this end, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this work is to explain the followed steps to the design of the practice. Acknowledgement Universidad Politécnica de Madrid (UPM) for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012 is gratefully acknowledge.

  9. Making the Learning of Mathematics More Meaningful

    NASA Technical Reports Server (NTRS)

    Ward, Robin A.

    1998-01-01

    In the early 1980's, the National Commission on Excellence in Education responded to the call for reform in the teaching and learning of mathematics. In particular, the Commission developed a document addressing the consensus that all students need to learn more, and often different, mathematics and that instruction in mathematics must be significantly revised. In a response to these calls for mathematics education reform, the National Council of Teachers of Mathematics (NCTM) developed its Curriculum and Evaluation Standards (1989) with a two-fold purpose: 1) to create a coherent vision of what it means to be mathematically literate in a world that relies on calculators and computers, and 2) to create a set of standards to guide the revisions of school mathematics curriculum.

  10. Mathematical models in medicine: Diseases and epidemics

    SciTech Connect

    Witten, M.

    1987-01-01

    This volume presents the numerous applications of mathematics in the life sciences and medicine, and demonstrates how mathematics and computers have taken root in these fields. The work covers a variety of techniques and applications including mathematical and modelling methodology, modelling/simulation technology, and philosophical issues in model formulation, leading to speciality medical modelling, artificial intelligence, psychiatric models, medical decision making, and molecular modelling.

  11. Mathematical analysis of deception.

    SciTech Connect

    Rogers, Deanna Tamae Koike; Durgin, Nancy Ann

    2003-10-01

    This report describes the results of a three year research project about the use of deception in information protection. The work involved a collaboration between Sandia employees and students in the Center for Cyber Defenders (CCD) and at the University of California at Davis. This report includes a review of the history of deception, a discussion of some cognitive issues, an overview of previous work in deception, the results of experiments on the effects of deception on an attacker, and a mathematical model of error types associated with deception in computer systems.

  12. Developing Mathematical Concepts with Microcomputer Activities.

    ERIC Educational Resources Information Center

    Billings, Karen

    1983-01-01

    Material covers: (1) What Is a Mathematical Concept; (2) How are Mathematical Concepts Developed; (3) How Can Computers Help Children Learn Concepts; (4) Using Software; (5) Writing Programs; and (6) What Must We Do. Using software and writing programs are two very different experiences, but both can enhance concept development processes. (MP)

  13. Characterizing Interaction with Visual Mathematical Representations

    ERIC Educational Resources Information Center

    Sedig, Kamran; Sumner, Mark

    2006-01-01

    This paper presents a characterization of computer-based interactions by which learners can explore and investigate visual mathematical representations (VMRs). VMRs (e.g., geometric structures, graphs, and diagrams) refer to graphical representations that visually encode properties and relationships of mathematical structures and concepts.…

  14. CAS-Induced Difficulties in Learning Mathematics?

    ERIC Educational Resources Information Center

    Jankvist, Uffe Thomas; Misfeldt, Morten

    2015-01-01

    In recent years computer algebra systems (CAS) have become an integrated part of the upper secondary school mathematics program. Despite the many positive possibilities of CAS, there also seems to be a flip side of the coin in relation to actual difficulties in learning mathematics, not least because a strong dependence on CAS for mathematical…

  15. Mathematics and Molecules: Exploring Connections via Programming.

    ERIC Educational Resources Information Center

    Ploger, Don; Carlock, Margaret

    1996-01-01

    Examines the self-directed activity of two students who learned about molecular structure by writing computer programs. The programs displayed the solution of a mathematics problem, then the programs were extended to represent several classes of organic molecules. Different ways to enhance mathematical connections to chemistry education are…

  16. Modelling and Optimizing Mathematics Learning in Children

    ERIC Educational Resources Information Center

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  17. Learning Individualized for Canadians (LINC) Mathematics.

