ERIC Educational Resources Information Center
Becker, Kurt Henry; Park, Kyungsuk
2011-01-01
Within the literature there has been a call for the integration of science, technology, engineering, and mathematics (STEM) disciplines. Little research has been conducted to investigate the effects of integrative approaches among STEM subjects. The purpose of this study was to synthesize findings from existing research on the effects of…
STEM: Science Technology Engineering Mathematics
ERIC Educational Resources Information Center
Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle
2011-01-01
The generative economic power and social influence of Science, Technology, Engineering, and Mathematics (STEM) has made the production of a capable science and engineering workforce a priority among business and policy leaders. They are rightly concerned that without a robust STEM workforce, the nation will become less competitive in the global…
Mathematical Modeling: A Bridge to STEM Education
ERIC Educational Resources Information Center
Kertil, Mahmut; Gurel, Cem
2016-01-01
The purpose of this study is making a theoretical discussion on the relationship between mathematical modeling and integrated STEM education. First of all, STEM education perspective and the construct of mathematical modeling in mathematics education is introduced. A review of literature is provided on how mathematical modeling literature may…
iSTEM: Learning Mathematics through Minecraft
ERIC Educational Resources Information Center
Bos, Beth; Wilder, Lucy; Cook, Marcelina; O'Donnell, Ryan
2014-01-01
The Common Core State Standards can be taught with Minecraft, an interactive creative Lego®-like game. Integrating Science, Technology, Engineering, and Mathematics (iSTEM) authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K-grade 6 classrooms.
STEM: Science Technology Engineering Mathematics. Executive Summary
ERIC Educational Resources Information Center
Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle
2011-01-01
Science, Technology, Engineering, and Mathematics (STEM) occupations are critical to the nation's continued economic competitiveness because of their direct ties to innovation, economic growth, and productivity, even though they will only be 5 percent of all jobs in the U.S. economy by 2018. The disproportionate influence of STEM raises a…
STEM Gives Meaning to Mathematics
ERIC Educational Resources Information Center
Hefty, Lukas J.
2015-01-01
The National Council of Teachers of Mathematics' (NCTM's) "Principles and Standards for School Mathematics" (2000) outlines fi ve Process Standards that are essential for developing deep understanding of mathematics: (1) Problem Solving; (2) Reasoning and Proof; (3) Communication; (4) Connections; and (5) Representation. The Common Core…
Technical Subjects. Mathematics. Science. Curriculum RP-27.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto.
GRADES OR AGES: Grades 9-12. SUBJECT MATTER: Technical subjects and special mathematics and science courses for technical students. Technical subjects include air conditioning, auto mechanics, carpentry, drafting, applied electronics, masonry, painting, plumbing, service station operation, welding, and woodworking. ORGANIZATION AND PHYSICAL…
The Future for Mathematics Subject Associations
ERIC Educational Resources Information Center
Pope, Sue
2012-01-01
Subject associations have developed, over the years, to serve the interests of the mathematics education community. We live in changing times, and education is often at the forefront of such change. So, to remain contemporary, relevant, and to have a regard for the future in a world influenced by technology, it is suggested that there is a need…
Views of Science and Mathematics Pre-Service Teachers Regarding STEM
ERIC Educational Resources Information Center
Cinar, Sinan; Pirasa, Nimet; Sadoglu, Gunay Palic
2016-01-01
STEM education is an integrated approach that combines science, technology, engineering and mathematics disciplines with different subjects in real life situations, together and simultaneously. The views of pre-service teachers introduced to STEM by means of workshops that presented information and scales on STEM education regarding the subject…
Key Issue: Recruiting Science, Technology, Engineering, and Mathematics (STEM) Teachers
ERIC Educational Resources Information Center
McGraner, Kristin L.
2009-01-01
A STEM teacher is one who teaches in the fields of science, technology, engineering, and mathematics. In K-12 schooling, most STEM teachers instruct mathematics and science classes, which continue to be critical shortage areas. As part of a comprehensive human capital strategy, designing recruitment initiatives to attract qualified STEM teachers…
What Software to Use in the Teaching of Mathematical Subjects?
ERIC Educational Resources Information Center
Berežný, Štefan
2015-01-01
We can consider two basic views, when using mathematical software in the teaching of mathematical subjects. First: How to learn to use specific software for the specific tasks, e. g., software Statistica for the subjects of Applied statistics, probability and mathematical statistics, or financial mathematics. Second: How to learn to use the…
Science, Technology, Engineering, Mathematics (STEM): Catalyzing Change Amid the Confusion
ERIC Educational Resources Information Center
Barakos, Lynn; Lujan, Vanessa; Strang, Craig
2012-01-01
Over the past eight years or so, educators have struggled to make sense of the many views and definitions of science, technology, engineering, and mathematics (STEM) education and what constitutes quality in STEM practices. The multitude of recent STEM funding opportunities has done little to create a common understanding about how to best engage…
STEM: Science Technology Engineering Mathematics. State-Level Analysis
ERIC Educational Resources Information Center
Carnevale, Anthony P.; Smith, Nicole; Melton, Michelle
2011-01-01
The science, technology, engineering, and mathematics (STEM) state-level analysis provides policymakers, educators, state government officials, and others with details on the projections of STEM jobs through 2018. This report delivers a state-by-state snapshot of the demand for STEM jobs, including: (1) The number of forecast net new and…
ERIC Educational Resources Information Center
Vierra, Vicki Ann
2011-01-01
This descriptive study compares the entry-level pedagogical content knowledge of single subject mathematics credential candidates based on career status and undergraduate majors. Career changers from science, technology, engineering or math (STEM) fields are compared to first career candidates to see if they bring different skills and knowledge to…
Preservice Teachers' Subject Matter Knowledge of Mathematics
ERIC Educational Resources Information Center
Menon, Ramakrishnan
2009-01-01
Sixty four preservice teachers taking a mathematics methods class for middle schools were given 3 math problems: multiply a three digit number by a two digit number; divide a whole number by a fraction; and compare the volume of two cylinders made in different ways from the same rectangular sheet. They were to a) solve them, explaining their…
Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors
ERIC Educational Resources Information Center
Watkins, Jessica; Mazur, Eric
2013-01-01
In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…
Women of Color in Science, Technology, Engineering, and Mathematics (STEM)
ERIC Educational Resources Information Center
Johnson, Dawn R.
2011-01-01
Scholars have theorized and examined women's underrepresentation in science, technology, engineering and mathematics (STEM) fields for well over thirty years. However, much of this research has paid little attention to issues of racial and ethnic diversity among women, suggesting that all women have the same experiences in STEM. Women of color…
ERIC Educational Resources Information Center
James, Jamie Smith
2014-01-01
The purpose of this quantitative research study was to evaluate to what degree Science, Technology, Engineering and Mathematics (STEM) education influenced mathematics and science achievement of seventh grade students in one Middle Tennessee school district. This research used an independent samples t test at the a = 0.05 level to evaluate…
Pharmacy Students’ Perceptions of Natural Science and Mathematics Subjects
Wilson, Sarah Ellen; Wan, Kai-Wai
2014-01-01
Objective. To determine the level of importance pharmacy students placed on science and mathematics subjects for pursuing a career in pharmacy. Method. Two hundred fifty-four students completed a survey instrument developed to investigate students’ perceptions of the relevance of science and mathematics subjects to a career in pharmacy. Pharmacy students in all 4 years of a master of pharmacy (MPharm) degree program were invited to complete the survey instrument. Results. Students viewed chemistry-based and biology-based subjects as relevant to a pharmacy career, whereas mathematics subjects such as physics, logarithms, statistics, and algebra were not viewed important to a career in pharmacy. Conclusion. Students’ experience in pharmacy and year of study influenced their perceptions of subjects relevant to a pharmacy career. Pharmacy educators need to consider how they can help students recognize the importance of scientific knowledge earlier in the pharmacy curriculum. PMID:25147390
Stem Cell Fate Is a Touchy Subject.
Smith, Quinton; Gerecht, Sharon
2016-09-01
Uncoupling synergistic interactions between physio-chemical cues that guide stem cell fate may improve efforts to direct their differentiation in culture. Using supramolecular hydrogels, Alakpa et al. (2016) demonstrate that mesenchymal stem cell differentiation is paired to depletion of bioactive metabolites, which can be utilized to chemically induce osteoblast and chondrocyte fate. PMID:27588745
Lacan, Subjectivity and the Task of Mathematics Education Research
ERIC Educational Resources Information Center
Brown, Tony
2008-01-01
This paper addresses the issue of subjectivity in the context of mathematics education research. It introduces the psychoanalyst and theorist Jacques Lacan whose work on subjectivity combined Freud's psychoanalytic theory with processes of signification as developed in the work of de Saussure and Peirce. The paper positions Lacan's subjectivity…
STEM Images Revealing STEM Conceptions of Pre-Service Chemistry and Mathematics Teachers
ERIC Educational Resources Information Center
Akaygun, Sevil; Aslan-Tutak, Fatma
2016-01-01
Science, technology, engineering, and mathematics (STEM) education has been an integral part of many countries' educational policies. In last decade, various practices have been implemented to make STEM areas valuable for 21st century generation. These actions require reconsideration of both pre- and in-service teacher education because those who…
STEM, STEM Education, STEMmania
ERIC Educational Resources Information Center
Sanders, Mark
2009-01-01
In this article, the author introduces integrative STEM (science, technology, engineering, and/or mathematics) education and discusses the importance of the program. The notion of integrative STEM education includes approaches that explore teaching and learning between/among any two or more of the STEM subject areas, and/or between a STEM subject…
NASA Astrophysics Data System (ADS)
Alsup, Philip R.
Inspiring learners toward career options available in STEM fields (Science, Technology, Engineering, and Mathematics) is important not only for economic development but also for maintaining creative thinking and innovation. Limited amounts of research in STEM education have focused on the population of students enrolled in religious and parochial schools, and given the historic conflict between religion and science, this sector of American education is worthy of examination. The purpose of this quantitative study is to extend Gottfredson's (1981) Theory of Circumscription and Compromise as it relates to occupational aspirations. Bem's (1981) Gender Schema Theory is examined as it relates to the role of gender in career expectations, and Crenshaw's (1989) Intersectionality Theory is included as it pertains to religion as a group identifier. Six professionals in STEM career fields were video recorded while being interviewed about their skills and education as well as positive and negative aspects of their jobs. The interviews were compiled into a 25-minute video for the purpose of increasing understanding of STEM careers among middle school viewers. The research questions asked whether middle school students from conservative, Protestant Christian schools in a Midwest region increased in STEM-subject attitude and STEM-career interest as a result of viewing the video and whether gender interacted with exposure to the video. A quasi-experimental, nonequivalent control groups, pretest/posttest factorial design was employed to evaluate data collected from the STEM Semantic Survey. A Two-Way ANCOVA revealed no significant differences in dependent variables from pretest to posttest. Implications of the findings are examined and recommendations for future research are made. Descriptors: STEM career interest, STEM attitude, STEM gender disparity, Occupational aspirations, Conservative Protestant education.
Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects.
Bachar, Mostafa; Raimann, Jochen G; Kotanko, Peter
2016-03-01
In this work, we develop an impulsive mathematical model of Vitamin C (ascorbic acid) metabolism in healthy subjects for daily intake over a long period of time. The model includes the dynamics of ascorbic acid plasma concentration, the ascorbic acid absorption in the intestines and a novel approach to quantify the glomerular excretion of ascorbic acid. We investigate qualitative and quantitative dynamics. We show the existence and uniqueness of the global asymptotic stability of the periodic solution. We also perform a numerical simulation for the entire time period based on published data reporting parameters reflecting ascorbic acid metabolism at different oral doses of ascorbic acid. PMID:26724712
ERIC Educational Resources Information Center
d'Aguiar, Steve; Harrison, Neil
2016-01-01
It has been argued by some (e.g. the Confederation of British Industry [CBI]) that graduates lack the skills that render them employable. In particular, graduates of science, technology, engineering and mathematics (STEM) subjects are often portrayed as being unready for the world of work. This study uses three large-scale national data-sets from…
Re/Writing the Subject: A Contribution to Post-Structuralist Theory in Mathematics Education
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2012-01-01
This text, occasioned by a critical reading of "Mathematics Education and Subjectivity" (Brown, "2011") and constituting a response to the book, aims at contributing to the building of (post-structuralist) theory in mathematics education. Its purpose was to re/write two major positions that "Mathematics Education and Subjectivity" articulates:…
ERIC Educational Resources Information Center
Guzey, S. Selcen; Harwell, Michael; Moore, Tamara
2014-01-01
There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4-6)…
ERIC Educational Resources Information Center
Hossain, Md. Mokter; G. Robinson, Michael
2012-01-01
STEM (science, technology, engineering and mathematics) has been a powerful engine of prosperity in the US since World War II. Currently, American students' performances and enthusiasm in STEM education are inadequate for the US to maintain its leadership in STEM professions unless the government takes more actions to motivate a new generation of…
The Influence of Applied STEM Coursetaking on Advanced Mathematics and Science Coursetaking
ERIC Educational Resources Information Center
Gottfried, Michael A.
2015-01-01
Advanced mathematics and science course taking is critical in building the foundation for students to advance through the STEM pathway-from high school to college to career. To invigorate students' persistence in STEM fields, high schools have been introducing applied STEM courses into the curriculum as a way to reinforce concepts learned in…
ERIC Educational Resources Information Center
Hackler, Amanda Smith
2011-01-01
Underserved and underrepresented students consistently leave science, technology, engineering, and mathematics (STEM) degree fields to pursue less demanding majors. This perpetual problem slowed the growth in STEM degree fields (United States Department of Labor, 2007). Declining enrollment in STEM degree fields among underserved and…
Texas Academy of Mathematics and Science: 25 Years of Early College STEM Opportunities
ERIC Educational Resources Information Center
Sayler, Michael F.
2015-01-01
The University of North Texas's Texas Academy of Mathematics and Science began admitting students to its 2-year early college entrance science, technology, engineering, and mathematics (STEM) program in the fall of 1988. This program provided accelerated entry for top students in Texas in the areas of mathematics and science. Approximately…
ERIC Educational Resources Information Center
Stevenson, Heidi J.
2014-01-01
The Business Roundtable (2013) website presents a common narrative in regard to STEM (Science, Technology, Engineering and Mathematics) education, "American students are falling behind in math and science. Fewer and fewer students are pursuing careers in science, technology, engineering and mathematics, and American students are performing at…
Perez-Felkner, Lara; McDonald, Sarah-Kathryn; Schneider, Barbara; Grogan, Erin
2012-11-01
Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents' subjective orientations, course taking, and academic performance on the likelihood of majoring in PEMC in college. Results indicate that racial-ethnic and gender underrepresentation in science, technology, engineering, and mathematics (STEM) fields are interrelated and should be examined with attention to the intersecting factors influencing female and racial-ethnic minority adolescents' pathways toward careers in these fields. Among those who major in PEMC fields, women closely resemble men with respect to their subjective orientations. The effects of subjective orientations on women's chances of majoring in PEMC vary by their secondary school mathematics course completion levels. Women who take more mathematics courses are more likely to major in PEMC; however, course taking alone does not attenuate gender disparities in declaring these majors. High mathematics ability (as measured by standardized test scores in the 10th grade) appears to be positively associated with women's selection of social, behavioral, clinical, and health science majors. This association is less robust (and slightly negative) for women in PEMC. While advanced course taking appears to assist women in selecting PEMC majors, women who enter these fields may not be as strong as those who select other, less male-dominated scientific fields. PMID:22390658
Mathematical model of peripheral blood stem cell harvest kinetics.
Mayer, J; Pospísil, Z; Korístek, Z
2003-10-01
A mathematical model of peripheral blood stem cell harvests was developed, taking two new parameters R (number of recruited cells/minute) and E(f) (efficiency of collection) into consideration in addition to concentrations and collected amounts of cells. This model was tested on 241 harvest procedures in cancer patients (chemotherapy+G-CSF stimulation), donors of allogeneic PBSC, and platelet donors, using different collection procedures, with a Cobe Spectra Cell separator. The relationships between preapheresis concentrations, R, E(f) and harvested amounts of cells were complex, and different for different harvest procedures and populations of donors. However, invariably, recruitment played an important role and contributed significantly to the final harvest in all types of cells studied. For example, for the patient group, mean recruitment was 1.3 x 10(6) CD34+ cells/min and the amount of recruited cells corresponded to 65% of all collected cells. Recruitment was significantly influenced by pretreatment with chemo-therapy and/or radiotherapy. The mean recruitment values for the subgroups with limited, moderate, and extensive pretreatment were 1.65 x 10(6), 0.87 x 10(6), and 0.32 x 10(6) CD34+ cells released per minute, respectively. The finding of a quick and massive recruitment phenomenon may stimulate further research into hematopoiesis in order to maximize harvested cells. PMID:14520417
ERIC Educational Resources Information Center
Hottinger, Sara
2010-01-01
There is a widespread awareness in the American culture that women do not pursue careers in mathematics-related fields in equal numbers to men. Efforts to address this disparity by reforming mathematics education have met with some success; recent research shows that girls' achievements in mathematics stay on par with those of boys through…
ERIC Educational Resources Information Center
Ejiwale, James A.
2014-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
ERIC Educational Resources Information Center
White, Jeffry L.; Massiha, G. H.
2015-01-01
As a nation wrestles with the need to train more professionals, persons with disabilities are undereducated and underrepresented in science, technology, engineering, and mathematics (STEM). The following project was proposed to increase representation of students with disabilities in the STEM disciplines. The program emphasizes an integrated…
Motivating Children to Develop Their Science, Technology, Engineering, and Mathematics (STEM) Talent
ERIC Educational Resources Information Center
Andersen, Lori
2013-01-01
Motivation in mathematics and science appears to be more important to STEM occupational choice than ability. Using the expectancy value model, parents may be able to recognize potential barriers to children's selection of a STEM occupation and take actions to help facilitate talent development. These are especially important for parents of…
ERIC Educational Resources Information Center
Perry, Paula Christine
2013-01-01
Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that…
ERIC Educational Resources Information Center
Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin
2015-01-01
Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…
ERIC Educational Resources Information Center
National Academies Press, 2011
2011-01-01
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's…
Mathematical model for two germline stem cells competing for niche occupancy.
Tian, Jianjun Paul; Jin, Zhigang; Xie, Ting
2012-05-01
In the Drosophila germline stem cell ovary niche, two stem cells compete with each other for niche occupancy to maintain stem cell quality by ensuring that differentiated stem cells are rapidly pushed out the niche and replenished by normal ones (Jin et al. in Cell Stem Cell 2:39-49, 2008). To gain a deeper understanding of this biological phenomenon, we have derived a mathematical model for explaining the physical interactions between two stem cells. The model is a system of two nonlinear first order and one second order differential equations coupled with E-cadherins expression levels. The model can explain the dynamics of the competition process of two germline stem cells and may help to reveal missing information obtained from experimental results. The model predicts several qualitative features in the competition process, which may help to design rational experiments for a better understanding of the stem cell competition process. PMID:22231521
Can Parents Influence Children's Mathematics Achievement and Persistence in STEM Careers?
ERIC Educational Resources Information Center
Ing, Marsha
2014-01-01
This study explores the relationship between parental motivational practices, Children's mathematics achievement trajectories, and persistence in science, technology, engineering, and mathematics (STEM) careers. Nationally representative longitudinal survey data were analyzed using latent growth curve analysis. Findings indicate that…
ERIC Educational Resources Information Center
Meng, Chew Cheng; Idris, Noraini; Eu, Leong Kwan
2014-01-01
The problems of the decreasing enrolment of science students at secondary school level as well as the lagging science and mathematics achievement and literacy of Malaysian secondary students in international assessment studies point to a serious challenge for the government to improve Science, Technology, Engineering and Mathematics (STEM)…
ERIC Educational Resources Information Center
Park, Gregory; Lubinski, David; Benbow, Camilla P.
2013-01-01
Using data from a 40-year longitudinal study, the authors examined 3 related hypotheses about the effects of grade skipping on future educational and occupational outcomes in science, technology, engineering, and mathematics (STEM). From a combined sample of 3,467 mathematically precocious students (top 1%), a combination of exact and propensity…
Assessing Pre-Service Teachers' Mathematics Subject Knowledge
ERIC Educational Resources Information Center
Ryan, Julie; McCrae, Barry
2006-01-01
We report the development of an assessment instrument that provides a profile of the attainment and the errors of pre-service primary teachers across the mathematics curriculum. We describe test development, analyses and test validation involving a sample of 426 pre-service teachers in the first year of their training in primary education courses…
Petrangeli, Elisa; Coroniti, Giuseppe; Brini, Anna T; de Girolamo, Laura; Stanco, Deborah; Niada, Stefania; Silecchia, Gianfranco; Morgante, Emanuela; Lubrano, Carla; Russo, Matteo A; Salvatori, Luisa
2016-03-01
Low-grade chronic inflammation is a salient feature of obesity and many associated disorders. This condition frequently occurs in central obesity and is connected to alterations of the visceral adipose tissue (AT) microenvironment. Understanding how obesity is related to inflammation may allow the development of therapeutics aimed at improving metabolic parameters in obese patients. To achieve this aim, we compared the features of two subpopulations of adipose-derived stem cells (ASC) isolated from both subcutaneous and visceral AT of obese patients with the features of two subpopulations of ASC from the same isolation sites of non-obese individuals. In particular, the behavior of ASC of obese versus non-obese subjects during hypoxia, which occurs in obese AT and is an inducer of the inflammatory response, was evaluated. Obesity deeply influenced ASC from visceral AT (obV-ASC); these cells appeared to exhibit clearly distinguishable morphology and ultrastructure as well as reduced proliferation, clonogenicity and expression of stemness, differentiation and inflammation-related genes. These cells also exhibited a deregulated response to hypoxia, which induced strong tissue-specific NF-kB activation and an NF-kB-mediated increase in inflammatory and fibrogenic responses. Moreover, obV-ASC, which showed a less stem-like phenotype, recovered stemness features after hypoxia. Our findings demonstrated the peculiar behavior of obV-ASC, their influence on the obese visceral AT microenvironment and the therapeutic potential of NF-kB inhibitors. These novel findings suggest that the deregulated hyper-responsiveness to hypoxic stimulus of ASC from visceral AT of obese subjects may contribute via paracrine mechanisms to low-grade chronic inflammation, which has been implicated in obesity-related morbidity. PMID:26224080
iSTEM: Promoting Fifth Graders' Mathematical Modeling
ERIC Educational Resources Information Center
Yanik, H. Bahadir; Karabas, Celil
2014-01-01
Modeling requires that people develop representations or procedures to address particular problem situations (Lesh et al. 2000). Mathematical modeling is used to describe essential characteristics of a phenomenon or a situation that one intends to study in the real world through building mathematical objects. This article describes how fifth-grade…
ERIC Educational Resources Information Center
Akinwunmi, Kathrin; Höveler, Karina; Schnell, Susanne
2014-01-01
Erich Christian Wittmann is one of the primary founders of mathematics education research as an autonomous field of work and research in Germany. The interview presented here reflects on his role in promoting mathematics education as a design science. The interview addresses the following topics: (1) The importance of subject matter in…
ERIC Educational Resources Information Center
Palmer, Anna
2009-01-01
In this study I have investigated how alternative ways of teaching mathematics influence and affect Early Childhood Education (ECE) students' attitudes towards maths and how they understand their own subjectivities as more or less mathematical during a 10-week alternative maths course. The investigated course adopts a feminist post-structural…
ERIC Educational Resources Information Center
Dulama, Maria Eliza; Magda?, Ioana
2014-01-01
In this paper, we analyze some aspects related to "Mathematics and Environmental Exploration" subject syllabus for preparatory grade approved by Minister of National Education of Romania. The analysis aim the place of the subject syllabus into the Framework Plan; the syllabus structure and the argumentation of studying this subject; the…
Teaching Science and Mathematics Subjects Using the Excel Spreadsheet Package
ERIC Educational Resources Information Center
Ibrahim, Dogan
2009-01-01
The teaching of scientific subjects usually require laboratories where students can put the theory they have learned into practice. Traditionally, electronic programmable calculators, dedicated software, or expensive software simulation packages, such as MATLAB have been used to simulate scientific experiments. Recently, spreadsheet programs have…
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of
ERIC Educational Resources Information Center
Wasserman, Nicholas H.; Rossi, Dara
2015-01-01
The recent trend to unite mathematically related disciplines (science, technology, engineering, and mathematics) under the broader umbrella of STEM education has advantages. In this new educational context of integration, however, STEM teachers need to be able to distinguish between sufficient proof and reasoning across different disciplines,…
ERIC Educational Resources Information Center
Musau, Lydia M.; Abere, Migosi Joash
2015-01-01
Performance in Science, Mathematics and Technology (SMT) subjects among students in Kitui County, Kenya has perpetually been unsatisfactory. The aim of this study was to look into the extent to which teacher qualification influenced students' academic performance in SMT subjects. The study applied ex-post-facto survey research design. Random…
ERIC Educational Resources Information Center
Musau, Lydia Mbaki; Migosi, Joash; Muola, James Matee
2013-01-01
There has been incessant low academic performance in Science, Mathematics and Technology (SMT) subjects especially among girls at form four level in Kitui Central District over the years. The aim of this study was to investigate the determinants of girls' performance in SMT subjects in public secondary schools. Using ex-post-facto survey research…
Subjectivity and Cultural Adjustment in Mathematics Education: A Response to Wolff-Michael Roth
ERIC Educational Resources Information Center
Brown, Tony
2012-01-01
In this volume, Wolff-Michael Roth provides a critical but partial reading of Tony Brown's book "Mathematics Education and Subjectivity". The reading contrasts Brown's approach with Roth's own conception of subjectivity as derived from the work of Vygotsky, in which Roth aims to "reunite" psychology and sociology. Brown's book, however, focuses on…
ERIC Educational Resources Information Center
Bancroft, Senetta F.; Benson, Susan Kushner; Johnson-Whitt, Eugenia
2016-01-01
Nationally, racial and gender disparities persist in science, technology, engineering, and mathematics (STEM) disciplines. These disparities are most notable at the doctoral level and are also found in the doctoral outcomes of Ronald E. McNair Postbaccalaureate Achievement Program participants (Scholars) despite opportunities designed to promote…
ERIC Educational Resources Information Center
Wilson, Zakiya S.; McGuire, Saundra Y.; Limbach, Patrick A.; Doyle, Michael P.; Marzilli, Luigi G.; Warner, Isiah M.
2014-01-01
For many years, the U.S. has underutilized its human resources, as evidenced by the pervasive underrepresentation of several racial and ethnic groups within academia in general and the science, technology, engineering, and mathematics (STEM) disciplines, in particular. To address this underutilization, academic departments within U.S. universities…
Celebrating the Reality of Inclusive STEM Education: Co-Teaching in Science and Mathematics
ERIC Educational Resources Information Center
Moorehead, Tanya; Grillo, Kelly
2013-01-01
This article focuses on science, technology, engineering, and mathematics (STEM) education in secondary inclusive classrooms. Co-teaching is increasingly used in inclusive practice by administrators to provide effective instruction in inclusive classrooms. The practical and successful instructional strategies in the article focus on one…
ERIC Educational Resources Information Center
Schmidt, Shelly J.; Bohn, Dawn M.; Rasmussen, Aaron J.; Sutherland, Elizabeth A.
2012-01-01
The overarching goal of the Science, Technology, Engineering, and Mathematics (STEM) Education Initiative is to foster effective STEM teaching and learning throughout the educational system at the local, state, and national levels, thereby producing science literate citizens and a capable STEM workforce. To contribute to achieving this goal, we…
Kentucky Trains Parents to Help Schools Bolster STEM Subjects
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
Parents from around Kentucky are taking part in an unusual effort to encourage parents to take a more active role in promoting science, technology, engineering, and math (STEM) topics in their local schools. They have joined the Commonwealth Institute for Parent Leadership, which tries to help adults work with teachers and administrators, and…
Korpusik, Adam; Kolev, Mikhail
2016-06-01
Recently, hematopoietic stem cell (HSC) based therapy is being discussed as a possible treatment for HIV infection. The main advantage of this approach is that it limits the immune impairing effect of infection by introducing an independent influx of antigen-specific cytotoxic T lymphocytes (CTL). In this paper, we present a mathematical approach to predict the dynamics of HSC based therapy. We use a modification of a basic mathematical model for virus induced impairment of help to study how virus - immune system dynamics can be influenced by a single injection of CD8+ T lymphocytes derived from hematopoietic stem cells. Our mathematical and numerical results indicate that a single, large enough dose of genetically derived CTL may lead to restoration of the cellular immune response and result in long-term control of infection. PMID:27095371
Using Space as a Context to Enrich the Teaching and Learning of STEM Subjects
ERIC Educational Resources Information Center
Clements, Allan; Curtis, Jeremy; Jackson, Libby; Lyons, Tom
2014-01-01
This article looks at how space can provide a context for the teaching of STEM subjects. It explores how space fits with the new curriculum, and outlines what resources are available for teachers from the National STEM Centre eLibrary. In November 2015, the UK sends its first official astronaut into space, Tim Peake. His mission can provide a…
NASA Astrophysics Data System (ADS)
Abdul Hadi, Normi; Mohd Noor, Norlenda; Abd Halim, Suhaila; Alwadood, Zuraida; Khairol Azmi, Nurul Nisa'
2013-04-01
Mathematics is a basic subject in primary and secondary schools. Early exposure to mathematics is very important since it will affect the student perception towards this subject for their entire life. Therefore, a program called 'Mini Hari Matematik' was conducted to expose the basic mathematics concept through some games which fit the knowledge of Standard four and five students. A questionnaire regarding student perception towards this subject was distributed before and after the program. From the analysis, the program has positively changed the student's perception towards mathematics.
ERIC Educational Resources Information Center
Ye, Li; Varelas, Maria; Guajardo, Raphael
2011-01-01
This study explored how two mathematics/science subject-matter experts (Fellows) conceptualized urban classrooms and the students they worked with for a year, how they negotiated academic achievement with cultural and sociopolitical competence, and how their identities as educators were co-constructed and enacted. Using grounded theory, Fellows'…
Is Knowing Another Language as Important as Knowing "Core" Subjects Like Mathematics or Science
ERIC Educational Resources Information Center
Kouritzin, Sandra G.
2012-01-01
This article explores, through interview data with 125 respondents in Canada, whether the study of foreign languages can be considered as important as the study of the "core" STEMM (science, technology, engineering, mathematics, medicine) subjects in school and university curricula. Five categories of interviewees, including those involved and not…
ERIC Educational Resources Information Center
Executive Office of the President, 2011
2011-01-01
The National Science and Technology Council (NSTC) Committee on STEM Education (CoSTEM) coordinates Federal programs and activities in support of STEM (science, technology, engineering and mathematics) education pursuant to the requirements of Sec. 101 of the America COMPETES (Creating Opportunities to Meaningfully Promote Excellence in Technology…
NASA Astrophysics Data System (ADS)
Burt, Stacey M.
The problem addressed in this project is the lack of mathematically gifted females choosing to pursue advanced science, technology, engineering, and mathematics (STEM) courses in secondary education due to deficiencies in self-efficacy. The purpose of this project was to study the effects of a child-guided robotics program as it relates to the self-efficacy of mathematically gifted 6th grade female students and their future course choices in the advanced STEM content areas. This mixed-model study utilized a STEM attitude survey, artifacts, interviews, field notes, and standardized tests as measurement tools. Significance was found between genders in the treatment group for the standardized science scores, indicating closure in the achievement gap. Research suggests that STEM enrichment is beneficial for mathematically gifted females.
Wei, Xin; Yu, Jennifer W; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2013-07-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed. PMID:23114569
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2012-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of students with an ASD in special education. Findings suggest that students with an ASD had the highest STEM participation rates although their college enrollment rate was the third lowest among 11 disability categories and students in the general population. Disproportionate postsecondary enrollment and STEM participation by gender, family income, and mental functioning skills were found for young adults with an ASD. Educational policy implications are discussed. PMID:23114569
Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia
NASA Astrophysics Data System (ADS)
Dhawan, Andrew; Madani Tonekaboni, Seyed Ali; Taube, Joseph H.; Hu, Stephen; Sphyris, Nathalie; Mani, Sendurai A.; Kohandel, Mohammad
2016-02-01
Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states. Our results indicate that both the heterogeneity and the plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in a shift towards a more stem-like population with increased EMT features. Our findings are further reinforced by gene expression analyses demonstrating the upregulation of EMT-related genes, as well as genes associated with therapy resistance, in hypoxic cells compared to normoxic counterparts. In conclusion, we demonstrate that mathematical modelling can be used to simulate the role of hypoxia as a key contributor to the plasticity and heterogeneity of transformed human mammary epithelial cells.
NASA Astrophysics Data System (ADS)
Quinton, Jessica Elizabeth
Career interests develop over a lifetime and tend to solidify during late adolescence and early adulthood (Lent, Brown, and Hackett, 2002). The primary purpose of the present qualitative study, which is framed in Feminist Standpoint Theory (Haraway, 1988; Harding, 2007; Naples, 2007; Richardson, 2007), is to understand how eighth-grade, young women in a suburban, public, southern, middle school the South Carolina County School District (CCSD) (pseudonym) perceive their accessibility to Science, Technology, Engineering, and Mathematics (STEM) courses and careers. The secondary purpose is to understand these young women's "perceptions and unconscious beliefs about gender in science and mathematics" and how their "perceptions and unconscious beliefs about gender" in the STEM fields may impact the careers that these young women may choose in the future (American Association of University Women, 2010, 9). Within the present study, the perceptions of young women who identified as "Interested in Science," "Somewhat Interested in Science" and "Uninterested in Science" were identified. STEM courses and careers are a major emphasis in education today. Increasing the numbers of Americans who pursue STEM careers is a government priority, as these careers will strengthen the economy (AAUW 2010). The present study reveals how young women who are highly motivated, talented students perceive STEM courses and careers and how they are influenced by their experiences, gendered messages, and knowledge of STEM careers. To analyze the data, four of Saldana's (2010) dramaturgical codes were utilized including: 1. OBJectives, or motives; 2. CONflicts the participants faced; 3. TACtics to dealing with obstacles; and 4. ATTitudes toward the setting, others, and the conflict. The InVivo Codes allowed the participants stories to emerge through the set of dramaturgical codes that allowed for viewing the girls' experience sin different ways that added depth to their stories. The young women in
ERIC Educational Resources Information Center
Haruna, Umar Ibrahim
2015-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
ERIC Educational Resources Information Center
Scott, Catherine
2012-01-01
This study examined the characteristics of 10 science, technology, engineering and mathematics (STEM) focused high schools that were selected from various regions across the United States. In an effort to better prepare students for careers in STEM fields, many schools have been designed and are currently operational, while even more are in the…
ERIC Educational Resources Information Center
Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Chen, Wen-Ping
2013-01-01
Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview…
ERIC Educational Resources Information Center
Yohannes-Reda, Saba
2010-01-01
Because Black males are significantly underrepresented in science, technology, engineering, and mathematics (STEM) majors at predominantly White institutions (PWIs), this study sought to answer what the relationships are between racial identity, self-efficacy, institutional integration, and academic experience of successful Black, male STEM majors…
ERIC Educational Resources Information Center
Scott, Catherine Elizabeth
2009-01-01
This study examined the characteristics of 10 science, technology, engineering, and mathematics (STEM) focused high schools. A comparative case designed was used to identify key components of STEM school designs. Schools were selected from various regions across the United States. Data collected included websites, national statistics database,…
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Van Eijck, Michiel
2010-01-01
Challenged by a National Science Foundation-funded conference, 2020 Vision: The Next Generation of STEM Learning Research, in which participants were asked to recognize science, technology, engineering, and mathematics (STEM) learning as lifelong, life-wide, and life-deep, we draw upon 20 years of research across the lifespan to propose a new way…
ERIC Educational Resources Information Center
Chen, Xianglei
2009-01-01
Rising concern about America's ability to maintain its competitive position in the global economy has renewed interest in science, technology, engineering and mathematics (STEM) education. To understand who enters into and completes undergraduate programs in STEM fields, this report examined data from three major national studies: the 1995-96…
ERIC Educational Resources Information Center
Tyson, Will; Lee, Reginald; Borman, Kathryn M.; Hanson, Mary Ann
2007-01-01
This article examines how high school science and mathematics course-taking creates pathways toward future baccalaureate degree attainment in science, technology, engineering, and mathematics (STEM) majors in Florida 4-year universities using Burkam and Lee's (2003) course-taking categories developed using national student datasets. This study…
NASA Astrophysics Data System (ADS)
LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.
2012-04-01
Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.
A Norwegian Out-of-School Mathematics Project's Influence on Secondary Students' STEM Motivation
ERIC Educational Resources Information Center
Jensen, Fredrik; Sjaastad, Jørgen
2013-01-01
Considerable resources are spent on initiatives aiming to increase achievement and participation in science, technology, engineering, and mathematics (STEM). Drawing on focus group interviews and a questionnaire study with participants in ENT3R, a Norwegian out-of-school mathematics program, we investigated why participants attended and stayed in…
NASA Astrophysics Data System (ADS)
Kolo, Yovonda Ingram
African American women are underrepresented in science, technology, engineering, and mathematics (STEM) fields throughout the United States. As the need for STEM professionals in the United States increases, it is important to ensure that African American women are among those professionals making valuable contributions to society. The purpose of this phenomenological study was to describe the experiences of African American young women in relation to STEM education. The research question for this study examined how experiences with STEM in K-10 education influenced African American young women's academic choices in their final years in high school. The theory of multicontextuality was used to provide the conceptual framework. The primary data source was interviews. The sample was composed of 11 African American young women in their junior or senior year in high school. Data were analyzed through the process of open coding, categorizing, and identifying emerging themes. Ten themes emerged from the answers to research questions. The themes were (a) high teacher expectations, (b) participation in extra-curricular activities, (c) engagement in group-work, (d) learning from lectures, (e) strong parental involvement, (f) helping others, (g) self-efficacy, (h) gender empowerment, (i) race empowerment, and (j) strategic recruitment practices. This study may lead to positive social change by adding to the understanding of the experiences of African American young women in STEM. By doing so, these findings might motivate other African American young women to pursue advanced STEM classes. These findings may also provide guidance to parents and educators to help increase the number of African American women in STEM.
NASA Astrophysics Data System (ADS)
Scott, Catherine Elizabeth
This study examined the characteristics of 10 science, technology, engineering, and mathematics (STEM) focused high schools. A comparative case designed was used to identify key components of STEM school designs. Schools were selected from various regions across the United States. Data collected included websites, national statistics database, standardized test scores, interviews and published articles. Results from this study indicate that there is a variety of STEM high school programs designed to increase students' ability to pursue college degrees in STEM fields. The school mission statements influence the overall school design. Students at STEM schools must submit an application to be admitted to STEM high schools. Half of the STEM high schools used a lottery system to select students. STEM high schools have a higher population of black students and a lower population of white and Hispanic students than most schools in the United States. They serve about the same number of economically disadvantaged students. The academic programs at STEM high schools are more rigorous with electives focused on STEM content. In addition to coursework requirements, students must also complete internships and/or a capstone project. Teachers who teach in STEM schools are provided regularly scheduled professional development activities that focus on STEM content and pedagogy. Teachers provide leadership in the development and delivery of the professional development activities.
NASA Astrophysics Data System (ADS)
Maltese, Adam V.
While the number of Bachelor's degrees awarded annually has nearly tripled over the past 40 years (NSF, 2008), the same cannot be said for degrees in the STEM (science, technology, engineering and mathematics) fields. The Bureau of Labor Statistics projects that by the year 2014 the combination of new positions and retirements will lead to 2 million job openings in STEM (BLS, 2005). Thus, the research questions I sought to answer with this study were: (1)What are the most common enrollment patterns for students who enter into and exit from the STEM pipeline during high school and college? (2) Controlling for differences in student background and early interest in STEM careers, what are the high school science and mathematics classroom experiences that characterize student completion of a college major in STEM? Using data from NELS:88 I analyzed descriptive statistics and completed logistic regressions to gain an understanding of factors related to student persistence in STEM. Approximately 4700 students with transcript records and who participated in all survey rounds were included in the analyses. The results of the descriptive analysis demonstrated that most students who went on to complete majors in STEM completed at least three or four years of STEM courses during high school, and enrolled in advanced high school mathematics and science courses at higher rates. At almost every pipeline checkpoint indicators of the level of coursework and achievement were significant in predicting student completion of a STEM degree. The results also support previous research that showed demographic variables have little effect on persistence once the sample is limited to those who have the intrinsic ability and desire to complete a college degree. The most significant finding is that measures of student interest and engagement in science and mathematics were significant in predicting completion of a STEM degree, above and beyond the effects of course enrollment and performance
NASA Astrophysics Data System (ADS)
Heaverlo, Carol Ann
Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.
Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine.
Pir, Pınar; Le Novère, Nicolas
2016-01-01
Regenerative medicine, ranging from stem cell therapy to organ regeneration, is promising to revolutionize treatments of diseases and aging. These approaches require a perfect understanding of cell reprogramming and differentiation. Predictive modeling of cellular systems has the potential to provide insights about the dynamics of cellular processes, and guide their control. Moreover in many cases, it provides alternative to experimental tests, difficult to perform for practical or ethical reasons. The variety and accuracy of biological processes represented in mathematical models grew in-line with the discovery of underlying molecular mechanisms. High-throughput data generation led to the development of models based on data analysis, as an alternative to more established modeling based on prior mechanistic knowledge. In this chapter, we give an overview of existing mathematical models of pluripotency and cell fate, to illustrate the variety of methods and questions. We conclude that current approaches are yet to overcome a number of limitations: Most of the computational models have so far focused solely on understanding the regulation of pluripotency, and the differentiation of selected cell lineages. In addition, models generally interrogate only a few biological processes. However, a better understanding of the reprogramming process leading to ESCs and iPSCs is required to improve stem-cell therapies. One also needs to understand the links between signaling, metabolism, regulation of gene expression, and the epigenetics machinery. PMID:26677190
Central Pressure Appraisal: Clinical Validation of a Subject-Specific Mathematical Model
Leone, Dario; Camporeale, Carlo; Bruno, Giulia; Ridolfi, Luca; Veglio, Franco; Milan, Alberto
2016-01-01
Introduction Current evidence suggests that aortic blood pressure has a superior prognostic value with respect to brachial pressure for cardiovascular events, but direct measurement is not feasible in daily clinical practice. Aim The aim of the present study is the clinical validation of a multiscale mathematical model for non-invasive appraisal of central blood pressure from subject-specific characteristics. Methods A total of 51 young male were selected for the present study. Aortic systolic and diastolic pressure were estimated with a mathematical model and were compared to the most-used non-invasive validated technique (SphygmoCor device, AtCor Medical, Australia). SphygmoCor was calibrated through diastolic and systolic brachial pressure obtained with a sphygmomanometer, while model inputs consist of brachial pressure, height, weight, age, left-ventricular end-systolic and end-diastolic volumes, and data from a pulse wave velocity study. Results Model-estimated systolic and diastolic central blood pressures resulted to be significantly related to SphygmoCor-assessed central systolic (r = 0.65 p <0.0001) and diastolic (r = 0.84 p<0.0001) blood pressures. The model showed a significant overestimation of systolic pressure (+7.8 (-2.2;14) mmHg, p = 0.0003) and a significant underestimation of diastolic values (-3.2(-7.5;1.6), p = 0.004), which imply a significant overestimation of central pulse pressure. Interestingly, model prediction errors mirror the mean errors reported in large meta-analysis characterizing the use of the SphygmoCor when non-invasive calibration is performed. Conclusion In conclusion, multi-scale mathematical model predictions result to be significantly related to SphygmoCor ones. Model-predicted systolic and diastolic aortic pressure resulted in difference of less than 10 mmHg in the 51% and 84% of the subjects, respectively, when compared with SphygmoCor-obtained pressures. PMID:27010562
Garcia Sestafe, J V; García Paez, J M; Carrera San Martín, A; Jorge-Herrero, E; Navidad, R; Candela, I; Castillo-Olivares, J L
1994-06-01
A material subjected to traction stress increases in length; if we maintain the elongation constant, the stress varies over a period of time. This phenomenon has been referred to as relaxation. The purpose of this study was to define a mathematical law that relates the variation in stress to time when elongation remains constant in bovine pericardium. The mathematical function obtained after assaying 34 samples to the point of relaxation, subjected to initial stresses ranging from 0.17-10.07 MPa, responds to the following equation: y = -0.0252 + 0.953 alpha - (0.0165 + 0.015 alpha)lnt, where y is the stress withstood at an instant in time, t, after initial stress alpha. A normogram, validated by assays of up to 6,340 min duration (4.40 days), is presented for graphic calculation, permitting the computation of the loss of stress due to relaxation of this biomaterial, with initial stresses ranging from 1-10 MPa. PMID:8071387
ERIC Educational Resources Information Center
Jablonka, Eva
2015-01-01
This contribution briefly sketches the evolvement of numeracy or mathematical literacy as models for mathematics curricula, which will be described as driven by a weakening of the insulation between discourses, that is, as a process of "declassification". The question then arises as to whether and how coherence of new forms of initially…
ERIC Educational Resources Information Center
Mitts, Charles R.
2016-01-01
The International Technology and Engineering Educators Association (ITEEA) defines STEM as a new transdisciplinary subject in schools that integrates the disciplines of science, technology, engineering, and mathematics into a single course of study. There are three major problems with this definition: There is no consensus in support of the ITEEA…
NASA Astrophysics Data System (ADS)
Šilhán, Karel
2016-01-01
Knowledge of past landslide activity is crucial for understanding landslide behaviour and for modelling potential future landslide occurrence. Dendrogeomorphic approaches represent the most precise methods of landslide dating (where trees annually create tree-rings in the timescale of up to several hundred years). Despite the advantages of these methods, many open questions remain. One of the less researched uncertainties, and the focus of this study, is the impact of two common methods of geomorphic signal extraction on the spatial and temporal results of landslide reconstruction. In total, 93 Norway spruce (Picea abies (L.) Karst.) trees were sampled at one landslide location dominated by block-type movements in the forefield of the Orlické hory Mts., Bohemian Massif. Landslide signals were examined by the classical subjective method based on reaction (compression) wood analysis and by a numerical method based on eccentric growth analysis. The chronology of landslide movements obtained by the mathematical method resulted in twice the number of events detected compared to the subjective method. This finding indicates that eccentric growth is a more accurate indicator for landslide movements than the classical analysis of reaction wood. The reconstructed spatial activity of landslide movements shows a similar distribution of recurrence intervals (Ri) for both methods. The differences (maximally 30% of the total Ri ranges) in results obtained by both methods may be caused by differences in the ability of trees to react to tilting of their stems by a specific growth response (reaction wood formation or eccentric growth). Finally, the ability of trees to record tilting events (by both growth responses) in their tree-ring series was analysed for different decades of tree life. The highest sensitivity to external tilting events occurred at tree ages from 70 to 80 years for reaction wood formation and from 80 to 90 years for eccentric growth response. This means that
ERIC Educational Resources Information Center
Han, Sunyoung; Capraro, Robert; Capraro, Mary Margaret
2015-01-01
The purpose of this study was to investigate whether participating in science, technology, engineering, and mathematics (STEM) project-based learning (PBL) activities effected students who had varied performance levels and to what extent students' individual factors influenced their mathematics achievement. STEM PBL has been a critical challenge…
ERIC Educational Resources Information Center
Franz-Odendaal, Tamara A.; Blotnicky, Karen; French, Frederick; Joy, Phillip
2016-01-01
To enhance understanding of factors that might improve STEM career participation, we assessed students' self-perceptions of competency and interest in science/math, engagement in STEM activities outside of school, and knowledge of STEM career requirements. We show that the primary positive influencer directing students to a STEM career is high…
NASA Astrophysics Data System (ADS)
Caliendo, Julia C.
Problem-based learning in clinical practice has become an integral part of many professional preparation programs. This quasi-experimental study compared the effect of a specialized 90-hour field placement on elementary pre-service teachers' scientific reasoning and attitudes towards teaching STEM (science, technology, engineering, and math) subjects. A cohort of 53 undergraduate elementary education majors, concurrent to their enrollment in science and math methods classes, were placed into one of two clinical practice experiences: (a) a university-based, problem-based learning (PBL), STEM classroom, or (b) a traditional public school classroom. Group gain scores on the Classroom Test of Scientific Reasoning (CTSR) and the Teacher Efficacy and Attitudes Toward STEM Survey-Elementary Teachers (T-STEM) survey were calculated. A MANCOVA revealed that there was a significant difference in gain scores between the treatment and comparison groups' scientific reasoning (p = .011) and attitudes towards teaching STEM subjects (p = .004). The results support the hypothesis that the pre-service elementary teachers who experienced STEM mentoring in a PBL setting will have an increase in their scientific reasoning and produce positive attitudes towards teaching STEM subjects. In addition, the results add to the existing research suggesting that elementary pre-service teachers require significant academic preparation and mentored support in STEM content.
ERIC Educational Resources Information Center
Heaverlo, Carol Ann
2011-01-01
Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the…
ERIC Educational Resources Information Center
DO-IT, 2007
2007-01-01
A series of activities were undertaken to understand the underrepresentation and increase the participation of people with disabilities in science, technology, engineering, and mathematics (STEM) careers. These activities were funded by the Research in Disabilities Education (RDE) program of the National Science Foundation (NSF). They were…
ERIC Educational Resources Information Center
LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.
2012-01-01
Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics…
ERIC Educational Resources Information Center
National Academies Press, 2012
2012-01-01
The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…
ERIC Educational Resources Information Center
Stump, Sheryl L.; Bryan, Joel A.; McConnell, Tom J.
2016-01-01
Integrated approaches to education in science, technology, engineering, and mathematics (STEM), especially those set in the context of real-world situations, can motivate and deepen students' learning of the STEM subjects (National Academy of Engineering and National Research Council 2014). This article describes two integrated investigations used…
ERIC Educational Resources Information Center
Cooper, Robyn; Heaverlo, Carol
2013-01-01
For girls there is a distinct loss in interest, lack of confidence, and decline in positive attitudes toward STEM subject areas that begins early on in their academic experience and increases with age. According to the National Academy of Engineering, students need to begin associating the possibilities in STEM fields with the need for creativity…
ERIC Educational Resources Information Center
Moreau, Marie-Pierre; Mendick, Heather; Epstein, Debbie
2010-01-01
In this paper, based on a project funded by the UK Economic and Social Research Council considering how people position themselves in relation to popular representations of mathematics and mathematicians, we explore constructions of mathematicians in popular culture and the ways learners make meanings from these. Drawing on an analysis of popular…
Group by Subject or by Ability? Tertiary Mathematics for Engineering Students
ERIC Educational Resources Information Center
Plank, Michael; James, Alex; Hannah, John
2011-01-01
The mathematics topics taught to engineering students at university are ostensibly no different to those taught to mathematics majors, so should these students be taught together or separately? Should engineering students be segregated by ability in their mathematics classes? This study analyses the grades of over 1000 engineering students, and…
Improving Student Engagement in Mathematics Using Simple but Effective Methods
ERIC Educational Resources Information Center
Shearman, Donald; Rylands, Leanne; Coady, Carmel
2012-01-01
A significant proportion of students enrolling in mathematical subjects designed for non-STEM majors in university courses have minimal mathematical skills and poor motivation. This combination of starting attributes often leads to failure in the first mathematical subject encountered. We have been implementing simple, alternative pedagogies in an…
ERIC Educational Resources Information Center
You, Sukkyung
2013-01-01
In 2004, the pattern in academic pathways for high school students in the USA showed that students were completing more demanding mathematics courses. Despite the upward pattern in advanced-level mathematics course-taking, disparities among racial/ethnic groups persisted between 1982 and 2004. Using data from the Education Longitudinal Study of…
Inter-subject variability effects on the primary stability of a short cementless femoral stem.
Bah, Mamadou T; Shi, Junfen; Heller, Markus O; Suchier, Yanneck; Lefebvre, Fabien; Young, Philippe; King, Leonard; Dunlop, Doug G; Boettcher, Mick; Draper, Edward; Browne, Martin
2015-04-13
This paper is concerned with the primary stability of the Furlong Evolution(®) cementless short stem across a spectrum of patient morphology. A computational tool is developed that automatically selects and positions the most suitable stem from an implant system made of a total of 48 collarless stems to best match a 3D model based on a library of CT femur scans (75 males and 34 females). Finite Element contact models of reconstructed hips, subjected to physiologically-based boundary constraints and peak loads of walking mode, were simulated using a coefficient of friction of 0.4 and an interference-fit of 50 μm. Maximum and average implant micromotions across the subpopulation were predicted to be 100±7 μm and 7±5 μm with ranges [15 μm, 350 μm] and [1 μm, 25 μm], respectively. The computed percentage of implant area with micromotions greater than reported critical values of 50 μm, 100 μm and 150 μm never exceeded 14%, 8% and 7%, respectively. To explore the possible correlations between anatomy and implant performance, response surface models for micromotion metrics were constructed. Detailed morphological analyses were conducted and a clear nonlinear decreasing trend was observed between implant average micromotion and both the metaphyseal canal flare indices and average densities in Gruen zones. The present study demonstrates that the primary stability and tolerance of the short stem to variability in patient anatomy were high, reducing the need for patient stratification. In addition, the developed tool could be utilised to support implant design and planning of femoral reconstructive surgery. PMID:25724937
ERIC Educational Resources Information Center
Green, Jasmine; Martin, Andrew J.; Marsh, Herbert W.
2007-01-01
The purpose of this study is to evaluate the domain specificity of multidimensional motivation and engagement (adaptive cognitions, adaptive behaviors, impeding/maladaptive cognitions, maladaptive behaviors) in mathematics, English and science high school subjects, with an additional focus on three key educational correlates (educational…
ERIC Educational Resources Information Center
Perez-Felkner, Lara; McDonald, Sarah-Kathryn; Schneider, Barbara; Grogan, Erin
2012-01-01
Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents' subjective orientations, course taking, and academic performance on the likelihood of majoring…
ERIC Educational Resources Information Center
Beach, Dennis; Player-Koro, Catarina
2012-01-01
Two related ethnographic research projects on mathematics teacher education in Sweden are presented in this paper. They represent a response to recent policy developments that reaffirm the value of authoritative subject studies content as the central and most important component in the professional knowledge base of would-be teachers and…
ERIC Educational Resources Information Center
Marbach-Ad, Gili; McGinnis, J. Randy
2009-01-01
In this study we report the results of survey research that collected responses of an identical sample (31 beginning mathematics and science teachers, elementary and middle school level) that graduated from a reform-based mathematics and science teacher preparation program, the Maryland Collaborative for Teacher Preparation (MCTP). Our aim was to…
Teachers Perspective of Using English as a Medium of Instruction in Mathematics and Science Subjects
ERIC Educational Resources Information Center
Mansor, Norudin; Badarudin, Mohamed Ishak; Mat, Azman Che
2011-01-01
The policy of changing the medium of instruction in the teaching of mathematics and science from Bahasa Melayu to English is an important innovation affecting teachers of mathematics and science. It poses special challenges not only for teachers who have been trained in the Malay medium but also for those trained in English. This investigation…
ERIC Educational Resources Information Center
Stohlmann, Micah Stephen
2012-01-01
This case study explored the impact of a standards-based mathematics and pedagogy class on preservice elementary teachers' beliefs and conceptual subject matter knowledge of linear functions. The framework for the standards-based mathematics and pedagogy class in this study involved the National Council of Teachers of Mathematics Standards,…
Lee, Ji Han; Jung, Won Sang; Choi, Woo Hee; Lim, Hyun Kook
2016-01-01
Objective Among patients with Alzheimer’s disease (AD), sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD. Materials and methods In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology. Results Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group. Conclusion This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. PMID:27601903
ERIC Educational Resources Information Center
Opare, Phyllis Bernice
2012-01-01
The purpose of this study was to determine factors female higher education faculty in select science, technology, engineering, and mathematics (STEM) fields perceived as influential to their success and persistence in their chosen professions. Females are underrepresented in STEM professions including academia, despite the fact that female…
ERIC Educational Resources Information Center
Richardson, Joseph Carl
2013-01-01
The purpose of this case study is to provide a description of the characteristics of an academia-industry partnership that works together with industry to meet the education and training needs in a Science, Technology, Engineering, and Mathematics (STEM) field. After the launch of Sputnik in 1957, U.S. pursued efforts to compete in STEM fields on…
ERIC Educational Resources Information Center
Le, Tam; Gardner, Susan K.
2010-01-01
In this study, we explored the experience of Asian international doctoral students in the Science, Technology, Engineering, and Mathematics (STEM) fields at one research-extensive university. We found that Asian international doctoral students in the STEM fields at this institution were often isolated from their peers and faculty, faced an array…
ERIC Educational Resources Information Center
DO-IT, 2006
2006-01-01
Two "AccessSTEM Capacity-Building Institutes" ("CBIs") were conducted by the Northwest Alliance for Access to Science, Technology, Engineering, and Mathematics ("AccessSTEM"). Directed at the University of Washington and funded by the Disabilities Research in Education program at the National Science Foundation (NSF) (cooperative agreement…
ERIC Educational Resources Information Center
Soleimani, Ali
2013-01-01
Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…
ERIC Educational Resources Information Center
Fulkerson, William O.; Banilower, Eric R.
2014-01-01
"Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?" (National Research Council, 2013) describes a set of 14 indicators for assessing and tracking the health of pre-college STEM education in the United States. This 2012 National Survey of Science and Mathematics Education (NSSME), is the fifth in a series of…
ERIC Educational Resources Information Center
Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Iannelli, Joe; Sirinterlikci, Arif; Semich, George; Bernauer, James
2012-01-01
The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…
ERIC Educational Resources Information Center
Kalevitch, Maria; Maurer, Cheryl; Badger, Paul; Holdan, Greg; Sirinterlikci, Arif
2015-01-01
The School of Engineering, Mathematics, and Science (SEMS) at Robert Morris University (RMU) was awarded a five-year grant from the National Science Foundation (NSF) to fund scholarships to 21 academically talented but financially challenged students majoring in the disciplines of science, technology, engineering, and mathematics (STEM). Each…
ERIC Educational Resources Information Center
Gruebel, Robert W.; Childs, Kimberly
2013-01-01
The Texas statewide assessment of academic skills in 1997 indicated that >55 % of the student population failed to master the mathematics objectives set by the test criteria and 42 % of the mathematics teachers at the secondary level in the East Texas region were categorized as underqualified to teach mathematics at that level. The issue of…
Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience
ERIC Educational Resources Information Center
Charpin, J. P. F.; O'Hara, S.; Mackey, D.
2013-01-01
In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…
Lighting up Learning: Mathematics Becoming Less of a "Killer Subject" in Kwazulu-Natal, South Africa
ERIC Educational Resources Information Center
Maher, Marguerite
2015-01-01
This paper reports the findings of an evaluative study of an initiative, in its sixth year of implementation, enhancing the learning and teaching of mathematics in 20 disadvantaged secondary schools in KwaZulu-Natal (KZN), South Africa, twenty years after democracy. Findings highlight the importance of initial and ongoing professional development…
Lei, Jinzhi; Levin, Simon A.; Nie, Qing
2014-01-01
Adult stem cells, which exist throughout the body, multiply by cell division to replenish dying cells or to promote regeneration to repair damaged tissues. To perform these functions during the lifetime of organs or tissues, stem cells need to maintain their populations in a faithful distribution of their epigenetic states, which are susceptible to stochastic fluctuations during each cell division, unexpected injury, and potential genetic mutations that occur during many cell divisions. However, it remains unclear how the three processes of differentiation, proliferation, and apoptosis in regulating stem cells collectively manage these challenging tasks. Here, without considering molecular details, we propose a genetic optimal control model for adult stem cell regeneration that includes the three fundamental processes, along with cell division and adaptation based on differential fitnesses of phenotypes. In the model, stem cells with a distribution of epigenetic states are required to maximize expected performance after each cell division. We show that heterogeneous proliferation that depends on the epigenetic states of stem cells can improve the maintenance of stem cell distributions to create balanced populations. A control strategy during each cell division leads to a feedback mechanism involving heterogeneous proliferation that can accelerate regeneration with less fluctuation in the stem cell population. When mutation is allowed, apoptosis evolves to maximize the performance during homeostasis after multiple cell divisions. The overall results highlight the importance of cross-talk between genetic and epigenetic regulation and the performance objectives during homeostasis in shaping a desirable heterogeneous distribution of stem cells in epigenetic states. PMID:24501127
ERIC Educational Resources Information Center
Silver, Edward A.; Snider, Rachel B.
2014-01-01
Contemporary interest in STEM education is fueled, in part, by the poor performance of U.S. students on national and international assessments. According to a recent National Research Council (2011) report on STEM education in the United States, the National Assessment of Educational Progress (NAEP) indicates that approximately 75% of U.S. 8th…
Participation by STEM Faculty in Mathematics and Science Partnership Activities for Teachers
ERIC Educational Resources Information Center
Moyer-Packenham, Patricia S.; Kitsantas, Anastasia; Bolyard, Johnna J.; Huie, Faye; Irby, Nancy
2009-01-01
This study examines archival data from a federally-funded mathematics and science program (NSF-MSP) where partnerships in the program provided pre-service and in-service education for mathematics and science teachers. Of particular interest in the present study was the breadth of participation by IHE Science, Technology, Engineering, and…
Ellis, Jessica; Fosdick, Bailey K.; Rasmussen, Chris
2016-01-01
The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%. PMID:27410262
Ellis, Jessica; Fosdick, Bailey K; Rasmussen, Chris
2016-01-01
The substantial gender gap in the science, technology, engineering, and mathematics (STEM) workforce can be traced back to the underrepresentation of women at various milestones in the career pathway. Calculus is a necessary step in this pathway and has been shown to often dissuade people from pursuing STEM fields. We examine the characteristics of students who begin college interested in STEM and either persist or switch out of the calculus sequence after taking Calculus I, and hence either continue to pursue a STEM major or are dissuaded from STEM disciplines. The data come from a unique, national survey focused on mainstream college calculus. Our analyses show that, while controlling for academic preparedness, career intentions, and instruction, the odds of a woman being dissuaded from continuing in calculus is 1.5 times greater than that for a man. Furthermore, women report they do not understand the course material well enough to continue significantly more often than men. When comparing women and men with above-average mathematical abilities and preparedness, we find women start and end the term with significantly lower mathematical confidence than men. This suggests a lack of mathematical confidence, rather than a lack of mathematically ability, may be responsible for the high departure rate of women. While it would be ideal to increase interest and participation of women in STEM at all stages of their careers, our findings indicate that if women persisted in STEM at the same rate as men starting in Calculus I, the number of women entering the STEM workforce would increase by 75%. PMID:27410262
ERIC Educational Resources Information Center
Luther, Kenneth H.
2012-01-01
Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…
Kelic, Andjelka; Zagonel, Aldo A.
2008-12-01
A system dynamics model was developed in response to the apparent decline in STEM candidates in the United States and a pending shortage. The model explores the attractiveness of STEM and STEM careers focusing on employers and the workforce. Policies such as boosting STEM literacy, lifting the H-1B visa cap, limiting the offshoring of jobs, and maintaining training are explored as possible solutions. The system is complex, with many feedbacks and long time delays, so solutions that focus on a single point of the system are not effective and cannot solve the problem. A deeper understanding of parts of the system that have not been explored to date is necessary to find a workable solution.
A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening
Qureshi, F.S.; Sheikh, A.K.; Rashid, M.
1999-06-01
A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.
Chen, S.S.
1981-05-01
A mathematical model is presented for a group of circular cylinders subject to crossflow. The fluid-force coefficients in the model are determined from available experimental data. It is found that there are three dynamic instability mechanisms: galloping controlled by fluid damping, flutter controlled by fluidelastic force, and coupled galloping-flutter instability controlled by both fluid damping and fluidelastic force. Closed-form solutions of the critical flow velocity for galloping and flutter are obtained based on constrained modes. Experimental data are found to be in good agreement with the analytical results.
ERIC Educational Resources Information Center
Pittinsky, Todd L.; Diamante, Nicole
2015-01-01
The United States education system must improve its ability to produce scientists, engineers, and programmers. Despite numerous national, state, and local efforts to make the study of STEM (science, technology, engineering, and mathematics) subjects more fun in K-12, initial interest in those subjects drops off precipitously in middle and later…
ERIC Educational Resources Information Center
Holmes, Kimberly Monique
2013-01-01
The purpose of this dissertation study was to explore African-American women's perceptions of undergraduate STEM classroom experiences, and the ways in which those experiences have supported or hindered their persistence in physics majors. The major research question guiding this study was: How do African-American women perceive the climate and…
Soares, João S.; Sheriff, Jawaad
2013-01-01
Blood recirculating devices, such as ventricular assist devices and prosthetic heart valves, are burdened by thromboembolic complications requiring complex and lifelong anticoagulant therapy with its inherent hemorrhagic risks. Pathologic flow patterns occurring in such devices chronically activate platelets, and the optimization of their thrombogenic performance requires the development of flow-induced platelet activation models. However, existing models are based on empirical correlations using the well-established power law paradigm of constant levels of shear stress during certain exposure times as factors for mechanical platelet activation. These models are limited by their range of application and do not account for other relevant phenomena, such as loading rate dependence and platelet sensitization to high stress conditions, which characterize the dynamic flow conditions in devices. These limitations were addressed by developing a new class of phenomenological stress-induced platelet activation models that specifies the rate of platelet activation as a function of the entire stress history and results in a differential equation that can be directly integrated to calculate the cumulative levels of activation. The proposed model reverts to the power law under constant shear stress conditions and is able to describe experimental results in response to a diverse range of highly dynamic stress conditions found in blood recirculating devices. The model was tested in vitro under emulated device flow conditions and correlates well with experimental results. This new model provides a reliable and robust mathematical tool that can be incorporated into computational fluid dynamic studies in order to optimize design, with the goal of improving the thrombogenic performance of blood recirculating devices. PMID:23359062
Middle-Skill STEM State Policy Framework
ERIC Educational Resources Information Center
Rosenblum, Ian; Kazis, Richard
2014-01-01
The sector of the economy frequently referred to as STEM (Science, Technology, Engineering and Mathematics) is the subject of much national interest and debate. While there is general consensus across various stakeholders such as policymakers, educators, and industry that STEM education and careers are essential to maintaining an innovative and…
ERIC Educational Resources Information Center
Harwell, Michael; Moreno, Mario; Phillips, Alison; Guzey, S. Selcen; Moore, Tamara J.; Roehrig, Gillian H.
2015-01-01
The purpose of this study was to develop, scale, and validate assessments in engineering, science, and mathematics with grade appropriate items that were sensitive to the curriculum developed by teachers. The use of item response theory to assess item functioning was a focus of the study. The work is part of a larger project focused on increasing…
ERIC Educational Resources Information Center
Niess, Margaret; Gillow-Wiles, Henry
2013-01-01
This primarily online Master's degree program focused on advancing K-8 teachers' interdisciplinary mathematical and science content knowledge while integrating appropriate digital technologies as learning and teaching tools. The mixed-method, interpretive study examined in-service teachers' technological, pedagogical, and content knowledge (TPACK)…
Gender Gap Trends on Mathematics Exams Position Girls and Young Women for STEM Careers
ERIC Educational Resources Information Center
Beekman, John A.; Ober, David
2015-01-01
Nine years of results on 4.2 million of Indiana's Indiana Statewide Testing for Educational Progress (ISTEP) mathematics (math) exams (grades 3-10) taken after the implementation of No Child Left Behind have been used to determine gender gaps and their associated trends. Sociocultural factors were investigated by comparing math gender gaps…
Lundblad, Linda C; Fatouleh, Rania H; McKenzie, David K; Macefield, Vaughan G; Henderson, Luke A
2015-08-01
Obstructive sleep apnea (OSA) is associated with significantly elevated muscle sympathetic nerve activity (MSNA), leading to hypertension and increased cardiovascular morbidity. Although little is known about the mechanisms responsible for the sympathoexcitation, we have recently shown that the elevated MSNA in OSA is associated with altered neural processing in various brain stem sites, including the dorsolateral pons, rostral ventrolateral medulla, medullary raphe, and midbrain. Given the risk associated with elevated MSNA, we aimed to determine if treatment of OSA with continuous positive airway pressure (CPAP) would reduce the elevated MSNA and reverse the brain stem functional changes associated with the elevated MSNA. We performed concurrent recordings of MSNA and blood oxygen level-dependent (BOLD) signal intensity of the brain stem, using high-resolution functional magnetic resonance imaging, in 15 controls and 13 subjects with OSA, before and after 6 mo CPAP treatment. As expected, 6 mo of CPAP treatment significantly reduced MSNA in subjects with OSA, from 54 ± 4 to 23 ± 3 bursts/min and from 77 ± 7 to 36 ± 3 bursts/100 heart beats. Importantly, we found that MSNA-coupled changes in BOLD signal intensity within the dorsolateral pons, medullary raphe, and rostral ventrolateral medulla returned to control levels. That is, CPAP treatment completely reversed brain stem functional changes associated with elevated MSNA in untreated OSA subjects. These data highlight the effectiveness of CPAP treatment in reducing one of the most significant health issues associated with OSA, that is, elevated MSNA and its associated elevated morbidity. PMID:25995345
Lundblad, Linda C.; Fatouleh, Rania H.; McKenzie, David K.; Macefield, Vaughan G.
2015-01-01
Obstructive sleep apnea (OSA) is associated with significantly elevated muscle sympathetic nerve activity (MSNA), leading to hypertension and increased cardiovascular morbidity. Although little is known about the mechanisms responsible for the sympathoexcitation, we have recently shown that the elevated MSNA in OSA is associated with altered neural processing in various brain stem sites, including the dorsolateral pons, rostral ventrolateral medulla, medullary raphe, and midbrain. Given the risk associated with elevated MSNA, we aimed to determine if treatment of OSA with continuous positive airway pressure (CPAP) would reduce the elevated MSNA and reverse the brain stem functional changes associated with the elevated MSNA. We performed concurrent recordings of MSNA and blood oxygen level-dependent (BOLD) signal intensity of the brain stem, using high-resolution functional magnetic resonance imaging, in 15 controls and 13 subjects with OSA, before and after 6 mo CPAP treatment. As expected, 6 mo of CPAP treatment significantly reduced MSNA in subjects with OSA, from 54 ± 4 to 23 ± 3 bursts/min and from 77 ± 7 to 36 ± 3 bursts/100 heart beats. Importantly, we found that MSNA-coupled changes in BOLD signal intensity within the dorsolateral pons, medullary raphe, and rostral ventrolateral medulla returned to control levels. That is, CPAP treatment completely reversed brain stem functional changes associated with elevated MSNA in untreated OSA subjects. These data highlight the effectiveness of CPAP treatment in reducing one of the most significant health issues associated with OSA, that is, elevated MSNA and its associated elevated morbidity. PMID:25995345
ERIC Educational Resources Information Center
Dieker, Lisa; Grillo, Kelly; Ramlakhan, Nirmala
2012-01-01
New technologies and virtual environments are emerging globally, yet the way these tools can impact the learning and future career paths of students who are gifted is limited in the literature at this time. The purpose of this article is to provide a summary of how a science, technology, engineering, and mathematics (STEM) summer camp, based on…
ERIC Educational Resources Information Center
Miles, Rhea; Slagter van Tryon, Patricia J.; Mensah, Felicia Moore
2015-01-01
TechMath is a professional development program that forms collaborations among businesses, colleges, and schools for the purpose of promoting Science, Technology, Engineering, and Mathematics (STEM) careers. TechMath has provided strategies for creating highquality professional development by bringing together teachers, students, and business…
ERIC Educational Resources Information Center
Southern Regional Education Board (SREB), 2012
2012-01-01
Schools that give students access to STEM (science, technology, engineering and mathematics) studies are accomplishing several objectives: introducing students to higher-level academic and career studies, expanding project-based learning in the curriculum, enticing students to remain in school until graduation, and preparing students for…
NASA Astrophysics Data System (ADS)
Manno, Christopher M.
This study explores the role of teacher leader subject content knowledge in the promotion of professional development and instructional reform. Consistent with a distributed leadership perspective, many have asserted that the promotion of school effectiveness can be enhanced through the application of teacher leadership (Frost & Durrant, 2003; Harris, 2002a; Sherrill, 1999; Silva, Gimbert, & Nolan, 2000; York-Barr & Duke, 2004). There has been much discussion in the research about the significance of teachers' subject content knowledge in teaching and learning which has generally asserted a positive relationship with instructional practice and student achievement (Darling-Hammond, 2000; Newton & Newton, 2001; Parker & Heywood, 2000). The role of content knowledge in teacher leader work has been less researched. This study focused on deepening understanding of perceptions regarding teacher leaders' roles in improving instructional practice. Based on a framework of common teacher leader tasks, qualitative methods were used to investigate the relationship between teacher leader subject content knowledge and perceptions of effectiveness in promoting professional development and instructional reform. The study indicates that content experts behave differently than their non-expert counterparts. Content experts recognize deficiencies in colleagues' content knowledge as a primary problem in the implementation of math or science reform. Content experts view their work as advocacy for improved curriculum and instruction for all children, and work within a small set of task categories to promote discussions about teaching, learning, and content. Content experts develop trust and rapport with colleagues by demonstrating expertise, and are respected for their deep knowledge and efforts to help teachers learn the content. They also differ from non-content experts in the professional growth experiences in which they engage. The consideration of content expertise as an influence
The View from Schools on Provision of Careers Information, Advice and Guidance in STEM Subjects
ERIC Educational Resources Information Center
Collinson, Gill
2014-01-01
This article explores the recent history of careers information, advice and guidance (IAG) and how it has been shaped by successive government policies and initiatives. It looks at the impact of these initiatives, particularly how they have influenced students' attitudes to STEM related careers. It also looks at recommendations for…
Women into Science and Engineering? Gendered Participation in Higher Education STEM Subjects
ERIC Educational Resources Information Center
Smith, Emma
2011-01-01
This paper considers gendered patterns of participation in post-compulsory STEM education. It examines the trajectory of learning that takes students from A-level qualifications, through undergraduate work and into employment or further study. It also uses a long-term view to look at the best available evidence to monitor participation and…
NASA Astrophysics Data System (ADS)
Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.
2012-10-01
Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.
NASA Astrophysics Data System (ADS)
Carbajal, Sandy C.
Drawing from Latino/a Critical Race Theory and the related Community Cultural Wealth (CCW) model, I concentrate on three forms of CCW---aspirational, navigational, and resistance capital---for this qualitative study on the undergraduate experience of Latina students in Science, Technology, Engineering, and Mathematics (STEM) majors, focusing on strategies and achieving baccalaureate attainment. I interviewed ten Latina students and asked them questions regarding their educational experiences in STEM majors, what contributed to their degree completion, and the strategies they employed for achieving baccalaureate attainment. I identified and described six themes within the study (the underrepresentation of Latinas in STEM majors, the lack of preparation by academic programs for upper division courses, motivators, involvement, time management, and support networks) that, when combined, contributed to participants' degree attainment. This study concludes with implications for policy and practice that would allow universities to better assist Latinas in STEM majors to achieve baccalaureate attainment.
ERIC Educational Resources Information Center
Presmeg, Norma; Radford, Luis
2008-01-01
In this response we address some of the significant issues that Tony Brown raised in his analysis and critique of the Special Issue of "Educational Studies in Mathematics" on "Semiotic perspectives in mathematics education" (Saenz-Ludlow & Presmeg, Educational Studies in Mathematics 61(1-2), 2006). Among these issues are conceptualizations of…
NASA Astrophysics Data System (ADS)
Runyon, C. R.; Hall, C.; Baber, M.
2013-12-01
There are more than 50 million Americans with disabilities, approximately half of whom are students in a mainstreamed classroom. The National Association for Gifted Children estimates that approximately 3 million of those, 6% of the student population, are academically gifted, and 150,000 - 300,000 students of those are twice or triple exceptional (2e and 3e, respectively). The 2e and 3e refers to intellectually gifted children who also have some form(s) of disability. Unfortunately most schools in the US identify children by their giftedness or by their disability, but rarely by both. An apparent trend with 2e children, particularly when autism is paired with gifted, is that students identify with their disability instead of their strengths. 2e students have shown a propensity for interests in the science and technology fields. Few specialized programs and/or resources in STEM exist to engage and involve these exceptional students and fewer still is the number of faculty and staff trained to work with the twice and triple exceptionalities. Palmetto Scholars Academy (PSA), Charleston, SC a school for gifted and talented, provides a differentiated program to meet the educational needs of gifted learners, while also addressing the students' social/emotional needs. The Brown/MIT NASA Lunar Science Institute, in conjunction with the NASA South Carolina Space Grant Consortium, is working directly with educators from the PSA to identify what kinds of materials they need and what mediums work best for the different student (cap)abilities. This partnership will provide a means of 'consciousness raising' for teachers to help students develop their strengths and educators will gain a new understanding of 2e and 3e that will transfer into better instruction. One technique being implemented is the use of STEM-oriented engineering and technology design challenges and problem solving. These tasks allow students to use a variety of integrative and multi-disciplinary skills for
Ozeki, K; Aoki, H; Masuzawa, T
2011-01-01
Hydroxyapatite (HA) was coated onto a titanium substrate using radio frequency magnetron sputtering. The sputtered film was crystallized using a hydrothermal treatment. The films were observed using X-ray diffractometry, field emission scanning electron microscopy (FE-SEM) and scanning transmission electron microscopy (STEM) equipped with energy dispersive X-ray spectroscopy (EDX).It was observed that the surface of the hydrothermally-treated film was covered with globular particles. The FE-SEM observations indicated that these particles were composed of columnar grains with a grain size of 20-50 nm. In the STEM cross-sectional observation of the HA-Ti interface, HA crystalline phase regions were observed, in part, in the non-crystalline phase layer of the as-sputtered film. After the hydrothermal treatment, the HA layer crystallized; the HA crystallization proceeded to a distance of 30 nm above the titanium surface. From an EDX line scan analysis, the titanium oxide layer was not observed at the HA-Ti interface of the as-sputtered film; however, in the hydrothermally-treated film, the titanium oxide layer, with a 15 nm thickness, was observed between the mixing layer and the titanium substrate. The formation of titanium oxide at the HA-Ti interface would contribute to the adhesion improvement of the sputtered film following the hydrothermal treatment. PMID:22072082
Integration and Exploitation of Advanced Visualization and Data Technologies to Teach STEM Subjects
NASA Astrophysics Data System (ADS)
Brandon, M. A.; Garrow, K. H.
2014-12-01
We live in an age where the volume of content available online to the general public is staggering. Integration of data from new technologies gives us amazing educational opportunities when appropriate narratives are provided. We prepared a distance learning credit bearing module that showcased many currently available data sets and state of the art technologies. It has been completed by many thousands of students with good feedback. Module highlights were the wide ranging and varied online activities which taught a wide range of STEM content. For example: it is well known that on Captain Scott's Terra Nova Expedition 1910-13, three researchers completed the "the worst journey in the world" to study emperor penguins. Using their primary records and clips from location filmed television documentaries we can tell their story and the reasons why it was important. However using state of the art content we can go much further. Using satellite data students can trace the path the researchers took and observe the penguin colony that they studied. Linking to modern Open Access literature students learn how they can estimate the numbers of animals in this and similar locations. Then by linking to freely available data from Antarctic Automatic Weather Stations students can learn quantitatively about the climatic conditions the animals are enduring in real time. They can then download and compare this with the regional climatic record to see if their observations are what could be expected. By considering the environment the penguins live in students can be taught about the evolutionary and behavioural adaptations the animals have undergone to survive. In this one activity we can teach a wide range of key learning points in an engaging and coherent way. It opened some students' eyes to the range of possibilities available to learn about our, and other planets. The addition and integration of new state of the art techniques and data sets only increases the opportunities to
On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population
Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M.; Dingli, David
2013-01-01
The theory of the clonal origin of cancer states that a tumour arises from one cell that acquires mutation(s) leading to the malignant phenotype. It is the current belief that many of these mutations give a fitness advantage to the mutant population allowing it to expand, eventually leading to disease. However, mutations that lead to such a clonal expansion need not give a fitness advantage and may in fact be neutral—or almost neutral—with respect to fitness. Such mutant clones can be eliminated or expand stochastically, leading to a malignant phenotype (disease). Mutations in haematopoietic stem cells give rise to diseases such as chronic myeloid leukaemia (CML) and paroxysmal nocturnal haemoglobinuria (PNH). Although neutral drift often leads to clonal extinction, disease is still possible, and in this case, it has important implications both for the incidence of disease and for therapy, as it may be more difficult to eliminate neutral mutations with therapy. We illustrate the consequences of such dynamics, using CML and PNH as examples. These considerations have implications for many other tumours as well. PMID:23221988
NASA Astrophysics Data System (ADS)
Hogue, Barbara A.
Research into women's underrepresentation in science, technology, engineering, and mathematics (STEM) disciplines has become a topic of interest due to the increasing need for employees with technical expertise and a shortage of individuals to fill STEM jobs. The discrepancy in women's representation between STEM and other fields cannot adequately be explained by factors such as women's need to balance work and family (medicine and law are both extremely demanding careers), women's fear of competition (admissions into medical and law schools are highly competitive), or women's inability to excel in science (e.g., entry into medicine requires excellent achievement in the basic sciences). The purpose of this study is to gain a deeper understanding of the role and/or impact a sense of belonging has inside and outside of STEM classrooms. Research questions focused on the role and/or impact of belonging contributes to students' self-efficacy beliefs as a STEM major. Bandura's self-efficacy theory serves as the theoretical framework. Data sources include close-ended surveys of 200 sophomore- and junior-level college students majoring in a STEM discipline. A quantitative exploratory approach allowed participants' responses to be analyzed using both correlation and multiple regression analyses to understand whether a student's sense of belonging is associated with his or her self-efficacy beliefs. Findings suggested that positive support systems impact students' self-efficacy and play a role in fostering students' motivation and decision to major in STEM disciplines. This study contributes to positive social change by providing empirical evidence faculty and administrators may use to promote university-based STEM support programs reflecting the impact belonging has on students' self-efficacy and potentially increasing the number of students majoring in STEM disciplines.
ERIC Educational Resources Information Center
Morales, Hector
2010-01-01
Incorporating business skills such as problem-solving, public presentations, collaboration, and self-direction into STEM (science, technology, engineering and mathematics) subjects is an excellent way to build students' enthusiasm for these disciplines. When educators add workplace internships to the learning experience, they are well on their way…
NASA Astrophysics Data System (ADS)
Lee, Ahlam
2011-12-01
Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students
Teaching Mathematical Modeling in Mathematics Education
ERIC Educational Resources Information Center
Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant
2016-01-01
Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…
ERIC Educational Resources Information Center
McKinley, Robert L.; Schaeffer, Gary A.
A study was conducted to evaluate the feasibility of using item response theory (IRT) equating to reduce test form overlap of the Graduate Record Examinations (GRE) Subject Test in Mathematics. Monte Carlo methods were employed to compare double-part equating with 20-item common item blocks to triple-part equating with 10-item common item blocks.…
ERIC Educational Resources Information Center
Federici, Roger Andre; Skaalvik, Einar M.
2014-01-01
Recent research shows that teacher support is predictive of student outcomes, such as engagement and effort. In this study, we explored the relation between students' perceptions of teacher instrumental support in mathematics lessons and their effort in mathematics. We also tested whether this relation was mediated through students'…
ERIC Educational Resources Information Center
Merrill, Jen
2012-01-01
The author's son has been an engineer since birth. He never asked "why" as a toddler, it was always "how's it work?" So that he wanted a STEM-based home education was no big surprise. In this article, the author considers what kind of curricula would work best for her complex kid.
ERIC Educational Resources Information Center
Tossavainen, Timo; Juvonen, Antti
2015-01-01
Based on an expectancy-value theoretical framework and data (n = 1654) collected in 29 Finnish municipalities using a structured questionnaire, this study examines primary (grades 5-6), lower secondary (grades 7-9) and upper secondary (grades 10-12) students' motivation in music and mathematics. It explores in detail the students' interest in…
Middle-Skill STEM State Policy Framework. Executive Summary
ERIC Educational Resources Information Center
Rosenblum, Ian; Kazis, Richard
2014-01-01
The sector of the economy frequently referred to as STEM (Science, Technology, Engineering and Mathematics) is the subject of much national interest and debate. While there is general consensus across various stakeholders such as policymakers, educators, and industry that STEM education and careers are essential to maintaining an innovative and…
Engaging All Students in the Pursuit of STEM Careers
ERIC Educational Resources Information Center
Dou, Remy; Gibbs, Kenneth D., Jr.
2013-01-01
The rapid population growth of under-represented minority groups and the continued under-utilisation of women mean that future growth in the domestic science, technology, engineering and mathematics (STEM) workforce is linked to greater diversity. Subject-matter mastery is important but insufficient for a student to pursue a STEM profession --…
Robotics Intrigue Middle School Students and Build STEM Skills
ERIC Educational Resources Information Center
Grubbs, Michael
2013-01-01
As science, technology, engineering and mathematics (STEM) education demands greater integration across all subject areas, technology teachers can showcase many of the cross-curricular projects already occurring inside their classrooms that intrigue students and build their STEM skills. Robotics, just one of those projects, has become an excellent…
Conflicts in Developing an Elementary STEM Magnet School
ERIC Educational Resources Information Center
Sikma, Lynn; Osborne, Margery
2014-01-01
Elementary schools in the United States have been the terrain of a highly politicized push for improved reading and mathematics attainment, as well as calls for increased importance to be given to science, technology, engineering, and mathematics (STEM). With priorities placed on basic skills, however, instructional time in subjects such as…
Supporting STEM in Schools and Colleges in England: The Role of Research
ERIC Educational Resources Information Center
Hoyles, Celia; Reiss, Michael; Tough, Sarah
2011-01-01
STEM is the acronym used in England for science, technology, engineering and mathematics. STEM subjects are a central plank in developing the UK's skills base. Specialist knowledge in these subjects not only underpins many high-tech sectors--such as IT and engineering--but is also important for creativity and developing new ideas. This report…
A Mathematical Model of Bimodal Epigenetic Control of miR-193a in Ovarian Cancer Stem Cells
Kochańczyk, Marek; Lin, Jora M. J.; Chen, Gary C. W.; Lai, Hung-Cheng; Nephew, Kenneth P.; Hwang, Tzy-Wei; Chan, Michael W. Y.
2014-01-01
Accumulating data indicate that cancer stem cells contribute to tumor chemoresistance and their persistence alters clinical outcome. Our previous study has shown that ovarian cancer may be initiated by ovarian cancer initiating cells (OCIC) characterized by surface antigen CD44 and c-KIT (CD117). It has been experimentally demonstrated that a microRNA, namely miR-193a, targets c-KIT mRNA for degradation and could play a crucial role in ovarian cancer development. How miR-193a is regulated is poorly understood and the emerging picture is complex. To unravel this complexity, we propose a mathematical model to explore how estrogen-mediated up-regulation of another target of miR-193a, namely E2F6, can attenuate the function of miR-193a in two ways, one through a competition of E2F6 and c-KIT transcripts for miR-193a, and second by binding of E2F6 protein, in association with a polycomb complex, to the promoter of miR-193a to down-regulate its transcription. Our model predicts that this bimodal control increases the expression of c-KIT and that the second mode of epigenetic regulation is required to generate a switching behavior in c-KIT and E2F6 expressions. Additional analysis of the TCGA ovarian cancer dataset demonstrates that ovarian cancer patients with low expression of EZH2, a polycomb-group family protein, show positive correlation between E2F6 and c-KIT. We conjecture that a simultaneous EZH2 inhibition and anti-estrogen therapy can constitute an effective combined therapeutic strategy against ovarian cancer. PMID:25545504
NASA Astrophysics Data System (ADS)
Wang, Hui-Hui
Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.
NASA Astrophysics Data System (ADS)
Chow, Christina M.
Maintaining a competitive edge within the 21st century is dependent on the cultivation of human capital, producing qualified and innovative employees capable of competing within the new global marketplace. Technological advancements in communications technology as well as large scale, infrastructure development has led to a leveled playing field where students in the U.S. will ultimately be competing for jobs with not only local, but also international, peers. Thus, the ability to understand and learn from our global competitors, starting with the examination of innovative education systems and best practice strategies, is tantamount to the economic development, and ultimate survival, of the U.S. as a whole. The purpose of this study was to investigate the current state of science, technology, engineering and mathematics (STEM) education and workforce pipelines in the U.S., China, and Taiwan. Two broad research questions examined STEM workforce production in terms of a) structural differences in primary and secondary school systems, including analysis of minimum high school graduation requirements and assessments as well as b) organizational differences in tertiary education and trends in STEM undergraduate and graduate degrees awarded in each region of interest. While each of the systems studied had their relative strengths and weaknesses, each of the Asian economies studied had valuable insights that can be categorized broadly in terms of STEM capacity, STEM interest and a greater understanding of global prospects that led to heightened STEM awareness. In China and Taiwan, STEM capacity was built via both traditional and vocational school systems. Focused and structured curriculum during the primary and early secondary school years built solid mathematics and science skills that translated into higher performance on international assessments and competitions. Differentiated secondary school options, including vocational high school and technical colleges and
Qualified, but Not Choosing STEM at University: Unconscious Influences on Choice of Study
ERIC Educational Resources Information Center
Rodd, Melissa; Reiss, Michael; Mujtaba, Tamjid
2014-01-01
This article offers explanations as to why good candidates for mathematics or physics degrees might opt to study subjects other than STEM (science, technology, engineering, mathematics) subjects at university. Results come from analysis, informed by psychoanalytic theory and practice, of narrative-style interviews conducted with first-year…
NASA Astrophysics Data System (ADS)
Miller, Brant Gregory
Mainstream curricula have struggled to provide American Indian students with meaningful learning experiences. This research project studied a novel approach to engaging students with science, technology, engineering, and mathematics (STEM) content through a culturally-based context. The traditional American Indian game of Snow Snakes (shushumeg in Ojibwe) presented a highly engaging context for delivering STEM content. Through the engaging context of snow snakes, the designed STEM curriculum explicitly applied mathematics (scaling and data), and science (force and motion) to an engineering prototype iteration that used available materials and tools (technology) for success. It was hypothesized that by engaging students through the carefully integrated STEM curriculum, driven by the culturally based context of snow snakes, students would exhibit an increase in science agency and achievement. The overarching research question explored for this study was: How does a culturally-based and integrated STEM curriculum impact student's science agency? Associated sub-questions were: (1) What does science agency look like for 6th grade students? (2) What key experiences are involved in the development of science agency through a culturally-based STEM curriculum context? And (3) What are the impacts on the community associated with the implementation of a culturally-based STEM curriculum? A case study research design was implemented for this research. Yin (2003) defines a case study as investigating a phenomenon (e.g. science agency) which occurs within authentic contexts (e.g. snow snakes, Adventure Learning, and Eagle Soaring School) especially when the boundaries between phenomenon and context are unclear. For this case study Eagle Soaring School acted as the bounded case with students from the 6th grade class representing the embedded units. Science agency was the theoretical framework for data analysis. Major findings were categorized as science and STEM learning, agency
Labour Market Motivation and Undergraduates' Choice of Degree Subject
ERIC Educational Resources Information Center
Davies, Peter; Mangan, Jean; Hughes, Amanda; Slack, Kim
2013-01-01
Labour market outcomes of undergraduates' choice of subject are important for public policy and for students. Policy interest is indicated by the prominence of "employability" in public discourse and in proposals to concentrate government funding in England in supporting STEM subjects (science, technology, engineering and mathematics). As students…
ERIC Educational Resources Information Center
Mitchell, Sidney Kirk
2011-01-01
The objective of this research was to identify specific factors that contribute to underrepresented minority (African American, Hispanic, Native American) undergraduate students' success in STEM disciplines at a regional university during the 2007-2010 timeframe. As more underrepresented minority (URM) students complete STEM degrees, many will…
ERIC Educational Resources Information Center
Jayarajah, Kamaleswaran; Saat, Rohaida Mohd; Rauf, Rose Amnah Abdul
2014-01-01
The purpose of this study is to explore the research base of STEM education in Malaysia through an analysis review of articles for a 14-year period, from 1999 to 2013. The research base review focuses on identifying four characteristics of STEM education: a) temporal distribution, b) the research areas involved in each discipline, c) the types of…
Devitt, Sean M.; Carter, Cynthia M.; Dierov, Raia; Weiss, Scott; Percec, Ivona
2015-01-01
We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days) from patients of varying ages (26–62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages. PMID:25945096
ERIC Educational Resources Information Center
Ricks, Elizabeth Danielle
2012-01-01
According to the 2006 Program for International Assessment (PISA), the United States is behind their international counterparts in the areas of mathematics and science. (Darling-Hammond, 2010). The Unites States is at a critical point in developing future leaders in Science, Technology, Engineering, and Mathematics. In preparing students for a…
ERIC Educational Resources Information Center
Afterschool Alliance, 2014
2014-01-01
After the school bell rings, young people are learning, exploring, making and questioning. Afterschool programs have long influenced students' personal development and supported their social and emotional growth. Today, the afterschool field has enthusiastically embraced STEM as an integral part of their educational offerings. This handout…
NASA Astrophysics Data System (ADS)
Kahn, Leah L.
This qualitative phenomenological study explored how eight middle level STEM teachers planned and implemented integrated STEM courses. Narrative inquiry allowed for each participant to tell their unique story. The study results suggested that the teacher participants felt as though they are pioneers and are forging through as other teachers are resisting and holding on to more traditional instructional methods. Other findings from this study suggested that teachers are utilizing a wide variety of methods to accomplish an integrated curriculum. Findings also highlighted the high degree of satisfaction that these teachers feel teaching in this way and also the challenges that they face. This study provides educational leaders insight into what teachers are experiencing as they attempt to integrate STEM subjects, and suggestions for ways to assist and support them.
NASA Astrophysics Data System (ADS)
Carter, Frances D.
2011-12-01
Low participation and performance in science, technology, engineering, and mathematics (STEM) fields by U.S. citizens are widely recognized as major problems with substantial economic, political, and social ramifications. Studies of collegiate interventions designed to broaden participation in STEM fields suggest that participation in undergraduate research is a key program component that enhances such student outcomes as undergraduate GPA, graduation, persistence in a STEM major, and graduate school enrollment. However, little is known about the mechanisms that are responsible for these positive effects. The current study hypothesizes that undergraduate research participation increases scientific self-efficacy and scientific research proficiency. This hypothesis was tested using data obtained from a survey of minority students from several STEM intervention programs that offer undergraduate research opportunities. Students were surveyed both prior to and following the summer of 2010. Factor analysis was used to examine the factor structure of participants' responses on scientific self-efficacy and scientific research proficiency scales. Difference-in-difference analysis was then applied to the resulting factor score differences to estimate the relationship of summer research participation with scientific self-efficacy and scientific research proficiency. Factor analytic results replicate and further validate previous findings of a general scientific self-efficacy construct (Schultz, 2008). While the factor analytic results for the exploratory scientific research proficiency scale suggest that it was also a measureable construct, the factor structure was not generalizable over time. Potential reasons for the lack of generalizability validity for the scientific research proficiency scale are explored and recommendations for emerging scales are provided. Recent restructuring attempts within federal science agencies threaten the future of STEM intervention programs
Lin, Chih-Min; Jiang, Ting Xin; Baker, Ruth E.; Maini, Philip K.; Widelitz, Randall B.; Chuong, Cheng-Ming
2009-01-01
Summary A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction-diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show ERK-activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large. PMID:19647731
Lin, Chih-Min; Jiang, Ting Xin; Baker, Ruth E; Maini, Philip K; Widelitz, Randall B; Chuong, Cheng-Ming
2009-10-15
A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction-diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show that ERK activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large. PMID:19647731
ERIC Educational Resources Information Center
Kiige, Mwangi James; Atina, James Onywoki
2016-01-01
The changeover of the Kenyan system of education from the 7-4-2-3 to the current 8-4-4 in 1984 made science subjects (Biology, Chemistry and Physics) compulsory to all students up to form two at the secondary school level. This meant increased numbers of students in one class at a time attending the science subjects, which may compromise quality.…
Caudill, Lester; Hill, April; Lipan, Ovidiu
2010-01-01
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics. PMID:20810953
ERIC Educational Resources Information Center
Yilmaz, Ismail
2012-01-01
The purpose of this case study is to reveal prospective science teachers' knowledge and achievement levels in electricity-related subjects. The data for the study were collected from 44 prospective teachers using three measurement tools. The data were then analyzed using software developed for the Probability and Possibility Calculation Statistics…
ERIC Educational Resources Information Center
Jackson, Dimitra L.
2013-01-01
The availability of student support systems and mentee-mentor relationships provide effective ways to increase the representation of women in STEM areas (Creamer & Laughlin, 2005). Support systems allow students the opportunity to engage in discussion and activities with individuals, including family, faculty, staff, or administrators with…
ERIC Educational Resources Information Center
Ing, Marsha
2014-01-01
The lack of females entering STEM careers is well documented. Reasons for the gender gaps at all stages of the educational pipeline include both internal factors such as self-concept and external factors such as the influence of parents, media, and educators. Using latent growth curve analysis and nationally representative longitudinal survey…
ERIC Educational Resources Information Center
Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda
2011-01-01
Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or…
ERIC Educational Resources Information Center
Butkovich, Nancy J.
2015-01-01
Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…
ERIC Educational Resources Information Center
Dierking, Lynn D.
2010-01-01
This paper describes an innovative education program launched in 2004 by Oregon State University Science and Mathematics Education Department, with leadership from Oregon Sea Grant, and funding from NOAA. Program development is described as well as the impact of it on participants. The program represents one vision for how to transform research…
ERIC Educational Resources Information Center
Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu
2010-01-01
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was…
ERIC Educational Resources Information Center
Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi
2014-01-01
This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…
ERIC Educational Resources Information Center
Comp, David
2010-01-01
Of the 205,000 U.S. students abroad during the 2004-2005 academic year, only 6,557 or slightly more than 3% of them studied in Germany. The Ohio Alliance reports that only 13% of all U.S. students who studied abroad during the 2004-2005 academic year were from the STEM fields of study. The Institute of International Education Open Doors Report,…
Mathematics Curriculum Guide. Mathematics IV.
ERIC Educational Resources Information Center
Gary City Public School System, IN.
GRADES OR AGES: Grade 12. SUBJECT MATTER: Mathematics. ORGANIZATION AND PHYSICAL APPEARANCE: The subject matter is presented in four columns: major areas, significant outcomes, observations and suggestions, and films and references. The topics include: sets-relations-functions, circular functions, graphs of circular functions, inverses of circular…
Koseki, Jun; Matsui, Hidetoshi; Konno, Masamitsu; Nishida, Naohiro; Kawamoto, Koichi; Kano, Yoshihiro; Mori, Masaki; Doki, Yuichiro; Ishii, Hideshi
2016-01-01
Bioinformatics and computational modelling are expected to offer innovative approaches in human medical science. In the present study, we performed computational analyses and made predictions using transcriptome and metabolome datasets obtained from fluorescence-based visualisations of chemotherapy-resistant cancer stem cells (CSCs) in the human oesophagus. This approach revealed an uncharacterized role for the ornithine metabolic pathway in the survival of chemotherapy-resistant CSCs. The present study fastens this rationale for further characterisation that may lead to the discovery of innovative drugs against robust CSCs. PMID:26864636
NASA Astrophysics Data System (ADS)
Koseki, Jun; Matsui, Hidetoshi; Konno, Masamitsu; Nishida, Naohiro; Kawamoto, Koichi; Kano, Yoshihiro; Mori, Masaki; Doki, Yuichiro; Ishii, Hideshi
2016-02-01
Bioinformatics and computational modelling are expected to offer innovative approaches in human medical science. In the present study, we performed computational analyses and made predictions using transcriptome and metabolome datasets obtained from fluorescence-based visualisations of chemotherapy-resistant cancer stem cells (CSCs) in the human oesophagus. This approach revealed an uncharacterized role for the ornithine metabolic pathway in the survival of chemotherapy-resistant CSCs. The present study fastens this rationale for further characterisation that may lead to the discovery of innovative drugs against robust CSCs.
ERIC Educational Resources Information Center
Journal of Science Education and Technology, 2012
2012-01-01
Diversity and the underrepresentation of women, African-Americans, Hispanics and American Indians in the nation's science, technology, engineering and mathematics (STEM) fields are the subjects of the XV: A View from the Gatekeepers--STEM Department Chairs at America's Top 200 Research Universities on Female and Underrepresented Minority…
Discrete Mathematics and the Secondary Mathematics Curriculum.
ERIC Educational Resources Information Center
Dossey, John
Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…
ERIC Educational Resources Information Center
Tinungki, Georgina Maria
2015-01-01
The importance of learning mathematics can not be separated from its role in all aspects of life. Communicating ideas by using mathematics language is even more practical, systematic, and efficient. In order to overcome the difficulties of students who have insufficient understanding of mathematics material, good communications should be built in…
Understanding STEM: Current Perceptions
ERIC Educational Resources Information Center
Brown, Ryan; Brown, Joshua; Reardon, Kristin; Merrill, Chris
2011-01-01
In many ways, the push for STEM (science, technology, engineering, and mathematics) education appears to have grown from a concern for the low number of future professionals to fill STEM jobs and careers and economic and educational competitiveness. The proponents of STEM education believe that by increasing math and science requirements in…
STEM Careers Days at City and Islington College
ERIC Educational Resources Information Center
Swinscoe, David
2011-01-01
In many UK secondary schools, pupils, parents and teachers have limited knowledge about careers available through studying Science, Technology, Engineering and Mathematics (STEM) subjects and the progression pathways to these careers. Pupils need confidence that studying science will lead them to something useful and of value to them in the…
Lecturers' Experiences of Teaching STEM to Students with Disabilities
ERIC Educational Resources Information Center
Ngubane-Mokiwa, S. A.; Khoza, S. B.
2016-01-01
Innovative teaching is a concept based on student-centred teaching strategies. Access to Science, Technology, Engineering and Mathematics (STEM) subjects has not been equitable due to use of traditional teaching strategies. These strategies tend to exclude students with disabilities who can effectively learn in environments that appropriately and…
Disciplinary Literacy Pedagogy Development of STEM Preservice Teachers
ERIC Educational Resources Information Center
Hart, Steven M.; Bennett, Stephanie M.
2013-01-01
The paradigm of content area literacy instruction is shifting from a view of literacy as generalizable across the curriculum to a disciplinary perspective of literacies specific to the specialized language, text structures, and habits of thinking within particular subject areas. Preservice STEM (science, technology, engineering, and mathematics)…
ERIC Educational Resources Information Center
Reeve, Edward M.
2015-01-01
Science, Technology, Engineering, and Mathematics (STEM) is a term seen almost daily in the news. In 2009, President Obama launched the Educate to Innovate initiative to move American students from the middle to the top of the pack in science and math achievement over the next decade (The White House, n.d.). Learning about the attributes of STEM…
Špoljarić, Ivna Vrana; Lopar, Markan; Koller, Martin; Muhr, Alexander; Salerno, Anna; Reiterer, Angelika; Malli, Karin; Angerer, Hannes; Strohmeier, Katharina; Schober, Sigurd; Mittelbach, Martin; Horvat, Predrag
2013-04-01
Two low structured mathematical models for fed-batch production of polyhydroxybutyrate and poly[hydroxybutyrate-co-hydroxyvalerate] by Cupriavidus necator DSM 545 on renewable substrates (glycerol and fatty acid methyl esters-FAME) combined with glucose and valeric acid, were established. The models were used for development/optimization of feeding strategies of carbon and nitrogen sources concerning PHA content and polymer/copolymer composition. Glycerol/glucose fermentation featured a max. specific growth rate of 0.171 h(-1), a max. specific production rate of 0.038 h(-1) and a PHB content of 64.5%, whereas the FAME/valeric acid fermentation resulted in a max. specific growth rate of 0.046 h(-1), a max. specific production rate of 0.07 h(-1) and 63.6% PHBV content with 4.3% of 3-hydroxyvalerate (3HV) in PHBV. A strong inhibition of glycerol consumption by glucose was confirmed (inhibition constant ki,G=4.28×10(-4) g L(-1)). Applied concentration of FAME (10-12 g L(-1)) positively influenced on PHBV synthesis. HV/PHBV ratio depends on applied VA concentration. PMID:23454805
The impact of STEM enrichment programs on California's high school Latino/a seniors
NASA Astrophysics Data System (ADS)
Skrotzki, Gretchen
This study seeks to determine if Science, Technology, Engineering, and Mathematics (STEM) enrichment programs, such as summer camp programs, after-school programs, or STEM-based high schools motivate Latino high school graduates to enter into STEM bachelor programs in college as compared to those students enrolled in non-STEM enrichment programs. A mixed-methods approach consisting of pre- and post- surveys and focus group interviews were used to determine students' level of interest in STEM, confidence in their ability to do well in STEM subjects, consideration to pursue advanced courses in STEM, and consideration to pursue a job in STEM. An average change (Post-Pre) across survey questions was calculated for each student. This provided an overall change across all variables and allowed for one variable called "Total Interest" to be derived.
NASA Astrophysics Data System (ADS)
McCaslin, Stephanie D.
The areas of Science, Technology, Engineering, and Mathematics have long been overrepresented by men. In the workforce, more men work in these fields than women, and in school, more male students select majors in Science, Technology, Engineering, and Mathematics (STEM) than female students. Research has indicated that female students represent less than a third of college students selecting STEM majors. Several recommendations have been made by prominent educational organizations, such as the American Association of University Women (AAUW), including promoting these subjects to female students through STEM initiatives that are innovative and expose female students to careers in these areas. This qualitative research study sought to analyze the effectiveness of these initiatives by determining what factors are considered when a female student selects a STEM field of study at the college level and to examine how these students perceived the effectiveness of the STEM initiatives in which they participated. A series of interviews were conducted with female college students with declared majors in STEM fields who had participated in STEM initiatives in the state of Maryland. After analysis of the data collected, it was determined that STEM initiatives are not necessarily effective in increasing the number of women who enroll in STEM programs at the college level, however, they are effective in encouraging female students who are already interested in STEM. Female students who participated in these STEM initiatives more frequently were more likely to have a better understanding of STEM options, and were also more likely to complete STEM college degrees in less time than those who did not participate frequently in STEM initiatives.
Xie, Yu; Fang, Michael; Shauman, Kimberlee
2015-01-01
Improving science, technology, engineering, and mathematics (STEM) education, especially for traditionally disadvantaged groups, is widely recognized as pivotal to the U.S.’s long-term economic growth and security. In this article, we review and discuss current research on STEM education in the U.S., drawing on recent research in sociology and related fields. The reviewed literature shows that different social factors affect the two major components of STEM education attainment: (1) attainment of education in general, and (2) attainment of STEM education relative to non-STEM education conditional on educational attainment. Cognitive and social psychological characteristics matter for both major components, as do structural influences at the neighborhood, school, and broader cultural levels. However, while commonly used measures of socioeconomic status (SES) predict the attainment of general education, social psychological factors are more important influences on participation and achievement in STEM versus non-STEM education. Domestically, disparities by family SES, race, and gender persist in STEM education. Internationally, American students lag behind those in some countries with less economic resources. Explanations for group disparities within the U.S. and the mediocre international ranking of US student performance require more research, a task that is best accomplished through interdisciplinary approaches. PMID:26778893
ERIC Educational Resources Information Center
Journal of Science Education and Technology, 2014
2014-01-01
A major debate is currently underway in the USA about whether there is, in fact, a science, technology, engineering and mathematics (STEM) workforce shortage in the country or not. This is the subject of the "Bayer Facts of Science Education XVI: US STEM Workforce Shortage--Myth or Reality? Fortune 1000 Talent Recruiters on the Debate."…
NASA Astrophysics Data System (ADS)
Straffon, Elizabeth
The purpose of this study was to investigate factors that affect the extent of international secondary students' participation in International Baccalaureate science and mathematics courses. The factors examined were gender, home region, size, percent host culture and age of the program, and coeducational and legal status of the school. Participation in math and science subjects was determined by analyzing the level and number of courses taken by students taking International Baccalaureate exams in 2010. Chi-Square and Cramer's V analysis were used to measure the effect of categorical variables on student participation and One-Way ANOVA and Bonferroni comparison of means were used to analyze the quantitative variables. All categorical variables were statistically significant (p<.01). Home region was the most important factor affecting participation in both math and science. Students from East, Southeast and South-Central Asia; and Eastern Europe have greater participation in math. The highest science participation came from students in East, Southern and Western Africa; and Southeast Asia. Top participators in science came from Australia/New Zealand, Northern Europe, East Africa and South-Central and Western Asia. State schools showed higher math and science participation. Science and math participation was also greater in all-male schools though associations were weak. Boys participated more than girls, especially in math. All quantitative variables were statistically significant. The program size had the largest effect size for both math and science with larger programs showing more participation at the higher level. A decreasing trend for age of the program and percent host culture was found for math participation. Three years of participation data were collected from an international school in Western Europe (n = 194). Variables included the influence of parent occupation, math preparedness (PSAT-Math), student achievement (GPA), and the importance of
Epasto, Gabriella; Foti, Albina; Guglielmino, Eugenio; Rosa, Michele A
2013-07-01
In this article, a subject-specific finite element analysis has been developed to study a clinical case of a surgically misaligned hip prosthesis with an ultrashort stem. It was set out to study the strain energy density pattern, comparing the results obtained with computed tomography images. The authors developed two other numerical models: the first one analyzes the stress and strain distributions in the healthy femur (without prosthesis) and the second one analyzes the same boneimplant biomechanical system of the clinical case but assuming the prosthesis in the proper position. The misaligned prosthesis produced an overload at the proximal posterior plane of the femur, as confirmed by computed tomography images, which detect the formation of new bone. The numerical model of the correctly positioned prosthesis demonstrated that the bone is not overloaded and that the position of neutral axis does not significantly shift from the physiological condition. PMID:23636754
STEM policy and science education: scientistic curriculum and sociopolitical silences
NASA Astrophysics Data System (ADS)
Gough, Annette
2015-06-01
This essay responds to the contribution of Volny Fages and Virginia Albe, in this volume, to the field of research in science education, and places it in the context of the plethora of government and industry policy documents calling for more Science, Technology, Engineering and Mathematics (STEM) education in schools and universities and the tension between these and students' declining interest in studying STEM subjects. It also draws attention to the parallels between the silences around sociopolitical issues in government policies and curriculum related to STEM, including nanoscience, and those found with respect to environmental education two decades ago, and relates these to the resurgence of a scientific rationalist approach to curriculum.
ERIC Educational Resources Information Center
Sabah, Saed; Hammouri, Hind
2010-01-01
This study examined the effects of selected classroom factors (the emphasis on a student-centred approach, the shortage of instructional resources and homework) on the science and mathematics achievement of Jordanian eighth graders using data from the Trends in International Mathematics and Science Study of 2007. The analytical model also included…
ERIC Educational Resources Information Center
Grouws, Douglas A.; Tarr, James E.; Chavez, Oscar; Sears, Ruthmae; Soria, Victor M.; Taylan, Rukiye D.
2013-01-01
This study examined the effect of 2 types of mathematics content organization on high school students' mathematics learning while taking account of curriculum implementation and student prior achievement. Hierarchical linear modeling with 3 levels showed that students who studied from the integrated curriculum were significantly advantaged…
ERIC Educational Resources Information Center
Pratt, Dave
2012-01-01
Mathematics is often portrayed as an "abstract" cerebral subject, beyond the reach of many. In response, research with digital technology has led to innovative design in which mathematics can be experienced much like everyday phenomena. This lecture examines how careful design can "phenomenalise" mathematics and support not only engagement but…
ERIC Educational Resources Information Center
Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.
2015-01-01
Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…
Werner, Benjamin; Scott, Jacob G; Sottoriva, Andrea; Anderson, Alexander R A; Traulsen, Arne; Altrock, Philipp M
2016-04-01
Many tumors are hierarchically organized and driven by a subpopulation of tumor-initiating cells (TIC), or cancer stem cells. TICs are uniquely capable of recapitulating the tumor and are thought to be highly resistant to radio- and chemotherapy. Macroscopic patterns of tumor expansion before treatment and tumor regression during treatment are tied to the dynamics of TICs. Until now, the quantitative information about the fraction of TICs from macroscopic tumor burden trajectories could not be inferred. In this study, we generated a quantitative method based on a mathematical model that describes hierarchically organized tumor dynamics and patient-derived tumor burden information. The method identifies two characteristic equilibrium TIC regimes during expansion and regression. We show that tumor expansion and regression curves can be leveraged to infer estimates of the TIC fraction in individual patients at detection and after continued therapy. Furthermore, our method is parameter-free; it solely requires the knowledge of a patient's tumor burden over multiple time points to reveal microscopic properties of the malignancy. We demonstrate proof of concept in the case of chronic myeloid leukemia (CML), wherein our model recapitulated the clinical history of the disease in two independent patient cohorts. On the basis of patient-specific treatment responses in CML, we predict that after one year of targeted treatment, the fraction of TICs increases 100-fold and continues to increase up to 1,000-fold after 5 years of treatment. Our novel framework may significantly influence the implementation of personalized treatment strategies and has the potential for rapid translation into the clinic. Cancer Res; 76(7); 1705-13. ©2016 AACR. PMID:26833122
NASA Astrophysics Data System (ADS)
Attard, Catherine
2011-09-01
The levels of engagement in mathematics experienced by students during the middle years of schooling (Years 5 to 8 in New South Wales) has been of concern in Australia for some years. Lowered engagement in school has been attributed to factors such as inappropriate teaching strategies, curricula that is unchallenging and irrelevant, and cultural and technological conditions that continue to evolve (Sullivan et al. Australian Journal of Education 53(2):176-191, 2009). There is currently a gap in this field of research in terms of a lack of longitudinal studies conducted in an Australian context that feature students' voices and their perceptions of mathematics teaching and learning during the middle years. As part of a qualitative longitudinal case study spanning 3 school years, 20 students in their final year of primary school (aged between 11 and 12 years) were asked to provide their views on mathematics teaching and learning. The aim of the study was to explore the students' perspectives of mathematics teaching and learning to discover pedagogies that engage the students. During focus group discussions and individual interviews the students discussed qualities of a "good" mathematics teacher and aspects of "good" lessons. These were found to resonate well with current Australian quality teaching frameworks. The findings of this study indicate that students in the middle years are critically aware of pedagogies that lead to engagement in mathematics, and existing standards and frameworks should be used as a starting point for quality teaching of mathematics.
ERIC Educational Resources Information Center
Etim, James S.; Etim, Alice S.; Heilman, George; Mathiyalakan, S.; Ntukidem, Eno
2016-01-01
The education of girls and women in the areas of Science, Technology, Engineering and Mathematics (STEM) has long been thought of as very crucial for national development. This study investigated whether gender differences might occur in scores attained by Nigerian students on standard subject matter examinations for English Language, Mathematics…
ERIC Educational Resources Information Center
Roberts, Julia Link
2015-01-01
How do schools with a focus on science, technology, engineering, and mathematics (STEM) fit in with state goals to increase innovation and to boost the economy? This article briefly discusses how educators can encourage creativity and innovation.
Using Mathematics in Science: Working with Your Mathematics Department
ERIC Educational Resources Information Center
Lyon, Steve
2014-01-01
Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…
NASA Astrophysics Data System (ADS)
Okonkwo, Charles
This study will explore how science self-efficacy among college students in science, technology, engineering, and mathematics (STEM) fields in Nigeria predicts their innovation. Several reports on African development argue that science, technology and innovation underpin targets for dramatically reducing poverty in its many dimensions---income poverty, hunger, disease, exclusion, lack of infrastructure and shelter---while promoting gender equality, education, health, and environmental sustainability (UN Millennium Project, 2005). If African countries in general, including Nigeria, are to move from the exploitation of natural resources to technological innovation as the foundation for development, stakeholders in these countries must encourage development of individual ability to innovate products, services and work processes in crucial organizations (DeJong & DenHartog, 2010). The common denominator in the scientific and technological development of any country or organization is the individuals that make up these entities. An individual's engagement is the foundation for group motivation, innovation and improvement. These ideas inform the purpose of this study: to investigate how science self-efficacy among college students in various engineering fields in Nigeria predicts self-reported innovative behavior (IB), also referred to as Innovative Work Behavior (IWB). IB involves initiating new and useful ideas, processes, products or procedures, as well as the process of implementing these ideas (Farr & Ford, 1990; Scott & Bruce, 1994). The general findings of this study align with the dictates of social cognitive theory. Specifically, research indicates self-efficacy has the most predictive power for performance when it is measured at a level specific to the expected task (Bandura, 1997; Pajares, 1996). The findings from the hierarchical multiple regressions confirm that individuals' perceived science efficacy plays an important role in their perceived self
Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Hénon, Philippe
2016-01-01
The purpose of our study was to determine whether the number of human very small embryonic-like stem cells (huVSELs) would vary depending on the age of humans. HuVSELs frequency was evaluated into the steady-state (SS) peripheral blood (PB) of healthy volunteers using flow cytometry analysis. Their numbers were compared with volunteers' age. Blood samples were withdrawn from 28 volunteers (age ranging from 20 to 70 years), who were distributed among three groups of age: “young” (mean age, 27.8 years), “middle” (mean age, 49 years), and “older” (mean age, 64.2 years). Comparing the three groups, we did not observe any statistically significant difference in huVSELs numbers between them. The difference in mRNA expression for PSC markers as SSEA-4, Oct-4, Nanog, and Sox2 between the three groups of age was not statistically significant. A similar frequency of huVSELs into the SS-PB of young, middle-aged, and aged subjects may indicate that the VSELs pool persists all along the life as a reserve for tissue repair in case of minor injury and that there is a continuous efflux of these cells from the BM into the PB. PMID:26633977
ERIC Educational Resources Information Center
Billiar, Kristen; Hubelbank, Jeanne; Oliva, Thomas; Camesano, Terri
2014-01-01
Developing innovative science, technology, engineering and mathematics (STEM) curricula that elicit student excitement for learning is a continuous challenge for K-12 STEM teachers. Generating these lessons while meeting conflicting pedagogical objectives and constraints of time, content, and cost from various parties is truly a challenging task…
ERIC Educational Resources Information Center
Berkeihiser, Mike; Ray, Dori
2013-01-01
The interdisciplinary approach that science, technology, engineering and mathematics (STEM) projects inspire in both teachers and students "brings to light a larger picture that promotes real-world scientific applications, which has in turn been shown to increase undergraduate persistence in STEM." The high school students have been warned…
ERIC Educational Resources Information Center
Vasquez, Jo Anne
2015-01-01
When most educators think of STEM education, they think of fully integrated projects seamlessly combining all four disciplines--science, technology, engineering, and mathematics. Although such transdisciplinary STEM units are ideal, writes Vasquez, they are not the only way to give students valuable STEM experiences. She gives examples of two…
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Exploring Students' Perspectives of College STEM: An Analysis of Course Rating Websites
ERIC Educational Resources Information Center
Chang, YunJeong; Park, Seung Won
2014-01-01
One of the crucial goals of higher education is building a scientifically literate citizenry. The science, technology, engineering, and mathematics (STEM) subject areas are indicated as good domains to develop knowledge and skills for becoming future leaders. However, previous research has indicated a constant decline in the number of American…
Effect of STEM Faculty Engagement in the Math and Science Partnership Program
ERIC Educational Resources Information Center
Zhang, Xiaodong; McInerney, Joseph; Frechtling, Joy
2011-01-01
The article explores the effect of the engagement of university science, technology, engineering, and mathematics (STEM) faculty in the Math and Science Partnership program. The findings suggest that K-12 teachers benefited from the engagement in terms of improved approaches to teaching and learning, increased knowledge of subject matter content,…
ERIC Educational Resources Information Center
KINNIELL, WILLIAM T.; AND OTHERS
A DEMONSTRATION PROGRAM WAS UNDERTAKEN FOR THE PURPOSE OF SHOWING HOW A STATE DEPARTMENT OF EDUCATION CAN UTILIZE ITS RESOURCES AND SUBJECT MATTER SPECIALISTS IN DEVELOPING OVERHEAD TRANSPARENCIES TO IMPLEMENT SECONDARY SCHOOL CURRICULUM IN THE STATE. SUBJECT SPECIALISTS (26) REPRESENTING 10 COURSE FIELDS WERE BROUGHT TOGETHER AT THE BEGINNING OF…
The Current Status of STEM Education Research
ERIC Educational Resources Information Center
Brown, Josh
2012-01-01
This paper explores the current Science, Technology, Engineering and Mathematics (STEM) education research base through an analysis of articles from eight journals focused on the STEM disciplines. Analyzed are both practitioner and research publications to determine the current scope of STEM education research, where current STEM education…
ERIC Educational Resources Information Center
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
ERIC Educational Resources Information Center
Cunningham, Brittany C.; Hoyer, Kathleen Mulvaney; Sparks, Dinah
2015-01-01
As technical and scientific innovation continue to drive the global economy, educators, policymakers, and scientists seek to promote students' interest and achievement in the STEM fields to maintain the nation's competitive position (National Academy of Sciences 2006; National Science Board 2007; President's Council of Advisors on…
ERIC Educational Resources Information Center
Williams, Thomas O., Jr.; Ernst, Jeremy V.; Kaui, Toni Marie
2015-01-01
This study investigated, from a national perspective, the instructional teaching load of STEM educators specific to students with disabilities and limited English Proficiency (LEP). The most recent School and Staffing Survey results of in-service science, technology, and mathematics teachers were compiled and analyzed to form subject area…
ERIC Educational Resources Information Center
Hulme, Julie; Taylor, Jacqui; Davies, Mark N. O.; Banister, Peter
2012-01-01
The Higher Education Academy (HEA) is committed to enhancing the quality of learning and teaching for all university students in the UK, and the inaugural conference for the Science, Technology, Engineering and Mathematics (STEM) subjects, held in April 2012 at Imperial College, London, aimed to showcase research and evidence-based educational…
ERIC Educational Resources Information Center
Lin, Yi-Hung; Wilson, Mark; Cheng, Ching-Lin
2013-01-01
In teaching, representations are used as ways to illustrate the concepts underlying a specific topic. For example, use symbols (e.g., 1?+?2?=?3) to express the concept of addition. To compare students' abilities to interpret different representations in mathematics, the symbolic representation (SR) test and the pictorial representation (PR)…
ERIC Educational Resources Information Center
Dündar, Sahin; Güvendir, Meltem Acar; Kocabiyik, Oya Onat; Papatga, Erdal
2014-01-01
The present study was conducted first to identify which school subjects were most liked, most important, and most difficult, as well as least liked, least important and easiest as perceived by elementary school students and second to explore the reasons why students most/least liked, considered as most/least important, and considered as most…
NASA Astrophysics Data System (ADS)
Flowers, Reagan D.
The primary purpose of this study was to investigate how a management service organization can assist schools with reducing the achievement gap between minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours. Developing a strategic plan through creating a program that provides support services for the implementation of hands-on activities in STEM for children during the after-school hours was central to this purpose. This Project Demonstrating Excellence (PDE), a social action project, also presents historical and current after-school program developments in the nation. The study is quantitative and qualitative in nature. Surveys were utilized to quantitatively capture the opinions of participants in the social action project on three specific education related issues: (1) disparity in academic motivation of students to participate in after-school STEM enrichment programs; (2) whether teachers and school administrators saw a need for STEM after-school enrichment; and (3) developing STEM after-school programs that were centered on problem-solving and higher-order thinking skills to develop students' interest in STEM careers. The sample consisted of 50 participants comprised of students, teachers, and administrators. The focus groups and interviews provided the qualitative data for the study. The qualitative sample consisted of 14 participants comprised of students, parents and teachers, administrators, an education consultant, and a corporate sponsor. The empirical data obtained from the study survey, focus groups, and interviews provided a comprehensive profile on the current views and future expectations of STEM after-school enrichment, student and school needs, and community partnerships with STEM companies. Results of the study and review of the implementation of the social action project, C-STEM (communication, science, technology, engineering, and mathematics) Teacher and Student Support
NASA Astrophysics Data System (ADS)
Chu, M. J.; Kitanidis, P. K.; McCarty, P. L.
2003-12-01
Engineered bioremediation and monitored natural attenuation are important options for the cleanup of frequently occurring subsurface contamination by organic compounds. Because the contaminant removal occurs only when the substrates, target contaminants, and degrading bacteria are present simultaneously, the controlling mixing processes of the contaminants and substrates dictate the contaminant removal rate. Due to the complex nature of subsurface environments, in-situ bioremediation often involves many physico-chemical and biological processes concurrently. Thus, mathematical modeling is a useful tool -and probably the only effective tool- to identify the rate controlling processes. As a tool for predicting the environmental impact of a spill and/or for screening the effectiveness of possible remediation technologies, its ability to correctly capture the key processes is important. However, classical modeling involving the discretized form of the governing equations over very large spatial domains and long periods is computationally infeasible at this point. In this research, we investigate the large-time solution behavior of a representative bio-reactive transport model assuming the mixing of two required substrates occurs only in the directions transverse to groundwater flow. The processes are governed by the commonly used advection-dispersion-reaction equations. The microbial growth and decay in the model are described by the double Monod kinetics terms and a linear decay term. The flow field is assumed to be uniform. We have developed a practical approach to estimate the size of the microbial reaction zone and the level of microbial concentration. We have found out that the microbial reaction rates are always limited by the transverse transport of the substrates at steady state, provided that the bulk substrate concentrations are much larger than a characteristic value determined only by the microbial kinetic parameters. Thus the reactions can be considered as
Mathematization in introductory physics
NASA Astrophysics Data System (ADS)
Brahmia, Suzanne M.
Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in
Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...
Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...
ERIC Educational Resources Information Center
Reys, Robert; Reys, Rustin
2011-01-01
In their dual roles as mathematics teachers and tennis coaches, the authors have worked with tennis players who have never thought about how a knowledge of mathematics might help them become "better" tennis players. They have also worked with many mathematics students who have never considered how much mathematics is associated with tennis. This…
NASA Astrophysics Data System (ADS)
Gates, S. James, Jr.; Bhulai, Alfred; IcePilot; JoeB
2014-12-01
In reply to Margaret Harris' article on "The STEM shortage paradox" (Graduate careers, October pp56-59, http://ow.ly/DXvIq) and a related post on the physicsworld.com blog ("The STEM employment paradox, revisited", http://ow.ly/DXvCl), both of which questioned reports that the UK is suffering from a severe shortage of graduates in science, technology, engineering and mathematics.
Astronomy and Mathematics Education
NASA Astrophysics Data System (ADS)
Ros, Rosa M.
There are many European countries where Astronomy does not appear as a specific course on the secondary school. In these cases Astronomy content can be introduced by means of other subjects. There are some astronomical topics within the subject of Physics but this talk concerns introducing Astronomy in Mathematics classes. Teaching Astronomy through Mathematics would result in more exposure than through Physics as Mathematics is more prevalent in the curriculum. Generally it is not easy to motivate students in Mathematics but they are motivated to find out more about the universe and Astronomy current events than appears in the media. This situation can be an excellent introduction to several mathematics topics. The teachers in secondary and high school can use this idea in order to present more attractive mathematics courses. In particular some different examples will be offered regarding * Angles and spherical coordinates considering star traces * Logarithms and visual magnitudes * Plane trigonometry related orbital movements * Spherical trigonometry in connection with ecliptic obliquity * Conic curves related to sundial at several latitudes Some students do not enjoy studying Mathematics but they can be attracted by practical situations using Applied Mathematics: Astronomy is always very attractive to teenagers.
Discrete Mathematics and Its Applications
ERIC Educational Resources Information Center
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…