Science.gov

Sample records for matrix metalloproteinase mt1-mmp

  1. MEMBRANE TYPE 1-MATRIX METALLOPROTEINASE (MT1-MMP) IDENTIFIED AS A MULTIFUNCTIONAL REGULATOR OF VASCULAR RESPONSES.

    PubMed

    Ohkawara, Hiroshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika

    2015-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP) functions as a signaling molecules in addition to a transmembrane metalloprotease, which degrades interstitial collagens and extracellular matrix components. This review focuses on the multifunctional roles of MT1-MMP as a signaling molecule in vascular responses to pro-atherosclerotic stimuli in the pathogenesis of cardiovascular diseases. First, the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)-MT1-MMP signaling axis contributes to endothelial dysfunction, which is mediated via small GTP-binding protein RhoA and Rac1 activation. Second, MT1-MMP plays a crucial role in reactive oxygen species (ROS) generation through the activation of receptor for advanced glycation end products (AGEs) in smooth muscle cells, indicating that MT1-MMP may be a therapeutic target for diabetic vascular complications. Third, MT1-MMP is involved in RhoA/Rac1 activation and Ca(2+) signaling in the mechanism of thrombin-stimulated endothelial dysfunction and oxidant stress. Fourth, the inhibition of the MT1-MMP/Akt signaling pathway may be an attractive strategy for treating endothelial disordered hemostasis in the development of vascular diseases linked to TNF-α-induced inflammation. Fifth, MT1-MMP through RAGE induced RhoA/Rac1 activation and tissue factor protein upregulation through NF-κB phosphorylation in endothelial cells stimulated by high-mobility group box-1, which plays a key role in the systemic inflammation. These findings suggest that the MT1-MMP-mediated signaling axis may be a promising target for treating atherosclerosis and subsequent cardiovascular diseases. PMID:26370683

  2. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  3. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  4. Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2.

    PubMed

    Bai, Shan; Thummel, Ryan; Godwin, Alan R; Nagase, Hideaki; Itoh, Yoshifumi; Li, Li; Evans, Richard; McDermott, Jeffrey; Seiki, Motoharu; Sarras, Michael P

    2005-06-01

    Matrix metalloproteinases (MMPs) play key roles in the turnover of extracellular matrix (ECM) and, thereby, function as key regulators of cell-ECM interactions during development. In spite of their importance during developmental processes, relatively little has been reported about the role of these metalloproteinases during limb development and regeneration. To approach the problem of cell-ECM interactions during limb (fin) regeneration, we have utilized zebrafish as an experimental model. Based on previous MMP cloning studies from our laboratory, the current study has focused on the expression of membrane-type 1 metalloproteinase (MT1-MMP), gelatinase A (MMP-2) and endogenous tissue inhibitor 2 of metalloproteinases (TIMP-2) during fin regeneration in adult zebrafish. In situ analysis indicated co-expression of zmt1-mmp, zmmp-2, and ztimp-2 mRNA transcripts in regenerating caudal fins. In situ gelatin-zymography confirmed the presence of active metalloproteinases in regenerating fins. zmt1-mmp, zmmp-2, and ztimp-2 mRNA transcripts were expressed in the blastema and basal epithelium during caudal fin regeneration while expression of type IV collagen [zcol-IV(a5)] transcripts (a basal lamina component) was restricted to the basal epithelium. Fin outgrowth was greatly reduced in the presence of GM6001 (an inhibitor of MMP activity) indicating the importance of these enzymes during fin regeneration. Previous studies by Itoh (EMBO, 2001) indicated that expression of a vertebrate MT1-MMP construct containing only the hemopexin-transmembrane-cytoplasmic domains (MT1HPX) resulted in blockage of MT1-MMP homophilic complex formation and subsequent inhibition of pro-MMP-2 activation. Interference with homophilic complex formation was attributed to expression of the hemopexin domain at the cell surface. Building upon these earlier findings, the current study found that ectopic expression of MT1HPX in fin regenerates inhibited the regeneration process and resulted in a

  5. A membrane-type-1 matrix metalloproteinase (MT1-MMP)-discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells.

    PubMed

    Assent, Delphine; Bourgot, Isabelle; Hennuy, Benoît; Geurts, Pierre; Noël, Agnès; Foidart, Jean-Michel; Maquoi, Erik

    2015-01-01

    During tumour dissemination, invading breast carcinoma cells become confronted with a reactive stroma, a type I collagen-rich environment endowed with anti-proliferative and pro-apoptotic properties. To develop metastatic capabilities, tumour cells must acquire the capacity to cope with this novel microenvironment. How cells interact with and respond to their microenvironment during cancer dissemination remains poorly understood. To address the impact of type I collagen on the fate of tumour cells, human breast carcinoma MCF-7 cells were cultured within three-dimensional type I collagen gels (3D COL1). Using this experimental model, we have previously demonstrated that membrane type-1 matrix metalloproteinase (MT1-MMP), a proteinase overexpressed in many aggressive tumours, promotes tumour progression by circumventing the collagen-induced up-regulation of BIK, a pro-apoptotic tumour suppressor, and hence apoptosis. Here we performed a transcriptomic analysis to decipher the molecular mechanisms regulating 3D COL1-induced apoptosis in human breast cancer cells. Control and MT1-MMP expressing MCF-7 cells were cultured on two-dimensional plastic plates or within 3D COL1 and a global transcriptional time-course analysis was performed. Shifting the cells from plastic plates to 3D COL1 activated a complex reprogramming of genes implicated in various biological processes. Bioinformatic analysis revealed a 3D COL1-mediated alteration of key cellular functions including apoptosis, cell proliferation, RNA processing and cytoskeleton remodelling. By using a panel of pharmacological inhibitors, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase specifically activated by collagen, as the initiator of 3D COL1-induced apoptosis. Our data support the concept that MT1-MMP contributes to the inactivation of the DDR1-BIK signalling axis through the cleavage of collagen fibres and/or the alteration of DDR1 receptor signalling unit, without triggering a

  6. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence.

    PubMed

    El Azzouzi, Karim; Wiesner, Christiane; Linder, Stefan

    2016-04-11

    Podosomes are dynamic cell adhesions that are also sites of extracellular matrix degradation, through recruitment of matrix-lytic enzymes, particularly of matrix metalloproteinases. Using total internal reflection fluorescence microscopy, we show that the membrane-bound metalloproteinase MT1-MMP is enriched not only at podosomes but also at distinct "islets" embedded in the plasma membrane of primary human macrophages. MT1-MMP islets become apparent upon podosome dissolution and persist beyond podosome lifetime. Importantly, the majority of MT1-MMP islets are reused as sites of podosome reemergence. siRNA-mediated knockdown and recomplementation analyses show that islet formation is based on the cytoplasmic tail of MT1-MMP and its ability to bind the subcortical actin cytoskeleton. Collectively, our data reveal a previously unrecognized phase in the podosome life cycle and identify a structural function of MT1-MMP that is independent of its proteolytic activity. MT1-MMP islets thus act as cellular memory devices that enable efficient and localized reformation of podosomes, ensuring coordinated matrix degradation and invasion. PMID:27069022

  7. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP

    PubMed Central

    Lagoutte, Emilie; Villeneuve, Clémentine; Lafanechère, Laurence; Wells, Claire M.; Jones, Gareth E.; Chavrier, Philippe; Rossé, Carine

    2016-01-01

    During their metastatic spread, cancer cells need to remodel the extracellular matrix in order to migrate through stromal compartments adjacent to the primary tumor. Dissemination of breast carcinoma cells is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14), the main invadopodial matrix degradative component. Here, we identify MT1-MMP as a novel interacting partner of dual-specificity LIM Kinase-1 and -2 (LIMK1/2), and provide several evidence for phosphorylation of tyrosine Y573 in the cytoplasmic domain of MT1-MMP by LIMK. Phosphorylation of Y573 influences association of F-actin binding protein cortactin to MT1-MMP-positive endosomes and invadopodia formation and matrix degradation. Moreover, we show that LIMK1 regulates cortactin association to MT1-MMP-positive endosomes, while LIMK2 controls invadopodia-associated cortactin. In turn, LIMK1 and LIMK2 are required for MT1-MMP-dependent matrix degradation and cell invasion in a three-dimensional type I collagen environment. This novel link between LIMK1/2 and MT1-MMP may have important consequences for therapeutic control of breast cancer cell invasion. PMID:27116935

  8. Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells.

    PubMed

    Radichev, Ilian A; Remacle, Albert G; Sounni, Nor Eddine; Shiryaev, Sergey A; Rozanov, Dmitri V; Zhu, Wenhong; Golubkova, Natalya V; Postnova, Tatiana I; Golubkov, Vladislav S; Strongin, Alex Y

    2009-05-15

    Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells. PMID:19232058

  9. Co-operative interactions between NFAT (nuclear factor of activated T cells) c1 and the zinc finger transcription factors Sp1/Sp3 and Egr-1 regulate MT1-MMP (membrane type 1 matrix metalloproteinase) transcription by glomerular mesangial cells.

    PubMed Central

    Alfonso-Jaume, Maria Alejandra; Mahimkar, Rajeev; Lovett, David H

    2004-01-01

    The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of proteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation. PMID:14979875

  10. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  11. MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility

    PubMed Central

    Shaverdashvili, Khvaramze; Zhang, Keman; Osman, Iman; Honda, Kord; Jobava, Rauli; Bedogni, Barbara

    2015-01-01

    Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility. PMID:26392417

  12. MT1-MMP modulates the mechanosensitivity of osteocytes.

    PubMed

    Kulkarni, Rishikesh N; Bakker, Astrid D; Gruber, Elisabeth V; Chae, Thomas D; Veldkamp, Joris B B; Klein-Nulend, Jenneke; Everts, Vincent

    2012-01-13

    Membrane-type matrix metalloproteinase-1 (MT1-MMP) is expressed by mechanosensitive osteocytes and affects bone mass. The extracellular domain of MT1-MMP is connected to extracellular matrix, while its intracellular domain is a strong modulator of cell signaling. In theory MT1-MMP could thus transduce mechanical stimuli into a chemical response. We hypothesized that MT1-MMP plays a role in the osteocyte response to mechanical stimuli. MT1-MMP-positive and knockdown (siRNA) MLO-Y4 osteocytes were mechanically stimulated with a pulsating fluid flow (PFF). Focal adhesions were visualized by paxillin immunostaining. Osteocyte number, number of empty lacunae, and osteocyte morphology were measured in long bones of MT1-MMP(+/+) and MT1-MMP(-/-) mice. PFF decreased MT1-MMP mRNA and protein expression in MLO-Y4 osteocytes, suggesting that mechanical loading may affect pericellular matrix remodeling by osteocytes. MT1-MMP knockdown enhanced NO production and c-jun and c-fos mRNA expression in response to PFF, concomitantly with an increased number and size of focal adhesions, indicating that MT1-MMP knockdown osteocytes have an increased sensitivity to mechanical loading. Osteocytes in MT1-MMP(-/-) bone were more elongated and followed the principle loading direction, suggesting that they might sense mechanical loading. This was supported by a lower number of empty lacunae in MT1-MMP(-/-) bone, as osteocytes lacking mechanical stimuli tend to undergo apoptosis. In conclusion, mechanical stimulation decreased MT1-MMP expression by MLO-Y4 osteocytes, and MT1-MMP knockdown increased the osteocyte response to mechanical stimulation, demonstrating a novel and unexpected role for MT1-MMP in mechanosensing. PMID:22202174

  13. Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line.

    PubMed

    Brassart, B; Randoux, A; Hornebeck, W; Emonard, H

    1998-08-01

    Soluble kappa-elastin peptides were shown to stimulate the expression of MMP-2 (but not MMP-9) by human fibrosarcoma HT-1080 cells, both at the protein and mRNA levels; maximal effect being observed at a concentration of 25 microg/ml of kappa-elastin. The stimulatory effect could be reproduced using Val-Gly-Val-Ala-Pro-Gly (VGVAPG) peptide, an elastin-derived hydrophobic hexapeptide which represented the elastin receptor binding sequence of tropoelastin. Furthermore, treatment of cells with lactose (30 mM), which dissociated 67-kDa elastin binding protein (EBP) from cell surfaces, completely abolished this effect, suggesting that the elastin receptor could mediate such a response. Using a specific monoclonal antibody, 67-kDa EBP was detected in HT-1080 membrane preparations by Western immunoblotting. Following treatment with 25 microg/ml kappa-elastin or 200 microg/ml VGVAPG, increased levels of the active 62-kDa form of MMP-2 were found in HT-1080 cell extracts. Stimulation of MT1-MMP mRNA expression by treatment with elastin-derived peptides (EDPs) was shown by competitive polymerase chain reaction (PCR). A reverse zymography analysis revealed that EDPs also stimulated TIMP-2 (but not TIMP-1) production by HT-1080 cells. Competitive PCR confirmed increased TIMP-2 mRNA expression by such treatment. These results suggest that occupancy of the 67-kDa elastin receptor by elastin-derived peptides enhanced both expression and activation of proMMP-2 and consequently, could promote the invasive/metastatic ability of tumor cells expressing this receptor. PMID:9872597

  14. Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP).

    PubMed Central

    Worley, Joanna R; Thompkins, Philip B; Lee, Meng H; Hutton, Mike; Soloway, Paul; Edwards, Dylan R; Murphy, Gillian; Knäuper, Vera

    2003-01-01

    Fundamental cellular processes including angiogenesis and cell migration require a proteolytic cascade driven by interactions of membrane-type matrix metalloproteinase 1 (MT1-MMP) and progelatinase A (proMMP-2) that are dependent on the presence of tissue inhibitor of metalloproteinases 2 (TIMP-2). There are unique interactions between TIMP-2 and MT1-MMP, which we have previously defined, and here we identify TIMP-2 sequence motifs specific for proMMP-2 binding in the context of its activation by MT1-MMP. A TIMP-2 mutant encoding the C-terminal domain of TIMP-4 showed loss of proMMP-2 activation, indicating that the C-terminal domain of TIMP-2 is important in establishing the trimolecular complex between MT1-MMP, TIMP-2 and proMMP-2. This was confirmed by analysis of a TIMP-4 mutant encoding the C-terminal domain of TIMP-2, which formed a trimolecular complex and promoted proMMP-2 processing to the intermediate form. Mutants encoding TIMP-4 from Cys(1) to Leu(185) and partial tail sequence of TIMP-2 showed some gain of activating capability relative to TIMP-4. The identified residues were subsequently mutated in TIMP-2 (E(192)-D(193) to I(192)-Q(193)) and this inhibitor showed a significantly reduced ability to facilitate proMMP-2 processing by MT1-MMP. Furthermore, the tail-deletion mutant Delta(186-194)TIMP-2 was completely incapable of promoting proMMP-2 activation by MT1-MMP. Thus the C-terminal tail residues of TIMP-2 are important determinants for stable trimolecular complex formation between TIMP-2, proMMP-2 and MT1-MMP and play an important role in MT1-MMP-mediated processing to the intermediate and final active forms of MMP-2 at the cell surface. PMID:12630911

  15. MT1-MMP: Endosomal delivery drives breast cancer metastasis.

    PubMed

    Linder, Stefan

    2015-10-26

    The membrane-tethered membrane type 1-matrix metalloproteinase (MT1-MMP) mediates proteolysis-based invasive tumor growth. In this issue, Marchesin et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506002) describe a tug-of-war mechanism regulating dynein and kinesin motors to drive endosome tubulation and MT1-MMP delivery to the surface of cancer cells, identifying a crucial regulatory axis for tumor metastasis. PMID:26504163

  16. MT1-MMP: Endosomal delivery drives breast cancer metastasis

    PubMed Central

    2015-01-01

    The membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) mediates proteolysis-based invasive tumor growth. In this issue, Marchesin et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506002) describe a tug-of-war mechanism regulating dynein and kinesin motors to drive endosome tubulation and MT1-MMP delivery to the surface of cancer cells, identifying a crucial regulatory axis for tumor metastasis. PMID:26504163

  17. RABGTPases in MT1-MMP trafficking and cell invasion: Physiology versus pathology

    PubMed Central

    Linder, Stefan; Scita, Giorgio

    2015-01-01

    The matrix metalloproteinase MT1-MMP is a central regulator of cell invasion in both physiological and pathological settings, such as tissue surveillance by immune cells and cancer cell metastasis. MT1-MMP cleaves a plethora of intra- and extracellular proteins, including extracellular matrix proteins, matrix receptors, and also other MMPs, and thus enables modification of both the cell surface proteome and the pericellular environment. Despite its importance for cell invasion, the pathways regulating MT1-MMP exposure on the cell surface are largely unknown. Recently, our groups discovered that a specific subset of RABGTPases, most notably RAB5a, is critical for MT1-MMP trafficking in primary human macrophages and carcinoma cells. Here, we discuss and contrast our findings for both cell types, pointing out common features and differences in the RABGTPase-dependent trafficking of MT1-MMP in health and disease. PMID:26107110

  18. MT1-MMP Inhibits the Activity of Bst-2 via Their Cytoplasmic Domains Dependent Interaction

    PubMed Central

    Fan, Long; Liu, Li; Zhu, Cuicui; Zhu, Qingyi; Lu, Shan; Liu, Ping

    2016-01-01

    Bst-2 (bone marrow stromal cell antigen 2) is a type II membrane protein, and it acts as a tetherin to inhibit virion releasing from infectious cells. Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease. It plays a pivotal role in cellular growth and migration by activating proMMP-2 into active MMP2. Our results here elaborate that MT1-MMP inhibits the tetherin activity of Bst-2 by interacting with Bst-2, and the cytoplasmic domains of both Bst-2 and MT1-MMP play critical roles within this interaction. Based on our experimental data, the assays for virion release and co-immunoprecipitation have clearly demonstrated that the activity of Bst-2 is markedly inhibited by MT1-MMP via their interaction; and both the N-terminal domain of Bst-2 and the C-terminal domain of MT1-MMP are important in the interaction. Immunostaining and Confocal Microscopy assay shows that MT1-MMP interacts with Bst-2 to form granular particles trafficking into cytoplasm from membrane and, finally, results in Bst-2 and MT1-MMP both being inhibited. In addition, mutant experiments elucidate that the N-terminal domain of Bst-2 is not only important in relating to the activity of Bst-2 itself, but is important for inhibiting the MT1-MMP/proMMP2/MMP2 pathway. These findings suggest that MT1-MMP is a novel inhibitor of Bst-2 in MT1-MMP expressed cell lines and also indicate that both the N-terminal domain of Bst-2 and the C-terminal domain of MT1-MMP are crucial in down-regulation. PMID:27240342

  19. Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption.

    PubMed

    Xu, H; Snider, T N; Wimer, H F; Yamada, S S; Yang, T; Holmbeck, K; Foster, B L

    2016-01-01

    Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP(-/-)) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data

  20. ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion.

    PubMed

    Marchesin, Valentina; Castro-Castro, Antonio; Lodillinsky, Catalina; Castagnino, Alessia; Cyrta, Joanna; Bonsang-Kitzis, Hélène; Fuhrmann, Laetitia; Irondelle, Marie; Infante, Elvira; Montagnac, Guillaume; Reyal, Fabien; Vincent-Salomon, Anne; Chavrier, Philippe

    2015-10-26

    Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1-matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH2-terminal kinase-interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein-dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin-dynein and kinesin-1 activity in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6-JIP-MT1-MMP-dynein-dynactin-kinesin-1 axis promoting an invasive phenotype of breast cancer cells. PMID:26504170

  1. ARF6–JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion

    PubMed Central

    Marchesin, Valentina; Castro-Castro, Antonio; Lodillinsky, Catalina; Castagnino, Alessia; Cyrta, Joanna; Bonsang-Kitzis, Hélène; Fuhrmann, Laetitia; Irondelle, Marie; Infante, Elvira; Montagnac, Guillaume; Reyal, Fabien; Vincent-Salomon, Anne

    2015-01-01

    Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH2-terminal kinase–interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein–dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin–dynein and kinesin-1 activity in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6–JIP–MT1-MMP–dynein–dynactin–kinesin-1 axis promoting an invasive phenotype of breast cancer cells. PMID:26504170

  2. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas

    PubMed Central

    Oteo, M.; Romero, E.; Cámara, J. A.; de Martino, A.; Arroyo, A. G.; Morcillo, M. Á.; Squatrito, M.; Martinez-Torrecuadrada, J. L.; Mulero, F.

    2016-01-01

    Background A critical challenge in the management of Glioblastoma Multiforme (GBM) tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP) as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models. Methods An anti-human MT1-MMP monoclonal antibody (mAb), LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS) for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251) expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7) as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543) and U251 cells, with different degrees of blood-brain barrier (BBB) disruption were also used for PET imaging experiments. Results 89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90%) and specific activity (78.5 MBq/mg). Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models. Conclusion A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In

  3. MT1-MMP-mediated basement membrane remodeling modulates renal development

    SciTech Connect

    Riggins, Karen S.; Mernaugh, Glenda; Su, Yan; Quaranta, Vito; Koshikawa, Naohiko; Seiki, Motoharu; Pozzi, Ambra; Zent, Roy

    2010-10-15

    Extracellular matrix (ECM) remodeling regulates multiple cellular functions required for normal development and tissue repair. Matrix metalloproteinases (MMPs) are key mediators of this process and membrane targeted MMPs (MT-MMPs) in particular have been shown to be important in normal development of specific organs. In this study we investigated the role of MT1-MMP in kidney development. We demonstrate that loss of MT1-MMP leads to a renal phenotype characterized by a moderate decrease in ureteric bud branching morphogenesis and a severe proliferation defect. The kidneys of MT1-MMP-null mice have increased deposition of collagen IV, laminins, perlecan, and nidogen and the phenotype is independent of the MT-1MMP target, MMP-2. Utilizing in vitro systems we demonstrated that MTI-MMP proteolytic activity is required for renal tubule cells to proliferate in three dimensional matrices and to migrate on collagen IV and laminins. Together these data suggest an important role for MT1-MMP in kidney development, which is mediated by its ability to regulate cell proliferation and migration by proteolytically cleaving kidney basement membrane components.

  4. TIMP-2 Interaction with MT1-MMP Activates the AKT Pathway and Protects Tumor Cells from Apoptosis

    PubMed Central

    Valacca, Cristina; Tassone, Evelyne; Mignatti, Paolo

    2015-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus. PMID:26331622

  5. Membrane type 1-matrix metalloproteinase induces epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: Observations from clinical and in vitro analyses

    PubMed Central

    Pang, Lijuan; Li, Qiuxiang; Li, Shugang; He, Jianwei; Cao, Weiwei; Lan, Jiaojiao; Sun, Bin; Zou, Hong; Wang, Chengyan; Liu, Ruixue; Wei, Cuilei; Wei, Yutao; Qi, Yan; Hu, Jianming; Liang, Weihua; Zhang, Wen Jie; Wan, Mei; Li, Feng

    2016-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP) is associated with enhanced tumorigenicity in many cancers. A recent study has revealed that MT1-MMP induces epithelial-to-mesenchymal transition (EMT) in prostate and breast cancer cells. However, its role in esophageal squamous cell carcinoma (ESCC) has not been studied. Here, we investigated the role of MT1-MMP in the dissemination of ESCC. Expression of MT1-MMP was detected by immunohistochemistry and tissue microarray in 88 Kazakh ESCC patients. Western blotting was performed to detect endogenous and overexpressed exogenous MT1-MMP in the Eca109 and Eca9706 cell lines, respectively. Transwell assay was used to estimate MT1-MMP-induced invasion and metastasis. EMT-associated proteins were detected by immunohistochemistry and western blotting. The associations between the expression of MT1-MMP and EMT-associated proteins with clinicopathologic parameters were analyzed. Overexpression of MT1-MMP was confirmed in Kazakh ESCC patients. MT1-MMP levels were found to be correlated with the depth of tumor infiltration. MT1-MMP induced EMT in ESCC both in vivo and in vitro, N-cadherin and Vimentin expression was upregulated upon MT1-MMP transfection into cells. However, E-cadherin was found to be downregulated. MT1-MMP-induced EMT led to increase migration and invasion in ESCC cell lines. In conclusion, our results suggest that MT1-MMP promotes ESCC invasion and metastasis. PMID:26916665

  6. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis

    PubMed Central

    Wong, Hoi Leong Xavier; Jin, Guoxiang; Cao, Renhai; Zhang, Shuo; Cao, Yihai; Zhou, Zhongjun

    2016-01-01

    Lymphangiogensis is involved in various pathological conditions, such as arthritis and cancer metastasis. Although many factors have been identified to stimulate lymphatic vessel growth, little is known about lymphangiogenesis inhibitors. Here we report that membrane type 1-matrix metalloproteinase (MT1-MMP) is an endogenous suppressor of lymphatic vessel growth. MT1-MMP-deficient mice exhibit spontaneous corneal lymphangiogenesis without concomitant changes in angiogenesis. Mice lacking MT1-MMP in either lymphatic endothelial cells or macrophages recapitulate corneal lymphangiogenic phenotypes observed in Mmp14−/− mice, suggesting that the spontaneous lymphangiogenesis is both lymphatic endothelial cells autonomous and macrophage associated. Mechanistically, MT1-MMP directly cleaves LYVE-1 on lymphatic endothelial cells to inhibit LYVE-1-mediated lymphangiogenic responses. In addition, MT1-MMP-mediated PI3Kδ signalling restrains the production of VEGF-C from prolymphangiogenic macrophages through repressing the activation of NF-κB signalling. Thus, we identify MT1-MMP as an endogenous inhibitor of physiological lymphangiogenesis. PMID:26926389

  7. Evidence of MTCBP-1 interaction with the cytoplasmic domain of MT1-MMP: Implications in the autophagy cell index of high-grade glioblastoma.

    PubMed

    Pratt, Jonathan; Iddir, Mustapha; Bourgault, Steve; Annabi, Borhane

    2016-02-01

    Progression of astrocytic tumors is, in part, related to their dysregulated autophagy capacity. Recent evidence indicates that upstream autophagy signaling events can be triggered by MT1-MMP, a membrane-bound matrix metalloproteinase that contributes to the invasive phenotype of brain cancer cells. The signaling functions of MT1-MMP require its intracellular domain, and recent identification of MTCBP-1, a cytoplasmic 19 kDa protein involved in the inhibition of MT1-MMP-mediated cell migration, suggests that modulation of MT1-MMP cytoplasmic domain-mediated signaling may affect other carcinogenic processes. Using qPCR and screening of cDNA generated from brain tumor tissues of grades I, II, III, and IV, MT1-MMP gene expression was found to correlate with increased grade of tumors. Inversely, MTCBP-1 expression decreased with increasing grade of brain tumor. Confocal microscopy and fluorescence resonance energy transfer (FRET) analysis revealed that overexpressing a cytoplasmic-deleted MT1-MMP recombinant protein mutant prevented MTCBP-1 recruitment to the intracellular leaf of plasma membrane in U87 glioblastoma cells. The interaction between MTCBP-1 and the 20 amino acids peptide representing the MT1-MMP cytoplasmic domain was confirmed by surface plasmon resonance. Overexpression of a full-length Wt-MT1-MMP triggered acidic autophagy vesicle formation and autophagic puncta formation for green fluorescent microtubule-associated protein 1 light chain 3 (GFP-LC3). Autophagic vesicles and GFP-LC3 puncta formation were abrogated in the presence of MTCBP-1. Our data elucidate a new role for MTCBP-1 regulating the intracellular function of MT1-MMP-mediated autophagy. The inverse correlation between MTCBP-1 and MT1-MMP expression with brain tumor grades could also contribute to the decreased autophagic index observed in high-grade tumors. PMID:25640948

  8. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    NASA Astrophysics Data System (ADS)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  9. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions.

    PubMed

    Fraley, Stephanie I; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D; Wirtz, Denis

    2015-01-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility. PMID:26423227

  10. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    PubMed Central

    Fraley, Stephanie I.; Wu, Pei-hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-01-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility. PMID:26423227

  11. Prostate Cancer-Associated Membrane Type 1-Matrix Metalloproteinase

    PubMed Central

    Bonfil, R. Daniel; Dong, Zhong; Trindade Filho, J. Carlos; Sabbota, Aaron; Osenkowski, Pamela; Nabha, Sanaa; Yamamoto, Hamilto; Chinni, Sreenivasa R.; Zhao, Huiren; Mobashery, Shahriar; Vessella, Robert L.; Fridman, Rafael; Cher, Michael L.

    2007-01-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP) is a major mediator of collagen I degradation. In human samples, we show that prostate cancer cells in skeletal metastases consistently express abundant MT1-MMP protein. Because prostate cancer bone metastasis requires remodeling of the collagen-rich bone matrix, we investigated the role of cancer cell-derived MT1-MMP in an experimental model of tumor-bone interaction. MT1-MMP-deficient LNCaP human prostate cancer cells were stably transfected with human wild-type MT1-MMP (MT1wt). Furthermore, endogenous MT1-MMP was down-regulated by small interfering RNA in DU145 human prostate cancer cells. Intratibial tumor injection in severe combined immunodeficient mice was used to simulate intraosseous growth of metastatic tumors. LNCaP-MT1wt cells produced larger osseous tumors than Neo control cells and induced osteolysis, whereas DU145 MT1-MMP-silenced transfectants induced osteogenic changes. In vitro assays showed that MT1wt overexpression enhanced collagen I degradation, whereas MT1-MMP-silencing did the opposite, suggesting that tumor-derived MT1-MMP may contribute directly to bone remodeling. LNCaP-MT1wt-derived conditioned medium stimulated in vitro multinucleated osteoclast formation. This effect was inhibited by osteoprotegerin, a decoy receptor for receptor activator of nuclear factor κB ligand, and by 4-[4-(methanesulfonamido) phenoxy] phenylsulfonyl methylthiirane, an MT1-MMP inhibitor. Our findings are consistent with the hypothesis that prostate cancer-associated MT1-MMP plays a direct and/or indirect role in bone matrix degradation, thus favoring intraosseous tumor expansion. PMID:17525276

  12. Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains.