    ERIC Educational Resources Information Center

    Tippett, Glen

    This instruction manual for the Learning Individualized for Canadians (LINC) mathematics course is designed for use in adult basic education or retraining programs focusing on individually prescribed learning. Emphasis is on developing computational and problem-solving skills and on practical applications of mathematics to everyday life skills and…

  18. A Cryptological Way of Teaching Mathematics

    ERIC Educational Resources Information Center

    Caballero-Gil, Pino; Bruno-Castaneda, Carlos

    2007-01-01

    This work addresses the subject of mathematics education at secondary schools from a current and stimulating point of view intimately related to computational science. Cryptology is a captivating way of introducing into the classroom different mathematical subjects such as functions, matrices, modular arithmetic, combinatorics, equations,…

  19. Developing the Young Gifted Child's Mathematical Mind

    ERIC Educational Resources Information Center

    Fisher, Carol

    2016-01-01

    Schools seem firmly rooted in the emphasis on computational mastery, and seldom seem to have time to develop other areas of mathematical thinking, such as real-world problem solving and the application of mathematical concepts. All too often, children seem to do well in math in the early grades because they easily memorize the facts and the…

  20. Using Two Languages when Learning Mathematics

    ERIC Educational Resources Information Center

    Moschkovich, Judit

    2007-01-01

    This article reviews two sets of research studies from outside of mathematics education to consider how they may be relevant to the study of bilingual mathematics learners using two languages. The first set of studies is psycholinguistics experiments comparing monolinguals and bilinguals using two languages during arithmetic computation (language…

  1. Examining Classroom Interactions & Mathematical Discourses

    ERIC Educational Resources Information Center

    Grant, Melva R.

    2009-01-01

    This investigation examined interactions in three classrooms to determine how they influenced Discourses related to mathematics learning and teaching. Mathematics education literature suggests that effective mathematics instruction includes mathematical Discourses. However, effective mathematical Discourses within mathematics classrooms vary…

  2. Authenticity of Mathematical Modeling

    ERIC Educational Resources Information Center

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  3. Mining Mathematics through the Internet!

    ERIC Educational Resources Information Center

    Lynes, Kristine

    1997-01-01

    Describes the use of the Internet to investigate mathematical problems, create and share information, discover patterns and relationships, and find out more about the world. This unit investigates pet ownership and introduces children to telecommunications, the use of the computer as a tool, and scientific research methods. Other units address…

  4. Mathematics, Grade 5, Part 2.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    This curriculum bulletin is designed to help teachers meet the diverse needs in mathematics of the children in fifth grade classes. In addition to the emphasis that is placed on arithmetic computational skills, the bulletin shows how to include other areas considered important, such as concepts, skills, and ideas from algebra and geometry. The 80…

  5. Activities from the Mathematics Teacher.

    ERIC Educational Resources Information Center

    Maletsky, Evan M., Ed.; Hirsch, Christian R., Ed.

    This compilation of reprinted activities is organized into five sections around the following topics: computational skills, calculators, geometry, measurement, and problem solving. The "Activities" section has been a regular feature of the Mathematics Teacher since 1972, and space limitations prohibited the inclusion of all previously published…

  6. Mathematical modeling of piezoresistive elements

    NASA Astrophysics Data System (ADS)

    Geremias, M.; Moreira, R. C.; Rasia, L. A.; Moi, A.

    2015-10-01

    This article presents the longitudinal piezoresistive coefficients for thin film amorphous semiconductor type a-C:H. Experimental data and mathematical models have been used in computer simulations. The results show that a reduction of the longitudinal piezoresistive coefficient occurs due to the increased concentration of impurities in the films analyzed.

  7. BASIC Simulation Programs; Volumes III and IV. Mathematics, Physics.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    The computer programs presented here were developed as a part of the Huntington Computer Project. They were tested on a Digital Equipment Corporation TSS-8 time-shared computer and run in a version of BASIC. Mathematics and physics programs are presented in this volume. The 20 mathematics programs include ones which review multiplication skills;…

  8. Free Mathematics Software Resources--Which Word Caught Your Eye?

    ERIC Educational Resources Information Center

    Reeves, Howard

    2007-01-01

    Computers have been in schools and indeed some mathematics classrooms for more than 35 years. Some schools have chosen to centralise their computers in laboratories, while others have a mix of configurations and networks. Whatever the case, how extensive has been the classroom use of computers for teaching and learning in mathematics? What has…

  9. Technology, Mathematics, and the Young Child.

    ERIC Educational Resources Information Center

    Clements, Douglas H.

    2000-01-01

    Examines two types of computer environments suggested by the new Standards, one of which is the computer manipulative and the other a navigational environment such as the computer turtle. Discusses the contribution that these environments can make to young children's mathematics learning. (Contains 12 references.) (ASK)

  10. Meaning and Process in Mathematics and Programming.

    ERIC Educational Resources Information Center

    Grogono, Peter

    1989-01-01

    Trends in computer programing language design are described and children's difficulties in learning to write programs for mathematics problems are considered. Languages are compared under the headings of imperative programing, functional programing, logic programing, and pictures. (DC)

  11. A Seminar in Mathematical Model-Building.

    ERIC Educational Resources Information Center

    Smith, David A.

    1979-01-01

    A course in mathematical model-building is described. Suggested modeling projects include: urban problems, biology and ecology, economics, psychology, games and gaming, cosmology, medicine, history, computer science, energy, and music. (MK)

  12. The Use and Misuse of Mathematical Symbolism

    ERIC Educational Resources Information Center

    Lichtenberg, Donovan R.

    1978-01-01

    Many of the difficulties that students have with mathematical symbolism seem to stem from the use of a horizontal form for an equation and a vertical form for computation. The differences between these two forms are discussed. (JT)

  13. Mathematics and Cognition

    NASA Astrophysics Data System (ADS)

    Kasturirangan, Rajesh

    2014-07-01

    Mathematics is a human pursuit. Whether the truths of mathematics lie outside the human mind or emerge out of it, the actual practice of mathematics is conducted by human beings. In other words, human mathematics is the only kind of mathematics that we can pursue and human mathematics has to be built on top of cognitive capacities that are possessed by all human beings. Another way of stating the same claim is that mathematics is experienced by human beings using their cognitive capacities. This paper argues that exploring the experience of mathematics is a useful way to make headway on the foundations of mathematics. Focusing on the experience of mathematics is an empirical approach to the study of mathematics that sidesteps some of the thorniest debates from an earlier era about Platonism and Formalism in the foundations of mathematics.

  14. Computational Toxicology (S)

    EPA Science Inventory

    The emerging field of computational toxicology applies mathematical and computer models and molecular biological and chemical approaches to explore both qualitative and quantitative relationships between sources of environmental pollutant exposure and adverse health outcomes. Th...

  15. Human Computers 1947

    NASA Technical Reports Server (NTRS)

    1947-01-01

    Langley's human computers at work in 1947. The female presence at Langley, who performed mathematical computations for male staff. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 48), by James Schultz.

  16. A Computer-Assisted Instructional Software Program in Mathematical Problem-Solving Skills for Medication Administration for Beginning Baccalaureate Nursing Students at San Jose State University.

    ERIC Educational Resources Information Center

    Wahl, Sharon C.

    Nursing educators and administrators are concerned about medication errors made by students which jeopardize patient safety. The inability to conceptualize and calculate medication dosages, often related to math anxiety, is implicated in such errors. A computer-assisted instruction (CAI) program is seen as a viable method of allowing students to…

  17. Effects of the Multiple Solutions and Question Prompts on Generalization and Justification for Non-Routine Mathematical Problem Solving in a Computer Game Context

    ERIC Educational Resources Information Center

    Lee, Chun-Yi; Chen, Ming-Jang; Chang, Wen-Long

    2014-01-01

    The aim of this study is to investigate the effects of solution methods and question prompts on generalization and justification of non-routine problem solving for Grade 9 students. The learning activities are based on the context of the frog jumping game. In addition, related computer tools were used to support generalization and justification of…

  18. The Effect of Using XO Computers on Students' Mathematics and Reading Abilities: Evidences from Learning Achievement Tests Conducted in Primary Education Schools in Mongolia

    ERIC Educational Resources Information Center

    Yamaguchi, Shinobu; Sukhbaatar, Javzan; Takada, Jun-ichi; Dayan-Ochir, Khishigbuyan

    2014-01-01

    In 2008, Mongolia took part in One Laptop per Child (OLPC) project. Since that time, over 10,000 students in grades 2-5 in 43 primary education schools are using XO computers. This paper presents the findings of a study conducted in 2012 to evaluate the impact of the OLPC initiatives on students' literacy and math skills. This study covered 14…

  19. Discrete Mathematics and the Secondary Mathematics Curriculum.

    ERIC Educational Resources Information Center

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  20. Mathematical Language and Advanced Mathematics Learning

    ERIC Educational Resources Information Center

    Ferrari, Pier Luigi

    2004-01-01

    This paper is concerned with the role of language in mathematics learning at college level. Its main aim is to provide a perspective on mathematical language appropriate to effectively interpret students' linguistic behaviors in mathematics and to suggest new teaching ideas. Examples are given to show that the explanation of students' behaviors…

  1. Mathematical Modelling Approach in Mathematics Education

    ERIC Educational Resources Information Center

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  2. Mathematics for Life: Sustainable Mathematics Education

    ERIC Educational Resources Information Center

    Renert, Moshe

    2011-01-01

    Ecological sustainability has not been a major focus of mathematics education research, even though it has attracted considerable attention in other areas of educational research in the past decade. The connections between mathematics education and ecological sustainability are not readily apparent. This paper explores how mathematics educators…

  3. Mathematical Story: A Metaphor for Mathematics Curriculum

    ERIC Educational Resources Information Center

    Dietiker, Leslie

    2015-01-01

    This paper proposes a theoretical framework for interpreting the content found in mathematics curriculum in order to offer teachers and other mathematics educators comprehensive conceptual tools with which to make curricular decisions. More specifically, it describes a metaphor of "mathematics curriculum as story" and defines and…

  4. Logic via Computer Programming.

    ERIC Educational Resources Information Center

    Wieschenberg, Agnes A.

    This paper proposed the question "How do we teach logical thinking and sophisticated mathematics to unsophisticated college students?" One answer among many is through the writing of computer programs. The writing of computer algorithms is mathematical problem solving and logic in disguise and it may attract students who would otherwise stop…

  5. The NIST Digital Library of Mathematical Functions

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.

    1998-05-01

    Not updated since its 1964 publication, the Handbook of Mathematical Functions (Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables), ed. M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series v. 55 (U. S. Government Printing Office, Washington DC, 1964) presents the state of applied mathematics 40 years ago, in a form suited for computation in an age of numerical tables and mechanical calculators. Yet it remains a workhorse reference of AMO physics and of other scientific fields, having been cited in archival literature over 26,000 times since 1974 (at a still-increasing rate). To incorporate subsequent advances in basic mathematical knowledge, in computational power and technique, and in dissemination of information, the National Institute of Standards and Technology has begun a project to provide a modern source of evaluated mathematical reference data: the NIST Digital Library of Mathematical Functions. The Digital Library is designed to serve the needs of users of applied mathematics via the World Wide Web. We shall demonstrate the operation of a prototype, and hope to elicit expressed needs of the AMO community.

  6. Chinese Calendar and Mathematical Astronomy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The Chinese calendar (li 历) was a system of mathematical astronomy that included mathematical techniques for the computation of celestial movements. It was the basis for producing astronomical ephemerides and annual almanacs. Calendar making started early in China. Since the Great Inception calendar reform in 104 BC, China has produced about 100 calendars (astronomical systems). The focus of calendar making was the prediction of solar, lunar, and planetary motions. As astronomy developed, new observational discoveries were incorporated into the calendar to make the system more precise. The history of astronomy in ancient China was largely a history of calendar making.

  7. Elementary Education Majors Performance on a Basic Mathematics Test.

    ERIC Educational Resources Information Center

    Larson, Carol Novillis; Choroszy, Melisa N.

    Described is the mathematics achievement of 391 elementary education majors at the University of Arizona. Students were administered two subtests of the California Achievement Test: the Mathematics Computation Subtest and the Mathematics Concepts and Application Subtest. The CAT was administered in a non-standard manner. Students were allowed…

  8. Using Dynamic Software in Mathematics: The Case of Reflection Symmetry

    ERIC Educational Resources Information Center

    Tatar, Enver; Akkaya, Adnan; Kagizmanli, Türkan Berrin

    2014-01-01

    This study was carried out to examine the effects of computer-assisted instruction (CAI) using dynamic software on the achievement of students in mathematics in the topic of reflection symmetry. The study also aimed to ascertain the pre-service mathematics teachers' opinions on the use of CAI in mathematics lessons. In the study, a mixed…

  9. The Role of Mathematics Learning Centres in Engineering Education.

    ERIC Educational Resources Information Center

    Fuller, Milton

    2002-01-01

    Points out the diminishing demand for mathematics undergraduate programs and the strong trend in engineering education to make greater use of computer coursework such as Mathcad, Matlab, and other software systems for the mathematical and statistical components of engineering programs. Describes the changing role of mathematics learning centers…

  10. Chapter 1 Corrective Mathematics Program 1989-90. OREA Report.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.

    The Chapter 1 Corrective Mathematics Program provided supplementary mathematics instruction to Chapter 1-eligible students in New York City nonpublic schools. Its goals were to strengthen students' understanding of mathematical concepts, to improve their ability to perform computations and solve problems, and to assist them in applying the…

  11. Automated reasoning and enumerative search, with applications to mathematics

    SciTech Connect

    Zhang, Jian; Wos, L.

    1991-12-31

    More and more mathematical problems are being solved with the aid of computers. In this paper, we examine the applications of reasoning and search programs to mathematics. It is also shown that the combination of these two techniques can solve mathematical problems more effectively.

  12. Automated reasoning and enumerative search, with applications to mathematics

    SciTech Connect

    Zhang, Jian ); Wos, L. )

    1991-01-01

    More and more mathematical problems are being solved with the aid of computers. In this paper, we examine the applications of reasoning and search programs to mathematics. It is also shown that the combination of these two techniques can solve mathematical problems more effectively.

  13. Integrating First-Year Technology and Finite Mathematics Courses

    ERIC Educational Resources Information Center

    Shafii-Mousavi, Morteza; Kochanowski, Paul

    2006-01-01

    This paper describes an interdisciplinary project-based mathematics course linked to a computer technology course. The linkage encourages an appreciation of mathematics and technology as students see an immediate use for these skills in completing actual real-world projects. Linking mathematics and technology integrates subjects taught in…

  14. A Multifaceted Mathematical Approach for Complex Systems

    SciTech Connect

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  15. A Study of Visualization for Mathematics Education

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.

    2008-01-01

    Graphical representations such as figures, illustrations, and diagrams play a critical role in mathematics and they are equally important in mathematics education. However, graphical representations in mathematics textbooks are static, Le. they are used to illustrate only a specific example or a limited set. of examples. By using computer software to visualize mathematical principles, virtually there is no limit to the number of specific cases and examples that can be demonstrated. However, we have not seen widespread adoption of visualization software in mathematics education. There are currently a number of software packages that provide visualization of mathematics for research and also software packages specifically developed for mathematics education. We conducted a survey of mathematics visualization software packages, summarized their features and user bases, and analyzed their limitations. In this survey, we focused on evaluating the software packages for their use with mathematical subjects adopted by institutions of secondary education in the United States (middle schools and high schools), including algebra, geometry, trigonometry, and calculus. We found that cost, complexity, and lack of flexibility are the major factors that hinder the widespread use of mathematics visualization software in education.

  16. A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    NASA Technical Reports Server (NTRS)

    Zolotukhin, V. G.; Kolosov, B. I.; Usikov, D. A.; Borisenko, V. I.; Mosin, S. T.; Gorokhov, V. N.

    1980-01-01

    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed.

  17. Mathematical opportunities in nonlinear optics

    NASA Astrophysics Data System (ADS)

    The Board on Mathematical Sciences takes as one of its functions that of identifying areas of important or emerging research activity and focusing attention on them. The Board seeks to stimulate cross-disciplinary research between mathematical sciences and disciplines. This survey notes that on the technological side nonlinear optics is likely to revolutionize future telecommunications and computer technologies, while on the mathematical side it is an ideal subject for the applied mathematician, who is particularly well positioned to make major contributions. Topics covered include wave propagation and the nonlinear Schrodinger equation; soliton propagation in the optical fibers; nonlinear waveguides; four-wave mixing, phase conjunction, and beam cleanup; lasers; optical bistability, logic elements, and information storing patterns; and spatiotemporal complexity and turbulence in nonlinear optics.

  18. Computerized process control system for the ORR-PSF irradiation experiment. Part 2: mathematical basis and computer implementation of the temperature control algorithm. Volume 2

    SciTech Connect

    Miller, L.F.

    1980-11-01

    A brief description of the Oak Ridge Reactor Pool Side Facility (ORR-PSF) and of the associated control system is given. The ORR-PSF capsule temperatures are controlled by a digital computer which regulates the percent power delivered to electrical heaters. The total electrical power which can be input to a particular heater is determined by the setting of an associated variac. This report concentrates on the description of the ORR-PSF irradiation experiment computer control algorithm. The algorithm is an implementation of a discrete-time, state variable, optimal control approach. The Riccati equation is solved for a discretized system model to determine the control law. Experiments performed to obtain system model parameters are described. Results of performance evaluation experiments are also presented. The control algorithm maintains both capsule temperatures within a 288/sup 0/C +-10/sup 0/C band as required. The pressure vessel capsule temperatures are effectively maintained within a 288/sup 0/C +-5/sup 0/C band.

  19. Transforming Primary Mathematics

    ERIC Educational Resources Information Center

    Askew, Mike

    2011-01-01

    What is good mathematics teaching? What is mathematics teaching good for? Who is mathematics teaching for? These are just some of the questions addressed in "Transforming Primary Mathematics", a highly timely new resource for teachers which accessibly sets out the key theories and latest research in primary maths today. Under-pinned by findings…

  20. It's all just mathematics

    NASA Astrophysics Data System (ADS)

    Tegmark, Max

    2014-02-01

    The world can be described using mathematical equations and numbers, but why does maths do it so well? In his new book Our Mathematical Universe, a section of which is abridged and edited here, Max Tegmark makes the radical proposal that our reality isn't just described by mathematics - it is mathematics.

  1. Students as Mathematics Consultants

    ERIC Educational Resources Information Center

    Jensen, Jennifer L.

    2013-01-01

    If students are going to develop reasoning and thinking skills, use their mathematical knowledge, and recognize the relevance of mathematics in their lives, they need to experience mathematics in meaningful ways. Only then will their mathematical skills be transferrable to all other parts of their lives. To promote such flexible mathematical…

  2. Functioning Mathematically: 1

    ERIC Educational Resources Information Center

    Cain, David

    2007-01-01

    This article presents the first part of the closing address given by the author to the 2007 Association of Teachers of Mathematics (ATM) Easter conference at Loughborough. In his closing address, the author focuses on functioning mathematically as opposed to functional mathematics. His view of functional mathematics is that the focus is on someone…

  3. Mathematics Lessons without ...

    ERIC Educational Resources Information Center

    Cross, Kath; Hibbs, John

    2006-01-01

    In the Association of Teachers of Mathematics (ATM) Easter conference, 2006, the authors presented a list of important aspects of mathematics lessons, recommended for students to have a positive attitude to mathematics and for teachers to acquire effective teaching. The following are discussed in detail: (1) Mathematics lessons without good…

  4. Computer Symbolic Math & Education: A Radical Proposal.

    ERIC Educational Resources Information Center

    Stoutemyer, David R.

    This document promotes computer symbolic mathematics and computer algebra as ideal instructional materials for mathematics, science, and engineering students. Further, computer algebra is viewed as appropriate for all students throughout the mathematics curriculum, by serving a vast area of mutual reinforcement and cross-motivation between…

  5. Studies in Mathematics, Volume IX. A Brief Course in Mathematics for Elementary School Teachers. Revised Edition.

    ERIC Educational Resources Information Center

    Bell, Max S.; And Others

    The purpose of this text is to help elementary school teachers achieve balance in the teaching of mathematics. Children must acquire (1) computational skills, (2) conceptual ideas, and (3) knowledge of applications of mathematics. The text provides reading materials for the teacher as well as problems and exercises to help fix the ideas in mind.…

  6. Interest in mathematics and science among students having high mathematics aptitude

    NASA Astrophysics Data System (ADS)

    Ely, Jane Alice

    The study investigates why men and women differ in their interest in mathematics and science and in the pursuit of careers in mathematics and science. The most persistent gender differential in educational standard testing is the scores in mathematics achievement. The mean Scholastic Aptitude Test (Mathematics) scores for women are consistently below that of men by about 40 points. One result of this gender differential in mathematics is that few women entertain a career requiring a robust knowledge of higher mathematics (i.e. engineering, computing, or the physical sciences). A large body of literature has been written attempting to explain why this is happening. Biological, cultural, structural and psychological explanations have been suggested and empirically examined. Controlling for mathematical ability is one method of sorting out these explanations. Eliminating mathematical ability as a factor, this dissertation reports the results of a study of men and women college students who all had high mathematics ability. Thus, any differences we found among them would have to be a result of other variables. Using a Mathematics Placement Exam and the SAT-M, forty-two students (12 males and 30 females) with high scores in both were interviewed. Student were asked about their experiences in high school and college mathematics, their career choices, and their attitudes toward mathematics. The findings, that there were no gender differences in the course selection, attitudes towards mathematics, and career choice, differed from my initial expectations. This negative finding suggests that women with high ability in mathematics are just as likely as men to pursue interests in mathematics and related courses in college and in selecting careers.

  7. Mathematics Achievement in Schools Having and Not Having CMI: An Assessment of MICA. E.S.E.A. Title III Computer Managed Instruction Program, MICA Management of Instruction with Computer Assistance.

    ERIC Educational Resources Information Center

    Roecks, Alan L.; Chapin, John

    After presenting a brief discussion of the history and use of Computer Managed Instruction (CMI), the author describes the development and evaluation of a CMI system in the Madison Metropolitan School District (Wisconsin). Variables considered in the evaluation included efficiency of the software components, quality of instruction, and changes and…

  8. How Computer Graphics Work.

    ERIC Educational Resources Information Center

    Prosise, Jeff

    This document presents the principles behind modern computer graphics without straying into the arcane languages of mathematics and computer science. Illustrations accompany the clear, step-by-step explanations that describe how computers draw pictures. The 22 chapters of the book are organized into 5 sections. "Part 1: Computer Graphics in…

  9. More Realistics Treatment of the Simple Pendulum without Difficult Mathematics

    ERIC Educational Resources Information Center

    Miller, B. J.

    1974-01-01

    Discusses the use of a simple computer exercise to derive a general law for simple pendulum phenomena with square-law damping. Indicates that less mathematical skills are requires in the computer treatment than in the analytical treatment.

  10. Ten Problems in Experimental Mathematics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.; Kapoor, Vishaal; Weisstein, Eric

    2004-09-30

    This article was stimulated by the recent SIAM ''100 DigitChallenge'' of Nick Trefethen, beautifully described in a recent book. Indeed, these ten numeric challenge problems are also listed in a recent book by two of present authors, where they are followed by the ten symbolic/numeric challenge problems that are discussed in this article. Our intent was to present ten problems that are characteristic of the sorts of problems that commonly arise in ''experimental mathematics''. The challenge in each case is to obtain a high precision numeric evaluation of the quantity, and then, if possible, to obtain a symbolic answer, ideally one with proof. Our goal in this article is to provide solutions to these ten problems, and in the process present a concise account of how one combines symbolic and numeric computation, which may be termed ''hybrid computation'', in the process of mathematical discovery.

  11. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    SciTech Connect

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

  12. On the Integration of Digital Technologies into Mathematics Classrooms

    ERIC Educational Resources Information Center

    Hoyles, Celia; Noss, Richard; Kent, Phillip

    2004-01-01

    Trouche's [Third Computer Algebra in Mathematics Education Symposiums, Reims, France, June 2003] presentation at the Third Computer Algebra in Mathematics Education Symposium focused on the notions of instrumental genesis and of orchestration: the former concerning the mutual transformation of learner and artefact in the course of constructing…

  13. Assessing Effects of Technology Usage on Mathematics Learning

    ERIC Educational Resources Information Center

    Lynch, Julianne

    2006-01-01

    Computer-based technologies are now commonplace in classrooms, and the integration of these media into the teaching and learning of mathematics is supported by government policy in most developed countries. However, many questions about the impact of computer-based technologies on classroom mathematics learning remain unanswered, and debates about…

  14. Mathematical modelling in MHD technology

    SciTech Connect

    Scheindlin, A.E.; Medin, S.A. )

    1990-01-01

    The technological scheme and the general parameters of the commercial scale pilot MHD power plant are described. The characteristics of the flow train components and the electrical equipment are discussed. The basic ideas of the mathematical modelling of the processes and the devices operation in MHD systems are considered. The application of different description levels in computer simulation is analyzed and the examples of typical solutions are presented.

  15. Multiplayer Activities That Develop Mathematical Coordination.

    ERIC Educational Resources Information Center

    Bricker, Lauren J.; Tanimoto, Steven L.; Rothenberg, Alex I.; Hutama, Danny C.; Wong, Tina H.

    Four computer applications are presented that encourage students to develop "mathematical coordination"--the ability to manipulate numerical variables in cooperation with other students so as to achieve a definite goal. The programs enable a form of computer-supported cooperative learning (CSCL). This paper describes the rationale and design of…

  16. Mathematical Modelling: A New Approach to Teaching Applied Mathematics.

    ERIC Educational Resources Information Center

    Burghes, D. N.; Borrie, M. S.

    1979-01-01

    Describes the advantages of mathematical modeling approach in teaching applied mathematics and gives many suggestions for suitable material which illustrates the links between real problems and mathematics. (GA)

  17. Mathematics Coursework Regulates Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, Xin; Wilkins, Jesse L. M.

    2007-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), we examined the extent to which students' mathematics coursework regulates (influences) the rate of growth in mathematics achievement during middle and high school. Graphical analysis showed that students who started middle school with higher achievement took individual mathematics…

  18. Preparatory Mathematics Programs in Departments of Mathematics.

    ERIC Educational Resources Information Center

    Lindberg, Karl

    This paper reports on a survey of remedial mathematics programs offered at the college level. The paper is divided into five sections. Section I describes the sampling procedures used in the study. In Section II, the occurrence of remedial mathematics programs in the various types of institutions and some general characteristics of these programs…

  19. Negotiation of Mathematical Meaning and Learning Mathematics.

    ERIC Educational Resources Information Center

    Voigt, Jorg

    1994-01-01

    Presents a case study of a first-grade class and their teacher who were observed as they ascribed mathematical meanings of numbers and of numerical operations to empirical phenomena. Differences in ascriptions led to negotiation of meanings. Discusses some indirect relations between social interaction and mathematics learning. (Contains 60…

  20. Mathematical and statistical analysis

    NASA Technical Reports Server (NTRS)

    Houston, A. Glen

    1988-01-01

    The goal of the mathematical and statistical analysis component of RICIS is to research, develop, and evaluate mathematical and statistical techniques for aerospace technology applications. Specific research areas of interest include modeling, simulation, experiment design, reliability assessment, and numerical analysis.