NASA Astrophysics Data System (ADS)
Bove, M. C.; Brotto, P.; Cassola, F.; Cuccia, E.; Massabò, D.; Mazzino, A.; Piazzalunga, A.; Prati, P.
2014-09-01
Receptor and Chemical Transport Models are commonly used tools in source apportionment studies, even if different expertise is required. We describe an experiment using both approaches to apportion the PM2.5 (i.e., particulate matter with aerodynamic diameters below 2.5 μm) sources in the city of Genoa (Italy). A sampling campaign was carried out to collect PM2.5 samples daily for approximately six month during 2011 in three sites. The subsequent compositional analyses included the speciation of elements, major ions and both organic and elemental carbon; these data produced a large database for receptor modelling through Positive Matrix Factorisation (PMF). In the same period, a meteorological and air quality modelling system was implemented based on the mesoscale numerical weather prediction model WRF and the chemical transport model CAMx to obtain meteorological and pollutant concentrations up to a resolution of 1.1 km. The source apportionment was evaluated by CAMx over the same period that was used for the monitoring campaign using the Particulate Source Apportionment Technology tool. Even if the source categorisations were changed (i.e., groups of time-correlated compounds in PMF vs. activity categories in CAMx), the PM2.5 source apportionment by PMF and CAMx produced comparable results. The different information provided by the two approaches (e.g., real-world factor profile by PMF and apportionment of a secondary aerosol by CAMx) was used jointly to elucidate the composition and origin of PM2.5 and to develop a more general methodology. When studying the primary and secondary components of PM, the main anthropogenic sources in the area were road transportation, energy production/industry and maritime emissions, accounting for 40%-50%, 20%-30% and 10%-15%, of PM2.5, respectively.
Finding SDSS BALQSOs Using Non-Negative Matrix Factorisation
NASA Astrophysics Data System (ADS)
Allen, James T.; Hewett, Paul C.; Belokurov, Vasily; Wild, Vivienne
2008-12-01
Modern spectroscopic databases provide a wealth of information about the physical processes and environments associated with astrophysical populations. Techniques such as blind source separation (BSS), in which sets of spectra are decomposed into a number of components, offer the prospect of identifying the signatures of the underlying physical emission processes. Principle Component Analysis (PCA) has been applied with some success but is severely limited by the inherent orthogonality restriction that the components must satisfy. Non-negative matrix factorisation (NMF) is a relatively new BSS technique that incorporates a non-negativity constraint on its components. In this respect, the resulting components may more closely reflect the physical emission signatures than is the case using PCA. We discuss some of the considerations that must be made when applying NMF and, through its application to the quasar spectra in the Sloan Digital Sky Survey (SDSS) DR6, we show that NMF is a fast method for generating compact and accurate reconstructions of the spectra. The ability to reconstruct spectra accurately has numerous astrophysical applications. Combined with improved SDSS redshifts, we apply NMF to the problem of defining robust continua for quasars that exhibit strong broad absorption line (BAL) systems. The resulting catalogue of SDSS DR6 BAL quasars will be the largest available. Importantly, the NMF approach allows quantitative error estimates to be derived for the Balnicity Indices as a function of key astrophysical and observational parameters, such as the quasar redshifts and the signal-to-noise ratio of the spectra.
Saito, Shota; Hirata, Yoshito; Sasahara, Kazutoshi; Suzuki, Hideyuki
2015-01-01
Micro-blogging services, such as Twitter, offer opportunities to analyse user behaviour. Discovering and distinguishing behavioural patterns in micro-blogging services is valuable. However, it is difficult and challenging to distinguish users, and to track the temporal development of collective attention within distinct user groups in Twitter. In this paper, we formulate this problem as tracking matrices decomposed by Nonnegative Matrix Factorisation for time-sequential matrix data, and propose a novel extension of Nonnegative Matrix Factorisation, which we refer to as Time Evolving Nonnegative Matrix Factorisation (TENMF). In our method, we describe users and words posted in some time interval by a matrix, and use several matrices as time-sequential data. Subsequently, we apply Time Evolving Nonnegative Matrix Factorisation to these time-sequential matrices. TENMF can decompose time-sequential matrices, and can track the connection among decomposed matrices, whereas previous NMF decomposes a matrix into two lower dimension matrices arbitrarily, which might lose the time-sequential connection. Our proposed method has an adequately good performance on artificial data. Moreover, we present several results and insights from experiments using real data from Twitter. PMID:26417999
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhao, Chunhui; He, Xing; Zhang, Weidong
2016-05-01
In this paper, the structure feature of the inverse of a multi-input/multi-output square transfer function matrix is explored. Instead of complicated advanced mathematical tools, we only use basic results of complex analysis in the analysing procedure. By employing the Laurent expression, an elegant structure form of the expansion is obtained for the transfer function matrix inverse. This expansion form is the key of deriving an analytical solution to the inner-outer factorisation for both stable plants and unstable plants. Different from other computation algorithm, the obtained inner-outer factorisation is given in an analytical form. The solution is exact and without approximation. Numerical examples are provided to verify the correctness of the obtained results.
NASA Astrophysics Data System (ADS)
Gianini, M. F. D.; Fischer, A.; Gehrig, R.; Ulrich, A.; Wichser, A.; Piot, C.; Besombes, J.-L.; Hueglin, C.
2012-07-01
PM10 speciation data from various sites in Switzerland for two time periods (January 1998-March 1999 and August 2008-July 2009) have been analysed for major sources by receptor modelling using Positive Matrix Factorisation (PMF). For the 2008/2009 period, it was found that secondary aerosols (sulphate- and nitrate-rich secondary aerosols, SSA and NSA) are the most abundant components of PM10 at sites north of the Alps. Road traffic and wood combustion were found to be the largest sources of PM10 at these sites. Except at the urban roadside site where road traffic is dominating (40% of PM10 -- including road salt), the annual average contribution of these two sources is of similar importance (17% and 14% of PM10, respectively). At a rural site south of the Alps wood combustion and road traffic contributions to PM10 were higher (31% and 24%, respectively), and the fraction of secondary aerosols lower (29%) than at similar site types north of the Alps. Comparison of PMF analyses for the two time periods (1998/1999 and 2008/2009) revealed decreasing average contributions of road traffic and SSA to PM10 at all sites. This indicates that the measures that were implemented in Switzerland and in neighbouring countries to reduce emissions of sulphur dioxide and PM10 from road traffic were successful. On the other hand, contributions of wood combustion did not change during this ten year period, and the contribution of nitrate-rich secondary aerosols has even increased. It is shown that PMF can be a helpful tool for the assessment of long-term changes of source contributions to ambient particulate matter.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
Moghadam, M Nassajian; Aminian, K; Asghari, M; Parnianpour, M
2013-01-01
The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are considered. For each selected direction for the torque vector, the resulting muscle activation data are calculated. The predicted muscle activation data are used for grouping muscles in some fixed element synergies by the non-negative matrix factorisation method. Next, torque produced by these synergies are computed and projected in the 2D torque space to investigate the magnitude and direction of torques that each muscle synergy generated. The results confirmed our expectation that few dominant synergies are sufficient to reconstruct the torque vectors and each muscle contributed to more than one synergy. Decomposition of the concatenated data, combining the activation and external torque, provided functional muscle synergies that produced torques in the four principal directions. Four muscle synergies were able to account for more than 95% of variation of the original data. PMID:21970618
2012-01-01
Background In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical information about the metabolic state of tumours and can be performed at short (< 45 ms) or long (> 45 ms) echo time (TE), each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate. Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the information provided by both TE should be of use for clinical purposes. In this study, we characterise the performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the best performing NMF method for source separation, we compare its accuracy for class assignment when using the mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR). For this, we used SV 1H-MRS data with positive and negative peaks, from a widely tested SV 1H-MRS human brain tumour database. Results The results reported in this paper reveal the advantage of using a recently described variant of NMF, namely Convex-NMF, as an unsupervised method of source extraction from SV1H-MRS. Most of the sources extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using Convex-NMF as a DR step previous to standard supervised classification. The obtained results are comparable to, or
NASA Astrophysics Data System (ADS)
Zhou, Jun; Lu, Xinbiao; Qian, Huimin
2016-09-01
The paper reports interesting but unnoticed facts about irreducibility (resp., reducibility) of Flouqet factorisations and their harmonic implication in term of controllability in finite-dimensional linear continuous-time periodic (FDLCP) systems. Reducibility and irreducibility are attributed to matrix logarithm algorithms during computing Floquet factorisations in FDLCP systems, which are a pair of essential features but remain unnoticed in the Floquet theory so far. The study reveals that reducible Floquet factorisations may bring in harmonic waves variance into the Fourier analysis of FDLCP systems that in turn may alter our interpretation of controllability when the Floquet factors are used separately during controllability testing; namely, controllability interpretation discrepancy (or simply, controllability discrepancy) may occur and must be examined whenever reducible Floquet factorisations are involved. On the contrary, when irreducible Floquet factorisations are employed, controllability interpretation discrepancy can be avoided. Examples are included to illustrate such observations.
Factorising a Quadratic Expression with Geometric Insights
ERIC Educational Resources Information Center
Joarder, Anwar H.
2015-01-01
An algorithm is presented for factorising a quadratic expression to facilitate instruction and learning. It appeals to elementary geometry which may provide better insights to some students or teachers. There have been many methods for factorising a quadratic expression described in school text books. However, students often seem to struggle with…
Brooking, C.
1996-12-31
Process engineering software is used to simulate the operation of large chemical plants. Such simulations are used for a variety of tasks, including operator training. For the software to be of practical use for this, dynamic simulations need to run in real-time. The models that the simulation is based upon are written in terms of Differential Algebraic Equations (DAE`s). In the numerical time-integration of systems of DAE`s using an implicit method such as backward Euler, the solution of nonlinear systems is required at each integration point. When solved using Newton`s method, this leads to the repeated solution of nonsymmetric sparse linear systems. These systems range in size from 500 to 20,000 variables. A typical integration may require around 3000 timesteps, and if 4 Newton iterates were needed on each time step, then this means approximately 12,000 linear systems must be solved. The matrices produced by the simulations have a similar sparsity pattern throughout the integration. They are also severely ill-conditioned, and have widely-scattered spectra.
Brown, T. W.
2011-04-15
The same complex matrix model calculates both tachyon scattering for the c=1 noncritical string at the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry in N=4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces.
Escudero, Javier; Acar, Evrim; Fernández, Alberto; Bro, Rasmus
2015-10-01
Tensor factorisations have proven useful to model amplitude and spectral information of brain recordings. Here, we assess the usefulness of tensor factorisations in the multiway analysis of other brain signal features in the context of complexity measures recently proposed to inspect multiscale dynamics. We consider the "refined composite multiscale entropy" (rcMSE), which computes entropy "profiles" showing levels of physiological complexity over temporal scales for individual signals. We compute the rcMSE of resting-state magnetoencephalogram (MEG) recordings from 36 patients with Alzheimer's disease and 26 control subjects. Instead of traditional simple visual examinations, we organise the entropy profiles as a three-way tensor to inspect relationships across temporal and spatial scales and subjects with multiway data analysis techniques based on PARAFAC and PARAFAC2 factorisations. A PARAFAC2 model with two factors was appropriate to account for the interactions in the entropy tensor between temporal scales and MEG channels for all subjects. Moreover, the PARAFAC2 factors had information related to the subjects' diagnosis, achieving a cross-validated area under the ROC curve of 0.77. This confirms the suitability of tensor factorisations to represent electrophysiological brain data efficiently despite the unsupervised nature of these techniques. This article is part of a Special Issue entitled 'Neural data analysis'. PMID:25982737
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We study a U( N) gauged matrix quantum mechanics which, in the large N limit, is closely related to the chiral WZW conformal field theory. This manifests itself in two ways. First, we construct the left-moving Kac-Moody algebra from matrix degrees of freedom. Secondly, we compute the partition function of the matrix model in terms of Schur and Kostka polynomials and show that, in the large N limit, it coincides with the partition function of the WZW model. This same matrix model was recently shown to describe non-Abelian quantum Hall states and the relationship to the WZW model can be understood in this framework.
A New Factorisation of a General Second Order Differential Equation
ERIC Educational Resources Information Center
Clegg, Janet
2006-01-01
A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…
Matrix model approach to cosmology
NASA Astrophysics Data System (ADS)
Chaney, A.; Lu, Lei; Stern, A.
2016-03-01
We perform a systematic search for rotationally invariant cosmological solutions to toy matrix models. These models correspond to the bosonic sector of Lorentzian Ishibashi, Kawai, Kitazawa and Tsuchiya (IKKT)-type matrix models in dimensions d less than ten, specifically d =3 and d =5 . After taking a continuum (or commutative) limit they yield d -1 dimensional Poisson manifolds. The manifolds have a Lorentzian induced metric which can be associated with closed, open, or static space-times. For d =3 , we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a resolution of cosmological singularities, at least within the context of the toy matrix models. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the d =3 solutions have analogues in higher dimensions. The case of d =5 , in particular, has the potential for yielding realistic four-dimensional cosmologies in the continuum limit. We find four-dimensional de Sitter d S4 or anti-de Sitter AdS4 solutions when a totally antisymmetric term is included in the matrix action. A nontrivial Poisson structure is attached to these manifolds which represents the lowest order effect of noncommutativity. For the case of AdS4 , we find one particular limit where the lowest order noncommutativity vanishes at the boundary, but not in the interior.
Factorising numbers with a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Weiss, Christoph; Page, Steffen; Holthaus, Martin
2004-10-01
The problem to express a natural number N as a product of natural numbers without regard to order corresponds to a thermally isolated non-interacting Bose gas in a one-dimensional potential with logarithmic energy eigenvalues. This correspondence is used for characterising the probability distribution which governs the number of factors in a randomly selected factorisation of an asymptotically large N. Asymptotic upper bounds on both the skewness and the excess of this distribution, and on the total number of factorisations, are conjectured. The asymptotic formulas are checked against exact numerical data obtained with the help of recursion relations. It is also demonstrated that for large numbers which are the product of different primes the probability distribution approaches a Gaussian, while identical prime factors give rise to non-Gaussian statistics.
Thermoplastic matrix composite processing model
NASA Technical Reports Server (NTRS)
Dara, P. H.; Loos, A. C.
1985-01-01
The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.
Matrix model description of baryonic deformations
Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu
2003-03-13
We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.
Matrix Models, Emergent Spacetime and Symmetry Breaking
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2009-12-15
We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.
Matrix Models, Emergent Spacetime and Symmetry Breaking
NASA Astrophysics Data System (ADS)
Grosse, Harald; Lizzi, Fedele; Steinacker, Harold
2009-12-01
We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.
Sensitivity analysis of periodic matrix population models.
Caswell, Hal; Shyu, Esther
2012-12-01
Periodic matrix models are frequently used to describe cyclic temporal variation (seasonal or interannual) and to account for the operation of multiple processes (e.g., demography and dispersal) within a single projection interval. In either case, the models take the form of periodic matrix products. The perturbation analysis of periodic models must trace the effects of parameter changes, at each phase of the cycle, on output variables that are calculated over the entire cycle. Here, we apply matrix calculus to obtain the sensitivity and elasticity of scalar-, vector-, or matrix-valued output variables. We apply the method to linear models for periodic environments (including seasonal harvest models), to vec-permutation models in which individuals are classified by multiple criteria, and to nonlinear models including both immediate and delayed density dependence. The results can be used to evaluate management strategies and to study selection gradients in periodic environments. PMID:23316494
Multiscale Modeling of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
Micromechanical Modeling of Woven Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
NASA Astrophysics Data System (ADS)
Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh
2015-06-01
We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available. PMID:21102832
An Operator Formalism for Unitary Matrix Models
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K. N.; Bowick, M. J.; Ishibashi, N.
We analyze the double scaling limit of unitary matrix models in terms of trigonometric orthogonal polynomials on the circle. In particular we find a compact formulation of the string equation at the kth multicritical point in terms of pseudodifferential operators and a corresponding action principle. We also relate this approach to the mKdV hierarchy which appears in the analysis in terms of conventional orthogonal polynomials on the circle.
Transition matrix model for evolutionary game dynamics.
Ermentrout, G Bard; Griffin, Christopher; Belmonte, Andrew
2016-03-01
We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model. PMID:27078323
Transition matrix model for evolutionary game dynamics
NASA Astrophysics Data System (ADS)
Ermentrout, G. Bard; Griffin, Christopher; Belmonte, Andrew
2016-03-01
We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model.
Massless Flavor in Geometry and Matrix Models
Roiban, Radu; Tatar, Radu; Walcher, Johannes
2003-01-27
The proper inclusion of flavor in the Dijkgraaf-Vafa proposal for the solution of N=1 gauge theories through matrix models has been subject of debate in the recent literature. We here reexamine this issue by geometrically engineering fundamental matter with type IIB branes wrapped on non-compact cycles in the resolved geometry, and following them through the geometric transition. Our approach treats massive and massless flavor fields on equal footing, including the mesons. We also study the geometric transitions and superpotentials for finite mass of the adjoint field. All superpotentials we compute reproduce the field theory results. Crucial insights come from T-dual brane constructions in type IIA.
String coupling and interactions in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2009-05-15
We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g{sub s} in the IIB matrix model. We confirm that our identification is consistent with matrix string theory.
Superstring vertex operators in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2008-06-15
We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB matrix model through this connection. Indeed, we confirm that supergravity vertex operators in IIB matrix model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity plays an important role in our identification. Through this correspondence, we can reproduce superstring scattering amplitudes from IIB matrix model.
Random matrix model of adiabatic quantum computing
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-05-15
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
Probabilistic Modeling of Ceramic Matrix Composite Strength
NASA Technical Reports Server (NTRS)
Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.
1998-01-01
Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.
Comparison Of Models Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Johnson, W. S.; Naik, R. A.
1994-01-01
Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.
Matrix model for non-Abelian quantum Hall states
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.
Entanglement entropy of Wilson loops: Holography and matrix models
NASA Astrophysics Data System (ADS)
Gentle, Simon A.; Gutperle, Michael
2014-09-01
A half-Bogomol'nyi-Prasad-Sommerfeld circular Wilson loop in N=4 SU(N) supersymmetric Yang-Mills theory in an arbitrary representation is described by a Gaussian matrix model with a particular insertion. The additional entanglement entropy of a spherical region in the presence of such a loop was recently computed by Lewkowycz and Maldacena using exact matrix model results. In this paper we utilize the supergravity solutions that are dual to such Wilson loops in a representation with order N2 boxes to calculate this entropy holographically. Employing the matrix model results of Gomis, Matsuura, Okuda and Trancanelli we express this holographic entanglement entropy in a form that can be compared with the calculation of Lewkowycz and Maldacena. We find complete agreement between the matrix model and holographic calculations.
Thermodynamics of the BMN matrix model at strong coupling
NASA Astrophysics Data System (ADS)
Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.
2015-03-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
MOEMS Modeling Using the Geometrical Matrix Toolbox
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2005-01-01
New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.
Strain Rate Dependent Modeling of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1999-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
Exact [ital S] matrix of the deformed [ital c]=1 matrix model
Demeterfi, K.; Klebanov, I.R. ); Rodrigues, J.P. )
1993-11-22
We consider the [ital c]=1 matrix model deformed by the operator 1/2[ital M] [ital Tr][Phi][sup [minus]2], which was conjectured by Jevicki and Yoneya to describe a two-dimensional black hole of mass [ital M]. We calculate the exact nonperturbative [ital S] matrix and show that all the amplitudes involving an odd number of particles vanish at least to all orders of perturbation theory. We conjecture that these amplitudes vanish nonperturbatively and prove this for the 2[ital n][r arrow]1 scattering. For the two- and four-particle amplitudes we give some leading terms of the perturbative expansion.
Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate
NASA Astrophysics Data System (ADS)
Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi
2015-09-01
Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.
Amerciamysis bahia Stochastic Matrix Population Model for Laboratory Populations
The population model described here is a stochastic, density-independent matrix model for integrating the effects of toxicants on survival and reproduction of the marine invertebrate, Americamysis bahia. The model was constructed using Microsoft® Excel 2003. The focus of the mode...
Simulating simplified versions of the IKKT matrix model
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hotta, T.; Nishimura, J.
2001-03-01
We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU( N) super Yang-Mills theory (a 4d counter part of the IKKT model or IIB matrix model). The eigenvalue distribution determines the space structure. The measurement of Wilson loop correlators reveals a universal large N scaling. Eguchi-Kawai equivalence may hold in a finite range of scale, which is also true for the bosonic case. We finally report on simulations of a low energy approximation of the 10d IKKT model, where we omit the phase of the Pfaffian and look for evidence for a spontaneous Lorentz symmetry breaking.
Looking for a Matrix model for ABJM theory
Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu
2010-10-15
Encouraged by the recent construction of fuzzy sphere solutions in the Aharony, Bergman, Jafferis, and Maldacena (ABJM) theory, we re-analyze the latter from the perspective of a Matrix-like model. In particular, we argue that a vortex solution exhibits properties of a supergraviton, while a kink represents a 2-brane. Other solutions are also consistent with the Matrix-type interpretation. We study vortex scattering and compare with graviton scattering in the massive ABJM background, however our results are inconclusive. We speculate on how to extend our results to construct a Matrix theory of ABJM.
Proposed framework for thermomechanical life modeling of metal matrix composites
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.
1993-01-01
The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed
Holography and entropy bounds in the plane wave matrix model
Bousso, Raphael; Mints, Aleksey L.
2006-06-15
As a quantum theory of gravity, matrix theory should provide a realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. We present evidence that Bekenstein's entropy bound, which is related to area differences, is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N{sup 2} in units of the mass scale.
Matrix model maps in AdS/CFT correspondence
Donos, Aristomenis; Jevicki, Antal; Rodrigues, Joao P.
2005-12-15
We discuss an extension of a map between BPS states and free fermions. The extension involves states associated with a full two matrix problem which are constructed using a sequence of integral equations. A two parameter set of matrix model eigenstates is then related to states in SUGRA. Their wave functions are characterized by nontrivial dependence on the radial coordinate of AdS and of the Sphere, respectively. A kernel defining a one to one map between these states is then constructed.
On matrix model formulations of noncommutative Yang-Mills theories
Azeyanagi, Tatsuo; Hirata, Tomoyoshi; Hanada, Masanori
2008-11-15
We study the stability of noncommutative spaces in matrix models and discuss the continuum limit which leads to the noncommutative Yang-Mills theories. It turns out that most noncommutative spaces in bosonic models are unstable. This indicates perturbative instability of fuzzy R{sup D} pointed out by Van Raamsdonk and Armoni et al. persists to nonperturbative level in these cases. In this sense, these bosonic noncommutative Yang-Mills theories are not well-defined, or at least their matrix model formulations studied in this paper do not work. We also show that noncommutative backgrounds are stable in a supersymmetric matrix model deformed by a cubic Myers term, though the deformation itself breaks supersymmetry.
Hierarchical spatiotemporal matrix models for characterizing invasions
Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew
2007-01-01
The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing. ?? 2006, The International Biometric Society.
Hierarchical spatiotemporal matrix models for characterizing invasions
Hooten, Mevin B.; Wikle, Christopher K.; Dorazio, Robert M.; Royle, J. Andrew
2007-01-01
The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.
Modeling Active Mechanosensing in Cell-Matrix Interactions.
Chen, Bin; Ji, Baohua; Gao, Huajian
2015-01-01
Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions. PMID:26098510
Stress corrosion cracking of metal matrix composites: Modeling and experiment
Jones, R.H.
1990-10-01
The stress corrosion crack growth ate of metal matrix composites has been described by a model which is dependent on the length-to- diameter ({ell}/d) ratio and volume fraction of the reinforcing phase and matrix creep component. The model predicts a large dependence of the stress corrosion crack growth rate of a metal matrix composite on {ell}/d and matrix creep component and a small dependence on the volume fraction of reinforcement. Experimentally determined crack growth rates for 7090 Al/SiC tested in 3.5% NcCl solution, 6061 Al/SiC tested in moist air with NaCl and immersed in NaCl solution, and Mg/Al{sub 2}0{sub 3} tested in a chloride/chromate solution are all consistent with the model. The close correspondence between the model and experiment for a matrix creep stress exponent of 3 suggest that there is little corrosion damage to the reinforcing phase in these systems. 16 refs., 5 figs.
A model of consensus formation for reconciling nursing's disciplinary matrix.
Dobratz, Marjorie C
2010-01-01
With questions raised as to whether or not nursing knowledge should be developed from extant conceptual/theoretical models or from practice-based environments, this paper utilizes Kuhn's disciplinary matrix and Laudan's model of consensus formation to explore the changing nature of the discipline's structural matrix. Kuhn's notion that a discipline's structural matrix includes symbolic generalizations, models and exemplars, and Laudan's view that a maturing discipline embraces factual, methodological, and axiological (goals and aims) knowledge, and that context and discourse are also involved in advancing a discipline is described as a means for reconciling the source of nursing knowledge. This paper posits that shared axiological goals connect both theorists and practitioners, and resolve potential conflicts as to viable sources of nursing knowledge. Through shared goals that include humanization, meaning, quality of life, caring, consciousness, transcendence, and presence, which bridge both theoretical and practice approaches, nursing's charge to contribute to the good of society is fulfilled. PMID:20017883
Resolution-matrix-constrained model updates for bayesian seismic tomography
NASA Astrophysics Data System (ADS)
Fontanini, Francesco; Bleibinhaus, Florian
2015-04-01
One of the most important issues of interpreting seismic tomography models is the need to provide a quantification of their uncertainty. Bayesian approach to inverse problems offers a rigorous way to quantitatively estimate this uncertainty at the price of an higher computation time. Optimizing bayesian algorithms is therefore a key problem. We are developing a multivariate model-updating scheme that makes use of the constraints provided by the Model Resolution Matrix , aiming to a more efficient sampling of the model space. The Resolution Matrix relates the true model to the estimate, its off-diagonal values provide a set of trade-off relations between model parameters used in our algorithm to obtain optimized model updates.
Extruder analysis, modeling, and dynamic matrix control
Sribuangam, D.
1991-01-01
The Modern Plastics extruder of the Material Science and Engineering Department is used to extrude high density polyethylene (Alathon 7040). Diameter sensor characterization is done due to the fiber positioning sensitivity of the sensor (Zimmer) and observed variations in the sensor signal. Detailed step test transfer function models are developed where the input variables are take-up speed, screw speed, gear pump speed, and die temperature set point. The output variables are die temperature, die pressure, end of the barrel temperature and pressure. A total of 18 transfer functions are obtained. The relationships between known periodic input variations and the output variations are analyzed by the power spectrum analysis. Due to the dominance of the draw resonance-like variation, the main control objective is to eliminate this variation. Results show that all control methods can handle set point tracking but achieve only a limited reduction in amplitude of the fiber diameter variation.
Explicit examples of DIM constraints for network matrix models
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Matsumoto, Takuya; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2016-07-01
Dotsenko-Fateev and Chern-Simons matrix models, which describe Nekrasov functions for SYM theories in different dimensions, are all incorporated into network matrix models with the hidden Ding-Iohara-Miki (DIM) symmetry. This lifting is especially simple for what we call balanced networks. Then, the Ward identities (known under the names of Virasoro/ {W} -constraints or loop equations or regularity condition for qq-characters) are also promoted to the DIM level, where they all become corollaries of a single identity.
Green-Schwarz superstring from type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2008-01-15
We construct a Green-Schwarz (GS) light-cone closed superstring theory from the type IIB matrix model. A GS light-cone string action is derived from the two-dimensional N=8 U(n) noncommutative Yang-Mills (NCYM) theory by identifying a noncommutative scale with a string scale. The supersymmetry transformation for the light-cone gauge action is also derived from supersymmetry transformation for the IIB matrix model. By identifying the physical states and interaction vertices, string theory is perturbatively reproduced.
Modeling fatigue crack growth in cross ply titanium matrix composites
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1993-01-01
In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.
Matrix models for quantifying competitive intransitivity
Ulrich, Werner; Soliveres, Santiago; Kryszewski, Wojciech; Maestre, Fernando T.; Gotelli, Nicholas J.
2015-01-01
Assessing the relative importance of intransitive competition networks in nature has been difficult because it requires a large number of pairwise competition experiments linked to observed field abundances of interacting species. Here we introduce metrics and statistical tests for evaluating the contribution of intransitivity to community structure using two kinds of data: competition matrices derived from the outcomes of pairwise experimental studies (C matrices) and species abundance matrices. We use C matrices to develop patch transition matrices (P) that predict community structure in a simple Markov chain model. We propose a randomization test to evaluate the degree of intransitivity from these P matrices in combination with empirical or simulated C matrices. Benchmark tests revealed that the methods could correctly detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. These tests represent the first tools for estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to both spatio-temporal data sampled in homogeneous environments or across environmental gradients, and to experimental measures of pairwise interactions. To illustrate the methods, we analyzed empirical data matrices on the colonization of slug carrion by necrophagous flies and their parasitoids. PMID:25914427
Modeling of crack bridging in a unidirectional metal matrix composite
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack
1992-01-01
The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.
HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS
Fan, Jianqing; Liao, Yuan; Mincheva, Martina
2012-01-01
The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790
On the groundstate of octonionic matrix models in a ball
NASA Astrophysics Data System (ADS)
Boulton, L.; Garcia del Moral, M. P.; Restuccia, A.
2015-05-01
In this work we examine the existence and uniqueness of the groundstate of a SU (N) ×G2 octonionic matrix model on a bounded domain of RN. The existence and uniqueness argument of the groundstate wavefunction follows from the Lax-Milgram theorem. Uniqueness is shown by means of an explicit argument which is drafted in some detail.
Resilient organizations: matrix model and service line management.
Westphal, Judith A
2005-09-01
Resilient organizations modify structures to meet the demands of the marketplace. The author describes a structure that enables multihospital organizations to innovate and rapidly adapt to changes. Service line management within a matrix model is an evolving organizational structure for complex systems in which nurses are pivotal members. PMID:16200010
Unitary matrix models and 2D quantum gravity
Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )
1992-09-21
In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.
Modeling of 3-D Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Sullivan, Roy M.; Mital, Subodh K.
2003-01-01
Three different approaches are being pursued at the NASA Glenn Research Center to predict the nanostructural behavior of three-dimensional woven ceramic matrix composites. These are: a micromechanics-based approach using W-CEMCAN (Woven Ceramic Matrix Composite Analyzer), a laminate analogy method and a structural frame approach (based on the finite element method). All three techniques are applied to predict the thermomechanical properties of a three-dimensional woven angle interlock C/SiC composite. The properties are predicted for room temperature and 1100 C and the predicted properties are compared to measurements. General observations regarding the three approaches for three-dimensional composite modeling are discussed.
Life Modeling and Design Analysis for Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
2005-01-01
The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.
Matrix models and stochastic growth in Donaldson-Thomas theory
Szabo, Richard J.; Tierz, Miguel
2012-10-15
We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.
DLCQ and plane wave matrix Big Bang models
NASA Astrophysics Data System (ADS)
Blau, Matthias; O'Loughlin, Martin
2008-09-01
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
Four-point function in the IOP matrix model
NASA Astrophysics Data System (ADS)
Michel, Ben; Polchinski, Joseph; Rosenhaus, Vladimir; Suh, S. Josephine
2016-05-01
The IOP model is a quantum mechanical system of a large- N matrix oscillator and a fundamental oscillator, coupled through a quartic interaction. It was introduced previously as a toy model of the gauge dual of an AdS black hole, and captures a key property that at infinite N the two-point function decays to zero on long time scales. Motivated by recent work on quantum chaos, we sum all planar Feynman diagrams contributing to the four-point function. We find that the IOP model does not satisfy the more refined criteria of exponential growth of the out-of-time-order four-point function.
Analytical model for force prediction when machining metal matrix composites
NASA Astrophysics Data System (ADS)
Sikder, Snahungshu
Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.
Virasoro irregular conformal block and beta deformed random matrix model
NASA Astrophysics Data System (ADS)
Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong
2015-03-01
Virasoro irregular conformal block is presented as the expectation value of Jack-polynomials of the beta-deformed Penner-type matrix model and is compared with the inner product of Gaiotto states with arbitrary rank. It is confirmed that there are non-trivial modifications of the Gaiotto states due to the normalization of the states. The relation between the two is explicitly checked for rank 2 irregular conformal block.
Chiral matrix model of the semi-QGP in QCD
NASA Astrophysics Data System (ADS)
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-01
Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the
Modeling mechanophore activation within a crosslinked glassy matrix
NASA Astrophysics Data System (ADS)
Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.
2013-07-01
Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.
Modeling of crack bridging in a unidirectional metal matrix composite
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack
1991-01-01
The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches; the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(sup eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(sup eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.
Modeling of matrix acidizing process under reservoir conditions
NASA Astrophysics Data System (ADS)
Turegeldieva, Karlygash; Assilbekov, Bakhytzhan; Zhapbasbayev, Uzak; Zolotukhin, Anatoly; Bekibaev, Timur; Kenzhebekov, Nurlan; Gubkin Russian State University of oil; gas Collaboration
2013-11-01
Effectiveness of the process depends on the parameters: well choice, geological structure of the reservoir, definition of physical and chemical properties of rocks and fluids, agent choice. There are different mathematical models of the matrix acidizing, including the two scale model. These models describe the process in the core scale and Darcy scale, i.e. in an area with dimensions of several centimeters. It leads to the main problem - how to use these models to the near wellbore scale under reservoir conditions. Some authors have increased the dimensions of the cores in numerical simulations and investigated the influence of the core dimensions to acidizing process. In this paper effort to indirectly solve this problem made. It based on boundary conditions alteration and simultaneous solution of matrix acidizing in damaged zone and reservoir fluid flow models. Furthermore in this work the criterion of the acid injection shut down for optimal breakthrough volume calculation was modified. Influence of boundary conditions on near well-bore zone treatment process was investigated. Science Committee of Ministry of Education and Science of Republic of Kazakhstan.
Boundary layer integral matrix procedure: Verification of models
NASA Technical Reports Server (NTRS)
Bonnett, W. S.; Evans, R. M.
1977-01-01
The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.
Matrix population models from 20 studies of perennial plant populations
Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.
2012-01-01
Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.
Matrix population models from 20 studies of perennial plant populations
Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.
2012-01-01
Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.
An Uncertainty Structure Matrix for Models and Simulations
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Blattnig, Steve R.; Hemsch, Michael J.; Luckring, James M.; Tripathi, Ram K.
2008-01-01
Software that is used for aerospace flight control and to display information to pilots and crew is expected to be correct and credible at all times. This type of software is typically developed under strict management processes, which are intended to reduce defects in the software product. However, modeling and simulation (M&S) software may exhibit varying degrees of correctness and credibility, depending on a large and complex set of factors. These factors include its intended use, the known physics and numerical approximations within the M&S, and the referent data set against which the M&S correctness is compared. The correctness and credibility of an M&S effort is closely correlated to the uncertainty management (UM) practices that are applied to the M&S effort. This paper describes an uncertainty structure matrix for M&S, which provides a set of objective descriptions for the possible states of UM practices within a given M&S effort. The columns in the uncertainty structure matrix contain UM elements or practices that are common across most M&S efforts, and the rows describe the potential levels of achievement in each of the elements. A practitioner can quickly look at the matrix to determine where an M&S effort falls based on a common set of UM practices that are described in absolute terms that can be applied to virtually any M&S effort. The matrix can also be used to plan those steps and resources that would be needed to improve the UM practices for a given M&S effort.
Scale invariant behavior in a large N matrix model
NASA Astrophysics Data System (ADS)
Narayanan, Rajamani; Neuberger, Herbert
2016-01-01
Eigenvalue distributions of properly regularized Wilson-loop operators are used to study the transition from UV behavior to IR behavior in gauge theories coupled to matter that potentially have an IR fixed point. We numerically demonstrate the emergence of scale invariance in a matrix model that describes S U (N ) gauge theory coupled to two flavors of massless adjoint fermions in the large N limit. The eigenvalue distribution of Wilson loops of varying sizes cannot be described by a universal lattice beta function connecting the UV to the IR.
Supersymmetric Wilson loops in a type-IIB matrix model
Hamada, K.
1997-12-01
We show that the supersymmetric Wilson loops in a type-IIB matrix model give a transition operator from reduced supersymmetric Yang-Mills theory to supersymmetric space-time theory. In comparison with Green-Schwarz superstring we identify the supersymmetric Wilson loops with the asymptotic states of a type-IIB superstring. It is pointed out that the supersymmetry transformation law of the Wilson loops is the inverse of that for the vertex operators of massless modes in the U(N) open superstring with a Dirichlet boundary condition. {copyright} {ital 1997} {ital The American Physical Society}
A random matrix model with localization and ergodic transitions
NASA Astrophysics Data System (ADS)
Kravtsov, V. E.; Khaymovich, I. M.; Cuevas, E.; Amini, M.
2015-12-01
Motivated by the problem of many-body localization and the recent numerical results for the level and eigenfunction statistics on the random regular graphs, a generalization of the Rosenzweig-Porter random matrix model is suggested that possesses two transitions. One of them is the Anderson localization transition from the localized to the extended states. The other one is the ergodic transition from the extended non-ergodic (multifractal) states to the extended ergodic states. We confirm the existence of both transitions by computing the two-level spectral correlation function, the spectrum of multifractality f(α ) and the wave function overlap which consistently demonstrate these two transitions.
Chiral condensate in the Schwinger model with matrix product operators
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Jansen, Karl; Saito, Hana
2016-05-01
Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
Modeling of cumulative tool wear in machining metal matrix composites
Hung, N.P.; Tan, V.K.; Oon, B.E.
1995-12-31
Metal matrix composites (MMCs) are notoriously known for their low machinability because of the abrasive and brittle reinforcement. Although a near-net-shape product could be produced, finish machining is still required for the final shape and dimension. The classical Taylor`s tool life equation that relates tool life and cutting conditions has been traditionally used to study machinability. The turning operation is commonly used to investigate the machinability of a material; tedious and costly milling experiments have to be performed separately; while a facing test is not applicable for the Taylor`s model since the facing speed varies as the tool moves radially. Collecting intensive machining data for MMCs is often difficult because of the constraints on size, cost of the material, and the availability of sophisticated machine tools. A more flexible model and machinability testing technique are, therefore, sought. This study presents and verifies new models for turning, facing, and milling operations. Different cutting conditions were utilized to assess the machinability of MMCs reinforced with silicon carbide or alumina particles. Experimental data show that tool wear does not depend on the order of different cutting speeds since abrasion is the main wear mechanism. Correlation between data for turning, milling, and facing is presented. It is more economical to rank machinability using data for facing and then to convert the data for turning and milling, if required. Subsurface damages such as work-hardened and cracked matrix alloy, and fractured and delaminated particles are discussed.
Modeling cell-matrix traction forces in Keratinocyte colonies
NASA Astrophysics Data System (ADS)
Banerjee, Shiladitya
2013-03-01
Crosstalk between cell-cell and cell-matrix adhesions plays an essential role in the mechanical function of tissues. The traction forces exerted by cohesive keratinocyte colonies with strong cell-cell adhesions are mostly concentrated at the colony periphery. In contrast, for weak cadherin-based intercellular adhesions, individual cells in a colony interact with their matrix independently, with a disorganized distribution of traction forces extending throughout the colony. In this talk I will present a minimal physical model of the colony as contractile elastic media linked by springs and coupled to an elastic substrate. The model captures the spatial distribution of traction forces seen in experiments. For cell colonies with strong cell-cell adhesions, the total traction force of the colony measured in experiments is found to scale with the colony's geometrical size. This scaling suggests the emergence of an effective surface tension of magnitude comparable to that measured for non-adherent, three-dimensional cell aggregates. The physical model supports the scaling and indicates that the surface tension may be controlled by acto-myosin contractility. Supported by the NSF through grant DMR-1004789. This work was done in collaboration with Aaron F. Mertz, Eric R. Dufresne and Valerie Horsley (Yale University) and M. Cristina Marchetti (Syracuse University).
The implementation of holography in the plane wave matrix model
NASA Astrophysics Data System (ADS)
Mints, Aleksey Leonidovich
It is expected that at the core of nonperturbative theories of quantum gravity, such as M-theory, lies the realization of the holographic principle, in the sense that a holographic theory should contain one binary degree of freedom per Planck area. Present understanding of such theories requires the holographic encoding of bulk data in large matrices. Currently this mapping is poorly understood. The plane wave matrix model provides a laboratory for isolating aspects of this problem in a controlled setting. At large boosts, configurations of concentric membranes become superselection sectors, whose exact spectra are known. From the bulk point of view one expects product states of individual membranes to be contained within the full spectrum. However, for non-BPS states this inclusion relation is obscured by Gauss law constraints. Its validity rests on nontrivial relations in representation theory, which we identify and verify by explicit computation. Beyond the decoding and partial identification of selected states in large matrices, one would like to get a better understanding of the holographic state counting of these degrees of freedom, i.e., entropy. Contrary to the naive expectation of holography realized in terms of the covariant entropy bound, we present evidence that it is the Bekenstein entropy bound, which is related to area differences, that is manifest in the plane wave matrix model. If holography is implemented in this way, we predict crossover behavior at strong coupling when the energy exceeds N2 in units of the mass scale.
An Empirically Based Method of Q-Matrix Validation for the DINA Model: Development and Applications
ERIC Educational Resources Information Center
de la Torre, Jimmy
2008-01-01
Most model fit analyses in cognitive diagnosis assume that a Q matrix is correct after it has been constructed, without verifying its appropriateness. Consequently, any model misfit attributable to the Q matrix cannot be addressed and remedied. To address this concern, this paper proposes an empirically based method of validating a Q matrix used…
Expression of bone matrix proteins in urolithiasis model rats.
Yasui, T; Fujita, K; Sasaki, S; Sato, M; Sugimoto, M; Hirota, S; Kitamura, Y; Nomura, S; Kohri, K
1999-08-01
Urinary calcium stones are a pathological substance, and they show similarities to physiological mineralization and other pathological mineralizations. The expression of messenger (m) RNAs of osteopontin (OPN), matrix Gla protein (MGP), osteonectin (ON) and osteocalcin (OC) in bones and teeth has been described. We previously identified OPN as an important stone matrix protein. In addition, the spontaneous calcification of arteries and cartilage in mice lacking MGP was recently reported, a finding which indicates that MGP has a function as an inhibitor of mineralization. Here, we examined the mRNA expressions of OPN, MGP, ON, and OC in the kidneys of stone-forming model rats administered an oxalate precursor, ethylene glycol (EG) for up to 28 days. The Northern blotting showed that the mRNA expressions of OPN and MGP were markedly increased with the administration of EG, but their expression patterns differed. The OPN mRNA expression reached the maximal level at day 7 after the initiation of the EG treatment and showed no significant difference after 14 and 28 days, whereas the MGP mRNA expression rose gradually to day 28. The in situ hybridization demonstrated that the cell type expressing OPN mRNA was different from that expressing MGP. We suggest that OPN acts on calcification and MGP acts on suppression. PMID:10460895
Teaching Improvement Model Designed with DEA Method and Management Matrix
ERIC Educational Resources Information Center
Montoneri, Bernard
2014-01-01
This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…
A matrix model for the null-brane
NASA Astrophysics Data System (ADS)
Robbins, Daniel
The null-brave quotient is a simple smooth time-dependent solution of string or M-theory. By tuning a parameter, this background develops a big crunch/big bang type singularity. We construct a matrix model description of this background as a Yang-Mills theory on a time-dependent space-time. This dual description provides a non-perturbative framework to study the fate of space-times with cosmological singularities. We study the dynamics of this theory, including particle production and the one-loop effective action for Higgs VEVs in the theory, and we present some evidence that space-time itself breaks down, even while the underlying theory remains unitary and well-defined. Finally, we speculate about which lessons can be carried over to more general situations and propose several future directions for research.
Link community detection using generative model and nonnegative matrix factorization.
He, Dongxiao; Jin, Di; Baquero, Carlos; Liu, Dayou
2014-01-01
Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities. PMID:24489803
Link Community Detection Using Generative Model and Nonnegative Matrix Factorization
He, Dongxiao; Jin, Di; Baquero, Carlos; Liu, Dayou
2014-01-01
Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities. PMID:24489803
Modeling Woven Polymer Matrix Composites with MAC/GMC
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M. (Technical Monitor)
2000-01-01
NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) is used to predict the elastic properties of plain weave polymer matrix composites (PMCs). The traditional one step three-dimensional homogertization procedure that has been used in conjunction with MAC/GMC for modeling woven composites in the past is inaccurate due to the lack of shear coupling inherent to the model. However, by performing a two step homogenization procedure in which the woven composite repeating unit cell is homogenized independently in the through-thickness direction prior to homogenization in the plane of the weave, MAC/GMC can now accurately model woven PMCs. This two step procedure is outlined and implemented, and predictions are compared with results from the traditional one step approach and other models and experiments from the literature. Full coupling of this two step technique with MAC/ GMC will result in a widely applicable, efficient, and accurate tool for the design and analysis of woven composite materials and structures.
Analytical Model of Water Flow in Coal with Active Matrix
NASA Astrophysics Data System (ADS)
Siemek, Jakub; Stopa, Jerzy
2014-12-01
This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z
Critical endpoint for deconfinement in matrix and other effective models
NASA Astrophysics Data System (ADS)
Kashiwa, Kouji; Pisarski, Robert D.; Skokov, Vladimir V.
2012-06-01
We consider the position of the deconfining critical endpoint, where the first order transition for deconfinement is washed out by the presence of massive, dynamical quarks. We use an effective matrix model, employed previously to analyze the transition in the pure glue theory. If the parameters of the pure glue theory are unaffected by the presence of dynamical quarks, and if the quarks only contribute perturbatively, then for three colors and three degenerate quark flavors this quark mass is very heavy, mde˜2.5GeV, while the critical temperature Tde barely changes, ˜1% below that in the pure glue theory. The location of the deconfining critical endpoint is a sensitive test to differentiate between effective models. For example, models with a logarithmic potential for the Polyakov loop give much smaller values of the quark mass, mde˜1GeV, and a large shift in Tde˜10% lower than that in the pure glue theory.
Noncommutative gauge theory and symmetry breaking in matrix models
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2010-04-15
We show how the fields and particles of the standard model can be naturally realized in noncommutative gauge theory. Starting with a Yang-Mills matrix model in more than four dimensions, an SU(n) gauge theory on a Moyal-Weyl space arises with all matter and fields in the adjoint of the gauge group. We show how this gauge symmetry can be broken spontaneously down to SU(3){sub c}xSU(2){sub L}xU(1){sub Q}[resp. SU(3){sub c}xU(1){sub Q}], which couples appropriately to all fields in the standard model. An additional U(1){sub B} gauge group arises which is anomalous at low energies, while the trace-U(1) sector is understood in terms of emergent gravity. A number of additional fields arise, which we assume to be massive, in a pattern that is reminiscent of supersymmetry. The symmetry breaking might arise via spontaneously generated fuzzy spheres, in which case the mechanism is similar to brane constructions in string theory.
Model of the Human Eye Based on ABCD Matrix
NASA Astrophysics Data System (ADS)
González, G. Díaz; Castillo, M. David Iturbe
2008-04-01
At the moment several models of the human eye exist, nevertheless the gradient index models of the human lens (crystalline) have received little attention in optometry and vision sciences, although they consider how the refractive index and the refracting power can change with the accommodation. On the other hand, in study fields like ophthalmology and optometry, exist cases where there is a lack of information about the factors that influence the change of refractive power and therefore the focal length of the eye. By such reason, in this paper we present a model of the human eye based on the ABCD matrix in order to describe the propagation of light rays, that can be understood by professional people in optics, ophthalmology and optometry, and the dispersions of the different ocular mediums are taken into account,. The aim of the model is to obtain data about the refractive power of the eye under different considerations, such as: changes in wavelength, radius of curvature and thicknesses of the ocular mediums. We present results of simulations in Matlab of our model, assuming that the object is punctual and is placed to a certain distance of the eye, and considering at the beginning to the crystalline like a medium with fixed refractive index, and after like a gradient lens. By means of graphs, we show the total refractive power of the eye and its form and type of dependence with respect to variations in radius of curvature and thicknesses of the cornea and crystalline, as well as variations in the thickness of the previous and later cameras.
Nonlinear Penalized Estimation of True Q-Matrix in Cognitive Diagnostic Models
ERIC Educational Resources Information Center
Xiang, Rui
2013-01-01
A key issue of cognitive diagnostic models (CDMs) is the correct identification of Q-matrix which indicates the relationship between attributes and test items. Previous CDMs typically assumed a known Q-matrix provided by domain experts such as those who developed the questions. However, misspecifications of Q-matrix had been discovered in the past…
Assessing Fit of Item Response Models Using the Information Matrix Test
ERIC Educational Resources Information Center
Ranger, Jochen; Kuhn, Jorg-Tobias
2012-01-01
The information matrix can equivalently be determined via the expectation of the Hessian matrix or the expectation of the outer product of the score vector. The identity of these two matrices, however, is only valid in case of a correctly specified model. Therefore, differences between the two versions of the observed information matrix indicate…
Simulating spin-boson models with matrix product states
NASA Astrophysics Data System (ADS)
Wall, Michael; Safavi-Naini, Arghavan; Rey, Ana Maria
2016-05-01
The global coupling of few-level quantum systems (``spins'') to a discrete set of bosonic modes is a key ingredient for many applications in quantum science, including large-scale entanglement generation, quantum simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin sensing. In many situations, the bosons are integrated out, leading to effective long-range interactions between the spins; however, strong spin-boson coupling invalidates this approach, and spin-boson entanglement degrades the fidelity of quantum simulation of spin models. We present a general numerical method for treating the out-of-equilibrium dynamics of spin-boson systems based on matrix product states. While most efficient for weak coupling or small numbers of boson modes, our method applies for any spatial and operator dependence of the spin-boson coupling. In addition, our approach allows straightforward computation of many quantities of interest, such as the full counting statistics of collective spin measurements and quantum simulation infidelity due to spin-boson entanglement. We apply our method to ongoing trapped ion quantum simulator experiments in analytically intractable regimes. This work is supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and the NRC.
Microscopic theory of dynamical matrix in itinerant model of antiferromagnetism
NASA Astrophysics Data System (ADS)
Ami, Seiju; Cade, N. A.; Young, W.
1983-02-01
The dynamical matrix and the elastic constants are derived for an itinerant antiferromagnet. An orbital representation is used which bypasses the problem of large matrix inversion in reciprocal space. We show that exchange enhancement and antiferromagnetic ordering leads to softening of some of the elastic constants.
NASA Technical Reports Server (NTRS)
Guo, Tong-Yi; Hwang, Chyi; Shieh, Leang-San
1994-01-01
This paper deals with the multipoint Cauer matrix continued-fraction expansion (MCFE) for model reduction of linear multi-input multi-output (MIMO) systems with various numbers of inputs and outputs. A salient feature of the proposed MCFE approach to model reduction of MIMO systems with square transfer matrices is its equivalence to the matrix Pade approximation approach. The Cauer second form of the ordinary MCFE for a square transfer function matrix is generalized in this paper to a multipoint and nonsquare-matrix version. An interesting connection of the multipoint Cauer MCFE method to the multipoint matrix Pade approximation method is established. Also, algorithms for obtaining the reduced-degree matrix-fraction descriptions and reduced-dimensional state-space models from a transfer function matrix via the multipoint Cauer MCFE algorithm are presented. Practical advantages of using the multipoint Cauer MCFE are discussed and a numerical example is provided to illustrate the algorithms.
On Zero-Mass Ground States in Super-Membrane Matrix Models
NASA Astrophysics Data System (ADS)
Fröhlich, Jürg; Hoppe, Jens
We recall a formulation of super-membrane theory in terms of certain matrix models. These models are known to have a mass spectrum given by the positive half-axis. We show that, for the simplest such matrix model, a normalizable zero-mass ground state does _n_o_t exist.
D-brane probes in the matrix model
NASA Astrophysics Data System (ADS)
Ferrari, Frank
2014-03-01
Recently, a new approach to large N gauge theories, based on a generalization of the concept of D-brane probes to any gauge field theory, was proposed. In the present note, we compute the probe action in the one matrix model with a quartic potential. This allows to illustrate several non-trivial aspects of the construction in an exactly solvable set-up. One of our main goal is to test the bare bubble approximation. The approximate free energy found in this approximation, which can be derived from a back-of-an-envelope calculation, matches the exact result for all values of the 't Hooft coupling with a surprising accuracy. Another goal is to illustrate the remarkable properties of the equivariant partial gauge-fixing procedure, which is at the heart of the formalism. For this we use a general ξ-gauge to compute the brane action. The action depends on ξ in a very non-trivial way, yet we show explicitly that its critical value does not and coincides with twice the free energy, as required by general consistency. This is made possible by a phenomenon of ghost condensation and the spontaneous breaking of the equivariant BRST symmetry.
Matrix product states and the non-Abelian rotor model
NASA Astrophysics Data System (ADS)
Milsted, Ashley
2016-04-01
We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.
Orthosymplectic Chern-Simons matrix model and chirality projection
NASA Astrophysics Data System (ADS)
Moriyama, Sanefumi; Suyama, Takao
2016-04-01
Recently it was found that the density matrix for a certain orthosymplectic Chern-Simons theory matches with that for the ABJM theory with the odd chiral projection. We prove this fact for a general case with the inclusion of fractional branes. We also identify the first few diagonal Gopakumar-Vafa invariants for the grand potential constructed from the chirally projected density matrix. [Figure not available: see fulltext.
Sorption aspects for in situ matrix diffusion modeling at Palmottu natural analogue site, SW Finland
Rasilainen, K.; Suksi, J.; Hakanen, M.; Olin, M.
1995-12-31
Concentration profiles in rock matrix around water-carrying fissures were measured at Palmottu U deposit. The profiles were interpreted by the classical matrix diffusion concept. Site-specific sorption studies were performed for U using standard batch experiments and surface complexation modeling; the response of sorption isotherms was also tested. Site-specific matrix properties as well as initial and boundary conditions were used in simulations. The results indicate that matrix diffusion alone cannot explain the observed enrichment of U and its daughters in the rock matrix.
Shell model nuclear matrix elements for competing mechanisms contributing to double beta decay
Horoi, Mihai
2013-12-30
Recent progress in the shell model approach to the nuclear matrix elements for the double beta decay process are presented. This includes nuclear matrix elements for competing mechanisms to neutrionless double beta decay, a comparison between closure and non-closure approximation for {sup 48}Ca, and an updated shell model analysis of nuclear matrix elements for the double beta decay of {sup 136}Xe.
ERIC Educational Resources Information Center
Schartman, Laura; Rhee, Byung-Shik
This study explored the possibility of linking the Luna (1999) student flow matrix model with institutional planning at a comprehensive state institution, investigating how student flow environments were associated with student characteristics such as race, gender, citizenship, class level, entry type, and cumulative grade point average. The study…
Modeling Background Attenuation by Sample Matrix in Gamma Spectrometric Analyses
Bastos, Rodrigo O.; Appoloni, Carlos R.
2008-08-07
In laboratory gamma spectrometric analyses, the procedures for estimating background usually overestimate it. If an empty container similar to that used to hold samples is measured, it does not consider the background attenuation by sample matrix. If a 'blank' sample is measured, the hypothesis that this sample will be free of radionuclides is generally not true. The activity of this 'blank' sample is frequently sufficient to mask or to overwhelm the effect of attenuation so that the background remains overestimated. In order to overcome this problem, a model was developed to obtain the attenuated background from the spectrum acquired with the empty container. Beyond reasonable hypotheses, the model presumes the knowledge of the linear attenuation coefficient of the samples and its dependence on photon energy and samples densities. An evaluation of the effects of this model on the Lowest Limit of Detection (LLD) is presented for geological samples placed in cylindrical containers that completely cover the top of an HPGe detector that has a 66% relative efficiency. The results are presented for energies in the range of 63 to 2614keV, for sample densities varying from 1.5 to 2.5 g{center_dot}cm{sup -3}, and for the height of the material on the detector of 2 cm and 5 cm. For a sample density of 2.0 g{center_dot}cm{sup -3} and with a 2cm height, the method allowed for a lowering of 3.4% of the LLD for the energy of 1460keV, from {sup 40}K, 3.9% for the energy of 911keV from {sup 228}Ac, 4.5% for the energy of 609keV from {sup 214}Bi, and8.3% for the energy of 92keV from {sup 234}Th. For a sample density of 1.75 g{center_dot}cm{sup -3} and a 5cm height, the method indicates a lowering of 6.5%, 7.4%, 8.3% and 12.9% of the LLD for the same respective energies.
Estimating Origin-Destination Matrix of Bogor City Using Gravity Model
NASA Astrophysics Data System (ADS)
Ekowicaksono, I.; Bukhari, F.; Aman, A.
2016-01-01
Origin-Destination (O-D) Matrix describes people movement in a certain area. An O-D matrix is necessary for planning a good public transportation system. However, the exact values of O-D matrix are difficult to measure. There are several ways to estimate O-D matrix such as gravity model, gravity opportunity model, etc. In this study, gravity model was used to estimate the O-D matrix in Bogor city. The following assumptions were used to estimate the O-D matrix: (i) forces between two different zones are related to some existing parameters such as population, social-economic condition, etc. (ii) the people movements are influenced by accessibility from origin to destination, and the accessibility affected by distance, time, and/or cost.
Massless ground state for a compact SU (2) matrix model in 4D
NASA Astrophysics Data System (ADS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2015-09-01
We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU (2) matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.
Destructive interference of E2 matrix elements in a triaxial rotor model
Allmond, James M; Wood, J. L.; Kulp, W. D.
2010-01-01
A triaxial rotor model with independent inertia and electric quadrupole tensors is applied to nuclei that have certain E2 matrix elements equal to zero. It is shown that such vanishing E2 matrix elements are explained by the model as a destructive interference effect. The example of 196Pt is considered.
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1992-01-01
Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
NASA Technical Reports Server (NTRS)
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
Saigal, A.; Leisk, G.G.; Hubbard, C.R.; Misture, S.T.; Wang, X.L.
1996-04-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Open intersection numbers, matrix models and MKP hierarchy
NASA Astrophysics Data System (ADS)
Alexandrov, A.
2015-03-01
In this paper we conjecture that the generating function of the intersection numbers on the moduli spaces of Riemann surfaces with boundary, constructed recently by R. Pandharipande, J. Solomon and R. Tessler and extended by A. Buryak, is a tau-function of the KP integrable hierarchy. Moreover, it is given by a simple modification of the Kontsevich matrix integral so that the generating functions of open and closed intersection numbers are described by the MKP integrable hierarchy. Virasoro constraints for the open intersection numbers naturally follow from the matrix integral representation.
CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL
We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...
Numerical analysis of the double scaling limit in the string type IIB matrix model.
Horata, S; Egawa, H S
2001-05-14
The bosonic IIB matrix model is studied using a numerical method. This model contains the bosonic part of the IIB matrix model conjectured to be a nonperturbative definition of the type IIB superstring theory. The large N scaling behavior of the model is shown performing a Monte Carlo simulation. The expectation value of the Wilson loop operator is measured and the string tension is estimated. The numerical results show the prescription of the double scaling limit. PMID:11384258
NASA Astrophysics Data System (ADS)
Benner, Peter; Khoromskaia, Venera; Khoromskij, Boris N.
2016-04-01
The Bethe-Salpeter equation (BSE) is a reliable model for estimating the absorption spectra in molecules and solids on the basis of accurate calculation of the excited states from first principles. This challenging task includes calculation of the BSE operator in terms of two-electron integrals tensor represented in molecular orbital basis, and introduces a complicated algebraic task of solving the arising large matrix eigenvalue problem. The direct diagonalization of the BSE matrix is practically intractable due to $O(N^6)$ complexity scaling in the size of the atomic orbitals basis set, $N$. In this paper, we present a new approach to the computation of Bethe-Salpeter excitation energies which can lead to relaxation of the numerical costs up to $O(N^3)$. The idea is twofold: first, the diagonal plus low-rank tensor approximations to the fully populated blocks in the BSE matrix is constructed, enabling easier partial eigenvalue solver for a large auxiliary system relying only on matrix-vector multiplications with rank-structured matrices. And second, a small subset of eigenfunctions from the auxiliary eigenvalue problem is selected to build the Galerkin projection of the exact BSE system onto the reduced basis set. We present numerical tests on BSE calculations for a number of molecules confirming the $\\varepsilon$-rank bounds for the blocks of BSE matrix. The numerics indicates that the reduced BSE eigenvalue problem with small matrices enables calculation of the lowest part of the excitation spectrum with sufficient accuracy.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
Novaes, Marcel
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
Unified continuum damage model for matrix cracking in composite rotor blades
Pollayi, Hemaraju; Harursampath, Dineshkumar
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
A comparison between the fission matrix method, the diffusion model and the transport model
Dehaye, B.; Hugot, F. X.; Diop, C. M.
2013-07-01
The fission matrix method may be used to solve the critical eigenvalue problem in a Monte Carlo simulation. This method gives us access to the different eigenvalues and eigenvectors of the transport or fission operator. We propose to compare the results obtained via the fission matrix method with those of the diffusion model, and an approximated transport model. To do so, we choose to analyse the mono-kinetic and continuous energy cases for a Godiva-inspired critical sphere. The first five eigenvalues are computed with TRIPOLI-4{sup R} and compared to the theoretical ones. An extension of the notion of the extrapolation distance is proposed for the modes other than the fundamental one. (authors)
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.
Analytical Derivations of Single-Particle Matrix Elements in Nuclear Shell Model
NASA Astrophysics Data System (ADS)
Fatah, Aziz H.; Radhi, R. A.; Abdullah, Nzar R.
2016-07-01
We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)dr m where f(r) = rμ, rμ jJ(qr), V(r) corresponding to the Gaussian and the Yukawa potentials used in nuclear shell models and nuclear structure. In addition, we take into account a general integral formula of the matrix element
Recognizing Uncertainty in the Q-Matrix via a Bayesian Extension of the DINA Model
ERIC Educational Resources Information Center
DeCarlo, Lawrence T.
2012-01-01
In the typical application of a cognitive diagnosis model, the Q-matrix, which reflects the theory with respect to the skills indicated by the items, is assumed to be known. However, the Q-matrix is usually determined by expert judgment, and so there can be uncertainty about some of its elements. Here it is shown that this uncertainty can be…
Form factors in quantum integrable models with GL(3)-invariant R-matrix
NASA Astrophysics Data System (ADS)
Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.
2014-04-01
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Edgar, Lowell T; Maas, Steve A; Guilkey, James E; Weiss, Jeffrey A
2015-08-01
During angiogenesis, sprouting microvessels interact with the extracellular matrix (ECM) by degrading and reorganizing the matrix, applying traction forces, and producing deformation. Morphometric features of the resulting microvascular network are affected by the interaction between the matrix and angiogenic microvessels. The objective of this study was to develop a continuous-discrete modeling approach to simulate mechanical interactions between growing neovessels and the deformation of the matrix in vitro. This was accomplished by coupling an existing angiogenesis growth model which uses properties of the ECM to regulate angiogenic growth with the nonlinear finite element software FEBio (www.febio.org). FEBio solves for the deformation and remodeling of the matrix caused by active stress generated by neovessel sprouts, and this deformation was used to update the ECM into the current configuration. After mesh resolution and parameter sensitivity studies, the model was used to accurately predict vascular alignment for various matrix boundary conditions. Alignment primarily arises passively as microvessels convect with the deformation of the matrix, but active alignment along collagen fibrils plays a role as well. Predictions of alignment were most sensitive to the range over which active stresses were applied and the viscoelastic time constant in the material model. The computational framework provides a flexible platform for interpreting in vitro investigations of vessel-matrix interactions, predicting new experiments, and simulating conditions that are outside current experimental capabilities. PMID:25429840
Modeling Loading/Unloading Hysteresis Behavior of Unidirectional C/SiC Ceramic Matrix Composites
NASA Astrophysics Data System (ADS)
Longbiao, Li; Yingdong, Song; Youchao, Sun
2013-08-01
The loading/unloading tensile behavior of unidirectional C/SiC ceramic matrix composites at room temperature has been investigated. The loading/unloading stress-strain curve exhibits obvious hysteresis behavior. An approach to model the hysteresis loops of ceramic matrix composites including the effect of fiber failure during tensile loading has been developed. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix cracking space and interface debonded length are obtained by matrix statistical cracking model and fracture mechanics interface debonded criterion. The two-parameter Weibull model is used to describe the fiber strength distribution. The stress carried by the intact and fracture fibers on the matrix crack plane during unloading and subsequent reloading is determined by the Global Load Sharing criterion. Based on the damage mechanisms of fiber sliding relative to matrix during unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are obtained by the fracture mechanics approach. The hysteresis loops of unidirectional C/SiC ceramic matrix composites corresponding to different stress have been predicted.
General structure of democratic mass matrix of quark sector in E6 model
NASA Astrophysics Data System (ADS)
Ciftci, R.; ćiftci, A. K.
2016-03-01
An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
NASA Astrophysics Data System (ADS)
Orantin, N.
2007-09-01
The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.
Orientifold ABJM matrix model: chiral projections and worldsheet instantons
NASA Astrophysics Data System (ADS)
Moriyama, Sanefumi; Nosaka, Tomoki
2016-06-01
We study the partition function of the orientifold ABJM theory, which is a superconformal Chern-Simons theory associated with the orthosymplectic supergroup. We find that the partition function associated with any orthosymplectic supergroup can be realized as the partition function of a Fermi gas system whose density matrix is identical to that associated with the corresponding unitary supergroup with a projection to the even or odd chirality. Furthermore we propose an identity which gives directly all of the Gopakumar-Vafa invariants for the worldsheet instanton effects in the chirally projected theories. [Figure not available: see fulltext.
Nuclear Matrix Model: A path to nuclear physics from superstrings
Hashimoto, Koji
2011-10-21
We derive nuclear forces and nuclear density saturation from large N{sub c} QCD, by applying AdS/CFT correspondence of string theory, called holographic QCD. This is made possible by a new description of a multi-baryon system in the holographic QCD. The description employs a matrix quantum mechanics which can be derived via the correspondence. This talk is based on collaboration work with N. Iizuka and P. Yi [1], with N. Iizuka [2, 3] and with T. Morita [4].
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
A review of failure models for unidirectional ceramic matrix composites under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
A review of failure models for ceramic matrix composite laminates under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
L. Pan; Y. Seol; G. Bodvarsson
2004-04-29
The dual-continuum random-walk particle tracking approach is an attractive simulation method for simulating transport in a fractured porous medium. In order to be truly successful for such a model, however, the key issue is to properly simulate the mass transfer between the fracture and matrix continua. In a recent paper, Pan and Bodvarsson (2002) proposed an improved scheme for simulating fracture-matrix mass transfer, by introducing the concept of activity range into the calculation of fracture-matrix particle-transfer probability. By comparing with analytical solutions, they showed that their scheme successfully captured the transient diffusion depth into the matrix without any additional subgrid (matrix) cells. This technical note presents an expansion of their scheme to cases in which significant water flow through the fracture-matrix interface exists. The dual-continuum particle tracker with this new scheme was found to be as accurate as a numerical model using a more detailed grid. The improved scheme can be readily incorporated into the existing particle-tracking code, while still maintaining the advantage of needing no additional matrix cells to capture transient features of particle penetration into the matrix.
Time series, correlation matrices and random matrix models
Vinayak; Seligman, Thomas H.
2014-01-08
In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-08-01
In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-02-01
In this paper, the effect of multiple matrix cracking modes on cyclic loading/unloading hysteresis loops of 2D woven ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, are considered as the major reason for hysteresis loops of 2D woven CMCs. The effects of fiber volume content, peak stress, matrix crack spacing, interface properties, matrix cracking mode proportion and interface wear on interface slip and hysteresis loops have been analyzed. The cyclic loading/unloading hysteresis loops of 2D woven SiC/SiC composite corresponding to different peak stresses have been predicted using the present analysis. It was found that the damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire cracking modes of the composite, increases with increasing peak stress.
Estimation and Q-Matrix Validation for Diagnostic Classification Models
ERIC Educational Resources Information Center
Feng, Yuling
2013-01-01
Diagnostic classification models (DCMs) are structured latent class models widely discussed in the field of psychometrics. They model subjects' underlying attribute patterns and classify subjects into unobservable groups based on their mastery of attributes required to answer the items correctly. The effective implementation of DCMs depends…
Evaluation of Brief Intervention Models by the Hill Interaction Matrix
ERIC Educational Resources Information Center
Silbergeld, Sam; And Others
1977-01-01
To assess two group models being developed in the Mental Health Study Center, NIMH, this paper compares HIM data from these models with norms from a previous study. By contrasting HIM results from groups of married couples, young adolescents, and parents and teachers, one obtains a better understanding of the effectiveness of these models. (Author)
The Area Law in Matrix Models for Large N QCD Strings
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K. N.; Bietenholz, W.; Nishimura, J.
We study the question whether matrix models obtained in the zero volume limit of 4d Yang-Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi-Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.
Unitary-matrix models as exactly solvable string theories
NASA Technical Reports Server (NTRS)
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Y. Wu; L. Pan; K. Pruess
2004-03-16
Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.
Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten
2004-03-15
Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.
A new coal-permeability model: Internal swelling stress and fracture-matrix interaction
Liu, H.H.; Rutqvist, J.
2009-10-01
We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.
Models for predicting damage evolution in metal matrix composites subjected to cyclic loading
Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.
1995-03-01
A thermomechanical analysis of a continuous fiber metal matrix composite (MMC) subjected to cyclic loading is performed herein. The analysis includes the effects of processing induced residual thermal stresses, matrix inelasticity, and interface cracking. Due to these complexities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modelled with a rate dependent viscoplasticity model. Interface fracture is modelled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue. Results indicate rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for damage propagation, thus contributing to improved ductility of the composite. Results also indicate that the model may be useful for inclusion in life prediction methodologies for MMC`s.
Camera-Model Identification Using Markovian Transition Probability Matrix
NASA Astrophysics Data System (ADS)
Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei
Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.
Classical solutions of a torsion gravity from a large N matrix model
Isono, Hiroshi; Tomino, Dan
2010-04-15
Large N matrices can describe covariant derivatives in curved space. Applying this interpretation to the Ishibashi, Kawai, Kitazawa, and Tsuchiya matrix model, the field equation of gravity is derived from the matrix equation of motion. We study classical solutions of this field equation with torsion degrees of freedom in empty spacetime. Time-dependent solutions with homogeneity and isotropy, and time-independent solutions with spherical symmetry are investigated under particular settings of torsions.
NASA Astrophysics Data System (ADS)
Li, Longbiao
2016-06-01
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.
NASA Astrophysics Data System (ADS)
Li, Longbiao
2015-09-01
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.
Modelling the nanomechanical response of a micro particle-matrix system for nanoindentation tests.
Cao, Yunyi; Duan, Pengfei; Chen, Jinju
2016-05-13
A lot of experimental, numerical simulation and analytical modelling work has been done on how the substrate affects the measured hardness and elastic modulus of the coating/substrate system for nanoindentation tests. Little work has been done on the elastic-plastic behaviour of micro particle-matrix systems. Clifford et al have proposed an empirical model to describe the spatially dependent composite modulus during nanoindentation tests for linear elastic particles embedded in a linear elastic matrix. However, no such models have been developed for elastic-plastic composites. In this study, finite element simulations were used to determine the elastic modulus and hardness of hard particles embedded in a soft matrix and vice versa. An extended Clifford model has been developed to determine the elastic modulus and hardness for elastic-plastic composites with various particle shapes and volume fractions. PMID:27041486
Modelling the nanomechanical response of a micro particle–matrix system for nanoindentation tests
NASA Astrophysics Data System (ADS)
Cao, Yunyi; Duan, Pengfei; Chen, Jinju
2016-05-01
A lot of experimental, numerical simulation and analytical modelling work has been done on how the substrate affects the measured hardness and elastic modulus of the coating/substrate system for nanoindentation tests. Little work has been done on the elastic–plastic behaviour of micro particle–matrix systems. Clifford et al have proposed an empirical model to describe the spatially dependent composite modulus during nanoindentation tests for linear elastic particles embedded in a linear elastic matrix. However, no such models have been developed for elastic–plastic composites. In this study, finite element simulations were used to determine the elastic modulus and hardness of hard particles embedded in a soft matrix and vice versa. An extended Clifford model has been developed to determine the elastic modulus and hardness for elastic–plastic composites with various particle shapes and volume fractions.
Followee Recommendation in Microblog Using Matrix Factorization Model with Structural Regularization
Yu, Yan; Qiu, Robin G.
2014-01-01
Microblog that provides us a new communication and information sharing platform has been growing exponentially since it emerged just a few years ago. To microblog users, recommending followees who can serve as high quality information sources is a competitive service. To address this problem, in this paper we propose a matrix factorization model with structural regularization to improve the accuracy of followee recommendation in microblog. More specifically, we adapt the matrix factorization model in traditional item recommender systems to followee recommendation in microblog and use structural regularization to exploit structure information of social network to constrain matrix factorization model. The experimental analysis on a real-world dataset shows that our proposed model is promising. PMID:25143979
Yu, Yan; Qiu, Robin G
2014-01-01
Microblog that provides us a new communication and information sharing platform has been growing exponentially since it emerged just a few years ago. To microblog users, recommending followees who can serve as high quality information sources is a competitive service. To address this problem, in this paper we propose a matrix factorization model with structural regularization to improve the accuracy of followee recommendation in microblog. More specifically, we adapt the matrix factorization model in traditional item recommender systems to followee recommendation in microblog and use structural regularization to exploit structure information of social network to constrain matrix factorization model. The experimental analysis on a real-world dataset shows that our proposed model is promising. PMID:25143979
Caruso, E.M.; Lewandrowski, K.U.; Ohlendorf, C.; Tomford, W.W.; Zaleske, D.J.
1996-01-01
Growth of chondrocytes into a xenogeneic chondroepiphyseal matrix was investigated in an in vitro experimental model by combining viable calf chondrocytes with chick epiphyseal matrix devoid of viable chondrocytes. The chondrocytes were harvested from the wrist joints of newborn calves and cultured for 2 days. The epiphyses were harvested from the distal femurs and the proximal tibias of fetal chicks after development was arrested at 17 days by freezing. The epiphyseal specimens were prepared in four ways. These included femoral and tibial epiphyses without holes and femoral and tibial epiphyses with holes made by a laser. These epiphyseal specimens were co-cultured with calf chondrocytes for various periods. After digestion of the epiphyseal matrix, viable chondrocytes were counted in suspension. Chondrocyte division in the matrix was assessed by [{sup 3}H]thymidine incorporation. The growth of calf chondrocytes into the xenogeneic chick matrix was evaluated by fluorescence microscopy on fresh thick epiphyseal sections. The percentage of viable chondrocytes in the xenogeneic epiphyseal matrix increased with culture time to a maximum at day 21. The addition of laser-drilled holes was found to extend a plateau of chondrocyte viability until day 29. A decrease in cell viability was detected at later observation points. This study demonstrates that xenogeneic matrix may serve as a morphogenetic scaffold for chondrocytic growth. 22 refs., 3 figs.
Random matrix theory and classical statistical mechanics: Spin models
NASA Astrophysics Data System (ADS)
Meyer, H.; Angles D'Auriac, J.-C.
1997-06-01
We present a statistical analysis of spectra of transfer matrices of classical lattice spin models; this continues the work on the eight-vertex model of the preceding paper [H. Meyer, J.-C. Anglès d'Auriac, and J.-M. Maillard, Phys. Rev. E 55, 5261 (1997)]. We show that the statistical properties of these spectra can serve as a criterion of integrability. It also provides an operational numerical method to locate integrable varieties. In particular, we distinguish the notions of integrability and criticality, considering the two examples of the three-dimensional Ising critical point and the two-dimensional three-state Potts critical point. For complex spectra, which appear frequently in the context of transfer matrices, we show that the notion of independence of eigenvalues for integrable models still holds.
A penny-shaped crack in a filament reinforced matrix. 1: The filament model
NASA Technical Reports Server (NTRS)
Erdogan, F.; Pacella, A. H.
1973-01-01
The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.
Free energy and phase transition of the matrix model on a plane wave
Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.; Young, Donovan
2005-03-15
It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedorn temperature to order two loops.
Matrix Solution of Coupled Differential Equations and Looped Car Following Models
ERIC Educational Resources Information Center
McCartney, Mark
2008-01-01
A simple mathematical model for the behaviour of how vehicles follow each other along a looped stretch of road is described. The resulting coupled first order differential equations are solved using appropriate matrix techniques and the physical significance of the model is discussed. A number possible classroom exercises are suggested to help…
On the Non Unitary Neutrino Mixing Matrix in 331 Model with Three Higgs Triplets
NASA Astrophysics Data System (ADS)
Mebarki, N.
2015-04-01
The neutrino mixing phenomenon is studied within the non unitary Pontecorvo- Maki-Nakagawa-Sakata modified matrix (PMNS) in the context of the low energy limit of the minimal 331 model without right handed neutrinos as a deviation from the standard model. Moreover, comparison with the recent experimental data gives some stringent bounds on some physical parameters.
Development of a Matrix of Teaching Models Based on Instructional and Nurturant Effects
ERIC Educational Resources Information Center
Miller, Ava S.; Anderson, Stoerm E.
2007-01-01
The selection of appropriate teaching models with which to bring about meaningful learning is an important and fundamental concern of the professional educator. This paper describes the development of a matrix of models and effects that was a three step process involving the compilation of a list of effects; the development of effect categories by…
EXPANDED STARCH AS A FLOATING DOSAGE MATRIX FOR THE CONTROLLED RELEASE OF MODEL DRUG COMPOUNDS
Technology Transfer Automated Retrieval System (TEKTRAN)
Starch-based materials were tested using model drug compounds to determine the feasibility of using starch as an oral floating dosage matrix. Oral controlled release systems require increased bio-availability, predictable release rates, and site-specific delivery. Starch and model drugs were compo...
Continuing Education Leadership Matrix: A Model for Practitioners in Higher Education
ERIC Educational Resources Information Center
Moroney, Peter
2007-01-01
Continuing education (CE) units are a diverse blend of philosophical and pedagogical approaches, personal aptitudes, and professional knowledge and skills. The Continuing Education Leadership Matrix model is presented as a conceptual framework for understanding and managing CE practice. The model is useful to leaders and managers working within CE…
NASA Astrophysics Data System (ADS)
Somerville, W. R. C.; Auguié, B.; Le Ru, E. C.
2016-03-01
SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.
NASA Astrophysics Data System (ADS)
Kang, Jianhong; Zhou, Fubao; Ye, Gaobang; Liu, Yingke
2015-12-01
Methane desorption in coal matrix is one of the fundamental gas transport processes during coalbed methane extraction, the mechanism of which is commonly described by Fickian diffusion theory. Here, an anomalous subdiffusion model with fractional derivatives is developed to explore the methane desorption in coal matrix with a highly heterogeneous pore structure. Numerical simulations reproduce the volume fraction of gas desorbed over the entire timescale of experimental desorption. It is suggested that the diffusion of methane in heterogeneous coal matrix may obey the anomalous time and space subdiffusion, rather than Fickian second law. The physical reason is perhaps due to the basic topological complexity inherent to porous coal matrix and the strong adsorption effect of coal on methane molecules.
3D self-consistent modeling of a matrix source of negative hydrogen ions.
Tarnev, Kh; Demerdjiev, A; Shivarova, A; Lishev, St
2016-02-01
The paper is in the scope of studies on the rf driving of a matrix source of negative hydrogen ions: a matrix of small radius discharges with planar-coil inductive driving and single aperture extraction from each discharge. The results from a three-dimensional model, in which plasma description is coupled to electrodynamics, confirm former conclusion that a single coil driving of the whole matrix by a zigzag coil with an omega-shaped conductor on the bottom of each discharge tube ensures efficient rf power deposition to the plasma. The latter is due to similarities with the rf driving of a single discharge by a single planar coil, shown by the obtained induced current and spatial distribution of the plasma parameters. Distinctions associated with the coil configuration as a single coil for the whole matrix are also discussed. PMID:26932005
Matrix cracking initiated by fibre breaks in model composites
NASA Astrophysics Data System (ADS)
Gent, A. N.; Wang, C.
1992-05-01
A simple model composite in which two inextensible rods are placed along the axis of a cylindrical elastic block and touch at the center is presently investigated for the initiation of resin fracture by a tensile break in a fiber. FEM was used to calculate the energy release rate of a crack growing outward from the point where the rod ends separated, as they were pulled apart; a comparison with the results of experimental observations of a steel rod-containing silicone rubber cylinder show good agreement with the maximum force that the model system could support. When the sample was surrounded by a rigid tube, growth of a crack required an increasing load at all stages. The relevance of these results to unidirectional fiber-reinforced materials is discussed.
Modeling the densification of metal matrix composite monotape
NASA Technical Reports Server (NTRS)
Elzey, D. M.; Wadley, H. N. G.
1993-01-01
We present a first model that enables prediction of the density (and its time evolution) of a monotape lay-up subjected to a hot isostatic or vacuum hot pressing consolidation cycle. Our approach is to break down the complicated (and probabilistic) consolidation problem into simple, analyzable parts and to combine them in a way that correctly represents the statistical aspects of the problem, the change in the problem's interior geometry, and the evolving contributions of the different deformation mechanisms. The model gives two types of output. One is in the form of maps showing the relative density dependence upon pressure, temperature, and time for step function temperature and pressure cycles. They are useful for quickly determining the best place to begin developing an optimized process. The second gives the evolution of density over time for any (arbitrary) applied temperature and pressure cycle. This has promise for refining process cycles and possibly for process control. Examples of the models application are given for Ti3Al + Nb, gamma TiAl, Ti6Al4V, and pure aluminum.
Fermionic backgrounds and condensation of supergravity fields in the type IIB matrix model
Iso, Satoshi; Terachi, Hidenori; Sugino, Fumihiko; Umetsu, Hiroshi
2005-09-15
In a previous paper 1 we constructed wave functions of a D-instanton and vertex operators in type IIB matrix model by expanding supersymmetric Wilson line operators. They describe couplings of a D-instanton and type IIB matrix model to the massless closed string fields, respectively, and form a multiplet of D=10 N=2 supersymmetries. In this paper we consider fermionic backgrounds and condensation of supergravity fields in IIB matrix model by using these wave functions. We start from the type IIB matrix model in a flat background whose matrix size is (N+1)x(N+1), or equivalently the effective action for (N+1) D-instantons. We then calculate an effective action for N D-instantons by integrating out 1 D-instanton (which we call a mean-field D-instanton) with an appropriate wave function and show that various terms can be induced corresponding to the choice of the wave functions. In particular, a Chern-Simons-like term is induced when the mean-field D-instanton has a wave function of the antisymmetric tensor field. A fuzzy sphere becomes a classical solution to the equation of motion for the effective action. We also give an interpretation of the above wave functions in the superstring theory side as overlaps of the D-instanton boundary state with the closed string massless states in the Green-Schwarz formalism.
A creep model for metallic composites based on matrix testing: Application to Kanthal composites
NASA Technical Reports Server (NTRS)
Binienda, W. K.; Robinson, D. N.; Arnold, S. M.; Bartolotta, Paul A.
1990-01-01
An anisotropic creep model is formulated for metallic composites with strong fibers and low to moderate fiber volume percent (less than 40 percent). The idealization admits no creep in the local fiber direction and assumes equal creep strength in longitudinal and transverse shear. Identification of the matrix behavior with that of the isotropic limit of the theory permits characterization of the composite through uniaxial creep tests on the matrix material. Constant and step-wise creep tests are required as a data base. The model provides an upper bound on the transverse creep strength of a composite having strong fibers embedded in a particular matrix material. Comparison of the measured transverse strength with the upper bound gives an assessment of the integrity of the composite. Application is made to a Kanthal composite, a model high-temperature composite system. Predictions are made of the creep response of fiber reinforced Kanthal tubes under interior pressure.
NASA Astrophysics Data System (ADS)
Ramadan, Omar
2012-05-01
Unified matrix-exponential finite difference time domain (ME-FDTD) formulations are presented for modeling linear multi-term electrically and magnetically dispersive materials. In the proposed formulations, Maxwell's curl equations and the related dispersive constitutive relations are cast into a set of first-order differential matrix system and the field's update equations can be extracted directly from the matrix-exponential approximation. The formulations have the advantage of simplicity as it allows modeling different linear dispersive materials in a systematic manner and also can be easily incorporated with the perfectly matched layer (PML) absorbing boundary conditions (ABCs) to model open region problems. Apart from its simplicity, it has been shown that the proposed formulations necessitate less storage requirements as compared with the well-know auxiliary differential equation FDTD (ADE-FDTD) scheme while maintaining the same accuracy performance.
Computational modeling of structure of metal matrix composite in centrifugal casting process
NASA Astrophysics Data System (ADS)
Zagórski, Roman
2007-04-01
The structure of alumina matrix composite reinforced with crystalline particles obtained during centrifugal casting process are studied. Several parameters of cast process like pouring temperature, temperature, rotating speed and size of casting mould which influent on structure of composite are examined. Segregation of crystalline particles depended on other factors such as: the gradient of density of the liquid matrix and reinforcement, thermal processes connected with solidifying of the cast, processes leading to changes in physical and structural properties of liquid composite are also investigated. All simulation are carried out by CFD program Fluent. Numerical simulations are performed using the FLUENT two-phase free surface (air and matrix) unsteady flow model (volume of fluid model — VOF) and discrete phase model (DPM).
Collective field theory of a singular supersymmetric matrix model
de Mello Koch, R.; Rodrigues, J.P.
1995-05-15
The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.
Matrix model maps and reconstruction of AdS supergravity interactions
Cremonini, Sera; Mello Koch, Robert de; Jevicki, Antal
2008-05-15
We consider the question of reconstructing (cubic) SUGRA interactions in AdS/CFT. The method we introduce is based on the matrix model maps (MMP) which were previously successfully employed at the linearized level. The strategy is to start with the map for 1/2 BPS configurations, which is exactly known (to all orders) in the Hamiltonian framework. We then use the extension of the matrix model map with the corresponding Ward identities to completely specify the interaction. A central point in this construction is the nonvanishing of off-shell interactions (even for highest-weight states)
The ground state of the D = 11 supermembrane and matrix models on compact regions
NASA Astrophysics Data System (ADS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2016-09-01
We establish a general framework for the analysis of boundary value problems of matrix models at zero energy on compact regions. We derive existence and uniqueness of ground state wavefunctions for the mass operator of the D = 11 regularized supermembrane theory, that is the N = 16 supersymmetric SU (N) matrix model, on balls of finite radius. Our results rely on the structure of the associated Dirichlet form and a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the potential and various other supersymmetric properties of the system.
Ateshian, Gerard A.; Rajan, Vikram; Chahine, Nadeen O.; Canal, Clare E.; Hung, Clark T.
2010-01-01
Background Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. Method of approach In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. Results It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue’s equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson’s ratio from very low values in compression (~0.02) to very high values in tension (~2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. Conclusions The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (G. A. Ateshian. J Biomech Eng, 129(2):240-9, 2007). PMID:19449957
Ateshian, Gerard A; Rajan, Vikram; Chahine, Nadeen O; Canal, Clare E; Hung, Clark T
2009-06-01
Cartilage is a hydrated soft tissue whose solid matrix consists of negatively charged proteoglycans enmeshed within a fibrillar collagen network. Though many aspects of cartilage mechanics are well understood today, most notably in the context of porous media mechanics, there remain a number of responses observed experimentally whose prediction from theory has been challenging. In this study the solid matrix of cartilage is modeled with a continuous fiber angular distribution, where fibers can only sustain tension, swelled by the osmotic pressure of a proteoglycan ground matrix. It is shown that this representation of cartilage can predict a number of observed phenomena in relation to the tissue's equilibrium response to mechanical and osmotic loading, when flow-dependent and flow-independent viscoelastic effects have subsided. In particular, this model can predict the transition of Poisson's ratio from very low values in compression (approximately 0.02) to very high values in tension (approximately 2.0). Most of these phenomena cannot be explained when using only three orthogonal fiber bundles to describe the tissue matrix, a common modeling assumption used to date. The main picture emerging from this analysis is that the anisotropy of the fibrillar matrix of articular cartilage is intimately dependent on the mechanism of tensed fiber recruitment, in the manner suggested by our recent theoretical study (Ateshian, 2007, ASME J. Biomech. Eng., 129(2), pp. 240-249). PMID:19449957
Cotte, F.P.; Doughty, C.; Birkholzer, J.
2010-11-01
The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation
Hwang, Kyung-A; Yi, Bo-Rim; Choi, Kyung-Chul
2011-03-01
Skin is the most superficial body organ and plays an important role in protecting the body from environmental damage and in forming social relations. With the increase of the aging population in our society, dermatological and cosmetic concerns of skin aging are rapidly increasing. Skin aging is a complex process combined with intrinsic and extrinsic factors. Intrinsic or chronological skin aging results from the passage of time and is influenced by genetic factors. Extrinsic skin aging is mainly determined by UV irradiation, also called photoaging. These two types of aging processes are superimposed on sun-exposed skin, and have a common feature of causing dermal matrix alterations that mostly contribute to the formation of wrinkles, laxity, and fragility of aged skin. The dermal matrix contains extracellular matrix proteins such as collagen, elastin, and proteoglycans that confer the strength and resiliency of skin. Skin aging associated with dermal matrix alterations and atrophy can be caused by cellular senescence of dermal cells like fibroblasts, and decreased synthesis and accelerated degradation of dermal matrix components, especially collagen fibers. Both intrinsic aging and photoaging exert influence during each step of dermal matrix alteration via different mechanisms. Mouse models of skin aging have been extensively developed to elucidate intrinsic aging and photoaging processes, to validate in vitro biochemical data, and to test the effects of pharmacological tools for retarding skin aging because they have the advantages of being genetically similar to humans and are easily available. PMID:21826153
Delossantos, Aubrey I; Rodriguez, Neil L; Patel, Paarun; Franz, Michael G; Wagner, Christopher T
2013-01-01
We compared fascial wounds repaired with non-cross-linked intact porcine-derived acellular dermal matrix versus primary closure in a large-animal hernia model. Incisional hernias were created in Yucatan pigs and repaired after 3 weeks via open technique with suture-only primary closure or intraperitoneally placed porcine-derived acellular dermal matrix. Progressive changes in mechanical and biological properties of porcine-derived acellular dermal matrix and repair sites were assessed. Porcine-derived acellular dermal matrix–repaired hernias of additional animals were evaluated 2 and 4 weeks post incision to assess porcine-derived acellular dermal matrix regenerative potential and biomechanical changes. Hernias repaired with primary closure showed substantially more scarring and bone hyperplasia along the incision line. Mechanical remodeling of porcine-derived acellular dermal matrix was noted over time. Porcine-derived acellular dermal matrix elastic modulus and ultimate tensile stress were similar to fascia at 6 weeks. The biology of porcine-derived acellular dermal matrix–reinforced animals was more similar to native abdominal wall versus that with primary closure. In this study, porcine-derived acellular dermal matrix–reinforced repairs provided more complete wound healing response compared with primary closure. PMID:24555008
Modeling and controller design of a wind energy conversion system including a matrix converter
NASA Astrophysics Data System (ADS)
Barakati, S. Masoud
In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to interface the induction generator with the grid and control the wind turbine shaft speed. At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. Through the matrix converter, the terminal voltage and frequency of the induction generator is controlled, based on a constant V/f strategy, to adjust the turbine shaft speed and accordingly, control the active power injected into the grid to track maximum power for all wind velocities. The power factor at the interface with the grid is also controlled by the matrix converter to either ensure purely active power injection into the grid for optimal utilization of the installed wind turbine capacity or assist in regulation of voltage at the point of connection. Furthermore, the reactive power requirements of the induction generator are satisfied by the matrix converter to avoid use of self-excitation capacitors. The thesis addresses two dynamic models: a comprehensive dynamic model for a matrix converter and an overall dynamical model for the proposed wind turbine system. The developed matrix converter dynamic model is valid for both steady-state and transient analyses, and includes all required functions, i.e., control of the output voltage, output frequency, and input displacement power factor. The model is in the qdo reference frame for the matrix converter input and output voltage and current fundamental components. The validity of this model is confirmed by comparing the results obtained from the developed model and a simplified fundamental-frequency equivalent circuit-based model. In developing the overall dynamic model of the proposed wind turbine system, individual models of the mechanical aerodynamic conversion, drive train, matrix converter, and squirrel-cage induction generator are developed
NASA Astrophysics Data System (ADS)
Germer, Thomas A.; Patrick, Heather J.
2011-10-01
We measure the Mueller matrix bidirectional reflectance distribution function (BRDF) of pressed and sintered powdered polytetrafluoroethylene (PTFE) reflectance standards for an incident angle of 75°. Rotationallyaveraged Mueller matrices from the materials showed a small asymmetry M12 ≠ M21 and M34 ≠ -M43 in the in-plane geometry. This asymmetry, however, followed Helmholtz reciprocity rules. A significant anisotropy was observed in the sintered samples, which was manifested as non-zero off-block diagonal elements that depended upon rotation of the samples. Modeling using a Mueller matrix extension to the radiative transfer equation was performed. While there was not quantitative agreement, some aspects of the data were observed, including the asymmetry. Availability of an improved Mueller matrix phase function should improve the quality of the model-experiment agreement.
One-factor model for the cross-correlation matrix in the Vietnamese stock market
NASA Astrophysics Data System (ADS)
Nguyen, Quang
2013-07-01
Random matrix theory (RMT) has been applied to the analysis of the cross-correlation matrix of a financial time series. The most important findings of previous studies using this method are that the eigenvalue spectrum largely follows that of random matrices but the largest eigenvalue is at least one order of magnitude higher than the maximum eigenvalue predicted by RMT. In this work, we investigate the cross-correlation matrix in the Vietnamese stock market using RMT and find similar results to those of studies realized in developed markets (US, Europe, Japan) [9-18] as well as in other emerging markets[20,21,19,22]. Importantly, we found that the largest eigenvalue could be approximated by the product of the average cross-correlation coefficient and the number of stocks studied. We demonstrate this dependence using a simple one-factor model. The model could be extended to describe other characteristics of the realistic data.
Boldman, K G; Van Vleck, L D
1991-12-01
Estimation of (co)variance components by derivative-free REML requires repeated evaluation of the log-likelihood function of the data. Gaussian elimination of the augmented mixed model coefficient matrix is often used to evaluate the likelihood function, but it can be costly for animal models with large coefficient matrices. This study investigated the use of a direct sparse matrix solver to obtain the log-likelihood function. The sparse matrix package SPARSPAK was used to reorder the mixed model equations once and then repeatedly to solve the equations by Cholesky factorization to generate the terms required to calculate the likelihood. The animal model used for comparison contained 19 fixed levels, 470 maternal permanent environmental effects, and 1586 direct and 1586 maternal genetic effects, resulting in a coefficient matrix of order 3661 with .3% nonzero elements after including numerator relationships. Compared with estimation via Gaussian elimination of the unordered system, utilization of SPARSPAK required 605 and 240 times less central processing unit time on mainframes and personal computers, respectively. The SPARSPAK package also required less memory and provided solutions for all effects in the model. PMID:1787202
Numerical Modeling on Two phase Fluid flow in a Coupled Fracture-Skin-Matrix System
NASA Astrophysics Data System (ADS)
Valsala Kumari, R.; G, S. K.
2015-12-01
Multiphase flow modeling studies below the ground surface is very essential for designing suitable remediation strategies for contaminated aquifers and for the development of petroleum and geothermal reservoirs. Presence of fractured bedrock beneath the ground surface will make multiphase flow process more complex due to its highly heterogeneous nature. A major challenge in modeling flow within a fractured rock is to capture the interaction between the high permeability fracture and the low permeability rock-matrix. In some instances, weathering and mineral depositions will lead to formation of an additional layer named fracture-skin at the fracture-matrix interface. Porosity and permeability of fracture-skin may significantly vary from the adjacent rock matrix and this variation will result in different flow and transport behavior within the fracture-skin. In the present study, an attempt has been made to model simultaneous flow of two immiscible phases (water and LNAPL) in a saturated coupled fracture-skin-matrix system. A fully-implicit finite difference model has been developed to simulate the variation of pressure and saturation of fluid phases along the fracture and within the rock-matrix. Sensitivity studies have been done to analyze the effect of change of various fracture-skin parameters such as porosity, diffusion coefficient and thickness on pressure and saturation distribution of both wetting and non-wetting fluid phases. It can be concluded from the study that the presence of fracture-skin is significantly affecting the fluid flow at the fracture-matrix interface and it can also be seen from the study that the flow behavior of both fluid phases is sensitive to fracture-skin parameters.
Matrix model and holographic baryons in the D0-D4 background
NASA Astrophysics Data System (ADS)
Li, Si-wen; Jia, Tuo
2015-08-01
We study the spectrum and short-distance two-body force of holographic baryons by the matrix model, which is derived from the Sakai-Sugimoto model in the D0-D4 background (D0-D4/D8 system). The matrix model is derived by using the standard technique in string theory, and it can describe multibaryon systems. We rederive the action of the matrix model from open string theory on the baryon vertex, which is embedded in the D0-D4/D8 system. The matrix model offers a more systematic approach to the dynamics of the baryons at short distances. In our system, we find that the matrix model describes stable baryonic states only if ζ =UQ0 3/UKK 3<2 , where UQ0 3 is related to the number density of smeared D0-branes. This result in our paper is exactly the same as some previous results studied in this system, presented in [W. Cai, C. Wu, and Z. Xiao, Phys. Rev. D 90, 106001 (2014)]. We also compute the baryon spectrum (k =1 case) and short-distance two-body force of baryons (k =2 case). The baryon spectrum is modified and could be able to fit the experimental data if we choose a suitable value for ζ . And the short-distance two-body force of baryons is also modified by the appearance of smeared D0-branes from the original Sakai-Sugimoto model. If ζ >2 , we find that the baryon spectrum will be totally complex and an attractive force will appear in the short-distance interaction of baryons, which may consistently correspond to the existence of unstable baryonic states.
Elasticity analyses of size-based red and white abalone matrix models: management and conservation.
Rogers-Bennett, Laura; Leaf, Robert T
2006-02-01
Prospective elasticity analyses have been used to aid in the management of fished species and the conservation of endangered species. Elasticities were examined for deterministic size-based matrix models of red abalone, Haliotis rufescens, and white abalone, H. sorenseni, to evaluate which size classes influenced population growth (lambda) the most. In the red abalone matrix, growth transitions were determined from a tag recapture study and grouped into nine size classes. In the white abalone matrix, abalone growth was determined from a laboratory study and grouped into five size classes. Survivorship was estimated from tag recapture data for red abalone using a Jolly-Seber model with size as a covariate and used for both red and white abalone. Reproduction estimates for both models used averages of the number of mature eggs produced by female red and white abalone in each size class from four-year reproduction studies. Population growth rate (lambda) was set to 1.0, and the first-year survival (larval survival through to the first size class) was estimated by iteration. Survival elasticities were higher than fecundity elasticities in both the red and white matrix models. The sizes classes with the greatest survival elasticities, and therefore the most influence on population growth in the model, were the sublegal red abalone (150-178 mm) and the largest white abalone size class (140-175 mm). For red abalone, the existing minimum legal size (178 mm) protects the size class the model suggests is critical to population growth. Implementation of education programs for novice divers coupled with renewed enforcement may serve to minimize incidental mortality of the critical size class. For white abalone, conservation efforts directed at restoring adults may have more of an impact on population growth than efforts focusing on juveniles. Our work is an example of how prospective elasticity analyses of size-structured matrix models can be used to quantitatively evaluate
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.
LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact
NASA Technical Reports Server (NTRS)
Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.
2003-01-01
A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.
Nucleon statistics in holographic QCD: Aharonov-Bohm effect in a matrix model
Hashimoto, Koji; Iizuka, Norihiro
2010-11-15
We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and P. Yi, J. High Energy Phys. 10 (2010), 3.] derives the statistical nature of nucleons in holographic QCD. For N{sub c}=odd (even), the nucleon is shown to be a fermion (boson).
Nucleon statistics in holographic QCD: Aharonov-Bohm effect in a matrix model
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Iizuka, Norihiro
2010-11-01
We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and P. Yi, J. High Energy Phys.JHEPFG1029-8479 10 (2010), 3.10.1007/JHEP10(2010)003] derives the statistical nature of nucleons in holographic QCD. For Nc=odd (even), the nucleon is shown to be a fermion (boson).
Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model
NASA Astrophysics Data System (ADS)
Ito, Yuta; Nishimura, Jun; Tsuchiya, Asato
2015-11-01
Recent studies on the Lorentzian version of the type IIB matrix model show that (3+1)D expanding universe emerges dynamically from (9+1)D space-time predicted by superstring theory. Here we study a bosonic matrix model obtained by omitting the fermionic matrices. With the adopted simplification and the usage of a large-scale parallel computer, we are able to perform Monte Carlo calculations with matrix size up to N = 512, which is twenty times larger than that used previously for the studies of the original model. When the matrix size is larger than some critical value N c ≃ 110, we find that (3+1)D expanding universe emerges dynamically with a clear large- N scaling property. Furthermore, the observed increase of the spatial extent with time t at sufficiently late times is consistent with a power-law behavior t 1/2, which is reminiscent of the expanding behavior of the Friedmann-Robertson-Walker universe in the radiation dominated era. We discuss possible implications of this result on the original supersymmetric model including fermionic matrices.
Modeling of Interaction Layer Growth Between U-Mo Particles and an Al Matrix
Yeon Soo Kim; G. L. Hofman; Ho Jin Ryu; Jong Man Park; A. B. Robinson; D. M. Wachs
2013-12-01
Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 degrees C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea’s KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.
A New Equation Solver for Modeling Turbulent Flow in Coupled Matrix-Conduit Flow Models.
Hubinger, Bernhard; Birk, Steffen; Hergarten, Stefan
2016-07-01
Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton-Raphson expression and a Gauß-Seidel or successive over-relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW-2005. It substantially reduces the computational effort as demonstrated by steady-state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations. PMID:26821785
NASA Astrophysics Data System (ADS)
Cotte, F.; Doughty, C.; Birkholzer, J. T.
2010-12-01
An essential condition for performance evaluation of enhanced geothermal systems (EGS) resides in the ability to reliably predict fluid flow and heat transport in fractured porous rocks, where fast convection-dispersive transport through the fracture network can be strongly affected by heat conduction into the adjacent rock matrix. SWIW tests are single-well tracer tests that involve an initial period of fluid and tracer injection followed by a period of fluid withdrawal. As a result of the flow field reversal, the measured breakthrough curves tend to be less sensitive to advective heterogeneities and more sensitive to matrix diffusion and sorption, making this method very valuable in characterizing fracture-matrix interaction and evaluating matrix properties. In particular, we propose using SWIW tests before and after hydrofracking operations, to help assess the means by which hydrofracking increases permeability and enhances fracture-matrix interaction. In the present study, we have modeled single-well injection-withdrawal (SWIW) tests for non-sorbing and sorbing tracers, using the mixed Eulerian-Lagrangian transport simulator TRIPOLY, which solves tracer advection and dispersion in fracture networks together with solute exchange processes between the fractures and the porous matrix. Our simulations were conducted for hypothetical but workable SWIW test designs considering a variety of statistically generated 2D fracture-matrix systems. Parameter sensitivity studies were completed on three physical parameters of the rock matrix, namely porosity, diffusion coefficient and retardation coefficient, in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, was modeled in two different ways, one by increasing the fracture aperture for flow and the other one by adding a new set of fractures to the fracture network. The results of all these different tests were analyzed by studying the population of
Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka
2011-01-01
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy. PMID:22235372
Statistical model of dephasing in mesoscopic devices introduced in the scattering matrix formalism
NASA Astrophysics Data System (ADS)
Pala, Marco G.; Iannaccone, Giuseppe
2004-06-01
We propose a phenomenological model of dephasing in mesoscopic transport, based on the introduction of random-phase fluctuations in the computation of the scattering matrix of the system. A Monte Carlo averaging procedure allows us to extract electrical and microscopic device properties. We show that, in this picture, scattering matrix properties enforced by current conservation and time-reversal invariance still hold. In order to assess the validity of the proposed approach, we present simulations of conductance and magnetoconductance of Aharonov-Bohm rings that reproduce the behavior observed in experiments, in particular as far as aspects related to decoherence are concerned.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and
Massive quiver matrix models for massive charged particles in AdS
NASA Astrophysics Data System (ADS)
Asplund, Curtis T.; Denef, Frederik; Dzienkowski, Eric
2016-01-01
We present a new class of N=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.
ZHANG, HONGQI; CHU, GE; PAN, CHAO; HU, JIANZHONG; GUO, CHAOFENG; LIU, JINYANG; WANG, YUXIANG; WU, JIANHUANG
2014-01-01
This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9
A differential CDM model for fatigue of unidirectional metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1992-01-01
A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K.; Azuma, T.; Nishimura, J.
The IKKT or IIB matrix model has been postulated to be a non perturbative definition of superstring theory. It has the attractive feature that spacetime is dynamically generated, which makes possible the scenario of dynamical compactification of extra dimensions, which in the Euclidean model manifests by spontaneously breaking the SO(10) rotational invariance (SSB). In this work we study using Monte Carlo simulations the 6 dimensional version of the Euclidean IIB matrix model. Simulations are found to be plagued by a strong complex action problem and the factorization method is used for effective sampling and computing expectation values of the extent of spacetime in various dimensions. Our results are consistent with calculations using the Gaussian Expansion method which predict SSB to SO(3) symmetric vacua, a finite universal extent of the compactified dimensions and finite spacetime volume.
Cushing, J.M.
2014-01-01
In nonlinear matrix models, strong Allee effects typically arise when the fundamental bifurcation of positive equilibria from the extinction equilibrium at r=1 (or R 0=1) is backward. This occurs when positive feedback (component Allee) effects are dominant at low densities and negative feedback effects are dominant at high densities. This scenario allows population survival when r (or equivalently R 0) is less than 1, provided population densities are sufficiently high. For r>1 (or equivalently R 0>1) the extinction equilibrium is unstable and a strong Allee effect cannot occur. We give criteria sufficient for a strong Allee effect to occur in a general nonlinear matrix model. A juvenile–adult example model illustrates the criteria as well as some other possible phenomena concerning strong Allee effects (such as positive cycles instead of equilibria). PMID:24963977
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.
Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
Dijckmans, A; Vermeir, G
2013-04-01
In this paper, a hybrid wave based-transfer matrix model is presented that allows for the investigation of the sound transmission through finite multilayered structures placed between two reverberant rooms. The multilayered structure may consist of an arbitrary configuration of fluid, elastic, or poro-elastic layers. The field variables (structural displacements and sound pressures) are expanded in terms of structural and acoustic wave functions. The boundary and continuity conditions in the rooms determine the participation factors in the pressure expansions. The displacement of the multilayered structure is determined by the mechanical impedance matrix, which gives a relation between the pressures and transverse displacements at both sides of the structure. The elements of this matrix are calculated with the transfer matrix method. First, the hybrid model is numerically validated. Next a comparison is made with sound transmission loss measurements of a hollow brick wall and a sandwich panel. Finally, numerical simulations show the influence of structural damping, room dimensions and plate dimensions on the sound transmission loss of multilayered structures. PMID:23556585
Deformed Matrix Models, Supersymmetric Lattice Twists and N=1/4 Supersymmetry
Unsal, Mithat
2008-09-24
A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N = (8, 8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q = 1 deformed matrix model regularization of N = 4 SYM in d = 4, which is equivalent to a non-commutative A*{sub 4} orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N = 1/4 supersymmetry preserving deformation of N = 4 SYM theory on R{sup 4}. In this class of N = 1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming
2014-01-01
Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well. PMID:24763252
ERIC Educational Resources Information Center
Anuar, Azad Athahiri; Rozubi, Norsayyidatina Che; Abdullah, Haslee Sharil
2015-01-01
The aims of this study were to develop and validate a MCC training module for trainee counselor based on MCC matrix model by Sue et al. (1992). This module encompassed five sub modules and 11 activities developed along the concepts and components of the MCC matrix model developed by Sue, Arredondo dan McDavis (1992). The design method used in this…
Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Easter, R. W.
1972-01-01
Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.
B(s) 0-mixing matrix elements from lattice QCD for the Standard Model and beyond
NASA Astrophysics Data System (ADS)
Bazavov, A.; Bernard, C.; Bouchard, C. M.; Chang, C. C.; DeTar, C.; Du, Daping; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kronfeld, A. S.; Laiho, J.; Mackenzie, P. B.; Neil, E. T.; Simone, J.; Sugar, R.; Toussaint, D.; Van de Water, R. S.; Zhou, Ran; Fermilab Lattice; MILC Collaborations
2016-06-01
We calculate—for the first time in three-flavor lattice QCD—the hadronic matrix elements of all five local operators that contribute to neutral B0- and Bs-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral B -meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ =1.206 (18 )(6 ), where the second error stems from the omission of charm-sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from B mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light-valence quarks and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral B -meson oscillation frequencies to determine the CKM matrix elements |Vt d|=8.00 (34 )(8 )×10-3, |Vt s|=39.0 (1.2 )(0.4 )×10-3, and |Vt d/Vt s|=0.2052 (31 )(10 ), which differ from CKM-unitarity expectations by about 2 σ . These results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.
NASA Astrophysics Data System (ADS)
Kemper, A.; Schadschneider, A.; Zittartz, J.
2001-05-01
We apply the transfer-matrix density-matrix renormalization group (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte Carlo simulations.
Modelling in-situ matrix diffusion at Palmottu natural analogue study site in SW Finland
Rasilainen, K.; Suksi, J.
1993-12-31
Radioactive disequilibria, between U-238, U-234, and Th-230, in crystalline rock adjacent to a fracture, indicates mass transfer of U and Th between water in the fracture and the rock. The matrix diffusion theory was used to interpret the observed profiles of mobilized nuclides around the natural fracture. The interpretation of the profiles was based on the use of uranium series disequilibrium code, URSE, and migration code FTRANS. The model system was characterized using all available site-specific data, and the system evolution was outlined using the geology of the Palmottu site. The simulated concentration profiles, as a function of depth from the fracture surface, indicate that measured profiles can be modelled by matrix diffusion, assuming realistic initial and boundary conditions and diffusion times of 300,000 years.
NASA Astrophysics Data System (ADS)
Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie
2016-05-01
This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.
Unoriented strings, loop equations, and
NASA Astrophysics Data System (ADS)
Ashok, Sujay K.; Corrado, Richard; Halmagyi, Nick; Kennaway, Kristian D.; Römelsberger, Christian
2003-04-01
We apply the proposal of Dijkgraaf and Vafa to analyze N=1 gauge theory with SO(N) and Sp(N) gauge groups with arbitrary tree-level superpotentials using matrix model techniques. We derive the planar and leading nonplanar contributions to the large M SO(M) and Sp(M) matrix model free energy by applying the technology of higher-genus loop equations and by straightforward diagrammatics. The loop equations suggest that the RP2 free energy is given as a derivative of the sphere contribution, a relation which we verify diagrammatically. With a refinement of the proposal of Dijkgraaf and Vafa for the effective superpotential, we find agreement with field theory expectations.
Two-loop partition function in the planar plane-wave matrix model
NASA Astrophysics Data System (ADS)
Spradlin, Marcus; Van Raamsdonk, Mark; Volovich, Anastasia
2004-12-01
We perform two independent calculations of the two-loop partition function for the 't Hooft large N limit of the plane-wave matrix model, conjectured to be dual to the decoupled little string theory of a single spherical type IIA NS5-brane. The first is via a direct two-loop path-integral calculation in the matrix model, while the second employs the one-loop dilatation operator of four-dimensional N = 4 Yang-Mills theory truncated to the SU (2 | 4) subsector. We find precise agreement between the results of the two calculations. Various polynomials appearing in the result have rather special properties, possibly related to the large symmetry algebra of the theory or to integrability.
A Matrix Model for Reliability of a Cold-Standby system with Identical Repairable Elements
NASA Astrophysics Data System (ADS)
Farahpour, Peyman; Mahshid, Kamrouz; Sharifi, Mani; Palizban, Aidin
2011-09-01
In this paper we studied a cold standby system with n identical constant failure rate repairable elements. The system has m repairmen and each repairman only works on the one failed element. After failings one element, another element replace immediately. The failure and repair rate of each element is constant as λ, μ. At first a matrix model presented to determine the state of the system. Then we establish the differential equations between the states of the system and finally with a numerical example, we illustrate the method of solving the equations. This paper divided to five main parts, we present some studies about the redundancy allocation and the marcovian models in the introduction. In the second part introduce the system description. In the third part differential equations of the system have been presented in a matrix. A numerical example presented in the 4th part to illustrated how to work with these equations. Last parts we deal with conclusion and future studies.
NASA Technical Reports Server (NTRS)
DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.
2013-01-01
A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.
NASA Technical Reports Server (NTRS)
DeCarvalho, N. V.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Ratcliffe, J. G.; Tay, T. E.
2013-01-01
A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Roy, Rene; Kweon, Jin-Hwe; Choi, Jin-ho
2016-06-01
Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57-70 2014) to include delamination and simulated additional [45/-45/0/90]s and [02/90n]s { n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Roy, Rene; Kweon, Jin-Hwe; Choi, Jin-ho
2015-10-01
Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57-70 2014) to include delamination and simulated additional [45/-45/0/90]s and [02/90n]s {n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.
Danchaivijit, S.; Shetty, D.K.; Eldridge, J.
1995-05-01
Matrix cracking was studied in a model unidirectional composite of SiC filaments in an epoxy-bonded alumina matrix. The residual clamping stress on the filaments due to the shrinkage of the epoxy was moderated with the addition of the alumina filler, and the filament surface was coated with a releasing agent to produce unbonded frictional interfaces. Uniaxial tension specimens with controlled through-cracks with bridging filaments were fabricated by a two-step casting technique. Critical stresses for extension of the filament-bridged cracks of various lengths were measured in uniaxial tension using a high-sensitivity extensometer. The measured crack-length dependence of the critical stress was in good agreement with the prediction of a stress-intensity analysis that employed a new force-displacement law for the bridging filaments. The analysis required independent experimental evaluation of the matrix fracture toughness, the interfacial sliding friction stress, and the residual tension in the matrix. The matrix-cracking stress for the test specimens without the deliberately introduced cracks was significantly higher than the steady-state cracking stress measured for the long, filament-bridged cracks.
A nonperturbative definition of N = 4 Super Yang-Mills by the plane wave matrix model
Shimasaki, Shinji
2008-11-23
We propose a nonperturbative definition of N = 4 Super Yang-Mills(SYM). We realize N = 4 SYM on RxS{sup 3} as the theory around a vacuum of the plane wave matrix model. Our regularization preserves 16 supersymmetries and the gauge symmetry. We perform the one-loop calculation to give evidence that in the continuum limit the superconformal symmetry is restored.
Effects of Sample Size on Estimates of Population Growth Rates Calculated with Matrix Models
Fiske, Ian J.; Bruna, Emilio M.; Bolker, Benjamin M.
2008-01-01
Background Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (λ) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of λ–Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of λ due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of λ. Methodology/Principal Findings Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating λ for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of λ with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. Conclusions/Significance We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities. PMID:18769483
Evolution of the CKM matrix in the universal extra dimension model
Cornell, A. S.; Liu Luxin
2011-02-01
The evolution of the Cabibbo-Kobayashi-Maskawa matrix and the quark Yukawa couplings is performed for the one-loop renormalization group equations in the universal extra dimension model. It is found that the evolution of mixing angles and the CP violation measure J may rapidly vary in the presence of the Kaluza-Klein modes, and this variation becomes dramatic as the energy approaches the unification scale.
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Manderscheid, Jane M.
1989-01-01
A macroscopic noninteractive reliability model for ceramic matrix composites is presented. The model is multiaxial and applicable to composites that can be characterized as orthotropic. Tensorial invariant theory is used to create an integrity basis with invariants that correspond to physical mechanisms related to fracture. This integrity basis is then used to construct a failure function per unit volume (or area) of material. It is assumed that the overall strength of the composite is governed by weakest link theory. This leads to a Weibull type model similar in nature to the principle of independent action (PIA) model for isotropic monolithic ceramics. An experimental program to obtain model parameters is briefly discussed. In addition, qualitative features of the model are illustrated by presenting reliability surfaces for various model parameters.
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites
Sun, X. H.; Qiao, J. W.; Jiao, Z. M.; Wang, Z. H.; Yang, H. J.; Xu, B. S.
2015-01-01
With regard to previous tensile deformation models simulating the tensile behavior of in-situ dendrite-reinforced metallic glass matrix composites (MGMCs) [Qiao et al., Acta Mater. 59 (2011) 4126; Sci. Rep. 3 (2013) 2816], some parameters, such as yielding strength of the dendrites and glass matrix, and the strain-hardening exponent of the dendrites, are estimated based on literatures. Here, Ti48Zr18V12Cu5Be17 MGMCs are investigated in order to improve the tensile deformation model and reveal the tensile deformation mechanisms. The tensile behavior of dendrites is obtained experimentally combining nano-indentation measurements and finite-element-method analysis for the first time, and those of the glass matrix and composites are obtained by tension. Besides, the tensile behavior of the MGMCs is divided into four stages: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (work-hardening), and (4) plastic-plastic (softening). The respective constitutive relationships at different deformation stages are quantified. The calculated results coincide well with the experimental results. Thus, the improved model can be applied to clarify and predict the tensile behavior of the MGMCs. PMID:26354724
An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites
NASA Astrophysics Data System (ADS)
Sun, X. H.; Qiao, J. W.; Jiao, Z. M.; Wang, Z. H.; Yang, H. J.; Xu, B. S.
2015-09-01
With regard to previous tensile deformation models simulating the tensile behavior of in-situ dendrite-reinforced metallic glass matrix composites (MGMCs) [Qiao et al., Acta Mater. 59 (2011) 4126; Sci. Rep. 3 (2013) 2816], some parameters, such as yielding strength of the dendrites and glass matrix, and the strain-hardening exponent of the dendrites, are estimated based on literatures. Here, Ti48Zr18V12Cu5Be17 MGMCs are investigated in order to improve the tensile deformation model and reveal the tensile deformation mechanisms. The tensile behavior of dendrites is obtained experimentally combining nano-indentation measurements and finite-element-method analysis for the first time, and those of the glass matrix and composites are obtained by tension. Besides, the tensile behavior of the MGMCs is divided into four stages: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (work-hardening), and (4) plastic-plastic (softening). The respective constitutive relationships at different deformation stages are quantified. The calculated results coincide well with the experimental results. Thus, the improved model can be applied to clarify and predict the tensile behavior of the MGMCs.
MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model
NASA Technical Reports Server (NTRS)
Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.
2015-01-01
The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.
Modeling of wave propagation in drill strings using vibration transfer matrix methods.
Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour
2013-09-01
In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results. PMID:23967925
Micromechanical modeling of fiber fragmentation in a single fiber metal matrix composite specimen
NASA Astrophysics Data System (ADS)
Davis, Jean E.
Micromechanical models have been developed in this study to predict the longitudinal mechanical behavior of unidirectional continuous fiber composite materials under a uniaxial applied effective strain of sufficient magnitude to cause irreversible damage in the form of brittle fiber fracture, interface damage resulting in a compliant interphase region, and matrix plasticity. A single fiber composite (SFC) specimen that consists of a single silicon carbide fiber embedded in an aluminum matrix with a thin interphase layer was used to investigate these effects. The objective of this research was to create a micromechanical model to predict the longitudinal constitutive behavior of the composite as damage occurs and to determine if the interfacial shear stress can be estimated from the fiber fragment length at a given effective strain. The aluminum matrix was modeled as either linear elastic, elastic-perfectly plastic, linear strain hardening, or power-law strain hardening. Before fiber fracture, the interphase layer forms a perfect bond between the fiber and matrix. During fiber fracture, the interphase is damaged and the interfacial bond becomes imperfect. The imperfect interface may be compliant or compliant and weak, and was modeled as a spring layer with vanishing thickness. The fiber fragments are assumed to be uniformly distributed such that the fragment lengths are equal at each load level. The Weibull distribution was used to relate the fiber fragment length to the tensile strength of the fiber. An increase in the applied effective strain causes successive fiber fractures, in that the fragments become increasingly shorter. The SFCs studied had either no fiber fractures, one fracture, or successive fractures; one of the four matrix material types; and either perfect, compliant, or compliant and weak interfaces. The finite element method was used to provide numerical solutions for the state of stress and fiber length at a given applied effective strain which
Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos
2003-01-01
The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.
Gong, Rui; Xu, Haisong; Tong, Qingfen
2012-10-20
The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well. PMID:23089779
Development of Source-Receptor matrix over South Korea in support of GAINS-Korea model
NASA Astrophysics Data System (ADS)
Choi, K. C.; Woo, J. H.; Kim, H. K.; Lee, Y. M.; Kim, Y.; Heyes, C.; Lee, J. B.; Song, C. K.; Han, J.
2014-12-01
A comprehensive and combined analysis of air pollution and climate change could reveal important synergies of emission control measures, which could be of high policy relevance. IIASA's GAINS model (The Greenhouse gas - Air pollution Interactions and Synergies) has been developed as a tool to identify emission control strategies that achieve given targets on air quality and greenhouse gas emissions at least costs. The GAINS-Korea Model, which is being jointly developed by Konkuk University and IIASA, should play an important role in understanding the impact of air quality improvements across the regions in Korea. Source-Receptor relationships (S-R) is an useful methodology in air pollution studies to determine the areas of origin of chemical compounds at receptor point, and thus be able to target actions to reduce pollutions. The GAINS model can assess the impact of emission reductions of sources on air quality in receptor regions based on S-R matrix, derived from chemical transport model. In order to develop S-R matrix for GAINS-Korea, the CAMx model with PSAT/OSAT tools was applied in this study. The coarse domain covers East Asia, and a nesting domain as main research area was used for Korea peninsula. To evaluate of S-R relationships, a modeling domain is divided into sixteen regions over South Korea with three outside of S. Korea countries (China, N. Korea and Japan) for estimating transboundary contributions. The results of our analysis will be presented at the conference.
A Novel Preclinical Model of Germinal Matrix Hemorrhage Using Neonatal Rats
Lekic, Tim; Manaenko, Anatol; Rolland, William; Tang, Jiping
2013-01-01
Background Germinal matrix hemorrhage (GMH) is a neurological disorder associated with very low birth weight premature infants. This event can lead to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. This study developed a novel animal model for pre-clinical investigations. Methods Neonatal rats underwent infusion of clostridial collagenase into the right germinal matrix (anterior caudate) region using stereotaxic techniques. Developmental milestones were evaluated over 10 days, cognitive function at 3 weeks, and sensorimotor function at 4 weeks after collagenase infusion. This was accomplished by anthropometric quantifications of cranial, cerebral, cardiac, and splenic growths. Results Collagenase infusion led to delays in neonatal developmental milestones, followed by cognitive and sensorimotor dysfunctions in the juvenile animals. Cranial growth was accelerated during the first week after injury, and this was followed by significant brain atrophy, splenomegaly, and cardiac hypertrophy 3 weeks later. Conclusion This study characterized the developmental delays, mental retardation, and cerebral palsy features resembling the long-term clinical course after germinal matrix hemorrhage in premature infants. Pre-clinical testing of therapeutics in this experimental model could lead to improved patient outcomes while expanding upon the pathophysiological understanding of this disease. PMID:21725732
New non-equilibrium matrix imbibition equation for double porosity model
NASA Astrophysics Data System (ADS)
Konyukhov, Andrey; Pankratov, Leonid
2016-07-01
The paper deals with the global Kondaurov double porosity model describing a non-equilibrium two-phase immiscible flow in fractured-porous reservoirs when non-equilibrium phenomena occur in the matrix blocks, only. In a mathematically rigorous way, we show that the homogenized model can be represented by usual equations of two-phase incompressible immiscible flow, except for the addition of two source terms calculated by a solution to a local problem being a boundary value problem for a non-equilibrium imbibition equation given in terms of the real saturation and a non-equilibrium parameter.
NASA Technical Reports Server (NTRS)
Veazie, David R.
1998-01-01
Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.
Bulk-boundary correlators in the hermitian matrix model and minimal Liouville gravity
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile; Ishiki, Goro; Rim, Chaiho
2012-01-01
We construct the one matrix model (MM) correlators corresponding to the general bulk-boundary correlation numbers of the minimal Liouville gravity (LG) on the disc. To find agreement between both discrete and continuous approach, we investigate the resonance transformation mixing boundary and bulk couplings. It leads to consider two sectors, depending on whether the matter part of the LG correlator is vanishing due to the fusion rules. In the vanishing case, we determine the explicit transformation of the boundary couplings at the first order in bulk couplings. In the non-vanishing case, no bulk-boundary resonance is involved and only the first order of pure boundary resonances have to be considered. Those are encoded in the matrix polynomials determined in our previous paper. We checked the agreement for the bulk-boundary correlators of MM and LG in several non-trivial cases. In this process, we developed an alternative method to derive the boundary resonance encoding polynomials.
NASA Astrophysics Data System (ADS)
Kimura, Yusuke
2015-07-01
It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.
Modeling limit languages via limit adjacency matrix and Yusof-Goode approaches
NASA Astrophysics Data System (ADS)
Lim, Wen Li, Yusof, Yuhani
2015-05-01
Limit language was introduced by Goode and Pixton in 2004 under the framework of formal language theory. It is a subset of splicing languages which is restricted to the molecules that will be presented in the splicing system after the reaction of biochemical has run to its completion. In this paper, limit adjacency matrix will be introduced to model the existence of limit languages from splicing languages. Besides, it can be used to characterize the splicing language in terms of active persistent, adult/inert and transient properties based on Yusof-Goode splicing system. In this paper, some examples and theorems that have been formulated via limit adjacency matrix approach will be presented too.
Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior
NASA Technical Reports Server (NTRS)
Tewari, S.N.
1995-01-01
Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.
Yoshinaga, N.; Arima, A.
2010-04-15
We propose some new, efficient, and practical extrapolation methods to obtain a few low-lying eigenenergies of a large-dimensional Hamiltonian matrix in the nuclear shell model. We obtain those energies at the desired accuracy by extrapolation after diagonalizing small-dimensional submatrices of the sorted Hamiltonian matrix.
Huang, Jian-Wen; Xu, Yue-Min; Li, Zhao-Bo; Murphy, Sean V; Zhao, Weixin; Liu, Qiang-Qiang; Zhu, Wei-Dong; Fu, Qiang; Zhang, Yao-Peng; Song, Lu-Jie
2016-01-01
The goal of this study was to investigate the tissue performance of bladder following stretched electrospun silk fibroin matrix (SESFM) implantation compared with bladder acellular matrix (BAM). We compared SESFM with BAM based on porosity and pore size. Scaffolds were separately transplanted into opposite walls of the bladder of 30 rabbits after stripping the bladder mucosa and smooth muscle (1.5 × 2.0 cm(2)). Gross anatomical observation, histological analysis and muscle contractility studies were performed at 2, 4, and 8 weeks post-op. SESFM has higher porosity and larger pore size compared with BAM (p < 0.05). At 2 weeks, the presence of vesical calculus was evident in 7/10 rabbits. Histological analysis showed that SESFM and BAM promoted similar degree of urothelium regeneration (p > 0.05). However, SESFM promoted a higher degree of smooth muscle and vessel regeneration compared to BAM (p < 0.05). In addition, muscle strips supported by SESFM displayed higher contractile responses to carbachol, KCl, and phenylephrine compared with BAM. At 8 weeks, both matrices elicited similar mild acute and chronic inflammatory reactions. Our results demonstrated that SESFM has greater ability to promote bladder tissue regeneration with structural and functional properties compared to BAM, and with similar biocompatibility. PMID:26148477
Density matrix renormalization group study of triangular Kitaev-Heisenberg model
NASA Astrophysics Data System (ADS)
Sota, Shigetoshi; Sjinjo, Kazuya; Shirakawa, Tomonori; Tohyama, Takami; Yunoki, Seiji
2015-03-01
Topological insulator has been one of the most active subjects in the current condensed matter physics. For most of topological insulators electron correlations are considered to be not essential. However, in the case where electron correlations are strong, novel phases such as a spin liquid phase can emerge in competition with a spin-orbit coupling. Here, using the density matrix renormalization group method, we investigate magnetic phase of a triangular Kitaev-Heisenberg (quantum compass) model that contains a spin-orbital interaction and spin frustration in the antiferromagnetic region. The triangular Kitaev-Heisenberg model is regarded as a dual model of the honeycomb Kitaev-Heisenberg model that is usually employed to discuss A2CuO3 (A=Na, K). Systematically calculating ground state energy, entanglement entropy, entanglement spectrum, and spin-spin correlation functions, we discuss the duality between the triangular and the honeycomb Kitaev-Heisenberg model as well as the ground state magnetic phases.
Modeling of outgassing and matrix decomposition in carbon-phenolic composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1993-01-01
A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.
Lee, H.K.; Simunovic, S.
1999-09-01
A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs).To estimate the overall elastoplastic damage responses,an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers.The proposed effective yield criterion,to ether with the assumed overall associative plastic flow rule and hardening law, constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix composites.First,an effective elastoplastic constitutive dama e model for aligned fiber-reinforced composites is proposed.A micromechanical damage constitutive model for RFPCs is then developed.The average process over all orientations upon overning constitutive field equations and overall yield function for aligned fiber-reinforced composites i s performed to obtain the constitutive relations and effective yield function of RFPCs.The discrete numerical integration algorithms and the continuum tan ent operator are also presented to implement the proposed dama e constitutive model.The dama e constitutive model forms the basis for the pro ressive crushing in composite structures under impact loading.
A dynamic model of mobile concrete pump boom based on discrete time transfer matrix method
NASA Astrophysics Data System (ADS)
Ren, Wu; Wu, Yunxin; Zhang, Zhaowei
2013-12-01
Mobile concrete pump boom is typical multibody large-scale motion manipulator. Due to posture constantly change in working process, kinematic rule and dynamic characteristic are difficult to solve. A dynamics model of a mobile concrete pump boom is established based on discrete time transfer matrix method (DTTMM). The boom system is divided into sub-structure A and substructure B. Sub-structure A is composed by the 1st boom and hydraulic actuator as well as the support. And substructure B is consists of the other three booms and corresponding hydraulic actuators. In the model, the booms and links are regarded as rigid elements and the hydraulic cylinders are equivalent to spring-damper. The booms are driven by the controllable hydraulic actuators. The overall dynamic equation and transfer matrix of the model can be assembled by sub-structures A and B. To get a precise result, step size and integration parameters are studied then. Next the tip displacement is calculated and compared with the result of ADAMS software. The displacement and rotation angle curves of the proposed method fit well with the ADAMS model. Besides it is convenient in modeling and saves time. So it is suitable for mobile concrete pump boom real-time monitoring and dynamic analysis. All of these provide reference to boom optimize and engineering application of such mechanisms.
NASA Astrophysics Data System (ADS)
Christensen, E. R.; Bzdusek, P. A.
2003-04-01
Anaerobic PCB dechlorination in aquatic sediments is a naturally occurring process that reduces the dioxin-like PCB toxicity. The PCB biphenyl structure is kept intact but the number of substituted chlorine atoms is reduced, primarily from the para and meta positions. Flanked para and meta chlorine dechlorination, as in process H/H', appears to be more common in-situ than flanked and unflanked para, and meta dechlorination as in process Q. Aroclors that are susceptible to these reactions include 1242, 1248, 1254, and 1260. These dechlorination reactions have recently been modeled by a least squares method for Ashtabula River, Ohio, and Fox River, Wisconsin sediments. Prior to modeling the dechlorination reactions for an ecosystem it is desirable to generate overall PCB source functions. One method to determine source functions is to use loading matrices of a factor analytical model. We have developed such models based both on a principal component approach including nonnegative oblique rotations, and positive matrix factorization (PMF). While the principal component method first requires an eigenvalue analysis of a covariance matrix, the PMF method is based on a direct least squares analysis considering simultaneously the loading and score matrices. Loading matrices obtained from the PMF method are somewhat sensitive to the initial guess of source functions. Preliminary work indicates that a hybrid approach considering first principal components and then PMF may offer an optimum solution. The relationship of PMF to conventional chemical mass balance modeling with or without some prior knowledge of source functions is also discussed.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
An analytical method has been developed to investigate the effect of interface wear on fatigue hysteresis behavior in carbon fiber-reinforced ceramic-matrix composites (CMCs). The damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and interface wear, fibers fracture, slip and pull-out, have been considered. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Upon first loading to fatigue peak stress and subsequent cyclic loading, the fibers failure probabilities and fracture locations were determined by combining the interface wear model and fiber statistical failure model based on the assumption that the loads carried by broken and intact fibers satisfy the global load sharing criterion. The effects of matrix properties, i.e., matrix cracking characteristic strength and matrix Weibull modulus, interface properties, i.e., interface shear stress and interface debonded energy, fiber properties, i.e., fiber Weibull modulus and fiber characteristic strength, and cycle number on fibers failure, hysteresis loops and interface slip, have been investigated. The hysteresis loops under fatigue loading from the present analytical method were in good agreement with experimental data.
$$B^0_{(s)}$$-mixing matrix elements from lattice QCD for the Standard Model and beyond
Bazavov, A.; Bernard, C.; Bouchard, C. M.; Chang, C. C.; DeTar, C.; Du, Daping; El-Khadra, A. X.; Freeland, E. D.; Gamiz, E.; Gottlieb, Steven; et al
2016-06-28
We calculate—for the first time in three-flavor lattice QCD—the hadronic matrix elements of all five local operators that contribute to neutral B0- and Bs-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral B-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio ξ=1.206(18)(6), where the second errormore » stems from the omission of charm-sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from B mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light-valence quarks and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral B-meson oscillation frequencies to determine the CKM matrix elements |Vtd| = 8.00(34)(8)×10-3, |Vts| = 39.0(1.2)(0.4)×10-3, and |Vtd/Vts| = 0.2052(31)(10), which differ from CKM-unitarity expectations by about 2σ. In addition, these results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.« less
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh; Lang, Jerry
2010-01-01
Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.
El-Hamidi, Hamid; Celli, Jonathan P.
2014-01-01
The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic
Kildemo, Morten; Maria, Jérôme; Ellingsen, Pål G; Aas, Lars M S
2013-07-29
Decomposition methods have been applied to in-plane Mueller matrix ellipsometric scattering data of the Spectralon reflectance standard. Data were measured at the wavelengths 532 nm and 1500 nm, using an achromatic optimal Mueller matrix scatterometer applying a photomultiplier tube and a high gain InGaAs detector for the two wavelengths. A parametric model with physical significance was deduced through analysis of the product decomposed matrices. It is found that when the data are analyzed as a function of the scattering angle, similar to particle scattering, the matrix elements are largely independent of incidence angle. To the first order, we propose that a Guassian lineshape is appropriate to describe the polarization index, while the decomposed diagonal elements of the retardance matrix have a form resembling Rayleigh single scattering. New models are proposed for the off diagonal elements of the measured Mueller matrix. PMID:23938723
Study of extracellular matrix in vocal fold biomechanics using a two-phase model
Li, Nicole Y. K.; Avazmohammadi, Reza; Thibeault, Susan L.; Mongrain, Rosaire; Mongeau, Luc
2014-01-01
The extracellular matrix (ECM) of the vocal fold tissue consists primarily of fibrous and interstitial proteins. The purpose of this study was to investigate the effects of selective enzymatic digestion of two ECM proteins, namely elastin and versican, on the elasticity of rabbit vocal fold tissue. Quasi-static, sinusoidal, uniaxial tensile tests were performed. The data were analyzed within the framework of a model of the ECM as a two-phase composite material consisting of collagen fibrils as the reinforcing fibers and noncollagenous ECM proteins as the matrix. To validate the two-phase model, the regression parameters for the fibers’ volume fraction and shear modulus in a different animal model were compared with corresponding published data. The proposed model was then used to analyze rabbit vocal fold tissues. The mean value and the standard deviation of the fiber volume fraction were found to be 8.49 ±3.75% for the control samples (n =4), 0.59 ±1.13 % after elastin removal (n =4), and 8.22 ±1.06% after versican removal (n =4). The results suggest that elastin removal may lead to a reduction in tissue stiffness, through counteracting the reinforcement of collagen fibrils. PMID:24792897
Study of extracellular matrix in vocal fold biomechanics using a two-phase model.
Miri, Amir K; Li, Nicole Y K; Avazmohammadi, Reza; Thibeault, Susan L; Mongrain, Rosaire; Mongeau, Luc
2015-01-01
The extracellular matrix (ECM) of the vocal fold tissue consists primarily of fibrous and interstitial proteins. The purpose of this study was to investigate the effects of selective enzymatic digestion of two ECM proteins, namely elastin and versican, on the elasticity of rabbit vocal fold tissue. Quasi-static, sinusoidal, uniaxial tensile tests were performed. The data were analyzed within the framework of a model of the ECM as a two-phase composite material consisting of collagen fibrils as the reinforcing fibers and noncollagenous ECM proteins as the matrix. To validate the two-phase model, the regression parameters for the fibers' volume fraction and shear modulus in a different animal model were compared with corresponding published data. The proposed model was then used to analyze rabbit vocal fold tissues. The mean value and the standard deviation of the fiber volume fraction were found to be 8.49 ± 3.75 % for the control samples (n = 4), 0.59 ± 1.13 % after elastin removal (n = 4), and 8.22 ± 1.06 % after versican removal (n = 4). The results suggest that elastin removal may lead to a reduction in tissue stiffness, through counteracting the reinforcement of collagen fibrils. PMID:24792897
Frenning, Göran
2011-10-10
The purpose of this review is to provide a comprehensive overview of mathematical procedures that can be used to describe the release of drugs from inert matrix systems. The review focuses on general principles rather than particular applications. The inherent multiscale nature of the drug-release process is pointed out and multiscale modelling is exemplified for inert porous matrices. Although effects of stagnant layers and finite volumes of release media are briefly discussed, the systematic analysis is restricted to systems under sink conditions. When the initial drug loading exceeds the drug solubility in the matrix, Higuchi-type moving-boundary descriptions continue to be highly valuable for obtaining approximate analytical solutions, especially when coupled with integral balance methods. Continuous-field descriptions have decisive advantages when numerical solutions are sought. This is because the mathematical formulation reduces to a diffusion equation with a nonlinear source term, valid over the entire matrix domain. Solutions can thus be effortlessly determined for arbitrary geometries using standard numerical packages. PMID:21095224
NASA Technical Reports Server (NTRS)
Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea
2015-01-01
This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.
Polymer model with annealed dilution on the square lattice: A transfer-matrix study
NASA Astrophysics Data System (ADS)
Serra, Pablo; Stilck, Jürgen F.
1994-02-01
We study a lattice model for equilibrium polymerization with annealed dilution. The model considered is an Ising lattice-gas monomer-solvent system where the polymers are represented by mutually and self-avoiding walks constrained to pass through sites occupied by monomers. Numerical results on the square lattice using transfer-matrix techniques and finite-size scaling are reported. The values obtained for the tricitical exponent νt are in agreement with the tricritical Ising exponent (8/11) for high values of the monomer fugacity, but the accuracy we obtained does not rule out the possibility of νt being equal to the critical self-avoiding-walk (SAW) value 3/4. Our results indicate that a crossover occurs in the tricritical behavior of the model. This crossover corroborates the equivalence between a particular limit of the diluted model and the self-attracting polymer system proposed recently.
Effect of Model-dependent Covariance Matrix for Studying Baryon Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Labatie, A.; Starck, J. L.; Lachièze-Rey, M.
2012-12-01
Large-scale structures in the universe are a powerful tool to test cosmological models and constrain cosmological parameters. A particular feature of interest comes from baryon acoustic oscillations (BAOs), which are sound waves traveling in the hot plasma of the early universe that stopped at the recombination time. This feature can be observed as a localized bump in the correlation function at the scale of the sound horizon rs . As such, it provides a standard ruler and a lot of constraining power in the correlation function analysis of galaxy surveys. Moreover, the detection of BAOs at the expected scale gives strong support to cosmological models. Both of these studies (BAO detection and parameter constraints) rely on a statistical modeling of the measured correlation function \\hat{\\xi }. Usually \\hat{\\xi } is assumed to be Gaussian, with a mean ξθ depending on the cosmological model and a covariance matrix C generally approximated as a constant (i.e., independent of the model). In this article, we study whether a realistic model-dependent C θ changes the results of cosmological parameter constraints compared to the approximation of a constant covariance matrix C. For this purpose, we use a new procedure to generate lognormal realizations of the luminous red galaxy sample of the Sloan Digital Sky Survey Data Release 7 to obtain a model-dependent C θ in a reasonable time. The approximation of C θ as a constant creates small changes in the cosmological parameter constraints on our sample. We quantify this modeling error using a lot of simulations and find that it only has a marginal influence on cosmological parameter constraints for current and next-generation galaxy surveys. It can be approximately taken into account by extending the 1σ intervals by a factor ≈1.3.
EFFECT OF MODEL-DEPENDENT COVARIANCE MATRIX FOR STUDYING BARYON ACOUSTIC OSCILLATIONS
Labatie, A.; Starck, J. L.
2012-12-01
Large-scale structures in the universe are a powerful tool to test cosmological models and constrain cosmological parameters. A particular feature of interest comes from baryon acoustic oscillations (BAOs), which are sound waves traveling in the hot plasma of the early universe that stopped at the recombination time. This feature can be observed as a localized bump in the correlation function at the scale of the sound horizon r{sub s} . As such, it provides a standard ruler and a lot of constraining power in the correlation function analysis of galaxy surveys. Moreover, the detection of BAOs at the expected scale gives strong support to cosmological models. Both of these studies (BAO detection and parameter constraints) rely on a statistical modeling of the measured correlation function {xi}-circumflex. Usually {xi}-circumflex is assumed to be Gaussian, with a mean {xi}{sub {theta}} depending on the cosmological model and a covariance matrix C generally approximated as a constant (i.e., independent of the model). In this article, we study whether a realistic model-dependent C {sub {theta}} changes the results of cosmological parameter constraints compared to the approximation of a constant covariance matrix C. For this purpose, we use a new procedure to generate lognormal realizations of the luminous red galaxy sample of the Sloan Digital Sky Survey Data Release 7 to obtain a model-dependent C {sub {theta}} in a reasonable time. The approximation of C {sub {theta}} as a constant creates small changes in the cosmological parameter constraints on our sample. We quantify this modeling error using a lot of simulations and find that it only has a marginal influence on cosmological parameter constraints for current and next-generation galaxy surveys. It can be approximately taken into account by extending the 1{sigma} intervals by a factor Almost-Equal-To 1.3.
Mathematical model to predict regions of chromatin attachment to the nuclear matrix.
Singh, G B; Kramer, J A; Krawetz, S A
1997-01-01
The potentiation and subsequent initiation of transcription are complex biological phenomena. The region of attachment of the chromatin fiber to the nuclear matrix, known as the matrix attachment region or scaffold attachment region (MAR or SAR), are thought to be requisite for the transcriptional regulation of the eukaryotic genome. As expressed sequences should be contained in these regions, it becomes significant to answer the following question: can these regions be identified from the primary sequence data alone and subsequently used as markers for expressed sequences? This paper represents an effort toward achieving this goal and describes a mathematical model for the detection of MARs. The location of matrix associated regions has been linked to a variety of sequence patterns. Consequently, a list of these patterns is compiled and represented as a set of decision rules using an AND-OR formulation. The DNA sequence was then searched for the presence of these patterns and a statistical significance was associated with the frequency of occurrence of the various patterns. Subsequently, a mathematical potential value,MAR-Potential, was assigned to a sequence region as the inverse proportion to the probability that the observed pattern population occurred at random. Such a MAR detection process was applied to the analysis of a variety of known MAR containing sequences. Regions of matrix association predicted by the software essentially correspond to those determined experimentally. The human T-cell receptor and the DNA sequence from the Drosophila bithorax region were also analyzed. This demonstrates the usefulness of the approach described as a means to direct experimental resources. PMID:9060438
A Chemomechanical Model of Matrix and Nuclear Rigidity Regulation of Focal Adhesion Size.
Cao, Xuan; Lin, Yuan; Driscoll, Tristian P; Franco-Barraza, Janusz; Cukierman, Edna; Mauck, Robert L; Shenoy, Vivek B
2015-11-01
In this work, a chemomechanical model describing the growth dynamics of cell-matrix adhesion structures (i.e., focal adhesions (FAs)) is developed. We show that there are three regimes for FA evolution depending on their size. Specifically, nascent adhesions with initial lengths below a critical value that are yet to engage in actin fibers will dissolve, whereas bigger ones will grow into mature FAs with a steady state size. In adhesions where growth surpasses the steady state size, disassembly will occur until their sizes are reduced to the equilibrium state. This finding arises from the fact that polymerization of adhesion proteins is force-dependent. Under actomyosin contraction, individual integrin bonds within small FAs (i.e., nascent adhesions or focal complexes) must transmit higher loads while the phenomenon of stress concentration occurs at the edge of large adhesion patches. As such, an effective stiffness of the FA-extracellular matrix complex that is either too small or too large will be relatively low, resulting in a limited actomyosin pulling force developed at the edge that is insufficient to prevent disassembly. Furthermore, it is found that a stiffer extracellular matrix and/or nucleus, as well as a stronger chemomechanical feedback, will induce larger adhesions along with a higher level of contraction force. Interestingly, switching the extracellular side from an elastic half-space, corresponding to some widely used in vitro gel substrates, to a one-dimensional fiber (as in the case of cells anchoring to a fibrous scaffold in vivo) does not qualitative change these conclusions. Our model predictions are in good agreement with a variety of experimental observations obtained in this study as well as those reported in the literature. Furthermore, this new model, to our knowledge, provides a framework with which to understand how both intracellular and extracellular perturbations lead to changes in adhesion structure number and size. PMID:26536258
NASA Astrophysics Data System (ADS)
Killip, Rowan; Kozhan, Rostyslav
2016-05-01
We consider random non-normal matrices constructed by removing one row and column from samples from Dyson's circular ensembles or samples from the classical compact groups. We develop sparse matrix models whose spectral measures match these ensembles. This allows us to compute the joint law of the eigenvalues, which have a natural interpretation as resonances for open quantum systems or as electrostatic charges located in a dielectric medium. Our methods allow us to consider all values of {β > 0} , not merely {β=1,2,4}.
Matrix Pseudospectral Method for (Visco)Elastic Tides Modeling of Planetary Bodies
NASA Astrophysics Data System (ADS)
Zabranova, Eliska; Hanyk, Ladidslav; Matyska, Ctirad
2010-05-01
We deal with the equations and boundary conditions describing deformation and gravitational potential of prestressed spherically symmetric elastic bodies by decomposing governing equations into a series of boundary value problems (BVP) for ordinary differential equations (ODE) of the second order. In contrast to traditional Runge-Kutta integration techniques, highly accurate pseudospectral schemes are employed to directly discretize the BVP on Chebyshev grids and a set of linear algebraic equations with an almost block diagonal matrix is derived. As a consequence of keeping the governing ODEs of the second order instead of the usual first-order equations, the resulting algebraic system is half-sized but derivatives of the model parameters are required. Moreover, they can be easily evaluated for models, where structural parametres are piecewise polynomially dependent. Both accuracy and efficiency of the method are tested by evaluating the tidal Love numbers for the Earth's model PREM. Finally, we also derive complex Love numbers for models with the Maxwell viscoelastic rheology, where viscosity is a depth-dependent function. The method is applied to evaluation of the tidal Love numbers for models of Mars and Venus. The Love numbers of the two Martian models - the former optimized to cosmochemical data and the latter to the moment of inertia (Sohl and Spohn, 1997) - are h2=0.172 (0.212) and k2=0.093 (0.113). For Venus, the value of k2=0.295 (Konopliv and Yoder, 1996), obtained from the gravity-field analysis, is consistent with the results for our model with the liquid-core radius of 3110 km (Zábranová et al., 2009). Together with rapid evaluation of free oscillation periods by an analogous method, this combined matrix approach could by employed as an efficient numerical tool in structural studies of planetary bodies. REFERENCES Konopliv, A. S. and Yoder, C. F., 1996. Venusian k2 tidal Love number from Magellan and PVO tracking data, Geophys. Res. Lett., 23, 1857
A Tensile Deformation Model for In-situ Dendrite/Metallic Glass Matrix Composites
Qiao, J. W.; Zhang, T.; Yang, F. Q.; Liaw, P. K.; Pauly, S.; Xu, B. S.
2013-01-01
In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs. PMID:24085187
Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Min, J. B.; Xue, D.; Shi, Y.
2013-01-01
A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.
On the spontaneous breakdown of Lorentz symmetry in matrix models of superstrings
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hofheinz, F.; Nishimura, J.
2002-04-01
In string or M theories, the spontaneous breaking of 10D or 11D Lorentz symmetry is required to describe our space-time. A direct approach to this issue is provided by the type IIB matrix model. We study its 4D version, which corresponds to the zero volume limit of 4D super SU(N) Yang-Mills theory. Based on the moment of inertia as a criterion, spontaneous symmetry breaking (SSB) seems to occur, so that only one extended direction remains, as first observed by Bialas and Burda et al. However, using Wilson loops as probes of space-time we do not observe any sign of SSB in Monte Carlo simulations where N is as large as 48. This agrees with an earlier observation that the phase of the fermionic integral, which is absent in the 4D model, should play a crucial role if SSB of Lorentz symmetry really occurs in the 10D type IIB matrix model.
Conductance statistics for the power-law banded random matrix model
Martinez-Mendoza, A. J.; Mendez-Bermudez, J. A.; Varga, Imre
2010-12-21
We study numerically the conductance statistics of the one-dimensional (1D) Anderson model with random long-range hoppings described by the Power-law Banded Random Matrix (PBRM) model. Within a scattering approach to electronic transport, we consider two scattering setups in absence and presence of direct processes: 2M single-mode leads attached to one side and to opposite sides of 1D circular samples. For both setups we show that (i) the probability distribution of the logarithm of the conductance T behaves as w(lnT){proportional_to}T{sup M2/2}, for T<<
Baynham, D.E.; Sampson, P.L.
1996-07-01
Many of the detector magnets in use for Particle Physics experiments are based on a common technology developed in the 1980s: indirect cooling, pure aluminium stabilized conductor and monolithic resin impregnation (DELPHI, ALEPH, H1, TOPAZ etc.). In such indirectly cooled magnets stable behavior is a balance between the transient heat removal capacity of the winding and the thermal disturbances. For the extrapolation in magnet technology towards LHC detectors it is important to understand more fully this stability balance. This paper describes computational modelling techniques developed to predict the behavior of conductors in an indirectly cooled magnet matrix. The verification of the model is based on experimental studies of a test coil for the DELPHI solenoid. The computational model has been used to carry out a parametric study of the stability of the conductors proposed for the ATLAS End Cap Toroids at LHC. Results of the parametric study are presented.
A micro to macro approach to polymer matrix composites damage modeling : final LDRD report.
English, Shawn Allen; Brown, Arthur A.; Briggs, Timothy M.
2013-12-01
Capabilities are developed, verified and validated to generate constitutive responses using material and geometric measurements with representative volume elements (RVE). The geometrically accurate RVEs are used for determining elastic properties and damage initiation and propagation analysis. Finite element modeling of the meso-structure over the distribution of characterizing measurements is automated and various boundary conditions are applied. Plain and harness weave composites are investigated. Continuum yarn damage, softening behavior and an elastic-plastic matrix are combined with known materials and geometries in order to estimate the macroscopic response as characterized by a set of orthotropic material parameters. Damage mechanics and coupling effects are investigated and macroscopic material models are demonstrated and discussed. Prediction of the elastic, damage, and failure behavior of woven composites will aid in macroscopic constitutive characterization for modeling and optimizing advanced composite systems.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
An analytical method has been developed to investigate the effect of oxidation on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs). The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The fiber strength degradation model and oxidation region propagation model have been adopted to analyze the oxidation effect on tensile strength of the composite, which is controlled by diffusion of oxygen gas through matrix cracks. Under tensile loading, the fibers failure probabilities were determined by combining oxidation model and fiber statistical failure model based on the assumption that fiber strength is subjected to two-parameter Weibull distribution and the loads carried by broken and intact fibers statisfy the global load sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength considering oxidation time and temperature have been analyzed.
Probabilistic Residual Strength Model Developed for Life Prediction of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Thomas, David J.; Verrilli, Michael J.; Calomino, Anthony M.
2004-01-01
For the next generation of reusable launch vehicles, NASA is investigating introducing ceramic matrix composites (CMCs) in place of current superalloys for structural propulsion applications (e.g., nozzles, vanes, combustors, and heat exchangers). The higher use temperatures of CMCs will reduce vehicle weight by eliminating and/or reducing cooling system requirements. The increased strength-to-weight ratio of CMCs relative to superalloys further enhances their weight savings potential. However, in order to provide safe designs for components made of these new materials, a comprehensive life prediction methodology for CMC structures needs to be developed. A robust methodology for lifing composite structures has yet to be adopted by the engineering community. Current industry design practice continues to utilize deterministic empirically based models borrowed from metals design for predicting material life capabilities. The deterministic nature of these models inadequately addresses the stochastic character of brittle composites, and their empirical reliance makes predictions beyond the experimental test conditions a risky extrapolation. A team of engineers at the NASA Glenn Research Center has been developing a new life prediction engineering model. The Probabilistic Residual Strength (PRS) model uses the residual strength of the composite as its damage metric. Expected life and material strength are both considered probabilistically to account for the observed stochastic material response. Extensive experimental testing has been carried out on C/SiC (a candidate aerospace CMC material system) in a controlled 1000 ppm O2/argon environment at elevated temperatures of 800 and 1200 C. The test matrix was established to allow observation of the material behavior, characterization of the model, and validation of the model's predictive capabilities. Sample results of the validation study are illustrated in the graphs.
Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE
Castellote, M. Andrade, C.
2008-12-15
This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO{sub 2}, with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity.
Ability of matrix models to explain the past and predict the future of plant populations.
McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.
2013-01-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.
Hydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling
NASA Astrophysics Data System (ADS)
Dicker, M. P. M.; Weaver, P. M.; Rossiter, J. M.; Bond, I. P.
2014-09-01
The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FMC) that minimizes the hydrogel's volume expansion while swelling. This constraint serves to maximize the fixed charge density and resulting osmotic pressure, the driving force behind actuation. In addition, for certain FMC fibre orientations the Poisson's ratio of the anisotropic FMC laminate converts previously unused hydrogel swelling in the radial and circumferential directions into useful axial strains. The potential benefit of the H-FMC concept to hydrogel actuator performance is shown through comparison of force-stroke curves and evaluation of improvements in useful actuation work. The model used to achieve this couples chemical and electrical components, represented with the Nernst-Plank and Poisson equations, as well as a linear elastic mechanical material model, encompassing limited geometric nonlinearities. It is found that improvements in useful actuation work in the order of 1500% over bare hydrogel performance are achieved by the H-FMC concept. A parametric study is also undertaken to determine the effect of various FMC design parameters on actuator free strain and blocking stress. A comparison to other actuator concepts is also included.
Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading
NASA Technical Reports Server (NTRS)
Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.
Jarvis, Peter D; Sumner, Jeremy G
2016-08-01
We consider the continuous-time presentation of the strand symmetric phylogenetic substitution model (in which rate parameters are unchanged under nucleotide permutations given by Watson-Crick base conjugation). Algebraic analysis of the model's underlying structure as a matrix group leads to a change of basis where the rate generator matrix is given by a two-part block decomposition. We apply representation theoretic techniques and, for any (fixed) number of phylogenetic taxa L and polynomial degree D of interest, provide the means to classify and enumerate the associated Markov invariants. In particular, in the quadratic and cubic cases we prove there are precisely [Formula: see text] and [Formula: see text] linearly independent Markov invariants, respectively. Additionally, we give the explicit polynomial forms of the Markov invariants for (i) the quadratic case with any number of taxa L, and (ii) the cubic case in the special case of a three-taxon phylogenetic tree. We close by showing our results are of practical interest since the quadratic Markov invariants provide independent estimates of phylogenetic distances based on (i) substitution rates within Watson-Crick conjugate pairs, and (ii) substitution rates across conjugate base pairs. PMID:26660305
Carbon isotope composition of ambient CO2 and recycling: a matrix simulation model
da Silveira Lobo Sternberg, Leonel; DeAngelis, Donald L.
2002-01-01
The relationship between isotopic composition and concentration of ambient CO2 in a canopy and its associated convective boundary layer was modeled. The model divides the canopy and convective boundary layer into several layers. Photosynthesis, respiration, and exchange between each layer can be simulated by matrix equations. This simulation can be used to calculate recycling; defined here as the amount of respired CO2 re-fixed by photosynthesis relative to the total amount of respired CO2. At steady state the matrix equations can be solved for the canopy and convective boundary layer CO2 concentration and isotopic profile, which can be used to calculate a theoretical recycling index according to a previously developed equation. There is complete agreement between simulated and theoretical recycling indices for different exchange scenarios. Recycling indices from a simulation of gas exchange between a heterogeneous vegetation canopy and the troposphere also agreed with a more generalized form of the theoretical recycling equation developed here.
Evaluation of several micromechanics models for discontinuously reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. Steven; Birt, M. J.
1990-01-01
A systematic experimental evaluation of whisker and particulate reinforced aluminum matrix composites was conducted to assess the variation in tensile properties with reinforcement type, volume fraction, and specimen thickness. Each material was evaluated in three thicknesses, 1.8, 3.18, and 6.35 mm, to determine the size, distribution, and orientation of the reinforcements. This information was used to evaluate several micromechanical models that predict composite moduli. The longitudinal and transverse moduli were predicted for reinforced aluminum. The Paul model, the Cox model and the Halpin-Tsai model were evaluated. The Paul model gave a good upper bound prediction for the particulate reinforced composites but under predicted whisker reinforced composite moduli. The Cox model gave good moduli predictions for the whisker reinforcement, but was too low for the particulate. The Halpin-Tsai model gave good results for both whisker and particulate reinforced composites. An approach using a trigonometric projection of whisker length to predict the fiber contribution to the modulus in the longitudinal and transverse directions was compared to the more conventional lamination theory approach.
UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization.
Choo, Jaegul; Lee, Changhyun; Reddy, Chandan K; Park, Haesun
2013-12-01
Topic modeling has been widely used for analyzing text document collections. Recently, there have been significant advancements in various topic modeling techniques, particularly in the form of probabilistic graphical modeling. State-of-the-art techniques such as Latent Dirichlet Allocation (LDA) have been successfully applied in visual text analytics. However, most of the widely-used methods based on probabilistic modeling have drawbacks in terms of consistency from multiple runs and empirical convergence. Furthermore, due to the complicatedness in the formulation and the algorithm, LDA cannot easily incorporate various types of user feedback. To tackle this problem, we propose a reliable and flexible visual analytics system for topic modeling called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization). Centered around its semi-supervised formulation, UTOPIAN enables users to interact with the topic modeling method and steer the result in a user-driven manner. We demonstrate the capability of UTOPIAN via several usage scenarios with real-world document corpuses such as InfoVis/VAST paper data set and product review data sets. PMID:24051765
NASA Technical Reports Server (NTRS)
Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.
2010-01-01
Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.
String states, loops and effective actions in noncommutative field theory and matrix models
NASA Astrophysics Data System (ADS)
Steinacker, Harold C.
2016-09-01
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
Phase field modelling of strain induced crystal growth in an elastic matrix.
Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry
2015-06-28
When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455
Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P
2016-07-01
Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. PMID:26946064
A Phenomenological Model for Tool Wear in Friction Stir Welding of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Prater, Tracie J.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.; Cox, Chase D.
2013-08-01
Friction stir welding (FSW) of metal matrix composites (MMCs) is advantageous because the solid-state nature of the process precludes formation of deleterious intermetallic phases which accompany melting. FSW of MMCs is complicated by rapid and severe wear of the welding tool, a consequence of contact between the tool and the much harder abrasive reinforcement which gives the workpiece material its enhanced strength. The current article demonstrates that Nunes's rotating plug model of material flow in FSW, which has been successfully applied in many other contexts, can also help us understand wear in FSW of MMCs. An equation for predicting the amount of wear in this application is developed and compared with experimental data. This phenomenological model explains the relationship between wear and FSW process parameters documented in previous studies.
Phase field modelling of strain induced crystal growth in an elastic matrix
NASA Astrophysics Data System (ADS)
Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry
2015-06-01
When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.
Hu, X.; Cao, J.; Li, M.; Ye, Z.; Miyawaki, M.; Ho, K. M.
2008-05-13
We derive a light-intensity-dependent dielectric constant for a gain medium based on the conventional rate equation model. A scattering-matrix method in conjunction with an efficient iteration procedure is proposed to simulate photonic crystal lasers (PCLs). The light output vs pumping (L-I) curve, lasing mode profile, and chirping effect of the lasing wavelength {lambda}{sub L} can be calculated. We check our method in a one dimensional distributed Bragg reflector laser and simulate a complex three dimensional woodpile PCL to test the capabilities of our model. We found that PCLs with a more uniform field distribution in the gain media will have higher L-I slope efficiencies as well as more stable lasing wavelengths {lambda}{sub L}.
Sakaris, P.C.; Irwin, E.R.
2010-01-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more
Logofet, D O; Belova, I N; Kazantseva, E S; Onipchenko, V G
2016-01-01
For the plant species, which is considered a short-lived perennial, we have composed a scale of ontogenetic stages and the life cycle graph (LCG) according to annual observations on permanent sample plots in an Alpine lichen heath during the 2009-2014 period. The LCG that reflects seed reproduction has been reduced to the one that avoids the stage of soil seed bank, yet preserves the arcs of annual recruitment. The corresponding matrix model of stage-structured population dynamics has four stages: juvenile plants (including seedlings), virginal, generative, and 'terminally generative' (the plants die after seed production). Model calibration reduces to directly calculating the rates of transition between stages and those of delays within stages from the data of only one time step, while keeping the two reproduction rates uncertain, yet confined to the quantitative bounds of observed recruitment. This has enabled us to determine a feasible range for the dominant eigenvalue of the model matrix, i.e., the quantitative bounds for the measure of how the local population adapts to its environment, at each of the five time steps, resulting in aformally nonautonomous model. To obtain 'age-specific parameters' from a stage-classified model, we have applied the technique that constructs a virtual absorbing Markov chain and calculates its fundamental matrix. In a nonautonomous model, the estimates of life expectancy also depend on the time of observation (that fixes certain environmental conditions), and vary from two to nearly seven years. The estimates reveal how specifically short lives the short-lived perennial, while their range motivates the task to average the model matrices over the whole period of observation. The model indicates that Eritrichium caucasicum plants spend the most part of their life span in the virginal stage under each of the environment conditions observed, thus revealing the place retention strategy by C. K6rner (2003), or the delayed
Financial Distress Prediction Using Discrete-time Hazard Model and Rating Transition Matrix Approach
NASA Astrophysics Data System (ADS)
Tsai, Bi-Huei; Chang, Chih-Huei
2009-08-01
Previous studies used constant cut-off indicator to distinguish distressed firms from non-distressed ones in the one-stage prediction models. However, distressed cut-off indicator must shift according to economic prosperity, rather than remains fixed all the time. This study focuses on Taiwanese listed firms and develops financial distress prediction models based upon the two-stage method. First, this study employs the firm-specific financial ratio and market factors to measure the probability of financial distress based on the discrete-time hazard models. Second, this paper further focuses on macroeconomic factors and applies rating transition matrix approach to determine the distressed cut-off indicator. The prediction models are developed by using the training sample from 1987 to 2004, and their levels of accuracy are compared with the test sample from 2005 to 2007. As for the one-stage prediction model, the model in incorporation with macroeconomic factors does not perform better than that without macroeconomic factors. This suggests that the accuracy is not improved for one-stage models which pool the firm-specific and macroeconomic factors together. In regards to the two stage models, the negative credit cycle index implies the worse economic status during the test period, so the distressed cut-off point is adjusted to increase based on such negative credit cycle index. After the two-stage models employ such adjusted cut-off point to discriminate the distressed firms from non-distressed ones, their error of misclassification becomes lower than that of one-stage ones. The two-stage models presented in this paper have incremental usefulness in predicting financial distress.
Fudge, Douglas S.; Gosline, John M.
2004-01-01
We performed mechanical tests on a matrix-free keratin model-hagfish slime threads-to test the hypothesis that intermediate filaments (IFs) in hydrated hard alpha-keratins are maintained in a partly dehydrated state. This hypothesis predicts that dry IFs should possess mechanical properties similar to the properties of hydrated hard alpha-keratins, and should swell more than hard alpha-keratins in water. Mechanical and swelling measurements of hagfish threads were consistent with both of these predictions, suggesting that an elastomeric keratin matrix resists IF swelling and keeps IF stiffness and yield stress high. The elastomeric nature of the matrix is indirectly supported by the inability of matrix-free IFs (i.e. slime threads) to recover from post-yield deformation. We propose a general conceptual model of the structural mechanics of IF-based materials that predicts the effects of hydration and cross-linking on stiffness, yield stress and extensibility. PMID:15058441
Skoglung, R.S.; Swackhamer, D.L.
1999-05-01
This report presents empirical evidence for the use of organic carbon as the sorbing matrix in the kinetic modeling of PCB accumulation in phytoplankton. A kinetic-based model was used to predict congener-specific bioaccumulation factors of PCBs in phytoplankton samples collected from Green Bay, Lake Michigan. These values were compared to the measured bioaccumulation factors, and the sum of the residuals was used to evaluate the model`s predictive quality. The sorbing matrix fraction (F{sub M}) that minimized the sum of residuals of the model was then solved by iteration. The appropriateness of using dry weight, organic carbon fraction, or lipid fractions as the sorbing matrix fraction was determined by measuring their correlation to the optimum F{sub M}. It was determined that the F{sub M} correlated best with the organic carbon fraction, and this correlation appeared to be independent of both the spatial and seasonal differences of the field samples.
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-07-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
Relapse and Risk-taking among Iranian Methamphetamine Abusers Undergoing Matrix Treatment Model
Taymoori, Parvaneh; Pashaei, Tahereh
2016-01-01
Background This study investigated the correlation between risk-taking and relapse among methamphetamine (MA) abusers undergoing the Matrix Model of treatment. Methods This cross-sectional study was conducted on male patients who were stimulant drug abusers undergoing the matrix treatment in the National Center for Addiction Research. A sampling was done using the availability method including 92 male patients. Demographic questionnaires and drug abuse related questionnaire were completed for each patient. Then, Bart’s balloon risk-taking test was administered to the patients. Findings Participants had a mean age ± standard deviation (SD) of 27.59 ± 6.60 years with an age range of 17-29 years. Unemployment, unmarried status, criminal offense, and also addiction family history increased the probability of relapse. In addition, a greater adjusted score of the risk-taking test increased the odds of relapse by more than 97%. The simultaneous abuse of opium and stimulants compared to the abuse of stimulants only, revealed no statistically significant differences for relapse. Patients with higher risk-taking behavior had a more probability of relapse. Conclusion This finding indirectly implies the usefulness of Bart’s risk-taking test in assessing risk-taking behavior in stimulant drug abusers. PMID:27274793
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-01-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
Accounting for management costs in sensitivity analyses of matrix population models.
Baxter, Peter W J; McCarthy, Michael A; Possingham, Hugh P; Menkhorst, Peter W; McLean, Natasha
2006-06-01
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. PMID
NASA Astrophysics Data System (ADS)
Cottet, Arnaud J.
Particulate composite reinforcements are good candidates for the fracture toughness of ceramics. In order to predict mechanical response of ceramic matrix composites, an efficient method capable of modelling their complex microstructure is needed. The purpose of this research is the development of such a model using fractal spatial particle distribution. A review of different toughness mechanisms for particulate composites and associated models for deriving their constitutive relationships is presented in chapter 2. These different toughening mechanisms as well constitutive properties depend on particle shape, size and spatial distribution, which lend themselves to a self-similar fractal based modelling approach. A self-similar distribution of particles linked to the fractal geometry is proposed. Fractal geometry provides an ideal tool for describing the randomness and disorder of the system. Its foundations are reviewed in chapter three with emphasis on iterated function systems that are subsequently used to obtain the particle configurations in the proposed model. For the sake of completeness, a review of fractal structure in science is given to illustrate possible applications. Derivation of the volume fraction associated with self similar distributions is provided in chapter 4. This is followed by a description of the numerical model and the boundary conditions. A Finite Element simulation is performed for different volume fractions, generators and number of particles for different displacements (two uniaxial and biaxial cases) and 2-D stress state cases. From these simulations the inverse distribution of the maximum principal stress is computed. Then the self similar models are compared with the model obtained by the Yang Teriari Gokhale (Y.T.G.) method and model obtained by only one iteration. Fractal dimension for real microstructure are computed and microstructure based on the fractal dimension and number of particle is simulated. It can be derived that the
Spacetime Emergence of the Robertson-Walker Universe from a Matrix Model
Erdmenger, Johanna; Meyer, Rene; Park, Jeong-Hyuck
2007-06-29
Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras.
Spacetime emergence of the robertson-walker universe from a matrix model.
Erdmenger, Johanna; Meyer, René; Park, Jeong-Hyuck
2007-06-29
Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras. PMID:17678078
Interfacial shear stress distribution in model composites. I - A Kevlar 49 fibre in an epoxy matrix
Jahankhani, H.; Galiotis, C. )
1991-05-01
The technique of Laser Raman Spectroscopy has been applied in the study of aramid fibers, such as Kevlar 49, and aramid/epoxy interfaces. A linear relationship has been found between Raman frequencies and strain upon loading a single Kevlar 49 filament in air. Model composites of single Kevlar 49 fibers embedded in epoxy resins have been fabricated and subjected to various degrees of mechanical deformation. The transfer lengths for reinforcement have been measured at various levels of applied tensile load and the dependence of transfer length upon applied matrix strain has been established. Finally, by balancing the tensile and the shear forces acting along the interface, the interfacial shear stress (ISS) distribution along the embedded fiber was obtained. 52 refs.
Edge currents in non-commutative Chern-Simons theory from a new matrix model
NASA Astrophysics Data System (ADS)
Balachandran, Aiyalam P.; Kürkçüoglu, Seçkin; Gupta, Kumar S.
2003-09-01
This paper discusses the formulation of the non-commutative Chern-Simons (CS) theory where the spatial slice, an infinite strip, is a manifold with boundaries. As standard *-products are not correct for such manifolds, the standard non-commutative CS theory is not also appropriate here. Instead we formulate a new finite-dimensional matrix CS model as an approximation to the CS theory on the strip. A work which has points of contact with ours is due to Lizzi, Vitale and Zampini where the authors obtain a description for the fuzzy disc. The gauge fields in our approach are operators supported on a subspace of finite dimension N+eta of the Hilbert space of eigenstates of a simple harmonic oscillator with N ,etainBbb Z+ and N\
A CRT monitor ICC profile based on matrix-look-up-table model
NASA Astrophysics Data System (ADS)
Shao, Yuba; Liao, Ningfang; Chai, Binghua; Yang, Weiping
2006-01-01
The goal of ICC (International color consortium) color management system (CMS) is to reproduce color fidelity regardless of the hardware or platform used to capture, view or print them. The accuracy of profiles decides the precision of color conversion; therefore, creating device profiles accurately is very essential for color management. In this paper, according to the ICC standard format, we used Matrix-LUT (look up table) model, which can increase the color conversion precision to create monitor profile. In laboratory environment, we used X-Rite DPT92 to calibrate the monitor, and then we made about 1000 color patches and measured the RGB and the corresponding XYZ of each patch. We adopted linear interpolation method to establish the LUT between RGB and XYZ. The experimental results are good, and then we finished the monitor profile by the ICC format, realized CRT monitor color management.
Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites
NASA Astrophysics Data System (ADS)
Hilfi, H.; Brar, N. S.
1996-05-01
High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Nowak, Maciej A.; Zahed, Ismail
2016-08-01
We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Continuum Damage Modeling of Short-Fiber Composites Subject to Matrix Cracking
Nguyen, Ba Nghiep; Ahn, Byung K.; Khaleel, Mohammad A.
2002-09-01
In this paper, a continuum damage mechanics approach proposed by Renard et al. for continuous fiber composites subject to matrix cracking is extended to misoriented short-fiber composites. First, the associated damage variable is defined as a measure of the crack density, then the model by Laws et al. is used to determine the stiffness reduction of an aligned short-fiber composite. Considering moderate microcrack densities and assuming completely random and planar orientations of microcracks and fibers, the stiffness of a cracked misoriented fiber layer is obtained by averaging that of a cracked aligned fiber composite over all possible orientations and weighted by an orientation distribution function. The damage evolution law is obtained using the concepts of thermodynamics of continuum media.
A solution of the Gross-Witten matrix model by nonlinear random processes
Buividovich, P. V.
2011-05-23
We illustrate the stochastic method for solving the Schwinger-Dyson equations in large-N quantum field theories described in ArXiv:1009.4033 on the example of the Gross-Witten unitary matrix model. In the strong-coupling limit, this method can be applied directly, while in the weak-coupling limit we change the variables from compact to noncompact ones in order to cast the Schwinger-Dyson equations in the stochastic form. This leads to a new action with an infinite number of higher-order interaction terms. Nevertheless, such an action can be efficiently handled. This suggests the way to apply the method of ArXiv:1009.4033 to field theories with U(N) field variables as well as to effective field theories in the large-N limit.
An improved bundle adjustment model and algorithm with novel block matrix partition method
NASA Astrophysics Data System (ADS)
Xia, Zemin; Li, Zhongwei; Zhong, Kai
2014-11-01
Sparse bundle adjustment is widely applied in computer vision and photogrammetry. However, existing implementation is based on the model of n 3D points projecting onto m different camera imaging planes at m positions, which can't be applied to commonly monocular, binocular or trinocular imaging systems. A novel design and implementation of bundle adjustment algorithm is proposed in this paper, which is based on n 3D points projecting onto the same camera imaging plane at m positions .To improve the performance of the algorithm, a novel sparse block matrix partition method is proposed. Experiments show that the improved bundle adjustment is effective, robust and has a better tolerance to pixel coordinates error.
Hybrid-Space Density Matrix Renormalization Group Study of the Two-Dimensional Hubbard Model
NASA Astrophysics Data System (ADS)
Ehlers, Georg; Noack, Reinhard M.
We investigate the ground state of the two-dimensional Hubbard model on a cylinder geometry at intermediate coupling and weak doping. We study properties such as the behavior of the ground-state energy, pair-field correlations, and the appearance of stripes. We find striped ground states generically, with the width of the stripes depending on the filling, the boundary conditions, and the circumference of the cylinder. Furthermore, we analyse the interplay between the different stripe configurations and the decay of the pairing correlations. Our analysis is based on a hybrid-space density matrix renormalization group (DMRG) approach, which uses a momentum-space representation in the transverse and a real-space representation in the longitudinal direction. Exploiting the transverse momentum quantum number makes significant speedup and memory savings compared to the real-space DMRG possible. In particular, we obtain computational costs that are independent of the cylinder width for fixed size of the truncated Hilbert space.
Modeling the Stress Transfer between Carbon Nanotubes and a Polymer Matrix during Cyclic Deformation
NASA Astrophysics Data System (ADS)
Kao, C. C.; Young, R. J.
Raman spectroscopy was used in this study to investigate the cyclic deformation behavior of the single-walled carbon nanotubes (SWNTs)/epoxy composites. The stress transfer between the nanotube and epoxy resin has been followed through the stress-induced variation of the G' Raman band position of the nan-otubes. A hysteresis loop was found between the loading and unloading cycles and its size decreased with the increase of the deformation cycles. The energy dissipated in the composite and at the interface between the nanotube and matrix has been modeled from the loop area. The amount of interface damaged for each loading cycle was further predicted from the estimated dissipation energy.
NASA Technical Reports Server (NTRS)
Ellison, Donald; Conway, Bruce; Englander, Jacob
2015-01-01
A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.
Density matrix renormalization group study of the Anyon-Hubbard model
NASA Astrophysics Data System (ADS)
Arcila-Forero, J.; Franco, R.; Silva-Valencia, J.
2016-02-01
Recently optical lattices allow us to observe phase transition without the uncertainty posed by complex materials, and the simulations of these systems are an excellent bridge between materials-based condensed matter physics and cold atoms. In this way, the computational physics related to many-body problems have increased in importance. Using the density matrix renormalization group method, we studied a Hubbard model for anyons, which is an equivalent to a variant of the Bose-Hubbard model in which the bosonic hopping depends on the local density. This is an exact mapping between anyons and bosons in one dimension. The anyons interlope between bosons and fermions. For two anyons under particle exchange, the wave function acquires a fractional phase eiθ . We conclude that this system exhibits two phases: Mott-insulator and superfluid. We present the phase diagram for some angles. The Mott lobe increases with an increase of the statistical. We observed a reentrance phase transition for all lobes. We showed that the model studied is in the same universality class as the Bose-Hubbard model with two-body interactions.
Jiang, Changcheng; Quan, Yanming; Lin, Xingui
2016-03-20
Capacitive touch panels (CTPs), as a medium of information interactions, have become essential parts in many consumer electronics. However, current methods such as image edge matching and frequency notch filter cannot suit the defect detection for the new-type complex CTP patterns, which have neither basic primitives nor periodicity. For solving the issues, we proposed a nonnegative matrix factorization (NMF)-based large-size image registration method, and combined it with image tolerance models to detect defects in such CTP patterns. The NMF-based image registration method can fast extract each CTP from a large image. And then, any three of registered images are selected as reference images, which are further processed by threshold processing and simple mathematical morphological operation to obtain tolerance models. Afterward, we can use the tolerance models to obtain a nondefective template. In the normal inspection stage, the defects in CTP patterns can be identified as long as comparing the tolerance models of the template and sensed images. The experimental results show that the proposed method can efficiently and accurately detect various types of defects in CTP patterns. Moreover, the detection results are robust under different illuminations. Therefore, this algorithm can be reliably applied in actual inspection of such new-type CTP patterns. PMID:27140570
A finite element model of the effects of primary creep in an Al-SiC metal matrix composite
NASA Astrophysics Data System (ADS)
Atkins, Steven L.; Gibeling, Jeffery C.
1995-12-01
A two dimensional axisymmetric finite element model has been developed to study the creep behavior of a high-temperature aluminum alloy matrix (alloy 8009) reinforced with 11 vol pct silicon carbide paniculate. Because primary creep represents a significant portion of the total creep strain for this matrix alloy, the emphasis of the present investigation is on the influence of primary creep on the high-temperature behavior of the composite. The base alloy and composite are prepared by rapid solidification processing, resulting in a very fine grain size and the absence of precipitates that may complicate modeling of the composite. Because the matrix microstructure is unaffected by the presence of the SiC paniculate, this material is particularly well suited to continuum finite element modeling. Stress contours, strain contours, and creep curves are presented for the model. While the final distribution of stresses and strains is unaffected by the inclusion of primary creep, the overall creep response of the model reveals a significant primary strain transient. The effects of true primary creep are more significant than the primary-like transient introduced by the redistribution of stresses after loading. Examination of the stress contours indicates that the matrix axial and shear components become less uniform while the effective stress becomes more homogeneous as creep progresses and that the distribution of stresses do not change significantly with time after the strain rate reaches a steady state. These results also confirm that load transfer from the matrix to reinforcement occurs primarily through the shear stress. It is concluded that inclusion of matrix primary creep is essential to obtaining accurate representations of the creep response of metal matrix composites.
NASA Astrophysics Data System (ADS)
Chambon, Julie C.; Broholm, Mette M.; Binning, Philip J.; Bjerg, Poul L.
2010-03-01
Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport of a contaminant in a single fracture-clay matrix system coupled with a reactive model for anaerobic dechlorination. The model takes into account microbially driven anaerobic dechlorination, where sequential Monod kinetics with competitive inhibition is used to model the reaction rates, and degradation is localized to account for potential pore size limitations on microbial entry to the clay matrix. The model is used to assess the distribution of TCE and its daughter products in the clay matrix and the concentration of the different compounds at the outlet of the fracture. The time frame for complete cleanup and the contaminant flux out of the clay system are assessed for different distributions of microbial degradation. Results from a set of scenarios show that time to remove 90% of the initial mass is halved when dechlorination occurs in a 5 cm reaction zone in the clay at the fracture-matrix interface (from 419 to 195 years) and decreases by an order of magnitude when dechlorination occurs in the entire matrix (to 32 years). The fracture spacing and the microbial parameters are shown to be the critical parameter for estimation of time frames depending on the system in question. Generally, the system is more sensitive to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer will increase as a result of degradation due to the higher mobility of the formed daughter products DCE and VC. The model is used to examine the relationship between flux
An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194
An open-access modeled passenger flow matrix for the global air network in 2010.
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194
NASA Astrophysics Data System (ADS)
Sturtz, Timothy M.
Source apportionment models attempt to untangle the relationship between pollution sources and the impacts at downwind receptors. Two frameworks of source apportionment models exist: source-oriented and receptor-oriented. Source based apportionment models use presumed emissions and atmospheric processes to estimate the downwind source contributions. Conversely, receptor based models leverage speciated concentration data from downwind receptors and apply statistical methods to predict source contributions. Integration of both source-oriented and receptor-oriented models could lead to a better understanding of the implications sources have on the environment and society. The research presented here investigated three different types of constraints applied to the Positive Matrix Factorization (PMF) receptor model within the framework of the Multilinear Engine (ME-2): element ratio constraints, spatial separation constraints, and chemical transport model (CTM) source attribution constraints. PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. PMF was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles were used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Using separate data, source contributions to total fine particle carbon predicted by a CTM were incorporated into the PMF receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was
Fluid-matrix interactions during high-temperature aquifer storage - lab experiments and modelling
NASA Astrophysics Data System (ADS)
Wismeth, Carina; Ueckert, Martina; Muffler, Selina; Niessner, Reinhard; Baumann, Thomas
2016-04-01
High-temperature aquifer storage is a promising extension to combined heat and power plants because it allows to store excess heat during the summer months and to recuperate the heat in winter when the heat demand exceeds the production. Within a research project funded by the Bavarian State Ministry for Economic Affairs and Media, Energy and Technology and the BMW Group, a pilot scale test was run at the Dingolfing site (Bavaria, Germany) in 2014. Field data and an a priori numerical model suggest dissolution and precipitation of the processes in the calcareous aquifer. In order to quantify the reaction kinetics, lab experiments were run in an autoclave. The experimental results were used to setup and calibrate a numerical hydrogeochemical model based on PhreeqC. Laboratory experiments were performed in a closed system with respect to CO2 and under pre-defined conditions using a high temperature autoclave. Within the dissolution test series original core samples of different depth were heated up with ultrapure water in defined heating cycles up to 110 °C and at defined pressure. For combined dissolution and precipitation processes, tap water from Munich was used. The gas phase was equilibrated with CO2 regarding the pCO2 of tap water. Five water samples were taken for each heating cycle and analyzed by ion chromatography to quantify the calcium/magnesium concentrations and ratio. Additionally the sorption properties of the core materials were tested with respect to the fluorescent dyes used in the field tests. The starting point to model the fluid matrix interactions was literature data of dolomite and calcite rates, which were integrated in the conceptional model. While the model results matched the experimentally determined concentrations nicely, there was a discrepancy with respect to the effective surface areas, which is likely due to impurities of the natural rock materials. The model was able to describe the minor precipitation of calcite during the
Cwik, T.; Jamnejad, V.; Zuffada, C.
1994-12-31
The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.
Wassenaar, Jean W; Boss, Gerry R; Christman, Karen L
2015-09-01
Several factors can affect drug absorption after intramuscular (IM) injection: drug solubility, drug transport across cell membranes, and drug metabolism at the injection site. We found that potential interactions between the drug and the extracellular matrix (ECM) at the injection site can also affect the rate of absorption post-injection. Using decellularized skeletal muscle, we developed a simple method to model drug absorption after IM injection, and showed that the nature of the drug-ECM interaction could be investigated by adding compounds that alter binding. We validated the model using the vitamin B12 analog cobinamide with different bound ligands. Cobinamide is being developed as an IM injectable treatment for cyanide poisoning, and we found that the in vitro binding data correlated with previously published in vivo drug absorption in animals. Commercially available ECM products, such as collagen and GelTrex, did not recapitulate drug binding behavior. While decellularized ECM has been widely studied in fields such as tissue engineering, this work establishes a novel use of skeletal muscle ECM as a potential in vitro model to study drug-ECM interactions during drug development. PMID:26125502
Thimble regularization at work: From toy models to chiral random matrix theories
NASA Astrophysics Data System (ADS)
Di Renzo, F.; Eruzzi, G.
2015-10-01
We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex zero-dimensional ϕ4 theory. Although very simple, this toy model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: How many thimbles contribute to the solution? How can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very crude nature. The deviation of results from phase quenched ones highlights that in a certain region of parameter space there is a quite important sign problem. In view of this, the success of our thimble approach is quite a significant one.
Complex 2D matrix model and geometrical map on the complex-Nc plane
NASA Astrophysics Data System (ADS)
Nawa, Kanabu; Ozaki, Sho; Nagahiro, Hideko; Jido, Daisuke; Hosaka, Atsushi
2013-08-01
We study the parameter dependence of the internal structure of resonance states by formulating a complex two-dimensional (2D) matrix model, where the two dimensions represent two levels of resonances. We calculate a critical value of the parameter at which a "nature transition" with character exchange occurs between two resonance states, from the viewpoint of geometry on complex-parameter space. Such a critical value is useful for identifying the internal structure of resonance states with variation of the parameter in the system. We apply the model to analyze the internal structure of hadrons with variation of the color number N_c from infty to a realistic value 3. By regarding 1/N_c as the variable parameter in our model, we calculate a critical color number of the nature transition between hadronic states in terms of a quark-antiquark pair and a mesonic molecule as exotics from the geometry on the complex-N_c plane. For large-N_c effective theory, we employ the chiral Lagrangian induced by holographic QCD with a D4/D8/overline {D8} multi-D brane system in type IIA superstring theory.
Probing models of Dirac neutrino masses via the flavor structure of the mass matrix
NASA Astrophysics Data System (ADS)
Kanemura, Shinya; Sakurai, Kodai; Sugiyama, Hiroaki
2016-07-01
We classify models of the Dirac neutrino mass by concentrating on flavor structures of the mass matrix. The advantage of our classification is that we do not need to specify detail of models except for Yukawa interactions because flavor structures can be given only by products of Yukawa matrices. All possible Yukawa interactions between leptons (including the right-handed neutrino) are taken into account by introducing appropriate scalar fields. We also take into account the case of Yukawa interactions of leptons with the dark matter candidate. Then, we see that flavor structures can be classified into seven groups. The result is useful for the efficient test of models of the neutrino mass. One of seven groups can be tested by measuring the absolute neutrino mass. Other two can be tested by probing the violation of the lepton universality in ℓ →ℓ‧ ν ν ‾. In order to test the other four groups, we can rely on searches for new scalar particles at collider experiments.
Entanglement entropy from corner transfer matrix in Forrester-Baxter non-unitary RSOS models
NASA Astrophysics Data System (ADS)
Bianchini, Davide; Ravanini, Francesco
2016-04-01
Using a corner transfer matrix approach, we compute the bipartite entanglement Rényi entropy in the off-critical perturbations of non-unitary conformal minimal models realised by lattice spin chains Hamiltonians related to the Forrester-Baxter RSOS models (Bianchini et al 2015 J. Stat. Mech. P03010) in regime III. This allows to show on a set of explicit examples that the Rényi entropies for non-unitary theories rescale near criticality as the logarithm of the correlation length with a coefficient proportional to the effective central charge. This complements a similar result, recently established for the size rescaling at the critical point (Bianchini et al 2015 J. Phys. A: Math. Theor. 48 04FT01), showing the expected agreement of the two behaviours. We also compute the first subleading unusual correction to the scaling behaviour, showing that it is expressible in terms of expansions of various fractional powers of the correlation length, related to the differences {{Δ }}-{{{Δ }}}{min} between the conformal dimensions of fields in the theory and the minimal conformal dimension. Finally, a few observations on the limit leading to the off-critical logarithmic minimal models of Pearce and Seaton (2012 J. Stat. Mech. P09014) are put forward.
Mathematical Modeling of Particle Segregation During Centrifugal Casting of Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Balout, B.; Litwin, J.
2012-04-01
When a metal matrix composite undergoes centrifugal casting, the velocity, deceleration, displacement, and segregation of its particles are modeled according to changes in the centrifugal radius, as well as by variations in the molten metal viscosity as the temperature decreases during the cooling process. A cast aluminum alloy A356 reinforced by 10 V% of silicon carbide particles (SiC), with a median diameter of 12 μm, was used to conduct the experiments, and a mathematical modeling showed that the particles' volume fraction on the outer casting face varied according to whether the viscosity of the liquid metal used was constant or variable. If variations in viscosity during the cooling process are taken into account, then the volume fraction of the particles for a given time of centrifugation changes on the outer casting face, while it increases if the viscosity was constant. Modeling the particle segregation with variable viscosity produces results that are closer to those obtained with experiments than is the case when a constant viscosity is used. In fact, the higher the initial pouring and mold temperatures, the higher the effect of the viscosity variation on particle segregation.
Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.
2015-01-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000
Modeling of Gas-Liquid Flow Through An Interconnected Channel Matrix
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane.H
2009-01-01
The motion of a less viscous, non-wetting gas into a liquid-saturated porous medium is known as drainage. Drainage is an important process in environmental applications, such as enhanced oil recovery and geologic CO2 sequestration. Understanding what conditions will increase the volume of gas that can saturate an initially water-saturated porous medium is of importance for predictions of the total CO2 volume that can be sequestered in known geologic formations. To further the understanding of how drainage flow properties are related to different injection flow-rates, a porous medium consisting of interconnected channels and pores was manufactured to perform bench-top experiments of drainage. Additionally, a finite-volume model of this interconnected channel matrix was constructed. Numerical simulations of constant-rate injection into the model porous medium are first shown to compare favorably to the bench-top experiments. The fluid and injection properties of the drainage process were then varied to evaluate the flow conditions which would maximize the volume of gas trapped within the porous medium. In particular, CO2 displacing brine within the porous medium was modeled, with representative subsurface temperatures and fluid properties. It was shown with these fluid conditions a higher final saturation of the invading less-viscous CO2 was obtained, as compared to air into water experiments at similar injection rates.
Density-matrix renormalization group study of the extended Kitaev-Heisenberg model
NASA Astrophysics Data System (ADS)
Shinjo, Kazuya; Sota, Shigetoshi; Tohyama, Takami
2015-02-01
We study an extended Kitaev-Heisenberg model including additional anisotropic couplings by using the two-dimensional density-matrix renormalization group method. Calculating the ground-state energy, entanglement entropy, and spin-spin correlation functions, we make a phase diagram of the extended Kitaev-Heisenberg model around the spin-liquid phase. We find a zigzag antiferromagnetic phase, a ferromagnetic phase, a 120∘ antiferromagnetic phase, and two kinds of incommensurate phases around the Kitaev spin-liquid phase. Furthermore, we study the entanglement spectrum of the model, and we find that entanglement levels in the Kitaev spin-liquid phase are degenerate forming pairs, but those in the magnetically ordered phases are nondegenerate. The Schmidt gap defined as the energy difference between the lowest two levels changes at the phase boundary adjacent to the Kitaev spin-liquid phase. However, we find that phase boundaries between magnetically ordered phases do not necessarily agree with the change of the Schmidt gap.
Doutres, Olivier; Atalla, Noureddine; Osman, Haisam
2015-06-01
Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale. PMID:26093437
The agroecological matrix as alternative to the land-sparing/agriculture intensification model
Perfecto, Ivette; Vandermeer, John
2010-01-01
Among the myriad complications involved in the current food crisis, the relationship between agriculture and the rest of nature is one of the most important yet remains only incompletely analyzed. Particularly in tropical areas, agriculture is frequently seen as the antithesis of the natural world, where the problem is framed as one of minimizing land devoted to agriculture so as to devote more to conservation of biodiversity and other ecosystem services. In particular, the “forest transition model” projects an overly optimistic vision of a future where increased agricultural intensification (to produce more per hectare) and/or increased rural-to-urban migration (to reduce the rural population that cuts forest for agriculture) suggests a near future of much tropical aforestation and higher agricultural production. Reviewing recent developments in ecological theory (showing the importance of migration between fragments and local extinction rates) coupled with empirical evidence, we argue that there is little to suggest that the forest transition model is useful for tropical areas, at least under current sociopolitical structures. A model that incorporates the agricultural matrix as an integral component of conservation programs is proposed. Furthermore, we suggest that this model will be most successful within a framework of small-scale agroecological production. PMID:20339080
A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem
NASA Technical Reports Server (NTRS)
Erdogan, F.; Pacella, A. H.
1974-01-01
The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.
2003-01-01
The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and
A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon
NASA Technical Reports Server (NTRS)
Zeng, Y.; Cowin, S. C.; Weinbaum, S.
1994-01-01
A theoretical model is developed to predict the fluid shear stress and streaming potential at the surface of osteocytic processes in the lacunar-canalicular porosity of an osteon when the osteon is subject to mechanical loads that are parallel or perpendicular to its axis. The theory developed in Weinbaum et al. (31) for the flow through a proteoglycan matrix in a canaliculus is employed in a poroelastic model for the osteon. Our formulation is a generalization of that of Petrov et al. (17). Our model predicts that, in order to satisfy the measured frequency dependence of the phase and magnitude of the SGP in macroscopic bone samples, the fiber spacing in the fluid annulus must lie in the narrow range 6-7 nm typical of the spacing of GAG sidechains along a protein monomer. The model predictions for the local SGP profiles in the osteon agree with the experimental observations of Starkebaum et al. (24). The theory predicts that the pore pressure relaxation time, tau d, for a 150-300 microns diameter osteon with the foregoing matrix structure is approximately 0.03-0.13 sec, and that the amplitude of the mean fluid shear stress on the membrane of the osteocytic process at the mean areal radius of the osteon has a maximum at 28 Hz if tau d = 0.06 sec. This maximum, which is independent of the magnitude of the loading, could be important in vivo since the recent experiments of Turner et al. (28) and McLeod et al. (15) have a peak in the strain frequency spectrum between 20 and 30 Hz that also appears to be independent of the type (magnitude) of loading. Numerical predictions for the amplitude of the average fluid shear stress on the osteocytic membrane at the mean areal radius of the osteon show that the fluid shear stress associated with the low amplitude 20-30 Hz spectral strain component is at least as large as the average fluid shear stress associated with the high amplitude 1 Hz stride component, although the latter loading is an order of magnitude larger, and has a
NASA Astrophysics Data System (ADS)
Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh
2016-04-01
A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.
Ochoa-Callejero, Laura; Toshkov, Ilia; Menne, Stephan; Martínez, Alfredo
2013-07-01
Matrix metalloproteinases (MMPs) play a central role in tumor invasion and metastasis. Increased expression of MMPs occurs during development of hepatocellular carcinoma (HCC) in humans following infection with hepatitis B virus (HBV). Woodchucks are used as an animal model for hepadnavirus-induced HCC. All woodchucks infected chronically with woodchuck hepatitis virus (WHV), a virus that is closely related to HBV, develop HCC. In the present study MMPs and related molecules were investigated in woodchucks to better understand the mechanisms of extracellular matrix remodeling in HCC. Three groups of samples were studied: liver and HCC tissues from animals infected with WHV and age- and gender-matched normal liver from animals not infected with WHV. New partial gene sequences for woodchuck MMP-2, MMP-7, and MMP-9 as well as their inhibitors NGAL, TIMP-1, and TIMP-2 were identified and used for determination of expression levels in liver and HCC by qRT-PCR. Compared to liver of WHV-naïve woodchucks, high levels of MMP-1, MMP-2, MMP-7, NGAL, and TIMP-1 were detected in liver of animals infected with WHV. However, no differences were found for TIMP-2. MMP-9 expression was higher in HCC than in liver of animals not infected with WHV. Immunohistochemical staining demonstrated that MMP-9 immunoreactivity was most intense in HCC, correlating with the progression of liver disease. Upregulation of MMP-9 in HCC was confirmed by Western blotting and zymography analysis. Furthermore, the activity of woodchuck MMPs was suppressed by BiPS, a common inhibitor of mammalian MMPs. These results suggest the use of MMP inhibitors as a potential HCC treatment strategy that could be explored in woodchucks. PMID:23595580
Madsen, Jonas S.; Lin, Yu-Cheng; Squyres, Georgia R.; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C.; Sørensen, Søren J.
2015-01-01
As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. PMID:26431965
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1998-01-01
The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural
Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.
Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A
2013-02-01
The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on
Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.
2011-01-01
We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095
Magin, Richard L; Li, Weiguo; Pilar Velasco, M; Trujillo, Juan; Reiter, David A; Morgenstern, Ashley; Spencer, Richard G
2011-06-01
We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T(1) and T(2)). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T(1) and T(2) relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T(2) relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T(1) was observed in BNC. In the single-component gels, for T(2) measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T(2) NMR relaxation processes in biological tissues. PMID:21498095
Analytical and numerical modeling of the mechanical behavior of metal matrix composites
NASA Astrophysics Data System (ADS)
Elfishawy, Karim Fouad
Metal matrix composites (MMCs) subjected to both external and thermal cycling loading can experience enhanced creep deformation, leading to dimensional instability in some cases. Three-dimensional finite element models have been constructed to predict the behavior of composites under such loading conditions. The different possible types of composite behavior are discussed in detail. The language and ideas developed in the continuum mechanics area of ratcheting and shakedown was shown to correlate quite closely to the thermal cycling behavior of composites and to apply to their analysis and design. Three composite configurations were analyzed analytically and their models were used to construct Composite Behavior Maps (CBMs). CBMs are diagrams which delineate regions of dimensionally stable and unstable composite behavior, and were shown to have a characteristic shape. Experimental and analytical methods are outlined for constructing conservative CBMs for complex composite configurations for which analytical solutions are not possible. The utility of such diagrams as both an analysis and design tool for MMCs on the microstructural scale is discussed in detail. The fundamental elastic and plastic properties of a new non-traditional alumina/aluminum composite where both phases are continuous, known as Csp4, were investigated analytically using finite element simulations and compared to experimental results. The composite behaves in a nearly bilinear manner defined by an elastic modulus and an elastic-plastic modulus. The apparent plasticity in the composite was shown to occur by true plastic deformation of aluminum and elastic accommodation of alumina. Effects of residual stresses and matrix strength on the tensile and compressive behavior of the composite were also investigated. The concept of selective reinforcement is discussed, along with its special considerations and limitations. The applicability and effectiveness of selective reinforcement as a design approach
Eurlings, Irene M J; Dentener, Mieke A; Mercken, Evi M; de Cabo, Rafael; Bracke, Ken R; Vernooy, Juanita H J; Wouters, Emiel F M; Reynaert, Niki L
2014-10-01
Remodeling in chronic obstructive pulmonary disease (COPD) has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recently we showed comparable alterations of the extracellular matrix (ECM) compounds collagen, hyaluoran, and elastin in alveolar and small airway walls of COPD patients. The aim of this study was to characterize and assess similarities in alveolar and small airway wall matrix remodeling in chronic COPD models. From this comparative characterization of matrix remodeling we derived and elaborated underlying mechanisms to the matrix changes reported in COPD. Lung tissue sections of chronic models for COPD, either induced by exposure to cigarette smoke, chronic intratracheal lipopolysaccharide instillation, or local tumor necrosis factor (TNF) expression [surfactant protein C (SPC)-TNFα mice], were stained for elastin, collagen, and hyaluronan. Furthermore TNF-α matrix metalloproteinase (MMP)-2, -9, and -12 mRNA expression was analyzed using qPCR and localized using immunohistochemistry. Both collagen and hyaluronan were increased in alveolar and small airway walls of all three models. Interestingly, elastin contents were differentially affected, with a decrease in both alveolar and airway walls in SPC-TNFα mice. Furthermore TNF-α and MMP-2 and -9 mRNA and protein levels were found to be increased in alveolar walls and around airway walls only in SPC-TNFα mice. We show that only SPC-TNFα mice show changes in elastin remodeling that are comparable to what has been observed in COPD patients. This reveals that the SPC-TNFα model is a suitable model to study processes underlying matrix remodeling and in particular elastin breakdown as seen in COPD. Furthermore we indicate a possible role for MMP-2 and MMP-9 in the breakdown of elastin in airways and alveoli of SPC-TNFα mice. PMID:25106431
Brain Mapping-Based Model of Δ(9)-Tetrahydrocannabinol Effects on Connectivity in the Pain Matrix.
Walter, Carmen; Oertel, Bruno G; Felden, Lisa; Kell, Christian A; Nöth, Ulrike; Vermehren, Johannes; Kaiser, Jochen; Deichmann, Ralf; Lötsch, Jörn
2016-05-01
Cannabinoids receive increasing interest as analgesic treatments. However, the clinical use of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) has progressed with justified caution, which also owes to the incomplete mechanistic understanding of its analgesic effects, in particular its interference with the processing of sensory or affective components of pain. The present placebo-controlled crossover study therefore focused on the effects of 20 mg oral THC on the connectivity between brain areas of the pain matrix following experimental stimulation of trigeminal nocisensors in 15 non-addicted healthy volunteers. A general linear model (GLM) analysis identified reduced activations in the hippocampus and the anterior insula following THC administration. However, assessment of psychophysiological interaction (PPI) revealed that the effects of THC first consisted in a weakening of the interaction between the thalamus and the secondary somatosensory cortex (S2). From there, dynamic causal modeling (DCM) was employed to infer that THC attenuated the connections to the hippocampus and to the anterior insula, suggesting that the reduced activations in these regions are secondary to a reduction of the connectivity from somatosensory regions by THC. These findings may have consequences for the way THC effects are currently interpreted: as cannabinoids are increasingly considered in pain treatment, present results provide relevant information about how THC interferes with the affective component of pain. Specifically, the present experiment suggests that THC does not selectively affect limbic regions, but rather interferes with sensory processing which in turn reduces sensory-limbic connectivity, leading to deactivation of affective regions. PMID:26514581
Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system
NASA Astrophysics Data System (ADS)
Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita
We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Transfer matrix modeling of a tensioned piezo-solar hybrid energy harvesting ribbon
NASA Astrophysics Data System (ADS)
Chatterjee, Punnag; Bryant, Matthew
2015-04-01
This paper proposes a multifunctional compliant structure that can harvest electrical power from both incident sunlight and ambient mechanical energy including wind flow or vibration. The energy harvesting device consists of a slender, ribbon-like, flexible thin film solar cell that is laminated with piezoelectric patches. The harvester is mounted in longitudinal tension and subjected to a transverse wind flow to excite flow-induced aeroelastic vibrations. This paper formulates an analytic model of the bending dynamics of the device. We present a Transfer Matrix formulation that also accounts for the changes in natural frequencies and mode shapes of the system when subjected to axial loads in a beam. It also observed that mode shape obtained using TMM formulation shows numerical stability even for very high tensile loads providing results consistent with the geometric boundary conditions applied at the ends of a beam. This article also discusses about structurally modeling a piezo - solar energy harvester using TMM methodology, where a thin clampedclamped solar film is bonded with piezo patches having a much higher bending stiffness. Additionally, the effect of axial tension on the mode shape of the thin host structure of the piezo-solar ribbon is presented and it is shown how this tension can be used advantageously to affect the strain distribution of the entire structure and introduce higher strains at the piezo patches.
Williamson, Donald S; Wang, Yuxuan; Wang, DeLiang
2015-09-01
As a means of speech separation, time-frequency masking applies a gain function to the time-frequency representation of noisy speech. On the other hand, nonnegative matrix factorization (NMF) addresses separation by linearly combining basis vectors from speech and noise models to approximate noisy speech. This paper presents an approach for improving the perceptual quality of speech separated from background noise at low signal-to-noise ratios. An ideal ratio mask is estimated, which separates speech from noise with reasonable sound quality. A deep neural network then approximates clean speech by estimating activation weights from the ratio-masked speech, where the weights linearly combine elements from a NMF speech model. Systematic comparisons using objective metrics, including the perceptual evaluation of speech quality, show that the proposed algorithm achieves higher speech quality than related masking and NMF methods. In addition, a listening test was performed and its results show that the output of the proposed algorithm is preferred over the comparison systems in terms of speech quality. PMID:26428778
Köhn-Luque, Alvaro; de Back, Walter; Starruß, Jörn; Mattiotti, Andrea; Deutsch, Andreas; Pérez-Pomares, José María; Herrero, Miguel A.
2011-01-01
During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling. PMID:21949696
Hyaluronan based hydrogels provide an improved model to study megakaryocyte-matrix interactions.
Currao, Manuela; Malara, Alessandro; Di Buduo, Christian A; Abbonante, Vittorio; Tozzi, Lorenzo; Balduini, Alessandra
2016-08-01
Hyaluronan (HA) is a glycosamminoglican involved in cell biology as well as a relevant polymer for tissue engineering and regenerative medicine. Megakaryocytes (Mks) are immersed in a mesh of extracellular matrix (ECM) components that regulate their maturation in the bone marrow (BM) and the release of platelets into the bloodstream. While fibrous ECMs such as collagens and fibronectin have been demonstrated to differently regulate Mk function and platelet release, the role of HA, that fills the majority of the BM extracellular interstitial space, has not been investigated so far. Here we demonstrated that, although human Mks express HA receptors, they are not affected by HA in terms of in vitro differentiation, maturation and platelet formation. Importantly, chemical properties of HA were exploited to generate hydrogels with entrapped ECMs that represent a useful model to more closely mimic the tridimensional characteristics of the BM environment for studying Mk function. In conclusion, in this work we demonstrated that HA is an ideal candidate for a 3D ex vivo model of human BM ECM component environment. PMID:26027944
Hiraoka, Takehiro; Hirota, Yasushi; Saito-Fujita, Tomoko; Matsuo, Mitsunori; Egashira, Mahiro; Matsumoto, Leona; Haraguchi, Hirofumi; Dey, Sudhansu K.; Furukawa, Katsuko S.; Fujii, Tomoyuki; Osuga, Yutaka
2016-01-01
Although a close connection between uterine regeneration and successful pregnancy in both humans and mice has been consistently observed, its molecular basis remains unclear. We here established a mouse model of decellularized uterine matrix (DUM) transplantation. Resected mouse uteri were processed with SDS to make DUMs without any intact cells. DUMs were transplanted into the mouse uteri with artificially induced defects, and all the uterine layers were recovered at the DUM transplantation sites within a month. In the regenerated uteri, normal hormone responsiveness in early pregnancy was observed, suggesting the regeneration of functional uteri. Uterine epithelial cells rapidly migrated and formed a normal uterine epithelial layer within a week, indicating a robust epithelial-regenerating capacity. Stromal and myometrial regeneration occurred following epithelial regeneration. In ovariectomized mice, uterine regeneration of the DUM transplantation was similarly observed, suggesting that ovarian hormones are not essential for this regeneration process. Importantly, the regenerating epithelium around the DUM demonstrated heightened STAT3 phosphorylation and cell proliferation, which was suppressed in uteri of Stat3 conditional knockout mice. These data suggest a key role of STAT3 in the initial step of the uterine regeneration process. The DUM transplantation model is a powerful tool for uterine regeneration research. PMID:27358915
Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies
NASA Astrophysics Data System (ADS)
Mendaza, Teresa; Martin-Torres, Javier
2016-04-01
We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of
Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9.
Ordonez, Alvaro A; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J; Klunk, Mariah H; Mollura, Daniel J; Nuermberger, Eric L; Jain, Sanjay K
2016-07-01
Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816
Density matrix embedding theory studies of the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Zheng, Bo-Xiao
Density matrix embedding theory (DMET) provides a quantum embedding framework to compute the electronic structure in strongly correlated lattice systems. It has been applied to various model Hamiltonians and ab initio systems. In this talk, I will review the results obtained in the two-dimensional one-band Hubbard model using DMET. Over the last years, we mapped a calibrated ground-state phase diagram of the two-dimensional Hubbard model, concerning magnetic, superconducting and various inhomogeneous phases. Based on the results from this work, as well as the consistent data from other numerical methods, we are able to conclude that many parts of the Hubbard phase diagram is already settled up to an accurate energy scale of 0.001t. Recently, by using large-scale auxiliary-field quantum Monte Carlo (AFQMC) in the impurity problem, we are able to treat much larger embedded clusters at half-filling (and with the constrained path approximation at non-half-filling), which provides a deeper understanding on the finite-size effects of energy and observables in both quantum embedding and finite cluster numerical methods. Finally, we systematically investigated the putative inhomogeneous phases in the underdoped, strong coupling Hubbard model, proposing new inhomogeneous patterns as strong candidates for the ground state. Reference: [1] Bo-Xiao Zheng, Garnet K.-L. Chan, arXiv:1504.01784 [2] J.P.F. Leblanc, Andrey E. Antipov, et al., arXiv:1505.02290 We acknowledge funding from the US Department of Energy, Office of Science, through DE-SC0008624 and DE-SC0010530. This work was also performed as part of the Simons Collaboration on the Many Electron Problem, sponsored by the Simons Foundation.
Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9
Ordonez, Alvaro A.; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J.; Klunk, Mariah H.; Mollura, Daniel J.; Nuermberger, Eric L.
2016-01-01
ABSTRACT Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis. Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ. A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816
Dunne, Lawrence J; Manos, George
2016-03-14
Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks. PMID:26514851
ERIC Educational Resources Information Center
Larson, Christine
2010-01-01
Little is known about the variety of ways students conceptualize matrix multiplication, yet this is a fundamental part of most introductory linear algebra courses. My dissertation follows a three-paper format, with the three papers exploring conceptualizations of matrix multiplication from a variety of viewpoints. In these papers, I explore (1)…
Min, Zixin; zhang, Rui; Yao, Jianfeng; Jiang, Congshan; Guo, Yuanxu; Cong, Fei; Wang, Wei; Tian, Jia; Zhong, Nannan; Sun, Jian; Ma, Jie; Lu, Shemin
2015-01-01
Osteoarthritis (OA) is characterized by degeneration of articular cartilage, limited intraarticular inflammation with synovitis, and changes in peri-articular and subchondral bone. In recent years, more and more evidence demonstrated that microRNAs (miRNAs) play important roles in the molecular mechanisms in OA by suppressing gene expression at the post-transcriptional level. In current study, histological staining of toluidine blue and cartilage-specific gene express revealed that the bone matrix gelatin (BMG) rat model could demonstrate the different development of cartilage. In current study, we tested whether some miRNAs associated with OA differently expressed in BMG rat model. We verified that miR-140 and miR-455 were associated with cartilage development, and further revealed that miR-140-5p and miR-455-3p might play more important function than miR-140-3p and miR-455-5p in the BMG rat model. Moreover, we found that miR-9 and miR-98 were involved in the endochondral ossification, suggesting they may be also the key regulators in the process of endochondral ossification. In fact, many miRNAs worked as a miRNA-mediated regulatory network in the process of cartilage development and OA. Further functional discovery will clarify the roles of individual miRNAs and their targets, and serve as a strong foundation for translating these findings to the clinic therapy for OA. PMID:25785087
Neutrino mixing matrix and masses from a generalized Friedberg-Lee model
NASA Astrophysics Data System (ADS)
Razzaghi, N.; Gousheh, S. S.
2014-02-01
The overall characteristics of the solar and atmospheric neutrino oscillation are approximately consistent with a tribimaximal form of the mixing matrix U of the lepton sector. Exact tribimaximal mixing leads to θ13=0. However, recent results from the Daya Bay and RENO experiments have established a nonzero value for θ13. Keeping the leading behavior of U as tribimaximal, we use a generalized Friedberg-Lee neutrino mass model along with a complementary ansatz to incorporate a nonzero θ13 along with CP violation. We generalize this model in two stages: In the first stage, we assume μ -τ symmetry and add imaginary components which leads to nonzero phases. In the second stage, we add a perturbation with real components which breaks the μ-τ symmetry, and this leads to a nonzero value for θ13. The combination of these two generalizations leads to CP violation. Using only two sets of the experimental data, we can fix all of the parameters of our model and predict not only values for the other experimental data, which agree well with the available data, but also the masses of neutrinos and the CP-violating phases and parameters. These predictions include the following: ⟨mνe⟩≈(0.033-0.037) eV, ⟨mνμ⟩≈(0.043-0.048) eV, ⟨mντ⟩≈(0.046-0.051) eV, and 59.21°≲δ ≲59.34°.
Three-body force for baryons from the D0-D4/D8 brane matrix model
NASA Astrophysics Data System (ADS)
Li, Si-wen; Jia, Tuo
2016-03-01
This is an extensive work to our previous paper [S. Li and T. Jia, Matrix model and holographic baryons in the D0-D4 background, Phys. Rev. D 92, 046007 (2015)] that studied the D0-D4/D8 holographic system. We compute the three-body force for baryons with the D0-D4/D8 matrix model derived in [S. Li and T. Jia, Matrix model and holographic baryons in the D0-D4 background, Phys. Rev. D 92, 046007 (2015)] with considering the nonzero QCD vacuum. We obtain the three-body force at short distances but modified by the appearance of the smeared D0-branes, i.e., considering the effects from the nontrivial QCD vacuum. We first test our matrix model in the case of 't Hooft instanton and then in two more realistic cases: (1) three-neutrons with averaged spins and (2) proton-proton-neutron (or proton-neutron-proton). The three-body potential vanishes in the former case while in the two latter cases it is positive, i.e., repulsive and makes sense only if the constraint for stable baryonic state is satisfied. We require all the baryons in our computation aligned on a line. These may indicate that the cases in dense states of neutrons such as in neutron stars, Helium-3 or Tritium nucleus all with the nontrivial QCD vacuum.
Technology Transfer Automated Retrieval System (TEKTRAN)
Weed biological control workers have advocated for the advance assessment of agent efficacy in order to minimize the release of host-specific but ineffective agents. One method involves demographic matrix modeling of target weed populations in order to identify plant life stage transitions that cont...
ERIC Educational Resources Information Center
Romero, Sonia J.; Ordoñez, Xavier G.; Ponsoda, Vincente; Revuelta, Javier
2014-01-01
Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes representing the cognitive structure proposed for solve…
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Kinard, Lucas A.; Dahlin, Rebecca L.; Lam, Johnny; Lu, Steven; Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.
2014-01-01
There exists a strong clinical need for a more capable and robust method to achieve bone augmentation, and a system with fine-tuned delivery of demineralized bone matrix (DBM) has potential to meet that need. As such, the objective of the present study was to investigate a synthetic biodegradable hydrogel for the delivery of DBM for bone augmentation in a rat model. Oligo(poly(ethylene glycol) fumarate) (OPF) constructs were designed and fabricated by varying the content of rat-derived DBM particles (either 1:3, 1:1, or 3:1 DBM:OPF weight ratio on a dry basis) and using two DBM particle size ranges (50–150 or 150–250 μm). The physical properties of the constructs and the bioactivity of the DBM were evaluated. Select formulations (1:1 and 3:1 with 50–150 μm DBM) were evaluated in vivo compared to an empty control to investigate the effect of DBM dose and construct properties on bone augmentation. Overall, 3:1 constructs with higher DBM content achieved the greatest volume of bone augmentation exceeding 1:1 constructs and empty implants by 3-fold and 5-fold, respectively. As such, we have established that a synthetic, biodegradable hydrogel can function as a carrier for DBM, and that the volume of bone augmentation achieved by the constructs correlated directly to DBM dose. PMID:25046637
Characterization of metal matrix composites by linear ultrasonics and finite element modeling.
Chen, Xuesheng; Sharples, Steve D; Clark, Matt; Wright, David
2013-02-01
Titanium metal matrix composites (TiMMCs) offer advantages over traditional materials for aerospace applications due to the increased mechanical strength of the materials. But the non-destructive inspection of these materials, especially with ultrasound, is in an infancy stage. If the manufacturing process of TiMMC is not correctly controlled, then disbonds and voids between the fibers can result. The effective microstructure of the composite makes difficulty to interpret results from traditional ultrasound techniques because of the scattering caused by fibers; the scattering prevents the ultrasound from penetrating far into the composite region and produces a background signal masking any reflections from voids. In this paper, relatively low frequency ultrasound is used to probe the composite region, and the state of the composite (porosity) is inferred from the velocity of the ultrasound traversing the composite. The relationship between the velocity and porosity is complex in this regime, so finite element (FE) analysis is used to model the composite regions and relate the velocity to the porosity. The FE simulated results are validated by ultrasound velocity measurements. PMID:23363095
On matrix-model approach to simplified Khovanov-Rozansky calculus
NASA Astrophysics Data System (ADS)
Morozov, A.; Morozov, And.; Popolitov, A.
2015-10-01
Wilson-loop averages in Chern-Simons theory (HOMFLY polynomials) can be evaluated in different ways - the most difficult, but most interesting of them is the hypercube calculus, the only one applicable to virtual knots and used also for categorification (higher-dimensional extension) of the theory. We continue the study of quantum dimensions, associated with hypercube vertices, in the drastically simplified version of this approach to knot polynomials. At q = 1 the problem is reformulated in terms of fat (ribbon) graphs, where Seifert cycles play the role of vertices. Ward identities in associated matrix model provide a set of recursions between classical dimensions. For q ≠ 1 most of these relations are broken (i.e. deformed in a still uncontrollable way), and only few are protected by Reidemeister invariance of Chern-Simons theory. Still they are helpful for systematic evaluation of entire series of quantum dimensions, including negative ones, which are relevant for virtual link diagrams. To illustrate the effectiveness of developed formalism we derive explicit expressions for the 2-cabled HOMFLY of virtual trefoil and virtual 3.2 knot, which involve respectively 12 and 14 intersections - far beyond any dreams with alternative methods. As a more conceptual application, we describe a relation between the genus of fat graph and Turaev genus of original link diagram, which is currently the most effective tool for the search of thin knots.
Optical characterization of murine model's in-vivo skin using Mueller matrix polarimetric imaging
NASA Astrophysics Data System (ADS)
Mora-Núñez, Azael; Martinez-Ponce, Geminiano; Garcia-Torales, Guillermo
2015-12-01
Mueller matrix polarimetric imaging (MMPI) provides a complete characterization of an anisotropic optical medium. Subsequent single value decomposition allows image interpretation in terms of basic optical anisotropies, such as depolarization, diattenuation, and retardance. In this work, healthy in-vivo skin at different anatomical locations of a biological model (Rattus norvegicus) was imaged by the MMPI technique using 532nm coherent illumination. The body parts under study were back, abdomen, tail, and calvaria. Because skin components are randomly distributed and skin thickness depends on its location, polarization measures arise from the average over a single detection element (pixel) and on the number of free optical paths, respectively. Optical anisotropies over the imaged skin indicates, mainly, the presence of components related to the physiology of the explored region. In addition, a MMPI-based comparison between a tumor on the back of one test subject and proximal healthy skin was made. The results show that the single values of optical anisotropies can be helpful in distinguishing different areas of in-vivo skin and also lesions.
Cauchy-Laguerre Two-Matrix Model and the Meijer-G Random Point Field
NASA Astrophysics Data System (ADS)
Bertola, M.; Gekhtman, M.; Szmigielski, J.
2014-02-01
We apply the general theory of Cauchy biorthogonal polynomials developed in Bertola et al. (Commun Math Phys 287(3):983-1014, 2009) and Bertola et al. (J Approx Th 162(4):832-867, 2010) to the case associated with Laguerre measures. In particular, we obtain explicit formulae in terms of Meijer-G functions for all key objects relevant to the study of the corresponding biorthogonal polynomials and the Cauchy two-matrix model associated with them. The central theorem we prove is that a scaling limit of the correlation functions for eigenvalues near the origin exists, and is given by a new determinantal two-level random point field, the Meijer-G random field. We conjecture that this random point field leads to a novel universality class of random fields parametrized by exponents of Laguerre weights. We express the joint distributions of the smallest eigenvalues in terms of suitable Fredholm determinants and evaluate them numerically. We also show that in a suitable limit, the Meijer-G random field converges to the Bessel random field and hence the behavior of the eigenvalues of one of the two matrices converges to the one of the Laguerre ensemble.
Test of 600 and 750 MeV NN matrix on elastic scattering Glauber model calculations
NASA Astrophysics Data System (ADS)
Brissaud, I.
1980-09-01
The 600 and 750 MeV proton nucleus elastic scattering cross section and polarization calculations have been performed in the framework of the Glauber model to test the pp and pn scattering amplitudes deduced from a phase shift analysis by Bystricky, Lechanoine and Lehar. It is well known that up to now we do not possess a non-phenomenological NN scattering matrix at intermediate energies. However proton-nucleus scattering analyses are used to extract information about short range correlations1), Δ resonance2) or pion condensation presences)... etc. Most scattering calculations made at these energies have been done with phenomenological NN amplitudes having a gaussian q-dependence 10050_2005_Article_BF01438168_TeX2GIFE1.gif A(q) = {kσ }/{4π }(α + i) e^{ - β ^2 q^2 /2} and 10050_2005_Article_BF01438168_TeX2GIFE2.gif C(q) = {kσ }/{4π }iq(α + i) D_e - β ^2 q^2 /2 K and σ being respectively the projectile momentum and the total pN total cross section. The parameters α, β and D are badly known and are adjusted by fitting some specific reactions as p+4He elastic scattering4). Even when these amplitudes provide good fits to the data, our understanding of the dynamics of the scattering remains obscure.
Efficient model reduction of parametrized systems by matrix discrete empirical interpolation
NASA Astrophysics Data System (ADS)
Negri, Federico; Manzoni, Andrea; Amsallem, David
2015-12-01
In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.
Best, Jan; Verhulst, Stefaan; Syn, Wing-Kin; Lagaisse, Kimberly; van Hul, Noemi; Heindryckx, Femke; Sowa, Jan-Peter; Peeters, Liesbeth; Van Vlierberghe, Hans; Leclercq, Isabelle A; Canbay, Ali; Dollé, Laurent; van Grunsven, Leo A
2016-01-01
Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases. PMID:27618307
Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.
Smalyukh, Ivan I; Butler, John; Shrout, Joshua D; Parsek, Matthew R; Wong, Gerard C L
2008-09-01
DNA is a common extracellular matrix component of bacterial biofilms. We find that bacteria can spontaneously order in a matrix of aligned concentrated DNA, in which rod-shaped cells of Pseudomonas aeruginosa follow the orientation of extended DNA chains. The alignment of bacteria is ensured by elasticity and liquid crystalline properties of the DNA matrix. These findings show how behavior of planktonic bacteria may be modified in extracellular polymeric substances of biofilms and illustrate the potential of using complex fluids to manipulate embedded nanosized and microsized active particles. PMID:18850984
0 ν β β and 2 ν β β nuclear matrix elements in the interacting boson model with isospin restoration
NASA Astrophysics Data System (ADS)
Barea, J.; Kotila, J.; Iachello, F.
2015-03-01
We introduce a method for isospin restoration in the calculation of nuclear matrix elements (NMEs) for 0 ν β β and 2 ν β β decay within the framework of the microscopic interacting boson model (IBM-2). With this method, we calculate the NMEs for all processes of interest in 0 ν β-β- and 2 ν β-β- and in 0 ν β+β+ , 0 ν EC β+ , R 0 ν ECEC , 2 ν β+β+ , 2 ν EC β+ , and 2 ν ECEC . With this method, the Fermi matrix elements for 2 ν β β vanish, and those for 0 ν β β are considerably reduced.
A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model
NASA Astrophysics Data System (ADS)
Wang, Hong; Tian, Hao
2012-10-01
Peridynamic theory provides an appropriate description of the deformation of a continuous body involving discontinuities or other singularities, which cannot be described properly by classical theory of solid mechanics. However, the operators in the peridynamic models are nonlocal, so the resulting numerical methods generate dense or full stiffness matrices. Gaussian types of direct solvers were traditionally used to solve these problems, which requires O(N3) of operations and O(N2) of memory where N is the number of spatial nodes. This imposes significant computational and memory challenge for a peridynamic model, especially for problems in multiple space dimensions. A simplified model, which assumes that the horizon of the material δ=O(N-1), was proposed to reduce the computational cost and memory requirement to O(N). However, the drawback is that the corresponding error estimate becomes one-order suboptimal. Furthermore, the assumption of δ=O(N-1) does not seem to be physically reasonable since the horizon δ represents a physical property of the material that should not depend on computational mesh size. We develop a fast Galerkin method for the (non-simplified) peridynamic model by exploiting the structure of the stiffness matrix. The new method reduces the computational work from O(N3) required by the traditional methods to O(Nlog2N) and the memory requirement from O(N2) to O(N) without using any lossy compression. The significant computational and memory reduction of the fast method is better reflected in numerical experiments. When solving a one-dimensional peridynamic model with 214=16,384 unknowns, the traditional method consumed CPU time of 6 days and 11 h while the fast method used only 3.3 s. In addition, on the same computer (with 128 GB memory), the traditional method with a Gaussian elimination or conjugate gradient method ran out of memory when solving the problem with 216=131,072 unknowns. In contrast, the fast method was able to solve the
Szczesny, Spencer E.; Elliott, Dawn M.
2015-01-01
Despite current knowledge of tendon structure, the fundamental deformation mechanisms underlying tendon mechanics and failure are unknown. We recently showed that a shear lag model, which explicitly assumed plastic interfibrillar load transfer between discontinuous fibrils, could explain the multiscale fascicle mechanics, suggesting that fascicle yielding is due to plastic deformation of the interfibrillar matrix. However, it is unclear whether alternative physical mechanisms, such as elastic interfibrillar deformation or fibril yielding, also contribute to fascicle mechanical behavior. The objective of the current work was to determine if plasticity of the interfibrillar matrix is uniquely capable of explaining the multiscale mechanics of tendon fascicles including the tissue post-yield behavior. This was examined by comparing the predictions of a continuous fibril model and three separate shear lag models incorporating an elastic, plastic, or elastoplastic interfibrillar matrix with multiscale experimental data. The predicted effects of fibril yielding on each of these models were also considered. The results demonstrated that neither the continuous fibril model nor the elastic shear lag model can successfully predict the experimental data, even if fibril yielding is included. Only the plastic or elastoplastic shear lag models were capable of reproducing the multiscale tendon fascicle mechanics. Differences between these two models were small, although the elastoplastic model did improve the fit of the experimental data at low applied tissue strains. These findings suggest that while interfibrillar elasticity contributes to the initial stress response, plastic deformation of the interfibrillar matrix is responsible for tendon fascicle post-yield behavior. This information sheds light on the physical processes underlying tendon failure, which is essential to improve our understanding of tissue pathology and guide the development of successful repair. PMID:25262202
Transfer matrix computation of critical polynomials for two-dimensional Potts models
Jacobsen, Jesper Lykke; Scullard, Christian R.
2013-02-04
We showed, In our previous work, that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial PB(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = eK — 1 of PB(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasing the size ofmore » B in an appropriate way. In earlier work, PB(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of PB(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible.We present results for the critical polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures vc obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain vc(4, 82) = 3.742 489 (4), vc(kagome) = 1.876 459 7 (2), and vc(3, 122) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.« less
Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas
2010-04-09
Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.
Requist, Ryan; Pankratov, Oleg
2011-05-15
We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.
2004-01-01
An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.
Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications docu...
NASA Astrophysics Data System (ADS)
Nimmo, J. R.
2014-12-01
A condition that initiates macropore flow at the land surface is the application of water faster than it can infiltrate into the soil matrix material. Sometimes this is taken to require ponding, but accumulated evidence shows preferential flow to be commonplace when wetness is less than saturation and when macropores are not completely filled. Examples include water flowing into shrinkage cracks or funneled into macropores by hydrophobic surface material. A more inclusive criterion is that macropore flow is generated when the water application rate exceeds the infiltrability of a small area associated with a macropore. A new model based on this criterion considers the representative elementary area (REA), as would be appropriate for measurement of field-scale infiltrability, to be divided into a mosaic of functional sub-areas (FSA). A single value of matrix infiltrability characterizes each FSA. The REA as a mosaic of FSAs is hydraulically represented by a characteristic distribution of infiltrabilities. During rainfall or irrigation, each FSA absorbs water into its soil matrix material up to the rate of its matrix infiltrability. Water applied in excess of this infiltrability is assumed to flow into a macropore within or adjacent to the FSA, becoming preferential flow. Especially if crusted or hydrophobic, an FSA can generate preferential flow even during low-intensity rainfall when other FSAs are absorbing all incident water into the matrix. The total flux of preferential flow at given depth is the sum of contributions from all FSAs. In this way the characteristic distribution of FSA infiltrabilities controls the field-scale partitioning of matrix and macropore flow as an emergent phenomenon. Illustrative case studies use field-measured data concerning water application rate and preferential flux. Results show this model can quantitatively represent observations of preferential flow occurring in relatively dry soils or at modest rainfall intensities.
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.
1994-01-01
A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.
A model for overview of student learning: a matrix of educational outcomes versus methodologies.
Johnsen, David C; Marshall, Teresa A; Finkelstein, Michael W; Cunningham-Ford, Marsha A; Straub-Morarend, Cheryl L; Holmes, David C; Armstrong, Steven R; Aquilino, Steven A; Sharp, Helen M; Solow, Catherine M; McQuistan, Michelle R
2011-02-01
A concise overview of an institution's aspirations for its students becomes increasingly elusive because dental education has evolving emphases on priorities like critical thinking and adapting to new technology. The purpose of this article is to offer a learner-oriented matrix that gives a focus for discussion and an overview of an institution's educational outcomes. On one axis of the matrix, common educational outcomes are listed: knowledge, technical skills, critical thinking, ethical and professional values, patient and practice management, and social responsibility awareness. On the other axis, methodologies are listed: definition, cultivation strategies, measures (summative/formative, objective/subjective), institutional coordination, and competency determination. By completing the matrix, an overview of the process by which students reach these outcomes emerges. Each institution would likely complete the matrix differently and, ideally, with active discussion. While the matrix can first be used to establish "Where are we now?" for an institution, it can also be a starting point for more extensive matrices and further discussion. Vertical and horizontal analyses of the matrix provide a unique lens for viewing the institution's learning environment. PMID:21293038
Houseworth, J.E.
2004-09-16
Exact analytical solutions are presented for solute transport in an unsaturated fracture and porous rock matrix. The problem includes advective transport in the fracture and rock matrix as well as advective and diffusive fracture-matrix exchange. Linear sorption in the fracture and matrix and radioactive decay are also treated. The solution is for steady, uniform transport velocities within the fracture and matrix, but allows for independent specification of each of the velocities. The problem is first solved in terms of the solute concentrations that result from an instantaneous point source. Superposition integrals are then used to derive the solute mass flux at a fixed downstream position from an instantaneous point source and for the solute concentrations that result from a continuous point source. Solutions are derived for cases with the solute source in the fracture and the solute source in the matrix. The analytical solutions are closed-form and are expressed in terms of algebraic functions, exponentials, and error functions. Comparisons between the analytical solutions and numerical simulations, as well as sensitivity studies, are presented. Increased sensitivity to cross-flow and solute source location is found for increasing Peclet number. The numerical solutions are found to compare well with the analytical solutions at lower Peclet numbers ,but show greater deviation at higher Peclet numbers.
2012-01-01
Introduction The longitudinal degradation mechanism of extracellular matrix (ECM) in the interbertebral disc remains unclear. Our objective was to elucidate catabolic and anabolic gene expression profiles and their balances in intervertebral disc degeneration using a static compression model. Methods Forty-eight 12-week-old male Sprague-Dawley rat tails were instrumented with an Ilizarov-type device with springs and loaded statically at 1.3 MPa for up to 56 days. Experimental loaded and distal-unloaded control discs were harvested and analyzed by real-time reverse transcription-polymerase chain reaction (PCR) messenger RNA quantification for catabolic genes [matrix metalloproteinase (MMP)-1a, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5], anti-catabolic genes [tissue inhibitor of metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3], ECM genes [aggrecan-1, collagen type 1-α1, and collagen type 2-α1], and pro-inflammatory cytokine genes [tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, and IL-6]. Immunohistochemistry for MMP-3, ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-2, and TIMP-3 was performed to assess their protein expression level and distribution. The presence of MMP- and aggrecanase-cleaved aggrecan neoepitopes was similarly investigated to evaluate aggrecanolytic activity. Results Quantitative PCR demonstrated up-regulation of all MMPs and ADAMTS-4 but not ADAMTS-5. TIMP-1 and TIMP-2 were almost unchanged while TIMP-3 was down-regulated. Down-regulation of aggrecan-1 and collagen type 2-α1 and up-regulation of collagen type 1-α1 were observed. Despite TNF-α elevation, ILs developed little to no up-regulation. Immunohistochemistry showed, in the nucleus pulposus, the percentage of immunopositive cells of MMP-cleaved aggrecan neoepitope increased from 7 through 56 days with increased MMP-3 and decreased TIMP-1 and TIMP-2 immunopositivity. The percentage of immunopositive cells
Felsen, Csilla N; Savariar, Elamprakash N; Whitney, Michael; Tsien, Roger Y
2014-04-15
Extracellular proteases including matrix metalloproteinases (MMPs) are speculated to play a significant role in chronic lung diseases, such as asthma. Although increased protease expression has been correlated with lung pathogenesis, the relationship between localized enzyme activity and disease progression remains poorly understood. We report the application of MMP-2/9 activatable cell-penetrating peptides (ACPPs) and their ratiometric analogs (RACPPs) for in vivo measurement of protease activity and distribution in the lungs of mice that were challenged with the allergen ovalbumin. MMP-2/9 activity was increased greater than twofold in whole, dissected lungs from acutely challenged mice compared with control mice (P=1.8×10(-4)). This upregulation of MMP-2/9 activity was localized around inflamed airways with 1.6-fold higher protease-dependent ACPP uptake surrounding diseased airways compared with adjacent, pathologically normal lung parenchyma (P=0.03). MMP-2/9 activity detected by ACPP cleavage colocalized with gelatinase activity measured with in situ dye-quenched gelatin. For comparison, neutrophil elastase activity and thrombin activity, detected with elastase- and thrombin-cleavable RACPPs, respectively, were not significantly elevated in acutely allergen-challenged mouse lungs. The results demonstrate that ACPPs, like the MMP-2/9-activated and related ACPPs, allow for real-time detection of protease activity in a murine asthma model, which should improve our understanding of protease activation in asthma disease progression and help elucidate new therapy targets or act as a mechanism for therapeutic drug delivery. PMID:24508733
L. J. Pekot; S. R. Reeves
2002-03-31
Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for
Transfer matrix computation of critical polynomials for two-dimensional Potts models
Jacobsen, Jesper Lykke; Scullard, Christian R.
2013-02-04
We showed, In our previous work, that critical manifolds of the q-state Potts model can be studied by means of a graph polynomial P_{B}(q, v), henceforth referred to as the critical polynomial. This polynomial may be defined on any periodic two-dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner in which B is tiled to construct the lattice. The real roots v = e^{K} — 1 of P_{B}(q, v) either give the exact critical points for the lattice, or provide approximations that, in principle, can be made arbitrarily accurate by increasing the size of B in an appropriate way. In earlier work, P_{B}(q, v) was defined by a contraction-deletion identity, similar to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of P_{B}(q, v), which facilitates its computation, using the transfer matrix, on much larger B than was previously possible.We present results for the critical polynomial on the (4, 8^{2}), kagome, and (3, 12^{2}) lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of 36 edges with contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. The critical temperatures v_{c }obtained for ferromagnetic (v > 0) Potts models are at least as precise as the best available results from Monte Carlo simulations or series expansions. For instance, with q = 3 we obtain v_{c}(4, 8^{2}) = 3.742 489 (4), v_{c}(kagome) = 1.876 459 7 (2), and v_{c}(3, 12^{2}) = 5.033 078 49 (4), the precision being comparable or superior to the best simulation results. More generally, we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure of the phase diagram in the antiferromagnetic (v < 0) region.
Machinability and modeling of cutting mechanism for Titanium Metal Matrix composites
NASA Astrophysics Data System (ADS)
Bejjani, Roland
Titanium Metal Matrix composites (TiMMC) is a new class of material. However, it is a very difficult to cut material. Therefore, the tool life is limited. In order to optimize the machining of TiMMC, three approaches (stages) were used. First, a TAGUCHI method for the design of experiments was used in order to identify the effects of the machining inputs (speed, feed, depth) to the output (cutting forces, surface roughness). To enhance even further the tool life, Laser Assisted Machining (LAM) was also experimented. In a second approach, and in order to better understand the cutting mechanism of TiMMC, the chip formation was analyzed and a new model for the adiabatic shear band in the chip segment was developed. In the last approach, and in order to have a better analysis tool to understand the cutting mechanism, a new constitutive model for TiMMC for simulation purposes was developed, with an added damage model. The FEM simulations results led to predictions of temperature, stress, strain, and damage, and can be used as an analysis tool and even for industrial applications. Following experimental work and analysis, I found that cutting TiMMC at higher speeds is more efficient and productive because it increases tool life. It was found that at higher speeds, fewer hard TiC particles are broken, resulting in reduced tool abrasion wear. In order to further optimize the machining of TiMMC, an unconventional machining method was used. In fact, Laser Assisted Machining (LAM) was used and was found to increase the tool life by approximately 180%. To understand the effects of the particles on the tool, micro scale observations of hard particles with SEM microscopy were performed and it was found that the tool/particle interaction while cutting can exist under three forms. The particles can either be cut at the surface, pushed inside the material, or even some of the pieces of the cut particles can be pushed inside the material. No particle de-bonding was observed. Some
Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng
2015-10-01
Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones. PMID:26502645
Mason, Shelley S.; Kohles, Sean S.; Zelick, Randy D.; Winn, Shelley R.; Saha, Asit K.
2011-01-01
There has been considerable progress in cellular and molecular engineering due to recent advances in multiscale technology. Such technologies allow controlled manipulation of physiochemical interactions among cells in tissue culture. In particular, a novel chemomechanical bioreactor has recently been designed for the study of bone and cartilage tissue development, with particular focus on extracellular matrix formation. The bioreactor is equally significant as a tool for validation of mathematical models that explore biokinetic regulatory thresholds (Saha, A. K., and Kohles, S. S., 2010, “A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Nanomechanical Stimulation in a Cartilage Biokinetics Model,” J. Nanotechnol. Eng. Med., 1(3), p. 031005; 2010, “Periodic Nanomechanical Stimulation in a Biokinetics Model Identifying Anabolic and Catabolic Pathways Associated With Cartilage Matrix Homeostasis,” J. Nanotechnol. Eng. Med., 1(4), p. 041001). In the current study, three-dimensional culture protocols are described for maintaining the cellular and biomolecular constituents within defined parameters. Preliminary validation of the bioreactor’s form and function, expected bioassays of the resulting matrix components, and application to biokinetic models are described. This approach provides a framework for future detailed explorations combining multiscale experimental and mathematical analyses, at nanoscale sensitivity, to describe cell and biomolecule dynamics in different environmental regimes. PMID:21709743
Matrix perturbation for analytical model improvement. [for modal analysis of structural systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Garba, J. A.
1979-01-01
A matrix perturbation method is proposed to calculate the Jacobian matrix and to compute the new eigendata for the parameter estimation procedure. The advantages of the method are the applicability to large complex structures without knowing the analytical expressions for the mass and stiffness matrices, and a cost effective approach for the re-computation of the eigendata. This method also allows the use of other measurements such as modal forces, kinetic energy distribution, and strain energy distributions in the estimation procedure. A realistic sample problem is presented to demonstrate the effectiveness of the proposed method.
Hidalgo, M E; Ayesa, E
2001-09-01
This paper describes a mathematical tool for local identifiability analysis that can easily be applied to high-order state-space nonlinear systems and implemented in simulators with a discrete-time approach. The methodology is based on the recursive numerical evaluation of a reduced information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of application, the proposed methodology has been used in the study of an OUR batch test from the point of view of ASM No. 1 calibration. PMID:11487118
Modeling the effect of oxidation on damage in SiC/Ti-15-3 metal matrix composites
Wittig, L.A.; Allen, D.H. . Center for Mechanics of Composites)
1994-07-01
In this paper, a micromechanical analysis is performed on a single ply continuous fiber SiC/Ti-15V-3Al-3Sn-3Cr (Ti-15-3) metal matrix composite to study the complex interactions between the composite microstructural components and the surrounding environment at high temperatures. Finite elements are incorporated to model oxygen diffusing into the free surface of a representative volume element (RVE) during cool down from the processing temperature. The resulting residual stress distribution is investigated assuming thermoelastic material models for the matrix, oxide layer, and fiber. Results indicate that the oxidized surface layer is prone to cracking upon subsequent mechanical loading, and this effect is strongly temperature dependent.
NASA Astrophysics Data System (ADS)
Raos, Guido; Allegra, Giuseppe
2000-11-01
Exploiting an electrostatic analogy, we show that the elastic forces between a set of rigid particles embedded in a phantom polymer network can be represented by a simple bead-and-spring model. The beads represent the particles and the springs the rubber matrix. The model is validated by Monte Carlo simulation of rubbers filled with hard spherical particles, at volume fractions between 0.1 and 0.3. We derive both the moduli and the full stress-strain curves, under uniaxial elongation. The model reproduces and extends previous theoretical results on the so-called hydrodynamic reinforcement effect.
NASA Astrophysics Data System (ADS)
Knochenmuss, Richard
2015-08-01
The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.
Wiman, Nik G; Walton, Vaughn M; Dalton, Daniel T; Anfora, Gianfranco; Burrack, Hannah J; Chiu, Joanna C; Daane, Kent M; Grassi, Alberto; Miller, Betsey; Tochen, Samantha; Wang, Xingeng; Ioriatti, Claudio
2014-01-01
Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations. PMID:25192013
Wiman, Nik G.; Walton, Vaughn M.; Dalton, Daniel T.; Anfora, Gianfranco; Burrack, Hannah J.; Chiu, Joanna C.; Daane, Kent M.; Grassi, Alberto; Miller, Betsey; Tochen, Samantha; Wang, Xingeng; Ioriatti, Claudio
2014-01-01
Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations. PMID:25192013
Svala, Emilia; Löfgren, Maria; Sihlbom, Carina; Rüetschi, Ulla; Lindahl, Anders; Ekman, Stina; Skiöldebrand, Eva
2015-01-01
The molecular aspects of inflammation were investigated in equine articular cartilage explants using quantitative proteomics. Articular cartilage explants were stimulated with interleukin (IL)-1β in vitro for 25 days, and proteins released into cell culture media were chemically labeled with isobaric mass tags and analyzed by liquid chromatography-tandem mass spectrometry. A total of 127 proteins were identified and quantified in media from explants. IL-1β-stimulation resulted in an abundance of proteins related to inflammation, including matrix metalloproteinases, acute phase proteins, complement components and IL-6. Extracellular matrix (ECM) molecules were released at different time points, and fragmentation of aggrecan and cartilage oligomeric matrix protein was observed at days 3 and 6, similar to early-stage OA in vivo. Degradation products of the collagenous network were observed at days 18 and 22, similar to late-stage OA. This model displays a longitudinal quantification of released molecules from the ECM of articular cartilage. Identification of dynamic changes of extracellular matrix molecules in the secretome of equine explants stimulated with IL-1β over time may be useful for identifying components released at different time points during the spontaneous OA process. PMID:25803623
Séguin, Cheryle A; Bojarski, Marla; Pilliar, Robert M; Roughley, Peter J; Kandel, Rita A
2006-09-01
Intervertebral disc degeneration occurs commonly and is linked to persistent back pain and the development of disc herniation. The mechanisms responsible for tissue catabolism have not yet been fully elucidated. Previously we characterized an in vitro model of TNFalpha-induced nucleus pulposus degeneration, which demonstrates decreased expression of matrix macromolecules, increased expression of matrix degrading enzymes, and the activation of aggrecanase-mediated proteoglycan degradation [Seguin, C.A., Pilliar, R.M., Roughley, P.J., and Kandel, R.A. 2005. Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30: 1940-1948]. This study explores the intracellular pathways activated during TNFalpha-induced matrix degradation. We demonstrate that in nucleus pulposus cells, the p38 and JNK pathways regulate induction of MMP-1 and -3; p38, JNK, and NF-kappaB regulate the induction of MMP-13; and ERK regulates the up-regulation of MT1-MMP mRNA in response to TNFalpha. Induction of ADAMTS-4 and -5 mRNA occurred downstream of NF-kappaB activation. Depletion of tissue proteoglycans was mediated by ERK and NF-kappaB-dependent "aggrecanase" activity, suggesting MT1-MMP and ADAMTS-4 and -5 as effectors of TNFalpha-induced tissue catabolism. PMID:16934445
Comparing Linear Sigma Model K-matrix studies of sigma/f0 and the Higgs boson
A. Abdel-Rehim; Deirdre M. Black; A.H. Fariborz; Salah Nasri; Joseph Schechter
2003-05-01
We present a description of the low energy pi pi scattering data using the Linear Sigma Model with K-matrix unitarization. Then we carry out an analogous study of the strongly-coupled minimal Higgs sector of the electroweak theory. We discuss the effect of the unitarization prescription on the WW or ZZ fusion processes and also suggest a related treatment for other Higgs production processes such as gluon fusion.
On implementation of EM-type algorithms in the stochastic models for a matrix computing on GPU
Gorshenin, Andrey K.
2015-03-10
The paper discusses the main ideas of an implementation of EM-type algorithms for computing on the graphics processors and the application for the probabilistic models based on the Cox processes. An example of the GPU’s adapted MATLAB source code for the finite normal mixtures with the expectation-maximization matrix formulas is given. The testing of computational efficiency for GPU vs CPU is illustrated for the different sample sizes.
Design Tool Developed for Probabilistic Modeling of Ceramic Matrix Composite Strength
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Shah, Ashwin R.
1999-01-01
Ceramic matrix composites are being evaluated as candidate materials for many high temperature applications such as engine combustor liners for the High-Speed Civil Transport (HSCT). They are required to have an assured life of several thousand hours. Estimating the reliability of these components is quite a complex process and requires knowledge of the uncertainties that occur at various scales. The properties of ceramic matrix composites (CMC) are known to display a considerable amount of scatter due to variations in fiber/matrix properties, interphase/coating properties, bonding, amount of matrix voids, and many geometry- and fabrication-related parameters such as ply thickness and ply orientations. The objective of this research effort is to account for these uncertainties in a formal way by probabilistically analyzing both the stiffness- and strength related properties of CMC's. In current deterministic approaches, uncertainties are usually accounted for by safety factors. This approach often yields overly conservative designs, thereby reducing the potential of many advanced composite materials.
NASA Technical Reports Server (NTRS)
Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.
2016-01-01
Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work
Curtin, W.A.; Fabeny, B.; Ibnabdeljalil, M.; Iyengar, N.; Reifsnider, K.L.
1996-07-31
The models developed, contain explicit dependences on constituent material properties and their changes with time, so that composite performance can be predicted. Three critical processes in ceramic composites at elevated temperatures have been modeled: (1) creep deformation of composite vs stress and time-dependent creep of fibers and matrix, and failure of these components; (2) creep deformation of ``interface`` around broken fibers; and (3) lifetime of the composite under conditions of fiber strength loss over time at temperature. In (1), general evolution formulas are derived for relaxation time of matrix stresses and steady-state creep rate of composite; the model is tested against recent data on Ti-MMCs. Calculations on a composite of Hi-Nicalon fibers in a melt-infiltrated SiC matrix are presented. In (2), numerical simulations of composite failure were made to map out time-to-failure vs applied load for several sets of material parameters. In (3), simple approximate relations are obtained between fiber life and composite life that should be useful for fiber developers and testers. Strength degradation data on Hi-Nicalon fibers is used to assess composite lifetime vs fiber lifetime for Hi-Nicalon fiber composites.
Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
Gao, Huajian; Qian, Jin; Chen, Bin
2011-01-01
Cell–matrix adhesion depends on the collective behaviours of clusters of receptor–ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aimed at probing the basic mechanical principles of focal contacts in cell–matrix adhesion via stochastic–elastic models in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction–separation are unified in a single modelling framework. The intention here is to illustrate these principles using simple analytical and numerical models. The aim of the discussions is to provide possible clues to the following questions: why does the size of focal adhesions (FAs) fall into a narrow range around the micrometre scale? How can cells sense and respond to substrates of varied stiffness via FAs? How do the magnitude and orientation of mechanical forces affect the binding dynamics of FAs? The effects of cluster size, cell–matrix elastic modulus, loading direction and cytoskeletal pretension on the lifetime of FA clusters have been investigated by theoretical arguments as well as Monte Carlo numerical simulations, with results showing that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, low-angle pulling and moderate cytoskeletal pretension are factors that contribute to stable FAs. From a mechanistic point of view, these results provide possible explanations for a wide range of experimental observations and suggest multiple mechanisms by which cells can actively control adhesion and de-adhesion via cytoskeletal contractile machinery in response to mechanical properties of their surroundings. PMID:21632610
Modeling dynamical electron scattering with Bethe potentials and the scattering matrix.
Wang, A; De Graef, M
2016-01-01
Bethe potentials were introduced by Bethe in 1928 as a first order perturbation approach to reducing the number of diffracted beams in dynamical electron scattering problems. The approach starts from the Bloch wave representation, and uses a threshold criterion to split the diffracted beams into two subsets, namely strong and weak beams. Since the use of Bloch wave based Bethe potentials for defect simulations is somewhat tedious, this paper applies the perturbation approach to the scattering matrix formalism, which is more readily adaptable for defect image simulations. The size of the dynamical matrix, and hence the computation time, can be reduced significantly. A threshold criterion for the separation of scattered beams into strong and weak sets is introduced. A general guideline in setting the threshold for strong or weak beam selection is discussed along with several parameters that may influence the threshold values, such as atomic number, accelerating voltage, structure complexity, incident beam tilt and temperature. PMID:26433091
Borelli, Marina; Domene, Semíramis Martins Álvares; Mais, Laís Amaral; Pavan, Juliana; Taddei, José Augusto de Aguiar Carrazedo
2015-09-01
Nutritionists were integrated into the Family Health Support Centers back in 2008. Focusing on the development of technical and pedagogical support and assistance to Family Health Teams, the aim of this study was to develop a proposal for a matrix model for nutrition aimed at women and children in the Family Health Strategy. The study was conducted in a Basic Health Unit and was divided into Cycle I, including interviews with families of 0 to 6-year-old children to establish the confines of the territory; and Cycles II and III, with the development of intersectorial field activities to promote food and nutritional security based on matrix support. Following the diagnosis of social vulnerability, children's nutritional risk, indicators of early weaning and inadequate food intake, actions were developed in order to propose a matrix model of nutritional measures in three scenarios, namely at the community, family and individual level. Among the activities that were developed, the main ones included cooking classes, prenatal care, and the training of Community Health Agents. This study tested ways to develop nutritional care by broadened clinical action and territory recognition, seeking to enhance the activities of nutritionists as health educators. PMID:26331508
Arya, Anuradha D; Hallur, Pavan M; Karkisaval, Abhijith G; Gudipati, Aditi; Rajendiran, Satheesh; Dhavale, Vaibhav; Ramachandran, Balaji; Jayaprakash, Aravindakshan; Gundiah, Namrata; Chaubey, Aditya
2016-08-31
Recent studies have shown that three-dimensional (3D) culture environments allow the study of cellular responses in a setting that more closely resembles the in vivo milieu. In this context, hydrogels have become popular scaffold options for the 3D cell culture. Because the mechanical and biochemical properties of culture matrixes influence crucial cell behavior, selecting a suitable matrix for replicating in vivo cellular phenotype in vitro is essential for understanding disease progression. Gelatin methacrylate (GelMA) hydrogels have been the focus of much attention because of their inherent bioactivity, favorable hydration and diffusion properties, and ease-of-tailoring of their physicochemical characteristics. Therefore, in this study we examined the efficacy of GelMA hydrogels as a suitable platform to model specific attributes of breast cancer. We observed increased invasiveness in vitro and increased tumorigenic ability in vivo in breast cancer cells cultured on GelMA hydrogels. Further, cells cultured on GelMA matrixes were more resistant to paclitaxel treatment, as shown by the results of cell-cycle analysis and gene expression. This study, therefore, validates GelMA hydrogels as inexpensive, cell-responsive 3D platforms for modeling key characteristics associated with breast cancer metastasis, in vitro. PMID:27494432
NASA Technical Reports Server (NTRS)
Bakuckas, J. G.; Tan, T. M.; Lau, A. C. W.; Awerbuch, J.
1993-01-01
A finite element-based numerical technique has been developed to simulate damage growth in unidirectional composites. This technique incorporates elastic-plastic analysis, micromechanics analysis, failure criteria, and a node splitting and node force relaxation algorithm to create crack surfaces. Any combination of fiber and matrix properties can be used. One of the salient features of this technique is that damage growth can be simulated without pre-specifying a crack path. In addition, multiple damage mechanisms in the forms of matrix cracking, fiber breakage, fiber-matrix debonding and plastic deformation are capable of occurring simultaneously. The prevailing failure mechanism and the damage (crack) growth direction are dictated by the instantaneous near-tip stress and strain fields. Once the failure mechanism and crack direction are determined, the crack is advanced via the node splitting and node force relaxation algorithm. Simulations of the damage growth process in center-slit boron/aluminum and silicon carbide/titanium unidirectional specimens were performed. The simulation results agreed quite well with the experimental observations.
NASA Technical Reports Server (NTRS)
Jansson, S.
1991-01-01
The nonlinear anisotropic mechanical behavior of an aluminum alloy metal matrix composite reinforced with continuous alumina fibers was determined experimentally. The mechanical behavior of the composite were modeled by assuming that the composite has a periodical microstructure. The resulting unit cell problem was solved with the finite element method. Excellent agreement was found between theoretically predicted and measured stress-strain responses for various tensile and shear loadings. The stress-strain responses for transverse and inplane shear were found to be identical and this will provide a simplification of the constitutive equations for the composite. The composite has a very low ductility in transverse tension and a limited ductility in transverse shear that was correlated to high hydrostatic stresses that develop in the matrix. The shape of the initial yield surface was calculated and good agreement was found between the calculated shape and the experimentally determined shape.
NASA Astrophysics Data System (ADS)
Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki
2015-07-01
In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.
NASA Astrophysics Data System (ADS)
Wilson, Kenneth
In the present investigation, single-walled carbon nanotube (SWCNT or SWNT) reinforced titanium (Ti) matrix composites have been produced by powder metallurgy (PM) and induction heating methods. It has been found that a nickel coating and a fast processing time associated with the induction heating method enables carbon nanotubes to survive the high-temperature (above 1950 K) processing conditions. The result has been a Ti-SWCNT metal-matrix composite (MMC) which is three times stronger and harder than Ti alone, a consequence that has never been accomplished before. This is a promising new development in the application of SWCNT technology to materials science. A mathematical model is given to support the experimental findings.
Matrixed business support comparison study.
Parsons, Josh D.
2004-11-01
The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
NASA Astrophysics Data System (ADS)
Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng
2014-05-01
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
Cheheltani, Rabee; McGoverin, Cushla M.; Rao, Jayashree; Vorp, David A.; Kiani, Mohammad F.; Pleshko, N.
2014-01-01
Extracellular matrix (ECM) is a key component and regulator of many biological tissues including aorta. Several aortic pathologies are associated with significant changes in the composition of the matrix, especially in the content, quality and type of aortic structural proteins, collagen and elastin. The purpose of this study was to develop an infrared spectroscopic methodology that is comparable to biochemical assays to quantify collagen and elastin in aorta. Enzymatically degraded porcine aorta samples were used as a model of ECM degradation in abdominal aortic aneurysm (AAA). After enzymatic treatment, Fourier transform infrared (FTIR) spectra of the aortic tissue were acquired by an infrared fiber optic probe (IFOP) and FTIR imaging spectroscopy (FT-IRIS). Collagen and elastin content were quantified biochemically and partial least squares (PLS) models were developed to predict collagen and elastin content in aorta based on FTIR spectra. PLS models developed from FT-IRIS spectra were able to predict elastin and collagen content of the samples with strong correlations (RMSE of validation = 8.4% and 11.1% of the range respectively), and IFOP spectra were successfully used to predict elastin content (RMSE = 11.3% of the range). The PLS regression coefficients from the FT-IRIS models were used to map collagen and elastin in tissue sections of degraded porcine aortic tissue as well as a human AAA biopsy tissue, creating a similar map of each component compared to histology. These results support further application of FTIR spectroscopic techniques for evaluation of AAA tissues. PMID:24761431
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1993-01-01
The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.
NASA Astrophysics Data System (ADS)
Mitus, Antoni C.; Pawlik, Grzegorz; Kordas, Wojciech; Mysliwiec, Jaroslaw; Miniewicz, Andrzej; Kajzar, Francois; Rau, Ileana; Grote, James G.
2011-09-01
The semi-intercalation of an azo-dye Disperse Red 1 (DR1) molecule into a biopolymeric material made of deoxyribonucleic acid (DNA) complexed with the cationic surfactant hexadecyltrimethyl-ammonium chloride (CTMA) formulated recently1-3 has successfully explained the main experimental results4 of laser dynamic inscription of diffraction gratings: short response time, low diffraction efficiency, single-exponential kinetics and flat wavelength dependence.5 In this paper we generalize the analytic model of Ref.2 to account for a more realistic dynamics of DNA-CTMA matrix. To this end we extend the model of paper5 by including into it probabilistic features of local free volume in DNA matrix which characterize, in a simple way, the spatial distribution of local voids which, in turn play the central role for the kinetics of photoinduced trans-cis-trans cycles of DR1 dye under the polarized laser light illumination. We discuss a stochastic master equation which generalizes the simple model of Ref.2 and address briefly the topic of non-exponential grating inscription in modelling and in recent experiments.
Shin, Masashi; Hu, Yuanyuan; Tye, Coralee E.; Guan, Xiaomu; Deagle, Craig C.; Antone, Jerry V.; Smith, Charles E.; Simmer, James P.; Bartlett, John D.
2014-01-01
Background Matrix metalloproteinase-20 (Mmp20) ablated mice have enamel that is thin and soft with an abnormal rod pattern that abrades from the underlying dentin. We asked if introduction of transgenes expressing Mmp20 would revert this Mmp20 null phenotype back to normal. Unexpectedly, for transgenes expressing medium or high levels of Mmp20, we found opposite enamel phenotypes depending on the genetic background (Mmp20−/− or Mmp20+/+) in which the transgenes were expressed. Methodology/Principal Findings Amelx-promoter-Mmp20 transgenic founder mouse lines were assessed for transgene expression and those expressing low, medium or high levels of Mmp20 were selected for breeding into the Mmp20 null background. Regardless of expression level, each transgene brought the null enamel back to full thickness. However, the high and medium expressing Mmp20 transgenes in the Mmp20 null background had significantly harder more mineralized enamel than did the low transgene expresser. Strikingly, when the high and medium expressing Mmp20 transgenes were present in the wild-type background, the enamel was significantly less well mineralized than normal. Protein gel analysis of enamel matrix proteins from the high and medium expressing transgenes present in the wild-type background demonstrated that greater than normal amounts of cleavage products and smaller quantities of higher molecular weight proteins were present within their enamel matrices. Conclusions/Significance Mmp20 expression levels must be within a specific range for normal enamel development to occur. Creation of a normally thick enamel layer may occur over a wider range of Mmp20 expression levels, but acquisition of normal enamel hardness has a narrower range. Since over-expression of Mmp20 results in decreased enamel hardness, this suggests that a balance exists between cleaved and full-length enamel matrix proteins that are essential for formation of a properly hardened enamel layer. It also suggests that
Modeling the rabbit's eye with the Mueller matrix for birefringent properties
NASA Astrophysics Data System (ADS)
Baba, Justin S.; Cooper, Califf T.; Cote, Gerard L.
2003-07-01
The effect of changing corneal birefringence, due to motion artifact, remains a major obstacle to the development of an accurate non-invasive polarimetric glucose sensor for patients with diabetes mellitus. Consequently, there is still a need to characterize fully, and to quantify the relative changes in corneal birefringence to facilitate the optimization of detection algorithms, enabling in vivo accuracy within 10mg/dl. In this paper, we present preliminary results, utilizing a Mueller matrix imaging technique, that demonstrates notable relative changes in the apparent retardance and in the apparent fast axis location of rabbit cornea.
Multi-particle and multi-state Landau-Zener model: Dynamic matrix approach
NASA Astrophysics Data System (ADS)
Fai, L. C.; Tchoffo, M.; Jipdi, M. N.
2015-04-01
The paper presents the multi-particle and multi-state Landau-Zener problem and focuses on indistinguishable particles with degenerate states applying the Dynamics matrix approach. It is observed that the probabilities are described by the Binomial law with the limiting values that achieved exact results for spin and Landau-Zener problems. The derivation of the generalized multi-particle probability function is observed to be equivalent to solving a Landau-Zener problem for particle number equal to twice the spin.
NASA Astrophysics Data System (ADS)
Regueiro, R. A.; Yu, S.
2010-12-01
The paper models grain-scale micro-cracking in shale at grain-matrix interfaces, assuming constituents are composed of quart silt grains and compacted clay matrix for a typical shale. The influence of grain-matrix-grain interaction on micro-crack patterns is investigated. Elasto-plastic pressure-sensitive cohesive-surface models are inserted at grain-matrix interfaces and intra-clay-matrix finite element facets, while a bulk elasto-plasticity model with bifurcation is employed for the clay matrix to compare to the intra-clay-matrix cohesive-surface model. Numerical examples are presented under two-dimensional plane strain condition at small strains. A procedure is proposed to upscale grain-scale micro-cracking to predict macro-fracture nucleation and propagation in shale and other bound particulate materials. It is shown that using cohesive surface elements (CSEs) at all finite element facets in the clay matrix mesh to simulate micro-cracking in the clay matrix leads to mesh-dependent results. Using CSEs at grain-clay-matrix interfaces is physical and not mesh dependent. We also considered using bulk pressure-sensitive elasto-plasticity with bifurcation condition within the clay matrix to attempt to predict onset of localization around grains in the simulations. It was encouraging to see that for both the single grain and multiple grain simulations, the finite element region in the clay matrix meshes where bifurcation was first detected around the grains was nearly the same. This gives us confidence that once a proper post-bifurcation constitutive model is implemented within an embedded discontinuity formulation, micro-cracking nucleation and propagation at the grain-scale in shale can be properly simulated, which will provide the basis for up-scaling to macro-cracks within a multiscale method for fracture in shale. Other items to address in future research are: (i) include transverse isotropy (elastic and plastic) for the bulk clay matrix elasto-plasticity model
Image-based modeling of the flow transition from a Berea rock matrix to a propped fracture
NASA Astrophysics Data System (ADS)
Sanematsu, P.; Willson, C. S.; Thompson, K. E.
2013-12-01
In the past decade, new technologies and advances in horizontal hydraulic fracturing to extract oil and gas from tight rocks have raised questions regarding the physics of the flow and transport processes that occur during production. Many of the multi-dimensional details of flow from the rock matrix into the fracture and within the proppant-filled fracture are still unknown, which leads to unreliable well production estimations. In this work, we use x-ray computed micro tomography (XCT) to image 30/60 CarboEconoprop light weight ceramic proppant packed between berea sandstone cores (6 mm in diameter and ~2 mm in height) under 4000 psi (~28 MPa) loading stress. Image processing and segmentation of the 6 micron voxel resolution tomography dataset into solid and void space involved filtering with anisotropic diffusion (AD), segmentation using an indicator kriging (IK) algorithm, and removal of noise using a remove islands and holes program. Physically-representative pore network structures were generated from the XCT images, and a representative elementary volume (REV) was analyzed using both permeability and effective porosity convergence. Boundary conditions were introduced to mimic the flow patterns that occur when fluid moves from the matrix into the proppant-filled fracture and then downstream within the proppant-filled fracture. A smaller domain, containing Berea and proppants close to the interface, was meshed using an in-house unstructured meshing algorithm that allows different levels of refinement. Although most of this domain contains proppants, the Berea section accounted for the majority of the elements due to mesh refinement in this region of smaller pores. A finite element method (FEM) Stokes flow model was used to provide more detailed insights on the flow transition from rock matrix to fracture. Results using different pressure gradients are used to describe the flow transition from the Berea rock matrix to proppant-filled fracture.
Singh, Shivani; Kubler, Andre; Singh, Utpal K; Singh, Ajay; Gardiner, Harriet; Prasad, Rajniti; Elkington, Paul T; Friedland, Jon S
2014-08-01
Tuberculosis is characterized by extensive destruction and remodelling of the pulmonary extracellular matrix. Stromal cell-derived matrix metalloproteinases (MMPs) are implicated in this process and may be a target for adjunctive immunotherapy. We hypothesized that MMPs are elevated in bronchoalveolar lavage fluid of tuberculosis patients and that antimycobacterial agents may have a modulatory effect on MMP secretion. Concentrations of MMP-1, -2, -3, -7, -8, and -9 were elevated in the bronchoalveolar lavage fluid from tuberculosis patients compared to those in bronchoalveolar lavage fluid from patients with other pulmonary conditions. There was a positive correlation between MMP-3, MMP-7, and MMP-8 and a chest radiological score of cavitation and parenchymal damage. Respiratory epithelial cell-derived MMP-3 was suppressed by moxifloxacin, rifampicin, and azithromycin in a dose-dependent manner. Respiratory epithelial cell-derived MMP-1 was suppressed by moxifloxacin and azithromycin, whereas MMP-9 secretion was only decreased by moxifloxacin. In contrast, moxifloxacin and azithromycin both increased MMP-1 and -3 secretion from MRC-5 fibroblasts, demonstrating that the effects of these drugs are cell specific. Isoniazid did not affect MMP secretion. In conclusion, MMPs are elevated in bronchoalveolar lavage fluid from tuberculosis patients and correlate with parameters of tissue destruction. Antimycobacterial agents have a hitherto-undescribed immunomodulatory effect on MMP release by stromal cells. PMID:24890593
NASA Astrophysics Data System (ADS)
Yang, Chun; Feiguin, Adrian E.
2016-02-01
We study the spectral function of the two-dimensional Hubbard model using cluster perturbation theory, and a density matrix renormalization group as a cluster solver. We reconstruct the two-dimensional dispersion at and away from half-filling using 2 ×L ladders, with L up to 80 sites, yielding results with unprecedented resolution in excellent agreement with quantum Monte Carlo. The main features of the spectrum can be described with a mean-field dispersion, with kinks and pseudogap traced back to scattering between spin and charge degrees of freedom.
NASA Astrophysics Data System (ADS)
Park, Sung-Been; Cha, Min-Chul
2015-11-01
We investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.
Eckhardt, Bedrich L; Parker, Belinda S; van Laar, Ryan K; Restall, Christina M; Natoli, Anthony L; Tavaria, Michael D; Stanley, Kym L; Sloan, Erica K; Moseley, Jane M; Anderson, Robin L
2005-01-01
A clinically relevant model of spontaneous breast cancer metastasis to multiple sites, including bone, was characterized and used to identify genes involved in metastatic progression. The metastatic potential of several genetically related tumor lines was assayed using a novel real-time quantitative RT-PCR assay of tumor burden. Based on this assay, the tumor lines were categorized as nonmetastatic (67NR), weakly metastatic to lymph node (168FARN) or lung (66cl4), or highly metastatic to lymph node, lung, and bone (4T1.2 and 4T1.13). In vitro assays that mimic stages of metastasis showed that highly metastatic tumors lines were more adhesive, invasive, and migratory than the less metastatic lines. To identify metastasis-related genes in this model, each metastatic tumor was array profiled against the nonmetastatic 67NR using 15,000 mouse cDNA arrays. A significant proportion of genes relating to the extracellular matrix had elevated expression in highly metastatic tumors. The role of one of these genes, POEM, was further investigated in the model. In situ hybridization showed that POEM expression was specific to the tumor epithelium of highly metastatic tumors. Decreased POEM expression in 4T1.2 tumors significantly inhibited spontaneous metastasis to the lung, bone, and kidney. Taken together, our data support a role for the extracellular matrix in metastatic progression and describe, for the first time, a role for POEM in this process. PMID:15671244
Margalida, Antoni; Oro, Daniel; Cortés-Avizanda, Ainara; Heredia, Rafael; Donázar, José A.
2011-01-01
Conservation strategies for long-lived vertebrates require accurate estimates of parameters relative to the populations' size, numbers of non-breeding individuals (the “cryptic” fraction of the population) and the age structure. Frequently, visual survey techniques are used to make these estimates but the accuracy of these approaches is questionable, mainly because of the existence of numerous potential biases. Here we compare data on population trends and age structure in a bearded vulture (Gypaetus barbatus) population from visual surveys performed at supplementary feeding stations with data derived from population matrix-modelling approximations. Our results suggest that visual surveys overestimate the number of immature (<2 years old) birds, whereas subadults (3–5 y.o.) and adults (>6 y.o.) were underestimated in comparison with the predictions of a population model using a stable-age distribution. In addition, we found that visual surveys did not provide conclusive information on true variations in the size of the focal population. Our results suggest that although long-term studies (i.e. population matrix modelling based on capture-recapture procedures) are a more time-consuming method, they provide more reliable and robust estimates of population parameters needed in designing and applying conservation strategies. The findings shown here are likely transferable to the management and conservation of other long-lived vertebrate populations that share similar life-history traits and ecological requirements. PMID:22039550
NASA Astrophysics Data System (ADS)
Poinssot, Christophe; Ferry, Cécile; Lovera, Patrick; Jegou, Christophe; Gras, Jean-Marie
2005-11-01
In the framework of the research conducted on the long term evolution of spent nuclear fuel under geological disposal conditions, a source term model has been developed to evaluate the instantaneous release of radionuclides (RN) (instant release fraction, IRF) and the delayed release of the RN which are embedded within the matrix. This model takes into account most of the scientific results currently available except the effect of hydrogen and the current knowledge of the uncertainties. IRF was assessed by considering the evolution with time of the RN inventories located within the fuel microstructure to which no confinement properties can be allocated over the long term (gap, rim, grain boundaries). This allows for bounding values for the IRF as a function of time of canister breach and burnup. The matrix radiolytic dissolution was modeled by a simple kinetic model neglecting the recombination of radiolytic species and the influence of aqueous ligands. The oxidation of the UO 2 matrix was assumed not to be kinetically controlled. Spent fuel performance was therefore demonstrated to mainly depend on the reactive surface area.
Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato
2012-01-01
We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9). PMID:22304254
Springer, Nora L; Fischbach, Claudia
2016-08-01
Tumors are characterized by aberrant extracellular matrix (ECM) remodeling and chronic inflammation. While advances in biomaterials and tissue engineering strategies have led to important new insights regarding the role of ECM composition, structure, and mechanical properties in cancer in general, the functional link between these parameters and macrophage phenotype is poorly understood. Nevertheless, increasing experimental evidence suggests that macrophage behavior is similarly controlled by physicochemical properties of the ECM and consequential changes in mechanosignaling. Here, we will summarize the current knowledge of macrophage biology and ECM-mediated differences in mechanotransduction and discuss future opportunities of biomaterials and tissue engineering platforms to interrogate the functional relationship between these parameters and their relevance to cancer. PMID:26921768
Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory
NASA Astrophysics Data System (ADS)
Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.
2009-03-01
We study the relation between Donaldson-Thomas theory of Calabi-Yau threefolds and a six-dimensional topological Yang-Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques on its noncommutative deformation. As a result the gauge theory localizes on noncommutative instantons which can be classified in terms of N-coloured three-dimensional Young diagrams. We give to these noncommutative instantons a geometrical description in terms of certain stable framed coherent sheaves on projective space by using a higher-dimensional generalization of the ADHM formalism. From this formalism we construct a topological matrix quantum mechanics which computes an index of BPS states and provides an alternative approach to the six-dimensional gauge theory.
Model of brittle matrix composite toughening based on discrete fiber reinforcement
NASA Technical Reports Server (NTRS)
Rubinstein, Asher A.
1992-01-01
An analytical approach for the analysis of the effectiveness of fiber reinforcement in brittle matrix composites is presented. The analytical method allows consideration of discrete fiber distribution and examination of the development of crack growth parameters on microscale. The problem associated with the bridging zone development is addressed here; therefore, the bridging zone is considered to be smaller than the main preexisting crack, and the small scale approach is used. The mechanics of the reinforcement is accurately accounted for in the process zone of a growing crack. Closed form solutions characterizing the initial failure process are presented for linear and nonlinear force - fiber pullout displacement relationships. The implicit exact solution for the extended bridging zone is presented as well.
Optimized Fock space in the large N limit of quartic interactions in matrix models
NASA Astrophysics Data System (ADS)
Hynek, Mariusz
2016-05-01
We consider the problem of quantization of the bosonic membrane via the large N limit of its matrix regularizations HN in Fock space. We prove that there exists a choice of the Fock space frequency such that HN can be written as a sum of a non-interacting Hamiltonian H0,N and the original normal ordered quartic potential. Using this decomposition we obtain upper and lower bounds for the ground state energy in the planar limit, we study a perturbative expansion about the spectrum of H0,N, and show that the spectral gap remains finite at N = ∞ at least up to the second order. We also apply the method to the U (N)-invariant anharmonic oscillator, and demonstrate that our bounds agree with the exact result of Brezin et al.
Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G
2016-02-28
We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. PMID:26763374
Ang, Qian Yee; Low, Siew Chun
2015-09-01
Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al(3+)) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al(3+). A Cre adsorption capacity of up to 17.40 mg Cre g(-1) MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R (2) = 0.98) in which the heterogeneous surface was defined. PMID:26163132
Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn
2013-01-01
Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these
NASA Astrophysics Data System (ADS)
Scianna, Marco; Preziosi, Luigi
2014-03-01
Cell migration is fundamental in a wide variety of physiological and pathological phenomena, among other in cancer invasion and development. In particular, the migratory/invasive capability of single metastatic cells is fundamental in determining the malignancy of a solid tumor. Specific cell migration phenotypes result for instance from the reciprocal interplay between the biophysical and biochemical properties of both the malignant cells themselves and of the surrounding environment. In particular, the extracellular matrices (ECMs) forming connective tissues can provide both loosely organized zones and densely packed barriers, which may impact cell invasion mode and efficiency. The critical processes involved in cell movement within confined spaces are (i) the proteolytic activity of matrix metalloproteinases (MMPs) and (ii) the deformation of the entire cell body, and in particular of the nucleus. We here present an extended cellular Potts model (CPM) to simulate a bio-engineered matrix system, which tests the active motile behavior of a single cancer cell into narrow channels of different widths. As distinct features of our approach, the cell is modeled as a compartmentalized discrete element, differentiated in the nucleus and in the cytosolic region, while a directional shape-dependent movement is explicitly driven by the evolution of its polarity vector. As outcomes, we find that, in a large track, the tumor cell is not able to maintain a directional movement. On the contrary, a structure of subcellular width behaves as a contact guidance sustaining cell persistent locomotion. In particular, a MMP-deprived cell is able to repolarize and follow the micropattern geometry, while a full MMP activity leads to a secondary track expansion by degrading the matrix structure. Finally, we confirm that cell movement within a subnuclear structure can be achieved either by pericellular proteolysis or by a significant deformation of cell nucleus.
Ladhe, A. R.; Frailie, P.; Hua, D.; Darsillo, M.; Bhattacharyya, D.
2009-01-01
The study deals with an aqueous phase application of Mixed Matrix Membranes (MMMs) for silver ion (Ag+) capture. Silica particles were functionalized with 3-mercaptopropyltrimethoxy silane (MPTMS) to introduce free thiol (-SH) groups on the surface. The particles were used as the dispersed phase in the polysulfone or cellulose acetate polymer matrix. The membranes were prepared by the phase inversion method to create more open and interconnected porous structures suitable for liquid phase applications. The effects of the silica properties such as particle size, specific surface area, and porous/nonporous morphology on the silver ion capture capacity were studied. It was demonstrated that the membranes are capable of selectively capturing silver from a solution containing significant concentrations of other metal ions like Ca2+. The membranes were studied to quantify the dynamic capacity for silver ion capture and its dependence on residence time through the adjustment of transmembrane pressure. The thiol-Ag+ interaction was quantified with Quartz Crystal Microbalance in a continuous flow mode experiment and the observations were compared with the membrane results. One dimensional unsteady state model with overall volumetric mass transfer coefficient was developed and solved to predict the silver concentration in the liquid phase and the solid silica phase along the membrane thickness at varying time. The breakthrough data predicted using the model is comparable with the experimental observations. The study demonstrates successful application of the functionalized silica-mixed matrix membranes for selective aqueous phase Ag+ capture with high capacity at low transmembrane pressures. The technique can be easily extended to other applications by altering the functionalized groups on the silica particles. PMID:20098490
Constantinou, Costas; Koutsidis, Georgios
2016-04-15
The formation of acrylamide in model Maillard reaction systems containing phenolic compounds was examined, with regards to phenolic type, concentration, and model system matrix. In dry glyoxal/asparagine waxy maize starch (WMS) systems, 9 out of 10 examined phenolics demonstrated an inhibiting effect, with the most significant reductions (55-60%) observed for caffeoylquinic acids. In WMS glucose/asparagine systems, examination of three different concentrations (0.1, 0.5 and 1 μmol/g WMS) suggested a 'minimum effective concentration' for epicatechin and caffeic acid, whilst addition of caffeoylquinic acids resulted in dose-dependent acrylamide reduction (25-75%). The discordant results of further studies utilising different matrices (dry and wet-to-dry) indicated that, apart from the nature and chemical reactivity, the matrix and the physical state of the reactants might be important for acrylamide formation. PMID:26617015
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Yang, Wen-Long; Liu, Fu-Shun; Li, Hua-Jun
2014-12-01
All time-domain methods for experimental modal analysis (EMA) begin with a mathematical model. Based on either a high-order matrix polynomial model or a first-order state-space model, this paper emphasizes the comparison of numerical conditioning and stability, as well as the modal parameter estimation, among EMA methods. Numerical conditioning pertains to the perturbation behavior of a mathematical problem (model) itself and stability pertains to the perturbation behavior of an algorithm used to solve that problem on a computer. As various EMA methods are modeled differently with distinct solution algorithms, implementing these methods would have different conditioning and stability. In this paper, both deterministic and stochastic EMA methods are covered. Three different scenarios for the response signal are considered: (1) clean response from impulse loading, (2) noisy response from impulse loading, and (3) noisy response from ambient noise excitation. Comparing the numerical conditioning of various EMA methods, this paper theoretically illustrates that methods based on first-order state-space models are more likely to be well-conditioned (with a smaller conditioning number) than those based on high-order polynomial models. Furthermore, the numerical observation of a case study for a 6 degree-of-freedom system also suggests that first-order state-space model methods are more robust and accurate for the estimation of modal frequency and damping.
Wang, Christine; Tong, Xinming; Yang, Fan
2014-07-01
Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix
NASA Astrophysics Data System (ADS)
Hawkes, Jeremy J.; Coakley, W. Terence; Gröschl, Martin; Benes, Ewald; Armstrong, Sian; Tasker, Paul J.; Nowotny, Helmut
2002-03-01
The quantitative performance of a ``single half-wavelength'' acoustic resonator operated at frequencies around 3 MHz as a continuous flow microparticle filter has been investigated. Standing wave acoustic radiation pressure on suspended particles (5-μm latex) drives them towards the center of the half-wavelength separation channel. Clarified suspending phase from the region closest to the filter wall is drawn away through a downstream outlet. The filtration efficiency of the device was established from continuous turbidity measurements at the filter outlet. The frequency dependence of the acoustic energy density in the aqueous particle suspension layer of the filter system was obtained by application of the transfer matrix model [H. Nowotny and E. Benes, J. Acoust. Soc. Am. 82, 513-521 (1987)]. Both the measured clearances and the calculated energy density distributions showed a maximum at the fundamental of the piezoceramic transducer and a second, significantly larger, maximum at another system's resonance not coinciding with any of the transducer or empty chamber resonances. The calculated frequency of this principal energy density maximum was in excellent agreement with the optimal clearance frequency for the four tested channel widths. The high-resolution measurements of filter performance provide, for the first time, direct verification of the matrix model predictions of the frequency dependence of acoustic energy density in the water layer.
Choe, Melanie M; Sporn, Peter H S; Swartz, Melody A
2006-09-01
Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling. PMID:16601241
NASA Astrophysics Data System (ADS)
Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey
2015-04-01
Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites
YAO, YUQIN; ZHOU, YONGJUN; SU, XIAOLAN; DAI, LEI; YU, LIN; DENG, HONGXIN; GOU, LANTU; YANG, JINLIANG
2015-01-01
Establishing a feasible intraperitoneal (i.p.) xenograft model in nude mice is a good strategy to evaluate the antitumor effect of drugs in vivo. However, the manipulation of human cancer cells in establishing a stable peritoneal carcinomatosis model in nude mice is problematic. In the present study, the ovarian and colorectal peritoneal tumor models were successfully established in nude mice by co-injection of human tumor cells and extracellular matrix gel. In ovarian tumor models, the mean number tumor nodes was significantly higher in the experimental group (intraperitoneal tumor cell co-injection with ECM gel) compared with the PBS control group on the 30th day (21.0±3.0 vs. 3.6±2.5; P<0.05). The same results were observed in the colorectal peritoneal tumor models on the 28th day. The colorectal peritoneal tumor model was further used to evaluate the chemotherapy effect of irinotecan (CPT-11). The mean weight of peritoneal tumor nodes in CPT-11 treatment group was significantly less than that of the control group (0.81±0.16 vs. 2.18±0.21 g; P<0.05). The results confirmed the value of these i.p. xenograft models in nude mice as efficient and feasible tools for preclinical evaluation. PMID:26788149
NASA Astrophysics Data System (ADS)
Odonne, F.
1994-07-01
In a system composed of a ductile matrix with a particle included in it, the deformation of the matrix, the displacement field, and the rotation and the deformation of the block are related to the viscosity ratio between block and matrix and also to the degree of bonding between the matrix and the block. In this paper, belemnites from the Lower Lias of the Alps provide a natural example of moderately deformed objects included in a slaty matrix. They are compared with analogue models made of paraffin, in which a long block of a more competent paraffin is included. Depending on the degree of bonding between matrix and object, the same block appears to be deformable or quite rigid. With a high degree of bonding, the strain refraction observed corresponds to the viscosity ratio between the block and the matrix. When the degree of bonding is weak, the block is quite undeformed, its rotation is great and the deviation of the strain in the matrix is analogous to that observed around a fault. The kinematic conditions appear to have a greater effect on the finite strain than the viscosity ratio of the materials.
Grassmann matrix quantum mechanics
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-01
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. We discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.
Facelli, Julio; Pugmire, Ronald; Pimienta, Ian
2011-03-31
The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.
Effect of Extracellular Matrix Membrane on Bone Formation in a Rabbit Tibial Defect Model
Kim, Sungtae; Kim, Se Won; Lee, Jong Ho
2016-01-01
Absorbable extracellular matrix (ECM) membrane has recently been used as a barrier membrane (BM) in guided tissue regeneration (GTR) and guided bone regeneration (GBR). Absorbable BMs are mostly based on collagen, which is more biocompatible than synthetic materials. However, implanted absorbable BMs can be rapidly degraded by enzymes in vivo. In a previous study, to delay degradation time, collagen fibers were treated with cross-linking agents. These compounds prevented the enzymatic degradation of BMs. However, cross-linked BMs can exhibit delayed tissue integration. In addition, the remaining cross-linker could induce inflammation. Here, we attempted to overcome these problems using a natural ECM membrane. The membrane consisted of freshly harvested porcine pericardium that was stripped from cells and immunoreagents by a cleaning process. Acellular porcine pericardium (APP) showed a bilayer structure with a smooth upper surface and a significantly coarser bottom layer. APP is an ECM with a thin layer (0.18–0.35 mm) but with excellent mechanical properties. Tensile strength of APP was 14.15 ± 2.24 MPa. In in vivo experiments, APP was transplanted into rabbit tibia. The biocompatible material was retained for up to 3 months without the need for cross-linking. Therefore, we conclude that APP could support osteogenesis as a BM for up to 3 months. PMID:27047963
Jin, Zhe-Xiu; Xiong, Qiang; Jia, Fang; Sun, Chun-Ling; Zhu, Hong-Tao; Ke, Fu-Sheng
2015-01-01
Objective: To investigate the effect of RNA interference of matrix metalloproteinase (MMP)-9 on atherosclerosis on atherosclerosis in apolipoprotein E (ApoE)-/- mouse. Methods: ApoE-/- mouse strain and three cell lines (293T, NIH3T3 and Raw264.7) were used in the present study to investigate the effect of MMP-9 silencing by RNA interference. Thirty 10-week-old ApoE-/- mice were randomly assigned to a control group, lentiviruses with naked vector group and Lentiviruses-MMP-9 intervention group (n = 10). Aortic atherosclerotic plaques of the mice were stained with immunohistochemical techniques, the MMP-9 and high-sensitivity C-reactive protein levels of three groups were detected simultaneously. Expression of MMP-9 was significantly down-regulated in interference group. MMP-9 and high-sensitivity C-reactive protein levels in MMP-9 interference group were significantly lower than that of the control group. Conclusion: The expression of MMP-9 is closely related to vulnerability of atherosclerotic plaques. Silencing of MMP-9 expression acts as a positive role in maintenance of atherosclerotic plaque stability. The present study provides novel experimental insight for the treatment of vulnerable plaques in atherosclerosis. PMID:26131101
NASA Astrophysics Data System (ADS)
Sherbondy, Kelly D.
1995-06-01
A numerical time-domain technique known as the transmission line matrix (TLM) method is used to analyze a ground penetrating radar (GPR) concept known historically as balanced bridge. This GPR concept is a dielectric anomaly (mine) detection sensor which operates in the UHF frequency band. This mine sensor consists of two receive broadband antennas separated by a single center transmit antenna. Traditionally, if care is taken in the construction of the antennas, the direct coupling and ground reflection energies are combined and nulled out by a hardware coupler when the sensor configuration is over homogeneous soil. When one of the two receiving antennas is over a dielectric anomaly (mine), the differenced energies from the two receiving antennas no longer produces a null and a peaked response is observed. This mine sensing technique has performed well under experimental tests at Fort Belvoir and Fort A.P. Hill, Virginia. Testing results, at different sites using different mine types, have indicated the sensor's performance in terms of probability of detection and false-alarm rates. The TLM method is used to describe the balanced bridge mine detector's response to targets and clutter as well as its unique capabilities in an attempt to shed light into occurring fundamental wave interactions.
NASA Astrophysics Data System (ADS)
Schmid, Daniel Walter; Fletcher, Raymond Charles
2013-04-01
In many instances, simple field observations - requiring, however, extensive search for suitable examples - lead to estimates of rheological and transport parameters that may be obtained from simple analytical models. The structure of interest is the gap between separating boudins. The gap is filled initially by formation of a "pressure shadow", followed by matrix inflow. Here, flow of a viscous fluid between separating rigid plates is used to estimate the latter, with the pressure shadow assigned the same viscosity as the matrix. Dissolution along the upper boudin surface and precipitation along the gap surfaces, the two mediated by diffusion along a fluid film, is added to inflow to provide a back-of-the-envelope model for the process. The ratio of matrix inflow to the whole provides an estimate of the dimensionless group -24?(D?)c0V02 ? = H2 (H + L)RT where the quantities in the numerator are matrix viscosity, bulk diffusivity in aqueous fluid, interfacial film thickness, mean concentration of diffusing component, and specific volume of precipitating solid, and in the denominator, boudin layer thickness (2H), length (2L), gas constant and temperature kelvin. The rate of growth of the boudin gap (2Δ) is d (Δ ) [( Δ )3 ] - - = 4D¯xx - + ? dt H H where D¯xx is the bulk rate of extension. We apply this model to estimate parameter combinations that allow for observed boudin gap geometries. A further refinement of the present model has been carried out using the FEM. The implemented FEM model is free from the stringent constraints, especially regarding geometry, that underlie the analytical model. We compare the two and demonstrate where they are valid approximations to nature.
Aluri, Hema S.; Kublin, Claire L.; Thotakura, Suharika; Armaos, Helene; Samizadeh, Mahta; Hawley, Dillon; Thomas, William M.; Leavis, Paul; Makarenkova, Helen P.; Zoukhri, Driss
2015-01-01
Purpose Chronic inflammation of the lacrimal gland results in changes in the composition of the extracellular matrix (ECM), which is believed to compromise tissue repair. We hypothesized that increased production/activity of matrix metalloproteinases (MMPs), especially MMP-2 and -9, in inflamed lacrimal glands modifies the ECM environment, therefore disrupting tissue repair. Methods The lacrimal glands from female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for histology, immunohistochemistry, zymography, Western blotting, and RNA analyses. In another study, MRL/lpr mice were treated for 5 weeks with a selective MMP2/9 inhibitor peptide or a control peptide. At the end of treatment, the lacrimal glands were excised and the tissue was processed as described above. Results There was a 2.5- and 2.7-fold increase in MMP2 gene expression levels in MRL/lpr and NOD mice, respectively. Matrix metalloproteinase 2 and 9 enzymatic activities and protein expression levels were significantly upregulated in the lacrimal glands of MRL/lpr and NOD mice compared to controls. Treatment with the MMP2/9 inhibitor resulted in decreased activity of MMP-2 and -9 both in vitro and in vivo. Importantly, MMP2/9 inhibitor treatment of MRL/lpr mice improved aqueous tear production and resulted in reduced number and size of lymphocytic foci in diseased lacrimal glands. Conclusions We conclude that MMP2/9 expression and activity are elevated in lacrimal glands of two murine models of Sjögren's syndrome, suggesting that manipulation of MMP2/9 activity might be a potential therapeutic target in chronically inflamed lacrimal glands. PMID:26244298
McKerrow, J.H.; Keene, W.E.; Jeong, K.H.; Werb, Z.
1983-01-01
The ability of cercariae of Schistosoma mansoni to degrade a model extracellular connective tissue matrix produced by rat vascular smooth muscle cells in culture was investigated. In this model, connective tissue macromolecules are present in the interactive framework that characterizes their structure in vivo. Cercariae were stimulated to degrade the matrix by skin lipid or linoleic acid. At the maximally stimulating concentration of linoleic acid (25 ..mu..g/cm/sup 2/), 68% of the total matrix was degraded, including 57% of the glycoprotein, 79% of the elastin, and 8% of the collagen. Degradation of matrix was inhibited by ..cap alpha../sub 1/-proteinase inhibitor and soybean trypsin inhibitor. Ethylenediaminetetraacetic acid inhibited degradation by unstimulated but not linoleic acid-stimulated cercariae. Preacetabular gland secretions collected from cercariae also degraded the matrix with an activity 86% of that of live cercariae. Preacetabular gland proteolytic activity was also inhibited by ..cap alpha../sub 1/-proteinase inhibitor, soybean trypsin inhibitor, and ethylenediaminetetraacetic acid. The similar characteristics of matrix degradation by both live cercariae and cercarial preacetabular gland secretions support the idea that a proteinase secreted from cercarial preacetabular glands facilitates invasion of skin and connective tissue by these larvae. Degradation of elastin and glycoprotein constituentes of extracellular matrix is probably essential for skin penetration.
Saucedo-Mora, L; Marrow, T J
2016-07-13
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242308
Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi
2015-11-15
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. PMID:26197108
A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing
Hung, K.M.; Hill, A.D.; Sepehrnoorl, K.
1989-01-01
A mathematical model that describes the growth and competition of wormholes during ann acidizing treatment in a carbonate formation was developed. The model is initialized with the distribution of largest pores. Wormhole characteristics (size, length, and distribution) were found too be controlled by acid-injection, diffusion, and fluid-loss rates.
The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...
Matsuda, Koichi; Nishiura, Hiroyuki
2006-08-01
We reconsider a universal mass matrix model which has a seesaw-invariant structure with four-zero texture common to all quarks and leptons. The Cabibbo-Kobayashi-Maskawa (CKM) quark and Maki-Nakagawa-Sakata (MNS) lepton mixing matrices of the model are analyzed analytically. We show that the model can be consistent with all the experimental data of neutrino oscillation and quark mixings by tuning free parameters of the model. It is also shown that the model predicts a relatively large value for the (1, 3) element of the MNS lepton mixing matrix (U{sub MNS}){sub 13}{sup 2}{approx_equal}(0.041-9.6)x10{sup -2}. Using the seesaw mechanism, we also discuss the conditions for the components of the Dirac and the right-handed Majorana neutrino mass matrices which lead to the neutrino mass matrix consistent with the experimental data.
NASA Astrophysics Data System (ADS)
Nguyen, Nguyen Q.; Peterson, Sean D.; Gupta, Nikhil; Rohatgi, Pradeep K.
2009-08-01
A modified pressure infiltration process was recently developed to synthesize carbon-fiber-reinforced aluminum matrix composites. In the modified process, the ends of carbon fibers are extended out of the crucible to induce selective cooling. The process is found to be effective in improving the quality of composites. The present work is focused on determining the effect of the induced conductive heat transfer on the composite system through numerical methods. Due to the axisymmetry of the system, a two-dimensional (2-D) model is studied that can be expanded into three dimensions. The variables in this transient analysis include the fiber radius, fiber length, and melt superheat temperature. The results show that the composite system can be tailored to have a temperature on the fiber surface that is lower than the melt, to promote nucleation on the fiber surface. It is also observed that there is a point of inflection in the temperature profile along the particle/melt interface at which there is no temperature gradient in the radial direction. The information about the inflection point can be used to control the diffusion of solute atoms in the system. The result can be used in determining the optimum fiber volume fraction in metal matrix composite (MMC) materials to obtain the desired microstructure.
Selvaraju, N; Pushpavanam, S; Anu, N
2013-12-01
Rapid urbanization and population growth resulted in severe deterioration of air quality in most of the major cities in India. Therefore, it is essential to ascertain the contribution of various sources of air pollution to enable us to determine effective control policies. The present work focuses on the holistic approach of combining factor analysis (FA), positive matrix factorization (PMF), and chemical mass balance (CMB) for receptor modeling in order to identify the sources and their contributions in air quality studies. Insight from the emission inventory was used to remove subjectivity in source identification. Each approach has its own limitations. Factor analysis can identify qualitatively a minimal set of important factors which can account for the variations in the measured data. This step uses information from emission inventory to qualitatively match source profiles with factor loadings. This signifies the identification of dominant sources through factors. PMF gives source profiles and source contributions from the entire receptor data matrix. The data from FA is applied for rank reduction in PMF. Whenever multiple solutions exist, emission inventory identifies source profiles uniquely, so that they have a physical relevance. CMB identifies the source contributions obtained from FA and PMF. The novel approach proposed here overcomes the limitations of the individual methods in a synergistic way. The adopted methodology is found valid for a synthetic data and also the data of field study. PMID:23832184
Moghadamfalahi, Mohammad; Orhan, Umut; Akcakaya, Murat; Nezamfar, Hooman; Fried-Oken, Melanie; Erdogmus, Deniz
2015-09-01
Noninvasive electroencephalography (EEG)-based brain-computer interfaces (BCIs) popularly utilize event-related potential (ERP) for intent detection. Specifically, for EEG-based BCI typing systems, different symbol presentation paradigms have been utilized to induce ERPs. In this manuscript, through an experimental study, we assess the speed, recorded signal quality, and system accuracy of a language-model-assisted BCI typing system using three different presentation paradigms: a 4 × 7 matrix paradigm of a 28-character alphabet with row-column presentation (RCP) and single-character presentation (SCP), and rapid serial visual presentation (RSVP) of the same. Our analyses show that signal quality and classification accuracy are comparable between the two visual stimulus presentation paradigms. In addition, we observe that while the matrix-based paradigm can be generally employed with lower inter-trial-interval (ITI) values, the best presentation paradigm and ITI value configuration is user dependent. This potentially warrants offering both presentation paradigms and variable ITI options to users of BCI typing systems. PMID:25775495
NASA Astrophysics Data System (ADS)
Liu, Jianping; Yang, Ping; Muinonen, Karri
2015-08-01
The Gaussian sphere has been widely used as a model to study light scattering by irregular particles; and, despite extensive numerical studies, the optical properties are not thoroughly understood. Based on Gaussian spheres and using a combination of the invariant imbedding T-matrix method and an improved geometric-optics method, the single-scattering properties (namely, the 4×4 phase matrix, extinction cross section, single-scattering albedo, and asymmetry factor) are computed in the Rayleigh to geometric optics regimes. The simulations are performed with various degrees of irregularity, and the effects of particle irregularities are investigated over a wide range of particle sizes. Furthermore, the theoretical simulations based on Gaussian spheres are used to fit the measured optical properties of feldspar particles from the well-known Amsterdam-Granada light scattering database. A mixture of several shapes is shown to closely reproduce the measured phase matrices. The results may be potentially useful for remote-sensing and radiative-transfer applications involving dust aerosol.
Simunovic, S; Zacharia, T
1997-11-01
This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.
NASA Technical Reports Server (NTRS)
Allen, David H.; Groves, Scott E.; Harris, Charles E.
1988-01-01
The present cumulative damage model for the prediction of stiffness loss in graphite/epoxy laminates applies a thermomechanical constitutive theory for elastic composites with distributed damage. The model proceeds from a continuum mechanics and thermodynamics approach in which the distributed damage is characterized by a set of second-order tensor-valued internal state variables. A set of damage-dependent laminated plate equations is obtained; this is developed by modifying classical Kirchhoff plate theory.
Model Calibration and Optics Correction Using Orbit Response Matrix in the Fermilab Booster
Lebedev, V.A.; Prebys, E.; Petrenko, A.V.; Kopp, S.E.; McAteer, M.J.; /Texas U.
2012-05-01
We have calibrated the lattice model and measured the beta and dispersion functions in Fermilab's fast-ramping Booster synchrotron using the Linear Optics from Closed Orbit (LOCO) method. We used the calibrated model to implement ramped coupling, dispersion, and beta-beating corrections throughout the acceleration cycle, reducing horizontal beta beating from its initial magnitude of {approx}30% to {approx}10%, and essentially eliminating vertical beta-beating and transverse coupling.
NASA Astrophysics Data System (ADS)
Verga, S.; Gooding, R. J.; Marsiglio, F.
2005-04-01
The atomic limit of the Hubbard model is a simple single-site problem which can be solved exactly, and all one- and two-particle Green’s functions can be obtained analytically. These solutions can thus serve as a means of critiquing the success of various approximate theories which might be applied to the full Hubbard model. In particular, we have examined the T -matrix approximation for the attractive Hubbard model in the atomic limit, which should give reasonable results at low electronic densities, if one can avoid the spurious phase transition that results when a fully non-self-consistent T -matrix approximation is employed—previously we have shown that any level of self-consistency guarantees that this phase transition is correctly suppressed to zero temperature in two dimensions or less. Here, a minimally self-consistent T -matrix approximation is shown to be successful in reproducing the exact results for the atomic limit, while fully self-consistent T -matrix results do not agree with the known solutions. Of particular note is that the minimally self-consistent T -matrix approximation reproduces not only one- and two-particle (static) thermodynamic quantities, but it also exactly reproduces the one-particle spectral function at low but nonzero temperatures. We also make a comparison to the two-particle self-consistent approach of Vilk and Tremblay, and find that the minimally self-consistent T -matrix theory can give better results over a broader temperature range.
Modeling of outgassing and matrix decomposition in carbon-phenolic composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1994-01-01
Work done in the period Jan. - June 1994 is summarized. Two threads of research have been followed. First, the thermodynamics approach was used to model the chemical and mechanical responses of composites exposed to high temperatures. The thermodynamics approach lends itself easily to the usage of variational principles. This thermodynamic-variational approach has been applied to the transpiration cooling problem. The second thread is the development of a better algorithm to solve the governing equations resulting from the modeling. Explicit finite difference method is explored for solving the governing nonlinear, partial differential equations. The method allows detailed material models to be included and solution on massively parallel supercomputers. To demonstrate the feasibility of the explicit scheme in solving nonlinear partial differential equations, a transpiration cooling problem was solved. Some interesting transient behaviors were captured such as stress waves and small spatial oscillations of transient pressure distribution.
Role of adjacency-matrix degeneracy in maximum-entropy-weighted network models
NASA Astrophysics Data System (ADS)
Sagarra, O.; Pérez Vicente, C. J.; Díaz-Guilera, A.
2015-11-01
Complex network null models based on entropy maximization are becoming a powerful tool to characterize and analyze data from real systems. However, it is not easy to extract good and unbiased information from these models: A proper understanding of the nature of the underlying events represented in them is crucial. In this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given constraints is fundamental to build good null models for the case of networks with integer-valued adjacency matrices constructed from an aggregation of one or multiple layers. We show how different assumptions about the elements from which the networks are built give rise to distinctively different statistics, even when considering the same observables to match those of real data. We illustrate our findings by applying the formalism to three data sets using an open-source software package accompanying the present work and demonstrate how such differences are clearly seen when measuring network observables.
Yang, Bing-jun; Chao, Keng-hsing; Tsai, Jui-che
2012-09-01
In this paper we develop a three-dimensional (3D) ray tracing tool based on the ABCD ray transfer matrices. With symmetric optical components and under paraxial approximation, two sets of 2×2 ABCD matrices, each for a two-dimensional subspace, can be used to describe the 3D ray propagation completely. Compared to commercial ray-tracing software packages, our tool requires no tedious drawing, and the results for various conditions, such as different device dimensions and incident angles, can be easily obtained by simply changing the parameter values used for the calculation. We have employed this matrix-based 3D ray tracing tool to model cat's eye retroreflectors. The cat's eye performance, including the retroreflection efficiency, acceptance angle (i.e., field of view), and beam divergence and deviation, is fully studied. The application of this 3D ray tracing technique can be further extended to other optical components. PMID:22945148
Das, Mousumi
2014-03-28
We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties. PMID:24697451
Das, Mousumi
2014-03-28
We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.
NASA Technical Reports Server (NTRS)
Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard
1988-01-01
A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.
Exact chiral spin liquids and mean-field perturbations of gamma matrix models on the ruby lattice
NASA Astrophysics Data System (ADS)
Whitsitt, Seth; Chua, Victor; Fiete, Gregory A.
2012-11-01
We theoretically studied an exactly solvable gamma matrix generalization of the Kitaev spin model on the ruby lattice, which is a honeycomb lattice with ‘expanded’ vertices and links. We find that this model displays an exceptionally rich phase diagram that includes (i) gapless phases with stable spin Fermi surfaces, (ii) gapless phases with low-energy Dirac cones and quadratic band touching points and (iii) gapped phases with finite Chern numbers possessing the values ±4,±3,±2 and ±1. The model is then generalized to include Ising-like interactions that break the exact solvability of the model in a controlled manner. When these terms are dominant, they lead to a trivial Ising ordered phase which is shown to be adiabatically connected to a large coupling limit of the exactly solvable phase. In the limit where these interactions are weak, we treat them within mean-field theory and present the resulting phase diagrams. We discuss the nature of the transitions between various phases. Our results show the richness of possible ground states in closely related magnetic systems.
NASA Astrophysics Data System (ADS)
Kaus, B.; Popov, A.
2015-12-01
The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results
Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata
2013-01-01
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results
De Abrew, K. Nadira; Thomas-Virnig, Christina L.; Rasmussen, Cathy A.; Bolterstein, Elyse A.; Schlosser, Sandy J.; Allen-Hoffmann, B. Lynn
2014-05-01
The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Antonelli, Maria-Rosaria; Pierangelo, Angelo; Novikova, Tatiana; Validire, Pierre; Benali, Abdelali; Gayet, Brice; De Martino, Antonello
2011-01-01
Polarimetric imaging is emerging as a viable technique for tumor detection and staging. As a preliminary step towards a thorough understanding of the observed contrasts, we present a set of numerical Monte Carlo simulations of the polarimetric response of multilayer structures representing colon samples in the backscattering geometry. In a first instance, a typical colon sample was modeled as one or two scattering “slabs” with monodisperse non absorbing scatterers representing the most superficial tissue layers (the mucosa and submucosa), above a totally depolarizing Lambertian lumping the contributions of the deeper layers (muscularis and pericolic tissue). The model parameters were the number of layers, their thicknesses and morphology, the sizes and concentrations of the scatterers, the optical index contrast between the scatterers and the surrounding medium, and the Lambertian albedo. With quite similar results for single and double layer structures, this model does not reproduce the experimentally observed stability of the relative magnitudes of the depolarizing powers for incident linear and circular polarizations. This issue was solved by considering bimodal populations including large and small scatterers in a single layer above the Lambertian, a result which shows the importance of taking into account the various types of scatterers (nuclei, collagen fibers and organelles) in the same model. PMID:21750762
Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging
Rahmim, A; Tang, J; Lodge, M A; Lashkari, S; Ay, M R; Lautamäki, R; Tsui, B M W; Bengel, F M
2011-01-01
This work explores application of a novel resolution modeling technique based on analytic physical models which individually models the various resolution degrading effects in PET (positron range, photon non-collinearity, inter-crystal scattering and inter-crystal penetration) followed by their combination and incorporation within the image reconstruction task. In addition to phantom studies, the proposed technique was particularly applied to and studied in the task of clinical Rb-82 myocardial perfusion imaging, which presently suffers from poor statistics and resolution properties in the reconstructed images. Overall, the approach is able to produce considerable enhancements in image quality. The reconstructed FWHM for a Discovery RX PET/CT scanner was seen to improve from 5.1 mm to 7.7 mm across the field-of-view (FoV) to ~3.5 mm nearly uniformly across the FoV. Furthermore, extended-source phantom studies indicated clearly improved images in terms of contrast versus noise performance. Using Monte Carlo simulations of clinical Rb-82 imaging, the resolution modeling technique was seen to significantly outperform standard reconstructions qualitatively, and also quantitatively in terms of contrast versus noise (contrast between the myocardium and other organs, as well as between myocardial defects and the left ventricle). PMID:18836219
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy
1992-01-01
A user's guide for the program gmc.f is presented. The program is based on the generalized method of cells model (GMC) which is capable via a micromechanical analysis, of predicting the overall, inelastic behavior of unidirectional, multi-phase composites from the knowledge of the properties of the viscoplastic constituents. In particular, the program is sufficiently general to predict the response of unidirectional composites having variable fiber shapes and arrays.
Sevcsik, E.; Pabst, G.; Richter, W.; Danner, S.; Amenitsch, H.; Lohner, K.
2008-01-01
As the main difference between bacterial and mammalian cell membranes is their net charge, the focal point of consideration in many model membrane experiments with antimicrobial peptides is lipid headgroup charge. We studied the interaction of the human multifunctional peptide LL-37 with single phospholipid monolayers, bilayers, and bilayers composed of binary mixtures of the four phospholipid species predominantly used in model membrane experiments (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine). We found that 1), the effects on single lipid monolayers are not comparable to those on the corresponding bilayers; 2), there are four different effects of LL-37 on bilayers of the four lipids; 3), the preference of LL-37 for the specific lipids is roughly inversely related to chain packing density; and 4), in the binary lipid mixtures, one lipid—and not necessarily the charged one—generally governs the mode of lipid/peptide interaction. Thus, our results show that lipid net charge is not the decisive factor determining the membrane-perturbing mechanism of LL-37, but only one of several parameters, among them packing density, the ability to form intermolecular H-bonds, and lipid molecular shape, which emphasizes how profoundly the choice of the model system can influence the outcome of a study of lipid/peptide interaction. PMID:18326643
Modeling Genome-Scale mRNA Expression Datasets: From Matrix Algebra to Genetic Networks
NASA Astrophysics Data System (ADS)
Alter, Orly
2003-03-01
DNA microarray genome-wide expression data promise to enhance fundamental understanding of life on the molecular level, and may prove useful in medical diagnosis, treatment and drug design. Analysis of these new data requires mathematical tools that use large quantities of data and reduce the complexity of the data to make them comprehensible. These tools should provide predictive models, i.e., mathematical frameworks for the description of the data, in which the mathematical variables and operations may be assigned biological meaning. Such models will facilitate the unraveling of the cellular machineries that generate, sense and react to the expression signal. I will start with a description of the use of singular value decomposition (SVD) to construct the first model for genome-wide expression data. SVD is a unique data-driven linear transformation of the expression data from the genes × arrays space to the reduced ``eigengenes'' × ``eigenarrays'' space, where the eigengenes (eigenarrays) are unique orthonormal superpositions of the genes (arrays). Normalizing the data, by detecting and filtering out additive and multiplicative experimental artifacts and irrelevant biological processes, enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data, according to a chosen subset of eigengenes (and eigenarrays), rather than by overall expression, gives a global picture of gene expression in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. In some experiments, the significant eigengenes and eigenarrays can be associated with genome-wide effects of regulators, or with measured samples in which these regulators are overactive or underactive, respectively. I will then describe the use of generalized singular value decomposition (GSVD) to construct the first comparative model
Zeng, J Z; Ma, L F; Meng, H; Yu, H M; Zhang, Y K; Guo, A
2015-01-01
A rat model with cartilage chondrocyte injury was established using interleukin-1β (IL-1β) to investigate the effect of Ginkgo biloba extract (EGb) on matrix metalloproteinase-3 (MMP-3) expression. Rat chondrocytes were extracted and randomly divided into six groups: control group, IL-1β (model) group, IL-1β + dexamethasone group, and IL-1β + EGb group (both high and low dose groups). Reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay were used to detect MMP-3 expression. Compared to the MMP-3 mRNA level in the control group, MMP-3 mRNA level significantly increased in the model group (P < 0.05). The application of dexamethasone or EGb significantly decreased the MMP-3 mRNA level (P < 0.05). MMP-3 mRNA and protein levels decreased in the EGb-treated group, especially in the high-dose group, compared to those in the dexamethasone group (P < 0.05). EGb may reduce MMP-3 production during IL-1β-induced chondrocyte damage and protect chondrocytes to some extent, with better efficacy at high doses. PMID:26782475
Paine, Martin R L; Kim, Jaeyeon; Bennett, Rachel V; Parry, R Mitchell; Gaul, David A; Wang, May D; Matzuk, Martin M; Fernández, Facundo M
2016-01-01
High-grade serous carcinoma (HGSC) is the most common and deadliest form of ovarian cancer. Yet it is largely asymptomatic in its initial stages. Studying the origin and early progression of this disease is thus critical in identifying markers for early detection and screening purposes. Tissue-based mass spectrometry imaging (MSI) can be employed as an unbiased way of examining localized metabolic changes between healthy and cancerous tissue directly, at the onset of disease. In this study, we describe MSI results from Dicer-Pten double-knockout (DKO) mice, a mouse model faithfully reproducing the clinical nature of human HGSC. By using non-negative matrix factorization (NMF) for the unsupervised analysis of desorption electrospray ionization (DESI) datasets, tissue regions are segregated based on spectral components in an unbiased manner, with alterations related to HGSC highlighted. Results obtained by combining NMF with DESI-MSI revealed several metabolic species elevated in the tumor tissue and/or surrounding blood-filled cyst including ceramides, sphingomyelins, bilirubin, cholesterol sulfate, and various lysophospholipids. Multiple metabolites identified within the imaging study were also detected at altered levels within serum in a previous metabolomic study of the same mouse model. As an example workflow, features identified in this study were used to build an oPLS-DA model capable of discriminating between DKO mice with early-stage tumors and controls with up to 88% accuracy. PMID:27159635
NASA Astrophysics Data System (ADS)
Müller, Dirk K.; Pampel, André; Möller, Harald E.
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data.
Billoir, Elise; da Silva Ferrão-Filho, Aloysio; Laure Delignette-Muller, Marie; Charles, Sandrine
2009-06-01
Bioassays were performed to find out how field samples of the toxic cyanobacteria Microcystis aeruginosa affect Moina micrura, a cladoceran found in the tropical Jacarepagua Lagoon (Rio de Janeiro, Brazil). The DEBtox (Dynamic Energy Budget theory applied to toxicity data) approach has been proposed for use in analysing chronic toxicity tests as an alternative to calculating the usual safety parameters (NOEC, ECx). DEBtox theory deals with the energy balance between physiological processes (assimilation, maintenance, growth and reproduction), and it can be used to investigate and compare various hypotheses concerning the mechanism of action of a toxicant. Even though the DEBtox framework was designed for standard toxicity bioassays carried out with standard species (fish, daphnids), we applied the growth and reproduction models to M. micrura, by adapting the data available using a weight-length allometric relationship. Our modelling approach appeared to be very relevant at the individual level, and confirmed previous conclusions about the toxic mechanism. In our study we also wanted to assess the toxic effects at the population level, which is a more relevant endpoint in risk assessment. We therefore incorporated both lethal and sublethal toxic effects in a matrix population model used to calculate the finite rate of population change as a continuous function of the exposure concentration. Alongside this calculation, we constructed a confidence band to predict the critical exposure concentration for population health. Finally, we discuss our findings with regard to the prospects for further refining the analysis of ecotoxicological data. PMID:18706427
Kim, Jaeyeon; Bennett, Rachel V.; Parry, R. Mitchell; Gaul, David A.; Wang, May D.; Matzuk, Martin M.; Fernández, Facundo M.
2016-01-01
High-grade serous carcinoma (HGSC) is the most common and deadliest form of ovarian cancer. Yet it is largely asymptomatic in its initial stages. Studying the origin and early progression of this disease is thus critical in identifying markers for early detection and screening purposes. Tissue-based mass spectrometry imaging (MSI) can be employed as an unbiased way of examining localized metabolic changes between healthy and cancerous tissue directly, at the onset of disease. In this study, we describe MSI results from Dicer-Pten double-knockout (DKO) mice, a mouse model faithfully reproducing the clinical nature of human HGSC. By using non-negative matrix factorization (NMF) for the unsupervised analysis of desorption electrospray ionization (DESI) datasets, tissue regions are segregated based on spectral components in an unbiased manner, with alterations related to HGSC highlighted. Results obtained by combining NMF with DESI-MSI revealed several metabolic species elevated in the tumor tissue and/or surrounding blood-filled cyst including ceramides, sphingomyelins, bilirubin, cholesterol sulfate, and various lysophospholipids. Multiple metabolites identified within the imaging study were also detected at altered levels within serum in a previous metabolomic study of the same mouse model. As an example workflow, features identified in this study were used to build an oPLS-DA model capable of discriminating between DKO mice with early-stage tumors and controls with up to 88% accuracy. PMID:27159635
Designing matrix models for fluorescence energy transfer between moving donors and acceptors.
van der Meer, B W; Raymer, M A; Wagoner, S L; Hackney, R L; Beechem, J M; Gratton, E
1993-01-01
A recipe is given for designing theoretical models for donor-acceptor systems in which fluorescence energy transfer and motion takes place simultaneously. This recipe is based on the idea that a system exhibiting both motion and fluorescence energy transfer can be modeled by specifying a number of "states" and the rates of transitions between them. A state in this context is a set of specific coordinates and conditions that describe the system at a certain moment in time. As time goes on, the coordinates and conditions for the system change, and this evolution can be described as a series of transitions from one state to the next. The recipe is applied to a number of example systems in which the donors and/or acceptors undergo either rotational or translational motion. In each example, fluorescence intensities and anisotropies for the donor and acceptor are calculated from solutions of eigensystems. The proposed method allows for analyzing time-resolved fluorescence energy transfer data without restrictive assumptions for motional averaging regimes and the orientation factor. It is shown that the fluorescence quantities depend on the size of the motional step (i.e., on the number of states), only if fluorescence energy transfer occurs. This finding indicates that fluorescence energy transfer studies may reveal whether the dynamics of a system (e.g., a protein) is better described in terms of transitions between a relatively small number of discrete states (jumping) or a large number of dense states (diffusion). PMID:8494980