    PubMed Central

    Annabi, B; Lachambre, M; Bousquet-Gagnon, N; Pagé, M; Gingras, D; Béliveau, R

    2001-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated MMP that has been recently reported to have a central role in tumour cell invasion. Here we report that both the native and overexpressed recombinant forms of MT1-MMP are highly enriched in low-density Triton X-100-insoluble membrane domains that contain the caveolar marker protein caveolin 1. Moreover, the MT1-MMP-dependent activation of proMMP-2 induced by concanavalin A and cytochalasin D was correlated with the processing of MT1-MMP to its proteolytically inactive 43 kDa fragment in U-87 glioblastoma and HT-1080 fibrosarcoma tumour cell lines; this processing was also preferentially observed within the caveolar fraction. Interestingly, whereas the expression of caveolin 1 had no effect on the MT1-MMP-dependent activation of proMMP-2, its co-expression with MT1-MMP antagonized the MT1-MMP-increased migratory potential of COS-7 cells. Taken together, our results provide evidence that MT1-MMP is preferentially compartmentalized and proteolytically processed in caveolae of cancer cells. The inhibition of MT1-MMP-dependent cell migration by caveolin 1 also suggests that the localization of MT1-MMP to caveolin-enriched domains might have an important function in the control of its enzymic activity. PMID:11171051

  13. KIF1B promotes glioma migration and invasion via cell surface localization of MT1-MMP.

    PubMed

    Chen, Songyu; Han, Mingzhi; Chen, Weiliang; He, Ying; Huang, Bin; Zhao, Peng; Huang, Qibing; Gao, Liang; Qu, Xun; Li, Xingang

    2016-02-01

    Malignant glioma is notorious for its aggressiveness and poor prognosis, and the invasiveness of glioma cells is the major obstacle. Accumulating evidence indicates that kinesin superfamily proteins (KIFs) may play key roles in tumor invasiveness, but the mechanisms remained unresolved. Our previous study demonstrated that membrane type 1-matrix metalloproteinase (MT1-MMP) was involved in Kinesin family member 1B (KIF1B)-modulated invasion of gastric cancer cells. Therefore, the role of KIF1B in glioma cell invasion and its relationship with MT1-MMP were explored in the present study. We found that aberrantly increased expression of KIF1B was associated with worse WHO pathological classification and Karnofsky performance status (KPS), which also showed a trend towards worse prognosis. In the transwell assay, knockdown of KIF1B using siRNA repressed U87MG and A172 glioma cell migration and invasion. Silencing KIF1B inhibited expression of membranal MT1-MMP; however, the amount of MT1-MMP in the whole cell lysate was not affected. In conclusion, targeting KIF1B may be an option for anti-invasive therapies targeting glioma. PMID:26576027

  14. Immunohistochemical demonstration of EphA2 processing by MT1-MMP in invasive cutaneous squamous cell carcinoma.

    PubMed

    Tatsukawa, Ryoko; Koga, Kaori; Aoki, Mikiko; Koshikawa, Naohiko; Imafuku, Shinichi; Nakayama, Juichiro; Nabeshima, Kazuki

    2016-07-01

    Erythropoietin-producing hepatocellular receptor-2 (EphA2) overexpression is prevalent in many types of human cancers, and it has been reported that high EphA2 expression is correlated with malignancy. Recent studies revealed that processing of EphA2 by cleaving off the N-terminal portion by membrane-type 1 matrix metalloproteinase (MT1-MMP) promotes invasion via stimulation of Ras in cancer cells in vitro. The objectives of this study were to investigate the presence and role of EphA2 processing in cutaneous squamous cell carcinoma (SCC) tissues. EphA2 (C-terminal and N-terminal) and MT1-MMP expression patterns and levels were analyzed immunohistochemically in SCC (n = 70) and Bowen disease (BD; n = 20). Levels of MT1-MMP and EphA2 expression were evaluated using digital image analysis. Proximity between MT1-MMP and EphA2 in cancer cells and its effect on EphA2 processing were investigated using a combination of in situ proximity ligation assay (PLA) and Western blotting. Immunohistochemical analyses showed that levels of EphA2 N-terminal expression were significantly lower than those of EphA2 C-terminal expression in SCC, whereas levels of EphA2 C- and N-terminal expression were similar in BD. Western blotting showed processed EphA2 fragments in human SCC tissues. Expression levels of MT1-MMP, EphA2, and processed EphA2 fragments were higher in SCC than BD. Proximity between MT1-MMP and EphA2 in SCC was demonstrated by in situ PLA. Our results suggest possible involvement of MT1-MMP processing of EphA2 in invasiveness of cutaneous SCC. PMID:27056569

  15. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway.

    PubMed

    Duran, C L; Lee, D W; Jung, J-U; Ravi, S; Pogue, C B; Toussaint, L G; Bayless, K J; Sitcheran, R

    2016-01-01

    A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors. PMID:27270613

  16. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway

    PubMed Central

    Duran, C L; Lee, D W; Jung, J-U; Ravi, S; Pogue, C B; Toussaint, L G; Bayless, K J; Sitcheran, R

    2016-01-01

    A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors. PMID:27270613

  17. Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis

    PubMed Central

    Sathyamoorthy, Tarangini; Tezera, Liku B.; Walker, Naomi F.; Brilha, Sara; Saraiva, Luisa; Mauri, Francesco A.; Wilkinson, Robert J.; Friedland, Jon S.

    2015-01-01

    Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis–infected monocytes degraded collagen matrix in an MT1-MMP–dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte–monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein–coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis–infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network–dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration. PMID:26091717

  18. Development of a Radiolabeled Peptide-Based Probe Targeting MT1-MMP for Breast Cancer Detection

    PubMed Central

    Min, Kaiyin; Ji, Bin; Zhao, Min; Ji, Tiefeng; Chen, Bin; Fang, Xuedong; Ma, Qingjie

    2015-01-01

    Breast cancer is one of the most frequent and aggressive primary tumors among women of all races. Matrix metalloproteinase (MMPs), a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases, is overexpressed in varieties of diseases including breast cancer. Therefore, noninvasive visualization and quantification of MMP in vivo are of great interest in basic research and clinical application for breast cancer early diagnosis. Herein, we developed a 99mTc labeled membrane type I matrix metalloproteinase (MT1-MMP) specific binding peptide, [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS), for in vivo detection of MDA-MB-231 breast tumor by single photon emission computed tomography (SPECT). [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS) demonstrated nice biostability and high MT1-MMP binding affinity in vitro and in vivo. Tumor-to-muscle ratio was found to reach to the highest (4.17±0.49) at 2 hour after intravenously administration of [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) into MDA-MB-231 tumor bearing mice. Overall, [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) demonstrated great potential for MT1-MMP targeted detection in vivo and it would be a promising molecular imaging probe that are probably beneficial to breast cancer early diagnoses. PMID:26437463

  19. A furin inhibitor downregulates osteosarcoma cell migration by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway

    PubMed Central

    LIU, BINGSHAN; LI, GUOJUN; WANG, XIAO; LIU, YANG

    2014-01-01

    This study aimed to explore the exact mechanism of the effect of a furin inhibitor on the migration and invasion of MG-63 and Saos-2 osteosarcoma cells. MG-63 and Saos-2 osteosarcoma cells were treated with regular culture medium in the presence or absence of 480 nM α1-antitrypsin Portland (α1-PDX). Wound-healing and Transwell assays were used for the detection of the effects of α1-PDX on MG-63 and Saos-2 osteosarcoma cell migration and invasion. Western blot analysis and reverse transcription-polymerase chain reaction were performed to detect the expression levels of membrane type I matrix metalloproteinase (MT1-MMP), Wnt and β-catenin. A chromatin immunoprecipitation assay was used for detection of the levels of MT1-MMP gene transcription activity. The results showed that α1-PDX treatment significantly reduced the migration and invasion ability of the cells. Notably, the expression levels of MT1-MMP decreased evidently upon α1-PDX treatment, paralleled with reductions in the expression levels of Wnt and β-catenin. Further analysis of the transcriptional activity of MT1-MMP revealed that the α1-PDX-induced downregulation of the levels of MT1-MMP was mediated by the Wnt signaling pathway. These data suggest that α1-PDX plays a vital role in inhibiting MG-63 and Saos-2 osteosarcoma cell migration and invasion by downregulating the expression levels of MT1-MMP via the Wnt signaling pathway. PMID:24944664

  20. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions.

    PubMed

    Takino, Takahisa; Saeki, Hiromi; Miyamori, Hisashi; Kudo, Tomoya; Sato, Hiroshi

    2007-12-15

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion and metastasis. We previously reported that extracellular matrix degradation by MT1-MMP regulates cell migration via modulating sustained integrin-mediated signals. In this study, MT1-MMP-expressing cells were plated onto fibronectin-coated plates and monitored for cell-matrix adhesion formation and fibronectin degradation. The fibronectin was degraded and removed in line with the cell migration track. The migrating cells showed a polarized morphology and were in contact with the edge of fibronectin through the leading edge, in which cell-matrix adhesions are concentrated. Expression of MT1-MMP targeted to cell-matrix adhesions by fusing with the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) promoted the initial fibronectin lysis at the cell periphery immediately after adhesion. These results suggest that fibronectin is degraded by MT1-MMP located at cell-matrix adhesions, which are concentrated at the leading edge of the migrating cells. To inhibit MT1-MMP at cell-matrix adhesion, the dominant negative form of MT1-MMP (MT1-Pex) was targeted to the cell-matrix adhesion by fusing with the FAT domain (MT1-Pex-FAT). MT1-Pex-FAT accumulated at cell-matrix adhesions and inhibited fibronectin degradation as well as FAK phosphorylation more effectively than parental MT1-Pex. MT1-Pex-FAT was also shown to suppress the invasion of tumor cells into three-dimensional collagen gel more strongly than MT1-Pex. These results suggest that MT1-MMP-mediated extracellular matrix lysis at cell-matrix adhesions induces the establishment of cell polarity, which facilitates cell-matrix adhesion turnover and subsequent cell migration. This model highlights the role of MT1-MMP at the leading edge of migrating cells. PMID:18089791

  1. Tetraspanin Proteins Regulate Membrane Type-1 Matrix Metalloproteinase-dependent Pericellular Proteolysis

    PubMed Central

    Lafleur, Marc A.; Xu, Daosong

    2009-01-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) supports tumor cell invasion through extracellular matrix barriers containing fibrin, collagen, fibronectin, and other proteins. Here, we show that simultaneous knockdown of two or three members of the tetraspanin family (CD9, CD81, and TSPAN12) markedly decreases MT1-MMP proteolytic functions in cancer cells. Affected functions include fibronectin proteolysis, invasion and growth in three-dimensional fibrin and collagen gels, and MMP-2 activation. Tetraspanin proteins (CD9, CD81, and TSPAN2) selectively coimmunoprecipitate and colocalize with MT1-MMP. Although tetraspanins do not affect the initial biosynthesis of MT1-MMP, they do protect the newly synthesized protein from lysosomal degradation and support its delivery to the cell surface. Interfering with MT1-MMP-tetraspanin collaboration may be a useful therapeutic approach to limit cancer cell invasion and metastasis. PMID:19211836

  2. Bone Marrow Stromal Cells Stimulate an Angiogenic Program that Requires Endothelial MT1-MMP

    PubMed Central

    Kachgal, Suraj; Carrion, Bita; Janson, Isaac A.; Putnam, Andrew J.

    2012-01-01

    Bone marrow-derived stromal/stem cells (BMSCs) have recently been characterized as mediators of tissue regeneration after injury. In addition to preventing fibrosis at the wound site, BMSCs elicit an angiogenic response within the fibrin matrix. The mechanistic interactions between BMSCs and invading endothelial cells (ECs) during this process are not fully understood. Using a three-dimensional, fibrin-based angiogenesis model, we sought to investigate the proteolytic mechanisms by which BMSCs promote vessel morphogenesis. We find that BMSC-mediated vessel formation depends on the proteolytic ability of membrane type 1-matrix metalloproteinase (MT1-MMP). Knockdown of the protease results in a small network of vessels with enlarged lumens. Contrastingly, vessel morphogenesis is unaffected by the knockdown of MMP-2 and MMP-9. Furthermore, we find that BMSC-mediated vessel morphogenesis in vivo follows mechanisms similar to what we observe in vitro. Subcutaneous, cellular fibrin implants in C.B-17/SCID mice form aberrant vasculature when MMPs are inhibited with a broad spectrum chemical inhibitor, and a very minimal amount of vessels when MT1-MMP proteolytic activity is interrupted in ECs. Other studies have debated the necessity of MT1-MMP in the context of vessel invasion in fibrin, but this study clearly demonstrates its requirement in BMSC-mediated angiogenesis. PMID:22262018

  3. A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP.

    PubMed

    Shiryaev, S A; Remacle, A G; Golubkov, V S; Ingvarsen, S; Porse, A; Behrendt, N; Cieplak, P; Strongin, A Y

    2013-01-01

    Matrix metalloproteinases (MMPs) and, especially membrane type 1 (MT1)-MMP/MMP-14, are promising drug targets in malignancies. In contrast with multiple small-molecule and protein pan-inhibitors of MT1-MMP cleavage activity, the murine 9E8 monoclonal antibody targets the MMP-2-activating function of cellular MT1-MMP alone, rather than the general proteolytic activity and the pro-migratory function of MT1-MMP. Furthermore, the antibody does not interact in any detectable manner with other members of the membrane type (MT)-MMP family. The mechanism of this selectivity remained unknown. Using mutagenesis, binding and activity assays, and modeling in silico, we have demonstrated that the 9E8 antibody recognizes the MT-loop structure, an eight residue insertion that is specific for MT-MMPs and that is distant from the MT1-MMP active site. The binding of the 9E8 antibody to the MT-loop, however, prevents tissue inhibitor of metalloproteinases-2 (TIMP-2) association with MT1-MMP. As a result, the 9E8 antibody incapacitates the TIMP-2-dependent MMP-2-activating function alone rather than the general enzymatic activity of human MT1-MMP. The specific function of the 9E8 antibody we determined directly supports an essential, albeit paradoxical, role of the protein inhibitor (TIMP-2) in MMP-2 activation via a unique membrane-tethered mechanism. In this mechanism, the formation of a tri-molecular MT1-MMPTIMP-2MMP-2 complex is required for both the capture of the soluble MMP-2 proenzyme by cells and then its well-controlled conversion into the mature MMP-2 enzyme. In sum, understanding of the structural requirements for the 9E8 antibody specificity may pave the way for the focused design of the inhibitory antibodies against other individual MMPs. PMID:24296749

  4. Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP.

    PubMed

    Decaneto, Elena; Suladze, Saba; Rosin, Christopher; Havenith, Martina; Lubitz, Wolfgang; Winter, Roland

    2015-12-01

    Membrane type 1-matrix metalloproteinase (MT1-MMP or MMP-14) is a zinc-transmembrane metalloprotease involved in the degradation of extracellular matrix and tumor invasion. While changes in solvation of MT1-MMP have been recently studied, little is known about the structural and energetic changes associated with MT1-MMP while interacting with substrates. Steady-state kinetic and thermodynamic data (including activation energies and activation volumes) were measured over a wide range of temperatures and pressures by means of a stopped-flow fluorescence technique. Complementary temperature- and pressure-dependent Fourier-transform infrared measurements provided corresponding structural information of the protein. MT1-MMP is stable and active over a wide range of temperatures (10-55 °C). A small conformational change was detected at 37 °C, which is responsible for the change in activity observed at the same temperature. Pressure decreases the enzymatic activity until complete inactivation occurs at 2 kbar. The inactivation is associated with changes in the rate-limiting step of the reaction caused by additional hydration of the active site upon compression and/or minor conformational changes in the active site region. Based on these data, an energy and volume diagram could be established for the various steps of the enzymatic reaction. PMID:26636948

  5. Regulation of membrane-type 1 matrix metalloproteinase activity by vacuolar H+-ATPases.

    PubMed Central

    Maquoi, Erik; Peyrollier, Karine; Noël, Agnès; Foidart, Jean-Michel; Frankenne, Francis

    2003-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a key enzyme in normal development and malignant processes. The regulation of MT1-MMP activity on the cell surface is a complex process involving autocatalytic processing, tissue inhibitor of MMPs (TIMP) binding and constitutive internalization. However, the fate of internalized MT1-MMP is not known. Acidification of intracellular vacuolar compartments is essential for membrane trafficking, protein sorting and degradation. This acidification is controlled by vacuolar H(+)-ATPases, which can be selectively inhibited by bafilomycin-A(1). Here, we treated human tumour cell lines expressing MT1-MMP with bafilomycin-A(1), and analysed its effects on MT1-MMP activity, internalization and processing. We show that the activity of MT1-MMP on the cell surface is constitutively down-regulated through a vacuolar H(+)-ATPase-dependent degradation process. Blockade of this degradation caused the accumulation of TIMP-free active MT1-MMP molecules on the cell surface, although internalization was not affected. As a consequence of this impaired degradation, pro-MMP-2 activation was strongly enhanced. This study demonstrates that the catalytic activity of MT1-MMP on the cell surface is regulated through a vacuolar H(+)-ATPase-dependent degradation process. PMID:12667140

  6. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo

    PubMed Central

    Botkjaer, Kenneth A.; Kwok, Hang Fai; Terp, Mikkel G.; Karatt-Vellatt, Aneesh; Santamaria, Salvatore; McCafferty, John; Andreasen, Peter A.; Itoh, Yoshifumi; Ditzel, Henrik J.; Murphy, Gillian

    2016-01-01

    The membrane-associated matrix metalloproteinase-14, MT1-MMP, has been implicated in pericellular proteolysis with an important role in cellular invasion of collagenous tissues. It is substantially upregulated in various cancers and rheumatoid arthritis, and has been considered as a potential therapeutic target. Here, we report the identification of antibody fragments to MT1-MMP that potently and specifically inhibit its cell surface functions. Lead antibody clones displayed inhibitory activity towards pro-MMP-2 activation, collagen-film degradation and gelatin-film degradation, and were shown to bind to the MT1-MMP catalytic domain outside the active site cleft, inhibiting binding to triple helical collagen. Affinity maturation using CDR3 randomization created a second generation of antibody fragments with dissociation constants down to 0.11 nM, corresponding to an improved affinity of 332-fold with the ability to interfere with cell-surface MT1-MMP functions, displaying IC50 values down to 5 nM. Importantly, the new inhibitors were able to inhibit collagen invasion by tumor-cells in vitro and in vivo primary tumor growth and metastasis of MDA-MB-231 cells in a mouse orthotopic xenograft model. Herein is the first demonstration that an inhibitory antibody targeting sites outside the catalytic cleft of MT1-MMP can effectively abrogate its in vivo activity during tumorigenesis and metastasis. PMID:26934448

  7. Heterogeneity in MT1-MMP activity with ischemia-reperfusion and previous myocardial infarction: relation to regional myocardial function

    PubMed Central

    Dixon, Jennifer A.; Gaillard, William F.; Rivers, William T.; Koval, Christine N.; Stroud, Robert E.; Mukherjee, Rupak

    2010-01-01

    After a myocardial infarction (MI), an episode of ischemia-reperfusion (I/R) can result in a greater impairment of left ventricular (LV) regional function (LVRF) than that caused by an initial I/R episode in the absence of MI. Membrane type-I matrix metalloproteinase (MT1-MMP) proteolytically processes the myocardial matrix and is upregulated in LV failure. This study tested the central hypothesis that a differential induction of MT1-MMP occurs and is related to LVRF after I/R in the context of a previous MI. Pigs with a previous MI [3 wk postligation of the left circumflex artery (LCx)] or no MI were randomized to undergo I/R [60-min/120-min left anterior descending coronary artery (LAD) occlusion] or no I/R as follows: no MI and no I/R (n = 6), no MI and I/R (n = 8), MI and no I/R (n = 8), and MI and I/R (n = 8). Baseline LVRF (regional stroke work, sonomicrometry) was lower in the LAD region in the MI group compared with no MI (103 ± 12 vs. 188 ± 26 mmHg·mm, P < 0.05) and remained lower with peak ischemia (35 ± 8 vs. 88 ± 17 mmHg·mm, P < 0.05). Using a novel interstitial microdialysis method, MT1-MMP was directly measured and was over threefold higher in the LCx region and over twofold higher in the LAD region in the MI group compared with the no MI group at baseline. MT1-MMP fluorogenic activity was persistently elevated in the LCx region in the MI and I/R group but remained unchanged in the LAD region. In contrast, no changes in MT1-MMP occurred in the LCx region in the no MI and I/R group but increased in the LAD region. MT1-MMP mRNA was increased by over threefold in the MI region in the MI and I/R group. In conclusion, these findings demonstrate that a heterogeneous response in MT1-MMP activity likely contributes to regional dysfunction with I/R and that a subsequent episode of I/R activates a proteolytic cascade within the MI region that may contribute to a continued adverse remodeling process. PMID:20935147

  8. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase

    PubMed Central

    Petrella, Brenda L; Brinckerhoff, Constance E

    2006-01-01

    Background Metastatic renal cell carcinoma (RCC) remains the leading cause of mortality in patients with clear cell RCC arising from mutations in the von Hippel Lindau (VHL) tumor suppressor. Successful RCC tumor suppression by VHL requires the negative regulation of hypoxia inducible factor alpha (HIF alpha) protein and its downstream targets. Thus, identification of HIF target genes responsible for RCC tumor progression will aid in the development of therapies for this disease. We previously identified membrane type-1 matrix metalloproteinase (MT1-MMP) as a transcriptional target of HIF-2alpha in RCC cells null for VHL and showed that MT1-MMP is overexpressed in these cells. MT1-MMP is a key regulator of tumor progression through its functions as a matrix-degrading enzyme, as well as its ability to cleave factors, such as adhesion molecules and other MMPs. The aim of this study was to investigate the contribution of MT1-MMP to the invasive potential of RCC cells using in vitro type I collagen degradation and invasion assays. Results We evaluated RCC cells wild-type (WT8) and null (pRc-9) for VHL for invasive characteristics and showed that the pRc-9 cells demonstrated a greater propensity for both invasion and degradation of a type I collagen matrix. Furthermore, overexpression of either HIF-2alpha or MT1-MMP in the poorly invasive cell line, WT8, promoted collagen degradation and invasion of these cells. Finally, using RNAi, we show that inhibition of MT1-MMP suppresses tumor cell invasion of RCC cells. Conclusion Our results suggest that MT1-MMP is a major mediator of tumor cell invasiveness and type I collagen degradation by VHL RCC cells that express either MT1-MMP or HIF-2alpha. As such, MT1-MMP may represent a novel target for anti-invasion therapy for this disease. PMID:17140440

  9. Alterations in membrane type-1 matrix metalloproteinase abundance after the induction of thoracic aortic aneurysm in a murine model

    PubMed Central

    Jones, Jeffrey A.; Ruddy, Jean Marie; Bouges, Shenikqua; Zavadzkas, Juozas A.; Brinsa, Theresa A.; Stroud, Robert E.; Mukherjee, Rupak; Spinale, Francis G.

    2010-01-01

    Thoracic aortic aneurysms (TAAs) develop as a result of dysregulated extracellular matrix remodeling mediated by several matrix metalloproteinases (MMPs). Membrane type-1 MMP (MT1-MMP) is the prototypical member of a unique family of membrane-bound MMPs, possessing multiple substrates and functions. The present study tested the hypothesis that MT1-MMP expression, abundance, and activity would be elevated during TAA development and that this protease is produced primarily by mesenchymal cells within the thoracic aorta. Descending thoracic aortas were harvested from C57BL/6J mice at multiple time points (2, 4, 8, and 16 wk, n = 15 each) post-TAA induction (0.5M CaCl2, 15 min) and compared with reference controls (n = 15). The expression and abundance of MT1-MMP, MMP-2, and tissue inhibitor of metalloproteinase (TIMP)-2 were assessed by quantitative PCR and immunoblot analysis. MT1-MMP activity was determined by fluorescent peptide assay. MT1-MMP was localized within the aortic wall by immunohistochemistry. MT1-MMP abundance and localization in live animals (8 wk post-TAA induction vs. control) was determined by microultrasound imaging with an MT1-MMP-targeted microbubble contrast agent. Aortic diameter was increased 172 ± 7% at 16 wk post-TAA induction (P < 0.05). MT1-MMP and MMP-2 mRNA levels were elevated at 2 wk post-TAA induction (P < 0.05). MT1-MMP protein abundance increased progressively to a maximum of 178 ± 26% at 16 wk post-TAA induction, whereas MMP-2 and TIMP-2 peaked at 2 wk post-TAA induction (526 ± 93% and 376 ± 48%, respectively, P < 0.05). MT1-MMP colocalized with fibroblasts, and MT1-MMP-targeted contrast binding was elevated in 8-wk TAA-induced mice versus control mice (217 ± 53% vs. 81 ± 8%, P < 0.05). In conclusion, these novel results suggest that MT1-MMP plays a dynamic multifunctional role in TAA development and, therefore, may provide a significant target for therapeutic strategies. PMID:20418476

  10. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP.

    PubMed Central

    Bernardo, M Margarida; Fridman, Rafael

    2003-01-01

    The matrix metalloproteinase (MMP)-2 has a crucial role in extracellular matrix degradation associated with cancer metastasis and angiogenesis. The latent form, pro-MMP-2, is activated on the cell surface by the membrane-tethered membrane type 1 (MT1)-MMP, in a process regulated by the tissue inhibitor of metalloproteinase (TIMP)-2. A complex of active MT1-MMP and TIMP-2 binds pro-MMP-2 forming a ternary complex, which permits pro-MMP-2 activation by a TIMP-2-free neighbouring MT1-MMP. It remains unclear how MMP-2 activity in the pericellular space is regulated in the presence of TIMP-2. To address this question, the effect of TIMP-2 on MMP-2 activity in the extracellular space was investigated in live cells, and their isolated plasma membrane fractions, engineered to control the relative levels of MT1-MMP and TIMP-2 expression. We show that both free and inhibited MMP-2 is detected in the medium, and that the net MMP-2 activity correlates with the level of TIMP-2 expression. Studies to displace MT1-MMP-bound TIMP-2 in a purified system with active MMP-2 show minimal displacement of inhibitor, under the experimental conditions, due to the high affinity interaction between TIMP-2 and MT1-MMP. Thus inhibition of MMP-2 activity in the extracellular space is unlikely to result solely as a result of TIMP-2 dissociation from its complex with MT1-MMP. Consistently, immunoblot analyses of plasma membranes, and surface biotinylation experiments show that the level of surface association of TIMP-2 is independent of MT1-MMP expression. Thus low-affinity binding of TIMP-2 to sites distinct to MT1-MMP may have a role in regulating MMP-2 activity in the extracellular space generated by the ternary complex. PMID:12755684

  11. Internal cleavages of the autoinhibitory prodomain are required for membrane type 1 matrix metalloproteinase activation, although furin cleavage alone generates inactive proteinase.

    PubMed

    Golubkov, Vladislav S; Cieplak, Piotr; Chekanov, Alexei V; Ratnikov, Boris I; Aleshin, Alexander E; Golubkova, Natalya V; Postnova, Tatiana I; Radichev, Ilian A; Rozanov, Dmitri V; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y

    2010-09-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  12. Internal Cleavages of the Autoinhibitory Prodomain Are Required for Membrane Type 1 Matrix Metalloproteinase Activation, although Furin Cleavage Alone Generates Inactive Proteinase*

    PubMed Central

    Golubkov, Vladislav S.; Cieplak, Piotr; Chekanov, Alexei V.; Ratnikov, Boris I.; Aleshin, Alexander E.; Golubkova, Natalya V.; Postnova, Tatiana I.; Radichev, Ilian A.; Rozanov, Dmitri V.; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y.

    2010-01-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  13. Membrane-Type 1 Matrix Metalloproteinase Cleaves Cd44 and Promotes Cell Migration

    PubMed Central

    Kajita, Masahiro; Itoh, Yoshifumi; Chiba, Tadashige; Mori, Hidetoshi; Okada, Akiko; Kinoh, Hiroaki; Seiki, Motoharu

    2001-01-01

    Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event stimulates cell motility; however, expression of either CD44H or MT1-MMP alone did not stimulate cell motility. Coexpression of MT1-MMP and mutant CD44H lacking the MT1-MMP–processing site did not result in shedding and did not promote cell migration, suggesting that the processing of CD44H by MT1-MMP is critical in the migratory stimulation. Moreover, expression of the mutant CD44H inhibited the cell migration promoted by CD44H and MT1-MMP in a dominant-negative manner. The pancreatic tumor cell line, MIA PaCa-2, was found to shed the 70-kD CD44H fragment in a MT1-MMP–dependent manner. Expression of the mutant CD44H in the cells as well as MMP inhibitor treatment effectively inhibited the migration, suggesting that MIA PaCa-2 cells indeed use the CD44H and MT1-MMP as migratory devices. These findings revealed a novel interaction of the two molecules that have each been implicated in tumor cell migration and invasion. PMID:11381077

  14. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation.

    PubMed

    Ben-Yosef, Yaara; Lahat, Nitza; Shapiro, Sarah; Bitterman, Haim; Miller, Ariel

    2002-04-19

    Among the consequences resulting from the exposure of endothelial cells (ECs) to ischemia/reperfusion is angiogenesis, involving degradation of vascular basement membrane and extracellular matrix. Matrix metalloproteinase (MMP)-2, a member of the MMP family, partakes in this process. MMP-2, secreted as a proenzyme, undergoes activation through interaction with membrane type (MT)1-MMP and the endogenous tissue inhibitor of MMPs (TIMP)-2. Although hypoxia and reoxygenation (H/R) are major constituents of ischemia/reperfusion processes, their direct effects on endothelial MMP-2 have been scarcely investigated. This study examined the in vitro effects of H/R on human macrovascular ECs (EAhy 926). The level of MMP-2 mRNA (Northern blot) and protein (zymography, ELISA) and the mRNA of its activator (MT1-MMP) and inhibitor (TIMP-2) were analyzed. Short (6-hour) hypoxia inhibited the mRNA expression of MMP-2, MT1-MMP, and TIMP-2, culminating in reduced latent and active MMP-2 protein. Prolonged (24-hour) hypoxia further suppressed MT1-MMP and TIMP-2 mRNA, whereas it enhanced MMP-2 mRNA and enzyme secretion (after 48-hour hypoxia). Reoxygenation did not influence the inhibited TIMP-2 but upregulated MMP-2 and MT1-MMP mRNA expression, leading to enhanced secretion of active MMP-2 protein. These results demonstrate H/R-mediated modulation of EC MMP-2 at both transcriptional and posttranscriptional levels. Prolonged hypoxia of ECs appears to enhance MMP-2 production and secretion, whereas reoxygenation further increases its level. These H/R-mediated effects on MMPs have the potential of enabling EC migration and possible angiogenesis. PMID:11964371

  15. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase.

    PubMed

    Dave, Jui M; Abbey, Colette A; Duran, Camille L; Seo, Heewon; Johnson, Gregory A; Bayless, Kayla J

    2016-02-15

    During angiogenesis, endothelial cells must coordinate matrix proteolysis with migration. Here, we tested whether the focal adhesion scaffold protein Hic-5 (also known as TGFB1I1) regulated endothelial sprouting in three dimensions. Hic-5 silencing reduced endothelial sprouting and lumen formation, and sprouting defects were rescued by the return of Hic-5 expression. Pro-angiogenic factors enhanced colocalization and complex formation between membrane type-1 matrix metalloproteinase (MT1-MMP, also known as MMP14) and Hic-5, but not between paxillin and MT1-MMP. The LIM2 and LIM3 domains of Hic-5 were necessary and sufficient for Hic-5 to form a complex with MT1-MMP. The degree of interaction between MT1-MMP and Hic-5 and the localization of the complex within detergent-resistant membrane fractions were enhanced during endothelial sprouting, and Hic-5 depletion lowered the surface levels of MT1-MMP. In addition, we observed that loss of Hic-5 partially reduced complex formation between MT1-MMP and focal adhesion kinase (FAK, also known as PTK2), suggesting that Hic-5 bridges MT1-MMP and FAK. Finally, Hic-5 LIM2-LIM3 deletion mutants reduced sprout initiation. Hic-5, MT1-MMP and FAK colocalized in angiogenic vessels during porcine pregnancy, supporting that this complex assembles during angiogenesis in vivo. Collectively, Hic-5 appears to enhance complex formation between MT1-MMP and FAK in activated endothelial cells, which likely coordinates matrix proteolysis and cell motility. PMID:26769900

  16. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    NASA Astrophysics Data System (ADS)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  17. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of membrane type 1 matrix metalloproteinase

    PubMed Central

    Ogata, Hideaki; Decaneto, Elena; Grossman, Moran; Havenith, Martina; Sagi, Irit; Lubitz, Wolfgang; Knipp, Markus

    2014-01-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) belongs to the large family of zinc-dependent endopeptidases termed MMPs that are located in the extracellular matrix. MT1-MMP was crystallized at 277 K using the vapour-diffusion method with PEG as a precipitating agent. Data sets for MT1-MMP were collected to 2.24 Å resolution at 100 K. The crystals belonged to space group P43212, with unit-cell parameters a = 62.99, c = 122.60 Å. The crystal contained one molecule per asymmetric unit, with a Matthews coefficient (V M) of 2.90 Å3 Da−1; the solvent content is estimated to be 57.6%. PMID:24637763

  18. Matrix metalloproteinases, T cell homing and beta-cell mass in type 1 diabetes.

    PubMed

    Savinov, Alexei Y; Strongin, Alex Y

    2009-01-01

    The pathogenesis of type 1 diabetes begins with the activation of autoimmune T killer cells and is followed by their homing into the pancreatic islets. After penetrating the pancreatic islets, T cells directly contact and destroy insulin-producing beta cells. This review provides an overview of the dynamic interactions which link T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the signaling adhesion CD44 receptor with T cell transendothelial migration and the subsequent homing of the transmigrated cells to the pancreatic islets. MT1-MMP regulates the functionality of CD44 in diabetogenic T cells. By regulating the functionality of T cell CD44, MT1-MMP mediates the transition of T cell adhesion to endothelial cells to the transendothelial migration of T cells, thus, controlling the rate at which T cells home into the pancreatic islets. As a result, the T cell MT1-MMP-CD44 axis controls the severity of the disease. Inhibition of MT1-MMP proteolysis of CD44 using highly specific and potent synthetic inhibitors, which have been clinically tested in cancer patients, reduces the rate of transendothelial migration and the homing of T cells. Result is a decrease in the net diabetogenic efficiency of T cells and a restoration of beta cell mass and insulin production in NOD mice. The latter is a reliable and widely used model of type I diabetes in humans. Overall, existing experimental evidence suggests that there is a sound mechanistic rationale for clinical trials of the inhibitors of T cell MT1-MMP in human type 1 diabetes patients. PMID:19251049

  19. Matrix metalloproteinases and their inhibitors in canine mammary tumors

    PubMed Central

    2011-01-01

    Background Malignant canine mammary tumors represent 50% of all neoplasms in female dogs. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are thought to be involved in tumor progression, and they are also associated with the reactive stroma, which provides structural and vascular support for tumor growth. Results MMP-2, MMP-9 and MT1-MMP were expressed at both the mRNA and protein levels in tumor samples. MMP-2 and MMP-9 immunohistochemical reactions were evident both in the epithelial tumor cells and in the stromal compartment to varying degrees; in particular, the intensity of the MMP-2 staining was stronger in the stromal fibroblasts close to epithelial tumor cells in simple carcinomas than in adenomas. These data were supported by gelatin-zymography; bands for the active form of MMP-2 were found in 94% of carcinoma samples, compared with 17% of benign tumor samples. The gene expression and immunohistochemical results for MT1-MMP were comparable to those for MMP-2. The immunoreactivity for MMP-13 and TIMP-2 was lower in carcinomas than in adenomas, confirming the mRNA data for MMP-13 and the other MMP inhibitors that were evaluated. The active form of MMP-9, but not the active form of MMP-2, was identified in the plasma of all of the tested dogs. Conclusions Our findings suggest that MMP-9, MMP-2 and MT1-MMP, which are synthesized by epithelial cancer cells and cancer-associated fibroblasts, play an important role in malignant canine mammary tumors. The reduction of MMP-13 and TIMP-2 could also be a significant step in malignant transformation. MMP-2 and MT1-MMP could be further evaluated as future biomarkers for predicting the progression and prognosis of canine mammary tumors. PMID:21726449

  20. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization

    PubMed Central

    Kim, Daehwan; Jung, Jangho; You, Eunae; Ko, Panseon; Oh, Somi; Rhee, Sangmyung

    2016-01-01

    Mammalian diaphanous-related formin 1 (mDia1) expression has been linked with progression of malignant cancers in various tissues. However, the precise molecular mechanism underlying mDia1-mediated invasion in cancer cells has not been fully elucidated. In this study, we found that mDia1 is upregulated in invasive breast cancer cells. Knockdown of mDia1 in invasive breast cancer profoundly reduced invasive activity by controlling cellular localization of membrane type 1-matrix metalloproteinase (MT1-MMP) through interaction with microtubule tracks. Gene silencing and ectopic expression of the active form of mDia1 showed that mDia1 plays a key role in the intracellular trafficking of MT1-MMP to the plasma membrane through microtubules. We also demonstrated that highly invasive breast cancer cells possessed invasive activity in a 3D culture system, which was significantly reduced upon silencing mDia1 or MT1-MMP. Furthermore, mDia1-deficient cells cultured in 3D matrix showed impaired expression of the cancer stem cell marker genes, CD44 and CD133. Collectively, our findings suggest that regulation of cellular trafficking and microtubule-mediated localization of MT1-MMP by mDia1 is likely important in breast cancer invasion through the expression of cancer stem cell genes. PMID:26893363

  1. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I

    PubMed Central

    Zhou, Zhongjun; Apte, Suneel S.; Soininen, Raija; Cao, Renhai; Baaklini, George Y.; Rauser, Richard W.; Wang, Jianming; Cao, Yihai; Tryggvason, Karl

    2000-01-01

    Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo. PMID:10737763

  2. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I.

    PubMed

    Zhou, Z; Apte, S S; Soininen, R; Cao, R; Baaklini, G Y; Rauser, R W; Wang, J; Cao, Y; Tryggvason, K

    2000-04-11

    Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo. PMID:10737763

  3. Lack of Association between Membrane-Type 1 Matrix Metalloproteinase Expression and Clinically Relevant Molecular or Morphologic Tumor Characteristics at the Leading Edge of Invasive Colorectal Carcinoma

    PubMed Central

    Arndt, Annette; Kraft, Klaus; Wardelmann, Eva; Steinestel, Konrad

    2015-01-01

    Colorectal cancer (CRC) is one of the leading causes of death from cancer in the western world, but tumor biology and clinical course show great interindividual variation. Molecular and morphologic tumor characteristics, such as KRAS/BRAF mutation status, mismatch repair (MMR) protein expression, tumor growth pattern, and tumor cell budding, have been shown to be of key therapeutic and/or prognostic relevance in CRC. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-anchored zinc-binding endopeptidase that is expressed at the leading edge of various invasive carcinomas and promotes tumor cell invasion through degradation of the extracellular matrix. The aim of this study was to investigate possible associations between MT1-MMP expression and molecular tumor characteristics as well as morphologic features of tumor aggressiveness in a consecutive series of 79 CRC tissue samples. However, although MT1-MMP was expressed in 41/79 samples (52%), there was no significant association between MT1-MMP expression and KRAS/BRAF mutation status, MMR protein expression, presence of lymphovascular invasion, tumor growth pattern, tumor-infiltrating lymphocytes, or tumor cell budding in our sample cohort (P > 0.05). Thus, we conclude that although MT1-MMP may play a role in CRC invasion, it is not of key relevance to the current models of CRC invasion and aggressiveness. PMID:26106602

  4. Lack of Association between Membrane-Type 1 Matrix Metalloproteinase Expression and Clinically Relevant Molecular or Morphologic Tumor Characteristics at the Leading Edge of Invasive Colorectal Carcinoma.

    PubMed

    Arndt, Annette; Kraft, Klaus; Wardelmann, Eva; Steinestel, Konrad

    2015-01-01

    Colorectal cancer (CRC) is one of the leading causes of death from cancer in the western world, but tumor biology and clinical course show great interindividual variation. Molecular and morphologic tumor characteristics, such as KRAS/BRAF mutation status, mismatch repair (MMR) protein expression, tumor growth pattern, and tumor cell budding, have been shown to be of key therapeutic and/or prognostic relevance in CRC. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-anchored zinc-binding endopeptidase that is expressed at the leading edge of various invasive carcinomas and promotes tumor cell invasion through degradation of the extracellular matrix. The aim of this study was to investigate possible associations between MT1-MMP expression and molecular tumor characteristics as well as morphologic features of tumor aggressiveness in a consecutive series of 79 CRC tissue samples. However, although MT1-MMP was expressed in 41/79 samples (52%), there was no significant association between MT1-MMP expression and KRAS/BRAF mutation status, MMR protein expression, presence of lymphovascular invasion, tumor growth pattern, tumor-infiltrating lymphocytes, or tumor cell budding in our sample cohort (P > 0.05). Thus, we conclude that although MT1-MMP may play a role in CRC invasion, it is not of key relevance to the current models of CRC invasion and aggressiveness. PMID:26106602

  5. Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta3 chain and induces cell migration.

    PubMed

    Udayakumar, Thirupandiyur S; Chen, Man Ling; Bair, Elisabeth L; Von Bredow, Dorothea C; Cress, Anne E; Nagle, Raymond B; Bowden, G Timothy

    2003-05-01

    Degradation of the extracellular matrix by proteolytic enzymes is a central aspect of physiological and pathologic tissue-remodeling processes such as trophoblastic implantation, wound healing, and tumor invasion. We have hypothesized that prostate adenocarcinoma cell invasion through the normal basal lamina is attributable in part to metalloproteinase-induced cleavage of laminin-5 (Ln-5) and enhanced motility of the cancer cells. We studied the role of membrane type-1-matrix metalloproteinase (MT1-MMP) expressed on the surface of prostate tumor cells in cleaving Ln-5 and enhancing the migration of prostate tumor cells. We also determined the nature of the MT1-MMP cleavage of human Ln-5 and how this altered Ln-5 changes the migration of prostate carcinoma cells. We found that human MT1-MMP cleaves purified human Ln-5 to an 80-kDa fragment. Mass spectrometry analyses of the 80-kDa cleaved product by trypsin and chymotrypsin gave 14 and 9 different peptide sequences, respectively, that were identical to the expected amino acid sequence of the Ln-5-beta3 chain. The recovered peptides represent 14.4% (trypsin) and 10.3% (chymotrypsin) of Ln-5-beta3 chain by amino acid count. Both trypsin and chymotrypsin digestion of MT1-MMP-cleaved product of Ln-5 did not show any other peptides that were identical to the other chains of Ln-5. Using a linear migration assay we found that the Ln-5 cleaved by MT1-MMP enhanced the migration of DU-145 prostate carcinoma cells by 2-fold compared with uncleaved Ln-5. The use of blocked antisense MT1-MMP oligonucleotides inhibited the migration of DU-145 cells on Ln-5. We also found that the prostate carcinoma cells expressing high levels of MT1-MMP, such as PC3N and PPC, demonstrated enhanced migration on human Ln-5-coated substrate, and this migration was inhibited using blocked antisense MT1-MMP oligonucleotides. In conclusion, this is a novel and important finding where we have shown that beta3-chain is cleaved by MT1-MMP, and this

  6. Calmodulin inhibitors trigger the proteolytic processing of membrane type-1 matrix metalloproteinase, but not its shedding in glioblastoma cells.

    PubMed Central

    Annabi, B; Pilorget, A; Bousquet-Gagnon, N; Gingras, D; Béliveau, R

    2001-01-01

    Most transmembrane proteins are subjected to limited proteolysis by cellular proteases, and stimulation of cleavage of membrane proteins by calmodulin (CaM) inhibitors was recently shown. The present study investigated the ability of several CaM inhibitors to induce the proteolytic cleavage of the membrane type-1 matrix metalloproteinase (MT1-MMP) from the cell surface of highly invasive U-87 glioblastoma cells. Although no shedding of a soluble MT1-MMP form was induced by CaM inhibitors in the conditioned media, we showed that these inhibitors induced MT1-MMP proteolytic processing to the 43 kDa membrane-bound inactive form that was not correlated with an increase in proMMP-2 activation but rather with an increase in tissue inhibitor of MMPs (TIMP)-2 expression levels. Moreover, this proteolytic processing was sensitive to marimastat suggesting the involvement of MMPs. Interestingly, CaM inhibitors antagonized concanavalin A- and cytochalasin D-induced proMMP-2 activation, and affected the cytoskeletal actin organization resulting in the loss of migratory potential of U-87 glioblastoma cells. Cytoplasmic tail-truncated MT1-MMP constructs expressed in COS-7 cells were also affected by CaM inhibitors suggesting that these inhibitors stimulated MT1-MMP proteolytic processing by mechanisms independent of the CaM-substrate interaction. We also propose that TIMP-2 acts as a negative regulator of MT1-MMP-dependent activities promoted by the action of CaM inhibitors in U-87 glioblastoma cells. PMID:11583578

  7. Matrix Metalloproteinase Inhibition by Heterotrimeric Triple-Helical Peptide Transition State Analogs

    PubMed Central

    Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2015-01-01

    Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple-helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches are providing inhibitors with desired MMP selectivities. PMID:25766890

  8. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination. PMID:17086359

  9. The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain

    PubMed Central

    Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi

    2011-01-01

    Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. PMID:21193411

  10. Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid.

    PubMed

    Gutiérrez-Fernández, Ana; Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Abril, Jesús; Garabaya, Cecilia; Aguirre, Alina; Fueyo, Antonio; Fernández-García, María Soledad; Puente, Xose S; López-Otín, Carlos

    2015-07-14

    MT1-MMP (MMP14) is a collagenolytic enzyme located at the cell surface and implicated in extracellular matrix (ECM) remodeling. Mmp14(-/-) mice present dwarfism, bone abnormalities, and premature death. We demonstrate herein that the loss of MT1-MMP also causes cardiac defects and severe metabolic changes, and alters the cytoskeleton and the nuclear lamina structure. Moreover, the absence of MT1-MMP induces a senescent phenotype characterized by up-regulation of p16(INK4a) and p21(CIP1/WAF) (1), increased activity of senescence-associated β-galactosidase, generation of a senescence-associated secretory phenotype, and somatotroph axis alterations. Consistent with the role of retinoic acid signaling in nuclear lamina stabilization, treatment of Mmp14(-/-) mice with all-trans retinoic acid reversed the nuclear lamina alterations, partially rescued the cell senescence phenotypes, ameliorated the pathological defects in bone, skin, and heart, and extended their life span. These results demonstrate that nuclear architecture and cell senescence can be modulated by a membrane protease, in a process involving the ECM as a key regulator of nuclear stiffness under cell stress conditions. PMID:25991604

  11. Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta

    PubMed Central

    Ruddy, Jean Marie; Jones, Jeffrey A.; Stroud, Robert E.; Mukherjee, Rupak; Spinale, Francis G.; Ikonomidis, John S.

    2009-01-01

    Background The effect of multiple integrated stimuli on vascular wall expression of matrix metalloproteinases (MMPs) remains unknown. Accordingly, this study has examined the influence of the vasoactive peptide angiotensin II (AngII) on wall tension-induced promoter activation of MMP-2, MMP-9, and membrane type-1 MMP (MT1-MMP). Methods and Results Thoracic aortic rings harvested from transgenic reporter mice containing the MMP-2, MMP-9, or MT1-MMP promoter sequence fused to a reporter gene were subjected to three hours of wall tension at 70, 85, or 100 mmHg with or without 100nM AngII. Total RNA was harvested from the aortic rings, and reporter gene transcripts were quantified by QPCR to measure MMP promoter activity. MT1-MMP promoter activity was increased at both 85 and 100 mmHg compared to baseline tension of 70 mmHg, while treatment with AngII stimulated MT1-MMP promoter activity to the same degree at all tension levels (p<0.05). Elevated tension and AngII displayed a potential synergistic enhancement of MMP-2 promoter activation at 85 and 100mmHg, while the same stimuli caused a decrease in MMP-9 promoter activity (p<0.05) at 100 mmHg. Conclusions This study has demonstrated that exposure to a relevant biological stimulus (AngII) in the presence of elevated tension modulated MMP promoter activation. Furthermore, these data suggest that a mechanical-molecular set point exists for the induction of MMP promoter activation, and that this set point can be adjusted up or down by a secondary biological stimulus. Together, these results may have significant clinical implications toward the regulation of hypertensive vascular remodeling. PMID:19752377

  12. The Wnt/Planar Cell Polarity Protein-tyrosine Kinase-7 (PTK7) Is a Highly Efficient Proteolytic Target of Membrane Type-1 Matrix Metalloproteinase

    PubMed Central

    Golubkov, Vladislav S.; Chekanov, Alexei V.; Cieplak, Piotr; Aleshin, Alexander E.; Chernov, Andrei V.; Zhu, Wenhong; Radichev, Ilian A.; Zhang, Danhua; Dong, P. Duc; Strongin, Alex Y.

    2010-01-01

    PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP621↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy. PMID:20837484

  13. MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling

    PubMed Central

    Gonzalo, Pilar; Guadamillas, Marta C.; Hernández-Riquer, Mª Victoria; Pollán, Ángela; Grande-García, Araceli; Bartolomé, Rubén A.; Vasanji, Amit; Ambrogio, Chiara; Chiarle, Roberto; Teixidó, Joaquín; Risteli, Juha; Apte, Suneel S.; del Pozo, Miguel A.; Arroyo, Alicia G.

    2009-01-01

    SUMMARY Cell fusion is essential for fertilization, myotube formation, and inflammation. Macrophages fuse in various circumstances but the molecular signals involved in the distinct steps of their fusion are not fully characterized. Using null mice and derived cells, we show that the protease MT1-MMP is necessary for macrophage fusion during osteoclast and giant cell formation in vitro and in vivo. Specifically, MT1-MMP is required for lamellipodia formation and for proper cell morphology and motility of bone marrow myeloid progenitors prior to membrane fusion. These functions of MT1-MMP do not depend on MT1-MMP catalytic activity or downstream pro-MMP-2 activation. Instead, MT1-MMP-null cells show a decreased Rac1 activity and reduced membrane targeting of Rac1 and the adaptor protein p130Cas. Retroviral rescue experiments and protein binding assays delineate a signaling pathway in which MT1-MMP, via its cytosolic tail, contributes to macrophage migration and fusion by regulating Rac1 activity through an association with p130Cas. PMID:20152179

  14. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis.

    PubMed

    Foda, H D.; Zucker, S

    2001-05-01

    Matrix metalloproteinases (MMPs) are a family of proteinases that play an important role in cancer as well as in numerous other diseases. In this article, we summarize the current views on the role of MMPs in cancer with respect to invasion, metastasis and angiogenesis. A positive correlation between tumor progression and the expression of multiple MMP family members in tumor tissues has been demonstrated in numerous human and animal studies. It has been assumed that cancer cells are responsible for producing the MMPs in human tumors. However, recent evidence suggests that tumor cells have docking sites that bind stromal-cell-secreted MMPs. Furthermore, the role of MMPs produced by endothelial cells, especially MMP-2 and MT1-MMP, appear to be crucial for tumor angiogenesis, which is a requirement for cancer growth and dissemination. PMID:11344033

  15. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  16. miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase.

    PubMed

    Sakr, Moustafa; Takino, Takahisa; Sabit, Hemragul; Nakada, Mitsutoshi; Li, Zichen; Sato, Hiroshi

    2016-08-10

    Gliomas are the most frequent primary tumors of the brain, and there is no successful treatment for highly malignant gliomas. MicroRNAs (miRNAs) are involved in a variety of biological processes. Recent studies showed that miR-150-5p and miR-133a are downregulated in various human malignancies, and one of target mRNAs was shown to be membrane-type 1 matrix metalloproteinase (MT1-MMP) mRNA. However, their detailed role in the processes of cancer remains to be determined. Here we found that miR-150-5p and miR-133a expression was significantly downregulated in glioma tissues compared with normal tissues, and that MT1-MMP expression was inversely upregulated in glioma tissues. Knockdown of MT1-MMP by specific siRNAs in U87 and U251 glioma cells induced suppression of cell proliferation and invasion/migration. Transfection of miR-150-5p or miR-133a mimics into glioma cell lines reduced MT1-MMP expression and MMP-2 activation by these cells, and cell proliferation and invasion/migration were also suppressed by it. Co-transfection of specific inhibitor oligo DNA for miR-150-5p or miR-133a abrogated miR-150-5p or miR-133a mimic's actions, respectively. These results suggest that miR-150-5p and miR-133a may suppress malignancy of gliomas by targeting MT1-MMP, and could be used as an anti-metastatic therapy for glioma patients. PMID:27154818

  17. ELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP

    PubMed Central

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  18. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    PubMed

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  19. The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis.

    PubMed

    Golubkov, Vladislav S; Chekanov, Alexei V; Cieplak, Piotr; Aleshin, Alexander E; Chernov, Andrei V; Zhu, Wenhong; Radichev, Ilian A; Zhang, Danhua; Dong, P Duc; Strongin, Alex Y

    2010-11-12

    PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP(621)↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy. PMID:20837484

  20. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion

    PubMed Central

    Chevalier, Clément; Collin, Guillaume; Descamps, Simon; Touaitahuata, Heiani; Simon, Valérie; Reymond, Nicolas; Fernandez, Laurent; Milhiet, Pierre-Emmanuel; Georget, Virginie; Urbach, Serge; Lasorsa, Laurence; Orsetti, Béatrice; Boissière-Michot, Florence; Lopez-Crapez, Evelyne; Theillet, Charles; Roche, Serge; Benistant, Christine

    2016-01-01

    ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2+/ER+ tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers. PMID:26899482

  1. Matrix metalloproteinases and epileptogenesis.

    PubMed

    Ikonomidou, Chrysanthy

    2014-12-01

    Matrix metalloproteinases are vital drivers of synaptic remodeling in health and disease. It is suggested that at early stages of epileptogenesis, inhibition of matrix metalloproteinases may help ameliorate cell death, aberrant network rewiring, and neuroinflammation and prevent development of epilepsy. PMID:26567100

  2. TGF-β3-induced Palatogenesis Requires Matrix Metalloproteinases

    PubMed Central

    Blavier, Laurence; Lazaryev, Alisa; Groffen, John; Heisterkamp, Nora; DeClerck, Yves A.; Kaartinen, Vesa

    2001-01-01

    Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-β3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-β3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-β3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion. PMID:11359935

  3. The role of vascular endothelial growth factor and matrix metalloproteinases in canine lymphoma: in vivo and in vitro study

    PubMed Central

    2013-01-01

    Background Canine lymphoma represents the most frequent haematopoietic cancer and it shares some similarities with human non-Hodgkin lymphoma. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a coordinated role during invasion and proliferation of malignant cells; however, little is known about their role in canine haematologic malignancies. The aim of this study was to investigate the mRNA and protein expression of VEGF and the most relevant MMPs in canine lymphoma. Lymph node aspirates from 26 B-cell and 21 T-cell lymphomas were collected. The protein expression levels of MMP-9, MMP-2 and VEGF-A were evaluated by immunocytochemistry, and the mRNA levels of MMP-2, MMP-9, MT1-MMP, TIMP-1, TIMP-2, RECK, VEGF-A and VEGF-164 were measured using quantitative RT-PCR. Results MT1-MMP, TIMP-1 and RECK mRNA levels were significantly higher in T-cell lymphomas than in B-cell lymphomas. Higher mRNA and protein levels of MMP-9 and VEGF-A were observed in T-cell lymphomas than in B-cell lymphomas and healthy control lymph nodes. A positive correlation was found between MMP-9 and VEGF-A in T-cell lymphomas. Moreover, MMP-9, MT1-MMP, TIMP-1 and VEGF-A were expressed at the highest levels in high-grade T-cell lymphomas. Conclusions This study provides new information on the expression of different MMPs and VEGF in canine lymphoma, suggesting a possible correlation between different MMPs and VEGF, immunophenotype and prognosis. PMID:23641796

  4. Overexpression of proto-oncogene FBI-1 activates membrane type 1-matrix metalloproteinase in association with adverse outcome in ovarian cancers

    PubMed Central

    2010-01-01

    Background FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis. Recent evidence suggests that FBI-1 is expressed at high levels in a subset of human lymphomas and some epithelial solid tumors. However, the function of FBI-1 in human ovarian cancers remains elusive. Results In this study, we investigated the role of FBI-1 in human ovarian cancers, in particularly, its function in cancer cell invasion via modulating membrane type 1-matrix metalloproteinase (MT1-MMP). Significantly higher FBI-1 protein and mRNA expression levels were demonstrated in ovarian cancers samples and cell lines compared with borderline tumors and benign cystadenomas. Increased FBI-1 mRNA expression was correlated significantly with gene amplification (P = 0.037). Moreover, higher FBI-1 expression was found in metastatic foci (P = 0.036) and malignant ascites (P = 0.021), and was significantly associated with advanced stage (P = 0.012), shorter overall survival (P = 0.032) and disease-free survival (P = 0.016). In vitro, overexpressed FBI-1 significantly enhanced cell migration and invasion both in OVCA 420 and SKOV-3 ovarian carcinoma cells, irrespective of p53 status, accompanied with elevated expression of MT1-MMP, but not MMP-2 or TIMP-2. Moreover, knockdown of MT1-MMP abolished FBI-1-mediated cell migration and invasion. Conversely, stable knockdown of FBI-1 remarkably reduced the motility of these cells with decreased expression of MT1-MMP. Promoter assay and chromatin immunoprecipitation study indicated that FBI-1 could directly interact with the promoter spanning ~600bp of the 5'-flanking sequence of MT1-MMP and enhanced its expression in a dose-dependent manner. Furthermore, stable knockdown and ectopic expression of FBI-1 decreased and increased cell proliferation respectively in OVCA 420, but not in

  5. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase

    PubMed Central

    Qiu, Hong; Tang, Xiaoying; Ma, Jun; Shaverdashvili, Khvaramze; Zhang, Keman

    2015-01-01

    Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position −1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma. PMID:26283728

  6. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton

    PubMed Central

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-01-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP–negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain–containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion. PMID:24989798

  7. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases

    PubMed Central

    Liu, Nian; Zhou, Bin; Zhu, Guangxun

    2016-01-01

    Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs. PMID:27272560

  8. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases.

    PubMed

    Liu, Nian; Zhou, Bin; Zhu, Guangxun

    2016-01-01

    Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs. PMID:27272560

  9. Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states.

    PubMed Central

    Pagenstecher, A.; Stalder, A. K.; Kincaid, C. L.; Shapiro, S. D.; Campbell, I. L.

    1998-01-01

    Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of inflammatory disorders of the central nervous system (CNS) whereas the contribution of the major endogenous counter-regulators of MMPs, the tissue inhibitors of the matrix metalloproteinases (TIMPs), is unclear. We investigated the temporal and spatial expression patterns in the CNS of nine MMP genes and three TIMP genes in normal mice, in mice with EAE, and in transgenic mice with astrocyte (glial fibrillary acidic protein)-targeted expression of the cytokines interleukin-3 (macrophage/microglial demyelinating disease), interleukin-6 (neurodegenerative disease), or tumor necrosis factor-alpha (lymphocytic encephalomyelitis). In normal mice, the MMPs MT1-MMP, stromelysin 3, and gelatinase B were expressed at low levels, whereas high expression of TIMP-2 and TIMP-3 was observed predominantly in neurons and in the choroid plexus, respectively. In EAE and the transgenic mice, significant induction or up-regulation of various MMP genes was observed, the pattern of which was somewhat specific for each of the models, and there was significant induction of TIMP-1. In situ localization experiments revealed a dichotomy between MMP expression that was restricted to leukocytes and possibly microglia within inflammatory lesions and TIMP-1 expression that was observed in activated astrocytes circumscribing the lesions. These findings demonstrate specific spatial and temporal regulation in the expression of individual MMP and TIMP genes in the CNS in normal and inflammatory states. The distinct localization of TIMP-1 and MMP expression during CNS inflammation suggests a dynamic state in which the interplay between these gene products may determine both the size and resolution of the destructive inflammatory focus. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9502415

  10. Low Tissue Inhibitor of Metalloproteinases 3 and High Matrix Metalloproteinase 14 Levels Defines a Subpopulation of Highly Invasive Foam-Cell Macrophages

    PubMed Central

    Johnson, Jason L.; Sala-Newby, Graciela B.; Ismail, Yasmin; Aguilera, Concepción M.; Newby, Andrew C.

    2010-01-01

    Objective An excess of metalloproteinases (MMPs) over tissue inhibitors of metalloproteinases (TIMPs) may favor atherosclerotic plaque rupture. We compared TIMP levels in nonfoamy and foam-cell macrophages (FCM) generated in vivo. Methods and Results In vivo generated rabbit FCM exhibited 84% reduced TIMP-3 protein compared to nonfoamy macrophages, and immunocytochemistry revealed a TIMP-3 negative subset (28%). Strikingly, only TIMP-3 negative FCM invaded a synthetic basement membrane, and invasion was inhibited by exogenous TIMP-3. TIMP-3 negative FCM also had increased proliferation and apoptosis rates compared to TIMP-3 positive cells, which were retarded by exogenous TIMP-3; this also reduced gelatinolytic activity. TIMP-3 negative FCM were found at the base of advanced rabbit plaques and in the rupture-prone shoulders of human plaques. To explain the actions of low TIMP-3 we observed a 26-fold increase in MT1-MMP (MMP-14) protein in FCM. Adding an MT1-MMP neutralizing antibody reduced foam-cell invasion, apoptosis, and gelatinolytic activity. Furthermore, MT1-MMP overexpressing and TIMP-3 negative FCM were found at the same locations in atherosclerotic plaques. Conclusions These results demonstrate that TIMP-3 is downregulated in a distinct subpopulation of FCM which have increased MMP-14. These cells are highly invasive and have increased proliferation and apoptosis, all properties expected to destabilise atherosclerotic plaques. PMID:18566294

  11. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs.

    PubMed

    Kajiho, Hiroaki; Kajiho, Yuko; Frittoli, Emanuela; Confalonieri, Stefano; Bertalot, Giovanni; Viale, Giuseppe; Di Fiore, Pier Paolo; Oldani, Amanda; Garre, Massimiliano; Beznoussenko, Galina V; Palamidessi, Andrea; Vecchi, Manuela; Chavrier, Philippe; Perez, Frank; Scita, Giorgio

    2016-07-01

    The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER-to-Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post-endocytic trafficking of membrane-bound MT1-MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E-cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination. PMID:27255086

  12. Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2

    PubMed Central

    Lieu, Shirley; Hansen, Erik; Dedini, Russell; Behonick, Danielle; Werb, Zena; Miclau, Theodore; Marcucio, Ralph; Colnot, Céline

    2011-01-01

    SUMMARY The matrix metalloproteinase (MMP) family of extracellular proteases performs crucial roles in development and repair of the skeleton owing to their ability to remodel the extracellular matrix (ECM) and release bioactive molecules. Most MMP-null skeletal phenotypes that have been previously described are mild, thus permitting the assessment of their functions during bone repair in the adult. In humans and mice, MMP2 deficiency causes a musculoskeletal phenotype. In this study, we assessed the role of MMP2 during mouse fracture repair and compared it with the roles of MMP9 and MMP13. Mmp2 was expressed at low levels in the normal skeleton and was broadly expressed in the fracture callus. Treatment of wild-type mice with a general MMP inhibitor, GM6001, caused delayed cartilage remodeling and bone formation during fracture repair, which resembles the defect observed in Mmp9–/– mice. Unlike Mmp9- and Mmp13-null mutations, which affect both cartilage and bone in the callus, the Mmp2-null mutation delayed bone remodeling but not cartilage remodeling. This remodeling defect occurred without changes in either osteoclast recruitment or vascular invasion of the fracture callus compared with wild type. However, we did not detect changes in expression of Mmp9, Mmp13 or Mt1-Mmp (Mmp14) in the calluses of Mmp2-null mice compared with wild type by in situ hybridization, but we observed decreased expression of Timp2 in the calluses of Mmp2-, Mmp9- and Mmp13-null mice. In keeping with the skeletal phenotype of Mmp2-null mice, MMP2 plays a role in the remodeling of new bone within the fracture callus and impacts later stages of bone repair compared with MMP9 and MMP13. Taken together, our results indicate that MMPs play unique and distinct roles in regulating skeletal tissue deposition and remodeling during fracture repair. PMID:21135056

  13. Comprehensive profiling and localisation of the matrix metalloproteinases in urothelial carcinoma

    PubMed Central

    Wallard, M J; Pennington, C J; Veerakumarasivam, A; Burtt, G; Mills, I G; Warren, A; Leung, H Y; Murphy, G; Edwards, D R; Neal, D E; Kelly, J D

    2006-01-01

    The matrix metalloproteinases (MMPs) are endopeptidases which break down the extracellular matrix and regulate cytokine and growth factor activity. Several MMPs have been implicated in the promotion of invasion and metastasis in a broad range of tumours including urothelial carcinoma. In this study, RNA from 132 normal bladder and urothelial carcinoma specimens was profiled for each of the 24 human MMPs, the four endogenous tissue inhibitors of MMPs (TIMPs) and several key growth factors and their receptors using quantitative real time RT–PCR. Laser capture microdissection (LCM) of RNA from 22 tumour and 11 normal frozen sections was performed allowing accurate RNA extraction from either stromal or epithelial compartments. This study confirms the over expression in bladder tumour tissue of well-documented MMPs and highlights a range of MMPs which have not previously been implicated in the development of urothelial cancer. In summary, MMP-2, MT1-MMP and the previously unreported MMP-28 were very highly expressed in tumour samples while MMPs 1, 7, 9, 11, 15, 19 and 23 were highly expressed. There was a significant positive correlation between transcript expression and tumour grade for MMPs 1, 2, 8, 10, 11, 12, 13, 14, 15 and 28 (P<0.001). At the same confidence interval, TIMP-1 and TIMP-3 also correlated with increasing tumour grade. LCM revealed that most highly expressed MMPs are located primarily within the stromal compartment except MMP-13 which localised to the epithelial compartment. This work forms the basis for further functional studies, which will help to confirm the MMPs as potential diagnostic and therapeutic targets in early bladder cancer. PMID:16465195

  14. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair.

    PubMed

    Madlener, M; Parks, W C; Werner, S

    1998-07-10

    During cutaneous wound healing a number of migratory and remodeling events occur that require the action of matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs). In this study, we analyzed the temporal and spatial expression patterns of these molecules during the healing of murine excisional skin wounds. Our data imply that defined phases of repair rely on distinct repertoires of MMP activity and TIMP counterregulation. Reepithelialization was found to be associated with active production of collagenase, 92-kDa gelatinase, and stromelysins-1 and -2 by distinct subpopulations of keratinocytes at the migrating border. Notably, no TIMP transcripts were expressed in the epidermis, but TIMP-1 expression in the wound colocalized with expression of collagenase, 92-kDa gelatinase, and stromelysin-1, albeit in distinct cells. Concomitant with the formation of an extensive hyperproliferative epithelium, TIMP-1 transcripts accumulated at the mesenchymal/epidermal border of the granulation tissue. During later phases of wound repair, we observed an increase in 72-kDa gelatinase and MT1-MMP expression, whereby the transcripts of these colocalizing MMPs were detected exclusively and at high levels in the granulation tissue. At completion of reepithelialization, the expression levels of the MMPs and TIMP-1 seen in epidermal and dermal compartments declined to near-basal levels, whereas the macrophage-specific metalloelastase (MME) reached maximum expression. In reepithelialized wound tissue, MME transcripts were detected in deep layers of reconstituted dermis and seemed to cluster around vascular structures. Systemic glucocorticoid treatment, which is known to result in impaired wound healing, led to a nearly complete shut-off of MME expression. These observations imply an additional role of macrophage-related proteolysis, independent of its classical roles during earlier, inflammatory phases of cutaneous wound repair. PMID:9665817

  15. Enzymatic activation of a matrix metalloproteinase inhibitor†

    PubMed Central

    Major Jourden, Jody L.; Cohen, Seth M.

    2010-01-01

    Matrix metalloproteinase inhibitors (MMPi) possessing a glucose protecting group on the zinc-binding group (ZBG) show a dramatic increase in inhibitory activity upon cleavage by β-glucosidase. PMID:20449263

  16. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    SciTech Connect

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William . E-mail: william.hornebeck@univ-reims.fr

    2006-06-30

    UVA irradiation, dose-dependently (5-20 J/cm{sup 2}), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ({sup 1}O{sub 2}). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively.

  17. A personal journey with matrix metalloproteinases.

    PubMed

    Nagase, Hideaki

    2016-09-01

    I was given the honor of delivering the 2015 Lifetime Membership Award lecture at the International Proteolysis Society's annual meeting held in Penang, Malaysia in October 2015. It gave me an opportunity to look back on how I started my research on matrix metalloproteinases (MMPs) and how I continued to work on these proteinases for the next 42 years. This is a series of sketches from the personal journey that I took with MMPs, starting from the purification of metalloproteinases, cloning, structural studies, then to a more recent encounter, endocytic regulation of matrix-degrading metalloproteinases. PMID:27341559

  18. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340).

    PubMed

    Foda, H D; Rollo, E E; Drews, M; Conner, C; Appelt, K; Shalinsky, D R; Zucker, S

    2001-12-01

    Mechanical ventilation has become an indispensable therapeutic modality for patients with respiratory failure. However, a serious potential complication of MV is the newly recognized ventilator-induced acute lung injury. There is strong evidence suggesting that matrix metalloproteinases (MMPs) play an important role in the development of acute lung injury. Another factor to be considered is extracellular matrix metalloproteinase inducer (EMMPRIN). EMMPRIN is responsible for inducing fibroblasts to produce/secrete MMPs. In this report we sought to determine: (1) the role played by MMPs and EMMPRIN in the development of ventilator-induced lung injury (VILI) in an in vivo rat model of high volume ventilation; and (2) whether the synthetic MMP inhibitor Prinomastat (AG3340) could prevent this type of lung injury. We have demonstrated that high volume ventilation caused acute lung injury. This was accompanied by an upregulation of gelatinase A, gelatinase B, MT1-MMP, and EMMPRIN mRNA demonstrated by in situ hybridization. Pretreatment with the MMP inhibitor Prinomastat attenuated the lung injury caused by high volume ventilation. Our results suggest that MMPs play an important role in the development of VILI in rat lungs and that the MMP-inhibitor Prinomastat is effective in attenuating this type of lung injury. PMID:11726397

  19. Cumulative influence of elastin peptides and plasminogen on matrix metalloproteinase activation and type I collagen invasion by HT-1080 fibrosarcoma cells.

    PubMed

    Huet, Eric; Brassart, Bertrand; Cauchard, Jean-Hubert; Debelle, Laurent; Birembaut, Philippe; Wallach, Jean; Emonard, Herve; Polette, Myriam; Hornebeck, William

    2002-01-01

    HT-1080 fibrosarcoma cells express at their plasma membrane the elastin-binding protein (EBP). Occupancy of EBP by elastin fragments, tropoelastin or XGVAPG peptides was found to trigger procollagenase-1 (proMMP-1) overproduction by HT-1080 cells at the protein and enzyme levels. RT-PCR analysis indicated that elastin peptides did not modify the MMP-1 mRNA steady state levels, suggesting the involvement of a post-transcriptional mechanism. We previously reported that binding of elastin peptides to EBP induced other matrix metalloproteinases (MMP-2 and MT1-MMP) expression. Since those peptides were here found to also accelerate the secretion of urokinase from HT-1080 cells, culture medium was supplemented with plasminogen together with elastin peptides at aims to induce or potentiate MMPs activation cascades. In such conditions, plasmin activity was generated and exacerbate proMMP-1 and proMMP-2 activation. As a consequence, elastin peptides and plasminogen-treated HT-1080 cells displayed a significant type I collagen matrix invasive capacity. PMID:11964074

  20. Human hemokinin-1 promotes migration of melanoma cells and increases MMP-2 and MT1-MMP expression by activating tumor cell NK1 receptors.

    PubMed

    Zhang, Yixin; Li, Xiaofang; Li, Jingyi; Hu, Hui; Miao, Xiaokang; Song, Xiaoyun; Yang, Wenle; Zeng, Qian; Mou, Lingyun; Wang, Rui

    2016-09-01

    Receptors and their regulatory peptides are aberrantly expressed in tumors, suggesting a potential tumor therapy target. Human hemokinin-1 (hHK-1) is a tachykinin peptide ligand of the neurokinin-1 (NK1) receptor which is overexpressed in melanoma and other tumor tissues. Here, we investigated the role of hHK-1 and the NK1 receptor in melanoma cell migration. NK1 receptor expression was associated with melanoma metastatic potential. Treatment with hHK-1 significantly enhanced A375 and B16F10 melanoma cell migration and an NK1 receptor antagonist L732138 blocked this effect. MMP-2 and MT1-MMP expression were up-regulated in hHK-1-treated melanoma cells and cell signaling data suggested that hHK-1 induced phosphorylation of ERK1/2, JNK and p38 by way of PKC or PKA. Kinase activation led to increased MMP-2 and MT1-MMP expression and melanoma cell migration induced by hHK-1. Thus, hHK-1 and the NK1 receptor are critical to melanoma cell migration and each may be a promising chemotherapeutic target. PMID:27458061

  1. Design strategy for a near-infrared fluorescence probe for matrix metalloproteinase utilizing highly cell permeable boron dipyrromethene.

    PubMed

    Myochin, Takuya; Hanaoka, Kenjiro; Komatsu, Toru; Terai, Takuya; Nagano, Tetsuo

    2012-08-22

    Near-infrared (NIR) fluorescence probes are especially useful for simple and noninvasive in vivo imaging inside the body because of low autofluorescence and high tissue transparency in the NIR region compared with other wavelength regions. However, existing NIR fluorescence probes for matrix metalloproteinases (MMPs), which are tumor, atherosclerosis, and inflammation markers, have various disadvantages, especially as regards sensitivity. Here, we report a novel design strategy to obtain a NIR fluorescence probe that is rapidly internalized by free diffusion and well retained intracellularly after activation by extracellular MMPs. We designed and synthesized four candidate probes, each consisting of a cell permeable or nonpermeable NIR fluorescent dye as a Förster resonance energy transfer (FRET) donor linked to the NIR dark quencher BHQ-3 as a FRET acceptor via a MMP substrate peptide. We applied these probes for detection of the MMP activity of cultured HT-1080 cells, which express MMP2 and MT1-MMP, by fluorescence microscopy. Among them, the probe incorporating BODIPY650/665, BODIPY-MMP, clearly visualized the MMP activity as an increment of fluorescence inside the cells. We then applied this probe to a mouse xenograft tumor model prepared with HT-1080 cells. Following intratumoral injection of the probe, MMP activity could be visualized for much longer with BODIPY-MMP than with the probe containing SulfoCy5, which is cell impermeable and consequently readily washed out of the tissue. This simple design strategy should be applicable to develop a range of sensitive, rapidly responsive NIR fluorescence probes not only for MMP activity, but also for other proteases. PMID:22830429

  2. Matrix Metalloproteinase-14 Both Sheds Cell Surface Neuronal Glial Antigen 2 (NG2) Proteoglycan on Macrophages and Governs the Response to Peripheral Nerve Injury*

    PubMed Central

    Nishihara, Tasuku; Remacle, Albert G.; Angert, Mila; Shubayev, Igor; Shiryaev, Sergey A.; Liu, Huaqing; Dolkas, Jennifer; Chernov, Andrei V.; Strongin, Alex Y.; Shubayev, Veronica I.

    2015-01-01

    Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain. PMID:25488667

  3. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury.

    PubMed

    Nishihara, Tasuku; Remacle, Albert G; Angert, Mila; Shubayev, Igor; Shiryaev, Sergey A; Liu, Huaqing; Dolkas, Jennifer; Chernov, Andrei V; Strongin, Alex Y; Shubayev, Veronica I

    2015-02-01

    Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain. PMID:25488667

  4. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives.

    PubMed

    Beaudeux, Jean-Louis; Giral, Philippe; Bruckert, Eric; Foglietti, Marie-José; Chapman, M John

    2004-02-01

    Matrix metalloproteinases (MMPs), also called matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, of activation of the pro-MMP precursor zymogens and of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases; TIMPs). Alteration in the regulation of MMP activity is implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and left ventricular remodelling after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinase activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. This review describes the members of the MMP and TIMP families and discusses the structure, function and regulation of MMP activity; finally, pharmacological approaches to MMP inhibition are highlighted. PMID:15061349

  5. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment

    PubMed Central

    Kessenbrock, Kai; Plaks, Vicki; Werb, Zena

    2010-01-01

    Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy. PMID:20371345

  6. Matrix Metalloproteinases as Modulators of Inflammation

    PubMed Central

    Manicone, Anne M.; McGuire, John K.

    2008-01-01

    An increased expression of members of the matrix metalloproteinase (MMP) family of enzymes is seen in almost every human tissue in which inflammation is present. Through the use of models of human disease in mice with targeted deletions of individual MMPs, it has become clear that MMPs act broadly in inflammation to regulate barrier function, inflammatory cytokine and chemokine activity, and the generation of chemokine gradients. Individual MMPs regulate both normal and pathological inflammatory processes, and therefore, developing rational therapies requires further identification of specific MMP substrates and characterization of the downstream consequences of MMP proteolytic activity. PMID:17707664

  7. Tumorigenic potential of extracellular matrix metalloproteinase inducer.

    PubMed

    Zucker, S; Hymowitz, M; Rollo, E E; Mann, R; Conner, C E; Cao, J; Foda, H D; Tompkins, D C; Toole, B P

    2001-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  8. Extracellular matrix remodeling of the testes through the male reproductive cycle in Teleostei fish.

    PubMed

    Santana, Julio Cesar de Oliveira; Quagio-Grassiotto, Irani

    2014-12-01

    During the fish reproductive cycle, testes undergo morphological changes related to germinal epithelium and remodeling of extracellular matrix components (ECM). ECM is degraded mainly by action of matrix metalloproteinases (MMPs). Due to the natural renewal of ECM in fish testes, we choose Pimelodus maculatus to study remodeling of ECM throughout reproductive cycle, using picrosirius (to identify type I, II, III collagen) and reticulin (type III collagen), and to immunolocalize MT1-MMP (membrane type 1-matrix metalloproteinase) and MMP-2 in testis cells. Testes were classified in four reproductive phases: regenerating, development, spawning capable and regressing. Picrosirius and reticulin demonstrated a differential distribution of total collagen fibers during the reproductive cycle. Immunohistochemistry showed MT1-MMP only in acidophilic granulocyte cells mainly inside blood vessels, in connective tissue of capsule close to the germinal compartment, and also infiltrated in interstitial connective tissue. MMP-2 was detected in fibroblast and endothelial cells of interstitial and capsule blood vessels, in epithelial cells of capsule, and in acidophilic granulocyte cells at same description for MT1-MMP. The fish testes ECM were remodeled throughout reproductive cycle in according to morphophysiological alterations. During reproductive season (spawning capable), the interstitium increased in total collagen fibers (type I, II, III). After spermiation period (regression and regenerating), the amount of collagen fibers decreased in response to action of MMPs on collagen degradation and other interstitial components (not assessed in this study). MMPs seem to be indispensable components for natural cyclic events of ECM remodeling of fish testes and for guarantee tissue homeostasis throughout reproductive cycle. PMID:25142725

  9. OVARIAN CANCER: INVOLVEMENT OF THE MATRIX METALLOPROTEINASES

    PubMed Central

    Al-Alem, Linah; Curry, Thomas E.

    2016-01-01

    Ovarian cancer is the leading cause of death from gynecologic malignancies. Reasons for the high mortality rate associated with ovarian cancer include a late diagnosis at which time the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members in the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. This review sheds light on the different MMPs in the various types of ovarian cancer and their impact on the progression of this gynecologic malignancy. PMID:25918438

  10. Degradomics of matrix metalloproteinases in inflammatory diseases.

    PubMed

    Dufour, Antoine

    2015-01-01

    Organisms have evolved to react to stress, tissue damage and pathogen invasion to assure their survival. Leukocytes are the primary responders and they regulate repair, immune defense and inflammation with the aid of a wide variety of other cells (e.g. epithelial, fibroblasts). To assure proper responses, a plethora of proteins are involved including signaling molecules, chemokines and proteases to orchestrate a step-by-step reaction. Inflammation is an essential biological process, however, when it persists, it can lead to various diseases that are challenging to heal or cure. The technologies and techniques covered in this book chapter can be applied to study all proteases and their inhibitors although will be centered on the matrix metalloproteinases (MMPs). It will focus on the proteolysis performed by MMPs, their various beneficial and detrimental effects in inflammation and the novel methods to study their roles on human diseases. PMID:25961692

  11. Matrix Metalloproteinases as Drug Targets in Preeclampsia

    PubMed Central

    Palei, Ana C.T.; Granger, Joey P.; Tanus-Santos, Jose E.

    2013-01-01

    Preeclampsia is an important syndrome complicating pregnancy. While the pathogenesis of preeclampsia is not entirely known, poor placental perfusion leading to widespread maternal endothelial dysfunction is accepted as a major mechanism. It has been suggested that altered placental expression of matrix metalloproteinases (MMPs) may cause shallow cytotrophoblastic invasion and incomplete remodeling of the spiral arteries. MMPs are also thought to link placental ischemia to the cardiovascular alterations of preeclampsia. In fact, MMPs may promote vasoconstriction and surface receptors cleavage affecting the vasculature. Therefore, the overall goal of this review article is to provide an overview of the pathophisiology of preeclampsia, more specifically regarding the role of MMPs in the pathogenesis of preeclampsia and the potential of MMP inhibitors as therapeutic options. PMID:23316964

  12. Thoracic Aortic Dissection: Are Matrix Metalloproteinases Involved?

    PubMed Central

    Zhang, Xiaoming; Shen, Ying H.; LeMaire, Scott A.

    2010-01-01

    Thoracic aortic dissection, one of the major diseases affecting the aorta, carries a very high mortality rate. Improving our understanding of the pathobiology of this disease may help us develop medical treatments to prevent dissection and subsequent aneurysm formation and rupture. Dissection is associated with degeneration of the aortic media. Recent studies have shown increased expression and activation of a family of proteolytic enzymes—called matrix metalloproteinases (MMPs)—in dissected aortic tissue, suggesting that MMPs may play a major role in this disease. Inhibition of MMPs may be beneficial in reducing MMP-mediated aortic damage associated with dissection. This article reviews the recent literature and summarizes our current understanding of the role of MMPs in the pathobiology of thoracic aortic dissection. The potential importance of MMP inhibition as a future treatment of aortic dissection is also discussed. PMID:19476747

  13. Chemical Biology for Understanding Matrix Metalloproteinase Function

    PubMed Central

    Knapinska, Anna; Fields, Gregg B.

    2013-01-01

    The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action. PMID:22933318

  14. Synthesis, Kinetic Characterization and Metabolism of Diastereomeric 2-(1-(4-Phenoxyphenylsulfonyl)ethyl)thiiranes as Potent Gelatinase and MT1-MMP Inhibitors

    PubMed Central

    Gooyit, Major; Lee, Mijoon; Hesek, Dusan; Boggess, Bill; Oliver, Allen G.; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland

    2010-01-01

    Gelatinases (MMP-2 and MMP-9) have been implicated in a number of pathological conditions, including cancer and cardiovascular disease. Hence, small molecule inhibitors of these enzymes are highly sought for use as potential therapeutic agents. 2-(4-Phenoxyphenylsulfonylmethyl)thiirane (SB-3CT) has previously been demonstrated to be a potent and selective inhibitor of gelatinases, however, it is rapidly metabolized because of oxidation at the para position of the phenoxy ring and at the α-position to the sulfonyl group. α-Methyl variants of SB-3CT were conceived to improve metabolic stability and as mechanistic probes. We describe herein the synthesis and evaluation of these structural variants as potent inhibitors of gelatinases. Two (compounds 5b and 5d) among the four synthetic stereoisomers were found to exhibit slow-binding inhibition of gelatinases and MMP-14 (MT1-MMP), which is a hallmark of the mechanism of this class of inhibitors. The ability of these compounds to inhibit MMP-2, MMP-9, and MMP-14 could target cancer tissues more effectively. Metabolism of the newly synthesized inhibitors showed that both oxidation at the α-position to the sulfonyl group and oxidation at the para position of the terminal phenyl ring were prevented. Instead oxidation on the thiirane sulfur is the only biotransformation pathway observed for these gelatinase inhibitors. PMID:19824893

  15. Matrix Metalloproteinases in Non-Neoplastic Disorders

    PubMed Central

    Tokito, Akinori; Jougasaki, Michihisa

    2016-01-01

    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action. PMID:27455234

  16. Correlation between matrix metalloproteinase-9 and endometriosis.

    PubMed

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24 ± 0.53 mM and 38.57 ± 4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression. PMID:26722547

  17. Correlation between matrix metalloproteinase-9 and endometriosis

    PubMed Central

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24±0.53 mM and 38.57±4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression. PMID:26722547

  18. Matrix metalloproteinases in exercise and obesity

    PubMed Central

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease. PMID:27471391

  19. HOW MATRIX METALLOPROTEINASES REGULATE CELL BEHAVIOR

    PubMed Central

    Sternlicht, Mark D.; Werb, Zena

    2009-01-01

    The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor–binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease. PMID:11687497

  20. Matrix Metalloproteinase Proteolysis of the Myelin Basic Protein Isoforms Is a Source of Immunogenic Peptides in Autoimmune Multiple Sclerosis

    PubMed Central

    Shiryaev, Sergey A.; Savinov, Alexei Y.; Cieplak, Piotr; Ratnikov, Boris I.; Motamedchaboki, Khatereh; Smith, Jeffrey W.; Strongin, Alex Y.

    2009-01-01

    Background Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known. Methodology/Principal Findings To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1–15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1–15 MBP fragment presented in the MHC H-2U context. Conclusions/Significance In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs. PMID:19300513

  1. Cell Death Control by Matrix Metalloproteinases.

    PubMed

    Zimmermann, Dirk; Gomez-Barrera, Juan A; Pasule, Christian; Brack-Frick, Ursula B; Sieferer, Elke; Nicholson, Tim M; Pfannstiel, Jens; Stintzi, Annick; Schaller, Andreas

    2016-06-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  2. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle

    PubMed Central

    HOU, CHUN; MIAO, YONG; WANG, XUE; CHEN, CHAOYUE; LIN, BOJIE; HU, ZHIQI

    2016-01-01

    According to the growth state of hair follicles, the hair cycle is divided into the anagen, catagen and telogen phases. A number of biological factors have been shown to synchronize with the hair cycle. As an important component of the hair follicle, the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and their inhibitors (tissue inhibitor of matrix metalloproteinases; TIMPs). It has been reported that MMP-2, MMP-9 and TIMP-1 are associated with the hair cycle; however, their expression levels during the hair cycle have not been fully elucidated. Reverse transcription-polymerase chain reaction and ELISA analysis in the present study demonstrated that, during the hair cycle in mice, mRNA and protein expression levels of MMP-2 and MMP-9 were elevated in the anagen phase, and decreased during the catagen and telogen phases. Furthermore, SDS-PAGE gelatin zymography demonstrated that their activities fluctuated in the hair cycle. Additionally, it was observed that the mRNA and protein expression levels of TIMP-1 and TIMP-2 were negatively correlated with MMP-9 and MMP-2, respectively. Immunohistochemical examination demonstrated that MMP-2 and TIMP-2 were present in all structures of the hair follicle. However, MMP-9 and TIMP-1 were locally expressed in certain areas of the hair follicle, such as in the sebaceous gland at the anagen, catagen and telogen phases, and in the inner root sheath at the catagen phase. These results suggested that MMP-2 and MMP-9 may serve an important role in the hair growth cycle. PMID:27429651

  3. Immunohistochemical Analysis of Matrix Metalloproteinase-13 in Human Caries Dentin

    PubMed Central

    Loreto, C.; Galanti, C.; Musumeci, G.; Rusu, M.C.; Leonardi, R.

    2014-01-01

    The immunoexpression profile of matrix metalloproteinase-13 was investigated for the first time in dentin of human caries and healthy teeth. Twelve permanent premolars (10 caries and 2 sound) were decalcified in ethylenediaminetetraacetic acid and processed for embedding in paraffin wax. Sections 3-4 µm in thickness were cut and processed for immunohistochemistry. A mouse monoclonal anti-metalloproteinase-13 antibody was used for localisation using an immunoperoxidase technique. Dentinal immunoreactivity was detected in all teeth; it was weak in sound teeth and strong close to the caries area. These in vivo findings suggest a role for metalloproteinase-13 in the development and progression of adult human dental tissue disorders. PMID:24704999

  4. Investigation of the role of Endo180/urokinase-type plasminogen activator receptor-associated protein as a collagenase 3 (matrix metalloproteinase 13) receptor.

    PubMed Central

    Bailey, Louise; Wienke, Dirk; Howard, Matthew; Knäuper, Vera; Isacke, Clare M; Murphy, Gillian

    2002-01-01

    Procollagenase 3 can be activated by interaction with and cleavage by the cell-associated membrane type 1 metalloproteinase (MT1 MMP; MMP 14). It has also been shown to bind to a specific receptor, and is subsequently internalized via the low-density lipoprotein-related receptor by osteoblast cell lines. The receptor was identified as a recycling glycoprotein of the macrophage mannose receptor family, Endo180. In order to ascertain whether there is a relationship between Endo180 binding and procollagenase 3 activation, we have compared procollagenase 3 activation by an HT1080 fibrosarcoma cell line overexpressing MT1 MMP, without and with overexpression of Endo180. No difference in procollagenase 3 activation was observed, and neither was the enzyme bound to the cells or internalized. In contrast, the osteoblast cell lines, MG63 and UMR-106, both bound and internalized procollagenase 3. However, immunolocalization studies showed that the Endo180 abundantly expressed by these cells did not co-localize with the procollagenase 3. In further biochemical studies we confirmed that procollagenase 3 did not bind to Endo180, using both ligand- blotting and immunoprecipitation techniques. We conclude that Endo180 is unlikely to be a receptor for collagenase 3 in relation to either its activation or cell binding and internalization, and that other interaction partners must be sought. PMID:11903048

  5. Detection of functional matrix metalloproteinases by zymography.

    PubMed

    Hu, Xueyou; Beeton, Christine

    2010-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary

  6. Isolation and characterization of chicken bile matrix metalloproteinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  7. Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease.

    PubMed

    Briasoulis, Alexandros; Tousoulis, Dimitris; Papageorgiou, Nikolaos; Kampoli, Anna-Maria; Androulakis, Emmanuel; Antoniades, Charalambos; Tsiamis, Eleftherios; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Matrix metalloproteinases (MMPs), are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are regulated at the level of transcription, of activation of the pro-MMP precursor zymogens and of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases; TIMPs). Alteration in the regulation of MMP activity is implicated in atherosclerotic plaque development, coronary artery disease and heart failure. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and left ventricular remodelling after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinase activity have been demonstrated during atherosclerotic lesion progression, MMPs represent a potential target for therapeutic intervention aimed at modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. This review discusses pharmacological approaches to MMP inhibition. PMID:22519451

  8. Chicken bile Matrix metalloproteinase; its characterization and significance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies from our lab had shown that the avian bile was rich in matrix metalloproteinase (MMP), enzymes implicated in the degradation of extracellular matrices (ECM) such as collagens and proteoglycans. We hypothesized that bile MMP may be evolutionarily associated with the digestion of ECM ...

  9. Matrix metalloproteinase-2 regulates the expression of tissue inhibitor of matrix metalloproteinase-2.

    PubMed

    Kimura, Kaoru; Cheng, Xian Wu; Nakamura, Kae; Inoue, Aiko; Hu, Lina; Song, Haizhen; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2010-11-01

    1. Matrix metalloproteinases (MMP) are associated with the vascular remodelling seen in atherosclerosis and aneurysm. The activation and activity of MMP-2 are regulated by the intrinsic tissue inhibitor of MMP-2 (TIMP-2). The aim of the present study was to examine whether, conversely, MMP-2 can affect the gene and protein expression of TIMP-2. 2. In the present study, we examined the mRNA and protein expression of MMP-2 and TIMP-2 in cultured smooth muscle cells (SMC) from the aortas of MMP-2(+/+) and MMP-2(-/-) mice. We also examined the roles of MMP-2 in SMC cellular events. 3. Western blotting showed that less TIMP-2 protein was present in the conditioned medium of MMP-2(-/-) SMC than in that of MMP-2(+/+) SMC. Real-time reverse transcription polymerase chain reaction analysis showed that MMP-2 deficiency reduced TIMP-2 mRNA expression in SMC. Recombinant MMP-2 enhanced the expression of TIMP-2 protein in cultured SMC from MMP-2(-/-) mice. Furthermore, a siRNA targeting MMP-2 impaired the gene and protein expression of MMP-2 in cultured SMC from MMP-2(+/+) mice. MMP-2 deficiency impaired SMC invasion, but not their proliferation, adhesion or migration. 4. Our findings suggest that MMP-2 is likely to be responsible, at least in part, for regulating TIMP-2 expression and is thus a potential target, in addition to TIMP-2, for therapeutics aimed at preventing cardiovascular remodelling in response to injury. PMID:20738326

  10. Role of Matrix Metalloproteinase-8 in Atherosclerosis

    PubMed Central

    Lenglet, Sébastien; Mach, François; Montecucco, Fabrizio

    2013-01-01

    Plaque rupture is the main cause of acute myocardial infarction and stroke. Atherosclerotic plaques have been described to be vulnerable and more prone to rupture when they are characterized by thin, highly inflamed, and collagen-poor fibrous caps and contain elevated levels of proteases, including metalloproteinases (MMPs). Initiation of collagen breakdown in plaques requires interstitial collagenases, a MMP subfamily consisting of MMP-1, MMP-8, and MMP-13. Previous reports demonstrated that MMP-1 and MMP-13 might be overexpressed in both human and experimental atherosclerosis. Since neutrophils have been only recently reported in atherosclerotic plaques, the role of MMP-8 (formerly known as “neutrophil collagenase”) was only marginally evaluated. In this paper, we will update and comment on evidence of the most relevant regulatory pathways and activities mediated by MMP-8 in atherogenesis. PMID:23365489

  11. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  12. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  13. Matrix metalloproteinases: their biological functions and clinical implications.

    PubMed

    Hijova, E

    2005-01-01

    Matrix metalloproteinases (MMPs), which are also known as matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, at that of activation of the pro-MMP precursor zymogenes as well as at that of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). Alterations in the regulation of MMP activity are implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and cardiac remodelling in congestive heart failure or after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinases activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at the modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. Recent findings suggest that MMPs are also involved in cancer initiation, invasion and metastasis; MMP inhibitors could be considered for evaluation as cancer chemopreventive molecules. This review describes the members of MMP and TIMP families and discusses the structure, function and regulation of MMP activity. (Tab. 1, Ref: 45.) PMID:16026148

  14. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.

    PubMed

    Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-07-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953

  15. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix

    PubMed Central

    Williams, B. Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-01-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953

  16. Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Aqueous Humor of Diabetic Macular Edema Patients

    PubMed Central

    Choi, Jin A.; Jee, Donghyun

    2016-01-01

    Purpose To assess the concentrations of matrix metalloproteinase (MMP)-1 and MMP-9 in the aqueous humor of diabetic macular edema (DME) patients. Method The concentrations of MMP-1 and MMP-9 in the aqueous humors of 15 cataract patients and 25 DME patients were compared. DME patients were analyzed according to the diabetic retinopathy (DR) stage, diabetes mellitus (DM) duration, pan-retinal photocoagulation (PRP) treatment, recurrence within 3 months, HbA1C (glycated hemoglobin) level, and axial length. Results The concentrations of MMP-1 and MMP-9 of the DME groups were higher than those of the control group (p = 0.005 and p = 0.002, respectively). There was a significant difference in MMP-1 concentration between the mild non-proliferative diabetic retinopathy (NPDR) group and the proliferative diabetic retinopathy (PDR) group (p = 0.012). MMP-1 concentrations were elevated in PRP-treated patients (p = 0.005). There was a significant difference in MMP-9 concentrations between the mild NPDR group and the PDR group (p < 0.001), and between the moderate and severe NPDR group and the PDR group (p < 0.001). The MMP-9 concentrations in PRP treated patients, DM patients with diabetes ≥ 10 years and recurrent DME within 3months were elevated (p = 0.023, p = 0.011, and p = 0.027, respectively). In correlation analyses, the MMP-1 level showed a significant correlation with age (r = -0.48, p = 0.01,), and the MMP-9 level showed significant correlations with axial length (r = -0.59, p < 0.01) and DM duration (r = 049, p = 0.01). Conclusions Concentrations of MMP-1 and MMP-9 were higher in the DME groups than in the control group. MMP-9 concentrations also differed depending on DR staging, DM duration, PRP treatment, and degree of axial myopia. MMP-9 may be more important than MMP-1 in the induction of DM complications in eyes. PMID:27467659

  17. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells. PMID:26910780

  18. Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma.

    PubMed

    Chuang, Hui-Ching; Su, Chih-Ying; Huang, Hsuang-Ying; Huang, Chao-Cheng; Chien, Chih-Yen; Du, Yung-Ying; Chuang, Jiin-Haur

    2008-12-01

    Protein microarrays have shown that matrix metalloproteinase-7 is upregulated in head and neck squamous cell carcinomas, but its role in local tissue invasion is still uncertain. We investigated the expression of active matrix metalloproteinase-7, using tissue microarray, immunohistochemistry, and western blotting, in oral tissues from 24 patients with buccal squamous cell carcinoma, and correlated the findings with clinicopathological features. Normal buccal tissue samples from the same patients, obtained at sites at least 1 cm from tumor tissue, served as normal controls. Total matrix metalloproteinase-7 was detected on western blots in 9 of 15 (60%) tumor tissue samples and in 2 of 15 (13%) normal mucosal samples; this difference was significant (P=0.008). Moreover, the active matrix metalloproteinase-7 was expressed only in eight of the nine (89%) tumor samples that expressed matrix metalloproteinase-7, and in none of the normal tissue samples, regardless of the expression status of the pro-matrix metalloproteinase-7. Immunostaining of matrix metalloproteinase-7 was observed histologically in both tumor and nonneoplastic epithelium, but immunostaining of active matrix metalloproteinase-7 was present only in tumor nests. Expression of active matrix metalloproteinase-7 was associated with larger tumor size (P=0.022) and was significantly higher in buccal squamous cell carcinoma with adjacent skin or bone invasion (P=0.036). In conclusion, active matrix metalloproteinase-7 expression was associated with more aggressive buccal squamous cell carcinomas. PMID:18931651

  19. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  20. Vascular tube formation on matrix metalloproteinase-1-damaged collagen

    PubMed Central

    Varani, J; Perone, P; Warner, R L; Dame, M K; Kang, S; Fisher, G J; Voorhees, J J

    2008-01-01

    Connective tissue damage and angiogenesis are both important features of tumour growth and invasion. Here, we show that endothelial cells maintained on a three-dimensional lattice of intact polymerised collagen formed a monolayer of cells with a cobblestone morphology. When the collagen was exposed to organ culture fluid from human basal cell tumours of the skin (containing a high level of active matrix metalloproteinase-1 (MMP-1)), degradation of the collagen matrix occurred. The major degradation products were the $3over 4$- and $1over 4$-sized fragments known to result from the action of MMP-1 on type I collagen. When endothelial cells were maintained on the partially degraded collagen, the cells organised into a network of vascular tubes. Pretreatment of the organ culture fluid with either tissue inhibitor of metalloproteinase-1 (TIMP-1) or neutralising antibody to MMP-1 prevented degradation of the collagen lattice and concomitantly inhibited endothelial cell organisation into the vascular network. Purified (activated) MMP-1 duplicated the effects of skin organ culture fluid, but other enzymes including MMP-9 (gelatinase B), elastase or trypsin failed to produce measurable fragments from intact collagen and also failed to promote vascular tube formation. Together, these studies suggest that damage to the collagenous matrix is itself an important inducer of new vessel formation. PMID:18443597

  1. Synaptic circuit remodelling by matrix metalloproteinases in health and disease

    PubMed Central

    Huntley, George W.

    2016-01-01

    Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function. PMID:23047773

  2. Regulation and involvement of matrix metalloproteinases in vascular diseases.

    PubMed

    Amin, Matthew; Pushpakumar, Sathnur; Muradashvili, Nino; Kundu, Sourav; Tyagi, Suresh C; Sen, Utpal

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease. PMID:26709763

  3. Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions.

    PubMed

    Mittal, Rahul; Patel, Amit P; Debs, Luca H; Nguyen, Desiree; Patel, Kunal; Grati, M'hamed; Mittal, Jeenu; Yan, Denise; Chapagain, Prem; Liu, Xue Zhong

    2016-12-01

    Matrix metalloproteinases (MMPs) are a diverse group of proteolytic enzymes and play an important role in the degradation and remodeling of the extracellular matrix (ECM). In normal physiological conditions, MMPs are usually minimally expressed. Despite their low expression, MMPs have been implicated in many cellular processes ranging from embryological development to apoptosis. The activity of MMPs is controlled at three different stages: (1) transcription; (2) zymogen activation; and (3) inhibition of active forms by tissue inhibitor metalloproteinases (TIMPs). They can collectively degrade any component of ECM and basement membrane, and their excessive activity has been linked to numerous pathologies mainly including, but not limited to, tumor invasion and metastasis. The lack of information about several MMPs and the steady stream of new discoveries suggest that there is much more to be studied in this field. In particular, there is a need for controlling their expression in disease states. Various studies over the past 30 years have found that each MMP has a specific mode of activation, action, and inhibition. Drugs specifically targeting individual MMPs could revolutionize the treatment of a great number of health conditions and tremendously reduce their burden. In this review article, we have summarized the recent advances in understanding the role of MMPs in physiological and pathological conditions. J. Cell. Physiol. 231: 2599-2621, 2016. © 2016 Wiley Periodicals, Inc. PMID:27187048

  4. Matrix Metalloproteinases and Their Inhibitors in Chronic Obstructive Pulmonary Disease.

    PubMed

    Navratilova, Zdenka; Kolek, Vitezslav; Petrek, Martin

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is characterised by irreversible airflow limitation associated with chronic inflammation. Matrix metalloproteinases (MMPs) are proteolytic enzymes that contribute to the inflammatory response in COPD and degrade extracellular matrix components. Their enzymatic activity is inhibited by a four-member family of tissue inhibitors of metalloproteinases (TIMPs). In COPD, the MMP/TIMP network, mainly MMP-9, has been repeatedly observed to be dysregulated at both the local (lung) and systemic levels. Here, we review the findings reported in numerous cross-sectional studies with our primary focus on longitudinal observations in human COPD studies. The data from longitudinal prospective studies on the MMP/TIMP network may lead to the introduction of novel prognostic biomarkers into clinical management of COPD. We address the relationship between the systemic and local lung MMP/TIMP network in COPD patients and briefly describe the involvement of microRNAs. Finally, the role of the MMP/TIMP network in COPD treatment is discussed. PMID:26611761

  5. Matrix Metalloproteinases in Inflammatory Bowel Disease: An Update

    PubMed Central

    O'Sullivan, Shane; Gilmer, John F.

    2015-01-01

    Matrix metalloproteinases (MMPs) are known to be upregulated in inflammatory bowel disease (IBD) and other inflammatory conditions, but while their involvement is clear, their role in many settings has yet to be determined. Studies of the involvement of MMPs in IBD since 2006 have revealed an array of immune and stromal cells which release the proteases in response to inflammatory cytokines and growth factors. Through digestion of the extracellular matrix and cleavage of bioactive proteins, a huge diversity of roles have been revealed for the MMPs in IBD, where they have been shown to regulate epithelial barrier function, immune response, angiogenesis, fibrosis, and wound healing. For this reason, MMPs have been recognised as potential biomarkers for disease activity in IBD and inhibition remains a huge area of interest. This review describes new roles of MMPs in the pathophysiology of IBD and suggests future directions for the development of treatment strategies in this condition. PMID:25948887

  6. Roles and regulation of the matrix metalloproteinase system in parturition.

    PubMed

    Geng, Junnan; Huang, Cong; Jiang, Siwen

    2016-04-01

    Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. Mol. Reprod. Dev. 83: 276-286, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888468

  7. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and {beta}1 integrin expression in vitro

    SciTech Connect

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2{sup -/-} myotube formation. When differentiated in horse serum-containing medium, TIMP-2{sup -/-} myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2{sup -/-} myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with {beta}1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2{sup -/-} myotube size and induces increased MMP-9 activation and decreased {beta}1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on {beta}1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and {beta}1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.

  8. Matrix metalloproteinases and gastrointestinal cancers: Impacts of dietary antioxidants

    PubMed Central

    Verma, Sugreev; Kesh, Kousik; Ganguly, Nilanjan; Jana, Sayantan; Swarnakar, Snehasikta

    2014-01-01

    The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases (MMPs). Degradation of extracellular matrix (ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK (reversion including cysteine-rich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2, -9 and -14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species (ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is

  9. Matrix Metalloproteinase 12-Deficiency Augments Extracellular Matrix Degrading Metalloproteinases and Attenuates IL-13–Dependent Fibrosis

    PubMed Central

    Madala, Satish K.; Pesce, John T.; Ramalingam, Thirumalai R.; Wilson, Mark S.; Minnicozzi, Samantha; Cheever, Allen W.; Thompson, Robert W.; Mentink-Kane, Margaret M.; Wynn, Thomas A.

    2011-01-01

    Infection with the parasitic helminth Schistosoma mansoni causes significant liver fibrosis and extracellular matrix (ECM) remodeling. Matrix metalloproteinases (MMP) are important regulators of the ECM by regulating cellular inflammation, extracellular matrix deposition, and tissue reorganization. MMP12 is a macrophage-secreted elastase that is highly induced in the liver and lung in response to S. mansoni eggs, confirmed by both DNA microarray and real-time PCR analysis. However, the function of MMP12 in chronic helminth-induced inflammation and fibrosis is unclear. In this study, we reveal that MMP12 acts as a potent inducer of inflammation and fibrosis after infection with the helminth parasite S. mansoni. Surprisingly, the reduction in liver and lung fibrosis in MMP12-deficient mice was not associated with significant changes in cytokine, chemokine, TGF-β1, or tissue inhibitors of matrix metalloproteinase expression. Instead, we observed marked increases in MMP2 and MMP13 expression, suggesting that Mmp12 was promoting fibrosis by limiting the expression of specific ECM-degrading MMPs. Interestingly, like MMP12, MMP13 expression was highly dependent on IL-13 and type II–IL-4 receptor signaling. However, in contrast to MMP12, expression of MMP13 was significantly suppressed by the endogenous IL-13 decoy receptor, IL-13Rα2. In the absence of MMP12, expression of IL-13Rα2 was significantly reduced, providing a possible explanation for the increased IL-13-driven MMP13 activity and reduced fibrosis. As such, these data suggest important counter-regulatory roles between MMP12 and ECM-degrading enzymes like MMP2, MMP9, and MMP13 in Th2 cytokine-driven fibrosis. PMID:20181883

  10. Role of matrix metalloproteinases in the pathogenesis of childhood gastroenteritis.

    PubMed

    Kawamura, Yoshiki; Gotoh, Kensei; Takeuchi, Nao; Miura, Hiroki; Nishimura, Naoko; Ozaki, Takao; Yoshikawa, Tetsushi

    2016-08-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been implicated in the pathogenesis of gastrointestinal diseases, such as rotavirus gastroenteritis (GE). Kinetics of these biomarkers were examined in paired serum samples collected from bacterial enteritis patients with Campylobacter (n = 2) and Salmonella (n = 4) and viral GE patients with rotavirus (n = 27), norovirus (n = 25), and adenovirus (n = 11). At the time of hospital admission, all viral GE patients demonstrated increased MMP-9 and decreased MMP-2 and TIMP-2 serum levels. In contrast to viral GE patients, serum MMP-9 levels were not elevated at the time of hospital admission but elevated at the time of discharge; serum MMP-2 and TIMP-2 levels were decreased both at the time of admission and discharge in bacterial enteritis patients. Interestingly, the kinetics of serum MMP-2, MMP-9, and TIMP-2 levels were similar among the viral GE patients but distinct from bacterial enteritis patients. Thus, the involvement of MMPs and TIMPs in the pathophysiology of gastrointestinal symptoms likely varies depending on the etiological agent. Further studies are required to verify whether the extent of the bacterial enteritis or age of the patients influences these serum biomarkers. J. Med. Virol. 88:1341-1346, 2016. © 2016 Wiley Periodicals, Inc. PMID:26765397

  11. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions. PMID:26515234

  12. Isolation and characterization of chicken bile matrix metalloproteinase

    PubMed Central

    Packialakshmi, B.; Liyanage, R.; Rasaputra, K. S.; Lay, Jackson O.; Rath, N. C.

    2014-01-01

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies, but the significance of their expression in normal, healthy bile is not understood. We hypothesized that the MMP in bile may aid the digestion of native collagens that are resistant to conventional gastric proteases. Hence, the objective of this study was to characterize the bile MMP and check its regulation in association with dietary factors. We used substrate zymography, azocoll protease assay, and gelatin affinity chromatography to identify and purify the MMP from chicken bile. Using zymography and SDS PAGE, 5 bands at 70, 64, 58, 50, and 42 kDa were detected. The bands corresponding to 64, 50, and 42 kDa were identified as MMP2 using trypsin in-gel digestion and matrix-assisted laser desorption time-of-flight mass spectrometry and peptide mass fingerprinting. Chickens fed diets containing gelatin supplements showed higher levels of MMP expression in the bile by both azocoll assay and zymography. We conclude that the bile MMP may be associated with the digestion of collagens and other extracellular matrix proteins in avian diets. PMID:24879699

  13. In vitro studies to show sequestration of matrix metalloproteinases by silver-containing wound care products.

    PubMed

    Walker, Michael; Bowler, Philip G; Cochrane, Christine A

    2007-09-01

    Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings. PMID

  14. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  15. Plasma matrix metalloproteinase-9 response to downhill running in humans.

    PubMed

    Welsh, M C; Allen, D L; Byrnes, W C

    2014-05-01

    Matrix metalloproteinase-9 is a proteolytic enzyme capable of degrading proteins of the muscle extracellular matrix. Systemic levels of MMP-9 or its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), have the potential to serve as blood markers of exercise-induced muscle damage. The purpose of this study was to determine if an eccentrically-dominated task, downhill running (DHR), produces changes in plasma MMP-9 or TIMP-1 and examine the relationship between MMP-9/TIMP-1 levels and indirect indicators of muscle damage. Subjects were sedentary (SED, n=12) or had a history of concentrically-biased training (CON, n=9). MMP-9 and TIMP-1 were measured before (Pre-Ex), immediately after (Post-Ex), and 1-, 2-, 4-, and 7-days post-DHR (-10°), and compared to discomfort ratings, creatine kinase activity and strength loss. At 1-day Post-Ex, discomfort increased (5.6 ± 7.8 to 45.5 ± 19.9 mm; 0-100 mm scale), strength decreased (-6.9 ± 1.6%) and CK increased (162.9 ± 177.2%). MMP-9 was modestly but significantly increased at Post-Ex in both CONC and SED (32.7 ± 33.6%) and at 4-days in SED (66.9 ± 88.1%), Individual responses were variable, however. There were no correlations between MMPs and discomfort ratings, plasma CK or strength. While plasma MMP-9 changes may be detectable in the systemic circulation after DHR, they are small and do not correspond to other markers of damage. PMID:24048912

  16. Time-dependent matrix metalloproteinases and tissue inhibitor of metalloproteinases expression change in fusarium solani keratitis

    PubMed Central

    Li, Qian; Gao, Xin-Rui; Cui, Hong-Ping; Lang, Li-Li; Xie, Xiu-Wen; Chen, Qun

    2016-01-01

    AIM To investigate matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) expression during the progress of fusarium solani (F.solani) keratitis in a rat model. METHODS A rat model of F.solani keratitis was produced using corneal scarification and a hand-made contact lens. MMPs and TIMPs expressiond were explored in this rat model of F.solani keratitis using real-time polymerase chain reaction (PCR) and DIF. GM6001 (400 µmol/mL) was used to treat infected corneas. The keratitis duration, amount and area of corneal neovascularization (CNV) were evaluated. RESULTS MMP-3 expression was 66.3 times higher in infected corneas compared to normal corneas. MMP-8, -9, and -13 expressions were significantly upregulated in the mid-period of the infection, with infected-to-normal ratios of 4.03, 39.86, and 5.94, respectively. MMP-2 and -7 expressions increased in the late period, with the infected-to-normal ratios of 5.94 and 16.22, respectively. TIMP-1 expression was upregulated in the early period, and it was 43.17 times higher in infected compared to normal corneas, but TIMP-2, -3, and -4 expressions were mildly downregulated or unchanged. The results of DIF were consistent with the result of real-time PCR. GM6001, a MMPs inhibitor, decreased the duration of F.solani infection and the amount and area of CNV. CONCLUSION MMPs and TIMPs contributed into the progress of F.solani keratitis. PMID:27162721

  17. Expression of extracellular matrix metalloproteinase inducer and enhancement of the production of matrix metalloproteinase-1 in tongue squamous cell carcinoma.

    PubMed

    Cao, Z; Xiang, J; Li, C

    2009-08-01

    Recent studies have found that in addition to promoting cellular invasion, overexpression of metalloproteinase -1 (MMP-1) is associated with the initial stages of cancer development. Extracellular matrix metalloproteinase inducer (EMMPRIN), a transmembrane glycoprotein, has been reported to be highly expressed in tumor cells and induce production of MMPs from peritumor fibroblasts (PTFs) adjacent to the tumor cells. The expression of EMMPRIN in tongue squamous cell carcinoma (SCC) was investigated in this study. It was found that EMMPRIN was expressed at the cell membrane throughout the entire lesion in tongue SCC. Immunofluorescence staining localized EMMPRIN to the cell membrane in a highly invasive tongue SCC cell line (Tca 8113). EMMPRIN mRNA was expressed at a high level in Tca 8113, whereas MMP-1 mRNA was expressed in PTF but harder to be detected in Tca 8113. Co-culture of Tca 8113 with PTF stimulated production of MMP-1. EMMPRIN was highly expressed in tongue SCC, and could induce local production of MMP-1. These data indicate that EMMPRIN might play an important role in tongue SCC progression and invasion. PMID:19372030

  18. The role of matrix metalloproteinases in dental erosion.

    PubMed

    Buzalaf, M A R; Kato, M T; Hannas, A R

    2012-09-01

    This review discusses the role of matrix metalloproteinases (MMPs) in the development of dentin erosion and the protective effects of MMP inhibitors, based on recent evidence from in vitro and in situ studies. MMPs are present in both dentin and saliva and play an important role in dentin erosion progression. Enzymatic removal of the organic matrix by MMPs increases the demineralization process, since the demineralized organic matrix has been shown to hamper ionic diffusion after an acidic challenge. Recent evidence from in vitro and in situ studies has shown a protective role of MMP inhibitors against dentin erosion and erosion plus abrasion. The inhibitors tested were green tea and its active epigallocatechin-gallate (EGCG), ferrous sulfate, and chlorhexidine. They have been tested in dentifrices, solutions, and gels. The latter led to a more pronounced protective effect against dentin erosion and erosion plus abrasion. The protection was long-lasting and could be observed after up to 10 days of severe erosive and erosive-plus-abrasive challenges in situ. Thus, the use of MMP inhibitors has emerged as an important preventive tool against dentin erosion. Clinical studies should be conducted to confirm the results obtained and to give support to the establishment of clinical protocols of use. PMID:22899684

  19. The Significance of Matrix Metalloproteinases in Oral Diseases.

    PubMed

    Maciejczyk, Mateusz; Pietrzykowska, Agnieszka; Zalewska, Anna; Knaś, Małgorzata; Daniszewska, Irena

    2016-01-01

    Matrix metalloproteinases (MMPs) belong to a family of structurally related zinc-dependent proteolytic enzymes that are known to play a key role in the catabolic turnover of extracellular matrix (ECM) components. Research studies to date have indicated that MMPs regulate the activity of several non-ECM bioactive substrates, including growth factors, cytokines, chemokines and cell receptors, which determine the tissue microenvironment. Disruption of the balance between the concentration of active matalloproteinases and their inhibitors (TIMPs) may lead to pathological changes associated with uncontrolled ECM turnover, tissue remodeling, inflammatory response, cell growth and migration. This brief review presents some information on MMPs' role in inflammatory, metabolic and cancer abnormalities related to the salivary glands, as well as MMP-related aspects that lead to the formation of human dentinal caries lesions. In oral diseases, the most relevant biological fluid commonly used for diagnosing periodontal diseases is saliva. In diseased patients with significantly higher levels of MMPs in their saliva than healthy people, most extracellular matrix components undergo digestion to lower molecular weight forms. Conventional treatment successfully reduces the levels of MMPs inhibits the progressive breakdown of gingival and periodontal ligament collagens. Beside inflammatory abnormalities like Sjögren's syndrome (SS), a large group of disorders is comprised of cancers, most of them involving the parotid gland. PMID:27627574

  20. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective

    PubMed Central

    Small, Christopher D.; Crawford, Bryan D.

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology. PMID:27127457

  1. A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy

    PubMed Central

    Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.Y.; Sun, L.

    2014-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy in humans and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy. PMID:25039784

  2. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3.

    PubMed Central

    Cowell, S; Knäuper, V; Stewart, M L; D'Ortho, M P; Stanton, H; Hembry, R M; López-Otín, C; Reynolds, J J; Murphy, G

    1998-01-01

    SW1353 chondrosarcoma cells cultured in the presence of interleukin-1, concanavalin A or PMA secreted procollagenase 3 (matrix metalloproteinase-13). The enzyme was detected in the culture medium by Western blotting using a specific polyclonal antibody raised against recombinant human procollagenase 3. Oncostatin M enhanced the interleukin-1-induced production of procollagenase 3, whereas interleukin-4 decreased procollagenase 3 synthesis. The enzyme was latent except when the cells had been treated with concanavalin A, when a processed form of 48 kDa, which corresponds to the active form, was found in the culture medium and collagenolytic activity was detected by degradation of 14C-labelled type I collagen. The concanavalin A-induced activation of procollagenase 3 coincided with the processing of progelatinase A (matrix metalloproteinase-2) by the cells, as measured by gelatin zymography. In addition, progelatinase B (matrix metalloproteinase-9) was activated when gelatinase A and collagenase 3 were in their active forms. Concanavalin A treatment of SW1353 cells increased the amount of membrane-type-1 matrix metalloproteinase protein in the cell membranes, suggesting that this membrane-bound enzyme participates in an activation cascade involving collagenase 3 and the gelatinases. This cascade was effectively inhibited by tissue inhibitors of metalloproteinases-2 and -3. Tissue inhibitor of metalloproteinases-1, which is a much weaker inhibitor of membrane-type 1 matrix metalloproteinase than tissue inhibitors of metalloproteinases-2 and -3 [Will, Atkinson, Butler, Smith and Murphy (1996) J. Biol. Chem. 271, 17119-17123], was a weaker inhibitor of the activation cascade. PMID:9531484

  3. Effect of advanced glycation end products, extracellular matrix metalloproteinase inducer and matrix metalloproteinases on type-I collagen metabolism

    PubMed Central

    LI, WANG; LING, WANG; TENG, XIAOMEI; QUAN, CUIXIA; CAI, SHENGNAN; HU, SHUQUN

    2016-01-01

    The aim of the study was to examine the association among advanced glycation end products (AGEs), extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMPs), and investigate whether AGEs affect type I collagen (COL-I) through EMMPRIN or MMPs. A co-culture system with the osteoblast-like cells (MC3T3E1) and mouse RAW264.7 cells was employed to examine the effects of AGE-bovine serum albumin (BSA) (50 mg/l), EMMPRIN antibody (5 mg/l) and AGE-BSA+EMMPRIN antibody separately on COL-I expression for 24 h. Culture media were analyzed for the content of COL-I by ELISA. The effect of different concentrations of AGE-BSA (0, 50, 100, 200 and 400 mg/l) for 24 h was assessed on COL-I levels. Finally, semiquantitative RT-PCR was used to detect the osteoblast COL-I mRNA expression and MMP-2 and MMP-9's PMAO were also measured in the culture medium. COL-I content in the culture medium decreased significantly following treatment with AGE-BSA (P<0.05). EMMPRIN antibody increased COL-I content (P<0.05). EMMPRIN antibody+AGE-BSA increased COL-I significantly (P<0.05). Different concentrations of AGE-BSA increased COL-I mRNA expression significantly compared with the control group (P<0.05), and were enhanced with increasing AGE-BSA concentration (P<0.05). Also MMP-2 and MMP-9 secretion increased significantly (P<0.05), with the increasing AGE-BSA concentration. In conclusion, an increase in AGE levels in vitro stimulates the secretion of EMMPRIN/MMPs, promotes the degradation of COL-I and reduces bone strength. PMID:27284408

  4. Plasma matrix metalloproteinases in neonates having surgery for congenital heart disease

    PubMed Central

    Joffe, Ari R.; Schulz, Christina; Rosychuk, Rhonda J.; Dyck, John; Rebeyka, Ivan M.; Ross, David B.; Schulz, Richard; Cheung, Po-Yin

    2009-01-01

    During cardiopulmonary-bypass matrix-metalloproteinases released may contribute to ventricular dysfunction. This study was to determine plasma matrix-metalloproteinases in neonates after cardiopulmonary-bypass and their relation to post-operative course. A prospective observational study included 18 neonates having cardiac surgery. Plasma matrix-metalloproteinases-2 and 9 activities were measured by gelatin-zymography pre-operatively, on starting cardiopulmonarybypass, 7–8 min after aortic cross-clamp release, and 1h, 4h, 24h, and 3d after cardiopulmonary-bypass. Plasma concentrations of their tissue inhibitors 1 and 2 were determined by enzyme-linked immunosorbent assay. Cardiac function was assessed by serial echocardiography. Paired t-tests and Wilcoxon tests were used to assess temporal changes, and linear correlation with simultaneous clinical and cardiac function parameters were assessed using Pearson's product-moment correlation coefficient. Plasma matrix-metalloproteinases activities and their tissue inhibitor concentrations decreased during cardiopulmonary-bypass. Matrix-metalloproteinase-2 plasma activity increased progressively starting 1h after cardiopulmonarybypass and returned to pre-operative levels at 24h. Matrix-metalloproteinase-9 plasma activity increased significantly after release of aortic cross-clamp, peaked 7–8min later, and returned to baseline at 24h. Plasma tissueinhibitor 1 and 2 concentrations increased 1h after cardiopulmonary-bypass. Cardiac function improved from 4h to 3d after surgery (p<0.05). There was no evidence of significant correlations between matrix-metalloproteinases or their inhibitors and cardiac function, inotrope scores, organ dysfunction scores, ventilation days, or hospital days. The temporal profile of plasma matrix-metalloproteinases and their inhibitors after cardiopulmonary-bypass in neonates are similar to adults. In neonates, further study should determine whether circulating matrix-metalloproteinases are

  5. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  6. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  7. Myocardial matrix metalloproteinase-2: inside out and upside down.

    PubMed

    DeCoux, Ashley; Lindsey, Merry L; Villarreal, Francisco; Garcia, Ricardo A; Schulz, Richard

    2014-12-01

    Since their inaugural discovery in the early 1960s, matrix metalloproteinases (MMPs) have been shown to mediate multiple physiological and pathological processes. In addition to their canonical function in extracellular matrix (ECM) remodeling, research in the last decade has highlighted new MMP functions, including proteolysis of novel substrates beyond ECM proteins, MMP localization to subcellular organelles, and proteolysis of susceptible intracellular proteins in those subcellular compartments. This review will provide a comparison of the extracellular and intracellular roles of MMPs, illustrating that MMPs are far more interesting than the one-dimensional view originally taken. We focus on the roles of MMP-2 in cardiac injury and repair, as this is one of the most studied MMPs in the cardiovascular field. We will highlight how understanding all dimensions, such as localization of activity and timing of interventions, will increase the translational potential of research findings. Building upon old ideas and turning them inside out and upside down will help us to better understand how to move the MMP field forward. PMID:25261607

  8. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke

    PubMed Central

    Chang, Jason J.; Stanfill, Ansley; Pourmotabbed, Tayebeh

    2016-01-01

    Stroke remains the fifth leading cause of mortality in the United States with an annual rate of over 128,000 deaths per year. Differences in incidence, pathogenesis, and clinical outcome have long been noted when comparing ischemic stroke among different ethnicities. The observation that racial disparities exist in clinical outcomes after stroke has resulted in genetic studies focusing on specific polymorphisms. Some studies have focused on matrix metalloproteinases (MMPs). MMPs are a ubiquitous group of proteins with extensive roles that include extracellular matrix remodeling and blood-brain barrier disruption. MMPs play an important role in ischemic stroke pathophysiology and clinical outcome. This review will evaluate the evidence for associations between polymorphisms in MMP-1, 2, 3, 9, and 12 with ischemic stroke incidence, pathophysiology, and clinical outcome. The role of polymorphisms in MMP genes may influence the presentation of ischemic stroke and be influenced by racial and ethnic background. However, contradictory evidence for the role of MMP polymorphisms does exist in the literature, and further studies will be necessary to consolidate our understanding of these multi-faceted proteins. PMID:27529234

  9. Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted

    PubMed Central

    GREENLEE, KENDRA J.; WERB, ZENA; KHERADMAND, FARRAH

    2009-01-01

    The matrix metalloproteinases (MMPs), a family of 25 secreted and cell surface-bound neutral proteinases, process a large array of extracellular and cell surface proteins under normal and pathological conditions. MMPs play critical roles in lung organogenesis, but their expression, for the most part, is downregulated after generation of the alveoli. Our knowledge about the resurgence of the MMPs that occurs in most inflammatory diseases of the lung is rapidly expanding. Although not all members of the MMP family are found within the lung tissue, many are upregulated during the acute and chronic phases of these diseases. Furthermore, potential MMP targets in the lung include all structural proteins in the extracellular matrix (ECM), cell adhesion molecules, growth factors, cytokines, and chemokines. However, what is less known is the role of MMP proteolysis in modulating the function of these substrates in vivo. Because of their multiplicity and substantial substrate overlap, MMPs are thought to have redundant functions. However, as we explore in this review, such redundancy most likely evolved as a necessary compensatory mechanism given the critical regulatory importance of MMPs. While inhibition of MMPs has been proposed as a therapeutic option in a variety of inflammatory lung conditions, a complete understanding of the biology of these complex enzymes is needed before we can reasonably consider them as therapeutic targets. PMID:17237343

  10. Myocardial matrix metalloproteinase-2: inside out and upside down

    PubMed Central

    DeCoux, Ashley; Lindsey, Merry L.; Villarreal, Francisco; Garcia, Ricardo A.; Schulz, Richard

    2014-01-01

    Since their inaugural discovery in the early 1960s, matrix metalloproteinases (MMPs) have been shown to mediate multiple physiological and pathological processes. In addition to their canonical function in extracellular matrix (ECM) remodeling, research in the last decade has highlighted new MMP functions, including proteolysis of novel substrates beyond ECM proteins, MMP localization to subcellular organelles, and proteolysis of susceptible intracellular proteins in those subcellular compartments. This review will provide a comparison of the extracellular and intracellular roles of MMPs, illustrating that MMPs are far more interesting than the one-dimensional view originally taken. We focus on the roles of MMP-2 in cardiac injury and repair, as this is one of the most studied MMPs in the cardiovascular field. We will highlight how understanding all dimensions, such as localization of activity and timing of interventions, will increase the translational potential of research findings. Building upon old ideas and turning them inside out and upside down will help us to better understand how to move the MMP field forward. PMID:25261607

  11. Nestin depletion induces melanoma matrix metalloproteinases and invasion

    PubMed Central

    Lee, Chung-Wei; Zhan, Qian; Lezcano, Cecilia; Frank, Markus H.; Huang, John; Larson, Allison; Lin, Jennifer Y.; Wan, Marilyn T.; Lin, Ping-I; Ma, Jie; Kleffel, Sonja; Schatton, Tobias; Lian, Christine G.; Murphy, George F.

    2015-01-01

    Matrix metalloproteinases (MMPs) are key biological mediators of processes as diverse as wound healing, embryogenesis, and cancer progression. Although MMPs may be induced through multiple signaling pathways, the precise mechanisms for their regulation in cancer are incompletely understood. Because cytoskeletal changes are known to accompany MMP expression, we sought to examine the potential role of the poorly understood cytoskeletal protein, nestin, in modulating melanoma MMPs. Nestin knockdown (KD) upregulated expression of specific MMPs and MMP-dependent invasion both through extracellular matrix barriers in vitro and in peritumoral connective tissue of xenografts in vivo. Development of 3-dimensionsal melanospheres that in vitro partially recapitulate non-invasive tumorigenic melanoma growth was inhibited by nestin KD, although ECM invasion by aberrant melanospheres that did form was enhanced. Mechanistically, nestin KD-dependent melanoma invasion was associated with intracellular redistribution of phosphorylated focal adhesion kinase (pFAK) and increased melanoma cell responsiveness to transforming growth factor-beta (TGF-β), both implicated in pathways of melanoma invasion. The results suggest that the heretofore poorly understood intermediate filament, nestin, may serve as a novel mediator of MMPs critical to melanoma virulence. PMID:25365206

  12. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke.

    PubMed

    Chang, Jason J; Stanfill, Ansley; Pourmotabbed, Tayebeh

    2016-01-01

    Stroke remains the fifth leading cause of mortality in the United States with an annual rate of over 128,000 deaths per year. Differences in incidence, pathogenesis, and clinical outcome have long been noted when comparing ischemic stroke among different ethnicities. The observation that racial disparities exist in clinical outcomes after stroke has resulted in genetic studies focusing on specific polymorphisms. Some studies have focused on matrix metalloproteinases (MMPs). MMPs are a ubiquitous group of proteins with extensive roles that include extracellular matrix remodeling and blood-brain barrier disruption. MMPs play an important role in ischemic stroke pathophysiology and clinical outcome. This review will evaluate the evidence for associations between polymorphisms in MMP-1, 2, 3, 9, and 12 with ischemic stroke incidence, pathophysiology, and clinical outcome. The role of polymorphisms in MMP genes may influence the presentation of ischemic stroke and be influenced by racial and ethnic background. However, contradictory evidence for the role of MMP polymorphisms does exist in the literature, and further studies will be necessary to consolidate our understanding of these multi-faceted proteins. PMID:27529234

  13. Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype.

    PubMed

    Jara, Paul; Calyeca, Jazmin; Romero, Yair; Plácido, Luis; Yu, Guoying; Kaminski, Naftali; Maldonado, Vilma; Cisneros, José; Selman, Moisés; Pardo, Annie

    2015-03-15

    Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal interstitial lung disease of unknown etiology characterized by aberrant activation of epithelial cells that induce the migration, proliferation and activation of fibroblasts. The resulting distinctive fibroblastic/myofibroblastic foci are responsible for the excessive extracellular matrix (ECM) production and abnormal lung remodeling. We have recently found that matrix metalloproteinase 19 (MMP-19)-deficient (Mmp19-/-) mice develop an exaggerated bleomycin-induced lung fibrosis, but the mechanisms are unclear. In this study, we explored the effect of MMP-19 deficiency on fibroblast gene expression and cell behavior. Microarray analysis of Mmp19-/- lung fibroblasts revealed the dysregulation of several profibrotic pathways, including ECM formation, migration, proliferation, and autophagy. Functional studies confirmed these findings. Compared with wild-type mice, Mmp19-/- lung fibroblasts showed increased α1 (I) collagen gene and collagen protein production at baseline and after transforming growth factor-β treatment and increased smooth muscle-α actin expression (P < 0.05). Likewise, Mmp19-deficient lung fibroblasts showed a significant increase in proliferation (P < 0.01) and in transmigration and locomotion over Boyden chambers coated with type I collagen or with Matrigel (P < 0.05). These findings suggest that, in lung fibroblasts, MMP-19 has strong regulatory effects on the synthesis of key ECM components, on fibroblast to myofibroblast differentiation, and in migration and proliferation. PMID:25575513

  14. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis

    PubMed Central

    Pittayapruek, Pavida; Meephansan, Jitlada; Prapapan, Ornicha; Komine, Mayumi; Ohtsuki, Mamitaro

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions. PMID:27271600

  15. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis.

    PubMed

    Pittayapruek, Pavida; Meephansan, Jitlada; Prapapan, Ornicha; Komine, Mayumi; Ohtsuki, Mamitaro

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases with an extensive range of substrate specificities. Collectively, these enzymes are able to degrade various components of extracellular matrix (ECM) proteins. Based on their structure and substrate specificity, they can be categorized into five main subgroups, namely (1) collagenases (MMP-1, MMP-8 and MMP-13); (2) gelatinases (MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10 and MMP-11); (4) matrilysins (MMP-7 and MMP-26); and (5) membrane-type (MT) MMPs (MMP-14, MMP-15, and MMP-16). The alterations made to the ECM by MMPs might contribute in skin wrinkling, a characteristic of premature skin aging. In photocarcinogenesis, degradation of ECM is the initial step towards tumor cell invasion, to invade both the basement membrane and the surrounding stroma that mainly comprises fibrillar collagens. Additionally, MMPs are involved in angiogenesis, which promotes cancer cell growth and migration. In this review, we focus on the present knowledge about premature skin aging and skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, with our main focus on members of the MMP family and their functions. PMID:27271600

  16. Matrix Metalloproteinase-9 Production by Immortalized Human Chondrocyte Lines

    PubMed Central

    Malemud, Charles J.; Meszaros, Evan C.; Wylie, Meredith A.; Dahoud, Wissam; Skomorovska-Prokvolit, Yelenna; Mesiano, Sam

    2016-01-01

    We reported at the Keynote Forum of Immunology Summit-2015 that recombinant human (rh) TNF-α or rhIL-6 stimulated production of matrix metalloproteinase-9 (MMP-9) in the T/C28a2 and C-28/I2 human immortalized chondrocyte cell lines. Furthermore, we reported that tocilizumab (TCZ), a fully humanized monoclonal antibody which neutralizes IL-6-mediated signaling, inhibited the rhIL-6-mediated increase in the production of MMP-9. IL-6 is also a known activator of the JAK/STAT signaling pathway. In that regard, we evaluated the effect of rhIL-6 on total and phosphorylated Signal Transducer and Activator of Transcription by these chondrocyte lines which showed that whereas STAT3 was constitutively phosphorylated in T/C28a2 chondrocytes, rhIL-6 activated STAT3 in C-28/I2 chondrocytes. The finding that rhIL-6 increased the production of MMP-9 by human immortalized chondrocyte cell lines may have important implications with respect to the destruction of articular cartilage in rheumatoid arthritis and osteoarthritis. Thus, the markedly elevated level of IL-6 in rheumatoid arthritis and osteoarthritis sera and synovial fluid would be expected to generate significant MMP-9 to cause the degradation of articular cartilage extracellular matrix proteins. The finding that TCZ suppressed rhIL-6-mediated MMP-9 production suggests that TCZ, currently employed in the medical therapy of rheumatoid arthritis, could be considered as a drug for osteoarthritis.

  17. Matrix metalloproteinase-1 inhibitory activity of Kaempferia pandurata Roxb.

    PubMed

    Shim, Jae-Seok; Choi, Eun-Jung; Lee, Chan-Woo; Kim, Han-Sung; Hwang, Jae-Kwan

    2009-06-01

    Matrix metalloproteinase (MMP)-1 is a superfamily of zinc-dependent endopeptidases that are capable of degrading all components of the extracellular matrix. Kaempferia pandurata extract (0.01-0.5 microg/mL) significantly reduced the expression of MMP-1 and induced the expression of type 1 procollagen at the protein and mRNA levels in a dose-dependent manner. Ultraviolet (UV)-induced MMP-1 initiates cleavage of fibrillar collagen. Once cleaved by MMP-1, collagen can be further degraded by elevated levels of MMP-3 and MMP-9. It was found that increased MMP-1 expression due to UV irradiation was mediated by activation of mitogen-activated protein kinases such as extracellular-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38 kinase. Treatment of K. pandurata extract in the range of 0.01-0.5 microg/mL inhibited the UV-induced phosphorylations of ERK, JNK, and p38, respectively. Moreover, inhibition of phosphorylated ERK, JNK, and p38 by K. pandurata extract resulted in decreased c-Fos expression and c-Jun phosphorylation induced by UV light. The results strongly suggest that K. pandurata is potentially useful for the prevention and treatment of skin aging. PMID:19627209

  18. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance. PMID:23667866

  19. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in sera and tissue of patients with Dupuytren's disease.

    PubMed

    Ulrich, Dietmar; Hrynyschyn, Klaus; Pallua, Norbert

    2003-10-01

    Dupuytren's contracture is a fibroproliferative disorder characterized by progressive deposition of mature collagen fibers. In other fibrotic diseases affecting organs such as the liver, lung, heart, and skin, matrix metalloproteinases (MMPs) and their natural inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), play an important role. In this study, serum concentrations of MMP-1, MMP-2, MMP-9, TIMP-1, and TIMP-2 were determined in 22 patients (five women and 17 men; average age, 67 +/- 11 years) with Dupuytren's disease using an enzyme-linked immunosorbent assay. Tissue samples were obtained for standard histological and immunohistochemical analyses. Sera and samples of palmar fascia from 20 patients (13 women and seven men; average age, 60 +/- 15 years) who had undergone hand surgery for carpal tunnel syndrome were used as the control group. Statistical analysis was performed using the Mann-Whitney test. Patients with Dupuytren's contracture presented with a TIMP-1 concentration of 437 +/- 160 ng/ml, a significantly higher TIMP-1 concentration than that seen in the control patients, who had a concentration of 321 +/- 70 ng/ml (p < 0.05). Patients with a proliferative active disease (n = 14) had a significantly higher TIMP-1 concentration (525 +/- 136 ng/ml) than patients (n = 8) with a contracture in the late involutional and residual phase (286 +/- 41 ng/ml; p < 0.05). There were no significant differences in the TIMP-2, MMP-1, MMP-2, and MMP-9 serum concentrations between patients with palmar fibromatosis and the control group. Patients with Dupuytren's disease had a significantly lower MMP-to-TIMP ratio (1.1 +/- 0.3; p < 0.05) than the control group (1.5 +/- 0.35). Patients with an active palmar fibromatosis presented a significantly (p < 0.05) reduced ratio (1 +/- 0.2) compared with those in later phases (1.4 +/- 0.3). TIMP-1 and TIMP-2 could be detected in tissue of patients with Dupuytren's contracture, with an accumulation in proliferative

  20. Genetic polymorphisms of matrix metalloproteinase 3 in primary sclerosing cholangitis

    PubMed Central

    Juran, Brian D.; Atkinson, Elizabeth J.; Schlicht, Erik M.; Larson, Joseph J.; Ellinghaus, David; Franke, Andre; Lazaridis, Konstantinos N.

    2011-01-01

    Background The damaging cholestasis inherent to primary sclerosing cholangitis (PSC) results from bile duct stricturing because of progressive fibrosis. The matrix metalloproteinase 3 (MMP3) degrades a wide range of matrix components and is expressed by activated liver stellate cells, and so is a candidate for involvement with the fibrotic processes underlying PSC. Moreover, the MMP3 gene harbours polymorphisms associated with variation in its activity directly impacting clinical phenotypes. Aims We aimed to examine the influence of MMP3 polymorphisms on PSC risk and progression. Methods Nine single nucleotide polymorphisms (SNPs) tagging the common genetic variation of MMP3 were genotyped in 266 PSC patients and 407 controls. SNPs and inferred haplotypes were assessed for PSC association by logistic regression and score tests. The effect of SNPs on survival to liver transplant or death was analysed using Cox regression, and Kaplan–Meier curves were constructed. Results No association of PSC with individual SNPs or haplotypes of MMP3 was detected. However, progression to death or liver transplant was significantly associated with homozygosity for minor alleles of rs522616, rs650108 and rs683878, particularly among PSC patients with concurrent ulcerative colitis (UC) (strongest in redundant SNPs rs650108/rs683878, hazard ratio = 3.23, 95% confidence interval 1.45–7.25, P = 0.004). Conclusions Genetic variation in MMP3 influences PSC progression, possibly in the context of coexisting UC. While the functional variants and specific mechanisms remain unknown, this finding implicates the turnover of the extracellular matrix as an important and variable component of PSC pathogenesis. Efforts to understand this process could form the basis for developing effective treatments, which are currently lacking for PSC. PMID:21134112

  1. Bone tissue remodeling and development: focus on matrix metalloproteinase functions.

    PubMed

    Paiva, Katiucia Batista Silva; Granjeiro, José Mauro

    2014-11-01

    Bone-forming cells originate from distinct embryological layers, mesoderm (axial and appendicular bones) and ectoderm (precursor of neural crest cells, which mainly form facial bones). These cells will develop bones by two principal mechanisms: intramembranous and endochondral ossification. In both cases, condensation of multipotent mesenchymal cells occurs, at the site of the future bone, which differentiate into bone and cartilage-forming cells. During long bone development, an initial cartilaginous template is formed and replaced by bone in a coordinated and refined program involving chondrocyte proliferation and maturation, vascular invasion, recruitment of adult stem cells and intense remodeling of cartilage and bone matrix. Matrix metalloproteinases (MMPs) are the most important enzymes for cleaving structural components of the extracellular matrix (ECM), as well as other non-ECM molecules in the ECM space, pericellular perimeter and intracellularly. Thus, the bioactive molecules generated act on several biological events, such as development, tissue remodeling and homeostasis. Since the discovery of collagenase in bone cells, more than half of the MMP members have been detected in bone tissues under both physiological and pathological conditions. Pivotal functions of MMPs during development and bone regeneration have been revealed by knockout mouse models, such as chondrocyte proliferation and differentiation, osteoclast recruitment and function, bone modeling, coupling of bone resorption and formation (bone remodeling), osteoblast recruitment and survival, angiogenesis, osteocyte viability and function (biomechanical properties); as such alterations in MMP function may alter bone quality. In this review, we look at the principal properties of MMPs and their inhibitors (TIMPs and RECK), provide an up-date on their known functions in bone development and remodeling and discuss their potential application to Bone Bioengineering. PMID:25157440

  2. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities

    PubMed Central

    ZHANG, HONGQI; CHU, GE; PAN, CHAO; HU, JIANZHONG; GUO, CHAOFENG; LIU, JINYANG; WANG, YUXIANG; WU, JIANHUANG

    2014-01-01

    This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9

  3. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones.

    PubMed Central

    Rodgers, W H; Matrisian, L M; Giudice, L C; Dsupin, B; Cannon, P; Svitek, C; Gorstein, F; Osteen, K G

    1994-01-01

    Matrix metalloproteinases are a highly regulated family of enzymes, that together can degrade most components of the extracellular matrix. These proteins are active in normal and pathological processes involving tissue remodeling; however, their sites of synthesis and specific roles are poorly understood. Using in situ hybridization, we determined cellular distributions of matrix metalloproteinases and tissue inhibitor of metalloproteinase-1, an inhibitor of matrix metalloproteinases, in endometrium during the reproductive cycle. The mRNAs for all the metalloproteinases were detected in menstrual endometrium, but with different tissue distributions. The mRNA for matrilysin was localized to epithelium, while the others were detected in stromal cells. Only the transcripts for the 72-kD gelatinase and tissue inhibitor of metalloproteinases-1 were detected throughout the cycle. Transcripts for stromelysin-2 and the 92-kD gelatinase were only detected in late secretory and menstrual endometrium, while those for matrilysin, the 72-kD gelatinase, and stromelysin-3 were also consistently detected in proliferative endometrium. These data indicate that matrix metalloproteinases are expressed in cell-type, tissue, and reproductive cycle-specific patterns, consistent with regulation by steroid hormones, and with specific roles in the complex tissue growth and remodeling processes occurring in the endometrium during the reproductive cycle. Images PMID:8083380

  4. Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration

    PubMed Central

    Chaussain, Catherine; Boukpessi, Tchilalo; Khaddam, Mayssam; Tjaderhane, Leo; George, Anne; Menashi, Suzanne

    2013-01-01

    Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs) contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration. PMID:24198787

  5. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  6. A Novel Mechanism of Latency in Matrix Metalloproteinases*

    PubMed Central

    López-Pelegrín, Mar; Ksiazek, Miroslaw; Karim, Abdulkarim Y.; Guevara, Tibisay; Arolas, Joan L.; Potempa, Jan; Gomis-Rüth, F. Xavier

    2015-01-01

    The matrix metalloproteinases (MMPs) are a family of secreted soluble or membrane-anchored multimodular peptidases regularly found in several paralogous copies in animals and plants, where they have multiple functions. The minimal consensus domain architecture comprises a signal peptide, a 60–90-residue globular prodomain with a conserved sequence motif including a cysteine engaged in “cysteine-switch” or “Velcro” mediated latency, and a catalytic domain. Karilysin, from the human periodontopathogen Tannerella forsythia, is the only bacterial MMP to have been characterized biochemically to date. It shares with eukaryotic forms the catalytic domain but none of the flanking domains. Instead of the consensus MMP prodomain, it features a 14-residue propeptide, the shortest reported for a metallopeptidase, which lacks cysteines. Here we determined the structure of a prokarilysin fragment encompassing the propeptide and the catalytic domain, and found that the former runs across the cleft in the opposite direction to a bound substrate and inhibits the latter through an “aspartate-switch” mechanism. This finding is reminiscent of latency maintenance in the otherwise unrelated astacin and fragilysin metallopeptidase families. In addition, in vivo and biochemical assays showed that the propeptide contributes to protein folding and stability. Our analysis of prokarilysin reveals a novel mechanism of latency and activation in MMPs. Finally, our findings support the view that the karilysin catalytic domain was co-opted by competent bacteria through horizontal gene transfer from a eukaryotic source, and later evolved in a specific bacterial environment. PMID:25555916

  7. Matrix metalloproteinase 9 modulates collagen matrices and wound repair

    PubMed Central

    LeBert, Danny C.; Squirrell, Jayne M.; Rindy, Julie; Broadbridge, Elizabeth; Lui, Yuming; Zakrzewska, Anna; Eliceiri, Kevin W.; Meijer, Annemarie H.; Huttenlocher, Anna

    2015-01-01

    Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair. PMID:26015541

  8. Matrix Metalloproteinases and Minocycline: Therapeutic Avenues for Fragile X Syndrome

    PubMed Central

    Siller, Saul S.; Broadie, Kendal

    2012-01-01

    Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor. PMID:22685676

  9. Protective effects of matrix metalloproteinase-12 following corneal injury.

    PubMed

    Chan, Matilda F; Li, Jing; Bertrand, Anthony; Casbon, Amy-Jo; Lin, Jeffrey H; Maltseva, Inna; Werb, Zena

    2013-09-01

    Corneal scarring due to injury is a leading cause of blindness worldwide and results from dysregulated inflammation and angiogenesis during wound healing. Here we demonstrate that the extracellular matrix metalloproteinase MMP12 (macrophage metalloelastase) is an important regulator of these repair processes. Chemical injury resulted in higher expression of the fibrotic markers α-smooth muscle actin and type I collagen, and increased levels of angiogenesis in corneas of Mmp12(-/-) mice compared with corneas of wild-type mice. In vivo, we observed altered immune cell dynamics in Mmp12(-/-) corneas by confocal imaging. We determined that the altered dynamics were the result of an altered inflammatory response, with delayed neutrophil infiltration during the first day and excessive macrophage infiltration 6 days later, mediated by altered expression levels of chemokines CXCL1 and CCL2, respectively. Corneal repair returned to normal upon inhibition of these chemokines. Taken together, these data show that MMP12 has a protective effect on corneal fibrosis during wound repair through regulation of immune cell infiltration and angiogenesis. PMID:23813962

  10. Matrix metalloproteinase inhibitor development and the remodeling of drug discovery.

    PubMed

    Peterson, J Thomas

    2004-01-01

    Collagen turnover is a slow process on a biologic timescale with a t$\\\\frac12$ of 20-27 days that is mediated primarily by the matrix metalloproteinases (MMPs). Low collagen metabolism is not due to an intrinsically low Km of MMPs, but rather due to a highly regulated system of activity. Despite the stability of collagen and MMPs, the articles in this special addition illustrate the importance of this enzyme family in the disease process leading to congestive heart failure. Like MMPs, drug development is a tightly regulated process, and the successful turnover of MMP inhibitors into a marketed drug has also been a slow process on a pharmaceutical timescale. Since the discovery of the archetypal MMP (type 1 collagenase) over four decades ago by Gross and Lapierre, most major pharmaceutical companies have had MMP inhibitor programs for a variety of indications. Despite decades of research, tens of thousands of compounds synthesized and screened, and billions of dollars spent in clinical studies-Periostat (doxycycline hyclate, CollaGenex Pharmaceuticals Inc.) is the only collagenase inhibitor to be successfully launched. In addition, Periostat's approval is currently limited to periodontal disease. This article focuses on some of the lessons to be learned from the failure of so many MMP inhibitors across so many indications, and what potential exists for MMP inhibitors as a drug class, especially for heart failure. PMID:14739769

  11. A novel mechanism of latency in matrix metalloproteinases.

    PubMed

    López-Pelegrín, Mar; Ksiazek, Miroslaw; Karim, Abdulkarim Y; Guevara, Tibisay; Arolas, Joan L; Potempa, Jan; Gomis-Rüth, F Xavier

    2015-02-20

    The matrix metalloproteinases (MMPs) are a family of secreted soluble or membrane-anchored multimodular peptidases regularly found in several paralogous copies in animals and plants, where they have multiple functions. The minimal consensus domain architecture comprises a signal peptide, a 60-90-residue globular prodomain with a conserved sequence motif including a cysteine engaged in "cysteine-switch" or "Velcro" mediated latency, and a catalytic domain. Karilysin, from the human periodontopathogen Tannerella forsythia, is the only bacterial MMP to have been characterized biochemically to date. It shares with eukaryotic forms the catalytic domain but none of the flanking domains. Instead of the consensus MMP prodomain, it features a 14-residue propeptide, the shortest reported for a metallopeptidase, which lacks cysteines. Here we determined the structure of a prokarilysin fragment encompassing the propeptide and the catalytic domain, and found that the former runs across the cleft in the opposite direction to a bound substrate and inhibits the latter through an "aspartate-switch" mechanism. This finding is reminiscent of latency maintenance in the otherwise unrelated astacin and fragilysin metallopeptidase families. In addition, in vivo and biochemical assays showed that the propeptide contributes to protein folding and stability. Our analysis of prokarilysin reveals a novel mechanism of latency and activation in MMPs. Finally, our findings support the view that the karilysin catalytic domain was co-opted by competent bacteria through horizontal gene transfer from a eukaryotic source, and later evolved in a specific bacterial environment. PMID:25555916

  12. Equine sarcoid: In situ demonstration of matrix metalloproteinase expression.

    PubMed

    Mosseri, S; Hetzel, U; Hahn, Shelley; Michaloupoulou, Eleni; Sallabank, Hannah Clare; Knottenbelt, Derek C; Kipar, A

    2014-11-01

    Sarcoids are the most prevalent equine skin tumours and remain a therapeutic challenge due to their differing clinical morphology, local aggressive behaviour, and high recurrence following surgical treatment. In vitro, sarcoid derived fibroblasts are invasive and express matrix metalloproteinase (MMP) -1, -2 and -9. It was hypothesised that the MMPs produced by neoplastic cells play a role in both their local invasiveness and interaction with the overlying epidermis (picket fence formation). The objective of this morphological study was to investigate the local behaviour and in situ MMP expression pattern in sarcoids of different clinical types. A total of 43 surgically excised sarcoids were examined by histology, immunohistology for the expression of MMP-1, -2 and -9, and transmission electron microscopy. Regardless of the clinical type, sarcoids showed local invasion of the dermis and damage to the basement membrane in areas of interaction with the epidermis. This was associated with MMP-1 expression in both neoplastic cells and epidermis. The results suggest a link between MMP-1 expression and the local aggressiveness of sarcoids regardless of the clinical type. PMID:25439440

  13. Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

    PubMed

    Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L

    2015-06-16

    Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling. PMID:26018933

  14. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    PubMed Central

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity. PMID:19619515

  15. Matrix metalloproteinase expression in excimer laser wounded rabbit corneas

    NASA Astrophysics Data System (ADS)

    Hahn, Taewon; Chamon, Wallace; Akova, Yonja; Stark, Walter J.; Stetler-Stevenson, William G.; Azar, Dimitri T.

    1994-06-01

    This study was performed to obtain information about matrix metalloproteinase (MMP) expression in excimer-wounded corneas and to determine whether MMPs expression correlates with the depth of the ablation. 6-mm excimer keratectomy (60 or 180 micrometers ) was performed using the 193-mm ArF excimer laser on 12 NZW rabbits. Corneas treated with mechanical epithelial debridement and untreated corneas served as controls. Rabbits were killed at 20 and 30 hr after laser ablation. Zymography after SDS extraction was performed on regenerated central epithelium and the central stroma to determine MMPs expression. We observed enzymatic activity of a 92 KDa band in the epithelium of excimer-ablated corneas but not in that following debridement wounds and untreated controls. The expression of the 92 KDa MMP was most pronounced with the deeper excimer ablation. A 72 KDa band of enzymatic activity present in the stroma of all treated and control eyes was also seen in the epithelium of excimer-ablated corneas. These proteolytic enzymes may play an important role in wound healing and remodelling after excimer keratectomy.

  16. Influence of matrix metalloproteinase-12 on fibrinogen level.

    PubMed

    Motterle, Anna; Xiao, Qingzhong; Kiechl, Stefan; Pender, Sylvia L F; Morris, Gareth E; Willeit, Johann; Caulfield, Mark J; Ye, Shu

    2012-02-01

    In vitro studies have shown that matrix metalloproteinase-12 (MMP12) can degrade fibrinogen, a clotting factor whose level predicts risk of advanced atherosclerosis and myocardial infarction. In this study, we found that mean plasma fibrinogen level was approximately 10-fold higher in MMP12 knockout mice than wildtype mice (p=0.0006). Differential allelic expression analysis of human MMP12 gene polymorphism rs17368582 in human vascular tissues showed an allele-specific effect on MMP12 expression, with one allele (T) having 1.6 fold higher expression level than the other allele (C) (p=0.0006). In a population cohort, we found that individuals homozygous for the MMP12 low expression allele had higher plasma fibrinogen levels (2.95 mg/mL compared with 2.61 mg/mL in other individuals, p=0.029) and increased risk of advanced atherosclerosis [odds ratio 6.3 (95% CI 1.9-20.8), p=0.003] and myocardial infarction [hazard ratio 5.6 (95% CI 1.7-18.3), p=0.005]. In summary, our study in mouse and humans provides in vivo evidence of an effect of MMP12 on fibrinogen level. PMID:22119538

  17. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  18. Differential temporal expression of matrix metalloproteinases following sciatic nerve crush

    PubMed Central

    Qin, Jing; Zha, Guang-bin; Yu, Jun; Zhang, Hong-hong; Yi, Sheng

    2016-01-01

    We previously performed transcriptome sequencing and found that genes for matrix metalloproteinases (MMPs), such as MMP7 and 12, seem to be highly upregulated following peripheral nerve injury, and may be involved in nerve repair. In the present study, we systematically determined the expression levels of MMPs and their regulators at 1, 4, 7 and 14 days after sciatic nerve crush injury. The number of differentially expressed genes was elevated at 4 and 7 days after injury, but decreased at 14 days after injury. Among the differentially expressed genes, those most up-regulated showed fold changes of more than 214, while those most down-regulated exhibited fold changes of more than 2−10. Gene sequencing showed that, at all time points after injury, a variety of MMP genes in the “Inhibition of MMPs” pathway were up-regulated, and their inhibitor genes were down-regulated. Expression of key up- and down-regulated genes was verified by quantitative real-time polymerase chain reaction analysis and found to be consistent with transcriptome sequencing. These results suggest that MMP-related genes are strongly involved in the process of peripheral nerve regeneration.

  19. The role of inflammation and matrix metalloproteinases in equine endometriosis

    PubMed Central

    Benali, Silvia; Giannuzzi, Diana; Mantovani, Roberto; Castagnaro, Massimo; Falomo, Maria Elena

    2012-01-01

    Equine endometriosis is a multifactorial disease considered to be a major cause of equine infertility. The purpose of this study was to evaluate the reliability of histomorphological grading for biopsy-like samples compared to entire uterine wall samples, to examine the association between the degree of endometriosis with animal age, and to investigate the role of inflammation in endometriosis and the expression of different matrix metalloproteinases in equine endometrium. Histomorphological lesions in 35 uterine samples were examined while comparing biopsy-like samples and entire-wall samples. Seventeen uterine samples were stained with antibodies against MMP-2, MMP-9, MMP-14, and TIMP-2. The morphologic evaluation results of the biopsy-like tissue and entire-wall samples were significantly correlated. Endometriosis in older mares (>12 years of age) was more severe than in young mares (2~4 years of age), confirming the positive correlation between animal age and disease severity, while inflammation was poorly related to the degree of endometriosis. MMP-2 and MMP-14 were detected in stromal cells, while MMP-9 and TIMP-2 were both found in stromal and glandular epithelial cells. There were no significant differences in MMPs expression between the two groups (young vs. old mares). Additional studies on the activity of MMPs could further define the role of these enzymes in equine endometriosis. PMID:22705739

  20. Matrix metalloproteinases as breast cancer drivers and therapeutic targets

    PubMed Central

    Radisky, Evette S.; Radisky, Derek C.

    2015-01-01

    Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis markers for breast cancer patients and as drivers of many facets of the tumor phenotype in experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. However, subsequent research has continued to define key roles for MMPs as breast cancer promoters, to elucidate the complex roles that that these proteins play in breast cancer development and progression, and to identify how these roles are linked to specific and unique biochemical features of individual members of the MMP family. Here, we provide an overview of the structural features of the MMPs, then discuss clinical studies identifying which MMP family members are linked with breast cancer development and new experimental studies that reveal how these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude with a discussion of the most promising avenues for development of therapeutic agents capable of targeting the tumor-promoting properties of MMPs. PMID:25961550

  1. Production of matrix metalloproteinases in response to mycobacterial infection.

    PubMed

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections. PMID:11500442

  2. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice

    PubMed Central

    Stickens, Dominique; Behonick, Danielle J.; Ortega, Nathalie; Heyer, Babette; Hartenstein, Bettina; Yu, Ying; Fosang, Amanda J.; Schorpp-Kistner, Marina; Angel, Peter; Werb, Zena

    2009-01-01

    Summary The assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic chondrocytes in the growth plate and in osteoblasts. Moreover, a mutation in the human MMP13 gene causes the Missouri variant of spondyloepimetaphyseal dysplasia. Inactivation of Mmp13 in mice through homologous recombination led to abnormal skeletal growth plate development. Chondrocytes differentiated normally but their exit from the growth plate was delayed. The severity of the Mmp13-null growth plate phenotype increased until about 5 weeks and completely resolved by 12 weeks of age. Mmp13-null mice had increased trabecular bone, which persisted for months. Conditional inactivation of Mmp13 in chondrocytes and osteoblasts showed that increases in trabecular bone occur independently of the improper cartilage ECM degradation caused by Mmp13 deficiency in late hypertrophic chondrocytes. Our studies identified the two major components of the cartilage ECM, collagen type II and aggrecan, as in vivo substrates for MMP13. We found that degradation of cartilage collagen and aggrecan is a coordinated process in which MMP13 works synergistically with MMP9. Mice lacking both MMP13 and MMP9 had severely impaired endochondral bone, characterized by diminished ECM remodeling, prolonged chondrocyte survival, delayed vascular recruitment and defective trabecular bone formation (resulting in drastically shortened bones). These data support the hypothesis that proper ECM remodeling is the dominant rate-limiting process for programmed cell death, angiogenesis and osteoblast recruitment during normal skeletal morphogenesis. PMID:15539485

  3. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  4. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    PubMed Central

    Liu, Jun-peng; Wang, Yin-zhou; Li, Yong-kun; Cheng, Qiong; Zheng, Zheng

    2015-01-01

    Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10) of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05). Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis. PMID:26170826

  5. ELK3 Expression Correlates With Cell Migration, Invasion, and Membrane Type 1-Matrix Metalloproteinase Expression in MDA-MB-231 Breast Cancer Cells.

    PubMed

    Heo, Sun-Hee; Lee, Je-Yong; Yang, Kyung-Min; Park, Kyung-Soon

    2015-01-01

    ELK3 is a member of the Ets family of transcription factors. Its expression is associated with angiogenesis, vasculogenesis, and chondrogenesis. ELK3 inhibits endothelial migration and tube formation through the regulation of MT1-MMP transcription. This study assessed the function of ELK3 in breast cancer (BC) cells by comparing its expression between basal and luminal cells in silico and in vitro. In silico analysis showed that ELK3 expression was higher in the more aggressive basal BC cells than in luminal BC cells. Similarly, in vitro analysis showed that ELK3 mRNA and protein expression was higher in basal BC cells than in normal cells and luminal BC cells. To investigate whether ELK3 regulates basal cell migration or invasion, knockdown was achieved by siRNA in the basal BC cell line MDA-MB-231. Inhibition of ELK3 expression decreased cell migration and invasion and downregulated MT1-MMP, the expression of which is positively correlated with tumor cell invasion. In silico analysis revealed that ELK3 expression was associated with that of MT1-MMP in several BC cell lines (0.98 Pearson correlation coefficient). Though MT1-MMP expression was upregulated upon ELK3 nuclear translocation, ELK3 did not directly bind to the 1.3-kb promoter region of the MT1-MMP gene. These results suggest that ELK3 plays a positive role in the metastasis of BC cells by indirectly regulating MT1-MMP expression. PMID:26637400

  6. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation

    PubMed Central

    Wei, Ting; Zhang, Haihong; Cetin, Neslihan; Miller, Emily; Moak, Teri; Suen, James Y.; Richter, Gresham T.

    2016-01-01

    Extracranial arteriovenous malformations (AVMs) are rare but dangerous congenital lesions arising from direct arterial-venous shunts without intervening capillaries. Progressive infiltration, expansion, and soft tissue destruction lead to bleeding, pain, debilitation and disfigurement. The pathophysiology of AVMs is not well understood. Matrix Metalloproteinases (MMPs) are thought to play an important role in pathologic processes underlying many diseases. This study investigates the expression of MMP-9 and MMP-2 in aggressive extracranial AVMs. The differential expression of MMP-9 and its regulatory factors is also examined. Herein we demonstrate that mRNA and protein expressions of MMP-9, but not MMP-2, are significantly higher in AVM tissues compared to normal tissues. The serum level of MMP-9, but not MMP-2, is also elevated in AVM patients compared to healthy controls. MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex is also significantly increased in AVM tissues. The MMP-9/ tissue inhibitor of metalloproteases-1 (TIMP-1) complex presents as a major form detected in normal tissues. The increased and aberrant expression of MMP-9 and specific MMP-9 forms may help explain the constitutive vascular remodeling and infiltrative nature of these lesions. Specific MMP-9 inhibitors would be a promising treatment for AVMs. PMID:27075045

  7. Matrix metalloproteinases, tissue inhibitors of matrix metalloproteinases and angiogenic cytokines in peripheral blood of patients with thyroid cancer.

    PubMed

    Komorowski, Jan; Pasieka, Z; Jankiewicz-Wika, J; Stepień, H

    2002-08-01

    Stimulation of growth of endothelial cells from preexisting blood vessels, i.e., angiogenesis, is one of the essential elements necessary to create a permissive environment in which a tumor can grow. During angiogenesis, the matrix metalloproteinase (MMP) family of tissue enzymes contributes to normal (embriogenesis or wound repair) and pathologic tissue remodeling (chronic inflammation and tumor genesis). The proposed pathogenic roles of MMPs in cancer are tissue breakdown and remodeling during invasive tumor growth and tumor angiogenesis. Tissue inhibitors of metalloproteinases (TIMPs) form a complex with MMPs, which in turn inhibits active MMPs. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are unique among mediators of angiogenesis with synergistic effect, and both can also be secreted by thyroid cancer cells. The goal of the study was to evaluate the plasma blood concentration of VEGF, bFGF, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, TIMP-1, and TIMP-2 in patients with cancer and in normal subjects. Twenty-two patients with thyroid cancers (papillary cancer, 11; partly papillary and partly follicular cancer, 3; anaplastic cancer, 5; medullary cancer, 3) and 16 healthy subjects (controls) were included in the study. VEGF, bFGF MMPs, and TIMPs were evaluated by enzyme-linked immunosorbent assay (ELISA). In patients with thyroid cancer, normal VEGF concentrations (74.29 +/- 13.38 vs. 84.85 +/- 21.71 pg/mL; p > 0.05) and increased bFGF (29.52 +/- 4.99 vs. 6.05 +/- 1.43 pg/mL; p < 0.001), MMP-2 (605.95 +/- 81.83 vs. 148.75 +/- 43.53 ng/mL; p < 0.001), TIMP-2 (114.19 +/- 6.62 vs. 60.75 +/- 9.18 ng/mL; p < 0.001), as well as lower MMP-1 (0.70 +/- 0.42 vs. 3.87 +/- 0.53; p < 0.001) levels have been noted. Increased plasma levels of MMP-3 and MMP-9 were also found in patients with medullary carcinoma. In conclusion, predominance of MMP-2 over TIMP-2 and TIMP-1 over MMP-1 as well as increased concentration of bFGF in peripheral blood are

  8. Matrix metalloproteinase inhibitory properties of benzalkonium chloride stabilizes adhesive interfaces.

    PubMed

    Sabatini, Camila; Patel, Shaival K

    2013-12-01

    This study evaluated the effects of different concentrations of benzalkonium chloride (BAC) on the preservation of adhesive interfaces created with two etch-and-rinse adhesives and its inhibitory properties on dentin matrix metalloproteinase (MMP) activity. The following groups were tested with the adhesive systems Optibond Solo Plus and All-Bond 3: Group 1, adhesive without inhibitor (control); Group 2, topical 2.0% chlorhexidine (2.0% CHX); Group 3, phosphoric acid with 1.0%wt BAC (BAC-PA); Group 4, 0.25% BAC-adhesive (0.25% BAC); Group 5, 0.5% BAC-adhesive (0.5% BAC); Group 6, 1.0% BAC-adhesive (1.0% BAC); and Group 7, 2.0% BAC-adhesive (2.0% BAC). Composite cylinders were fabricated, and shear bond strength (SBS) was evaluated after 24 h, 6 months, and 18 months of storage. Extracts from concentrated demineralized human dentin powder were subjected to SDS-PAGE and incubated in the presence of 0.25, 0.5, 1.0, and 2.0% BAC. Overall, stable bonds were maintained for 18 months. Improved bond strengths were seen for 0.5% BAC and 1.0% BAC when bonding with Optibond Solo Plus, and for 0.25% BAC and 0.5% BAC when bonding with All-Bond 3. Zymographic analysis revealed complete inhibition of gelatinolytic activity with BAC. Benzalkonium chloride, at all concentrations, inhibited dentin proteolytic activity, which seems to have contributed to the improved bond stability after 18 months for specific combinations of BAC concentration and adhesive. PMID:24206077

  9. Effect of α-asarone on angiogenesis and matrix metalloproteinase.

    PubMed

    Park, Hye-Jung; Lee, Soo-Jin; Kim, Moon-Moo

    2015-05-01

    α-Asarone is a main component of Acorus gramineus widely known as an oriental traditional medicinal stuff. A. gramineus has been known to have a variety of medicinal efficacies such as anti-gastric ulcer and anti-allergic activities, inhibition of histamine release and antioxidant effect. However, its effect on angiogenesis remains unclear. The aim of this study was to investigate the effect of α-asarone on induction of angiogenesis through modulation of matrix metalloproteinase (MMP). First of all, MTT assay was performed to evaluate the effect of α-asarone on cell viability using MTT assay, and then tube formation assay with human umbilical vein endothelial cells (HUVEC) in vitro and rat aorta ring assay ex vivo were carried out to elucidate its effect on angiogenesis. Treatment with α-asarone below 6μM showed no cytotoxicity in human fibrosarcoma cells (HT1080) and HUVEC. It was observed that α-asarone not only promotes tube formation of HUVEC but also induces angiogenesis of rat aorta. In addition, the effects of α-asarone on the expressions of protein and gene were evaluated using western blot analysis and RT-PCR assay. α-Asarone increased the expression levels of MMP-2 and MMP-9 stimulated by phenazine methosulfate (PMS) and phorbol 12-myristate 13-acetate (PMA) in HT1080. Especially, the expression level of antioxidant enzyme such as glutathione reductase was increased in the presence of α-asarone. Therefore, above findings suggest that α-asarone may play an important role in pathological diseases related to MMP and angiogenesis. PMID:25912851

  10. Basis for substrate recognition and distinction by matrix metalloproteinases

    PubMed Central

    Ratnikov, Boris I.; Cieplak, Piotr; Gramatikoff, Kosi; Pierce, James; Eroshkin, Alexey; Igarashi, Yoshinobu; Kazanov, Marat; Sun, Qing; Godzik, Adam; Osterman, Andrei; Stec, Boguslaw; Strongin, Alex; Smith, Jeffrey W.

    2014-01-01

    Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure–function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221–227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure–function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50–57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs. PMID:25246591

  11. Basis for substrate recognition and distinction by matrix metalloproteinases.

    PubMed

    Ratnikov, Boris I; Cieplak, Piotr; Gramatikoff, Kosi; Pierce, James; Eroshkin, Alexey; Igarashi, Yoshinobu; Kazanov, Marat; Sun, Qing; Godzik, Adam; Osterman, Andrei; Stec, Boguslaw; Strongin, Alex; Smith, Jeffrey W

    2014-10-01

    Genomic sequencing and structural genomics produced a vast amount of sequence and structural data, creating an opportunity for structure-function analysis in silico [Radivojac P, et al. (2013) Nat Methods 10(3):221-227]. Unfortunately, only a few large experimental datasets exist to serve as benchmarks for function-related predictions. Furthermore, currently there are no reliable means to predict the extent of functional similarity among proteins. Here, we quantify structure-function relationships among three phylogenetic branches of the matrix metalloproteinase (MMP) family by comparing their cleavage efficiencies toward an extended set of phage peptide substrates that were selected from ∼ 64 million peptide sequences (i.e., a large unbiased representation of substrate space). The observed second-order rate constants [k(obs)] across the substrate space provide a distance measure of functional similarity among the MMPs. These functional distances directly correlate with MMP phylogenetic distance. There is also a remarkable and near-perfect correlation between the MMP substrate preference and sequence identity of 50-57 discontinuous residues surrounding the catalytic groove. We conclude that these residues represent the specificity-determining positions (SDPs) that allowed for the expansion of MMP proteolytic function during evolution. A transmutation of only a few selected SDPs proximal to the bound substrate peptide, and contributing the most to selectivity among the MMPs, is sufficient to enact a global change in the substrate preference of one MMP to that of another, indicating the potential for the rational and focused redesign of cleavage specificity in MMPs. PMID:25246591

  12. Plasma matrix metalloproteinase 2 levels and breast cancer risk.

    PubMed

    Aroner, Sarah A; Rosner, Bernard A; Tamimi, Rulla M; Tworoger, Shelley S; Baur, Nadja; Joos, Thomas O; Hankinson, Susan E

    2015-06-01

    Matrix metalloproteinase 2 (MMP2) is an enzyme with important functions in breast cancer invasion and metastasis. However, it is unclear whether circulating MMP2 levels may predict breast cancer risk. We conducted a prospective nested case-control analysis in the Nurses' Health Study among 1136 cases who were diagnosed with invasive breast cancer between 1992 and 2004 and 1136 matched controls. All participants provided blood samples in 1989-1990, and a subset (170 cases, 170 controls) contributed an additional sample in 2000-2002. Pre-diagnostic plasma MMP2 levels were measured via immunoassay, and conditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), adjusted for breast cancer risk factors. No association was observed between plasma MMP2 levels and risk of total invasive breast cancer (top vs. bottom quartile, OR=1.0; 95% CI: 0.7, 1.2; p-trend=0.89). Findings did not vary significantly by time since blood draw, body mass index, postmenopausal hormone use, or menopausal status at either blood draw or breast cancer diagnosis. MMP2 was associated with a greater risk of nodal metastases at diagnosis (top vs. bottom quartile, OR=1.5; 95% CI: 1.0, 2.2; p-heterogeneity, any vs. no lymph nodes=0.002), but no significant associations were observed with other tumor characteristics or with recurrent or fatal cancers. Plasma MMP2 levels do not appear to be predictive of total invasive breast cancer risk, although associations with aggressive disease warrant further study. PMID:25799912

  13. Plasma matrix metalloproteinase 2 levels and breast cancer risk

    PubMed Central

    Aroner, Sarah A.; Rosner, Bernard A.; Tamimi, Rulla M.; Tworoger, Shelley S.; Baur, Nadja; Joos, Thomas O.; Hankinson, Susan E.

    2015-01-01

    Matrix metalloproteinase 2 (MMP2) is an enzyme with important functions in breast cancer invasion and metastasis. However, it is unclear whether circulating MMP2 levels may predict breast cancer risk. We conducted a prospective nested case-control analysis in the Nurses’ Health Study among 1136 cases who were diagnosed with invasive breast cancer between 1992 and 2004 and 1136 matched controls. All participants provided blood samples in 1989-1990, and a subset (170 cases, 170 controls) contributed an additional sample in 2000 – 2002. Pre-diagnostic plasma MMP2 levels were measured via immunoassay, and conditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), adjusted for breast cancer risk factors. No association was observed between plasma MMP2 levels and risk of total invasive breast cancer (top vs. bottom quartile, OR = 1.0; 95% CI: 0.7, 1.2; p-trend = 0.89). Findings did not vary significantly by time since blood draw, body mass index, postmenopausal hormone use, or menopausal status at either blood draw or breast cancer diagnosis. MMP2 was associated with a greater risk of nodal metastases at diagnosis (top vs. bottom quartile, OR = 1.5; 95% CI: 1.0, 2.2; p-heterogeneity, any vs. no lymph nodes = 0.002), but no significant associations were observed with other tumor characteristics or with recurrent or fatal cancers. Plasma MMP2 levels do not appear to be predictive of total invasive breast cancer risk, although associations with aggressive disease warrant further study. PMID:25799912

  14. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'.

    PubMed

    Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo; Carrilho, Marcela; Chaussain, Catherine

    2015-01-01

    Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties. PMID:25661522

  15. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover

    PubMed Central

    Phillips, P A; McCarroll, J A; Park, S; Wu, M-J; Pirola, R; Korsten, M; Wilson, J S; Apte, M V

    2003-01-01

    Background: Pancreatic fibrosis is a characteristic feature of chronic pancreatic injury and is thought to result from a change in the balance between synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies suggest that activated pancreatic stellate cells (PSCs) play a central role in pancreatic fibrogenesis via increased synthesis of ECM proteins. However, the role of these cells in ECM protein degradation has not been fully elucidated. Aims: To determine: (i) whether PSCs secrete matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) and, if so (ii) whether MMP and TIMP secretion by PSCs is altered in response to known PSC activating factors such as tumour necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin 6 (IL-6), ethanol, and acetaldehyde. Methods: Cultured rat PSCs (n=3–5 separate cell preparations) were incubated at 37°C for 24 hours with serum free culture medium containing TNF-α (5–25 U/ml), TGF-β1 (0.5–1 ng/ml), IL-6 (0.001–10 ng/ml), ethanol (10–50 mM), or acetaldehyde (150–200 μM), or no additions (controls). Medium from control cells was examined for the presence of MMPs by zymography using a 10% polyacrylamide-0.1% gelatin gel. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine gene expression of MMP9 and the tissue inhibitors of metalloproteinases TIMP1 and TIMP2. Western blotting was used to identify a specific MMP, MMP2 (a gelatinase that digests basement membrane collagen and the dominant MMP observed on zymography) and a specific TIMP, TIMP2. Reverse zymography was used to examine functional TIMPs in PSC secretions. The effect of TNF-α, TGF-β1, and IL-6 on MMP2 secretion was assessed by densitometry of western blots. The effect of ethanol and acetaldehyde on MMP2 and TIMP2 secretion was also assessed by this method. Results: Zymography revealed that PSCs secrete a number of MMPs including proteinases with molecular

  16. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  17. Expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in tissues with a diagnosis of childhood lymphoma.

    PubMed

    Bozkurt, Ceyhun; Ertem, Ulya; Oksal, Aysegül; Sahin, Gürses; Yüksek, Nazmiye; Birgen, Dilek

    2008-09-01

    Matrix metalloproteinases (MMP) are enzymes involved in the reconfiguration of the microenvironment by means of degrading the extracellular matrix and have more than 20 subgroups containing zinc. Proteins that serve as the inhibitors of these enzymes are called tissue inhibitors of matrix metalloproteinase (TIMP). These enzymes have been shown to be active in a wide range of processes, from wound recovery to fetus development, heart diseases, and spread of malignant diseases. The aim of this study was to investigate whether there is a relationship between the type, stage, and prognosis of childhood lymphoma subjects and matrix metalloproteinase type-9 (MMP-9) and its inhibitor, tissue inhibitor of matrix metalloproteinase type-1 (TIMP-1). Paraffin blocks of childhood patients diagnosed with non-Hodgkin lymphoma (n = 23), Hodgkin lymphoma (n = 14), or reactive lymphadenopathy (n = 12) were retrospectively immunohistochemically stained with MMP-9 and TIMP-1 stains and whether there was a relationship between the degree of staining and the type, tumor stage, and prognosis of the disease was investigated. Moderate and high degrees of MMP-9 staining were detected in 94.6% of the lymphoma patient tissues and a slight TIMP-1 staining was detected in 21.6% of the lymphoma patient tissues. No relationship was observed between the degree of these staining patterns and the type, tumor stage, and prognosis of the disease. This study indicates that the equilibrium between MMP-9 and TIMP-1 is important in lymphomas in addition to all the physiological and pathologic events although MMP-9 and the TIMP-1 staining patterns are not related to the tumor stage, prognosis, and type of the disease. Larger series of patients are needed to determine the prognostic value of MMP-9 and TIMP-1 in childhood lymphoma. PMID:18850474

  18. The cloning and expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase 2 in normal canine lymph nodes and in canine lymphoma.

    PubMed

    Newman, R G; Kitchell, B E; Wallig, M A; Paria, B

    2008-04-01

    Matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), are known to be important in cancer. The purposes of this study were to determine the cDNA sequence of canine MMP-2 and to investigate the expression patterns of MMP-2 and TIMP2 in normal canine lymph nodes and spontaneously arising canine lymphomas. We cloned and sequenced a PCR product containing most (1901 base pairs) of the coding sequence of canine MMP-2 that translates into a 623 amino acid protein. The cDNA and deduced amino acid sequences are highly homologous to those of other mammalian species. Canine MMP-2 and TIMP2 mRNAs were detectable in the majority of normal lymph node and lymphomatous samples evaluated. No statistical difference was identified when comparing the expression of either gene with regard to normal versus neoplastic nodes, nodal versus extranodal lymphoma, lymphoma grade, or B versus T cell immunophenotype. PMID:17604063

  19. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    PubMed Central

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2011-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy. PMID:22235372

  20. Matrix metalloproteinases as candidate biomarkers in adults with congenital heart disease.

    PubMed

    Baggen, Vivan J M; Eindhoven, Jannet A; van den Bosch, Annemien E; Witsenburg, Maarten; Cuypers, Judith A A E; Langstraat, Jannette S; Boersma, Eric; Roos-Hesselink, Jolien W

    2016-07-01

    Context Matrix metalloproteinases (MMPs) are associated with diastolic dysfunction and heart failure in acquired heart disease. Objective To investigate the role of MMPs as novel biomarkers in clinically stable adults with congenital heart disease. Methods We measured serum MMP-2, -3, -9 and tissue inhibitor of matrix metalloproteinase-1 in 425 patients and analysed the association with cardiac function and exercise capacity. Results MMP-2 was significantly associated with exercise capacity, ventilatory efficiency and left ventricular deceleration time, independently of age, sex, body surface area and NT-proBNP. Conclusion MMP-2 may provide new information in the clinical evaluation of adults with congenital heart disease. PMID:26983903

  1. Development and Validation of a Small Single-domain Antibody That Effectively Inhibits Matrix Metalloproteinase 8.

    PubMed

    Demeestere, Delphine; Dejonckheere, Eline; Steeland, Sophie; Hulpiau, Paco; Haustraete, Jurgen; Devoogdt, Nick; Wichert, Rielana; Becker-Pauly, Christoph; Van Wonterghem, Elien; Dewaele, Sylviane; Van Imschoot, Griet; Aerts, Jeroen; Arckens, Lutgarde; Saeys, Yvan; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-05-01

    A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases. PMID:26775809

  2. Genomic Organization of channel catfish, Ictalurus punctatus, matrix metalloproteinase-9-gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced MMP-9 genomic DNA by using a Unversal GenomeWalker kit. The co...

  3. Anti-HIV Drugs Decrease the Expression of Matrix Metalloproteinases in Astrocytes and Microglia

    ERIC Educational Resources Information Center

    Liuzzi, G. M.; Mastroianni, C. M.; Latronico, T.; Mengoni, F.; Fasano, A.; Lichtner, M.; Vullo, V.; Riccio, P.

    2004-01-01

    The introduction of potent antiretroviral drugs for the treatment of patients with human immunodeficiency virus (HIV) infection has dramatically reduced the prevalence of HIV-associated neurological disorders. Such diseases can be mediated by proteolytic enzymes, i.e. matrix metalloproteinases (MMPs) and, in particular gelatinases, released from…

  4. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  5. CLONING AND SEQUENCING OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) MATRIX METALLOPROTEINASE-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced using the RACE. The complete sequence of the CC MMP-9 cDNA g...

  6. A barcode-free combinatorial screening platform for matrix metalloproteinase screening.

    PubMed

    Rane, Tushar D; Zec, Helena C; Wang, Tza-Huei

    2015-02-01

    Application of droplet microfluidics to combinatorial screening applications remains elusive because of the need for composition-identifying unique barcodes. Here we propose a barcode-free continuous flow droplet microfluidic platform to suit the requirements of combinatorial screening applications. We demonstrate robust and repeatable functioning of this platform with matrix metalloproteinase activity screening as a sample application. PMID:25543856

  7. A Barcode-Free Combinatorial Screening Platform for Matrix Metalloproteinase Screening

    PubMed Central

    2015-01-01

    Application of droplet microfluidics to combinatorial screening applications remains elusive because of the need for composition-identifying unique barcodes. Here we propose a barcode-free continuous flow droplet microfluidic platform to suit the requirements of combinatorial screening applications. We demonstrate robust and repeatable functioning of this platform with matrix metalloproteinase activity screening as a sample application. PMID:25543856

  8. Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression.

    PubMed

    Dejonckheere, Eline; Vandenbroucke, Roosmarijn E; Libert, Claude

    2011-04-01

    The predominant role of matrix metalloproteinase 8 in extracellular matrix turnover, modulation of inflammatory responses and other physiological processes is well documented. Several recent studies highlight the involvement of MMP8 in a wide range of pathologies. This review will shed light on the putative role of MMP8 as a drug target or disease marker in some inflammatory disorders and in cancer progression. PMID:21388856

  9. Influence of phase I periodontal therapy on levels of matrix metalloproteinase 1 and tissue inhibitor of metalloproteinase 1

    PubMed Central

    Ghodpage, Pallavi S.; Kolte, Rajashri A.; Kolte, Abhay P.; Gupta, Madhur

    2014-01-01

    Background Matrix metalloproteinase-1 (MMP-1) is a member of a family of enzymes that can degrade most extracellular matrix macromolecules. Extracellularly, MMPs are controlled by tissue inhibitors of metalloproteinases (TIMPs) and by mechanisms of pro-MMP activation. Levels of MMPs and TIMPs change during healing, inflammation, and normal tissue turnover. Herein we aimed to evaluate the levels of MMP-1 and TIMP-1 in gingival crevicular fluid (GCF) from periodontally healthy patients (control group) and chronic periodontitis patients before and after phase 1 therapy. Methods In this study we examined 30 patients who had chronic periodontitis with probing depth sites ⩾5 mm and a clinical attachment level (CAL) ⩾5 mm. We included 30 periodontally healthy patients as a control. Clinical measurements such as plaque (PI) and gingival (GI) indices, papillary bleeding index (PBI), probing depths (PD), and CAL were recorded both before treatment (BT) and after phase I periodontal treatment (AT). Assays for MMP-1 and TIMP-1 were performed with an enzyme-linked immunosorbent assay (ELISA) method. Results All clinical parameters were significantly reduced at the post-therapy visit. MMP-1 levels were significantly higher in patients BT than the controls; however, the patients AT were not statistically different than the controls. TIMP-1 levels in patients BT were significantly lower than in the controls and significantly lower than patients AT. We observed a significant positive correlation between GCF volume and MMP-1 levels. Furthermore, TIMP-1 levels were significantly negatively correlated with both GCF volume and all clinical parameters. Conclusions We observed that as the extent of periodontal destruction increases, MMP-1 concentration increases and TIMP-1 concentration decreases in GCF. When chronic periodontitis patients were treated by scaling and root planing (SRP), the average MMP-1 concentrations decreased and TIMP-1 concentrations increased in GCF. PMID

  10. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction.

    PubMed Central

    Hirohata, S.; Kusachi, S.; Murakami, M.; Murakami, T.; Sano, I.; Watanabe, T.; Komatsubara, I.; Kondo, J.; Tsuji, T.

    1997-01-01

    OBJECTIVE: To test the hypothesis that changes in serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitors of metalloproteinase-1 (TIMP-1) after acute myocardial infarction reflect extracellular matrix remodelling and the infarct healing process. PATIENTS: 13 consecutive patients with their first acute myocardial infarction who underwent successful reperfusion. METHODS: Blood was sampled on the day of admission, and on days 2, 3, 4, 5, 7, 14, and 28. Serum MMP-1 and TIMP-1 were measured by one step sandwich enzyme immunoassay. Left ventricular volume indices were determined by left ventriculography performed four weeks after the infarct. RESULTS: Serum concentrations of both MMP-1 and TIMP-1 changed over time. The average serum MMP-1 was more than 1 SD below the mean control values during the initial four days, increased thereafter, reaching a peak concentration around day 14, and then returned to the middle control range. Negative correlations with left ventricular end systolic volume index and positive correlations with left ventricular ejection fraction were obtained for serum MMP-1 on day 5, when it began to rise, and for the magnitude of rise in MMP-1 on day 5 compared to admission. Serum TIMP-1 at admission was more than 1 SD below the mean control value, and increased gradually thereafter, reaching a peak on around day 14. Negative correlations with left ventricular end systolic volume index and positive correlations with left ventricular ejection fraction were obtained for serum TIMP-1 on days 5 and 7, and for the magnitude of rise in TIMP-1 on days 5 and 7 compared to admission. CONCLUSIONS: Both MMP-1 and TIMP-1 showed significant time dependent alteration after acute myocardial infarction. Thus MMP-1 and TIMP-1 may provide useful information in evaluating the healing process as it affects left ventricular remodelling after acute myocardial infarction. PMID:9391291

  11. Radioactive smart probe for potential corrected matrix metalloproteinase imaging.

    PubMed

    Huang, Chiun-Wei; Li, Zibo; Conti, Peter S

    2012-11-21

    Although various activatable optical probes have been developed to visualize metalloproteinase (MMP) activities in vivo, precise quantification of the enzyme activity is limited due to the inherent scattering and attenuation (limited depth penetration) properties of optical imaging. In this investigation, a novel activatable peptide probe (64)Cu-BBQ650-PLGVR-K(Cy5.5)-E-K(DOTA)-OH was constructed to detect tumor MMP activity in vivo. This agent is optically quenched in its native form, but releases strong fluorescence upon cleavage by selected enzymes. MMP specificity was confirmed both in vitro and in vivo by fluorescent imaging studies. The use of a single modality to image biomarkers/processes may lead to erroneous interpretation of imaging data. The introduction of a quantitative imaging modality, such as PET, would make it feasible to correct the enzyme activity determined from optical imaging. In this proof of principle report, we demonstrated the feasibility of correcting the activatable optical imaging data through the PET signal. This approach provides an attractive new strategy for accurate imaging of MMP activity, which may also be applied for other protease imaging. PMID:23025637

  12. Quantitative FRET Imaging to Visualize the Invasiveness of Live Breast Cancer Cells

    PubMed Central

    Lu, Shaoying; Wang, Yi; Huang, He; Pan, Yijia; Chaney, Eric J.; Boppart, Stephen A.; Ozer, Howard; Strongin, Alex Y.; Wang, Yingxiao

    2013-01-01

    Matrix metalloproteinases (MMPs) remodel tumor microenvironment and promote cancer metastasis. Among the MMP family proteases, the proteolytic activity of the pro-tumorigenic and pro-metastatic membrane-type 1 (MT1)-MMP constitutes a promising and targetable biomarker of aggressive cancer tumors. In this study, we systematically developed and characterized several highly sensitive and specific biosensors based on fluorescence resonant energy transfer (FRET), for visualizing MT1-MMP activity in live cells. The sensitivity of the AHLR-MT1-MMP biosensor was the highest and five times that of a reported version. Hence, the AHLR biosensor was employed to quantitatively profile the MT1-MMP activity in multiple breast cancer cell lines, and to visualize the spatiotemporal MT1-MMP activity simultaneously with the underlying collagen matrix at the single cell level. We detected a significantly higher level of MT1-MMP activity in invasive cancer cells than those in benign or non-invasive cells. Our results further show that the high MT1-MMP activity was stimulated by the adhesion of invasive cancer cells onto the extracellular matrix, which is precisely correlated with the cell’s ability to degrade the collagen matrix. Thus, we systematically optimized a FRET-based biosensor, which provides a powerful tool to detect the pro-invasive MT1-MMP activity at single cell levels. This readout can be applied to profile the invasiveness of single cells from clinical samples, and to serve as an indicator for screening anti-cancer inhibitors. PMID:23516511

  13. Molecular Control of Vascular Tube Morphogenesis and Stabilization: Regulation by Extracellular Matrix, Matrix Metalloproteinases, and Endothelial Cell-Pericyte Interactions

    NASA Astrophysics Data System (ADS)

    Davis, George E.; Stratman, Amber N.; Sacharidou, Anastasia

    Recent studies have revealed a critical role for both extracellular matrices and matrix metalloproteinases in the molecular control of vascular morphogenesis and stabilization in three-dimensional (3D) tissue environments. Key interactions involve endothelial cells (ECs) and pericytes, which coassemble to affect vessel formation, remodeling, and stabilization events during development and postnatal life. EC-pericyte interactions control extracellular matrix remodeling events including vascular basement membrane matrix assembly, a necessary step for endothelial tube maturation and stabilization. ECs form tube networks in 3D extracellular matrices in a manner dependent on integrins, membrane-type metalloproteinases, and the Rho GTPases, Cdc42 and Rac1. Recent work has defined an EC lumen signaling complex of proteins composed of these proteins that controls 3D matrix-specific signaling events required for these processes. The EC tube formation process results in the creation of a network of proteolytically generated vascular guidance tunnels. These tunnels are physical matrix spaces that regulate vascular tube remodeling and represent matrix conduits into which pericytes are recruited to allow dynamic cell-cell interactions with ECs. These dynamic EC-pericyte interactions induce vascular basement membrane matrix deposition, leading to vessel maturation and stabilization.

  14. Changes in the expression of extracellular matrix (ECM) and matrix metalloproteinases (MMP) of proliferating rat parotid acinar cells.

    PubMed

    Broverman, R L; Nguyen, K H; da Silveira, A; Brinkley, L L; Macauley, S P; Zeng, T; Yamamoto, H; Tarnuzzer, R W; Schultz, G S; Kerr, M; Humphreys-Beher, M G

    1998-07-01

    Tissue morphogenesis, development, and maintenance of function are mediated by signals generated through the composition of the extracellular matrix. The regulation of the composition of matrix is determined by enzymes specific for their degradation, the matrix metalloproteinases. Chronic injections of the beta-adrenergic receptor agonist, isoproterenol, result in a non-neoplastic hypertrophy and hyperplasia of the rat parotid gland. The activity of matrix metalloproteinases, as measured by gelatin zymography and enzymatic digestion of Azocoll substrates by gland lysates, decreased significantly (P < 0.05) following 24 hrs of agonist treatment, and slowly recovered to control values by 6 days of treatment. Daily administration of the broad-spectrum matrix metalloproteinase inhibitor Galardin for 3 days in combination with isoproterenol resulted in enhanced gland hypertrophy compared with that produced by isoproterenol alone. Given alone, Galardin also caused hypertrophy. The relative abundance of mRNA for the extracellular matrix molecules, collagens I and III and fibronectin, declined rapidly following the initiation of beta-agonist treatment in vivo, while laminin B1 and B2 mRNA levels increased initially before declining below control levels. These changes in patterns of mRNA levels also were observed in the concentrations of glandular protein when Western dot blot analysis of collagens I and III and laminin, respectively, was used. The importance of laminin, in vivo, was demonstrated by coinjection of anti-laminin antibody along with isoproterenol, which resulted in the inhibition of beta-agonist-induced parotid gland hypertrophy and hyperplasia. These data suggest that modulation of the ECM is associated with isoproterenol-induced salivary gland hypertrophy and hyperplasia. It is likely that this modulation of the ECM takes place through transcriptional regulation of some ECM genes and regulation of matrix-degrading enzyme activity. PMID:9663435

  15. Matrix Metalloproteinases -8 and -9 and Tissue Inhibitor of Metalloproteinase-1 in Burn Patients. A Prospective Observational Study

    PubMed Central

    Hästbacka, Johanna; Fredén, Filip; Hult, Maarit; Bergquist, Maria; Wilkman, Erika; Vuola, Jyrki; Sorsa, Timo; Tervahartiala, Taina; Huss, Fredrik

    2015-01-01

    Introduction Matrix metalloproteinases (MMPs) -8 and -9 are released from neutrophils in acute inflammation and may contribute to permeability changes in burn injury. In retrospective studies on sepsis, levels of MMP-8, MMP-9, and tissue inhibitor of metalloproteinase-1 (TIMP-1) differed from those of healthy controls, and TIMP-1 showed an association with outcome. Our objective was to investigate the relationship between these proteins and disease severity and outcome in burn patients. Methods In this prospective, observational, two-center study, we collected plasma samples from admission to day 21 post-burn, and burn blister fluid samples on admission. We compared MMP-8, -9, and TIMP-1 levels between TBSA<20% (N = 19) and TBSA>20% (N = 30) injured patients and healthy controls, and between 90-day survivors and non-survivors. MMP-8, -9, and TIMP-1 levels at 24-48 hours from injury, their maximal levels, and their time-adjusted means were compared between groups. Correlations with clinical parameters and the extent of burn were analyzed. MMP-8, -9, and TIMP-1 levels in burn blister fluids were also studied. Results Plasma MMP-8 and -9 were higher in patients than in healthy controls (P<0.001 and P = 0.016), but only MMP-8 differed between the TBSA<20% and TBSA>20% groups. MMP-8 and -9 were not associated with clinical severity or outcome measures. TIMP-1 differed significantly between patients and controls (P<0.001) and between TBSA<20% and TBSA>20% groups (P<0.002). TIMP-1 was associated with 90-day mortality and correlated with the extent of injury and clinical measures of disease severity. TIMP-1 may serve as a new biomarker in outcome prognostication of burn patients. PMID:25945788

  16. EGF-receptor regulation of matrix metalloproteinases in epithelial ovarian carcinoma

    PubMed Central

    Hudson, Laurie G; Moss, Natalie M; Stack, M Sharon

    2009-01-01

    Ovarian carcinoma is most frequently detected when disease has already disseminated intra-abdominally, resulting in a 5-year survival rate of less than 20% owing to complications of metastasis. Peritoneal ascites is often present, establishing a unique microenvironmental niche comprised of tumor and inflammatory cells, along with a wide range of bioactive soluble factors, several of which stimulate the EGF-receptor (EGFR). Elevated EGFR is associated with less favorable disease outcome in ovarian cancer, related in part to EGFR activation of signaling cascades that lead to enhanced matrix metalloproteinase expression and/or function. The available data suggest that modulating the expression or activity of the EGFR and/or matrix metalloproteinases offers opportunity for targeted intervention in patients with metastatic disease. PMID:19374540

  17. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  18. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  19. Radiotherapy-induced gut toxicity: Involvement of matrix metalloproteinases and the intestinal microvasculature.

    PubMed

    Stansborough, Romany L; Al-Dasooqi, Noor; Bateman, Emma H; Keefe, Dorothy M K; Gibson, Rachel J

    2016-05-01

    Purpose To review the literature surrounding the involvement of the endothelium and matrix metalloproteinases (MMP) in radiotherapy-induced gut toxicity (RIGT) and further elucidate its complex pathobiology. Results RIGT involves damage to the gastrointestinal mucosa and is associated with diarrhoea, pain, and rectal bleeding depending on the area of exposure. The mechanisms underpinning RIGT are complex and have not yet been elucidated. Members of the MMP family, particularly MMP-2 and -9, have recently been identified as being key markers in RIGT and chemotherapy-induced gut toxicity (CIGT). Furthermore, the microvasculature has long been implicated in the development of toxicities following both chemotherapy and radiotherapy, however, the mechanisms behind this are yet to be explored. Conclusions It is proposed that matrix metalloproteinases are key regulators of endothelial mediators, and may play a key role in inducing damage to intestinal microvasculature following radiotherapy. PMID:26917115

  20. Prediction on the Inhibition Ratio of Pyrrolidine Derivatives on Matrix Metalloproteinase Based on Gene Expression Programming

    PubMed Central

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R2) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs. PMID:24971318

  1. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  2. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs. PMID:24971318

  3. Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity.

    PubMed Central

    Finzel, B. C.; Baldwin, E. T.; Bryant, G. L.; Hess, G. F.; Wilks, J. W.; Trepod, C. M.; Mott, J. E.; Marshall, V. P.; Petzold, G. L.; Poorman, R. A.; O'Sullivan, T. J.; Schostarez, H. J.; Mitchell, M. A.

    1998-01-01

    The binding of two 5-substituted-1,3,4-thiadiazole-2-thione inhibitors to the matrix metalloproteinase stromelysin (MMP-3) have been characterized by protein crystallography. Both inhibitors coordinate to the catalytic zinc cation via an exocyclic sulfur and lay in an unusual position across the unprimed (P1-P3) side of the proteinase active site. Nitrogen atoms in the thiadiazole moiety make specific hydrogen bond interactions with enzyme structural elements that are conserved across all enzymes in the matrix metalloproteinase class. Strong hydrophobic interactions between the inhibitors and the side chain of tyrosine-155 appear to be responsible for the very high selectivity of these inhibitors for stromelysin. In these enzyme/inhibitor complexes, the S1' enzyme subsite is unoccupied. A conformational rearrangement of the catalytic domain occurs that reveals an inherent flexibility of the substrate binding region leading to speculation about a possible mechanism for modulation of stromelysin activity and selectivity. PMID:9792098

  4. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    SciTech Connect

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-02-01

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blot and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.

  5. Lumican: a new inhibitor of matrix metalloproteinase-14 activity.

    PubMed

    Pietraszek, Katarzyna; Chatron-Colliet, Aurore; Brézillon, Stéphane; Perreau, Corinne; Jakubiak-Augustyn, Anna; Krotkiewski, Hubert; Maquart, François-Xavier; Wegrowski, Yanusz

    2014-11-28

    We previously showed that lumican regulates MMP-14 expression. The aim of this study was to compare the effect of lumican and decorin on MMP-14 activity. In contrast to decorin, the glycosylated form of lumican was able to significantly decrease MMP-14 activity in B16F1 melanoma cells. Our results suggest that a direct interaction occurs between lumican and MMP-14. Lumican behaves as a competitive inhibitor which leads to a complete blocking of the activity of MMP-14. It binds to the catalytic domain of MMP-14 with moderate affinity (KD∼275 nM). Lumican may protect collagen against MMP-14 proteolysis, thus influencing cell-matrix interaction in tumor progression. PMID:25304424

  6. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  7. Matrix metalloproteinase 14 is required for fibrous tissue expansion

    PubMed Central

    Taylor, Susan H; Yeung, Ching-Yan Chloé; Kalson, Nicholas S; Lu, Yinhui; Zigrino, Paola; Starborg, Tobias; Warwood, Stacey; Holmes, David F; Canty-Laird, Elizabeth G; Mauch, Cornelia; Kadler, Karl E

    2015-01-01

    Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI: http://dx.doi.org/10.7554/eLife.09345.001 PMID:26390284

  8. Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration

    PubMed Central

    2012-01-01

    Introduction The longitudinal degradation mechanism of extracellular matrix (ECM) in the interbertebral disc remains unclear. Our objective was to elucidate catabolic and anabolic gene expression profiles and their balances in intervertebral disc degeneration using a static compression model. Methods Forty-eight 12-week-old male Sprague-Dawley rat tails were instrumented with an Ilizarov-type device with springs and loaded statically at 1.3 MPa for up to 56 days. Experimental loaded and distal-unloaded control discs were harvested and analyzed by real-time reverse transcription-polymerase chain reaction (PCR) messenger RNA quantification for catabolic genes [matrix metalloproteinase (MMP)-1a, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5], anti-catabolic genes [tissue inhibitor of metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3], ECM genes [aggrecan-1, collagen type 1-α1, and collagen type 2-α1], and pro-inflammatory cytokine genes [tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, and IL-6]. Immunohistochemistry for MMP-3, ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-2, and TIMP-3 was performed to assess their protein expression level and distribution. The presence of MMP- and aggrecanase-cleaved aggrecan neoepitopes was similarly investigated to evaluate aggrecanolytic activity. Results Quantitative PCR demonstrated up-regulation of all MMPs and ADAMTS-4 but not ADAMTS-5. TIMP-1 and TIMP-2 were almost unchanged while TIMP-3 was down-regulated. Down-regulation of aggrecan-1 and collagen type 2-α1 and up-regulation of collagen type 1-α1 were observed. Despite TNF-α elevation, ILs developed little to no up-regulation. Immunohistochemistry showed, in the nucleus pulposus, the percentage of immunopositive cells of MMP-cleaved aggrecan neoepitope increased from 7 through 56 days with increased MMP-3 and decreased TIMP-1 and TIMP-2 immunopositivity. The percentage of immunopositive cells

  9. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury.

    PubMed

    Phillips, Linda L; Chan, Julie L; Doperalski, Adele E; Reeves, Thomas M

    2014-02-15

    Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity. PMID:25206824

  10. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter