Science.gov

Sample records for matrix composites irradiated

  1. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    NASA Astrophysics Data System (ADS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-11-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with 60Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0-1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite.

  2. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  3. Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites have found selected application in areas that can cost-effectively capitalize on improvements in specific stiffness, specific strength, fatigue resistance, wear resistance, and coefficient of thermal expansion. Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored, including aluminum, beryllium, magnesium, titanium, iron, nickel, cobalt, and silver. However, aluminum is by far the most preferred. For reinforcements, the materials are typically ceramics, which provide a very beneficial combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, metallic materials such as tungsten and steel fibers have been considered.

  4. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  5. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  6. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  7. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  8. Molybdenum disilicide matrix composite

    DOEpatents

    Petrovic, John J.; Carter, David H.; Gac, Frank D.

    1991-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  9. Molybdenum disilicide matrix composite

    DOEpatents

    Petrovic, John J.; Carter, David H.; Gac, Frank D.

    1990-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  10. Matrix cracking in ceramic-matrix composites

    SciTech Connect

    Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)

    1993-10-01

    Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.

  11. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  12. Hybridized polymer matrix composite

    NASA Technical Reports Server (NTRS)

    Stern, B. A.; Visser, T.

    1981-01-01

    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.

  13. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  14. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  15. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  16. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1983-01-01

    Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.

  17. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  18. Inert matrix fuel behaviour in test irradiations

    NASA Astrophysics Data System (ADS)

    Hellwig, Ch.; Streit, M.; Blair, P.; Tverberg, T.; Klaassen, F. C.; Schram, R. P. C.; Vettraino, F.; Yamashita, T.

    2006-06-01

    Among others, three large irradiation tests on inert matrix fuels have been performed during the last five years: the two irradiation tests IFA-651 and IFA-652 in the OECD Halden Material Test Reactor and the OTTO irradiation in the High Flux Reactor in Petten. While the OTTO irradiation is already completed, the other two irradiations are still ongoing. The objectives of the experiments differ: for OTTO, the focus was on the comparison of different concepts of IMF, i.e. homogeneous fuel versus different types of heterogeneous fuel. In IFA-651, single phase yttria stabilized zirconia (YSZ) doped with Pu is compared with MOX. In IFA-652, the potential of calcia stabilized zirconia (CSZ) as a matrix with and without thoria is evaluated. The design of the three experiments is explained and the current status is reviewed. The experiments show that the homogeneous, single phase YSZ-based or CSZ-based fuel show good and stable irradiation behaviour. It can be said that homogeneous stabilized zirconia based fuel is the most promising IMF concept for an LWR environment. Nevertheless, the fuel temperatures were relatively high due to the low thermal conductivity, potentially leading to high fission gas release, and must be taken into account in the fuel design.

  19. Characterization of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Chun, H. J.; Karalekas, D.

    1994-01-01

    Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.

  20. Metal-matrix composites: Status and prospects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.

  1. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  2. Ceramic matrix and resin matrix composites - A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  3. Third Intermetallic Matrix Composites Symposium, volume 350

    SciTech Connect

    Graves, J.A.; Bowman, R.R.; Lewandowski, J.J.

    1994-04-01

    Partial contents include: issues in potential IMC application for aerospace structures; powder metallurgy processing of intermetallic matrix composites; microstructure and properties of intermetallic matrix composites produced by reaction synthesis; combustion synthesis of niobium aluminide matrix composites; ambient temperature synthesis of bulk intermetallics; wear behavior of SHS intermetallic matrix composites; fracture characteristics of metal-intermetallic laminates produced by SHS reactions; and vapor phase synthesis of Ti aluminides and the interfacial bonding effect on the mechanical property of micro-composites reinforced by pyrolized SiC fibers.

  4. Thermoplastic matrix composite processing model

    NASA Technical Reports Server (NTRS)

    Dara, P. H.; Loos, A. C.

    1985-01-01

    The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.

  5. Evaluation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1971-01-01

    The results of an evaluation of candidate metal-matrix composite materials for shuttle space radiators mounted to external structure are presented. The evaluation was specifically applicable to considerations of the manufacturing and properties of a potential space radiator. Two candidates, boron/aluminum and graphite/aluminum were obtained or made in various forms and tested in sufficient depth to allow selection of one of the two for future scale-up programs. The effort accomplished on this program verified that aluminum reinforced with boron was within the state-of-the-art in industry and possessed properties usable in the external skin areas available for shuttle radiators where re-entry temperatures will not exceed 800 F. It further demonstrated that graphite/aluminum has an apparently attractive future for space applications but requires extension development prior to scale-up.

  6. Multiscale Modeling of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  7. Simulating Microfracture In Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Chamis, Christos C.; Gotsis, Pascal K.

    1994-01-01

    Computational procedures developed for simulating microfracture in metal-matrix/fiber composite materials under mechanical and/or thermal loads at ambient and high temperatures. Procedures evaluate microfracture behavior of composites, establish hierarchies and sequences of fracture modes, and examine influences of compliant layers and partial debonding on properties of composites and on initiation of microfractures in them.

  8. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  9. Metal matrix composites microfracture: Computational simulation

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Caruso, John J.; Chamis, Christos C.

    1990-01-01

    Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system.

  10. Celsian Glass-Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  11. Spark plasma sintering of aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  12. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  13. Micromechanical Modeling of Woven Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1997-01-01

    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  14. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  15. METCAN-PC - METAL MATRIX COMPOSITE ANALYZER

    NASA Technical Reports Server (NTRS)

    Murthy, P. L.

    1994-01-01

    High temperature metal matrix composites offer great potential for use in advanced aerospace structural applications. The realization of this potential however, requires concurrent developments in (1) a technology base for fabricating high temperature metal matrix composite structural components, (2) experimental techniques for measuring their thermal and mechanical characteristics, and (3) computational methods to predict their behavior. METCAN (METal matrix Composite ANalyzer) is a computer program developed to predict this behavior. METCAN can be used to computationally simulate the non-linear behavior of high temperature metal matrix composites (HT-MMC), thus allowing the potential payoff for the specific application to be assessed. It provides a comprehensive analysis of composite thermal and mechanical performance. METCAN treats material nonlinearity at the constituent (fiber, matrix, and interphase) level, where the behavior of each constituent is modeled accounting for time-temperature-stress dependence. The composite properties are synthesized from the constituent instantaneous properties by making use of composite micromechanics and macromechanics. Factors which affect the behavior of the composite properties include the fabrication process variables, the fiber and matrix properties, the bonding between the fiber and matrix and/or the properties of the interphase between the fiber and matrix. The METCAN simulation is performed as point-wise analysis and produces composite properties which are readily incorporated into a finite element code to perform a global structural analysis. After the global structural analysis is performed, METCAN decomposes the composite properties back into the localized response at the various levels of the simulation. At this point the constituent properties are updated and the next iteration in the analysis is initiated. This cyclic procedure is referred to as the integrated approach to metal matrix composite analysis. METCAN

  16. Fracture toughness testing of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1992-01-01

    The experimental techniques and associated data analysis methods used to measure the resistance to interlaminar fracture, or 'fracture toughness', of polymer matrix composite materials are described. A review in the use of energy techniques to characterize fracture behavior in elastic solids is given. An overview is presented of the types of approaches employed in the design of delamination-resistant composite materials.

  17. Processing of magnesia pyrochlore composites for inert matrix materials

    NASA Astrophysics Data System (ADS)

    Yates, S. J.; Xu, P.; Wang, J.; Tulenko, J. S.; Nino, J. C.

    2007-05-01

    Inert matrix (IM) materials for nuclear fuel in light water reactors must meet several critical requirements that include high temperature stability, good irradiation behaviour, high thermal conductivity, and hot water corrosion resistance. MgO possesses all of the necessary requirements for an ideal IM candidate, except hot water corrosion resistance. A composite approach is being investigated in order to improve the corrosion resistance of MgO, while simultaneously taking advantage of the high thermal conductivity of MgO and its ability to be reprocessed in nitric acid. MgO-pyrochlore composite compositions are fabricated based on neutronic property simulations for assessment as potential IM materials. The selected pyrochlore compositions are synthesized by both sol gel and solid state processing, and how composite processing affects the microstructure will be discussed. Among the multiple composite processing approaches investigated, ball milling produces the most homogeneous and consistent microstructures.

  18. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  19. Nanophosphor composite scintillators comprising a polymer matrix

    DOEpatents

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  20. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1981-01-01

    A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.

  1. Matrix cracking in brittle-matrix composites with tailored interfaces

    SciTech Connect

    Danchaivijit, S.; Chao, L.Y.; Shetty, D.K.

    1995-10-01

    Matrix cracking from controlled through cracks with bridging filaments was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. An unbonded, frictional interface was produced by moderating the curing shrinkage of the epoxy with the alumina filler and coating the filaments with a releasing agent. Uniaxial tension test specimens (2.5 x 25 x 125 mm) with filament-bridged through cracks were fabricated by a novel two-step casting technique involving casting, precracking and joining of cracked and uncracked sections. Distinct matrix-cracking stresses, corresponding to the extension of the filament-bridged cracks, were measured in uniaxial tension tests using a high-sensitivity extensometer. The crack-length dependence of the matrix-cracking stress was found to be in good agreement with the prediction of a fracture-mechanics analysis that employed a new crack-closure force-crack-opening displacement relation in the calculation of the stress intensity for fiber-bridged cracks. The prediction was based on independent experimental measurements of the matrix fracture toughness (K{sub cm}), the interfacial sliding friction stress ({tau}) and the residual stress in the matrix ({sigma}{sub m}{sup I}). The matrix-cracking stress for crack lengths (2a) greater than 3 mm was independent of the crack length and agreed with the prediction of the steady-state theory of Budiansky, Hutchinson and Evans. Tests on specimens without the deliberately introduced cracks indicated a matrix-cracking stress significantly higher than the steady-state stress.

  2. Optimum interface properties for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Lerch, Bradley A.

    1989-01-01

    Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems.

  3. Intermetallic bonded ceramic matrix composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A.

    1995-07-01

    A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.

  4. Ceramic Matrix Composites Performances Under High Gamma Radiation Doses

    NASA Astrophysics Data System (ADS)

    Cemmi, A.; Baccaro, S.; Fiore, S.; Gislon, P.; Serra, E.; Fassina, S.; Ferrari, E.; Ghisolfi, E.

    2014-06-01

    Ceramic matrix composites reinforced by continuous ceramic fibers (CMCs) represent a class of advanced materials developed for applications in automotive, aerospace, nuclear fusion reactors and in other specific systems for harsh environments. In the present work, the silicon carbide/silicon carbide (SiCf/SiC) composites, manufactured by Chemical Vapour Infiltration process at FN S.p.A. plant, have been evaluated in term of gamma radiation hardness at three different absorbed doses (up to around 3MGy). Samples behavior has been investigated before and after irradiation by means of mechanical tests (flexural strength) and by surface and structural analyses (X-ray diffraction, SEM, FTIR-ATR, EPR).

  5. Fiber coatings for ceramic matrix composites

    SciTech Connect

    Carpenter, H.W.; Bohlen, J.W.

    1992-08-01

    Two fiber coating concepts for ceramic matrix composites were successfully demonstrated in a preliminary study. These coatings were designed to promote toughness in composites and resist oxidation. The concepts were: (1) thin, multiple unbonded layers, and (2) a single porous layer that provided low interfacial strengths between the fiber and matrix. Chemical vapor deposited (CVD) SiC and sol-gel derived oxides were used to produce the fiber coatings. Specimens consisted of a single coated monofilament fiber and a sheath of CVD SiC to represent the matrix. Results from flexure tests showed that matrix cracks were deflected and that fibers debonded the same as in specimens made using carbon-coated fibers. Crack deflection and fiber debonding were also evident after exposure in air at elevated temperatures. 5 refs.

  6. Microstructural Development in Irradiated U-7Mo/6061 Al Alloy Matrix Dispersion Fuel

    SciTech Connect

    Dennis D. Keiser, Jr.; Adam B. Robinson; Jan-Fong Jue; Pavel G. Medvedev; Daniel M. Wachs; M. Ross Finlay

    2009-09-01

    A U-7Mo alloy/6061 Al alloy matrix dispersion fuel plate was irradiated in the Advanced Test Reactor and then destructively examined using optical metallography and scanning electron microscopy to characterize the developed microstructure. Results were compared to the microstructures of as-fabricated dispersion fuel to identify changes that occurred during irradiation. The interaction layers that formed on the surface of the fuel U-7Mo particles during fuel fabrication exhibited stable irradiation performance as a result of the ~0.88 wt% Si present in the fuel meat matrix. During irradiation, the interaction layers changed very little in thickness and composition. The overall irradiation performance of the fuel plate to moderate power and burnup was considered excellent.

  7. Effects of electron irradiation on LDPE/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Yang, Jianqun; Li, Xingji; Liu, Chaoming; Rui, Erming; Wang, Liqin

    2015-12-01

    In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.

  8. Solidification processing of monotectic alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Frier, Nancy L.; Shiohara, Yuh; Russell, Kenneth C.

    1989-01-01

    Directionally solidified aluminum-indium alloys of the monotectic composition were found to form an in situ rod composite which obeys a lambda exp 2 R = constant relation. The experimental data shows good agreement with previously reported results. A theoretical boundary between cellular and dendritic growth conditions was derived and compared with experiments. The unique wetting characteristics of the monotectic alloys can be utilized to tailor the interface structure in metal matrix composites. Metal matrix composites with monotectic and hypermonotectic Al-In matrices were made by pressure infiltration, remelted and directionally solidified to observe the wetting characteristics of the alloys as well as the effect on structure of solidification in the constrained field of the fiber interstices. Models for monotectic growth are modified to take into account solidification in these constrained fields.

  9. Influence of Binder in Iron Matrix Composites

    SciTech Connect

    Shamsuddin, S.; Jamaludin, S. B.; Hussain, Z.; Ahmad, Z. A.

    2010-03-11

    The ability to use iron and its alloys as the matrix material in composite systems is of great importance because it is the most widely used metallic material with a variety of commercially available steel grades [1]. The aim of this study is to investigate the influence of binder in particulate iron based metal matrix composites. There are four types of binder that were used in this study; Stearic Acid, Gummi Arabisch, Polyvinyl alcohol 15000 MW and Polyvinyl alcohol 22000 MW. Six different weight percentage of each binder was prepared to produce the composite materials using powder metallurgy (P/M) route; consists of dry mixing, uniaxially compacting at 750 MPa and vacuum sintering at 1100 deg. C for two hours. Their characterization included a study of density, porosity, hardness and microstructure. Results indicate that MMC was affected by the binder and stearic acid as a binder produced better properties of the composite.

  10. Plastic matrix composites with continuous fiber reinforcement

    SciTech Connect

    1991-09-19

    Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

  11. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  12. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  13. Development of Matrix Microstructures in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael

    2012-01-01

    One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.

  14. Metal matrix composites for aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1975-01-01

    Studies of advanced aircraft propulsion systems have indicated that performance gains and operating costs are possible through the application of metal matrix composites. Compressor fan blades and turbine blades have been identified as components with high payoff potential as a result of these studies. This paper will present the current status of development of five candidate materials for such applications. Boron fiber/aluminum, boron fiber/titanium, and silicon carbide fiber/titanium composites are considered for lightweight compressor fan blades. Directionally solidified eutectic superalloy and tungsten wire/superalloy composites are considered for application to turbine blades for use temperatures to 1100 C (2000 F).

  15. Ceramic-matrix composites fatigue and fracture

    NASA Astrophysics Data System (ADS)

    Davidson, David L.

    1995-10-01

    Fiber-reinforced ceramic-matrix composites (CMCs) have been shown to exhibit excellent high-temperature properties. There are some published data on the mechanical properties of Nicalon fiber-reinforced composites with various matrices, but much of the work was performed in bending, and there is little information on the failure modes in textile-reinforced CMCs, especially under cyclic-loading conditions. This article is an interim report on research that examines the tensile deformation, fracture, smoothbar fatigue, and fatigue crack-growth behavior of several CMCs. Unidirectional, two-dimensional eight-harness satin weave, and three-dimensional angle-interlock weave Nicalon fiber architectures infiltrated with polymers and then pyrolized were investigated and are compared with similar experiments on Nicalon-reinforced calcium-silicate glass-ceramic-matrix composites.

  16. Thermomechanical fatigue of polymer matrix composites

    SciTech Connect

    Strait, L.H.; Koudela, K.L.; Karasek, M.L.; Amateau, M.F.; Runt, J.P.

    1996-12-31

    The present research was undertaken to evaluate the effects of mechanical constraint on the response of polymer matrix composites during thermal cycling. Analytical and experimental techniques were used to characterize the response of carbon-fiber-reinforced cyanate ester and bismaleimide composites. Cross-ply laminates were subjected to thermal cycles from 24 to 177 C in the unconstrained, fully constrained, and overconstrained conditions. Laminate response, damage mechanisms, and residual compressive properties were characterized for each material and degree of constraint. The results of this research indicate that the level of constraint can have a significant effect on the response of polymer matrix composites during thermal cycling. However, longer-term testing is required to determine if the observed changes in response will ultimately affect the final failure mode and fatigue endurance of the materials.

  17. Radial matrix cracking in unidirectional brittle matrix composites

    SciTech Connect

    Tandon, G.P.; Pagano, N.J.

    1994-12-31

    This work presents a mathematical study of radial cracking in the transverse direction of a unidirectional composite under the influence of thermal and mechanical loads. The formulation is based on the use of Reissner`s variational theorem in conjunction with an equilibrium stress field in which the r-dependence is assumed. In this study, this newly developed model is employed to evaluate the effect of the extent of radial matrix cracking on the elastic response of a unidirectional composite. Parametric studies are also conducted to examine the effect of varying the elastic properties of the constituents on the energy release rate of a radial crack. The computed values are shown to be in good agreement with the reported exact solution.

  18. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  19. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  20. Thermal shock resistance of ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Carper, D. M.; Nied, H. F.

    1993-01-01

    The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.

  1. Unified Viscoplastic Behavior of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Robinson, D. N.; Bartolotta, P. A.

    1992-01-01

    The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated.

  2. Ceramic Matrix Composite (CMC) Materials Characterization

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  3. Ceramic Matrix Composite (CMC) Materials Development

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  4. Solidification processing of metal-matrix composites

    SciTech Connect

    Mortensen, A.; Cornie, J.A.; Flemings, M.C.

    1988-02-01

    Infiltration of fibers with molten metal and metal/reinforcement slurry casting have been developed for the net-shape solidification processing of MMCs, the largest portion of whose production costs are associated with processing. The low viscosity of liquid metals renders the fabrication of MMCs by casting much easier than that of polymer matrix composites. Attention is given to the methods developed to date to deal with problems that arise from fiber/matrix reactivity and porosity due to poor infiltration. 219 references.

  5. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  6. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  7. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  8. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  9. METCAN: The metal matrix composite analyzer

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Murthy, Pappu L. N.

    1988-01-01

    Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code.

  10. Thermal expansion measurements of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Dries, Gregory A.

    1988-01-01

    The laser-interferometric-dilatometer system currently operational at NASA-Langley is described. The system, designed to characterize metal matrix composites, features high precision, automated data acquisition, and the ability to test a wide variety of specimen geometries over temperature ranges within 80-422 K. The paper presents typical thermal-expansion measurement data for a Gr/Al rod; Gr/Al and Gr/Mg unidirectional laminates; and a Gr/Mg (+ or -8)s laminate.

  11. Metal matrix composites - Their time to shine?

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    Basic types of metal matrix composite (MMC) systems (namely, the particulates-, the whisker/flakes-, and the continuous-fiber-reinforced) are discussed together with the advantages and the disadvantages of each system. Special consideration is given to the new MMC systems under development that meet the needs of aerospace applications and to the properties of stiffness and thermal expansion of these systems. As a family of structural materials, MMCs have great potential for missile airframe applications.

  12. Spin Forming of Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    An exploratory effort between NASA-Marshall Space Flight Center (MSFC) and SpinCraft, Inc., to experimentally spin form cylinders and concentric parts from small and thin sheets of aluminum Metal Matrix Composites (MMC), successfully yielded good microstructure data and forming parameters. MSFC and SpinCraft will collaborate on the recent technical findings and develop strategy to implement this technology for NASA's advanced propulsion and airframe applications such as pressure bulkheads, combustion liner assemblies, propellant tank domes, and nose cone assemblies.

  13. Ceramic Matrix Composites for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2011-01-01

    Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.

  14. Method of producing a hybrid matrix fiber composite

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2006-03-28

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites comprised of two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  15. Program For Analysis Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Mital, S. K.

    1994-01-01

    METCAN (METal matrix Composite ANalyzer) is computer program used to simulate computationally nonlinear behavior of high-temperature metal-matrix composite structural components in specific applications, providing comprehensive analyses of thermal and mechanical performances. Written in FORTRAN 77.

  16. Probabilistic Modeling of Ceramic Matrix Composite Strength

    NASA Technical Reports Server (NTRS)

    Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.

    1998-01-01

    Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.

  17. Effects of. gamma. irradiation on cartilage matrix calcification

    SciTech Connect

    Nijweide, P.J.; Burger, E.H.; van Delft, J.L.; Kawilarange-de Haas, E.W.M.; Wassenaar, A.M.; Mellink, J.H.

    1980-10-01

    The effect of ..gamma.. irradiation on cartilage matrix calcification was studied in vitro. Metatarsal bones of 14- to 17-day-old embryonic mice were dissected and cultured under various conditions. Prior to culture, half of the metatarsal bones received absorbed doses of 1.0 to 30.0 Gy ..gamma.. radiation. Their paired counterparts served as controls. Irradiation inhibited longitudinal growth and calcification of the cartilage matrix during culture. In addition, a number of histological changes were noted. The inhibition of matrix calcification appeared to be due to an inhibition of the intracellular calcium accumulation. The formation of extracellular calcification foci and the growth of the calcified area already present at the moment of explanation were not inhibited during culture.

  18. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  19. Ceramic matrix composites by microwave assisted CVI

    SciTech Connect

    Currier, R.P.; Devlin, D.J.

    1993-05-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. The potential advantages of microwave assisted CVI are noted. Recent numerical studies of microwave assisted CVI are then reviewed. These studies predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results obtained using silicon based composite systems. The importance of microwave-material interactions is stressed. In particular, emphasis is placed on the role played by the relative ability of fiber and matrix to dissipate microwave energy. Results suggest that microwave induced inverted gradients can in fact be exploited using the CVI technique to promote inside-out densification.

  20. Ceramic matrix composites by microwave assisted CVI

    SciTech Connect

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. The potential advantages of microwave assisted CVI are noted. Recent numerical studies of microwave assisted CVI are then reviewed. These studies predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results obtained using silicon based composite systems. The importance of microwave-material interactions is stressed. In particular, emphasis is placed on the role played by the relative ability of fiber and matrix to dissipate microwave energy. Results suggest that microwave induced inverted gradients can in fact be exploited using the CVI technique to promote inside-out densification.

  1. Polymer Matrix Composite Lines and Ducts

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, a task was undertaken to assess the feasibility of making cryogenic feedlines with integral flanges from polymer matrix composite materials. An additional level of complexity was added by having the feedlines be elbow shaped. Four materials, each with a unique manufacturing method, were chosen for this program. Feedlines were to be made by hand layup (HLU) with standard autoclave cure, HLU with electron beam cure, solvent-assisted resin transfer molding (SARTM), and thermoplastic tape laying (TTL). A test matrix of fill and drain cycles with both liquid nitrogen and liquid helium, along with a heat up to 250 F, was planned for each of the feedlines. A pressurization to failure was performed on any feedlines that passed the cryogenic cycling testing. A damage tolerance subtask was also undertaken in this study. The effects of foreign object impact to the materials used was assessed by cross-sectional examination and by permeability after impact testing. At the end of the program, the manufacture of the electron beam-cured feedlines never came to fruition. All of the TTL feedlines leaked heavily before any cryogenic testing, all of the SARTM feedlines leaked heavily after one cryogenic cycle. Thus, only the HLU with autoclave cure feedlines underwent the complete test matrix. They passed the cyclic testing and were pressurized to failure.

  2. Nanotube reinforced thermoplastic polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Shofner, Meisha Lei

    The inherent high strength, thermal conductivity, and electrical conductivity make nanotubes attractive reinforcements for polymer matrix composites. However, the structure that makes them desirable also causes highly anisotropic properties and limited reactivity with other materials. This thesis isolates these problems in two separate studies aimed at improving mechanical properties with single wall nanotube (SWNT) reinforced thermoplastic polymer composites. The two studies demonstrate the effect of solid freeform fabrication (SFF) and chemical functionalization on anisotropy and limited reactivity, respectively. Both studies showed mechanical property improvements. The alignment study demonstrates a maximum increase of 93% in tensile modulus with single wall nanotubes (SWNTs). The chemical functionalization study shows a larger increase in storage modulus for functionalized SWNTs as compared to purified SVWNTs with respective increases of 9% and 44% in storage modulus. Improved interfacial properties are also observed as a decrease in mechanical damping. Maximum property increases in composites are obtained when nanotubes are aligned, requiring additional processing consideration to the anisotropic structure. Melt spinning and extrusion processing effectively align nanotubes, but the end product of these techniques, composite fibers, requires further processing to be incorporated into finished parts. Extrusion-based SFF is a novel technique for processing nanotube reinforced composites because it allows for the direct fabrication of finished parts containing aligned nanotubes. SFF processing produces parts containing preferentially oriented nanotubes with improved mechanical properties when compared to isotropic composites. Functionalization of the nanotube surface disrupts the rope structure to obtain smaller ropes and promote further interfacial bonding. The chemically inert nature of nanotubes resulting from a structure containing few defects and the

  3. Reliability analysis of ceramic matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Thomas, David J.; Wetherhold, Robert C.

    1991-01-01

    At a macroscopic level, a composite lamina may be considered as a homogeneous orthotropic solid whose directional strengths are random variables. Incorporation of these random variable strengths into failure models, either interactive or non-interactive, allows for the evaluation of the lamina reliability under a given stress state. Using a non-interactive criterion for demonstration purposes, laminate reliabilities are calculated assuming previously established load sharing rules for the redistribution of load as the failure of laminae occur. The matrix cracking predicted by ACK theory is modeled to allow a loss of stiffness in the fiber direction. The subsequent failure in the fiber direction is controlled by a modified bundle theory. Results using this modified bundle model are compared with previous models which did not permit separate consideration of matrix cracking, as well as to results obtained from experimental data.

  4. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  5. Interfacial roughness in ceramic matrix composites

    SciTech Connect

    Jero, P.D.; Parthasarathy, T.A.; Kerans, R.J.

    1992-08-01

    Recent work using push-out and push-back tests has shown that interfacial roughness contributes substantially to the sliding friction in at least some ceramic matrix composites (CMC's). Other work examining frictional heating of CMC's during cyclic fatigue has shown the important role that interfacial friction plays, and further that the interface is degraded upon extended cycling. From this it is apparent that interfacial roughness may play a key role in determining composite behavior. Although the observation of a seating drop during fiber push-back gives some information about the amplitude and spatial extent of the interfacial roughness, actual measurement of the roughness has proven difficult due to its extremely fine scale. In the present work, a laser interferometer has been used to examine the roughness of composite interfaces (both fiber and matrix) as well as virgin fibers. In addition, long range (mm scale) push-out tests have been followed by interferometric characterization to examine the severity and rate of interfacial degradation associated with fiber sliding. 4 refs.

  6. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    NASA Technical Reports Server (NTRS)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  7. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  8. METal matrix composite ANalyzer (METCAN): Theoretical manual

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1993-01-01

    This manuscript is intended to be a companion volume to the 'METCAN User's Manual' and the 'METAN Demonstration Manual.' The primary purpose of the manual is to give details pertaining to micromechanics and macromechanics equations of high temperature metal matrix composites that are programmed in the METCAN computer code. The subroutines which contain the programmed equations are also mentioned in order to facilitate any future changes or modifications that the user may intend to incorporate in the code. Assumptions and derivations leading to the micromechanics equations are briefly mentioned.

  9. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  10. Graphite fiber reinforced glass matrix composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  11. Effect of irradiation on thermal expansion of SiC{sub f}/SiC composites

    SciTech Connect

    Senor, D.J.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    Linear thermal expansion was measured on five different SiC-fiber-reinforced/SiC-matrix (SiC{sub f}/SiC) composite types in the unirradiated and irradiated conditions. Two matrices were studied in combination with Nicalon CG reinforcement and a 150 nm PyC fiber/matrix interface: chemical vapor infiltrated (CVI) SiC and liquid-phase polymer impregnated precursor (PIP) SiC. Composites of PIP SiC with Tyranno and HPZ fiber reinforcement and a 150 nm PyC interface were also tested, as were PIP SiC composites with Nicalon CG reinforcement and a 150 nm BN fiber/matrix interface. The irradiation was conducted in the Experimental Breeder Reactor-II at a nominal temperature of 1,000 C to doses of either 33 or 43 dpa-SiC. Irradiation caused complete fiber/matrix debonding in the CVI SiC composites due to a dimensional stability mismatch between fiber and matrix, while the PIP SiC composites partially retained their fiber/matrix interface after irradiation. However, the thermal expansion of all the materials tested was found to be primarily dependent on the matrix and independent of either the fiber or the fiber/matrix interface. Further, irradiation had no significant effect on thermal expansion for either the CVI SiC or PIP SiC composites. In general, the thermal expansion of the CVI SiC composites exceeded that of the PIP SiC composites, particularly at elevated temperatures, but the expansion of both matrix types was less than chemical vapor deposited (CVD) {beta}-SiC at all temperatures.

  12. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  13. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  14. Characterization of Hybrid CNT Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.

    2015-01-01

    Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the

  15. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  16. Pendulum impact resistance of tungsten fiber/metal matrix composites.

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1972-01-01

    The impact properties of copper, copper-10 nickel, and a superalloy matrix reinforced with tungsten fibers were studied. In most cases the following increased composite impact strength: increased fiber or matrix toughness, decreased fiber-matrix reaction, increased test temperature, hot working and heat treatment. Notch sensitivity was reduced by increasing fiber or matrix toughness. The effect of fiber content depended on the relative toughness of the fibers and matrix. Above 530 K a 60 volume per cent superalloy matrix composite had a greater impact strength than a turbine blade superalloy, whereas below 530 K a hot worked 56 volume per cent composite had a greater impact strength than the superalloy.

  17. Intelligent processing for metal matrix composites

    NASA Astrophysics Data System (ADS)

    Backman, D. G.; Russell, E. S.; Wei, D. Y.; Pang, Y.

    Intelligent processing of materials (IPM) is a powerful processing concept which requires integration of process knowledge, analytical models, process sensors, and expert system based control technology. An IPM system to manufacture metal matrix composites (MMC) using inductively coupled plasma deposition is under development. Process knowledge is contained in a reduced-order process simulator, consisting of thermal, fluid flow, solid mechanics, and material kinetics models. A working deposit thermal model has been developed, while the solid mechanics and material kinetics models are under development. Future directions for IPM development are discussed, including integration with related MMC processing operations, and establishment of a control system in which expert system based control is used to replicate operator decision-making.

  18. Ceramic matrix composites in simulated SSME environments

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Eckel, Andrew J.

    1988-01-01

    Future Space Shuttle Main Engine (SSME)-type rocket engines can benefit from the use of fiber-reinforced ceramix matrix composites (FRCMC). Ceramics reinforced with long continuous fibers exhibit improved tolerance to severe thermomechanical and environmental exposures. An in-house NASA-Lewis program to evaluate the durability of FRCMC in simulated SSME environments is described. Primary tests involve multiple (one second) exposures of FRCMC specimens in a hydrogen/oxygen rocket test rig. This rig generates surface heating rates of 1000 to 2500 C/second. The FRCMC durability evaluation involves measurement of retained strength as a function of thermal shock severity and number of upshock cycles. Preliminary test results for monolithic silicon nitride (Si3N4) and silicon carbide (SiC), and one type of silicon based FRCMC, are presented. The test data are examined in terms of simple thermal shock theory.

  19. Fracture toughness testing of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1992-01-01

    A review of the interlaminar fracture indicates that a standard specimen geometry is needed to obtain consistent fracture toughness measurements in polymer matrix composites. In general, the variability of measured toughness values increases as the toughness of the material increases. This variability could be caused by incorrect sizing of test specimens and/or inconsistent data reduction procedures. A standard data reduction procedure is therefore needed as well, particularly for the tougher materials. Little work has been reported on the effects of fiber orientation, fiber architecture, fiber surface treatment or interlaminar fracture toughness, and the mechanisms by which the fibers increase fracture toughness are not well understood. The little data that is available indicates that woven fiber reinforcement and fiber sizings can significantly increase interlaminar fracture toughness.

  20. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  1. Characterizing damage in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Gyekenyesi, Andrew L.; Baker, Christopher; Morscher, Gregory

    2014-04-01

    With the upcoming implementation of ceramic matrix composites (CMCs) within aerospace systems (e.g., aviation turbine engines), an in-depth understanding of the failure process due to mechanical loads is required. This includes developing a basic understanding of the complex, multi-mechanism failure process as well as the associated nondestructive evaluation (NDE) techniques that are capable of recognizing and quantifying the damage. Various NDE techniques have been successfully utilized for assessing the damage state of woven CMCs, in particular, consisting of silicon carbide fibers and silicon carbide matrices (SiC/SiC). The multiple NDE techniques, studied by the authors of this paper, included acousto-ultrasonics, modal acoustic emissions, electrical resistance, impedance based structural health monitoring, pulsed thermography as well as thermoelastic stress analysis. The observed damage within the composites was introduced using multiple experimental tactics including uniaxial tensile tests, creep tests, and most recently, ballistic impact. This paper offers a brief review and summary of results for each of the applied NDE tools.

  2. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  3. Advanced composites: Environmental effects on selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    The effects that expected space flight environment has upon the mechanical properties of epoxy and polyimide matrix composites were analyzed. Environmental phenomena covered water immersion, high temperature aging, humidity, lightning strike, galvanic action, electromagnetic interference, thermal shock, rain and sand erosion, and thermal/vacuum outgassing. The technology state-of-the-art for graphite and boron reinforced epoxy and polyimide matrix materials is summarized to determine the relative merit of using composites in the space shuttle program. Resin matrix composites generally are affected to some degree by natural environmental phenomena with polyimide resin matrix materials less affected than epoxies.

  4. Production of aluminium metal matrix composites by liquid processing methods

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Kumar, R.; Tharmaraj, R.; Velu, P. Shenbaga

    2016-05-01

    Owing to high strength to low weight ratio, Aluminium matrix composites are widely used in diverse applications of many industries. This lucrative property is achieved by reinforcing the brittle ceramic particles in the aluminium matrix. Aluminium matrix composites are produced by liquid processing methods and solid processing methods. Nevertheless, liquidprocessing techniques stand out because of its simplicity and its suitability for mass production. In this review article, the production of aluminium matrix composites by different liquid processing technique is discussed and a comparative study is carried out.

  5. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 3

  6. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1

  7. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  8. A Review of Irradiation Effects on Organic-Matrix Insulation

    SciTech Connect

    Simon, N.J.

    1993-06-01

    This review assesses the data base on epoxy and polyimide matrix insulation to determine whether organic electric insulation systems can be used in the toroidal field (TF) magnets of next generation fusion devices such as ITER* and TPX*. Owing to the difficulties of testing insulation under fusion reactor conditions, there is a considerable mismatch between the ITER requirements and the data that are currently available. For example, nearly all of the high-dose (5 x 10{sup 7} to 10{sup 8} Gy) data obtained on epoxy and polyimide matrix insulation employed gamma irradiation, electron irradiation, or reactor irradiation with a fast neutron fluence far below 10{sup 23}/m{sup 2}, the fluence expected for the insulation at the TF magnets, as set forth in ITER conceptual design documents. Also, the neutron spectrum did not contain a very high energy (E {ge} 5 MeV) component. Such data underestimate the actual damage that would be obtained with the neutron fluence and spectrum expected at a TF magnet. Experiments on a polyimide (Kapton) indicate that gamma or electron doses or mixed gamma and neutron reactor doses would have to be downgraded by a factor of up to ten to simulate fusion neutron doses. Even when neutrons did constitute a significant portion of the total dose, B-containing E-glass reinforcement was often used; therefore, excess damage from the {sup 10}B + n {yields} {sup 7}Li + {alpha} reaction occurred near the glass-epoxy interface. This problem can easily be avoided by substituting B-free glass (R, S, or T types).

  9. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  10. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  11. The elevated temperature behavior of particle reinforced Al matrix composites

    SciTech Connect

    Lloyd, D.J.

    1994-12-31

    The elevated temperature modulus, strength and creep of SiC particle reinforced composites produced by the DURALCAN{trademark} are discussed. It is shown that the reinforcing particles provide an increased modulus over the complete temperature range studied, and the temperature dependence of the composite modulus is controlled by the temperature dependence of the matrix modulus. The composite strength decreases with increasing temperature, reflecting softening of the matrix due to over aging, and as a result, is dependent on the thermal stability of the matrix. The particles provide increased creep resistance, and there are differences between the creep of melt processed composites and those produced by powder metallurgy.

  12. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  13. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  14. Evaluation of waterjet-machined metal matrix composite tensile specimens

    SciTech Connect

    Lavender, C.A.; Smith, M.T.

    1986-04-01

    Four magnesium/boron carbide metal matrix composite (MMC) tensile specimens fabricated using the waterjet machining method were evaluated in order to determine the effects of the waterjet material removal process on the composite material surface structure and properties. These results were then compared with data from material conventionally machined. Results showed that while waterjet cutting produces a rough surface finish and does not meet specified dimensional tolerances, the technique appears to be suitable for sectioning and rough machining of metal matrix composites.

  15. Toughened Matrix SiC Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Bhatt, Ramakrishna T.; Morscher, Gregory N.; Kiser, James D.

    2005-01-01

    First matrix cracking stress is a critical parameter for application of Sic fiber reinforced composites in highly stressed, environmentally demanding applications such as turbine blades. High matrix fracture toughness is a key property that contributes to high composite fracture stress. Silicon nitride offers reduced matrix elastic modulus, lower coefficient of thermal expansion, and potentially high fracture toughness compared to Sic matrices. All of these factors can be used to advantage to increase matrix fracture stress. As a first model system we are pursuing toughened silicon nitride matrix composites reinforced with SCS-9 fibers. Fabrication is by tape casting the matrix plies and tape lay-up with fiber plies followed by hot pressing at 1800 C. Progress toward this end will be reported.

  16. Fabrication and characterization of AZ91/CNT magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Park, Yong-Ha; Park, Yong-Ho; Park, Ik-Min; Oak, Jeong-jung; Kimura, Hisamichi; Cho, Kyung-Mox

    2008-12-01

    Carbon Nano Tube (CNT) reinforced AZ91 metal matrix composites (MMC) were fabricated by the squeeze infiltrated method. Properties of magnesium alloys have been improved by impurity reduction, surface treatment and alloy design, and thus the usage for the magnesium alloys has been extended recently. However there still remain barriers for the adaption of magnesium alloys for engineering materials. In this study, we report light-weight, high strength heat resistant magnesium matrix composites. Microstructural study and tensile test were performed for the squeeze infiltrated magnesium matrix composites. The wear properties were characterized and the possibility for the application to automotive power train and engine parts was investigated. It was found that the squeeze infiltration technique is a proper method to fabricate magnesium matrix composites reducing casting defects such as pores and matrix/reinforcement interface separation etc. Improved tensile and mechanical properties were obtained with CNT reinforcing magnesium alloys

  17. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  18. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  19. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  20. Continuous fiber ceramic matrix composites for heat engine components

    NASA Technical Reports Server (NTRS)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  1. Microplasticity phenomena in graphite/magnesium metal matrix composites

    SciTech Connect

    Epstein, J.S.; Rawal, S.; Misra, M.

    1987-01-01

    This paper discusses localized matrix plasticity in a Pitch 55 graphite/magnesium (Gr/Mg) metal matrix composite (MMC) due to damping/hysteresis effects in bending. It was found that for this material system, chosen mainly for its damping ability, plasticity or permanent deformation occurs in the matrix material of the composite from relatively small structural deformations. Hysteresis loops were determined on a local level in the diffusion bond region between adjacent graphite fiber bundles as well as on the free edge of the magnesium face sheet of the composite. Moire interferometry was combined with research on the microstructure of this particular material system to yield these subtle results.

  2. Nanophosphor composite scintillator with a liquid matrix

    DOEpatents

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  3. A new observational solar irradiance composite

    NASA Astrophysics Data System (ADS)

    Schoell, Micha; Dudok de Wit, Thierry; Haberreiter, Margit; Kretzschmar, Matthieu; Misios, Stergios; Tourpali, Klairie; Schmutz, Werner

    2016-04-01

    Variations of the spectral solar irradiance (SSI) are an important driver for the chemistry, temperature and dynamics of the Earth's atmosphere and ultimately the Earth's climate. Due to the sparce and scattered SSI data sets it is important to establish tools to derive a consistent SSI dataset, including realistic uncertainties. We present the a new SSI composite based on the face values of SSI observations and applying a probabilistic method that takes into account the uncertainty of the data set scale-wise. We will present the data set and discuss its effects on the Earth's atmosphere in relation to SSI reconstruction models.

  4. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  5. Failure Mechanisms for Ceramic Matrix Textile Composites at High Temperature

    SciTech Connect

    Cox, Brian

    1999-03-01

    OAK B188 Failure Mechanisms for Ceramic Matrix Textile Composites at High Temperature. This summary refers to work done in approximately the twelve months to the present in our contract ''Failure Mechanisms for Ceramic Matrix Textile Composites at High Temperature,'' which commenced in August, 1997. Our activities have consisted mainly of measurements of creep-controlled crack growth in ceramic matrix composites (CMCS) at high temperature; imaging of deformation fields in textile CMCS; the assessment of mechanisms of damage in textile composites, especially those with through-thickness reinforcement; the formulation of models of delamination crack growth under fatigue in textile composites; analytical models of the bridging traction law for creeping fibers in a CMC at high temperature; and an analytical model of a bridging fiber tow in a textile composite.

  6. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  7. Modeling of 3-D Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Sullivan, Roy M.; Mital, Subodh K.

    2003-01-01

    Three different approaches are being pursued at the NASA Glenn Research Center to predict the nanostructural behavior of three-dimensional woven ceramic matrix composites. These are: a micromechanics-based approach using W-CEMCAN (Woven Ceramic Matrix Composite Analyzer), a laminate analogy method and a structural frame approach (based on the finite element method). All three techniques are applied to predict the thermomechanical properties of a three-dimensional woven angle interlock C/SiC composite. The properties are predicted for room temperature and 1100 C and the predicted properties are compared to measurements. General observations regarding the three approaches for three-dimensional composite modeling are discussed.

  8. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    NASA Technical Reports Server (NTRS)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  9. Modified Process For Formation Of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1996-01-01

    Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.

  10. Mechanical behavior of reactively hot-pressed aluminide matrix composite

    SciTech Connect

    Inoue, M.; Suganuma, K.; Niihara, K.

    1997-12-31

    FeAl and Ni{sub 3}Al matrix composites containing various fine particles were fabricated successfully by reactive hot-pressing. The strength and the fracture toughness of these composites at ambient temperatures were evaluated. The addition of {beta}-SiC particles was effective for strengthening of the Fe-40at%Al matrix, however, an extreme decrease of fracture toughness occurred due to the suppression of stress relaxation effect by plastic deformation at a crack tip. The fracture toughness of the reactively hot pressed Fe-40at%Al and its composites was also affected by the environmental embrittlement effect. TiB{sub 2} and ZrB{sub 2} particles in the Fe-40at%Al matrix composites were clarified to play a role in the reduction of the environmental effect. For the Ni-25at%Al matrix, higher flexural strength was achieved by the addition of TiB{sub 2}, TiC and TiN particles. TiB{sub 2} particles reacted with the matrix during hot-pressing. The Ni-25at%Al/TiB{sub 2} composite had a fracture strength of 1.5 GPa in spite of large grain size of the matrix. TiC and TiN were the best choices as effective reinforcing materials for the Ni{sub 3}Al matrix among the chemical compatible ones.

  11. Steel-SiC Metal Matrix Composite Development

    SciTech Connect

    Smith, Don D.

    2005-07-17

    The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

  12. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  13. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1988-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750 F in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  14. Light weight polymer matrix composite material

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J. (Inventor); Lowell, Carl E. (Inventor)

    1991-01-01

    A graphite fiber reinforced polymer matrix is layed up, cured, and thermally aged at about 750.degree. F. in the presence of an inert gas. The heat treatment improves the structural integrity and alters the electrical conductivity of the materials. In the preferred embodiment PMR-15 polyimides and Celion-6000 graphite fibers are used.

  15. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  16. Analysis of thermal mechanical fatigue in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Mirdamadi, Massoud

    1993-01-01

    Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.

  17. Comparison Of Models Of Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Johnson, W. S.; Naik, R. A.

    1994-01-01

    Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.

  18. Fatigue of continuous fiber reinforced titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1991-01-01

    Several lay-ups of SCS-6/Ti-15-3 composites were investigated. Static and fatigue tests were conducted for both notched and unnotched specimens at room and elevated temperatures. Test results indicated that the stress in the 0 fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be dependent on the level of residual stresses and the fiber/ matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix material without breaking fibers. These matrix cracks can significantly reduce the residual strength of notched composite.

  19. Approach to inherently stable interfaces for ceramic matrix composites

    SciTech Connect

    Besmann, T.M.; Kupp, E.R.; Stinton, D.P.; Shanmugham, S.

    1996-09-01

    Virtually all ceramic matrix composites require and interface coating between the fibers and matrix to achieve the desired mechanical performance. To date, the most effective interface materials for non- oxide matrix composites have been carbon and boron nitride. They are, however, susceptible to oxidation at elevated temperatures, and thus under many envisioned operating environments they will fail, possibly allowing oxidation of the fibers as well, adversely affecting mechanical behavior. Current efforts are directed toward developing stable interface coating, which include oxides and silicon carbide with appropriate thermomechanical properties.

  20. Explosive bonding of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1969-01-01

    Explosive bonding process produces sheet composites of aluminum alloy reinforced by high-strength stainless steel wires. The bonds are excellent metallurgically, no external heat is required, various metals can be bonded, and the process is inexpensive.

  1. Stable Boron Nitride Interphases for Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites (CMC's) require strong fibers for good toughness and weak interphases so that cracks which are formed in the matrix debond and deflect around the fibers. If the fibers are strongly bonded to the matrix, CMC's behave like monolithic ceramics (e.g., a ceramic coffee cup), and when subjected to mechanical loads that induce cracking, such CMC's fail catastrophically. Since CMC's are being developed for high temperature corrosive environments such as the combustor liner for advanced High Speed Civil Transport aircraft, the interphases need to be able to withstand the environment when the matrix cracks.

  2. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  3. Fatigue damage criteria - Matrix, fibers and interfaces of continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high temperature, stiffness critical parts that will be subjected to cyclic loadings. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four catagories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage are discussed and illustrated by examples. The emphasis is on the fatigue of unnotched laminates.

  4. Experimental study on mechanical behavior of fiber/matrix interface in metal matrix composite

    SciTech Connect

    Wang, Q.; Chiang, F.P.

    1994-12-31

    The technique SIEM(Speckle Interferometry with Electron Microscopy) was employed to quantitatively measure the deformation on the fiber/matrix interface in SCS-6/Ti-6-4 composite at a microscale level. The displacement field within the fiber/matrix interphase zone was determined by in-situ observation with sensitivity of 0.003({micro}m). The macro-mechanical properties were compared with micro-mechanical behavior. It is shown that the strength in the interphase zone is weaker than the matrix tensile strength. The deformation process can be characterized by the uniform deformation, interface strain concentration and debond, and matrix plastic deformation.

  5. Strain Rate Dependent Modeling of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  6. Analysis of thermal stresses in polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Griffin, O. H., Jr.

    1989-01-01

    In the present micromechanics study of the thermally-induced stress field which emerges at very low temperatures in the matrix and fibers of continuous fiber-reinforced polymer composites, the results obtained by a specialized FEM analysis are compared to an analytical solution of the composite cylinder model for several composite materials. Attention is given to the influence of microstructural geometry and constituent properties; it is established that the distributions and magnitudes of the thermally-induced stresses are affected by the assumed microstructural geometry of the sample. While matrix stresses are not a strong function of fiber properties, the temperature dependence of the matrix properties significantly affects the magnitudes of thermally-induced matrix stresses.

  7. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  8. Joining and fabrication of metal-matrix composite materials

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Wiant, H. R.; Bales, T. T.

    1975-01-01

    Manufacturing technology associated with developing fabrication processes to incorporate metal-matrix composites into flight hardware is studied. The joining of composite to itself and to titanium by innovative brazing, diffusion bonding, and adhesive bonding is examined. The effects of the fabrication processes on the material properties and their influence on the design of YF-12 wing panels are discussed.

  9. Technological Readiness of Ceramic Matrix Composites: A Review

    NASA Technical Reports Server (NTRS)

    Neergaard, Lynn; Effinger, Michael

    2000-01-01

    This review intends to provide a snapshot of the state of industry of ceramic matrix composites (CMC). It is therefore organized in terms of design needs, composite properties, system capabilities, and technological availability. This publication will cover CMCs in use and development, with technological readiness levels (TRL) from laboratory testing of coupons to flight proven hardware.

  10. Evaluation of Damage Tolerance of Advanced SiC/SiC Composites after Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Hinoki, Tatsuya; Snead, Lance L.

    2011-10-01

    Silicon carbide composites (SiC/SiC) are attractive candidate materials for structural and functional components in fusion energy systems. The effect of neutron irradiation on damage tolerance of the nuclear grade SiC/SiC composites (plain woven Hi-Nicalon™ Type-S reinforced CVI matrix composites multilayer interphase and unidirectional Tyranno™-SA3 reinforced NITE matrix with carbon mono-layer interphase) was evaluated by means of miniaturized single-edged notched beam test. No significant changes in crack extension behavior and in the load-loadpoint displacement characteristics such as the peak load and hysteresis loop width were observed after irradiation to 5.9 × 1025 n/m2 (E > 0.1 MeV) at 800°C and to 5.8 × 1025 n/m2 at 1300°C. By applying a global energy balance analysis based on non-linear fracture mechanics, the energy release rate for these composite materials was found to be unchanged by irradiation with a value of 3±2 kJ/m2. This has led to the conclusion that, for these fairly aggressive irradiation conditions, the effect of neutron irradiation on the fracture resistance of these composites appears insignificant.

  11. The tensile failure modes of metal-matrix composite materials

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Wills, J. L.

    1974-01-01

    The strengths of individual boron fibers extracted from various as-received and thermally fatigued aluminum alloy matrix materials were measured. The results are described in terms of a Weibull distribution, and strengths of composites fabricated from these fibers are calculated in terms of lower and upper bounds. Tests conducted on composite specimens indicated that strengths approaching the upper bounds can be achieved in composites fabricated by normal diffusion bonding techniques. Cyclic temperature changes effectively reduced the strength values toward the lower bounds. It was concluded that this effect resulted from the degradation of the strength of the fiber-matrix bond.

  12. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  13. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  14. Fiber shape effects on metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Brown, H. C.; Lee, H.-J.

    1992-01-01

    The effects of different fiber shapes on the behavior of metal matrix composites is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers in a three by three unit cell array of a SiC/Ti-15-3 metal matrix composite is used in the analysis. The model is employed to represent five fiber shapes that include a circle, an ellipse, a kidney, and two different cross shapes. The distribution of stresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis using the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes. In general, fiber dominated properties are not affected by fiber geometry and matrix dominated properties are only moderately affected.

  15. Low dose irradiation performance of SiC interphase SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Osborne, M. C.; Lowden, R. A.; Strizak, J.; Shinavski, R. J.; More, K. L.; Eatherly, W. S.; Bailey, J.; Williams, A. M.

    1998-03-01

    Reduced oxygen Hi-Nicalon™ fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either `porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1×10 25 n m -2 ( E>0.1 MeV) in the temperature range of 260 to 1060°C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber.

  16. Time-dependent deformation of titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  17. Effects of irradiation and post-irradiation annealing on the thermal conductivity/diffusivity of monolithic SiC and f-SiC/SiC composites

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-08-01

    Laser flash thermal diffusivity measurements were made on high-purity monolithic CVD-SiC and 2D f-SiC(Hi-Nicalon)/ICVI-SiC composite samples before and after irradiation (250 to 800C, 4-8 dpa-SiC) and after post-irradiation annealing composite samples to 1200C. For irradiated CVD-SiC, the defect concentrations at saturation were estimated to range from 25,300 appm (250C) down to 940 appm (800C). The transverse thermal conductivity ratios after-to-before irradiation (Kir/Ko) determined at the irradiation temperatures were: 0.044 up to 0.12 (250 up to 800C) for irradiated CVD-SiC and 0.18 up to 0.29 (330 up to 800C) for the irradiated Hi-Nicalon composite. Analysis of thermal diffusivity values for the Hi-Nicalon composite measured in air, argon, helium and vacuum indicated that thermal conductivity degradation occurred primarily due to point defect accumulation in the matrix component. After annealing to 1200C and cooling to the irradiation temperature, fiber/matrix debonding occurred due to net shrinkage in the fiber and PyC interface components.

  18. Improving Turbine Performance with Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2007-01-01

    Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.

  19. Micromechanical characterization of nonlinear behavior of advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Chen, J. L.; Sun, C. T.

    1994-01-01

    Due to the presence of curing stresses and oriented crystalline structures in the matrix of polymer matrix fiber composites, the in situ nonlinear properties of the matrix are expected to be rather different from those of the bulk resin. A plane stress micromechanical model was developed to retrieve the in situ elastic-plastic properties of Narmco 5260 and Amoco 8320 matrices from measured elastic-plastic properties of IM7/5260 and IM7/8320 advance composites. In the micromechanical model, the fiber was assumed to be orthotropically elastic and the matrix to be orthotropic in elastic and plastic properties. The results indicate that both in situ elastic and plastic properties of the matrices are orthotropic.

  20. Stability analysis of bridged cracks in brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Muju, Sandeep

    1991-01-01

    The bridging of matrix cracks by fibers is an important toughening mechanism in fiber reinforced brittle matrix composites. This paper presents the results of a nonlinear finite element analysis of the Mode-I propagation of a bridged matrix crack in a finite size specimen. The composite is modeled as an orthotropic continuum and the bridging due to the fibers is modeled as a distribution of tractions which resist crack opening. A critical stress intensity factor criterion is employed for matrix crack propagation while a critical crack opening condition is used for fiber failure. The structural response of the specimen (load-deflection curves) as well as the stress intensity factor of the propagating crack are calculated for various constituent properties and specimen configurations for both tensile and bending loading. By controlling the length of the bridged crack results are obtained which highlight the transition from stable to unstable behavior of the propagating crack.

  1. Localized plasticity of graphite/magnesium metal matrix composites

    SciTech Connect

    Epstein, J.S.; Rawal, S.; Misra, M.

    1986-01-01

    This paper discusses localized matrix plasticity in a pitch 55 graphite/magnesium (Gr/Mg) metal matrix composite (MMC) due to damping/hysteresis effects in bending. It was found that for this material system, chosen mainly for its damping ability, plasticity or permanent deformation occurs in the matrix material of the composite from relatively small structural deformations. The behavior of the plasticity is unique to these MMC systems as it is constrained to follow its original loading path back to its zero deformation state upon unloading. This retracement of loading path is attributed to the Gr fibers acting as elastic constraint layers. For optical rail platforms, the ability to recover the original platform shape, even with localized matrix plasticity, implies a high level of survivability. Moire interferometry was combined with research on the microstructure of this particular material system to yield these subtle results.

  2. Competitive formation of glasses and glass-matrix composites

    SciTech Connect

    Lu, Zhao Ping; Ma, D.; Liu, Chain T; Chang, Y. Austin

    2007-01-01

    By systematically investigating the effect of chemical composition on the competitive formation of glasses in various systems, we attempt to address two long-standing scientific puzzles upon metallic glasses, i.e., (i) which composition is the best for forming glasses and glass-matrix composites and (ii) what determines the easy glass-forming composition range in a given alloy system. Our findings have led to the construction of a qualitative microstructure selection map, which is useful for guiding the design of bulkier metallic glasses and glass-matrix composites. In addition, our analysis demonstrates that the classical kinetic treatment of glass formation is insufficient; to analyze glass formation properly, it is necessary to go beyond simple assumptions of single polymorphic solidification during crystallization.

  3. Effective thermal conductivity of composites with fibre-matrix debonding

    NASA Technical Reports Server (NTRS)

    Fadale, T. D.; Taya, M.

    1991-01-01

    Debonding of the fiber-matrix interface is a major cause for the degradation of the mechanical properties and the loss of thermal conductivity of fiber-reinforced composites. This paper discusses two analytical approaches for modeling the thermal conduction problem of composites. One is based on the concept of modeling the thermal barrier by an equivalent heat transfer coefficient at the fiber-matrix interface, as described by Hasselman and Johnson (1987) and Benveniste and Miloh (1986). The other approach, suggested by Hatta and Taya (1986), is by treating a composite with debonded interface as a coated-fiber composite. The major advantage of the latter aproach is that the thickness of the fiber coating can be realistically modeled depending upon the extent of degradation of the composite with the thermal conductivity of the coating as that of air.

  4. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    NASA Astrophysics Data System (ADS)

    D'Agata, E.; Knol, S.; Fedorov, A. V.; Fernandez, A.; Somers, J.; Klaassen, F.

    2015-10-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like 241Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using 10B to "produce" helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  5. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    NASA Astrophysics Data System (ADS)

    D'Agata, E.; Knol, S.; Fedorov, A. V.; Fernandez, A.; Somers, J.; Klaassen, F.

    2015-10-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like 241Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using 10B to "produce" helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  6. Damage evolution in uniaxial silicon carbide fiber-reinforced titanium matrix composites

    NASA Astrophysics Data System (ADS)

    Hanan, Jay Clarke

    Fiber fractures initiate damage zones ultimately determining the strength and lifetime of metal matrix composites (MMCs). The evolution of damage in a MMC comprising a row of unidirectional SiC fibers (32 vol.%) surrounded by a Ti matrix was examined using X-ray microdiffraction (gym beam size) and macrodiffraction (mm beam size). A comparison of high-energy X-ray diffraction (XRD) techniques including a powerful two-dimensional XRD method capable of obtaining powder averaged strains from a small number of grains is presented (HEmuXRD2). Using macrodiffraction, the bulk residual strain in the composite was determined against a true strain-free reference. In addition, the bulk in situ response of both the fiber reinforcement and the matrix to tensile stress was observed and compared to a three-dimensional finite element model. Using microdiffraction, multiple strain maps including both phases were collected in situ before, during, and after the application of tensile stress, providing an unprecedented detailed picture of the micromechanical behavior in the laminate metal matrix composite. Finally, the elastic axial strains were compared to predictions from a modified shear lag model, which unlike other shear lag models, considers the elastic response of both constituents. The strains showed excellent correlation with the model. The results confirmed, for the first time, both the need and validity of this new model specifically developed for large scale multifracture and damage evolution simulations of metal matrix composites. The results also provided unprecedented insight for the model, revealing the necessity of incorporating such factors as plasticity of the matrix, residual stress in the composite, and selection of the load sharing parameter. The irradiation of a small number of grains provided strain measurements comparable to a continuum mechanical state in the material. Along the fiber axes, thermal residual stresses of 740 MPa (fibers) and +350 MPa (matrix

  7. Interfacial studies in fiber-reinforced thermoplastic-matrix composites

    SciTech Connect

    Brady, R.L.

    1989-01-01

    The major theme of this dissertation is structure/property relationships in fiber-reinforced thermoplastic-matrix composites. Effort has been focused on the interface: interfacial crystallization and fiber/matrix adhesion. Included are investigations on interfacial nucleation and morphology, measurement of fiber/matrix adhesion, effects of interfacial adsorption and crystallization on fiber/matrix adhesion, and composites reinforced with thermotropic liquid crystal copolyester fibers. Crystallization of a copolyester and polybutylene terephthalate with glass, carbon, or aramid fibers has been studied with regard to interfacial morphology. Techniques employed included hot-stage optical microscopy and differential scanning calorimetry. Nucleation by the fibers was found to be a general phenomenon. Morphology could be varied by changing the cooling rate. In order to better monitor fiber /matrix adhesion, a buckled plate test has been developed. The test measures transverse toughness as the parameter characterizing interfacial adhesion in unidirectional, continuous-fiber composites. The test is simple to perform yet has advantages over other interfacial evaluation techniques. The buckled plate test was found to be a sensitive measure of fiber/matrix adhesion. The buckled plate test has been used along with the transverse tensile test to examine how interfacial adsorption and crystallization affect fiber/matrix adhesion in polycarbonate/carbon fiber composites. Adsorption was found to be of primary importance in developing adhesion, while crystallization is a secondary effect. The toughness data have been fit successfully for annealing time and temperature dependence. The dependence of adsorption and transverse toughness on matrix molecular weight was found to be large, with higher molecular weights adsorbing more effectively.

  8. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  9. Process-interactive nondestructive evaluation for metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Shannon, R. E.; Clark, W. G., Jr.; Harrigan, W. C., Jr.

    Nondestructive evaluation (NDE) has been conducted on composite products at various stages of fabrication processes including raw powders, powder mixtures, billets and final product extrusions. Eddy current was found to be effective in identifying matrix powder alloy chemistry and particle size, and in determining the mix ratio of silicon carbide (SiC) reinforcement particles in aluminum matrix alloy powders. Ultrasonic techniques were capable of identifying SiC clusters in large-scale, consolidated powder metallurgy (P/M) metal matrix composite (MMC) billets, while eddy current methods could be used to determine near-surface density variations in the billets. Multiple NDE techniques (eddy current, ultrasonics and resistivity) could be employed to quantify microstructural characteristics of composite extrusions. These results suggest that NDE methods can be integrated into manufacturing processes to provide online, closed-loop control of fabrication parameters.

  10. Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites

    NASA Astrophysics Data System (ADS)

    Butnaru, Elena; Darie-Niţă, Raluca Nicoleta; Zaharescu, Traian; Balaeş, Tiberius; Tănase, Cătălin; Hitruc, Gabriela; Doroftei, Florica; Vasile, Cornelia

    2016-08-01

    White-rot fungus Bjerkandera adusta has been tested for its ability to degrade some biocomposites materials based on polypropylene and biomass (Eucalyptus globulus, pine cones, and Brassica rapa). γ-irradiation was applied to initiate the degradation of relatively inert polypropylene matrix. The degradation process has been studied by scanning electron microscopy, atomic force microscopy, infrared spectroscopy, contact angle measurements, rheological and chemiluminescence tests. These analyses showed that the polypropylene/biomass composites properties are worsen under the action of the selected microorganism. The formation of cracks and scrap particles over the entire matrix surface and the decrease of the complex viscosity values, as well as the dynamic moduli of gamma irradiated PP/biomass composite and exposed to Bjerkandera adusta fungus, indicate fungal efficiency in composite degradation.

  11. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  12. Non-steady state cracking in ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Dharani, L. R.; Chai, L.

    1989-01-01

    A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in a fiber-reinforced unidirectional ceramic matrix composite. The model accounts for the relatively large matrix stiffness. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and most importantly, the microstructural properties of the constituents. From the predicted stress, the mode of failure is established based on the point stress criterion. The role of the microstructural properties on the failure mode and ultimate strength is assessed.

  13. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  14. Progressive delamination in polymer matrix composite laminates: A new approach

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  15. Preparing polymeric matrix composites using an aqueous slurry technique

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); Towell, Timothy W. (Inventor)

    1993-01-01

    An aqueous process was developed to prepare a consolidated composite laminate from an aqueous slurry. An aqueous poly(amic acid) surfactant solution was prepared by dissolving a poly(amic acid) powder in an aqueous ammonia solution. A polymeric powder was added to this solution to form a slurry. The slurry was deposited on carbon fiber to form a prepreg which was dried and stacked to form a composite laminate. The composite laminate was consolidated using pressure and was heated to form the polymeric matrix. The resulting composite laminate exhibited high fracture toughness and excellent consolidation.

  16. Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites

    SciTech Connect

    Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

    2007-03-26

    The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

  17. Composition of matrix in the CR chondrite LAP 02342

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Rubin, Alan E.

    2009-03-01

    We report evidence of interchondrule matrix heterogeneity on a scale of ˜50 μm in the well-preserved CR2 chondrite LAP 02342. Despite minor effects resulting from asteroidal aqueous alteration, the matrix in this CR chondrite seems to preserve much of the compositional record of nebular fines. We carried out electron-microprobe studies using a 3-μm-diameter beam; we analyzed 10 elements in 36- or 49-point grids on 11 ca. 50 × 50-μm rectangular areas of matrix. Each grid area has a distinct composition, inconsistent with a simple model of matrix material having a uniform composition throughout the nebular formation region of the CR chondrites. On S-Fe, Mg-Si, K-Na and K-Al scatter diagrams, the grid areas (i.e., different matrix patches) are largely separated from each other; plots of means with 95% confidence limits demonstrate that the compositions are resolvable. Five matrix areas were analyzed again in duplicate runs; excellent agreement was observed between duplicate studies. LAP 02342 experienced two forms of mild aqueous alteration - as patchy enrichments in Ca (inferred to reflect CaCO 3) and as regions in which sulfide laths are embedded within phyllosilicates. Despite this evidence of aqueous transport, the effect on the composition of matrix is not resolvable. For example, matrix points that were adjacent to points with high CaCO 3 contents show elemental concentrations similar to those in regions having only one or two points with a Ca enrichment. It appears that secondary minerals are found in areas where there are suitable precursor phases and voids into which new phases could grow unimpeded. Calcium appears to be unique in forming a phase that greatly lowers the Ca ++ content of the aqueous medium, thus enhancing the rate of diffusion. Because chondrules vary widely in bulk composition, the formation of chondrules in small sets (100 or less) could generate "smoke" and mesostasis spray with compositions unique to each set. However, if these

  18. Ductility of a continuous fiber reinforced aluminum matrix composite

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, Frederick A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers have been investigated. The composite is subjected to both mechanical and cyclic thermal loading. The ductility can vary by an order of magnitude according to the operating conditions. For high mechanical and low thermal loading the ductility is small, for low mechanical and high thermal loading the ductility is an order of magnitude higher. Experiments on a beam in bending confirm that the ductility is strongly dependent on the loading conditions. The observations suggest a means of utilizing the inherent ductility of the matrix.

  19. Damage evolution in metal matrix composites subjected to thermomechanical fatigue

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-05-01

    A thermomechanical analysis of unidirectional continuous fiber metal matrix composites is presented. The analysis includes the effects of processing induced residual thermal stresses, interface cracking, and inelastic matrix behavior on damage evolution. Due to the complexity of the nonlinear effects, the analysis is performed computationally using the finite element method. The interface fracture is modeled by a nonlinear constitutive model. The problem formulation is summarized and results are presented for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue.

  20. Acousto-ultrasonic decay in metal matrix composite panels

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1995-01-01

    Acousto-ultrasonic (A-U) decay rates (UD) were measured in metal matrix composite (MMC) panels. The MMC panels had fiber architectures and cross-sectional thicknesses corresponding to those designed for aerospace turbine engine structures. The wavelength-to-thickness ratio produced by the combination of experimental frequency setting conditions and specimen geometry was found to be a key parameter for identifying optimum conditions for UD measurements. The ratio was shown to be a useful rule of thumb when applied to ceramic matrix composites (CMC)s and monolithic thermo-plastics.

  1. Composite Matrix Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  2. Electron beam curing of polymer matrix composites

    SciTech Connect

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-08

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world`s largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide.

  3. Ceramic matrix composites -- Advanced high-temperature structural materials

    SciTech Connect

    Lowden, R.A.; Ferber, M.K.; Hellmann, J.R.; Chawla, K.K.; DiPietro, S.G.

    1995-10-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy`s Office of Industrial Technology`s Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base.

  4. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  5. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  6. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  7. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  8. Rate Dependent Deformation and Strength Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is being undertaken to develop rate dependent deformation and failure models for the analysis of polymer matrix composite materials. In previous work in this program, strain-rate dependent inelastic constitutive equations used to analyze polymers have been implemented into a mechanics of materials based composite micromechanics method. In the current work, modifications to the micromechanics model have been implemented to improve the calculation of the effective inelastic strain. Additionally, modifications to the polymer constitutive model are discussed in which pressure dependence is incorporated into the equations in order to improve the calculation of constituent and composite shear stresses. The Hashin failure criterion is implemented into the analysis method to allow for the calculation of ply level failure stresses. The deformation response and failure stresses for two representative uniaxial polymer matrix composites, IM7/977-2 and AS4-PEEK, are predicted for varying strain rates and fiber orientations. The predicted results compare favorably to experimentally obtained values.

  9. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  10. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  11. 3-D woven, mullite matrix, composite filter

    SciTech Connect

    Lane, J.E.; Painter, C.J.; Radford, K.C. LeCostaouec, J.F.

    1995-12-01

    Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.

  12. Effects of irradiation and post-irradiation annealing on the thermal conductivity/diffusivity of monolithic SiC and f-SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Youngblood, G. E.; Senor, D. J.; Jones, R. H.

    2004-08-01

    Laser flash thermal diffusivity measurements were made on high-purity monolithic CVD-SiC and 2D f-SiC(Hi-Nicalon™)/ICVI-SiC composite samples before and after irradiation (250-800 °C, 4-8 dpa-SiC) and after post-irradiation annealing composite samples to 1200 °C. For irradiated CVD-SiC, the defect concentrations at saturation were estimated to range from 25 300 appm (250 °C) down to 940 appm (800 °C). The transverse thermal conductivity ratios after-to-before irradiation ( Kir/ Ko) determined at the irradiation temperatures ranged from: 0.044 (250 °C) up to 0.12 (800 °C) for irradiated CVD-SiC and 0.18 (330 °C) up to 0.29 (800 °C) for the irradiated Hi-Nicalon™ composite. Analysis of thermal diffusivity values for the Hi-Nicalon composite measured in air, argon, helium and vacuum indicated that thermal conductivity degradation occurred primarily due to point defect accumulation in the matrix component. After annealing to 1200 °C and cooling to ambient, fiber/matrix debonding occurred due to net shrinkage in the fiber and PyC interface components.

  13. Preparation and Characterization of Cast Ferrous Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Dash, R. R.; Chakrabarti, A. K.; Mukherjee, P. S.

    2012-02-01

    TiC/SiC reinforced cast ferrous composites have been prepared by smelting red mud—30 pct charcoal briquettes in a 20-kg basic lined, single-phase direct arc furnace. Elements like silicon, aluminum, zirconium, and so on are also reduced from their respective oxides in the red mud and dissolved in the ferrous matrix. TiC/SiC particulates in the composite grow in a typical spiraling fashion.

  14. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  15. Fiber/matrix adhesion in graphite/PEKK composites

    NASA Technical Reports Server (NTRS)

    Bucher, R. A.; Hinkley, J. A.

    1992-01-01

    Experiments with poly ether ketone ketone (PEKK) resin and AS-4, IM-7, and G30-500 fibers showed excellent correlation between resin/fiber contact angle and composite transverse flexural strength as measures of resin/fiber interfacial strength. Both tests indicate the strongest interface for G30-500/PEKK followed by IM-7/PEKK and AS-4/PEKK. Also discussed are fiber effects on interlaminar fracture and on the in situ crystallization of the matrix during composite fabrication.

  16. Polymer precursors for ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Litt, M. H.; Kumar, K.

    1986-01-01

    The synthesis and characterization of a polycyclohexasilane is reported. Because of its cyclic structure, it is anticipated that this polymer might serve as a precursor to SIC having a high char yield with little rearrangement to form small, volatile cyclic silanes, and, as such, would be of interest as a precursor to SiC composite matrices and fibers, or as a binder in ceramic processing. Several approaches to the synthesis of a bifunctional cyclic monomer were attempted; the most successful of these was metal coupling of PhMeSiCl2 and Me2SiCl2. The procedure gives six-membered ring compounds with all degrees of phenyl substitution, from none to hexaphenyl. The compounds with from 0-2 groups were isolated and characterized. The fraction with degree of phenyl substitution equal to 2, a mixture of cis and trans 1,2-; 1,3-; and 1,4 isomers, was isolated in 32 percent yield. Pure 1,4 diphenyldecamethylcyclohexasilane was isolated from the mixed diphenyl compounds and characterized. Diphenyldecamethylcyclohexasilanes were dephenylated to dichlorodecamethylcyclohexasilanes by treating with H2SO4.NH4Cl in benzene. The latter were purified and polymerized by reacting with sodium in toluene. The polymers were characterized by HPGPC, elemental analysis, proton NMR, and IR. Thermogravimetric analyses were carried out on the polymers. As the yield of residual SiC was low, polymers were heat treated to increase the residual char yield. As high as 51.52 percent residual char yield was obtained in one case.

  17. Thermosetting polymer-matrix composites for structural repair applications

    NASA Astrophysics Data System (ADS)

    Goertzen, William Kirby

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporation of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  18. Thermosetting Polymer-Matrix Composites for Strucutral Repair Applications

    SciTech Connect

    Goertzen, William Kirby

    2007-12-01

    Several classes of thermosetting polymer matrix composites were evaluated for use in structural repair applications. Initial work involved the characterization and evaluation of woven carbon fiber/epoxy matrix composites for structural pipeline repair. Cyanate ester resins were evaluated as a replacement for epoxy in composites for high-temperature pipe repair applications, and as the basis for adhesives for resin infusion repair of high-temperature composite materials. Carbon fiber/cyanate ester matrix composites and fumed silica/cyanate ester nanocomposites were evaluated for their thermal, mechanical, viscoelastic, and rheological properties as they relate to their structure, chemistry, and processing characteristics. The bisphenol E cyanate ester under investigation possesses a high glass transition temperature, excellent mechanical properties, and unique ambient temperature processability. The incorporate of fumed silica served to enhance the mechanical and rheological properties of the polymer and reduce thermal expansion without sacrificing glass transition or drastically altering curing kinetics. Characterization of the composites included dynamic mechanical analysis, thermomechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy.

  19. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  20. Matrix cracking initiation stress in fiber-reinforced ceramic-matrix composites

    SciTech Connect

    Kangutkar, P.B.

    1991-01-01

    One of the important design parameters in CMC's is the matrix cracking initiation stress (MCIS) which corresponds to the stress at which first matrix cracks are observed. Above the MCIS, the fibers will be exposed to the oxidizing environment which may degrade the mechanical property of the fibers and thus of the composite. In this thesis, a systematic study to explore the effects of matrix toughness and inherent strength, fiber diameter, stiffness and volume fraction, temperature and interfacial bonding on the MCIS was carried out. Composites were fabricated using three different matrices - borosilicate glass, aluminosilicate glass and polycrystalline zirconium silicate (or zircon), and two different reinforcing fibers - an SiC monofilament (140 {mu}m diameter) and an SiC yarn (16 {mu}m diameter). In-situ observations during 3-point bend test inside the SEM indicate that matrix cracking is a local phenomenon and occurs first in the matrix between widest spaced fibers. In all composites the MCIS was found to increase with fiber additions and scaled with the monolithic strength.

  1. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-06-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants

  2. Arc spray fabrication of metal matrix composite monotape

    NASA Technical Reports Server (NTRS)

    Westfall, L. J. (Inventor)

    1985-01-01

    Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape.

  3. Metal matrix composites: History, status, factors and future

    NASA Astrophysics Data System (ADS)

    Cyriac, Ajith James

    The history, status, and future of metal matrix composites are presented by evaluating the progression of available literature through time. The trends that existed and issues that still prevail are discussed and a prediction of the future for MMCs is presented. The factors that govern the performance of metal matrix composites are also discussed. In many developed countries and in several developing countries there exists continued interest in MMCs. Researchers tried numerous combinations of matrices and reinforcements since work strictly on MMCs began in the 1950s. This led to developments for aerospace and defense applications, but resultant commercial applications were limited. The introduction of ceramic whiskers as reinforcement and the development of 'in-situ' eutectics in the 1960s aided high temperature applications in aircraft engines. In the late 1970s the automobile industries started to take MMCs seriously. In the last 20 years, MMCs evolved from laboratories to a class of materials with numerous applications and commercial markets. After the collapse of the Berlin Wall, prevailing order in the world changed drastically. This effect was evident in the progression of metal matrix composites. The internet connected the world like never before and tremendous information was available for researchers around the world. Globalization and the internet resulted in the transformation of the world to a more level playing field, and this effect is evident in the nature and source of research on metal matrix composites happening around the world.

  4. Outgassing and dimensional changes of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    A thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites is described. Experimental results derived from a 'control' sample are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples.

  5. Analytical model for force prediction when machining metal matrix composites

    NASA Astrophysics Data System (ADS)

    Sikder, Snahungshu

    Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.

  6. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnaparkhi, P.

    1988-01-01

    Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period.

  7. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnarparkhi, P.

    1988-01-01

    The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry.

  8. Key Issues for Aerospace Applications of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Levine, S. R.

    1998-01-01

    Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.

  9. Analysis of notched metal matrix composites under tension loading

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    Presented are techniques based on 3-D finite-element analysis for the examination of continuous fiber reinforced metal matrix composites. Examples are shown for specific metal matrix composites such as boron/aluminum and silicon-carbide/aluminum. Specimen stress-strain behavior and stress at first fiber failure were predicted for boron/aluminum laminates containing circular holes and crack-like slits. The predictions compared very well for (+ or - 45) sub 2s laminates. Mesh configuration was shown to have an effect on the calculation of stresses local to the notch. The presence of thin interface layers of matrix material had a significant influence on the slit-tip stress state, causing sharper stress gradients near the notch. Interface layers reduced the slit-tip fibers stresses in a (+ or - 45) sub s silicon-carbide/aluminum laminate but increased them in a (0/90) sub s laminate.

  10. Metal matrix composite fuel for space radioisotope energy sources

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Ning, H.; Reece, M. J.; Ambrosi, R. M.; Bannister, N. P.; Stephenson, K.

    2013-02-01

    Radioisotope fuels produce heat that can be used for spacecraft thermal control or converted to electricity. They must retain integrity in the event of destruction or atmospheric entry of the parent spacecraft. Addition of a metal matrix to the actinide oxide could yield a more robust fuel form. Neodymium (III) oxide (Nd2O3) - niobium metal matrix composites were produced using Spark Plasma Sintering; Nd2O3 is a non-radioactive surrogate for americium (III) oxide (Am2O3). Two compositions, 70 and 50 wt% Nd2O3, were mechanically tested under equibiaxial (ring-on-ring) flexure according to ASTM C1499. The addition of the niobium matrix increased the mean flexural strength by a factor of about 2 compared to typical ceramic nuclear fuels, and significantly increased the Weibull modulus to over 20. These improved mechanical properties could result in reduced fuel dispersion in severe accidents and improved safety of space radioisotope power systems.

  11. Characterization and control of the fiber-matrix interface in ceramic matrix composites

    SciTech Connect

    Lowden, R.A.

    1989-03-01

    Fiber-reinforced SiC composites fabricated by thermal-gradient forced-flow chemical-vapor infiltration (FCVI) have exhibited both composite (toughened) and brittle behavior during mechanical property evaluation. Detailed analysis of the fiber-matrix interface revealed that a silica layer on the surface of Nicalon Si-C-O fibers tightly bonds the fiber to the matrix. The strongly bonded fiber and matrix, combined with the reduction in the strength of the fibers that occurs during processing, resulted in the observed brittle behavior. The mechanical behavior of Nicalon/SiC composites has been improved by applying thin coatings (silicon carbide, boron, boron nitride, molybdenum, carbon) to the fibers, prior to densification, to control the interfacial bond. Varying degrees of bonding have been achieved with different coating materials and film thicknesses. Fiber-matrix bond strengths have been quantitatively evaluated using an indentation method and a simple tensile test. The effects of bonding and friction on the mechanical behavior of this composite system have been investigated. 167 refs., 59 figs., 18 tabs.

  12. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  13. Proposed framework for thermomechanical life modeling of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed

  14. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  15. Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Ahn, B. K.; Curtin, W. A.

    1997-02-01

    A theory is presented to predict the stress/strain relations and unload/reload hysteresis behavior during the evolution of multiple matrix cracking in unidirectional fiber reinforced ceramic matrix composites (CMCs). The theory is based on the similarity between multiple matrix cracking and fiber fragmentation in a single fiber composite, and determines the crack and strain evolution as a function of the statistical distribution of initial flaws in the material, the interfacial sliding resistance τ, and the thermal residual stresses in the composite. The model properly includes matrix fragments of all lengths, from lengths smaller than the current slip length δ(σ) to larger than 2δ(σ), at applied stress σ, and accounts for their respective and differing contributions to the overall strain and hysteresis behavior of the composite. The procedure by which experimental stress/strain and hysteresis data can be interpreted to derive values for the interfacial shear stress, thermal stresses, and intrinsic matrix flaw distribution is discussed. The actual physical crack spacing needs only to be determined at one load level, such as post-fracture, which greatly simplifies the data acquisition and analysis. Several detailed examples are presented, and the results compared with a widely-used approach in which the crack spacing is assumed constant and equal to the average spacing obtained directly from experiment. The discrepancy between the previous and present theories is manifest in an incorrect estimate for the interfacial sliding, but only by approximately 10%. The effect of changing temperature, and hence residual stresses, without changing either matrix flaws or interfacial sliding resistance, is studied.

  16. Material damping in aluminum and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Van Schoor, Marthinus C.

    1987-01-01

    The material damping in beam-like specimens of aluminum and metal matrix composites was measured. A unique apparatus to determine damping by free decay while the specimens are in free fall in a vacuum was used. The specimens tested include 2024-T3 and 6061-T4 aluminum, and unidirectional graphite/metal matrix specimens with P55 and P100 fibers and 6061 Aluminum and AZ91C Magnesium as matrix materials. Tests were conducted to determine the dependence of damping on frequency and stress level. For the aluminum specimens, the material damping followed the Zener model at very low stress levels. Below the Zener relaxation frequency, a strong dependence of damping on stress was found for even moderate stress levels. Damping for the aluminum matrix materials was slightly above that predicted by the Zener model for a homogeneous bar of the matrix aluminum. For the magnesium matrix specimens, damping significantly above the Zener prediction for the homogeneous matrix material was observed.

  17. A comparison of fiber effects on polymer matrix composite oxidation

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of thermo-oxidative stability studies addressing the effects of fiber reinforcement on composite thermal stability and influence of geometry on the results of aging studies were performed at NASA-Lewis. The information presented herein, a compilation of some results from these studies, shows the influence of the reinforcement fibers on the oxidative degradation of various PMR-15 composites. Reinforcement of graphite and ceramics were studied and three composite oxidation mechanisms were observed. One was a dominant attack of the reinforcement fiber, the second was the aggressive oxidation of the matrix material, and the third was interfacial degradation.

  18. Ni-based Metal Matrix Composite Functionally Graded Coatings

    NASA Astrophysics Data System (ADS)

    Amado, J. M.; Montero, J.; Tobar, M. J.; Yáñez, A.

    Functional graded materials (FGMs) are a class of composites that have a continuous variation of material properties. One of the aims of such variation is to relieve the stress concentrations that appear in laminated materials. Coating techniques using powder as filler material can be adapted for the manufacture of composition gradients by means of a mixing unit in a powder feed system which is the basis of the laser cladding technology. The aim of this paper is to get coats with layers of the highest possible ceramic concentration on a metal matrix composite (MMC) with the help of the FGM methodology.

  19. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.

    1993-01-01

    This project has the objective of exploring the use of graphite fiber textile preform/copper matrix composites in spacecraft heat transmitting and radiating components. The preforms are to be fabricated by braiding of tows and when infiltrated with copper will result in a 3-D reinforced, near net shape composite with improved specific properties such as lower density and higher stiffness. It is anticipated that the use of textile technology will result in a more robust preform and consequently better final composite; it is hard to anticipate what performance tradeoffs will result, and these will be explored through testing and characterization.

  20. Synthesis and characterization of bulk metallic glass matrix composites

    NASA Astrophysics Data System (ADS)

    Choi-Yim, Haein

    Composites with a bulk metallic glass matrix are synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this thesis, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass (BMG) forming alloys were used as the matrix materials. Ceramics such as SiC, WC, or TiC, and metals W or Ta were introduced as reinforcement into the metallic glass. Structure, microstructure and thermal stability of the composites are studied by X-ray diffraction, optical microscopy and differential scanning calorimetry. The metallic glass matrix remained amorphous after adding up to 30 percent volume fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The thermal stability of the matrix did not deteriorate after adding the particles. In the case of SiC, the matrix becomes even more robust with respect to crystallization. The reactions at the interfaces between the matrix and the different reinforcing materials are investigated with scanning electron microscopy, transmission electron microscopy, and electron microprobe. At the interfaces between the matrix and the WC or SiC particles, ZrC layers formed. W and Si diffused into the matrix, respectively. At the interface between W and the matrix, a thin layer of nanocrystals is observed after cooling the liquid/particulate mixture. The mechanical properties of the composites are studied in compression and tension. Compressive strain to failure increased by over 300% compared to the unreinforced Zr57Nb5Al10Cu15.4 Ni12.6 and the energy to fracture of the tensile samples increased by over 50% adding 15 vol. % W. The effect of silicon on the

  1. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    NASA Astrophysics Data System (ADS)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  2. Dual-nanoparticulate-reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. PMID:22571898

  3. Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Shah, Ashwin R.

    1997-01-01

    The properties of ceramic matrix composites (CMC's) are known to display a considerable amount of scatter due to variations in fiber/matrix properties, interphase properties, interphase bonding, amount of matrix voids, and many geometry- or fabrication-related parameters, such as ply thickness and ply orientation. This paper summarizes preliminary studies in which formal probabilistic descriptions of the material-behavior- and fabrication-related parameters were incorporated into micromechanics and macromechanics for CMC'S. In this process two existing methodologies, namely CMC micromechanics and macromechanics analysis and a fast probability integration (FPI) technique are synergistically coupled to obtain the probabilistic composite behavior or response. Preliminary results in the form of cumulative probability distributions and information on the probability sensitivities of the response to primitive variables for a unidirectional silicon carbide/reaction-bonded silicon nitride (SiC/RBSN) CMC are presented. The cumulative distribution functions are computed for composite moduli, thermal expansion coefficients, thermal conductivities, and longitudinal tensile strength at room temperature. The variations in the constituent properties that directly affect these composite properties are accounted for via assumed probabilistic distributions. Collectively, the results show that the present technique provides valuable information about the composite properties and sensitivity factors, which is useful to design or test engineers. Furthermore, the present methodology is computationally more efficient than a standard Monte-Carlo simulation technique; and the agreement between the two solutions is excellent, as shown via select examples.

  4. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  5. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  6. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    NASA Astrophysics Data System (ADS)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  7. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  8. A creep model for metallic composites based on matrix testing: Application to Kanthal composites

    NASA Technical Reports Server (NTRS)

    Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.

    1990-01-01

    An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.

  9. Electron Beam-Cure Polymer Matrix Composites: Processing and Properties

    NASA Technical Reports Server (NTRS)

    Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.

    2001-01-01

    Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.

  10. Thermal stress effects in intermetallic matrix composites. Final report

    SciTech Connect

    Wright, P.K.; Sensmeier, M.D.; Kupperman, D.S.; Wadley, H.N.G.

    1993-09-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  11. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  12. Stress corrosion cracking of metal matrix composites: Modeling and experiment

    SciTech Connect

    Jones, R.H.

    1990-10-01

    The stress corrosion crack growth ate of metal matrix composites has been described by a model which is dependent on the length-to- diameter ({ell}/d) ratio and volume fraction of the reinforcing phase and matrix creep component. The model predicts a large dependence of the stress corrosion crack growth rate of a metal matrix composite on {ell}/d and matrix creep component and a small dependence on the volume fraction of reinforcement. Experimentally determined crack growth rates for 7090 Al/SiC tested in 3.5% NcCl solution, 6061 Al/SiC tested in moist air with NaCl and immersed in NaCl solution, and Mg/Al{sub 2}0{sub 3} tested in a chloride/chromate solution are all consistent with the model. The close correspondence between the model and experiment for a matrix creep stress exponent of 3 suggest that there is little corrosion damage to the reinforcing phase in these systems. 16 refs., 5 figs.

  13. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, Tuyen D.; Steckel, Gary L.

    1993-01-01

    The thermal expansion behavior of Long Duration Exposure Facility (LDEF) metal matrix composite materials was studied by (1) analyzing the flight data that was recorded on orbit to determine the effects of orbital time and heating/cooling rates on the performance of the composite materials, and (2) characterizing and comparing the thermal expansion behavior of post-flight LDEF and lab-control samples. The flight data revealed that structures in space are subjected to nonuniform temperature distributions, and thermal conductivity of a material is an important factor in establishing a uniform temperature distribution and avoiding thermal distortion. The flight and laboratory data showed that both Gr/Al and Gr/Mg composites were stabilized after prolonged thermal cycling on orbit. However, Gr/Al composites showed more stable thermal expansion behavior than Gr/Mg composites and offer advantages for space structures particularly where very tight thermal stability requirements in addition to high material performance must be met.

  14. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  15. Chemical feasibility of lithium as a matrix for structural composites

    NASA Technical Reports Server (NTRS)

    Swann, R. T.; Esterling, D. M.

    1984-01-01

    The chemical compatibility of lithium with tows of carbon and aramid fibers and silicon carbide and boron monofilaments was investigated by encapsulating the fibers in liquid lithium and also by sintering. The lithium did not readily wet the various fibers. In particular, very little lithium infiltration into the carbon and aramid tows was achieved and the strength of the tows was seriously degraded. The strength of the boron and silicon carbide monofilaments, however, was not affected by the liquid lithium. Therefore lithium is not feasible as a matrix for carbon and aramid fibers, but a composite containing boron or silicon carbide fibers in a lithium matrix may be feasible for specialized applications.

  16. Nonlinear laminate analysis for metal matrix fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angle-ply laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis is based on linear composite mechanics and a piece-wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron-fiber/aluminum-matrix angle-ply laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  17. Nonlinear laminate analysis for metal matrix fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A nonlinear laminate analysis is described for predicting the mechanical behavior (stress-strain relationships) of angleplied laminates in which the matrix is strained nonlinearly by both the residual stress and the mechanical load and in which additional nonlinearities are induced due to progressive fiber fractures and ply relative rotations. The nonlinear laminate analysis (NLA) is based on linear composite mechanics and a piece wise linear laminate analysis to handle the nonlinear responses. Results obtained by using this nonlinear analysis on boron fiber/aluminum matrix angleplied laminates agree well with experimental data. The results shown illustrate the in situ ply stress-strain behavior and synergistic strength enhancement.

  18. Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Tong, Mike T.; Singhal, Suren N.; Chamis, Christos C.; Murthy, Pappu L. N.

    1996-01-01

    A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.

  19. Prediction of high temperature metal matrix composite ply properties

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.

    1988-01-01

    The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.

  20. Organic matrix composite protective coatings for space applications

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; George, Pete

    1995-01-01

    Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF's leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.

  1. Shock Interaction Studies on Glass Fibre Reinforced Epoxy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, K. P. J.; Jagadeesh, G.; Jayaram, V.; Reddy, B. Harinath; Madhu, V.; Reddy, C. Jaya Rami

    Glass fibre reinforced polymer matrix composites are being extensively used for structural applications both in civil and defense sectors, owing to their high specific strength, stiffness and good energy absorbing capability. Understanding the dynamic response of these composites on shock loading is very essential for effective design of structures resistant to blast loads. In the present study, E- glass/epoxy composite laminate has been fabricated and evaluated for their mechanical properties such as tensile strength, flexural strength and inter laminar shear strength (ILSS). Further, dynamic response of E-glass laminates is presently studied by shock loading. When E-glass composite subjected to peak shock reflected pressure of 7.2 MPa and estimated temperature of about 14000 K for short duration, it underwent surface discolorations and charring of epoxy matrix. Post test analysis of the composite sample was carried out to study the damage analysis using Scanning Electron Microscope (SEM), changes in thermal properties of composites using Dynamic Mechanical Analyzer (DMA) and Thermo-Gravimetric Analyzer (TGA). The results of these investigations are discussed in this paper.

  2. Organic matrix composite protective coatings for space applications

    SciTech Connect

    Dursch, H.W.; George, P.

    1995-02-01

    Successful use of composites in low earth orbit (LEO) depends on their ability to survive long-term exposure to atomic oxygen (AO), ultraviolet radiation, charged particle radiation, thermal cycling, and micrometeoroid and space debris. The AO environment is especially severe for unprotected organic matrix composites surfaces in LEO. Ram facing unprotected graphite/epoxy flown on the 69-month Long Duration Exposure Facility (LDEF) mission lost up to one ply of thickness (5 mils) resulting in decreased mechanical properties. The expected AO fluence of the 30 year Space Station Alpha mission is approximately 20 times that seen on LDEF. This exposure would result in significant material loss of unprotected ram facing organic matrix composites. Several protective coatings for composites were flown on LDEF including anodized aluminum, vacuum deposited coatings, a variety of thermal control coatings, metalized Teflon, and leafing aluminum. Results from the testing and analysis of the coated and uncoated composite specimens flown on LDEF`s leading and trailing edges provide the baseline for determining the effectiveness of protectively coated composites in LEO. In addition to LDEF results, results from shuttle flight experiments and ground based testing will be discussed.

  3. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  4. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  5. Micromechanical analysis of filamentary metal matrix composites under longitudinal loading

    NASA Technical Reports Server (NTRS)

    Gdoutos, Emmanuel E.; Karalekas, Dimitrios; Daniel, Isaac M.

    1991-01-01

    A two-material composite cylinder model (CCM) was considered for the study of the mechanical behavior at different temperatures of a fiber-reinforced silicon carbide/aluminum (SiC/Al) composite. An elastoplastic analysis of the model was performed in which the fiber was assumed to be linear elastic and the matrix elastoplastic with work-hardening. The analysis was based on the deformation theory of plasticity in conjunction with the von-Mises yield criterion. Experimental stress-strain curves of an SiC/Al composite were obtained at 24 and 288 C (75 and 550 F). The complete three-dimensional stress distribution in the composite using the CCM was determined. It was found that, in addition to longitudinal stresses, transverse stresses in both the fiber and the matrix were developed as a result of the different Poisson's ratios of the two materials. The transverse stresses, although much smaller than the longitudinal stresses, contributed to the plastic deformation of the matrix. The experimental stress-strain curves were favorably compared with the theoretical predictions.

  6. Characterization of the polymer-filler interface in (gamma)-irradiated silica-reinforced polysiloxane composites

    SciTech Connect

    Chien, A T; Balazs, B; LeMay, J

    2000-04-03

    The changes in hydrogen bonding at the interface of silica-reinforced polysiloxane composites due to aging in gamma radiation environments were examined in this study. Solvent swelling was utilized to determine the individual contributions of the matrix polymer and polymer-filler interactions to the overall crosslink density. The results show how the polymer-filler hydrogen bonding dominates the overall crosslink density of the material. Air irradiated samples displayed decreased hydrogen bonding at the polymer-filler interface, while vacuum irradiation revealed the opposite effect.

  7. A honeycomb composite of mollusca shell matrix and calcium alginate.

    PubMed

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering. PMID:26700239

  8. High-dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites. Part 2: Mechanical and physical properties

    NASA Astrophysics Data System (ADS)

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao; Ozawa, Kazumi; Koyanagi, Takaaki; Porter, Wally; Snead, Lance L.

    2015-07-01

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573-1073 K. The material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating the irradiation temperature, but only to a limited extent. The observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.

  9. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    SciTech Connect

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; Ozawa, Kazumi; Koyanagi, Takaaki; Porter, Wallace D; Snead, Lance Lewis

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating the irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.

  10. Processing and characterization of a polymer matrix composite using variable frequency microwave heating

    SciTech Connect

    Fathi, Z.; Garard, R.S.; DeMeuse, M.T.

    1995-12-31

    Variable frequency microwave energy was successfully applied to uniformly heat thermoset polymer matrix composite (PMC) materials consisting of glass-reinforced isocyanate/epoxy mixtures as well as graphite fiber-reinforced epoxy. Results of a series of materials processed via variable frequency microwave energy are compared with computed results from numerical modeling techniques. A finite difference time domain (FDTD) technique provides 2-D models of the electric and thermal field distributions inside the microwave cavity as well as inside the processed materials. The materials` physical and chemical characteristics from the empirical trials are evaluated for both variable and fixed frequency irradiation.

  11. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  12. Modeling the Effect of Multiple Matrix Cracking Modes on Cyclic Hysteresis Loops of 2D Woven Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-08-01

    In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.

  13. Modeling the Effect of Multiple Matrix Cracking Modes on Cyclic Hysteresis Loops of 2D Woven Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-02-01

    In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.

  14. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  15. Progressive fracture of polymer matrix composite structures: A new approach

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized.

  16. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  17. Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.

    2000-01-01

    Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.

  18. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  19. Isothermal fatigue mechanisms in Ti-based metal matrix composites

    NASA Technical Reports Server (NTRS)

    Majumdar, Bhaskar S.; Newaz, Golam M.

    1993-01-01

    Stress-controlled isothermal fatigue experiments were performed at room temperature (RT) and 548 C (in argon) on (0)8 SCS6/Ti 15-3 metal matrix composites (MMC's) with 15 and 41 volume percent SCS6 (SiC) fibers. The primary objectives were to evaluate the mechanical responses, and to obtain a clear understanding of the damage mechanisms leading to failure of the MMC's. The mechanical data indicated that strain ranges attained fairly constant values in the stress-controlled experiments at both RT and 538 C, and remained so for more than 85 percent of life. The fatigue data for MMC's with different volume fraction fibers showed that MMC life was controlled by the imposed strain range rather than the stress range. At RT, and at low and intermediate strain ranges, the dominant fatigue mechanism was matrix fatigue, and this was confirmed metallurgically from fractographic evidence as well as from observations of channel type dislocation structures in the matrix of fatigued MMC specimens. Reaction-zone cracks acted as important crack initiating sites at RT, with their role being to facilitate slip band formation and consequent matrix crack initiation through classical fatigue mechanisms. MMC life agreed with matrix life at the lower strain ranges, but was smaller than matrix life at higher strain ranges. Unlike the case of monotonic deformation, debonding damage was another major damage mechanism during fatigue at RT, and it increased for higher strain ranges. At high strain ranges at RT, fractography and metallography showed an absence of matrix cracks, but long lengths of debonds in the outer layers of the SCS6 fibers. Such debonding and consequent rubbing during fatigue is believed to have caused fiber damage and their failure at high strain ranges. Thus, whereas life was matrix dominated at low and intermediate strain ranges, it was fiber dominated at high strain ranges. At 538 C, the mean stain constantly increased (ratchetting) with the number of cycles. At high

  20. Glass matrix composites. I - Graphite fiber reinforced glass

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.

    1978-01-01

    An experimental program is described in which graphite fibers of Hercules HMS and HTS, Thornel 300, and Celanese DG-12 were used to reinforce, both uniaxially and biaxially, borosilicate pyrex glass. Composite flexural strength distribution, strength as a function of test temperature, fracture toughness and oxidative stability were determined and shown to be primarily a function of fiber type and the quality of fiber-matrix bond formed during composite fabrication. It is demonstrated that the graphite fiber reinforced glass system offers unique possibilities as a high performance structural material.

  1. Elastic shear moduli of brittle matrix composites with interfacial debonding

    SciTech Connect

    Yuan, F.G.; Pagano, N.J.

    1994-12-31

    Elastic shear moduli of brittle matrix composites with interfacial debonding are studied. Compatibility displacement boundary conditions between representative volume elements are imposed through finite element analyses. Comparisons of the moduli between the full RVE model and quarter cell model are made. Parametric studies assessing the effect of the debonding, the shear moduli ratios in the constituents and the fiber volume fractions on the composite shear moduli are also presented. Results show that the commonly used quarter cell model overestimate the moduli. The disparity increases as the rigidity of the fibers or fiber volume fraction increases.

  2. High-temperature testing of glass/ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.

    1989-01-01

    Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.

  3. Pillared smectite clay coatings for ceramic-matrix composites

    SciTech Connect

    Jagota, S.; Harmer, M.A.; Lemon, M.F.; Jagota, A.; McCarron, E.M. III.

    1995-08-01

    This paper describes a novel route for the low-temperature formation of mullite, from pillared smectite clay precursors, for use as fiber coatings in ceramic-matrix composites. In particular, alumina-pillared bentonite converts in part to mullite at the unusually low temperature of about 800 C. The clay precursors display excellent film-forming capability and have been coated onto silicon carbide fibers. Mechanical tests on composites of the coated fibers and a borosilicate glass demonstrate their success as debond coatings, suggesting that this approach is a viable and simple route to oxide coatings for fibers.

  4. Emerging Applications of Ceramic and Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Divya; Ramolina, Dheeyana; Sandou, Sherleena

    2012-07-01

    Almost 500 papers were presented during the 43 sessions of the 27th Annual Cocoa Beach Conference & Exposition on Advanced Ceramics & Composites, which was organized by the Engineering Ceramics Division of the American Ceramic Society and sponsored by several federal agencies: NASA Glenn Research Center, the Army Research Office, the Department of Energy, and the Air Force Office of Scientific Research. Many of these papers focused on composites, both ceramic and metal matrix, and discussed mechanical behavior, design, fibers/interfaces, processing, and applications. Potential applications under development include components for armor, nuclear energy, and automobiles. A few of these applications have reached commercialization.

  5. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    SciTech Connect

    Janke, C. J.; Howell, Dave; Norris, Robert E.

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  6. Cure shrinkage effects in epoxy and polycyanate matrix composites

    SciTech Connect

    Spellman, G.P.

    1995-12-22

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLA RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.

  7. Metal-Matrix Composite Parts With Metal Inserts

    NASA Technical Reports Server (NTRS)

    Majkowski, T.; Kashalikar, U.

    1995-01-01

    Developmental fabrication process produces metal-matrix composite (MMC) parts with integral metal inserts. With inserts, MMC parts readily joined to similar parts by use of brazing, welding, or mechanical fasteners. Process conceived to make strong, lightweight components of structures erected in outer space. Also useful on Earth, in such automotive parts as rocker arms, cylinder liners, and pistons. Potential industrial applications include parts subjected to high stresses at high temperatures, as in power-generation, mining, and oil-drilling equipment.

  8. Tensile and compressive test results for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Herakovich, C. T.

    1977-01-01

    Experimental results of the mechanical behavior of two metal matrix composite systems at room temperature are presented. Ultimate stress, ultimate strain, Poisson's ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in uniaxial tension and Boron/Aluminum in uniaxial tension and compression. Poisson's ratio is used for nonlinear stress-strain behavior. A comparison of compression results for B/Al as obtained from sandwich beam compression specimens and IITRI coupon compression specimens is presented.

  9. Durability and Damage Development in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Tyson, O. Z.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Damage development in woven SiC/SiNC ceramic matrix composites (CMC's) under tensile and cyclic loading both at room and elevated temperatures have been investigated for the exhaust nozzle of high-efficient turbine engines. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23 to 1250 C are generated. The tensile strength of SiC/SiNC woven composites have been observed to increase with increased temperatures up to 1000 C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain (epsilon(sub r)) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 epsilon(sub f), both at room and elevated temperature comprises multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results.

  10. Thermal-vacuum response of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  11. High Temperature Mechanical Characterization of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.

    1998-01-01

    A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory

  12. High temperature resin matrix composites for aerospace structures

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  13. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  14. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1991-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  15. Ultrasonic assessment of interfacial oxidation damage in ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Rokhlin, S. I.; Baaklini, G. Y.

    1993-01-01

    A new approach to characterizing oxidation damage in ceramic matrix composites using ultrasonic techniques is proposed. In this approach, the elastic constants of the composite are determined nondestructively by measuring the angular dependence of both longitudinal and transverse wave velocities. A micromechanical model for composites with anisotropic constituents is used to find the anisotropic properties of an effective fiber, which is a combination of the fiber and the interface. Interfacial properties are extracted from the properties of this effective fiber by analyzing the difference between effective and actual fiber properties. Unidirectional /0/28 SiC/Si3N4 composites with 30 percent fiber volume fraction and 30 percent matrix porosity are used. The samples are exposed in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hours and then measured by ultrasonic methods at room temperature. The Young's modulus in the fiber direction of the sample oxidized at 600 C decreased significantly but it was unchanged for samples oxidized at temperatures above 1200 C. The transverse moduli obtained from ultrasonic measurements decrease continuously up to 1200 C. The shear stiffnesses show behavior similar to the transverse moduli. The effective elastic moduli of the interfacial carbon coating are determined from the experimental data, and their change due to thermal oxidation is discussed.

  16. Fiber shape effects on metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Brown, H. C.; Lee, H.-J.; Chamis, C. C.

    1992-01-01

    The effects of different fiber shapes on the behavior of a SiC/Ti-15 metal matrix composite is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers is used in the analysis. The model is employed to represent five different fiber shapes: a circle, an ellipse, a kidney, and two different cross shapes. The distribution of microstresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis for the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes and assess their potential benefits. No clear benefits result from different fiber shapes though there are some increases/decreases in isolated properties.

  17. Acousto-ultrasonic evaluation of ceramic matrix composite materials

    NASA Technical Reports Server (NTRS)

    Dosreis, Henrique L. M.

    1991-01-01

    Acousto-ultrasonic nondestructive evaluation of ceramic composite specimens with a lithium-alumino-silicate glass matrix reinforced with unidirectional silicon carbide (NICALON) fibers was conducted to evaluate their reserve of strength. Ceramic composite specimens with different amount of damage were prepared by four-point cyclic fatigue loading of the specimens at 500 C for a different number of cycles. The reserve of strength of the specimens was measured as the maximum bending stress recorded during four-pointed bending test with the load monotonically increased until failure occurs. It was observed that the reserve of strength did not correlate with the number of fatigue cycles. However, it was also observed that higher values of the stress wave factor measurements correspond to higher values of the reserve of strength test data. Therefore, these results show that the acousto-ultrasonic approach has the potential of being used to monitor damage and to estimate the reserve of strength of ceramic composites.

  18. Self-lubricating carbon nanotube reinforced nickel matrix composites

    SciTech Connect

    Scharf, T. W.; Neira, A.; Hwang, J. Y.; Banerjee, R.; Tiley, J.

    2009-07-01

    Nickel (Ni)--multiwalled carbon nanotube (CNT) composites have been processed in a monolithic form using the laser-engineered net shape (LENS) processing technique. Auger electron spectroscopy maps determined that the nanotubes were well dispersed and bonded in the nickel matrix and no interfacial chemical reaction products were determined in the as-synthesized composites. Mechanisms of solid lubrication have been investigated by micro-Raman spectroscopy spatial mapping of the worn surfaces to determine the formation of tribochemical products. The Ni-CNT composites exhibit a self-lubricating behavior, forming an in situ, low interfacial shear strength graphitic film during sliding, resulting in a decrease in friction coefficient compared to pure Ni.

  19. Synthesis and characterization of a new high entropy composite matrix

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Matara, M. A.; Csaki, I.; Popescu, C. A.; Truşcă, R.

    2016-06-01

    Even if high entropy alloys were not reported in a scientific journal till 2003, these new alloys have been investigated since 1995 due to their high temperature properties. In the last years the synthesis of these alloys has been widely investigated. Thus, the present work has been carried out to produce a high entropy composite using an equiatomic AlCrFeMnNi high entropy alloy (HEA) matrix and graphite particles (Gr) as reinforcing material. The high entropy composite was obtained by powder metallurgy route using a planetary ball mill. The mechanically alloyed mixture was investigated by scanning electron microscopy (SEM). Microstructural investigation realized by SEM revealed the homogenous structure of the composite, with multiple phases and decreasing particles size, mostly reaching nanometric scale.

  20. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  1. Thermoplastic matrix composites - LARC-TPI, polyimidesulfone and their blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; St. Clair, Terry L.

    1987-01-01

    Composites were fabricated from unidirectional unsized AS-4 carbon fiber and two baseline polyimides: benzophenone dianhydride-3,3'-diaminodiphenylsulfone (PISO2) and benzophenone dianhydride-3,3'-diaminobenzophenone (LARC-TPI). In addition, each polymer solution prior to prepregging was doped with various amounts of crystalline LARC-TPI powder to enhance melt flow during press molding. The 2:1, 1:1, and 1:2 ratios of crystalline to amorphous resin, respectively, were studied in the LARC-TPI system and the 1:2 ratio in the PISO2 system. Matrix characterization, prepreg fabrication/characterization and composite fabrication and physical/mechanical properties are described. The latter include three point short beam shear and flexure, dry and wet, as well as fracture toughness properties in selected compositions.

  2. Matrix resin effects in composite delamination - Mode I fracture aspects

    NASA Technical Reports Server (NTRS)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  3. In situ characterization of metal matrix composites processing

    NASA Astrophysics Data System (ADS)

    Munger, Gareth Torrey

    1999-11-01

    The high temperatures and pressures used for the processing of fiber reinforced metal matrix composites (MMC's) can result in the bending and fracture of fibers, and the development of residual stresses in both the fibers and surrounding metal matrix. These phenomena adversely affect the properties of MMC's. Methods for their nondestructive measurement are therefore needed both to better understand the process induced damage mechanisms and to ensure that composites are not placed into service with unacceptable fiber damage and/or residual stresses. A fiber optic luminescence approach based upon the frequency shift of the R lines emission of doped sapphire fibers was used to determine the residual stresses in both Ti/Al2O3 and Ti/SiC composites. To investigate the significance of the creep relaxation effects, residual stresses were measured for sapphire fibers embedded in Ti-6Al-4V plates that had been cooled at different rates. The compressive stresses in the fiber are consistent with the coefficients of thermal expansion (CTE) of sapphire being less than Ti-6Al-4V. A multiple concentric cylinder model was used to predict the residual stress state. The model results confirmed that the creep relaxation was induced responsible for the lower stress in the slowly cooled samples and suggest that cooling rate is important to control during processing. To test the notion of the use of a sapphire fiber as a 'witness to' the stress state in an MMC, a sapphire fiber was inserted into a Ti-6Al-4V coated SIGMA (SiC) fiber bundle prior to its consolidation. A generalized method of cells (GMC) model was used to develop a relationship between the stress state within the sapphire witness fiber and that of the surrounding Ti-6Al-4V matrix and the SIGMA fibers. Fiber fracture during the hot isostatic processing (HIP) consolidation of titanium matrix composite was measured using an in-situ acoustic emission approach. For process cycles in which pressure was applied prior to

  4. Hot extruded carbon nanotube reinforced aluminum matrix composite materials

    NASA Astrophysics Data System (ADS)

    Kwon, Hansang; Leparoux, Marc

    2012-10-01

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics.

  5. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    NASA Astrophysics Data System (ADS)

    Dolata, A. J.; Dyzia, M.

    2012-05-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  6. Material and structural studies of metal and polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Serafini, T. T.; Johns, R. H.

    1973-01-01

    Fiber-reinforced composites and design analysis methods for these materials are being developed because of the vast potential of composites for decreasing weight and/or increasing use temperature capability in aerospace systems. These composites have potential for use in airbreathing engine components as well as aeronautical and space vehicle structures. Refractory wire-superalloy composites for use up to 2200 F or more and metal-matrix composites for lower temperature applications such as aerospace structures and turbojet fan and compressor blades are under investigation and are discussed. The development of a number of resin systems, including the polyimides and polyphenylquinoxalines, is described and their potential for use at temperatures approaching 315 C (600 F) is indicated. Various molecular modifications that improve processability and/or increase thermal and oxidative resistance of the resins are also described. Structural analysis methods are discussed for determining the stresses and deformations in complex composite systems. Consideration is also given to residual stresses resulting from the curing process and to the foreign object damage problem in fan blade applications.

  7. Hot extruded carbon nanotube reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Leparoux, Marc

    2012-10-19

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. PMID:23011263

  8. Interfacial sliding in fibrous brittle-matrix composites

    NASA Astrophysics Data System (ADS)

    Miles, Herbert Frederick, II

    Ceramic materials have desirable characteristics for use in high temperature applications, but due to their brittle nature they were avoided until the recent advent of ceramic matrix composites (CMCs) in which ceramic fibers are inserted into a ceramic matrix to toughen the material by retarding crack growth. This work investigates the role of sliding at interfaces in making brittle matrix composites (BMCs) more crack resistant. A two-dimensional study investigates the effects of roughness, toughness, and friction on the fracture behavior of BMCs. This study was then expanded to an axisymmetric study of a fiber engulfed by a crack. The results indicate that there are significant interaction effects between friction and the other parameters. To achieve 'long' sliding lengths, the magnitude of the interfacial critical energy release rate must be significantly less than the magnitude required to ensure crack deflection. The study then investigates the three-dimensional nature of a crack as it flows past a fiber. A computational analysis is performed to determine the crack propagation angle at a frictional interface. The computational results show good agreement with a novel experimental analysis using modified DCDC specimens. The experiments show, in real time, the propagation of a crack which is perpendicular to and intersects a frictional interface.

  9. Analysis of notched metal matrix composites under tensile loading

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1989-01-01

    This paper presents techniques based on a three-dimensional finite-element analysis for the analysis of continuous fiber reinforced metal matrix composite. Examples are shown for specific metal matrix composites such as boron/aluminum and silicon-carbide/aluminum. Specimen stress-strain behavior and stress at first fiber failure were predicted for boron/aluminum laminates containing circular holes and crack-like slits. The predictions compared very well with test data for laminates containing 0 deg fibers and reasonably well for (+/-45)2s laminates. Mesh configuration was shown to have an effect on the calculation of stresses local to the notch. The presence of thin interface layers of matrix material had a significant influence on the slit tip stress state, causing sharper stress gradients near the notch. Interface layers reduced the slit-tip fibers stress in a (+/-45)2s silicon-carbide/aluminum laminate but increased them in a (0/90)2s laminate.

  10. Development of a Precipitation-Strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vo, Nhon Q.; Sorensen, Jim; Klier, Eric M.; Sanaty-Zadeh, Amirreza; Bayansan, Davaadorj; Seidman, David N.; Dunand, David C.

    2016-04-01

    Recent developments in metal matrix composite-encapsulated ceramic armor show promise in lightweight armor technology. The system contains ceramic tiles, such as alumina, sandwiched between unreinforced aluminum or aluminum metal matrix composite (Al-MMC), which has a better toughness compared to the ceramic tiles. The sandwich structures should not be quenched during the fabrication, as the large mismatch in the coefficients of thermal expansion between the ceramic tiles and the unreinforced aluminum or Al-MMC creates internal stresses high enough to fracture the ceramic tiles. However, slow cooling of most commercial alloys creates large precipitates making solute unavailable for the formation of fine precipitates during aging. Here, we develop a non-quenched, high-strength metal matrix utilizing dilute Al-Sc-Zr alloys. We demonstrate that the dilute Al-0.09 Sc-0.045 Zr at.% alloy and the same alloy containing 0-4 vol.% alumina short fibers do not result in precipitation upon slow cooling from a high temperature, and can thereafter be aged to increase their strength. They exhibit a moderate strength, but improved ductility and toughness as compared to common armor aluminum alloys, such as AA5083-H131, making them attractive as armor materials and hybrid armor systems.

  11. Development of a Precipitation-Strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vo, Nhon Q.; Sorensen, Jim; Klier, Eric M.; Sanaty-Zadeh, Amirreza; Bayansan, Davaadorj; Seidman, David N.; Dunand, David C.

    2016-07-01

    Recent developments in metal matrix composite-encapsulated ceramic armor show promise in lightweight armor technology. The system contains ceramic tiles, such as alumina, sandwiched between unreinforced aluminum or aluminum metal matrix composite (Al-MMC), which has a better toughness compared to the ceramic tiles. The sandwich structures should not be quenched during the fabrication, as the large mismatch in the coefficients of thermal expansion between the ceramic tiles and the unreinforced aluminum or Al-MMC creates internal stresses high enough to fracture the ceramic tiles. However, slow cooling of most commercial alloys creates large precipitates making solute unavailable for the formation of fine precipitates during aging. Here, we develop a non-quenched, high-strength metal matrix utilizing dilute Al-Sc-Zr alloys. We demonstrate that the dilute Al-0.09 Sc-0.045 Zr at.% alloy and the same alloy containing 0-4 vol.% alumina short fibers do not result in precipitation upon slow cooling from a high temperature, and can thereafter be aged to increase their strength. They exhibit a moderate strength, but improved ductility and toughness as compared to common armor aluminum alloys, such as AA5083-H131, making them attractive as armor materials and hybrid armor systems.

  12. Influence of matrix composition of shape of cracking catalyst microparticles

    SciTech Connect

    Klaptsov, V.F.; Nefedov, B.K.; Khlebnikova, M.A.; Maslova, A.A.

    1988-09-01

    The best cracking catalysts in terms of service characteristics are those with particles in the shape of microbeads (microspheres) formed by spray drying. This article presents data on the influence of composition of the matrix, prepared from a mixture of pseudoboehmite and a natural component, on the shape of microparticles of series KN cracking catalysts. Two grades of a kaolinite clay from Troshkovo deposit were used a natural component. Pelletized specimens were used in determining the crushing strength of the catalysts. The results from these studies show that in order to prepare catalysts with spherical microparticles and high strength, it is necessary to use a semisynthetic matrix with pseudoboehmite not greater than 25% and alkaline-earth metals bringing the pH to a level above 7.5-8.

  13. Hoop Tensile Properties of Ceramic Matrix Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; DiCarlo, James A.; Yun, HeeMan; Barnett, Terry

    2004-01-01

    Tensile stress-strain properties in the hoop direction were obtained for 100-mm diameter SiC/SiC ceramic matrix composite cylinders using ring specimens machined form the cylinder ends. The cylinders were fabricated from 2D balanced SiC fabric with several material variants, including wall thickness (6,8, and 12 plies), SiC fiber type (Sylramic, Sylramic-iBN, Hi-Nicalon, and Hi-Nicalon S), fiber sizing type, and matrix type (full CVI SiC, and partial CVI SiC plus slurry cast + melt-infiltrated SiC-Si). Fiber ply splices existed in all the hoops. Tensile hoop measurements are made at room temperature and 1200 C using hydrostatic ring test facilities. The failure mode of the hoops, determined through microstructural examination, is presented. The hoop properties are compared with in-plane data measured on flat panels using same material variants, but containing no splices.

  14. Thermal Fatigue Limitations of Continuous Fiber Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Arya, Vinod K.

    1997-01-01

    The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites (MMC's) are legendary. When compared to their monolithic matrices, MMC's possess superior properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the fibers are less dense than the matrix matErial they replace. The potential has been demonstrated unequivocally both analytically and experimentally, especially at ambient temperatures. Successes prompted heavily-funded National efforts within the United States (USAF and NASA) and elsewhere to extend the promise of MMC's into the temperature regime wherein creep, stress relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for which alternative high-temperature materials are becoming mandatory, since further enhancement of state- of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.

  15. LDEF results for polymer matrix composite experiment AO 180

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.

    1992-01-01

    This report represents a summary of the results obtained to-date on a polymer matrix composite experiment (AO 180) located at station D-12, about 82 deg off the 'ram' direction. Different material systems comprised of graphite, boron, and aramid (Kevlar) fiber reinforcements were studied. Although previous results were presented on in-situ thermal-vacuum cycling effects, particularly dimensional changes associated with outgassing, additional comparative data will be shown from ground-based tests on control and flight samples. The system employed was fully automated for thermal-vacuum cycling using a laser interferometer for monitoring displacements. Erosion of all three classes of materials due to atomic oxygen (AO) will also be discussed, including angle of incidence effects. Data from this experiment will be compared to published results for similar materials in other LDEF experiments. Composite materials' erosion yields will be presented on an AO design nomogram useful for estimating total material loss for given exposure conditions in low Earth orbit (LEO). Optical properties of these materials will also be compared with control samples. A survey of the damage caused by micrometeoroids/debris impacts will be addressed as they relate to polymer matrix composites. Correlations between hole size and damage pattern will be given. Reference to a new nomogram for estimating the number distribution of micrometeoroid/debris impacts for a given space structure as a function of time in LEO will be addressed based on LDEF data.

  16. Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  17. Analysis of thermomechanical fatigue of unidirectional titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Mirdamadi, M.; Johnson, W. S.; Bahei-El-din, Y. A.; Castelli, M. G.

    1991-01-01

    Thermomechanical fatigue (TMF) data was generated for a Ti-15V-3Cr-3Al-3Sn (Ti-15-3) material reinforced with SCS-6 silicon carbide fibers for both in-phase and out-of-phase thermomechanical cycling. Significant differences in failure mechanisms and fatigue life were noted for in-phase and out-of-phase testing. The purpose of the research is to apply a micromechanical model to the analysis of the data. The analysis predicts the stresses in the fiber and the matrix during the thermal and mechanical cycling by calculating both the thermal and mechanical stresses and their rate-dependent behavior. The rate-dependent behavior of the matrix was characterized and was used to calculate the constituent stresses in the composite. The predicted 0 degree fiber stress range was used to explain the composite failure. It was found that for a given condition, temperature, loading frequency, and time at temperature, the 0 degree fiber stress range may control the fatigue life of the unidirectional composite.

  18. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    NASA Astrophysics Data System (ADS)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  19. Methodologies for the thermomechanical characterization of continuous-fiber ceramic matrix composites: A review of test methods

    SciTech Connect

    Lara-Curzio, E.; Ferber, M.K.; Jenkins, M.G.

    1994-05-01

    Requirements for thermomechanical characterization of ceramic matrix composite materials are reviewed. Feasibility of adapting existent room temperature test methods for polymer and metal matrix composites to test ceramic matrix composites at room and elevated temperatures is investigated.

  20. Influence of interphase morphology on adhesion and composite durability in semicrystalline polymer matrix composites

    SciTech Connect

    Clark, R.L. Jr.; Kander, R.G.

    1996-12-31

    The microstructure of the interphase in semicrystalline polymer matrix composites has a dramatic influence on their mechanical properties. Studies have been performed to alter this region and to correlate various interphase morphologies with changes in fiber-matrix adhesion. A reinforced nylon 66 composite, when subjected to specific thermal histories, contains an interphase composed of transcrystallinity. This region has been altered by coating fibers with a diluent, poly(vinyl pyrrolidone), and/or adding the diluent to the matrix material in very small quantities. Interphase morphology was investigated with optical microscopy, and adhesion was measured using a modified fiber pull-out test. It was found that transcrystallinity increases the interfacial shear strength. The effect different interphase morphologies have on the durability of bulk composite samples is currently under investigation.

  1. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  2. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  3. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  4. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  5. Squeeze flow and compaction behavior of toughened polyimide matrix composites

    NASA Technical Reports Server (NTRS)

    Lee, Byung Lip; Pater, R.; Soucek, M. D.

    1991-01-01

    The main emphasis was placed upon the squeeze flow and compaction behavior of the Lewis Research Center (LaRC) research project series polyimide matrix composites. The measurement of squeeze film flow behavior was performed by a plastometer which monitors the change of thickness of a prepreg specimen laid between two parallel plates under the specified temperature and pressure history. A critical evaluation of the plastometer data was attempted by examining the morphology of the specimen at various points during the squeeze flow. The effects of crosslinks (Mc) of resin, imidization (B-ataging) condition, and pressure on the squeeze flow behavior were examined. Results are given.

  6. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  7. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    NASA Technical Reports Server (NTRS)

    Sun, Jiangang G.; Verrilli, Michael J.; Stephan, Robert R.; Barnett, Terry R.; Ojard, Greg C.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite (silicon carbide fibers in a silicon carbide matrix) were nondestructively interrogated before and after combustion rig testing by x-ray, ultrasonic, and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications correlated with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations.

  8. Ceramic matrix composites for rocket engine turbine applications

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Eckel, Andrew J.

    1992-01-01

    A program to establish the potential for introducing fiber reinforced ceramic matrix composites (FRCMC) in future rocket engine turbopumps was instituted in 1987. A brief summary of the overall program (both contract and in-house research) is presented. Tests at NASA Lewis include thermal upshocks in a hydrogen/oxygen test rig capable of generating heating rates up to 2500 C/sec. Post thermal upshock exposure evaluation includes the measurement of residual strength and failure analysis. Test results for monolithic ceramics and several FRCMC are presented. Hydrogen compatibility was assessed by isothermal exposure of monolithic ceramics in high temperature gaseous hydrogen plus water vapor.

  9. Computational simulation of high temperature metal matrix composite behavior

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1991-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composite (HT MMC) in the following four broad areas: (1) behavior of HT MMC from micromechanics to laminate; (2) HT MMC structural response for simple and complex structural components; (3) HT MMC microfracture; and (4) tailoring of HT MMC behavior for optimum specific performance. Representative results from each area are presented to illustrate the effectiveness of the computational simulation procedures. Relevant reports are referenced for extended discussion regarding the specific area.

  10. Fatigue In Continuous-Fiber/Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Johnson, William S.

    1992-01-01

    Report describes experimental approaches to quantification of fatigue damage in metal-matrix composites (MMC's). Discusses number of examples of development of damage and failure along with associated analytical models of behavior of MMC. Objectives of report are twofold. First, present experimental procedures and techniques for conducting meaningful fatigue tests to detect and quantify fatigue damage in MMC's. Second, present examples of how fatigue damage initiated and grows in various MMC's. Report furnishes some insight into what type of fatigue damage occurs and how damage quantified.

  11. Analysis of damage and failure in metal matrix composites

    SciTech Connect

    Brust, F.W.; Majumdar, B.S.; Newaz, G.M.

    1995-12-31

    This paper presents the results of the analysis of the constitutive response of a model Metal Matrix Composite (MMC) system. The model is described first, followed by some direct comparison of predicted response to corresponding experimental data. An important result discussed here is that when model verification is made, it is important to compare load direction response to the experimental data, but also, comparisons to the out of load direction response must be made, or the model may not be performing as desired. Some discussion of failure predictions using simple models is also made here.

  12. Numerical analysis on thermal drilling of aluminum metal matrix composite

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Maheshwaran, M. V.

    2016-05-01

    The work-material deformation is very large and both the tool and workpiece temperatures are high in thermal drilling. Modeling is a necessary tool to understand the material flow, temperatures, stress, and strains, which are difficult to measure experimentally during thermal drilling. The numerical analysis of thermal drilling process of aluminum metal matrix composite has been done in the present work. In this analysis the heat flux of different stages is calculated. The calculated heat flux is applied on the surface of work piece and thermal distribution is predicted in different stages during the thermal drilling process.

  13. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  14. Ceramic Matrix Composites (CMC) Life Prediction Development - 2003

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Verrilli, Michael J.; Thomas, David J.; Halbig, Michael C.; Opila, Elizabeth J.; Ellis, John R.

    2003-01-01

    Accurate life prediction is critical to successful use of ceramic matrix composites (CMCs). The tools to accomplish this are immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for many reusable and single mission launch vehicle propulsion and airframe applications. This paper describes an approach and progress made to satisfy the need to develop an integrated life prediction system that addresses mechanical durability and environmental degradation of C/SiC.

  15. Energy absorption mechanisms during crack propagation in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Murphy, D. P.; Adams, D. F.

    1979-01-01

    The stress distributions around individual fibers in a unidirectional boron/aluminum composite material subjected to axial and transverse loadings are being studied utilizing a generalized plane strain finite element analysis. This micromechanics analysis was modified to permit the analysis of longitudinal sections, and also to incorporate crack initiation and propagation. The analysis fully models the elastoplastic response of the aluminum matrix, as well as temperature dependent material properties and thermal stress effects. The micromechanics analysis modifications are described, and numerical results are given for both longitudinal and transverse models loaded into the inelastic range, to first failure. Included are initially cracked fiber models.

  16. Update on CMH-17 Volume 5: Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    David, Kaia; Pierce, Jennifer; Kiser, James; Keith, William P.; Wilson, Gregory S.

    2015-01-01

    CMC components are projected to enter service in commercial aircraft in 2016. A wide range of issues must be addressed prior to certification of this hardware. The Composite Materials Handbook-17, Volume 5 on ceramic matrix composites is being revised to support FAA certification of CMCs for hot structure and other elevated temperature applications. The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed. Volume 5 will contain detailed sections describing CMC materials processing, design analysis guidelines, testing procedures, and data analysis and acceptance. A review of the status of and plans for two of these areas, which are being addressed by the M and P Working Group and the Testing Working Group, will be presented along with a timeline for the preparation of CMH-17, Volume 5.

  17. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  18. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  19. Determining material properties of metal-matrix composites by NDE

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Shannon, R. E.; Clark, W. G.; Harrigan, W. C.; Jeong, H.; Hsu, D. K.

    1992-10-01

    Nondestructive evaluation (NDE) is a promising means of studying silicon carbide particulate (SiCp)-reinforced aluminum metal-matrix composite (MMC) products at various processing stages. Eddy current techniques are effective in characterizing alloy powders and in evaluating the percentage of reinforcement in Al/SiCp powder mixtures. Ultrasonic methods can be used to identify SiCp clusters in large-scale, powder metallurgy processed MMC billets, while eddy current techniques can detect near-surface density variations. Ultrasonic techniques can also be used to determine the anisotropic stiffness constants of composite extrusions; the measured moduli are in good agreement with those determined by tensile testing. These results suggest that NDE can be used to provide on-line, closed-loop control of MMC manufacturing.

  20. Biaxial Yield Surface Investigation of Polymer-Matrix Composites

    PubMed Central

    Ye, Junjie; Qiu, Yuanying; Zhai, Zhi; He, Zhengjia

    2013-01-01

    This article presents a numerical technique for computing the biaxial yield surface of polymer-matrix composites with a given microstructure. Generalized Method of Cells in combination with an Improved Bodner-Partom Viscoplastic model is used to compute the inelastic deformation. The validation of presented model is proved by a fiber Bragg gratings (FBGs) strain test system through uniaxial testing under two different strain rate conditions. On this basis, the manufacturing process thermal residual stress and strain rate effect on the biaxial yield surface of composites are considered. The results show that the effect of thermal residual stress on the biaxial yield response is closely dependent on loading conditions. Moreover, biaxial yield strength tends to increase with the increasing strain rate. PMID:23529150

  1. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  2. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  3. Manufacturing process of a multifunctional composite panel with nanocharged matrix

    NASA Astrophysics Data System (ADS)

    Volponi, R.; Spena, P.; De Nicola, F.; Guadagno, L.; Raimondo, M.; Vietri, U.

    2016-05-01

    This paper proposes an effective manufacturing process developed to overcome drawbacks that can occur using a nanofilled resin as matrix in aeronautical composites. Nanoparticles embedded in epoxy resins impregnating carbon fibers are able to improve a composite with new desired functionalities. As soon as the nanoparticles are dispersed in a resin, the viscosity dizzily rises and usually, the traditional manufacturing processes are not suitable to obtain a good quality of the manufactured panels. An alternative method has been developed starting from the Resin Film Infusion (RFI) process. This method has been firstly tested on several flat panels, and then it has been transferred on a more complex shaped panel with three stringers. In this work, a flame resistant resin based on a tetrafunctional epoxy precursor filled with carbon nanotubes to increase electrical conductivity, has been used for the panel manufacturing.

  4. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  5. Graphite fiber reinforced thermoplastic glass matrix composites for use at 1000 F

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Minford, E. J.

    1985-01-01

    The fabrication and properties of the graphite fiber reinforced glass matrix composite system are described. By reinforcing borosilicate glass with graphite fibers it has been possible to develop a composite whose properties can be compared favorably with resin matrix counterparts. Both high elastic modulus and strength can be obtained and maintained to temperatures of approximately 600 C. In addition, composite dimensional stability is superior to resin or metal matrix systems due to the low thermal expansion behavior of the glass matrix.

  6. Mechanical properties of advanced SiC/SiC composites after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Ozawa, K.; Nozawa, T.; Katoh, Y.; Hinoki, T.; Kohyama, A.

    2007-08-01

    The effect of neutron irradiation on tensile properties in advanced 2D-SiC/SiC composites was evaluated. The composites used were composed of a SiC matrix obtained by the forced-flow chemical vapor infiltration (FCVI) process and either Tyranno™-SA Grade-3 or Hi-Nicalon™ Type-S fibers with single-layered PyC coating as the interphase. Neutron irradiation fluence and temperature were 3.1 × 10 25 n/m 2 ( E > 0.1 MeV) and 1.2 × 10 26 n/m 2 at 740-750 °C. Tensile properties were evaluated by cyclic tensile test, and hysteresis loop analysis was applied in order to evaluate interfacial properties. Both composites exhibited excellent irradiation resistance in ultimate and proportional limit tensile stresses. From the hysteresis loop analysis, the level of interfacial sliding stress decreased significantly after irradiation to 1.5 × 10 26 n/m 2 at 750 °C.

  7. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  8. Graphite Fiber Textile Preform/Cooper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, George J.

    1998-01-01

    The purpose of this research was to produce a finned tube constructed of a highly conductive braided graphite fiber preform infiltrated with a copper matrix. In addition, the tube was to be fabricated with an integral geometry. The preform was integral in the sense that the tube and the fin could be braided to yield one continuous part. This composite component is a candidate for situations with high heat transmitting and radiation requirements. A proof-of-concept finned tube was braided and infiltrated with a copper matrix proving that a viable process was developed to fabricate the desired component. Braiding of high conductivity carbon fibers required much trial-and-error and development of special procedures. There are many tradeoffs between braidability and fiber conductivity. To understand the properties and structure of the braided finned tube, an geometric model of the braid structure was derived. This derivation set the basis for the research because knowing the tow orientations helped decipher the thermal as well as the mechanical and conduction tendencies. Infiltration of the fibers into a copper matrix was a complex procedure, and was performed by TRA, of Salt Lake City, Utah, using a proprietary process. Several batches were fabricated with a final, high quality batch serving as a confirming proof-of-concept.

  9. Irradiation-induced composition patterns in binary solid solutions

    SciTech Connect

    Dubey, Santosh; El-Azab, Anter

    2013-09-28

    A theoretical/computational model for the irradiation-driven compositional instabilities in binary solid solutions has been developed. The model is suitable for investigating the behavior of structural alloys and metallic nuclear fuels in a reactor environment as well as the response of alloy thin films to ion beam irradiation. The model is based on a set of reaction-diffusion equations for the dynamics of vacancies, interstitials, and lattice atoms under irradiation. The dynamics of these species includes the stochastic generation of defects by collision cascades as well as the defect reactions and diffusion. The atomic fluxes in this model are derived based on the transitions of lattice defects. The set of reaction-diffusion equations are stiff, hence a stiffly stable method, also known as the Gear method, has been used to numerically approximate the equations. For the Cu-Au alloy in the solid solution regime, the model results demonstrate the formation of compositional patterns under high-temperature particle irradiation, with Fourier space properties (Fourier spectrum, average wavelength, and wavevector) depending on the cascade damage characteristics, average composition, and irradiation temperature.

  10. Micromechanical analysis of a continuous fiber metal matrix composite including the effects of matrix viscoplasticity and evolving damage

    NASA Astrophysics Data System (ADS)

    Allen, D. H.; Jones, R. H.; Boyd, J. G.

    1994-03-01

    A THERMOMECHANICAL ANALYSIS of a metal matrix continuous fiber composite is performed herein. The analysis includes the effects of matrix inelasticity and interface cracking. Due to these nonlinearities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modeled with a rate dependent viscoplasticity model. Interface fracture is modeled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a typical SiC-Ti composite at elevated temperature. Preliminary results indicate that rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for interface fracture, thus contributing to improved macroscopic ductility of the composite.

  11. Intermetallic and titanium matrix composite materials for hypersonic applications

    SciTech Connect

    Berton, B.; Surdon, G.; Colin, C. |

    1995-09-01

    As part of the French Program of Research and Technology for Advanced Hypersonic Propulsion (PREPHA) which was launched in 1992 between Aerospatiale, Dassault Aviation, ONERA, SNECMA and SEP, an important work is specially devoted to the development of titanium and intermetallic composite materials for large airframe structures. At Dassault Aviation, starting from a long experience in Superplastic Forming - Diffusion Bonding (SPF-DB) of titanium parts, the effort is brought on the manufacturing and characterization of composites made from Timet beta 21S or IMI 834 foils and Textron SCS6 fiber fabrics. At `Aersopatiale Espace & Defence`, associated since a long time about intermetallic composite materials with university research laboratories, the principal effort is brought on plasma technology to develop the gamma titanium aluminide TiAl matrix composite reinforced by protected silicon carbide fibers (BP SM 1240 or TEXTRON SCS6). The objective, is to achieve, after 3 years of time, to elaborate a medium size integrally stiffened panel (300 x 600 sq mm).

  12. Modeling Woven Polymer Matrix Composites with MAC/GMC

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M. (Technical Monitor)

    2000-01-01

    NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) is used to predict the elastic properties of plain weave polymer matrix composites (PMCs). The traditional one step three-dimensional homogertization procedure that has been used in conjunction with MAC/GMC for modeling woven composites in the past is inaccurate due to the lack of shear coupling inherent to the model. However, by performing a two step homogenization procedure in which the woven composite repeating unit cell is homogenized independently in the through-thickness direction prior to homogenization in the plane of the weave, MAC/GMC can now accurately model woven PMCs. This two step procedure is outlined and implemented, and predictions are compared with results from the traditional one step approach and other models and experiments from the literature. Full coupling of this two step technique with MAC/ GMC will result in a widely applicable, efficient, and accurate tool for the design and analysis of woven composite materials and structures.

  13. Insect phylogenomics: results, problems and the impact of matrix composition

    PubMed Central

    Letsch, Harald O.; Meusemann, Karen; Wipfler, Benjamin; Schütte, Kai; Beutel, Rolf; Misof, Bernhard

    2012-01-01

    In this study, we investigated the relationships among insect orders with a main focus on Polyneoptera (lower Neoptera: roaches, mantids, earwigs, grasshoppers, etc.), and Paraneoptera (thrips, lice, bugs in the wide sense). The relationships between and within these groups of insects are difficult to resolve because only few informative molecular and morphological characters are available. Here, we provide the first phylogenomic expressed sequence tags data (‘EST’: short sub-sequences from a c(opy) DNA sequence encoding for proteins) for stick insects (Phasmatodea) and webspinners (Embioptera) to complete published EST data. As recent EST datasets are characterized by a heterogeneous distribution of available genes across taxa, we use different rationales to optimize the data matrix composition. Our results suggest a monophyletic origin of Polyneoptera and Eumetabola (Paraneoptera + Holometabola). However, we identified artefacts of tree reconstruction (human louse Pediculus humanus assigned to Odonata (damselflies and dragonflies) or Holometabola (insects with a complete metamorphosis); mayfly genus Baetis nested within Neoptera), which were most probably rooted in a data matrix composition bias due to the inclusion of sequence data of entire proteomes. Until entire proteomes are available for each species in phylogenomic analyses, this potential pitfall should be carefully considered. PMID:22628473

  14. Insect phylogenomics: results, problems and the impact of matrix composition.

    PubMed

    Letsch, Harald O; Meusemann, Karen; Wipfler, Benjamin; Schütte, Kai; Beutel, Rolf; Misof, Bernhard

    2012-08-22

    In this study, we investigated the relationships among insect orders with a main focus on Polyneoptera (lower Neoptera: roaches, mantids, earwigs, grasshoppers, etc.), and Paraneoptera (thrips, lice, bugs in the wide sense). The relationships between and within these groups of insects are difficult to resolve because only few informative molecular and morphological characters are available. Here, we provide the first phylogenomic expressed sequence tags data ('EST': short sub-sequences from a c(opy) DNA sequence encoding for proteins) for stick insects (Phasmatodea) and webspinners (Embioptera) to complete published EST data. As recent EST datasets are characterized by a heterogeneous distribution of available genes across taxa, we use different rationales to optimize the data matrix composition. Our results suggest a monophyletic origin of Polyneoptera and Eumetabola (Paraneoptera + Holometabola). However, we identified artefacts of tree reconstruction (human louse Pediculus humanus assigned to Odonata (damselflies and dragonflies) or Holometabola (insects with a complete metamorphosis); mayfly genus Baetis nested within Neoptera), which were most probably rooted in a data matrix composition bias due to the inclusion of sequence data of entire proteomes. Until entire proteomes are available for each species in phylogenomic analyses, this potential pitfall should be carefully considered. PMID:22628473

  15. Functionally Graded Al Alloy Matrix In-Situ Composites

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.

    2010-01-01

    In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.

  16. Orthorhombic Titanium Matrix Composite Subjected to Simulated Engine Mission Cycles

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1997-01-01

    Titanium matrix composites (TMC's) are commonly made up of a titanium alloy matrix reinforced by silicon carbide fibers that are oriented parallel to the loading axis. These composites can provide high strength at lower densities than monolithic titanium alloys and superalloys in selected gas turbine engine applications. The use of TMC rings with unidirectional SiC fibers as reinforcing rings within compressor rotors could significantly reduce the weight of these components. In service, these TMC reinforcing rings would be subjected to complex service mission loading cycles, including fatigue and dwell excursions. Orthorhombic titanium aluminide alloys are of particular interest for such TMC applications because their tensile and creep strengths are high in comparison to those of other titanium alloys. The objective of this investigation was to assess, in simulated mission tests at the NASA Lewis Research Center, the durability of a SiC (SCS-6)/Ti-22Al-23Nb (at.%) TMC for compressor ring applications, in cooperation with the Allison Engine Company.

  17. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  18. Metal-Matrix Composites Prepared by Paper-Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wenzel, Claudia; Aneziris, Christos G.; Pranke, Katja

    2016-01-01

    In this work, metal-matrix composites were prepared via paper-manufacturing technology using metastable austenitic steel powder of type 16-7-3 (Cr-Mn-Ni in wt pct) and magnesia partially stabilized zirconia reinforcing particles. The influence of the process parameters on the paper web formation and the resulting properties of the MMCs were studied and solids retention of >90 wt pct was achieved. During filtration of the aqueous fiber-filler suspension, the steel particles were incorporated in the fiber network, and steel clusters were formed. Calendering had a positive influence on the porosity, bulk density, and tensile strength of the green paper sheets. Within this contribution, the debinding process for the metal-matrix paper sheets was in focus. A debinding rate of 0.5 K/min to 733 K (460 °C) with a dwell time of 90 minutes was sufficient to completely remove cellulose fibers. The sintered composites attained a tensile strength of up to 177 N/mm2 at a total porosity of 66 pct.

  19. Metal matrix composites for sustainable lotus-effect surfaces.

    PubMed

    Nosonovsky, Michael; Hejazi, Vahid; Nyong, Aniedi E; Rohatgi, Pradeep K

    2011-12-01

    The lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. However, such surfaces require micropatterning, which is extremely vulnerable to even small wear rates. This limits the applicability of the lotus effects to situations when wear is practically absent. To design sustainable superhydrophobic surfaces, we suggest using metal matrix composites (MMCs) with hydrophobic reinforcement in the bulk of the material, rather than only at its surface. Such surfaces, if properly designed, provide roughness and heterogeneity needed for superhydrophobicity. In addition, they are sustainable, since when the surface layer is deteriorated and removed due to wear, hydrophobic reinforcement and roughness remains. We present a model and experimental data on wetting of MMCs. We also conducted selected experiments with graphite-reinforced MMCs and showed that the contact angle can be determined from the model. In order to decouple the effects of reinforcement and roughness, the experiments were conducted for initially smooth and etched matrix and composite materials. PMID:21999807

  20. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  1. Structural and functional polymer-matrix composites for electromagnetic applications

    NASA Astrophysics Data System (ADS)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  2. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive

  3. Building up graphene-based conductive polymer composite thin films using reduced graphene oxide prepared by γ-ray irradiation.

    PubMed

    Xie, Siyuan; Zhang, Bowu; Wang, Chunlei; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2013-01-01

    In this paper, reduced graphene oxide (RGO) was prepared by means of γ -ray irradiation of graphene oxide (GO) in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance. PMID:24170985

  4. Strong, damage tolerant oxide-fiber/oxide matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, Yahua

    Electrophoretic deposition (EPD) is an easy and cost effective method to fabricate fiber-reinforced green composites. Non-conductive Nextel(TM) 720 fibers were successfully coated with a transient, conductive polypyrrole submicron surface layer for use directly as an electrode in EPD processing. However, electric-field shielding limits particle infiltration into the conductive fiber bundles and they mostly deposit on the outer surface of the fiber bundle. When the bundle is large, central cavities exist after deposition. The EPD cell was modified for electrophoretic infiltration deposition (EPID). Non conductive fibers were laid on an electrode and charged particles in an ethanol suspension are driven there through by an electric field, infiltrate and deposit on the electrode to then build up into the fiber preform and fill the voids therein. Dense, uniform, green fiber composites were successfully fabricated via constant current EPID. The EPID process is modeled as capillary electrophoretic infiltration. The process consists of two steps: particle electrophoresis outside the capillaries and electrophoretic infiltration inside the capillaries. Due to the zero net flow of the ethanol across the capillary cross-section, there is no electro-osmotic flow contribution to the deposition rate. Hamaker's law was extended to the EPID process, i.e., the deposition yield is proportional to the electric field inside the capillaries. The total deposition yield is controlled by the slow step of the process, i.e., the rate of electrophoresis in the open suspension outside the capillaries. AlPO4 was proposed as a weak layer between oxide fibers and oxide matrix in fiber-reinforced ceramic matrix composites (CMC's). AlPO 4 nano particles were synthesized by chemical co-precipitation of Al 3+ and HPO42- with urea at 95°C. The solution pH basic region and amorphous AlPO4 precipitated of narrow size distribution with a mean particle size 50nm. Nextel 720 fibers were pretreated with

  5. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions.

    PubMed

    Kolanthai, Elayaraja; Bose, Suryasarathi; Bhagyashree, K S; Bhat, S V; Asokan, K; Kanjilal, D; Chatterjee, Kaushik

    2015-09-21

    A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants. PMID:26266702

  6. Mutual irradiation grafting on indigenous aramid fiber-3 in diethanolamine and epichlorohydrin and its effect on interfacially reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Xing, Lixin; Liu, Li; Xie, Fei; Huang, Yudong

    2016-07-01

    The surface of indigenous aramid fiber-3 (IAF3) was decorated via mutual irradiation grafting process in diethanolamine (DEA) and epichlorohydrin (ECH), respectively, with the assist of high energy gamma rays. This modification method with great permeability produced the homogeneous and ameliorative AF3 surfaces, which were observed by the scanning electron microscopy (SEM) and atom forced microscopy (AFM). Enhanced surface free energy and reduced contact angles of irradiated AF3 verified the fabulous effectiveness of mutual irradiation without seriously injured tensile strength. The composites based on epoxy resin (ER) polymer as the matrix and irradiated IAF3 grafted DEA and ECH as the reinforcement. By capitalizing on the irradiated IAF3 which has higher wettability and adsorption on resin, the irradiated IAF3-ECH/ER composites exhibit admirable interfacial mechanical performance as compared to the pristine IAF3 contained composites. The interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and flexural strength of composites were remarkable improved to 86.5, 60.13 and 511 MPa respectively, from the pristine IAF3/ER composite with IFSS of 65.9 MPa, ILSS of 48.1 MPa, and flexural strength of 479 MPa.

  7. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  8. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  9. Influence of whole body irradiation and local shielding on matrix-induced endochondral bone differentiation.

    PubMed

    Wientroub, S; Weiss, J F; Catravas, G N; Reddi, A H

    1990-01-01

    Subcutaneous implantation of demineralized bone matrix into allogeneic rats induces endochondral bone formation. We have investigated the effects of irradiation on the sequelae of the interaction of collagenous matrix and mesenchymal cells and on cartilage and bone differentiation. Rats were irradiated in a vertical direction with a midline dose of 850 rad. Radiation entered the rats ventrally while a small area of the upper thorax was locally shielded. After irradiation, bone matrix was implanted in shielded and nonshielded sites, and the implants were studied at various stages. On day 3, [3H]thymidine incorporation, an index of cell proliferation, was inhibited by 70% in the nonshielded sites compared to nonirradiated control rats. The degree of inhibition (35%) was less pronounced in shielded sites. Furthermore, there was recovery of cell proliferation in the shielded sites as opposed to the nonshielded contralateral site. A similar pattern was observed on day 7 as assessed by 35SO4 incorporation into proteoglycans during chondrogenesis. Bone formation and mineralization were quantified on day 11 by alkaline phosphatase activity and 45Ca incorporation. In nonshielded sites, there was a 73% inhibition of alkaline phosphatase activity. In conclusion, radiation impaired progenitor cell proliferation which resulted in decreased cartilage and bone differentiation. These findings imply that local mesenchymal cells proliferate and differentiate into bone in response to implanted collagenous matrix. PMID:2104773

  10. The Effects of Laser Irradiation of Cartilage on Chondrocyte Gene Expression and the Collagen Matrix

    PubMed Central

    Holden, Paul K.; Li, Chao; Da Costa, Victor; Sun, Chung-Ho; Bryant, Susan V.; Gardiner, David M.; Wong, Brian J.F.

    2014-01-01

    Objectives Laser reshaping of cartilage is an emerging technology aimed at replacing conventional techniques for aesthetic and reconstructive surgery. Little is known about the mechanisms of wound healing following the photothermal heating during laser reshaping and, ultimately, how collagen remodels in the irradiated tissue. Healthy hyaline and elastic cartilage as found in the ear, nose, larynx, and trachea does not express collagen type I which is characteristic of fibro-cartilage and scar tissue. The aim of the study was to determine if collagen I and II gene expression occurs within laser irradiated rabbit septal cartilage. Methods Nasal septum harvested from freshly euthanized New Zealand White rabbits were irradiated with an Nd:YAG laser. After 2 weeks in culture, the laser spot and surrounding non-irradiated regions were imaged using immunofluorescence staining and evaluated using reverse transcription polymerase chain reaction (RT-PCR) to determine the presence of collagen I and II, and ascertain collagen I and II gene expression, respectively. Results All laser irradiated specimens showed a cessation in collagen II gene expression within the center of the laser spot. Collagen II was expressed in the surrounding region encircling the laser spot and within the non-irradiated periphery in all specimens. Immunohistochemistry identified only type II collagen. Neither collagen I gene expression nor immunoreactivity were identified in any specimens regardless or irradiation parameters. Conclusions Laser irradiation of rabbit septal cartilage using dosimetry parameters similar to those used in laser reshaping does not result in the detection of either collagen I gene expression or immunoreactivity. Only collagen type II was noted after laser exposure in vitro following cell culture, which suggests that the cellular response to laser irradiation is distinct from that observed in conventional wound healing. Laser irradiation of cartilage can leave an intact

  11. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2

  12. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    SciTech Connect

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  13. Chronic UVB-irradiation actuates perpetuated dermal matrix remodeling in female mice: Protective role of estrogen.

    PubMed

    Röck, Katharina; Joosse, Simon Andreas; Müller, Julia; Heinisch, Nina; Fuchs, Nicola; Meusch, Michael; Zipper, Petra; Reifenberger, Julia; Pantel, Klaus; Fischer, Jens Walter

    2016-01-01

    Chronic UVB-exposure and declined estradiol production after menopause represent important factors leading to extrinsic and intrinsic aging, respectively. Remodeling of the extracellular matrix (ECM) plays a crucial role in both responses. Whether the dermal ECM is able to recover after cessation of UVB-irradiation in dependence of estradiol is not known, however of relevance when regarding possible treatment options. Therefore, the endogenous sex hormone production was depleted by ovariectomy in female mice. Half of the mice received estradiol substitution. Mice were UVB-irradiated for 20 weeks and afterwards kept for 10 weeks without irradiation. The collagen-, hyaluronan- and proteoglycan- (versican, biglycan, lumican) matrix, collagen cleavage products and functional skin parameters were analyzed. The intrinsic aging process was characterized by increased collagen fragmentation and accumulation of biglycan. Chronic UVB-irradiation additionally augmented the lumican, versican and hyaluronan content of the dermis. In the absence of further UVB-irradiation the degradation of collagen and accumulation of biglycan in the extrinsically aged group was perpetuated in an excessive matter. Whereas estradiol increased the proteoglycan content, it reversed the effects of the perpetuated extrinsic response on collagen degradation. Suspension of the intrinsic pathway might therefore be sufficient to antagonize UVB-evoked long-term damage to the dermal ECM. PMID:27460287

  14. Chronic UVB-irradiation actuates perpetuated dermal matrix remodeling in female mice: Protective role of estrogen

    PubMed Central

    Röck, Katharina; Joosse, Simon Andreas; Müller, Julia; Heinisch, Nina; Fuchs, Nicola; Meusch, Michael; Zipper, Petra; Reifenberger, Julia; Pantel, Klaus; Fischer, Jens Walter

    2016-01-01

    Chronic UVB-exposure and declined estradiol production after menopause represent important factors leading to extrinsic and intrinsic aging, respectively. Remodeling of the extracellular matrix (ECM) plays a crucial role in both responses. Whether the dermal ECM is able to recover after cessation of UVB-irradiation in dependence of estradiol is not known, however of relevance when regarding possible treatment options. Therefore, the endogenous sex hormone production was depleted by ovariectomy in female mice. Half of the mice received estradiol substitution. Mice were UVB-irradiated for 20 weeks and afterwards kept for 10 weeks without irradiation. The collagen-, hyaluronan- and proteoglycan- (versican, biglycan, lumican) matrix, collagen cleavage products and functional skin parameters were analyzed. The intrinsic aging process was characterized by increased collagen fragmentation and accumulation of biglycan. Chronic UVB-irradiation additionally augmented the lumican, versican and hyaluronan content of the dermis. In the absence of further UVB-irradiation the degradation of collagen and accumulation of biglycan in the extrinsically aged group was perpetuated in an excessive matter. Whereas estradiol increased the proteoglycan content, it reversed the effects of the perpetuated extrinsic response on collagen degradation. Suspension of the intrinsic pathway might therefore be sufficient to antagonize UVB-evoked long-term damage to the dermal ECM. PMID:27460287

  15. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  16. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes

    NASA Technical Reports Server (NTRS)

    Boyle, Robert

    2014-01-01

    This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.

  17. Monitoring damage growth in titanium matrix composites using acoustic emission

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Prosser, W. H.; Johnson, W. S.

    1993-01-01

    The application of the acoustic emission (AE) technique to locate and monitor damage growth in titanium matrix composites (TMC) was investigated. Damage growth was studied using several optical techniques including a long focal length, high magnification microscope system with image acquisition capabilities. Fracture surface examinations were conducted using a scanning electron microscope (SEM). The AE technique was used to locate damage based on the arrival times of AE events between two sensors. Using model specimens exhibiting a dominant failure mechanism, correlations were established between the observed damage growth mechanisms and the AE results in terms of the events amplitude. These correlations were used to monitor the damage growth process in laminates exhibiting multiple modes of damage. Results revealed that the AE technique is a viable and effective tool to monitor damage growth in TMC.

  18. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  19. Leveraging metal matrix composites to reduce costs in space mechanisms

    NASA Technical Reports Server (NTRS)

    Nye, Ted; Claridge, Rex; Walker, Jim

    1994-01-01

    Advanced metal matrix composites may be one of the most promising technologies for reducing cost in structural components without compromise to strength or stiffness. A microlight 12.50 N (2.81 lb), two-axis, solar array drive assembly (SADA) was made for the Advanced Materials Applications to Space Structures (AMASS) Program flight experiment. The SADA had both its inner and outer axis housings fabricated from silicon carbide particulate reinforced alumimun. Two versions of the housings were made. The first was machined from a solid billet of material. The second was plaster cast to a near net shape that required minimal finish machining. Both manufacturing methods were compared upon completion. Results showed a cost savings with the cast housing was possible for quantities greater than one and probable for quantities greater than two. For quantities approaching ten, casting resulted in a reduction factor of almost three in the cost per part.

  20. Nondestructive evaluation of a ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  1. Micromechanical analysis of the failure process in ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1991-01-01

    An analysis of the effectiveness of fiber reinforcement in brittle matrix composites is presented. The analytical method allows consideration of discrete fiber distribution and examination of the development of crack growth parameters on the microscale. The problem associated with bridging zone development is addressed here; therefore, the bridging zone is considered to be smaller than the main preexisting crack, and the small scale approach is used. The mechanics of the reinforcement is accurately accounted for in the process zone of a growing crack. Closed form solutions characterizing the initial failure process are presented for linear and nonlinear force-fiber pullout displacement relationships. The implicit exact solution for the extended bridging zone is presented as well.

  2. Measuring time-dependent diffusion in polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Pilli, Siva P.; Smith, Lloyd V.; Vaithiyalingam, Shutthanandan

    2014-11-01

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMCs). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick's Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time-dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60] s , was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C 0, followed by a slow linear increase to the saturation level.

  3. Survey of inorganic polymers. [for composite matrix resins

    NASA Technical Reports Server (NTRS)

    Gerber, A. H.; Mcinerney, E. F.

    1979-01-01

    A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics.

  4. Cooled Ceramic Matrix Composite Panel Successfully Tested in Rocket Exhaust

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.

    2001-01-01

    Actively cooled ceramic matrix composite (CMC) components are enabling or enhancing for a broad range of hypersonic and reusable launch vehicle propulsion systems. Teaming with other NASA centers, the Air Force, and industry, the Glenn Ceramics Branch has successfully tested multiple cooled CMC panel concepts in high-heat-flux, high-pressure, flowing rocket engine combustion gas environments. Sub-element components survived multiple cycles and the severe thermal gradients imposed by combustion gas temperatures in excess of 5500 F and cryogenic hydrogen or ambient temperature water internal coolants. These demonstrations are critical for the continued development of this class of materials, and the research is expected to continue with additional concepts and increasingly larger and more complex geometries being fabricated and tested in a broad range of engine operating conditions.

  5. Measuring time-dependent diffusion in polymer matrix composites

    SciTech Connect

    Pilli, Siva Prasad; Smith, Lloyd V.; Shutthanandan, V.

    2014-11-01

    Moisture plays a significant role in influencing the mechanical behavior and long-term durability of polymer matrix composites (PMC’s). The common methods used to determine the moisture diffusion coefficients of PMCs are based on the solution of Fickian diffusion in the one-dimensional domain. Fick’s Law assumes that equilibrium between the material surface and the external vapor is established instantaneously. A time dependent boundary condition has been shown to improve correlation with some bulk diffusion measurements, but has not been validated experimentally. The surface moisture content in a Toray 800S/3900-2B toughened quasi-isotropic laminate system, [0/±60]s, was analyzed experimentally using Nuclear Reaction Analysis (NRA). It was found that the surface moisture content showed a rapid increase to an intermediate concentration C0, followed by a slow linear increase to the saturation level.

  6. Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.

  7. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  8. Graphite Fiber Textile Preform/Copper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Lee, Bruce; Bass, Lowell

    1996-01-01

    Graphite fiber reinforced/copper matrix composites are candidate materials for critical heat transmitting and rejection components because of their high thermal conduction. The use of textile (braid) preforms allows near-net shapes which confers additional advantages, both for enhanced thermal conduction and increased robustness of the preform against infiltration and handling damage. Issues addressed in the past year center on the determination of the braid structure following infiltration, and the braidability vs. the conductivity of the fibers. Highly conductive fibers eventuate from increased graphitization, which increases the elastic modulus, but lowers the braidability; a balance between these factors must be achieved. Good quality braided preform bars have been fabricated and infiltrated, and their thermal expansion characterized; their analytic modeling is underway. The braided preform of an integral finned tube has been fabricated and is being prepared for infiltration.

  9. Geopolymer - room-temperature ceramic matrix for composites

    SciTech Connect

    Davidovits, J.; Davidovics, M.

    1988-08-01

    The semiamorphous three-dimensional networks of polymeric Na, K, Li, and Mg aluminosilicates of both poly(sialate) and poly(sialate-siloxo) type, collectively known as geopolymers, harden at 20-120 C and are similar to thermoset resins, but are stable at up to 1200-1400 C without shrinkage. A wide variety of alkaline-resistant inorganic reinforcements, notably SiC fibers, have been combined with geopolymer matrices to yield nonburning, nonsmoking high-temperature composites. An SiC fiber-reinforced K-poly(sialate-siloxo) matrix, shaped and hardened at 70 C for 1.5 hr, develops flexural mean strengths of the order of 380 MPa that are retained after firing at up to 900 C. 16 references.

  10. Oxidation resistant coatings for ceramic matrix composite components

    SciTech Connect

    Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  11. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  12. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    PubMed Central

    Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitrios G.; Matikas, Theodore E.

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  13. Deformation and failure mechanisms in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Newaz, G.; Majumdar, B. S.

    1991-01-01

    An investigation was undertaken to determine the key deformation mechanisms and their interaction leading to failure of both 0 degree and 90 degree Ti 15-3/SCS-6 laminae under monotonic loading. The experimental results suggest that inelastic deformation in the 0-degree lamina is dominated by plastic deformation and that in the 90-degree lamina is dominated by both fiber-matrix debonding and plasticity. The loading-unloading response, monitoring of Poisson's ratio and microscopy were utilized to identify the key deformation mechanisms. The sequence of deformation mechanisms leading to failure are identified for both the 0 and the 90-degree specimens. The threshold strains for plasticity or damage which are referred to as 'microdeformation' in the 0 deg and 90 deg laminae are approximately 0.004 and 0.002, respectively, at room temperature. These strain levels may be considered critical in initiation based structural design with these composites.

  14. Thermal analysis of metal foam matrix composite phase change material

    NASA Astrophysics Data System (ADS)

    Song, Xiange

    2015-06-01

    In this paper, CPCM (Composite Phase Change Material) was manufactured with metal foam matrix used as filling material. The temperature curves were obtained by experiment. The performance of heat transfer was analyzed. The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability. The thermal performance of CPCM is significantly improved. The efficiency of temperature control can be obviously improved by adding metal foam in phase change material. CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin. An approximate plateau appears. The plateau can be considered as the temperature control zone of CPCM. Heat can be transferred from hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability. Natural convection promotes the melting of solid-liquid phase change material. Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material. The interior temperature difference decreases and the whole temperature becomes more uniform. For the same porosity with a metal foam, melting time of solid-liquid phase change material decreases. Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller. The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces. The research results can be used to guide fabricating the CPCM.

  15. Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites

    NASA Astrophysics Data System (ADS)

    Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad

    2014-11-01

    Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.

  16. Modeling of cumulative tool wear in machining metal matrix composites

    SciTech Connect

    Hung, N.P.; Tan, V.K.; Oon, B.E.

    1995-12-31

    Metal matrix composites (MMCs) are notoriously known for their low machinability because of the abrasive and brittle reinforcement. Although a near-net-shape product could be produced, finish machining is still required for the final shape and dimension. The classical Taylor`s tool life equation that relates tool life and cutting conditions has been traditionally used to study machinability. The turning operation is commonly used to investigate the machinability of a material; tedious and costly milling experiments have to be performed separately; while a facing test is not applicable for the Taylor`s model since the facing speed varies as the tool moves radially. Collecting intensive machining data for MMCs is often difficult because of the constraints on size, cost of the material, and the availability of sophisticated machine tools. A more flexible model and machinability testing technique are, therefore, sought. This study presents and verifies new models for turning, facing, and milling operations. Different cutting conditions were utilized to assess the machinability of MMCs reinforced with silicon carbide or alumina particles. Experimental data show that tool wear does not depend on the order of different cutting speeds since abrasion is the main wear mechanism. Correlation between data for turning, milling, and facing is presented. It is more economical to rank machinability using data for facing and then to convert the data for turning and milling, if required. Subsurface damages such as work-hardened and cracked matrix alloy, and fractured and delaminated particles are discussed.

  17. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  18. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  19. Prediction of thermal cycling induced cracking in polmer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    The work done in the period August 1993 through February 1994 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program is summarized. Most of the work performed in this period, as well as the previous one, is described in detail in the attached Master's thesis, 'Analysis of Thermally Induced Damage in Composite Space Structures,' by Cecelia Hyun Seon Park. Work on a small thermal cycling and aging chamber was concluded in this period. The chamber was extensively tested and calibrated. Temperatures can be controlled very precisely, and are very uniform in the test chamber. Based on results obtained in the previous period of this program, further experimental progressive cracking studies were carried out. The laminates tested were selected to clarify the differences between the behaviors of thick and thin ply layers, and to explore other variables such as stacking sequence and scaling effects. Most specimens tested were made available from existing stock at Langley Research Center. One laminate type had to be constructed from available prepreg material at Langley Research Center. Specimens from this laminate were cut and prepared at MIT. Thermal conditioning was carried out at Langley Research Center, and at the newly constructed MIT facility. Specimens were examined by edge inspection and by crack configuration studies, in which specimens were sanded down in order to examine the distribution of cracks within the specimens. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate was implemented as a computer code. The code also predicts changes in properties due to the cracking. Extensive correlations between test results and code predictions were carried out. The computer code was documented and is ready for distribution.

  20. Synthesis of dental matrix proteins and viability of odontoblast-like cells irradiated with blue LED.

    PubMed

    Alonso, Juliana Rosa Luiz; Turrioni, Ana Paula Silveira; Basso, Fernanda Gonçalves; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-04-01

    To evaluate the effect of irradiation with light-emitting diode (LED; 455 nm) on the viability and synthesis of dentin matrix proteins by odontoblast-like cells, MDPC-23 cells were cultivated (10(4) cells/cm(2)) in 24-well culture plates. After 12 h incubation in Dulbecco's modified Eagle's medium (DMEM), the cells were submitted to nutritional restriction by means of reducing the concentration of fetal bovine serum (FBS) for an additional 12 h. Cells were irradiated one single time with one of the following energy densities (EDs): 0.5, 2, 4, 10, or 15 J/cm(2) and irradiance fixed at 20 mW/cm(2). Non-irradiated cells served as control. After 72 h, cells were evaluated with regard to viability (methylthiazol tetrazolium technique (MTT)), mineralization nodule (MN) formation, total protein (TP) production, alkaline phosphatase activity (ALP), and collagen synthesis (Sircol), n = 8. The data were submitted to Kruskal-Wallis and Mann-Whitney tests (p > 0.05). There was no statistical difference between the viability of cells irradiated or not (control), for all the EDs. However, an increase in TP was observed for all the EDs when compared with the control group. A reduced ALP activity was seen in all irradiated groups, except for the ED of 0.5 J/cm(2), which did not differ from the control. There was no difference between the irradiated groups and control regarding collagen synthesis, with the exception of the ED of 10 J/cm(2), which inhibited this cell function. Significant reduction in MN occurred only for the EDs of 0.5 and 2 J/cm(2). The single irradiation with blue LED (455 nm), irradiance of 20 mW/cm(2), and energy densities ranging from 0.5 to 15 J/cm(2) exerted no effective biostimulatory capacity on odontoblast-like cells. PMID:26873499

  1. Durability of a polymer matrix composite: Neural networks approach

    NASA Astrophysics Data System (ADS)

    Al-Haik, Marwan S.

    In this study, the viscoplastic behavior of a carbon-fiber/thixotropic-epoxy matrix composite was investigated through two deferent modeling efforts. The first model is phenomenological in nature and it utilizes the tensile and stress relaxation experiments to predict the creep strain. In the second model, the composite viscoplastic behavior is no longer represented by closed-form constitutive laws, but it is captured by a neural network formulation. The composite was processed and cured using hand lay-up technique together with autoclave curing system. By performing thermomechanical analysis and differential scanning calorimetry, the glass transition temperature of the composite was noticed to degrade. Experiments were performed to examine the tensile, creep, and load relaxation behavior of the composite under different temperatures. It was found that the composite strength and stiffness decrease significantly at elevated temperatures. A phenomenological model was constructed based on the overstress viscoplastic model. In this model, four material's parameters are extracted from tensile and load relaxation tests. These parameters are used by a system of coupled equations to predict the creep strain. The results of the phenomenological model were satisfactory for predicting creep at low temperature conditions, but for the high stress-high temperature regimes, the model failed to predict the creep strain accurately. The neural network model was built directly from the experimental creep tests performed at various stress-temperature conditions. The optimal structure of the neural network was achieved through the universal approximation theory and the dimensionality of the creep problem (stress, temperature, and time). The neural network model was trained to predict the creep strain based on the stress-temperature-time values. The performance of the neural model is captured by the mean squared error between the neural network prediction and the experimental creep

  2. Prediction of matrix fatigue crack initiation in notched SCS-6/Ti-15-3 metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hillberry, B. M.; Johnson, W. S.

    1991-01-01

    Several lay-ups of SCS-6/Ti-15-3 metal matrix composites were tested in either a center hole or a double edge notched geometry. At different cyclic strss levels, the number of cycles required to develop matrix fatigue cracks at the notches was recorded. A fatigue strat-life curve was developed for the Ti-15-3 matrix material. This modified parameter predicted the number of cycles required for matrix crack initiation at the notches. The predictions were in good agreement with the experimental data.

  3. Fabrication of thermoelectric wire-matrix composites using electrodeposition

    NASA Astrophysics Data System (ADS)

    Behnke, Joseph Frederick

    Thermoelectric materials have potential applications in a wide range of heating and cooling systems. Thermoelectric coolers, for example, are small, lightweight, and silent. They have no moving parts or fluids. What hinders a broader use of thermoelectric materials is their inefficiency when compared to compressor based systems. Theoretical studies have shown that there is a possible enhancement in thermoelectric properties through quantum confinement of the material. Recent studies have attempted to show this enhancement through the fabrication of multilayers, quantum wires and coupled quantum dots. In this study, the fabrication of thermoelectric wire-matrix composites is attempted. Porous anodic aluminum oxide was chosen as the matrix material because of its high porosity, its uniform pore diameter, its low thermal conductivity, and its compatibility with current thermoelectric device structures. CoSb 3 was chosen as the wire material because of its potential to show an enhancement in thermoelectric properties above bulk values at diameters greater than other commonly used thermoelectric materials. Electrodeposition was chosen as the method of fabrication, as it best allowed for infiltration of wire material into the matrix. It was found, however, that cobalt and antimony could not be electrodeposited into the porous matrix from the same bath. Therefore a two bath, multilayer approach was used to fabricate wires, using a post anneal to form the CoSb3 phase. The formation of CoSb3 was demonstrated by depositing alternating layers of cobalt from a CoS0 47H2O bath and antimony from an Sb2O3 bath. Both baths were aqueous and contained a supporting electrolyte of citric acid and potassium citrate. Depositing the antimony layer for 22 times the duration of the cobalt deposition gave the correct stoichiometry in the multilayers. To form CoSb3, the multilayers were annealed in an antimony ambient at temperatures greater than 575°C. The post annealing was found to

  4. Toughening of a particulate-reinforced/ceramic-matrix composite. Technical report

    SciTech Connect

    Taya, M.; Hayashi, S.; Kobayashi, A.S.; Yoon, H.S.

    1989-09-01

    The toughening mechanism of particulate-reinforced/ceramic-matrix composites was attributed to the thermal residual-stress field induced by the differential thermal expansions of the matrix and the particulate when the composite is cooled from the processing to room temperature. The measured increase 77% in toughness in a TiB{sub 2}-particulate/SiC-matrix ceramic composite compared well with the predicted increase of 52%.

  5. Metal matrix composites. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations of selected patents concerning methods and equipment for manufacturing metal matrix composites. Various matrix composites are described, including aluminium, magnesium, ceramic-metal, titanium, boron, and fiber reinforced. Matrix techniques include rapid solidification, infiltration process, and investment casting. Composites for use in electronic packages, gas turbines, combustion engines, antennae, detectors, aerospace vehicles, and semiconductor devices are presented. (Contains a minimum of 165 citations and includes a subject term index and title list.)

  6. Metal matrix composites. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations of selected patents concerning methods and equipment for manufacturing metal matrix composites. Various matrix composites are described, including aluminium, magnesium, ceramic-metal, titanium, boron, and fiber reinforced. Matrix techniques include rapid solidification, infiltration process, and investment casting. Composites for use in electronic packages, gas turbines, combustion engines, antennae, detectors, aerospace vehicles, and semiconductor devices are presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Metal matrix composites. (Latest citations from the US Patent Bibliographic File with Exemplary Claims). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations of selected patents concerning methods and equipment for manufacturing metal matrix composites. Various matrix composites are described, including aluminium, magnesium, ceramic-metal, titanium, boron, and fiber reinforced. Matrix techniques include rapid solidification, infiltration process, and investment casting. Composites for use in electronic packages, gas turbines, combustion engines, antennae, detectors, aerospace vehicles, and semiconductor devices are presented. (Contains a minimum of 196 citations and includes a subject term index and title list.)

  8. Metal matrix composites. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations of selected patents concerning methods and equipment for manufacturing metal matrix composites. Various matrix composites are described, including aluminium, magnesium, ceramic-metal, titanium, boron, and fiber reinforced. Matrix techniques include rapid solidification, infiltration process, and investment casting. Composites for use in electronic packages, gas turbines, combustion engines, antennae, detectors, aerospace vehicles, and semiconductor devices are presented. (Contains a minimum of 232 citations and includes a subject term index and title list.)

  9. Stochastic Virtual Tests for High-Temperature Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Bale, Hrishikesh A.; Begley, Matthew; Blacklock, Matthew; Do, Bao-Chan; Fast, Tony; Naderi, Mehdi; Novak, Mark; Rajan, Varun P.; Rinaldi, Renaud G.; Ritchie, Robert O.; Rossol, Michael N.; Shaw, John H.; Sudre, Olivier; Yang, Qingda; Zok, Frank W.; Marshall, David B.

    2014-07-01

    We review the development of virtual tests for high-temperature ceramic matrix composites with textile reinforcement. Success hinges on understanding the relationship between the microstructure of continuous-fiber composites, including its stochastic variability, and the evolution of damage events leading to failure. The virtual tests combine advanced experiments and theories to address physical, mathematical, and engineering aspects of material definition and failure prediction. Key new experiments include surface image correlation methods and synchrotron-based, micrometer-resolution 3D imaging, both executed at temperatures exceeding 1,500°C. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens, as well as a new augmented finite element method that deals efficiently with arbitrary systems of crack initiation, bifurcation, and coalescence in heterogeneous materials. Conceptual advances include the use of topology to characterize stochastic microstructures. We discuss the challenge of predicting the probability of an extreme failure event in a computationally tractable manner while retaining the necessary physical detail.

  10. Real-Time Investigation of Solidification of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kaukler, William; Sen, Subhayu

    1999-01-01

    Casting of metal matrix composites can develop imperfections either as non- uniform distributions of the reinforcement phases or as outright defects such as porosity. The solidification process itself initiates these problems. To identify or rectify the problems, one must be able to detect and to study how they form. Until, recently this was only possible by experiments that employed transparent metal model organic materials with glass beads to simulate the reinforcing phases. Recent results obtained from a Space Shuttle experiment (using transparent materials) will be used to illustrate the fundamental physics that dictates the final distribution of agglomerates in a casting. We have further extended this real time investigation to aluminum alloys using X-ray microscopy. A variety of interface-particle interactions will be discussed and how they alter the final properties of the composite. A demonstration of how a solid-liquid interface is distorted by nearby voids or particles, particle pushing or engulfment by the interface, formations of wormholes, Aggregation of particles, and particle-induced segregation of alloying elements will be presented.

  11. Mechanocompatible Polymer-Extracellular-Matrix Composites for Vascular Tissue Engineering.

    PubMed

    Jiang, Bin; Suen, Rachel; Wang, Jiao-Jing; Zhang, Zheng J; Wertheim, Jason A; Ameer, Guillermo A

    2016-07-01

    Small-diameter vascular grafts developed from vascular extracellular matrix (ECM) can potentially be used for bypass surgeries and other vascular reconstruction and repair procedures. The addition of heparin to the ECM improves graft hemocompatibility but often involves chemical cross-linking, which increases ECM mechanical stiffness compared to native arteries. Herein, the importance of maintaining ECM mechanocompatibility is demonstrated, and a mechanocompatible strategy to immobilize heparin onto the ECM via a biodegradable elastomer is described. Specifically, poly(1,8-octamethylene citrate)-co-cysteine is hybridized to the ECM, forming a polymer-ECM composite that allows for heparin immobilization via maleimide-thiol "click" chemistry. Heparinized composites reduce platelet adhesion by >60% in vitro, without altering the elastic modulus of the ECM. In a rat abdominal aortic interposition model, intimal hyperplasia in heparinized mechanocompatible grafts is 65% lower when compared to ECM-only control grafts at four weeks. In contrast, grafts that are heparinized with carbodiimide chemistry exhibit increased intimal hyperplasia (4.2-fold) and increased macrophage infiltration (3.5-fold) compared to ECM-only control grafts. All grafts show similar, partial endothelial cell coverage and little to no ECM remodeling. Overall, a mechanocompatible strategy to improve ECM thromboresistance is described and the importance of ECM mechanical properties for proper in vivo graft performance is highlighted. PMID:27109033

  12. Fracture toughness of SiC/Al metal matrix composite

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Parker, B. H.; Chu, H. P.

    1989-01-01

    An experimental study was conducted to evaluate fracture toughness of SiC/Al metal matrix composite (MMC). The material was a 12.7 mm thick extrusion of 6061-T6 aluminum alloy with 40 v/o SiC particulates. Specimen configuration and test procedure conformed to ASTM E399 Standard for compact specimens. It was found that special procedures were necessary to obtain fatigue cracks of controlled lengths in the preparation of precracked specimens for the MMC material. Fatigue loading with both minimum and maximum loads in compression was used to start the precrack. The initial precracking would stop by self-arrest. Afterwards, the precrack could be safely extended to the desired length by additional cyclic tensile loading. Test results met practically all the E399 criteria for the calculation of plane strain fracture toughness of the material. A valid K sub IC value of the SiC/Al composite was established as K sub IC = 8.9 MPa square root of m. The threshold stress intensity under which crack would cease to grow in the material was estimated as delta K sub th = 2MPa square root of m for R = 0.09 using the fatigue precracking data. Fractographic examinations show that failure occurred by the micromechanism involved with plastic deformation although the specimens broke by brittle fracture. The effect of precracking by cyclic loading in compression on fracture toughness is included in the discussion.

  13. Structural and functional polymer-matrix composites for electromagnetic applications

    NASA Astrophysics Data System (ADS)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  14. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  15. A study of the composition and microstructure of aluminum matrix composites reinforced with alumina fibers

    NASA Astrophysics Data System (ADS)

    Zolotova, D.; Serpova, V.; Prokofiev, M.; Rabinskiy, L.; Shavnev, A.

    2016-04-01

    This article presents the results of a study of the microstructure and the composition of aluminum-based metal matrix composites (MMC) reinforced with continuous alumina fibers. An Al-Mg-Cu alloy similar to that of AA 2024 was used. X-ray diffraction and X-ray fluorescence analyses were used for investigation of a probable volume fraction of a spinel phase in MMC. Scanning electron microscopy and an X-ray microanalysis were used to study a change of the elemental composition of the composites microstructure on the polished cross sections. The constant mass fractions of magnesium (0.65 wt. %) and copper (1.25 wt. %) were found in the interphase area within radius of 1 μm around fibers.

  16. A CMOS matrix for extracting MOSFET parameters before and after irradiation

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Buehler, M. G.; Lin, Y.-S.; Hicks, K. A.

    1988-01-01

    An addressable matrix of 16 n- and 16 p-MOSFETs was designed to extract the dc MOSFET parameters for all dc gate bias conditions before and after irradiation. The matrix contains four sets of MOSFETs, each with four different geometries that can be biased independently. Thus the worst-case bias scenarios can be determined. The MOSFET matrix was fabricated at a silicon foundry using a radiation-soft CMOS p-well LOCOS process. Co-60 irradiation results for the n-MOSFETs showed a threshold-voltage shift of -3 mV/krad(Si), whereas the p-MOSFETs showed a shift of 21 mV/krad(Si). The worst-case threshold-voltage shift occurred for the n-MOSFETs, with a gate bias of 5 V during the anneal. For the p-MOSFETs, biasing did not affect the shift in the threshold voltage. A parasitic MOSFET dominated the leakage of the n-MOSFET biased with 5 V on the gate during irradiation. Co-60 test results for other parameters are also presented.

  17. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Gilatovs, G. J.; Lee, Bruce; Bass, Lowell

    1995-01-01

    Graphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. Considerable effort has been expended on determining the optimal braidability--conductivity region. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior

  18. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  19. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Astrophysics Data System (ADS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-07-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  20. High dose neutron irradiations of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    SciTech Connect

    Perez-Bergquist, Alex G.; Nozawa, Takashi; Shih, Chunghao Phillip; Leonard, Keith J.; Snead, Lance Lewis; Katoh, Yutai

    2014-07-01

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy is used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300° C. Furthermore, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.

  1. High dose neutron irradiations of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    DOE PAGESBeta

    Perez-Bergquist, Alex G.; Nozawa, Takashi; Shih, Chunghao Phillip; Leonard, Keith J.; Snead, Lance Lewis; Katoh, Yutai

    2014-07-01

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy ismore » used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300° C. Furthermore, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.« less

  2. High dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    NASA Astrophysics Data System (ADS)

    Perez-Bergquist, Alejandro G.; Nozawa, Takashi; Shih, Chunghao; Leonard, Keith J.; Snead, Lance L.; Katoh, Yutai

    2015-07-01

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy is used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300 °C. Specifically, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.

  3. Strength and fracture behavior of aluminide matrix composites with ceramic fibers

    SciTech Connect

    Inoue, M.; Suganuma, K.; Niihara, K.

    1999-07-01

    This paper investigates the fracture behavior of FeAl and Ni{sub 3}Al matrix composites with ceramic continuous fibers 8.5--10 {micro}m in diameter. When stress is applied to these composites, multiple-fracture of fibers predominantly occurs before matrix cracking, because the load carried by the fibers reaches their fracture strength. Fragments which remain longer than the critical length can provide significant strengthening through load bearing even though fiber breaking has occurred. The ultimate fracture strength of the composites also depends on stress relaxation by plastic deformation of the matrix at a crack tip in the multiple-fractured fibers. Ductilizing of the matrix by B doping improves the ultimate strength at ambient temperatures in both composites. However, their mechanical properties at elevated temperatures are quite different. In the case of Ni{sub 3}Al matrix composites, embrittlement of the matrix is undesirable for high strength and reliability at 873--973 K.

  4. Role of interfacial and matrix creep during thermal cycling of continuous fiber reinforced metal-matrix composites

    SciTech Connect

    Dutta, I.

    2000-03-14

    A uni-dimensional micro-mechanical model for thermal cycling of continuous fiber reinforced metal-matrix composites is developed. The model treats the fiber and matrix as thermo-elastic and thermo-elasto-plastic-creeping solids, respectively, and allows the operation of multiple matrix creep mechanisms at various stages of deformation through the use of unified creep laws. It also incorporates the effect of interfacial sliding by an interface-diffusion-controlled diffusional creep mechanism proposed earlier (Funn and Dutta, Acta mater., 1999, 47, 149). The results of thermal cycling simulations based on a graphite fiber reinforced pure aluminum-matrix composite were compared with experimental data on a P100 graphite-6061 Al composite. The model successfully captured all the important features of the observed heating/cooling rate dependence, strain hysteresis, residual permanent strain at the end of a cycle, as well as both intrusion and protrusion of the fiber-ends relative to the matrix at the completion of cycling. The analysis showed that the dominant deformation mechanism operative in the matrix changes continually during thermal cycling due to continuous stress and temperature revision. Based on these results, a framework for the construction of a transient deformation mechanism map for thermal excursions of continuous fiber composites is proposed.

  5. Polymer matrix composites research: A survey of federally sponsored programs

    SciTech Connect

    Not Available

    1990-06-01

    This report identifies research conducted by agencies of the federal government other than the Department of Energy (DOE) in the area of advanced polymer matrix composites (PMCs). DOE commissioned the report to avoid duplicating other agencies' efforts in planning its own research program for PMCs. PMC materials consist of high-strength, short or continuous fibers fused together by an organic matrix. Compared to traditional structural metals, PMCs provide greater strength and stiffness, reduced weight and increased heat resistance. The key contributors to PMC research identified by the survey are the Department of Defense (DOD), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics receive more attention because of their increased impact resistance and their easy formability and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods manufacturing products constructed of PMCs--techniques required for PMCs to gain widespread acceptance. Three issues to be addressed concerning PMCs research are economy of use, improvements in processing, and education and training. Five target technologies have been identified that could benefit greatly from increased use of PMCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

  6. Prediction of thermal cycling induced cracking in polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1993-01-01

    This report summarizes the work done in the period February 1993 through July 1993 on the 'Prediction of Thermal Cycling Induced Cracking In Polymer Matrix Composites' program. An oral presentation of this work was given to Langley personnel in September of 1993. This document was prepared for archival purposes. Progress studies have been performed on the effects of spatial variations in material strength. Qualitative agreement was found with observed patterns of crack distribution. These results were presented to NASA Langley personnel in November 1992. The analytical methodology developed by Prof. McManus in the summer of 1992 (under an ASEE fellowship) has been generalized. A method for predicting matrix cracking due to decreasing temperatures and/or thermal cycling in all plies of an arbitrary laminate has been implemented as a computer code. The code also predicts changes in properties due to the cracking. Experimental progressive cracking studies on a variety of laminates were carried out at Langley Research Center. Results were correlated to predictions using the new methods. Results were initially mixed. This motivated an exploration of the configuration of cracks within laminates. A crack configuration study was carried out by cutting and/or sanding specimens in order to examine the distribution of cracks within the specimens. These investigations were supplemented by dye-penetrant enhanced X-ray photographs. The behavior of thin plies was found to be different from the behavior of thicker plies (or ply groups) on which existing theories are based. Significant edge effects were also noted, which caused the traditional metric of microcracking (count of cracks on a polished edge) to be very inaccurate in some cases. With edge and configuration taken into account, rough agreement with predictions was achieved. All results to date were reviewed with NASA Langley personnel in September 1993.

  7. Numerical studies of fibrous composites from the view point of fiber-matrix interface and fiber-matrix bonding

    NASA Astrophysics Data System (ADS)

    Yilmaz, Yahya Ilyas

    In the present research, the micromechanics of fibrous composites was studied numerically. The effects of the fiber/matrix interphase region and fiber/matrix bonding were the main goals of this research. Throughout the research NASTRAN finite element analyses were used. First we investigated the effect of the interphase region on the stress field by varying the thickness of the interphase region and the material properties in the interphase region. Second, we numerically simulated the bonding qualities between the fiber and the matrix by the implementation of the fiber/matrix interphase region. The change for bonding between the fiber and the matrix were simulated through a periodic material property change in the interphase region. Third, we developed a bi-dimensional concentric cylindrical model for stress transfer between the fiber and the matrix model in case of a broken fiber or short fiber composites. This model is unique in accounting for the real non-linear stress-strain relationship for the matrix material. The stress transfer between the fiber and the matrix was also analyzed by finite element models. Toward this end finite element analysis proved a useful tool to help us evaluate key model parameters, most importantly the radius of fiber influence. This parameter is also a key parameter of simple models upon which the new model is based. Finally we applied our stress transfer model to analyze single fiber fragmentation test data obtained at Kansas State University.

  8. Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Katoh, Yutai; Snead, Lance L.; Nozawa, Takashi; Kondo, Sosuke; Busby, Jeremy T.

    2010-08-01

    Thermophysical and mechanical properties of high purity chemically vapor-deposited (CVD) SiC and chemically vapor-infiltrated SiC matrix, pyrocarbon/SiC multilayered interphase composites with Hi-Nicalon™ Type-S and Tyranno™-SA3 SiC fibers were evaluated following neutron irradiation. Specimens including statistically significant population of tensile bars were irradiated up to 5.3 displacement-per-atom at ˜220 to ˜1080 °C in the Advanced Test Reactor at Idaho National Laboratory and High Flux Isotope Reactor at Oak Ridge National Laboratory. Thermal diffusivity/conductivity of all materials decreased during irradiation. The reciprocal thermal diffusivity linearly increased with temperature from ambient to the irradiation temperature. The magnitude of defect thermal resistance was distinctively different among materials and its ranking was Hi-Nicalon™ Type-S > Tyranno™-SA3 > CVD SiC regardless of irradiation condition. Dynamic Young's modulus decrease for the irradiated CVD SiC exhibited explicit correlation with swelling. No significant effects of neutron irradiation on tensile properties of the composites were revealed, except for an anomaly case for the Hi-Nicalon™ Type-S composite irradiated in a specific condition. According to the single filament tensile evaluation, fibers of both types retained the original strength during irradiation at intermediate temperatures but significantly deteriorated during bare fiber irradiation at ˜910 °C. However, fiber strength deterioration was not observed when irradiated in composite form. Irradiation effects on the fiber-matrix interface properties were discussed based on results from the composite and single filament tensile tests, the hysteresis analysis, and the fracture surface examination.

  9. Metal Matrix Composites Deposition in Twin Wire Arc Spraying Utilizing an External Powder Injection Composition

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.; Hagen, L.; Nellesen, J.

    2014-01-01

    The powder injection parameters, the location of the injection port, as well as the metal matrix composites are important features, which determine the deposition efficiency and embedding behavior of hard materials in the surrounding matrix of the twin wire arc-spraying process. This study investigates the applicability of external powder injection and aims to determine whether the powder injection parameters, the location, and the material combination (composition of the matrix as well as hard material) need to be specifically tailored. Therefore, the position of the injection port in relation to the arc zone was altered along the spraying axis and perpendicular to the arc. The axial position of the injection port determines the thermal activation of the injected powder. An injection behind the arc, close to the nozzle outlet, seems to enhance the thermal activation. The optimal injection positions of different hard materials in combination with zinc-, nickel- and iron-based matrices were found to be closer to the arc zone utilizing a high-speed camera system. The powder size, the mass of the particle, the carrier gas flow, and the electric insulation of the hard material affect the perpendicular position of the radial injection port. These findings show that the local powder injection, the wetting behavior of particles in the realm of the molten pool as well as the atomization behavior of the molten pool all affect the embedding behavior of the hard material in the surrounded metallic matrix. Hardness measurement by means of nanoindentation and EDX analysis along transition zones were utilized to estimate the bonding strength. The observation of a diffusion zone indicates a strong metallurgical bonding for boron carbides embedded in steel matrix.

  10. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    NASA Astrophysics Data System (ADS)

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-01

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix-filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  11. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  12. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    SciTech Connect

    Ehrhart, E.J.; Gillette, E.L.; Barcellos-Hoff, M.H.

    1996-02-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by {gamma} irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin inummoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation. 40 refs., 3 figs.

  13. Formation and Characterization of Au/TiO{sub 2} NanoComposite by Laser Irradiation

    SciTech Connect

    Motamedi, Asma; Hajiesmaeilbaigi, Fereshteh

    2011-12-26

    Nanosized noble metal particles and dielectric matrix composite materials have attracted extensive attention due to their large third-order nonlinear susceptibility and ultrafast response properties, and have great potential for applications in optical devices. In this study, composite Au/TiO{sub 2} nanoparticles were synthesized by laser irradiation. Characterization of the composite particles by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) was carried out. We have successfully produced composite Au/TiO{sub 2} nanoparticles by laser ablation of metal gold plate in TiO{sub 2} sol. The red shift of 30 nm in the surface plasmon band of Au is found due to the refractive index of TiO{sub 2}. The surrounding TiO{sub 2} matrix is amorphous, but upon heat treatment becomes a crystalline oxide. Various morphologies of particles are visible, including circular, hexagonal and triangular projection; circular and thus spherical particles being the most common, which were confirm by the TEM images. A large size distribution of particles is visible in TEM images; the average grain size was measured 35 nm, which was confirmed by X-ray diffraction studies.

  14. Application of FIB with micro pick-up to microstructural study of irradiated SiC/SiC composites.

    PubMed

    Ozawa, Kazumi; Kondo, Sosuke; Kishimoto, Hirotatsu; Kohyama, Akira

    2004-01-01

    The combination of focused ion beam (FIB) micro-processing and the lift-out technique using the micro pick-up system was applied to the preparation of TEM specimens of irradiated SiC/SiC composites. The deformation caused by microstructural evolution was observed in the pyrolitic carbon interphase, and several helium bubbles and cavities were detected in the CVI matrix. PMID:15582959

  15. Burn-Resistant, Strong Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Tayal, Moti J.

    2003-01-01

    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses.

  16. Erosion Resistant Coatings for Polymer Matrix Composites in Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Naik, Subhash K.; Horan, Richard; Miyoshi, Kazuhisa; Bowman, Cheryl; Ma, Kong; Leissler, George; Sinatra, Raymond; Cupp, Randall

    2003-01-01

    Polymer Matrix Composites (PMCs) offer lightweight and frequently low cost alternatives to other materials in many applications. High temperature PMCs are currently used in limited propulsion applications replacing metals. Yet in most cases, PMC propulsion applications are not in the direct engine flow path since particulate erosion degrades PMC component performance and therefore restricts their use in gas turbine engines. This paper compares two erosion resistant coatings (SANRES and SANPRES) on PMCs that are useful for both low and high temperature propulsion applications. Collaborating over a multi-year period, researchers at NASA Glenn Research Center, Allison Advanced Developed Company, and Rolls-Royce Corporation have optimized these coatings in terms of adhesion, surface roughness, and erosion resistance. Results are described for vigorous hot gas/particulate erosion rig and engine testing of uncoated and coated PMC fan bypass vanes from the AE 3007 regional jet gas turbine engine. Moreover, the structural durability of these coatings is described in long-term high cycle fatigue tests. Overall, both coatings performed well in all tests and will be considered for applications in both commercial and defense propulsion applications.

  17. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  18. Ceramic Matrix Composites (CMC) Life Prediction Method Development

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Calomino, Anthony M.; Ellis, John R.; Halbig, Michael C.; Mital, Subodh K.; Murthy, Pappu L.; Opila, Elizabeth J.; Thomas, David J.; Thomas-Ogbuji, Linus U.; Verrilli, Michael J.

    2000-01-01

    Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix composites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reusable and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/SiC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.

  19. 3-D stamp forming of thermoplastic matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, M.; Friedrich, K.

    1994-03-01

    In this investigation a mould with hemispherical cavity and 80 kN hydraulic press, allowing variable stamping speeds, are employed for experimentally studying of the 3-D stamp forming process of continuous fiber reinforced thermoplastic laminates. In particular, glass fiber (GF) reinforced polyetherimide (PEI) woven fabric made of sheath surrounded, polymer powder impregnated fiber bundles manufactured by Enichem, Italy, is used. Pre-consolidated laminates are heated by contact heating in an external heater up to about 120°C above the glass transition temperature ( T g) of the polymer matrix; they are then stamp formed in a cold matched metal tool. Typical cycle times (including preheating time of the preconsolidated laminates) are in the range of 3 min. Useful processing conditions, such as stamping temperature, stamping velocity and hold-down pressure required for stamp forming of this composite are determined. In addition the effect of die geometries (deformation radian) and original laminate dimensions are studied. The results describe the correlations between processing parameters and fiber buckling. Finally the thickness distribution in stamped parts are investigated in relation to different directions of fiber orientation.

  20. Elevated Temperature Fatigue Endurance of Three Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2007-01-01

    High-cycle fatigue endurance of three candidate materials for the acoustic liners of the Enabling Propulsion Materials Nozzle Program was investigated. The ceramic matrix composite materials investigated were N720/AS (Nextel 720, 3M Corporation), Sylramic S200 (Dow Corning), and UT 22. High-cycle fatigue tests were conducted in air at 910 C on as-machined specimens and on specimens subjected to tensile cyclic load excursions every 160 hr followed by thermal exposure at 910 C in a furnace up to total exposure times of 2066 and 4000 hr. All the fatigue tests were conducted in air at 100 Hz with a servohydraulic test machine. In the as-machined condition, among the three materials investigated only the Sylramic S200 exhibited a deterministic type of high-cycle fatigue behavior. Both the N720/AS and UT-22 exhibited significant scatter in the experimentally observed high-cycle fatigue lives. Among the thermally exposed specimens, N720/AS and Sylramic S200 materials exhibited a reduction in the high-cycle fatigue lives, particularly at the exposure time of 4000 hr.

  1. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  2. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Naik, R. A.; Pollock, W. D.

    1990-01-01

    The role of fiber/matrix interface strength, residual thermal stresses, and fiber and matrix properties on fatigue damage accumulation in continuous fiber metal matrix composites (MMC) will be discussed. Results from titanium matrix/silicon-carbide fiber composites will be the primary topic of discussion. Results have been obtained from both notched and unnotched specimens at room and elevated temperatures. The stress in the 0 deg fibers has been indentified as the controlling factor in fatigue life. Fatigue of the notched specimens indicated that cracks can grow many fiber spacings in the matrix materials without breaking fibers.

  3. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Naik, R. A.; Pollock, W. D.

    1990-01-01

    The role of fiber/matrix interface strength, residual thermal stresses, and fiber and matrix properties on fatigue damage accumulation in continuous fiber metal matrix composites (MMC) is discussed. Results from titanium matrix silicon carbide fiber composites is the primary topic of discussion. Results were obtained from both notched and unnotched specimens at room and elevated temperatures. The stress in the 0 deg fibers was identified as the controlling factor in fatigue life. Fatigue of the notched specimens indicated that cracks can grow in the matrix materials without breaking fibers.

  4. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  5. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    SciTech Connect

    Saigal, A.; Leisk, G.G.; Hubbard, C.R.; Misture, S.T.; Wang, X.L.

    1996-04-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  6. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  7. Investigation of failure modes in fiber-reinforced ceramic-matrix composites. Master's thesis

    SciTech Connect

    Moschler, J.W.

    1988-12-01

    This experimental study was conducted to investigate the damage progression in fiber-reinforced ceramic-matrix composites under tensile loading. As part of this study, the effect of the residual stresses at the fiber-matrix interface on damage progression was evaluated. Composite samples were fabricated from silicon carbide fibers and borosilicate glass matrices. Each glass had a different coefficient of thermal expansion than the fiber and through the variation of this mismatch, the residual stresses at the fiber-matrix interface were varied resulting in different bonding conditions at the fiber-matrix interface. The mechanical properties of the composites were measured using a servo-hydraulic mechanical testing machine. During these tests, transverse strain reversal was observed that is believed to be caused by axial matrix cracks and fiber-matrix debonding. Tensile tests were conducted on the composites using a constant-load straining device in which damage progression was observed using an optical microscope.

  8. The effects of neutron irradiation on the structure of carbon-carbon composites

    SciTech Connect

    Burchell, T.D.; Eatherly, W.P. ); Hollenberg, G. W.; Slagle, O.D. ); Watson, R.D. )

    1991-01-01

    In this paper irradiation behavior of carbon fibers and carbon-carbon composites are discussed in terms on simple microstructural models. Previous data are discussed in terms of these models. New data are presented for the irradiation-induced dimensional changes of selected carbon-carbon composites. The influence of fiber precursor on carbon- carbon irradiation performance is discussed.

  9. High-Temperature Fatigue of a Hybrid Aluminum Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Clark, J. T.; Sanders, P. G.

    2014-01-01

    An aluminum metal matrix composite (MMC) brake drum was tested in fatigue at room temperature and extreme service temperatures. At room temperature, the hybrid composite did not fail and exceeded estimated vehicle service times. At higher temperatures (62 and 73 pct of the matrix eutectic), fatigue of a hybrid particle/fiber MMC exhibited failure consistent with matrix overloading. Overaging of the A356 matrix coupled with progressive fracture of the SiC particles combined to create the matrix overload condition. No evidence of macro-fatigue crack initiation or growth was observed, and the matrix-particle interface appeared strong with no debonding, visible matrix phases, or porosity. An effective medium model was constructed to test the hypothesis that matrix overloading was the probable failure mode. The measured particle fracture rate was fit using realistic values of the SiC Weibull strength and modulus, which in turn predicted cycles to failure within the range observed in fatigue testing.

  10. Estimate Interface Shear Stress of Woven Ceramic Matrix Composites from Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Li, Longbiao; Song, Yingdong

    2013-12-01

    An approach to estimate the fiber/matrix interface shear stress of woven ceramic matrix composites during fatigue loading has been developed in this paper. Based on the analysis of the microstructure, the woven ceramic matrix composites were divided into four elements of 0o warp yarns, 90o weft yarns, matrix outside of the yarns and the open porosity. When matrix cracking and fiber/matrix interface debonding occur upon first loading to the peak stress, it is assumed that fiber slipping relative to matrix in the interface debonded region of the 0o warp yarns is the mainly reason for the occurrence of the hysteresis loops of woven ceramic matrix composiets during unloading and subsequent reloading. The unloading interface reverse slip length and reloading interface new slip length are determined by the interface slip mechanisms. The hysteresis loops of three different cases have been derived. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulated in terms of the fiber/matrix interface shear stress. By comparing the experimental hysteresis loss energy with the computational values, the fiber/matrix interface shear stress of woven ceramic matrix composites corresponding to different cycles can then be derived. The theoretical results have been compared with experimental data of two different woven ceramic composites.

  11. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal β-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  12. The effect of irradiation on the stability and properties of monolithic silicon carbide and SiC{sub f}/SiC composites up to 25 dpa

    SciTech Connect

    Hollenberg, G.W.; Henager, C.H. Jr.; Youngblood, G.E.; Trimble, D.J.; Simonson, S.A.; Newsome, G.A.; Lewis, E.

    1994-04-01

    Stability and properties of monolithic and SiC{sub f}/SiC composites were measured before and after irradiation in a fast neutron spectrum up to 25 dpa between 500 and 1500C. Dimensional changes were relatively consistent with previous investigations. Strength and modulus of SiC{sub f}/SiC composites decreased after irradiation as a result of fiber/matrix decoupling. For some composites, uniform elongation was not significantly degraded by irradiation. Thermal conductivity also decreased after irradiation at low temperatures because of the introduction of lattice defects as phonon scattering sites. Retention of properties under the severe conditions of 25 dpa and 800C suggests that a composite tailored for neutron damage resistance can be developed.

  13. Summary of the U.S. specimen matrix for the HFIR 13J varying temperature irradiation capsule

    SciTech Connect

    Zinkle, S.J.

    1998-03-01

    The US specimen matrix for the collaborative DOE/Monbusho HFIR 13J varying temperature irradiation capsule contains two ceramics and 29 different metals, including vanadium alloys, ferritic/martensitic steels, pure iron, austenitic stainless steels, nickel alloys, and copper alloys. This experiment is designed to provide fundamental information on the effects of brief low-temperature excursions on the tensile properties and microstructural evolution of a wide range of materials irradiated at nominal temperatures of 350 and 500 C to a dose of {approximately}5 dpa. A total of 340 miniature sheet tensile specimens and 274 TEM disks are included in the US-supplied matrix for the irradiation capsule.

  14. Patches for Repairing Ceramics and Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Hogenson, Peter A.; Toombs, Gordon R.; Adam, Steven; Tompkins, James V.

    2006-01-01

    Patches consisting mostly of ceramic fabrics impregnated with partially cured polymers and ceramic particles are being developed as means of repairing ceramics and ceramic-matrix composites (CMCs) that must withstand temperatures above the melting points of refractory metal alloys. These patches were conceived for use by space-suited, space-walking astronauts in repairing damaged space-shuttle leading edges: as such, these patches could be applied in the field, in relatively simple procedures, and with minimal requirements for specialized tools. These design characteristics also make the patches useful for repairing ceramics and CMCs in terrestrial settings. In a typical patch as supplied to an astronaut or repair technician, the polymer would be in a tacky condition, denoted as an A stage, produced by partial polymerization of a monomeric liquid. The patch would be pressed against the ceramic or CMC object to be repaired, relying on the tackiness for temporary adhesion. The patch would then be bonded to the workpiece and cured by using a portable device to heat the polymer to a curing temperature above ambient temperature but well below the maximum operating temperature to which the workpiece is expected to be exposed. The patch would subsequently become pyrolized to a ceramic/glass condition upon initial exposure to the high operating temperature. In the original space-shuttle application, this exposure would be Earth-atmosphere-reentry heating to about 3,000 F (about 1,600 C). Patch formulations for space-shuttle applications include SiC and ZrO2 fabrics, a commercial SiC-based pre-ceramic polymer, and suitable proportions of both SiC and ZrO2 particles having sizes of the order of 1 m. These formulations have been tailored for the space-shuttle leading-edge material, atmospheric composition, and reentry temperature profile so as to enable repairs to survive re-entry heating with expected margin. Other formulations could be tailored for specific terrestrial

  15. The strength and notch-sensitivity of ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    McNulty, John Clark

    The mechanisms that govern the strength of three Nicalon fiber-reinforced ceramic matrix composites (CMCs) have been elucidated. Specific regard was given to the volume-dependence of tensile strength, the fatigue resistance at ambient and elevated temperatures, and the notch-sensitivity of strength. Mechanism-based materials models were employed to describe these properties. The utility of the models was assessed through comparison with experiments. The CMCs investigated in this study exhibit stochastic behavior, manifested as volume-dependent strength. The volume-dependence was demonstrated through a technique relating the strengths obtained in flexure and tension, coupled with the application of weakest-link statistics. The results indicate that the CMCs exhibit a high reliability, with Weibull moduli being in the range of ˜20 to 40. The reduction in strength under cyclic loading is due to degradation of the interface sliding stress, via a frictional wear process, and the associated reduction in the fiber bundle strength. This degradation was evaluated using hysteresis loop measurements, as well as fiber pullout and push-in techniques. The fatigue thresholds predicted using a model based on the degradation of the sliding stress showed reasonable agreement with the experimental measurements. The moderately notch-insensitive behavior of the CMCs is due to a combination of stress redistribution, arising from inelastic straining, and volume-dependent strength. The variation in notch-sensitivity with notch size and shape was modeled using a non-linear constitutive law to describe the stress-strain response coupled with a fracture criterion that accounts for the size-dependence of the strength. Excellent correlations are obtained between experiment and theory. Due to the poor chemical stability of Nicalon fibers, the strength-limiting mechanism at elevated temperatures is oxidation of the fibers, rather than degradation of the sliding stress. The oxidation mechanism

  16. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects

  17. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  18. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Matha; Kiser, J. Doug; Lang, Jerry

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is pursuing using ceramic matrix composites (CMC) as primary structural components for advanced rocket engines. This endeavor is due to the requirement of increasing safety by two orders of magnitude and reducing costs from $10,000/lb to $1,000/lb both within ten years. Out year goals are even more aggressive. Safety gains, through using CMCS, will be realized by increasing temperature margins, tolerance for extreme thermal transients, and damping capability of components and systems, by using components with lower weight and thermal conductivity, etc. Gains in cost reduction, through using CMCS, are anticipated by enabling higher performance systems, using lighter weight components and systems, enabling 100 mission reusability without system refurbishment, greatly reducing cooling requirements and erosion rates, selecting safe fabrication processes that are ideally cost competitive with metal processes at low volume production, etc. This philosophy contrasts the previous philosophy of rocket engine development focused largely on achieving the highest performance with metals and ablatives -- cost and safety were not the focal point of the initial design. Rocket engine components currently being pursued, largely C/SiC and SiC/SiC, include blisks or rotors, 10 foot by 8 foot nozzle ramps, gas generators, thrust chambers, and upperstage nozzles. The Simplex Turbopump CMC blisk effort has just successfully completed a 4.5 year development and test program. The other components mentioned are in the design or fabrication stage. Although the temperature limits of the CMC materials are not quantified in a realistic environment yet, CMC materials are projected to be the only way to achieve significant safety risks mitigation and cost reductions simultaneously. We, the end-users, material fabricators, technology facilitators, and government organizations are charged with developing and demonstrating a much safer and a

  19. The effects of neutron irradiation on shear properties of monolayered PyC and multilayered PyC/SiC interfaces of SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Katoh, Y.; Snead, L. L.

    2007-08-01

    The effect of neutron irradiation on mechanical properties at the fiber/matrix interface of SiC/SiC composites was evaluated. The materials investigated were Hi-Nicalon™ Type-S fiber reinforced chemically vapor infiltrated SiC matrix composites with varied interphases: monolayered pyrolytic carbon (PyC) or multilayered PyC/SiC. The neutron fluence was 7.7 × 10 25 n/m 2 ( E > 0.1 MeV), and the irradiation temperature was 800 °C. Interfacial shear properties were evaluated by the fiber push-out test method. A modified shear-lag model was applied to analyze the interfacial shear parameters. Test results indicate that the interfacial debond shear strength and the interfacial friction stress for the multilayer composites were significantly degraded by irradiation. Nevertheless, the multilayer composites retained sufficient interfacial shear properties so that overall composite strength after neutron irradiation was unaffected. The actual mechanism of interphase property decrease for the multilayer composites is unknown. The interfacial shear properties of the irradiated monolayer composites appear unaffected.

  20. Influence of the interface and fiber spacing on the fracture behavior of glass matrix composites

    SciTech Connect

    Matikas, T.E.; Karpur, P.; Kim, R.; Dutton, R.

    1995-09-01

    In this work, a nondestructive methodology is provided to determine the presence of microcracking in unidirectional SiC fiber reinforced brittle (borosilicate glass) matrix composites and to detect internal cracks in the composites that did not reach the surface of the specimen. The methodology is based on a combination of several ultrasonic techniques including shear back reflectivity (SBR), back-reflected surface wave imaging and acoustic microscopy. The composites used in this study were made with controlled fiber spacing consisting of regular arrays of either TiB{sub 2} coated SIGMA 1240 or carbon coated SCS-6 monofilament fibers in a series of borosilicate glasses. The combinations of different constituents provided composite samples with various fiber matrix interface properties. The composites were subjected to axial loading, and the stress in the composite when matrix cracking first occurs was determined and compared with theoretical values provided by a semi-empirical model which can assume either a completely bonded (i.e. perfect) or completely unbonded (i.e. pure slip) fiber-matrix interface. Results from the tensile data for different glass matrix composite systems were also compared with data of interface elastic property evaluation using ultrasonic SBR technique, allowing investigation f the influence of the fiber-matrix interface elastic property, the volume fraction of the fibers, and the state of radial residual stresses at the interface on the fracture behavior of glass matrix composites.

  1. Interfacial and capillary phenomena in solidification processing of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tewari, S. N.

    1993-01-01

    Chemical and hydrodynamic aspects of wetting and interfacial phenomena during the solidification processing of metal-matrix composites are reviewed. Significant experimental results on fiber-matrix interactions and wetting under equilibrium and non-equilibrium conditions in composites of engineering interest have been compiled, based on a survey of the recent literature. Finally, certain aspects of wetting relevant to stir-casting and infiltration processing of composites are discussed.

  2. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed. PMID:3135091

  3. A Mechanistic Approach to Matrix Cracking Coupled with Fiber--Matrix Debonding in Short-Fiber Composites

    SciTech Connect

    Nguyen, Ba Nghiep; Tucker, Brian J.; Khaleel, Mohammad A.

    2005-07-01

    A micro-macro mechanistic approach to damage in short-fiber composites is developed in this paper. At the microscale, a reference aligned fiber composite is considered for the analysis of the damage mechanisms such as matrix cracking and fiber/matrix debonding using the modified Mori-Tanaka model. The associated damage variables are defined, and the stiffness reduction law dependent on these variables is established. The stiffness of a random fiber composite containing random matrix microcracks and imperfect interfaces is then obtained from that of the reference composite, which is averaged over all possible orientations and weighted by an orientation distribution function. The macroscopic response is determined using a continuum damage mechanics approach and finite element analysis. Final failure resulting from saturation of matrix microcracks, fiber pull-out and breakage is modeled by a vanishing element technique. The model is validated using the experimental data and results found in the literature as well as the results determined for a random chopped fiber glass/vinyl ester system.

  4. EH3 matrix mineralogy with major and trace element composition compared to chondrules

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; McDonough, W. F.; NéMeth, P.

    2014-12-01

    We investigated the matrix mineralogy in primitive EH3 chondrites Sahara 97072, ALH 84170, and LAR 06252 with transmission electron microscopy; measured the trace and major element compositions of Sahara 97072 matrix and ferromagnesian chondrules with laser-ablation, inductively coupled, plasma mass spectrometry (LA-ICPMS); and analyzed the bulk composition of Sahara 97072 with LA-ICPMS, solution ICPMS, and inductively coupled plasma atomic emission spectroscopy. The fine-grained matrix of EH3 chondrites is unlike that in other chondrite groups, consisting primarily of enstatite, cristobalite, troilite, and kamacite with a notable absence of olivine. Matrix and pyroxene-rich chondrule compositions differ from one another and are distinct from the bulk meteorite. Refractory lithophile elements are enriched by a factor of 1.5-3 in chondrules relative to matrix, whereas the matrix is enriched in moderately volatile elements. The compositional relation between the chondrules and matrix is reminiscent of the difference between EH3 pyroxene-rich chondrules and EH3 Si-rich, highly sulfidized chondrules. Similar refractory element ratios between the matrix and the pyroxene-rich chondrules suggest the fine-grained material primarily consists of the shattered, sulfidized remains of the formerly pyroxene-rich chondrules with the minor addition of metal clasts. The matrix, chondrule, and metal-sulfide nodule compositions are probably complementary, suggesting all the components of the EH3 chondrites came from the same nebular reservoir.

  5. A method for measuring residual strains in fiber-reinforced titanium matrix composites

    SciTech Connect

    Ramamurty, U.; Dary, F.C.; Zok, F.W.

    1996-08-01

    A new method for measuring the residual fiber strains in fiber-reinforced titanium matrix composites has been developed. The method involves selectively etching the matrix over a prescribed length of composite and subsequently measuring the extension of the relaxed fibers relative to neighboring fibers that are still embedded within the matrix material. The extensions are measured using confocal microscopy. The method is demonstrated on three unidirectionally reinforced composites with varying fiber volume fractions. The effects of specimen tilt and fiber splaying following dissolution on the measured fiber extensions are analyzed. The residual fiber strains are rationalized on the basis of the thermoelastic properties of the constituents through a concentric cylinder model. The current method can be applied to other metal matrix composites reinforced with large diameter (monofilament) fibers, provided the matrix can be selectively etched.

  6. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    DOE PAGESBeta

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; Ozawa, Kazumi; Koyanagi, Takaaki; Porter, Wallace D; Snead, Lance Lewis

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less

  7. Development of scalable methods for the utilization of multi-walled carbon nanotubes in polymer and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Vennerberg, Danny Curtis

    traditional fiber-reinforced composites. The latter part of this thesis work explores a new method of producing BP comprised of oriented nanotubes through the use of a modified Taylor-Couette setup capable of simultaneously shearing and filtering an aqueous MWCNT dispersion. BP produced with this setup exhibited anisotropic electrical and mechanical properties as a result of the nanotube alignment. Finally, a new technique for producing MWCNT metal matrix composites was developed using the nanotubes as the heating element and carbon source in a microwave-assisted carbothermic reduction of copper oxide. The extremely rapid heating of MWCNTs upon microwave irradiation allowed Cu-MWCNT composites to be produced in times on the order of a minute. Because this approach requires none of the specialized equipment generally used in metal matrix composite processing, it has promise as a scalable fabrication technique.

  8. Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

    SciTech Connect

    Michael A. Pope; Hans D. Gougar; John M. Ryskamp

    2013-09-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a

  9. Implementation of thermal residual stresses in the analysis of fiber bridged matrix crack growth in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, John G., Jr.; Johnson, W. Steven

    1994-01-01

    In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.

  10. 3D nanotube-based composites produced by laser irradiation

    SciTech Connect

    Ageeva, S A; Bobrinetskii, I I; Nevolin, Vladimir K; Podgaetskii, Vitalii M; Selishchev, S V; Simunin, M M; Konov, Vitalii I; Savranskii, V V; Ponomareva, O V

    2009-04-30

    3D nanocomposites have been fabricated through self-assembly under near-IR cw laser irradiation, using four types of multiwalled and single-walled carbon nanotubes produced by chemical vapour deposition, disproportionation on Fe clusters and cathode sputtering in an inert gas. The composites were prepared by laser irradiation of aqueous solutions of bovine serum albumin until the solvent was evaporated off and a homogeneous black material was obtained: modified albumin reinforced with nanotubes. The consistency of the composites ranged from paste-like to glass-like. Atomic force microscopy was used to study the surface morphology of the nanomaterials. The nanocomposites had a 3D quasi-periodic structure formed by almost spherical or toroidal particles 200-500 nm in diameter and 30-40 nm in visible height. Their inner, quasi-periodic structure was occasionally seen through surface microfractures. The density and hardness of the nanocomposites exceed those of microcrystalline albumin powder by 20% and by a factor of 3-5, respectively. (nanostructures)

  11. Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix

    SciTech Connect

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson; Pavel Medvedev; Jian Gan; Brandon D. Miller; Daniel M. Wachs; Glenn A. Moore; Curtis R. Clark; Mitchell K. Meyer; M. Ross Finlay

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  12. Combined thermal and bending fatigue of high-temperature metal-matrix composites: Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.

    1991-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  13. A compliant, high failure strain, fibre-reinforced glass-matrix composite

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.

    1982-01-01

    A glass-matrix composite reinforced by discontinuous graphite fibers was produced by hot pressing glass-powder-impregnated two-dimensional arrays of in-plane randomly oriented graphite fibers held together by approximately 5-10% by weight of organic binder (generally polyester). The composite tensile behavior is characterized by a highly nonlinear stress-strain curve which differs markedly from that of either unreinforced glass or a similarly reinforced epoxy-matrix composite. By virtue of this nonlinearity, the composite is able to redistribute applied stresses to achieve a high load-carrying capacity. The fibrous microstructure and the low fiber-matrix bond provide a mechanism for achieving high fracture toughness and unusually high compliance. For a 96%-silica-matrix composite, the strength is retained to over 1000 C.

  14. Combined bending and thermal fatigue of high-temperature metal-matrix composites - Computational simulation

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.

    1992-01-01

    The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the metal matrix composite analyzer (METCAN) computer code. The simulation started with the fabrication process, proceeded to thermomechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as well as the initiation and final failure of the constituents and the plies in the composite, were examined in detail. It was shown that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increasing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

  15. Symposium Review: Metal and Polymer Matrix Composites at MS&T 2013

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    This article reflects on the presentations made during the Metal and Polymer Matrix Composites symposium at Materials Science and Technology 2013 (MS&T'13) held in Montreal (Quebec, Canada) from October 27 to 31. The symposium had three sessions on metal matrix composites and one session on polymer matrix composites containing a total of 23 presentations. While the abstracts and full-text papers are available through databases, the discussion that took place during the symposium is often not captured in writing and gets immediately lost. We have tried to recap some of the discussion in this article and hope that it will supplement the information present in the proceedings. The strong themes in the symposium were porous composites, aluminum matrix composites, and nanocomposites. The development of processing methods was also of interest to the speakers and attendees.

  16. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  17. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  18. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  19. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  20. Polymer Matrix Composites: A Perspective for a Special Issue of Polymer Reviews

    SciTech Connect

    Kessler, Michael R.

    2012-09-04

    Polymer matrix composites, with their high specific strength and stiffness, are used in a wide range of applications from large wind turbine blades to microelectronics. This perspective article provides a brief primer on polymer matrix composites, discusses some of their advantages and limitations, and describes a number of emerging trends in the field. In addition, it introduces four review articles on the topics of recent developments in carbon fibers, natural fiber reinforced composites, evaluation of the interface between the fiber reinforcement and polymer matrix, and carbon nanotube reinforced polymers.

  1. PEKK as a new thermoplastic matrix for high-performance composites

    SciTech Connect

    Chang, I.Y.

    1988-07-01

    A novel semicrystalline polyetherketoneketone (PEKK) polymer is being developed as a potential high-performance thermoplastic matrix system for advanced composites. This resin with upper use temperature between those of Du Pont's K-3 (polyimide) and J-2 (polyamide) has potential advantages versus other commercial organic matrix systems. The carbon-fiber reinforced composite laminates with PEKK matrix prepared from the proprietary melt impregnated tows showed high flexural, shear, and compressive strengths, excellent environmental durability and hot-wet stability. PEKK neat resin and its carbon composite properties are presented and discussed. 4 references, 4 figures, 4 tables.

  2. Mechanisms controlling fatigue damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    Damage in continuous fiber reinforced metal matrix composite materials can be quite complex since there are a number of different constituents (fiber, matrix, and the fiber/matrix interface) that can fail. Multidirectional lay-ups have an even greater number of possible damage orientations and mechanisms. Based on the simplifying assumption of equivalent constituent strain states in the absence of damage, a strain based failure criteria may be applied to determine when and where initial damage will occur. Based on the relative strain to fatigue failure of the fiber and matrix, the possible damage mechanisms of an MMC can be grouped into three categories: (1) matrix dominated, (2) fiber dominated, and (3) self-similar damage growth. A fourth type of damage development, fiber/matrix interface failure, is dependent on the relative strength of the fiber/matrix interface and the matrix yield strength. These four types of damage are discussed and illustrated by examples.

  3. A macro-micromechanics analysis of a notched metal matrix composite

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.; Naik, Rajiv A.

    1992-01-01

    Macro- and micromechanics analysis were conducted to determine the matrix and fiber behaviors near the notch in a center-notched metal-matrix composite. In this approach, the macrolevel analysis models the entire notched specimen using a 3D finite element program that uses the vanishing-fiber-diameter model to simulate the elastic-plastic behavior of the matrix and the elastic behavior of the fiber. The microlevel behavior is analyzed using a discrete fiber-matrix model containing one fiber and the surrounding matrix. The viability of this analysis is demonstrated using results for a boron/aluminum monolayer.

  4. Low Burnup Inert Matrix Fuels Performance: TRANSURANUS Analysis of the Halden IFA-652 First Irradiation Cycle

    SciTech Connect

    Calabrese, R.; Vettraino, F.; Tverberg, T.

    2006-07-01

    The inert matrix fuels are a promising option to reduce-eliminate worldwide plutonium stockpiles by burning it in LWRs. These fuels, where plutonium is hosted in a U-free inert matrix phase, may reach high burning efficiency while preventing new plutonium build-up under irradiation. A specific investigation on CSZ and thoria inert matrices has been developed by ENEA since several years. In-pile testing on the ENEA-conceived innovative fuels is ongoing in the OECD Halden HBWR since June 2000 (IFA-652 experiment). The registered burnup at the end of 2005 is about 38 MWd.kgU{sub eq}{sup -1} vs. 45 MWd.kgU{sub eq}{sup -1} (40 MWd.kgUOX{sub eq}{sup -1}) target. Fuel pins are equipped with fuel temperature thermocouples, internal pressure transducers and fuel stack elongation sensors, with the task of studying thermal conductivity and its degradation with burnup, densification-swelling behaviour and the FGR. In this paper, the response at low burnup (< 7 MWd.kgU{sub eq}{sup -1}) of CSZ-based fuels loaded in IFA-652, is analysed by means of the TRANSURANUS code. To this purpose, a comprehensive modelling of the above mentioned un-irradiated fuels, mainly relying on the thermophysical characterisation performed at the JRC/ITU-Karlsruhe, has been implemented in a custom TRANSURANUS version (TU-IMF). A comparison of the code predictions vs. the experimental data, aimed at evaluating the early-stage under irradiation phenomena, particularly densification and relocation, has been performed. (authors)

  5. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    SciTech Connect

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  6. Method Developed for Improving the Thermomechanical Properties of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; DiCarlo, James A.

    2004-01-01

    Today, a major thrust for achieving engine components with improved thermal capability is the development of fiber-reinforced silicon-carbide (SiC) matrix composites. These materials are not only lighter and capable of higher use temperatures than state-of-the-art metallic alloys and oxide matrix composites (approx. 1100 C), but they can provide significantly better static and dynamic toughness than unreinforced silicon-based monolithic ceramics. However, for successful application in advanced engine systems, the SiC matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetime. Since the high-temperature structural life of ceramic materials is typically controlled by creep-induced flaw growth, a key composite property requirement is the ability to display high creep resistance under these conditions. Also, because of the possibility of severe thermal gradients in the components, the composites should provide maximum thermal conductivity to minimize the development of thermal stresses. State-of-the-art SiC matrix composites are typically fabricated via a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by high-performance fibers, (2) chemical vapor infiltration of a fiber coating material such as boron nitride (BN) into the preform, and (3) infiltration of a SiC matrix into the remaining porous areas in the preform. Generally, the highest performing composites have matrices fabricated by the CVI process, which produces a SiC matrix typically more thermally stable and denser than matrices formed by other approaches. As such, the CVI SiC matrix is able to provide better environmental protection to the coated fibers, plus provide the composite with better resistance to crack propagation. Also, the denser CVI SiC matrix should provide optimal creep resistance and thermal conductivity to the composite. However, for adequate preform infiltration, the CVI SiC matrix

  7. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  8. Fiber/Matrix Interfacial Thermal Conductance Effect on the Thermal Conductivity of SiC/SiC Composites

    SciTech Connect

    Nguyen, Ba Nghiep; Henager, Charles H.

    2013-04-20

    SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al.

  9. Mechanical properties of composite sandwich plates containing magnesium matrix composite face sheets

    NASA Astrophysics Data System (ADS)

    Huang, Song-Jeng; Hsieh, Ti-Ching; Lin, Bo-Zhou; Hong, Pin-Sen

    2008-11-01

    The fabrication of magnesium alloy metal-matrix composites (MMCs) and the mechanical properties of the sandwich formed with this material were investigated. Magnesium alloy composites containing various volume percentage of 0.99, 2.91, 4.76 and 9.09 % silicon-carbide (SiC) particles were prepared by molten metal mixing and machined as the faceplate of the sandwich. The particle had been dispersed by the injecting of the argon gas from a stainless pipe. Optical microscopic examination, hardness and tensile test were carried out. The sandwich was combined by the hot press method and studied by bending test. It is observed that the hardness of MMCs increases, but its strength decreases with increasing volume percentage of silicon-carbide particle, according to the results of hardness and bending test. It can be found that the specific strength and specific bending strength of sandwich composites fabricated with the faceplates of magnesium alloy added SiC reinforcements are a little higher than that sandwich with the aluminum alloy faceplates, but less than that of sandwich with magnesium alloy.

  10. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    NASA Technical Reports Server (NTRS)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  11. Factors influencing the Mode I interlaminar fracture toughness of a rubber toughened thermoplastic matrix composite

    NASA Technical Reports Server (NTRS)

    Parker, D. S.; Yee, A. F.

    1989-01-01

    The use of a rubber modified thermoplastic resin has been investigated as a method to improve the Mode I interlaminar fracture toughness of a unidirectional continuous carbon fiber composite. Test results show that the improvement in the fracture toughness is less than expected due to rubber particle agglomeration, solvent and molding induced crystallization of the matrix and poor fiber/matrix adhesion. The plastic zone in composites utilizing tough matrices can extend well beyond a single interfibrillar spacing. However, the development of the plastic zone is limited due to the failure of the fiber/matrix interface. In order to fully evaluate the potential of tough composites using toughened matrices, any improvement made in the matrix toughness must be coupled with improvements in the fiber/matrix adhesion.

  12. Formation of the properties of antimony matrix alloys for frame-type composite materials

    NASA Astrophysics Data System (ADS)

    Gulevskii, V. A.; Antipov, V. I.; Vinogradov, L. V.; Kolmakov, A. G.; Lazarev, E. M.; Samarina, A. M.; Mukhina, Yu. E.

    2009-12-01

    A frame-type composite material (CM) produced upon impregnation represents a system consisting of a rigid porous frame and a matrix material filling its voids. When metals are used as a matrix material, they bring up specific problems related to melting of a metal, such as the thermal effect of the metal on the frame and the chemical interaction of the matrix and frame with the formation of brittle compounds. A CM that combines the best characteristics of its components can be produced. Since impregnation is, as a rule, performed under vacuum, melting of a matrix metal is accompanied by an increase in the evaporation rate. The evaporation of a matrix metal can be decreased by controlling its chemical composition, decreasing the melting temperature of the melt, and controlling the cooling rate. In this work, antimony alloys are used as a matrix material and their properties are studied.

  13. Modeling fatigue crack growth in cross ply titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1993-01-01

    In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.

  14. Matrix Cracking in Four Different 2D SiC/SiC Composite Systems

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    Silicon carbide fiber reinforced, silicon carbide matrix composites are some of the most advanced composite systems for high-temperature, high-stress applications in oxidizing environments. A basic area that needs to be understood for the purpose of material behavior modeling and optimization is the architectural, constituent, and mechanistic factors that contribute to non-linear stress-strain behavior. The mechanism that causes non-linear stress-strain in dense-matrix composites is the formation and propagation of bridged matrix cracks. In addition, the occurrence and propagation of matrix cracks controls the time-dependent strength-properties of these materials in oxidizing environments at elevated temperatures. A modal acoustic emission technique has been used to monitor and estimate the stress-dependent matrix cracking. Two different SiC matrix systems, chemical vapor infiltrated (CVI) and melt-infiltrated (MI), with two different SiC fiber reinforcement, Hi-Nicalon (trademark) and Sylramic (trademark) were compared. Even though the averages of the range where matrix cracking occurred for the composites varied by more than 0.1% in strain and almost 200 MPa in stress, the range or distribution for matrix cracking could be reduced to a narrow band of stress for CVI SiC and MI SiC composites if it were assumed that all matrix cracks emanate outside of the load-bearing fiber, interphase, CVI preform minicomposite. A simple relationship was determined to describe stress-dependent matrix cracking which can then be used to estimate the onset of large, bridged matrix cracks or for material behavior models.

  15. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  16. A review of failure models for ceramic matrix composite laminates under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  17. Ceramic matrix composites properties/microstresses with complete and partial interphase bond

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1993-01-01

    A multilevel substructuring technique which includes a unique fiber substructuring concept is used for the analysis of continuous fiber reinforced ceramic matrix composites. This technique has four levels of substructuring--from laminate to ply, to supply, and then to fiber. A stand-alone computer code CEMCAN (Ceramic Matrix Composites Analyzer), incorporating this technique and specifically for the simulation of ceramic matrix composites behavior, is currently under development at NASA Lewis Research Center in Cleveland, Ohio. The thermal and mechanical properties, along with the microstresses, for a SiC/RBSN (silicon carbide fiber and reaction bonded silicon nitride matrix) composite at different fiber volume ratios and varying degrees of interfacial bond around the fiber circumference are computed. Values predicted by CEMCAN computer code are shown to bound the experimentally measured values. Results also show that transverse tensile strength test can be a sensitive test method to assess interfacial conditions.

  18. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  19. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  20. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  1. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Pal, Hemant; Sharma, Vimal

    2015-05-01

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  2. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    SciTech Connect

    Sharma, Manjula Pal, Hemant; Sharma, Vimal

    2015-05-15

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  3. Optimization of interface layers in the design of ceramic fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Jansson, S.; Leckie, F. A.; Lemaitre, J.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion (CTE) of fiber and matrix was investigated. It was found that the performance of the layer can be defined by the product of the CTE and the thickness, and that a compensating layer with a sufficiently high CTE can reduce the thermal stresses in the matrix significantly. A practical procedure offering a window of candidate layer materials is proposed.

  4. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1992-01-01

    The potential of using interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix has been investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  5. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  6. Liquid infiltration and pyrolysis of SiC matrix composite materials

    SciTech Connect

    Casadio, S.; Nanneti, C.A.; Donato, A.

    1995-12-01

    SiC matrix composites were prepared by prepregging carbon and Nicalon fibre cloths with polycarbosilane (PCS) solution or nanosized SiC powder dispersion in PCS solution. After consolidation of the stacked cloths and pyrolysis, densification of the matrix was accomplished by multiple infiltration/pyrolysis steps with PCS solution. The pyrolysis behaviour of the SiC nanopowder/PCS matrix material was investigated in comparison to PCS.

  7. Research on ultra-high-temperature materials, monolithic ceramics, ceramic matrix composites and carbon/carbon composites

    NASA Technical Reports Server (NTRS)

    Miller, T. J.; Grimes, H. H.

    1982-01-01

    Research on three classes of materials that show potential for allowing significant increases in operating temperatures in gas turbine engines is discussed. Monolithic ceramics, ceramic matrix composites, and carbon-carbon composites are discussed. Sintering, hot pressing, and densification are discussed.

  8. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  9. Ultrasonic Characterization of Fiber-Matrix Interphasial Properties and Damage in High-Temperature Composites

    NASA Astrophysics Data System (ADS)

    Chu, Ya-Cherng

    This study addresses ultrasonic characterization of fiber-matrix interphasial properties and damage in high -temperature composites. To accomplish this, experimental techniques for measurements of ultrasonic phase velocities and methodology for calculation of composite elastic moduli from velocity data are first developed and applied to unidirectional ceramic and intermetallic matrix composites. It is shown that computational error in the composite moduli is comparable to experimental error in the velocity data. For cross -ply composites, a novel method for determination of lamina elastic moduli from measurements on a (0/90) _ {s} composite is developed and validated experimentally. Second, a method to determine the elastic moduli of interphasial layers in high-temperature composites from the measured composite moduli is developed and applied to characterization of 3-μm thick carbon interphasial layers in ceramic and intermetallic matrix composites. Third, the techniques developed are used for assessment of oxidation and fatigue damage in ceramic and metal matrix composites. It is shown that ultrasonic phase velocities are very sensitive to damage and can effectively quantify damage severity. Appropriate models are applied to describe the effect of damage on the measured ultrasonic data, and they show reasonable agreement with experiments.

  10. Parametric studies to determine the effect of compliant layers on metal matrix composite systems

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.; Brown, H. C.

    1990-01-01

    Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

  11. Development of interfaces in oxide and silicate matrix composites

    SciTech Connect

    Lewis, M.H.; Cain, M.G.; Doleman, P.

    1995-12-01

    Silicate and oxide matrix CMCs are being developed for application in advanced gas turbines. High-performance Silicate/Nicalon CMCs have been characterised mainly as materials for interface, process and mechanical modelling due to their limited thermal and oxidative stability. Saphikon (Al{sub 2}O{sub 3}) monofilaments have been used in the development of interphase chemistry and processing via vapour and liquid-precursor methods. Prototype Al{sub 2}O{sub 3}-matrix CMCs have been fabricated and exploration of alternative fibre/interphase chemistries conducted via reactivity studies up to 1600{degrees}C.

  12. Fiber pushout and interfacial shear in metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Koss, Donald A.; Hellmann, John R.; Kallas, M. N.

    1993-01-01

    Recent thin-slice pushout tests have suggested that MMC matrix-fiber interface failure processes depend not only on such intrinsic factors as bond strength and toughness, and matrix plasticity, but such extrinsic factors as specimen configuration, thermally-induced residual stresses, and the mechanics associated with a given test. After detailing the contrasts in fiber-pullout and fiber-pushout mechanics, attention is given to selected aspects of thin-slice fiber pushout behavior illustrative of the physical nature of interfacial shear response and its dependence on both intrinsic and extrinsic factors.

  13. The viscoelastic behavior of the principal compliance matrix of a unidirectional graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Morris, D. H.; Yeow, Y. T.

    1979-01-01

    The time-temperature response of the principal compliances of a unidirectional graphite/epoxy composite was determined. It is shown that two components of the compliance matrix are time and temperature independent and that the compliance matrix is symmetric for the viscoelastic composite. The time-temperature superposition principle is used to determine shift factors which are independent of fiber orientation, for fiber angles that vary from 10 D to 90 D with respect to the load direction.

  14. First study of nano-composite scintillators under alpha irradiation

    SciTech Connect

    Letant, S; Wang, T

    2005-06-01

    We demonstrate that nano-composite materials based on semiconductor quantum dots have great potential for radiation detection via scintillation. While quantum dots and laser dyes both emit in the visible range at room temperature, the Stokes shift of the dyes is significantly larger. The scintillation output of both systems was studied under alpha irradiation and interpreted using a combination of energy-loss and photon transport Monte Carlo simulation models. The comparison of the two systems, which allows the quantification of the role played by the Stokes shift in the scintillation output, opens up exciting possibilities for a new class of scintillators that would take advantage of the limitless assembly of nano-crystals in large, transparent, and sturdy matrices.

  15. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  16. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    SciTech Connect

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  17. Thermoelastic analysis of matrix crack growth in particulate composites

    SciTech Connect

    Sridhar, N.; Rickman, J.M.; Srolovitz, D.J.

    1995-04-01

    The authors examine the conditions under which differences in thermal expansion between a particle and the matrix lead to crack growth within the matrix. Using linear elasticity fracture mechanics, they obtain closed-form, analytical results for the case of a penny shaped crack present in the matrix interacting with a spherical inclusion which is misfitting with respect to the matrix. A simple and direct relationship is established between the strain energy release rate, the crack size, the crack orientation with respect to the inclusion, the crack/inclusion separation, the degree of thermal expansion mismatch and the elastic properties of the medium. The authors also analyze the size to which these cracks can grow and find that for a given misfit strain and material properties, crack growth is inhibited beyond a certain critical crack size. They find that beyond this critical size, the elastic strain energy released upon crack growth is no longer sufficient to compensate for the energy expended in extending the crack, since the crack is growing into the rapidly decreasing stress field. The modification of the above conditions for crack growth due to the superposition of an external stress field has also been analyzed. The preferred orientation of these cracks as a function of misfit strain is predicted. The implication of these results for thermal cycling are analyzed.

  18. Using rapid infrared forming to control interfaces in titanium-matrix composites

    NASA Astrophysics Data System (ADS)

    Warrier, Sunil G.; Lin, Ray Y.

    1993-03-01

    Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid infrared forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times, typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements, the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are either comparable to or, in several cases, superior to those made with conventional diffusion-bonding techniques.

  19. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  20. Using rapid infrared forming to control interfaces in titanium-matrix composites

    NASA Technical Reports Server (NTRS)

    Warrier, Sunil G.; Lin, Ray Y.

    1993-01-01

    Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques.