Science.gov

Sample records for matrix metalloproteinase-2 gene

  1. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination. PMID:17086359

  2. Leukocyte Gene Expression and Plasma Concentration in Multiple Sclerosis: Alteration of Transforming Growth Factor-βs, Claudin-11, and Matrix Metalloproteinase-2.

    PubMed

    Hassanzadeh, Gholamreza; Hosseini Quchani, Samaneh; Sahraian, Mohammad Ali; Abolhassani, Farid; Sadighi Gilani, Mohammad Ali; Dehghan Tarzjani, Masoomeh; Atoof, Fatemeh

    2016-08-01

    Multiple sclerosis is a neurodegenerative disease characterized by the present of leukocytes in the brain tissue and subsequently the formation of sclerotic plaques. Leukocytes penetration into the blood-brain barrier is related to several factors, such as, the conversion of leukocyte gene expression or plasma characteristics. In this frame, we explore alteration of matrix metalloproteinase-2 (MMP-2), transforming growth factor beta (TGF-β) family, and Claudin-11 (as a main myelin structural protein) in leukocytes and blood plasma of multiple sclerosis patients compared to the normal group. Blood samples were collected from thirteen men affected by MS and fifteen healthy men. Leukocyte gene expression was measured using real-time PCR and plasma parameters were examined by ELISA. The results of this study showed that the gene expression of Claudin-11 was significantly higher in MS group compared with normal. Interestingly, the MMP-2 pattern was similar to Claudin-11 and correlated positively with it. It was observed that, although the expressions of TGF-β1 and TGF-β2 are down-regulated in the leukocytes of subjects with MS, they showed higher levels of these cytokines in blood plasma. The plasma level of TGF-β3 in MS patients was higher than normal and correlated with Claudin-11 concentration. In conclusion, the aberrant pattern of Claudin-11, TGF-βs family, and MMP-2 expression in leukocytes of the MS patients was observed in this study. Moreover, the plasma levels of TGF-βs family increased in the MS group. The findings of this study provide clues for further investigations to assay MS pathogenesis. PMID:26768647

  3. N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro

    PubMed Central

    Faraji, Seyed Nooredin; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Takhshid, Mohammad Ali

    2015-01-01

    Objective(s): N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells. Materials and Methods: A recombinant plasmid encoding green fluorescent protein (GFP)-tagged NDRG2 (pCMV6-AC-NDRG2-GFP) was used to overexpress GFP-tagged NDRG2 in A549 cells. The cells in the experimental group and those in the control group were transfected with pCMV6-AC-NDRG2-GFP and a control plasmid without NDRG2 (pCMV6-AC-GFP), respectively. Fluorescent microscopy and flowcytometry analysis of GFP expression were used to evaluate the cellular expression of GFP-tagged NDRG2 and the efficiency of transfection. The effects of NDRG2 expression on cell invasion and migration were evaluated using transwell filter migration assay. The gelatinase activity of secreted MMP-2 and MMP-9 was measured by gelatin zymography. Results: Our results demonstrated the expression of GFP-tagged NDRG2 in the cytoplasm and nucleus of A549 cells. The findings of transwell assay showed that NDRG2 overexpression reduced migration and invasion of A549 cells compared to control cells. Gelatin zymography analyses revealed that NDRG2 overexpression decreased the gelatinase activity of secreted MMP-2 and MMP-9. Conclusion: These findings suggest that NDRG2 may be a new anti-invasion factor in lung cancer that inhibits MMPs activities. PMID:26557966

  4. The cloning and expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase 2 in normal canine lymph nodes and in canine lymphoma.

    PubMed

    Newman, R G; Kitchell, B E; Wallig, M A; Paria, B

    2008-04-01

    Matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), are known to be important in cancer. The purposes of this study were to determine the cDNA sequence of canine MMP-2 and to investigate the expression patterns of MMP-2 and TIMP2 in normal canine lymph nodes and spontaneously arising canine lymphomas. We cloned and sequenced a PCR product containing most (1901 base pairs) of the coding sequence of canine MMP-2 that translates into a 623 amino acid protein. The cDNA and deduced amino acid sequences are highly homologous to those of other mammalian species. Canine MMP-2 and TIMP2 mRNAs were detectable in the majority of normal lymph node and lymphomatous samples evaluated. No statistical difference was identified when comparing the expression of either gene with regard to normal versus neoplastic nodes, nodal versus extranodal lymphoma, lymphoma grade, or B versus T cell immunophenotype. PMID:17604063

  5. Matrix metalloproteinase-2 regulates the expression of tissue inhibitor of matrix metalloproteinase-2.

    PubMed

    Kimura, Kaoru; Cheng, Xian Wu; Nakamura, Kae; Inoue, Aiko; Hu, Lina; Song, Haizhen; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2010-11-01

    1. Matrix metalloproteinases (MMP) are associated with the vascular remodelling seen in atherosclerosis and aneurysm. The activation and activity of MMP-2 are regulated by the intrinsic tissue inhibitor of MMP-2 (TIMP-2). The aim of the present study was to examine whether, conversely, MMP-2 can affect the gene and protein expression of TIMP-2. 2. In the present study, we examined the mRNA and protein expression of MMP-2 and TIMP-2 in cultured smooth muscle cells (SMC) from the aortas of MMP-2(+/+) and MMP-2(-/-) mice. We also examined the roles of MMP-2 in SMC cellular events. 3. Western blotting showed that less TIMP-2 protein was present in the conditioned medium of MMP-2(-/-) SMC than in that of MMP-2(+/+) SMC. Real-time reverse transcription polymerase chain reaction analysis showed that MMP-2 deficiency reduced TIMP-2 mRNA expression in SMC. Recombinant MMP-2 enhanced the expression of TIMP-2 protein in cultured SMC from MMP-2(-/-) mice. Furthermore, a siRNA targeting MMP-2 impaired the gene and protein expression of MMP-2 in cultured SMC from MMP-2(+/+) mice. MMP-2 deficiency impaired SMC invasion, but not their proliferation, adhesion or migration. 4. Our findings suggest that MMP-2 is likely to be responsible, at least in part, for regulating TIMP-2 expression and is thus a potential target, in addition to TIMP-2, for therapeutics aimed at preventing cardiovascular remodelling in response to injury. PMID:20738326

  6. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    PubMed Central

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.; Pacher, Pal; Schulz, Richard

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC50 values of PJ-34 and 5-AIQ were in the high micromolar range and comparable to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity. PMID:19619515

  7. Plasma matrix metalloproteinase 2 levels and breast cancer risk.

    PubMed

    Aroner, Sarah A; Rosner, Bernard A; Tamimi, Rulla M; Tworoger, Shelley S; Baur, Nadja; Joos, Thomas O; Hankinson, Susan E

    2015-06-01

    Matrix metalloproteinase 2 (MMP2) is an enzyme with important functions in breast cancer invasion and metastasis. However, it is unclear whether circulating MMP2 levels may predict breast cancer risk. We conducted a prospective nested case-control analysis in the Nurses' Health Study among 1136 cases who were diagnosed with invasive breast cancer between 1992 and 2004 and 1136 matched controls. All participants provided blood samples in 1989-1990, and a subset (170 cases, 170 controls) contributed an additional sample in 2000-2002. Pre-diagnostic plasma MMP2 levels were measured via immunoassay, and conditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), adjusted for breast cancer risk factors. No association was observed between plasma MMP2 levels and risk of total invasive breast cancer (top vs. bottom quartile, OR=1.0; 95% CI: 0.7, 1.2; p-trend=0.89). Findings did not vary significantly by time since blood draw, body mass index, postmenopausal hormone use, or menopausal status at either blood draw or breast cancer diagnosis. MMP2 was associated with a greater risk of nodal metastases at diagnosis (top vs. bottom quartile, OR=1.5; 95% CI: 1.0, 2.2; p-heterogeneity, any vs. no lymph nodes=0.002), but no significant associations were observed with other tumor characteristics or with recurrent or fatal cancers. Plasma MMP2 levels do not appear to be predictive of total invasive breast cancer risk, although associations with aggressive disease warrant further study. PMID:25799912

  8. Plasma matrix metalloproteinase 2 levels and breast cancer risk

    PubMed Central

    Aroner, Sarah A.; Rosner, Bernard A.; Tamimi, Rulla M.; Tworoger, Shelley S.; Baur, Nadja; Joos, Thomas O.; Hankinson, Susan E.

    2015-01-01

    Matrix metalloproteinase 2 (MMP2) is an enzyme with important functions in breast cancer invasion and metastasis. However, it is unclear whether circulating MMP2 levels may predict breast cancer risk. We conducted a prospective nested case-control analysis in the Nurses’ Health Study among 1136 cases who were diagnosed with invasive breast cancer between 1992 and 2004 and 1136 matched controls. All participants provided blood samples in 1989-1990, and a subset (170 cases, 170 controls) contributed an additional sample in 2000 – 2002. Pre-diagnostic plasma MMP2 levels were measured via immunoassay, and conditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), adjusted for breast cancer risk factors. No association was observed between plasma MMP2 levels and risk of total invasive breast cancer (top vs. bottom quartile, OR = 1.0; 95% CI: 0.7, 1.2; p-trend = 0.89). Findings did not vary significantly by time since blood draw, body mass index, postmenopausal hormone use, or menopausal status at either blood draw or breast cancer diagnosis. MMP2 was associated with a greater risk of nodal metastases at diagnosis (top vs. bottom quartile, OR = 1.5; 95% CI: 1.0, 2.2; p-heterogeneity, any vs. no lymph nodes = 0.002), but no significant associations were observed with other tumor characteristics or with recurrent or fatal cancers. Plasma MMP2 levels do not appear to be predictive of total invasive breast cancer risk, although associations with aggressive disease warrant further study. PMID:25799912

  9. ETV5 as a regulator of matrix metalloproteinase 2 in human chondrosarcoma.

    PubMed

    Power, Patricia F; Mak, Isabella W Y; Singh, Shalini; Popovic, Snezana; Gladdy, Rebecca; Ghert, Michelle

    2013-03-01

    Chondrosarcoma is a unique type of bone cancer in that it does not respond to chemotherapy or radiation therapy, and therefore many affected patients die from metastatic disease. Metastasis has been correlated with the upregulation of the matrix metalloproteinase (MMP) family of proteases, which can degrade extracellular components. ETV5 is a transcription factor which has shown to be overexpressed in various types of invasive tumors. We hypothesized that ETV5 regulates MMP2 in human chondrosarcoma with the protease acting as a downstream effector. Gene knock-down of ETV5 in human chondrosarcoma cells reduces MMP2 mRNA expression as well as decreased protein production and significantly decreased MMP2 activity. With plasmid transfected ETV5 upregulation, MMP2 expression is similarly upregulated at the gene expression and protein levels. Data from our bone resorption studies revealed that when a matrix metalloproteinase-2 inhibitor is added to the growth media of chondrosarcoma cells, collagen released from bone chips incubated with the cells decreased by 27%. This data suggests that ETV5 has a significant role in regulating MMP2 expression and therefore matrix resorption in human chondrosarcoma, and thus may be a targetable upstream effector of the metastatic cascade in this cancer. PMID:22968857

  10. Myocardial matrix metalloproteinase-2: inside out and upside down.

    PubMed

    DeCoux, Ashley; Lindsey, Merry L; Villarreal, Francisco; Garcia, Ricardo A; Schulz, Richard

    2014-12-01

    Since their inaugural discovery in the early 1960s, matrix metalloproteinases (MMPs) have been shown to mediate multiple physiological and pathological processes. In addition to their canonical function in extracellular matrix (ECM) remodeling, research in the last decade has highlighted new MMP functions, including proteolysis of novel substrates beyond ECM proteins, MMP localization to subcellular organelles, and proteolysis of susceptible intracellular proteins in those subcellular compartments. This review will provide a comparison of the extracellular and intracellular roles of MMPs, illustrating that MMPs are far more interesting than the one-dimensional view originally taken. We focus on the roles of MMP-2 in cardiac injury and repair, as this is one of the most studied MMPs in the cardiovascular field. We will highlight how understanding all dimensions, such as localization of activity and timing of interventions, will increase the translational potential of research findings. Building upon old ideas and turning them inside out and upside down will help us to better understand how to move the MMP field forward. PMID:25261607

  11. Myocardial matrix metalloproteinase-2: inside out and upside down

    PubMed Central

    DeCoux, Ashley; Lindsey, Merry L.; Villarreal, Francisco; Garcia, Ricardo A.; Schulz, Richard

    2014-01-01

    Since their inaugural discovery in the early 1960s, matrix metalloproteinases (MMPs) have been shown to mediate multiple physiological and pathological processes. In addition to their canonical function in extracellular matrix (ECM) remodeling, research in the last decade has highlighted new MMP functions, including proteolysis of novel substrates beyond ECM proteins, MMP localization to subcellular organelles, and proteolysis of susceptible intracellular proteins in those subcellular compartments. This review will provide a comparison of the extracellular and intracellular roles of MMPs, illustrating that MMPs are far more interesting than the one-dimensional view originally taken. We focus on the roles of MMP-2 in cardiac injury and repair, as this is one of the most studied MMPs in the cardiovascular field. We will highlight how understanding all dimensions, such as localization of activity and timing of interventions, will increase the translational potential of research findings. Building upon old ideas and turning them inside out and upside down will help us to better understand how to move the MMP field forward. PMID:25261607

  12. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation.

    PubMed

    Ben-Yosef, Yaara; Lahat, Nitza; Shapiro, Sarah; Bitterman, Haim; Miller, Ariel

    2002-04-19

    Among the consequences resulting from the exposure of endothelial cells (ECs) to ischemia/reperfusion is angiogenesis, involving degradation of vascular basement membrane and extracellular matrix. Matrix metalloproteinase (MMP)-2, a member of the MMP family, partakes in this process. MMP-2, secreted as a proenzyme, undergoes activation through interaction with membrane type (MT)1-MMP and the endogenous tissue inhibitor of MMPs (TIMP)-2. Although hypoxia and reoxygenation (H/R) are major constituents of ischemia/reperfusion processes, their direct effects on endothelial MMP-2 have been scarcely investigated. This study examined the in vitro effects of H/R on human macrovascular ECs (EAhy 926). The level of MMP-2 mRNA (Northern blot) and protein (zymography, ELISA) and the mRNA of its activator (MT1-MMP) and inhibitor (TIMP-2) were analyzed. Short (6-hour) hypoxia inhibited the mRNA expression of MMP-2, MT1-MMP, and TIMP-2, culminating in reduced latent and active MMP-2 protein. Prolonged (24-hour) hypoxia further suppressed MT1-MMP and TIMP-2 mRNA, whereas it enhanced MMP-2 mRNA and enzyme secretion (after 48-hour hypoxia). Reoxygenation did not influence the inhibited TIMP-2 but upregulated MMP-2 and MT1-MMP mRNA expression, leading to enhanced secretion of active MMP-2 protein. These results demonstrate H/R-mediated modulation of EC MMP-2 at both transcriptional and posttranscriptional levels. Prolonged hypoxia of ECs appears to enhance MMP-2 production and secretion, whereas reoxygenation further increases its level. These H/R-mediated effects on MMPs have the potential of enabling EC migration and possible angiogenesis. PMID:11964371

  13. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.

    PubMed

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-06-29

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  14. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo

    PubMed Central

    Momi, Stefania; Falcinelli, Emanuela; Giannini, Silvia; Ruggeri, Loredana; Cecchetti, Luca; Corazzi, Teresa; Libert, Claude

    2009-01-01

    Platelet activation at a site of vascular injury is essential for the arrest of bleeding; however, excessive platelet activation at a site of arterial damage can result in the unwarranted formation of arterial thrombi, precipitating acute myocardial infarction, or ischemic stroke. Activation of platelets beyond the purpose of hemostasis may occur when substances facilitating thrombus growth and stability accumulate. Human platelets contain matrix metalloproteinase 2 (MMP-2) and release it upon activation. Active MMP-2 amplifies the platelet aggregation response to several agonists by potentiating phosphatidylinositol 3-kinase activation. Using several in vivo thrombosis models, we show that the inactivation of the MMP-2 gene prevented thrombosis induced by weak, but not strong, stimuli in mice but produced only a moderate prolongation of the bleeding time. Moreover, using cross-transfusion experiments and wild-type/MMP-2−/− chimeric mice, we show that it is platelet-derived MMP-2 that facilitates thrombus formation. Finally, we show that platelets activated by a mild vascular damage induce thrombus formation at a downstream arterial injury site by releasing MMP-2. Thus, platelet-derived MMP-2 plays a crucial role in thrombus formation by amplifying the response of platelets to weak activating stimuli. These findings open new possibilities for the prevention of thrombosis by the development of MMP-2 inhibitors. PMID:19808257

  15. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival.

    PubMed

    Beber, Ana Rubia C; Polina, Evelise R; Biolo, Andréia; Santos, Bruna L; Gomes, Daiane C; La Porta, Vanessa L; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E; Santos, Kátia G

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285-0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365-1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248-1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  16. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival

    PubMed Central

    Beber, Ana Rubia C.; Polina, Evelise R.; Biolo, Andréia; Santos, Bruna L.; Gomes, Daiane C.; La Porta, Vanessa L.; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E.

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285–0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365–1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248–1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  17. Ischemia/reperfusion-induced myosin light chain 1 phosphorylation increases its degradation by matrix metalloproteinase-2

    PubMed Central

    Cadete, Virgilio J. J.; Sawicka, Jolanta; Jaswal, Jagdip; Lopaschuk, Gary D.; Schulz, Richard; Szczesna-Cordary, Danuta; Sawicki, Grzegorz

    2012-01-01

    Summary Degradation of myosin light chain 1 (MLC1) by matrix metalloproteinase-2 (MMP-2) during myocardial ischemia/reperfusion (I/R) injury has been established. However, the exact mechanisms controlling this process remain unknown. I/R increases the phosphorylation of MLC1, but the consequences of this modification are not known. We hypothesized that phosphorylation of MLC1 plays an important role in its degradation by MMP-2. To examine this, isolated perfused rat hearts were subjected to 20 min global ischemia followed by 30 min of aerobic reperfusion. I/R increased phosphorylation of MLC1 (as measured by mass spectrometry). If hearts were subjected to I/R in the presence of ML-7 (a myosin light chain kinase (MLCK) inhibitor) or doxycycline (a MMP inhibitor) an improved recovery of contractile function was seen compared to aerobic hearts and MLC1 was protected from degradation. Enzyme kinetic studies revealed an increased affinity of MMP-2 for the phosphorylated form of MLC1 compared to non-phosphorylated MLC1. We conclude that MLC1 phosphorylation is important mechanism controlling the intracellular action of MMP-2 and promoting the degradation of MLC1. These results further support previous findings implicating posttranslational modifications of contractile proteins as a key factor in the pathology of cardiac dysfunction during and following ischemia. PMID:22564771

  18. Matrix metalloproteinase-2 as a superior biomarker for peritoneal deterioration in peritoneal dialysis

    PubMed Central

    Hirahara, Ichiro; Kusano, Eiji; Morishita, Yoshiyuki; Inoue, Makoto; Akimoto, Tetsu; Saito, Osamu; Muto, Shigeaki; Nagata, Daisuke

    2016-01-01

    AIM: To investigate the efficacy of effluent biomarkers for peritoneal deterioration with functional decline in peritoneal dialysis (PD). METHODS: From January 2005 to March 2013, the subjects included 218 PD patients with end-stage renal disease at 18 centers. Matrix metalloproteinase-2 (MMP-2), interleukin-6 (IL-6), hyaluronan, and cancer antigen 125 (CA125) in peritoneal effluent were quantified with enzyme-linked immunosorbent assay. Peritoneal solute transport rate was assessed by peritoneal equilibration test (PET) to estimate peritoneal deterioration. RESULTS: The ratio of the effluent level of creatinine (Cr) obtained 4 h after injection (D) to that of plasma was correlated with the effluent levels of MMP-2 (ρ = 0.74, P < 0.001), IL-6 (ρ = 0.46, P < 0.001), and hyaluronan (ρ = 0.27, P < 0.001), but not CA125 (ρ = 0.13, P = 0.051). The area under receiver operating characteristic curve for the effluent levels of MMP-2, IL-6, and hyaluronan against high PET category were 0.90, 0.78, 0.62, and 0.51, respectively. No patient developed new-onset encapsulating peritoneal sclerosis for at least 1.5 years after peritoneal effluent sampling. CONCLUSION: The effluent MMP-2 level most closely reflected peritoneal solute transport rate. MMP-2 can be a reliable indicator of peritoneal deterioration with functional decline. PMID:26981446

  19. Poly(m-phenylenediamine)-based fluorescent nanoprobe for ultrasensitive detection of matrix metalloproteinase 2.

    PubMed

    Wang, Zhe; Li, Xiaohua; Feng, Duan; Li, Lihong; Shi, Wen; Ma, Huimin

    2014-08-01

    A novel fluorescence nanoprobe for the detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the fluorescein isothiocyanate-labeled peptide onto the surface of poly(m-phenylenediamine) (PMPD) nanoparticles through covalent linkage. The nanoprobe itself displays a low background signal due to the effective fluorescence quenching by electron-rich PMPD, but its reaction with MMP2 causes 11-fold fluorescence enhancement. Compared with similar fluorescence nanosystems for MMP2 assembled through physical adsorption, the as-prepared nanoprobe is significantly more stable and displays a strikingly higher signal-to-background ratio, which leads to a high sensitivity for MMP2 assay, with a detection limit of 32 pM. Most notably, the nanoprobe has been successfully applied to determine MMP2 in human serum samples, demonstrating that the MMP2 level in serum from colorectal cancer (CRC) patients is 2 times higher than that from healthy people. Moreover, the nanoprobe has also been used to monitor MMP2 secreted by CRC cells that were grown under normoxic and hypoxic conditions, respectively, and the results show that the cells under hypoxic conditions produce higher level of MMP2 than those under normoxic conditions. Our method is simple and can offer a highly sensitive detection of MMP2 in relevant clinical samples. PMID:25029076

  20. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    PubMed

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification. PMID:25987498

  1. Knockdown of LI-cadherin alters expression of matrix metalloproteinase-2 and -9 and galectin-3.

    PubMed

    Yu, Qiongfang; Shen, Wei; Zhou, Huangyan; Dong, Weiguo; Gao, Dian

    2016-05-01

    Liver-intestine cadherin (LI-cadherin), a novel member of the cadherin family, has been associated with the ability of a tumor to acquire an aggressive phenotype in several types of cancer. However, the exact function of LI-cadherin in the process of tumor invasion and metastasis remains predominantly unknown. To explore the effect of LI-cadherin on the regulation of matrix metalloproteinase-2 (MMP-2), MMP-9 and galectin-3 in LoVo human colorectal cancer cells, a RNA interference technique was applied to suppress the expression of LI‑cadherin. Subsequently, the mRNA levels and activities of MMP-2 and -9 were analyzed by semi-quantitative reverse transcription-polymerase chain reaction and gelatin zymography, respectively. Additionally, the protein expression level of galectin-3 was determined by western blot analysis. The results of the present study demonstrated that short hairpin RNA (shRNA)-silencing of LI-cadherin significantly increased the mRNA levels and activities of MMP‑2 and ‑9, and significantly reduced the protein levels of galectin‑3 in LoVo cells compared with control shRNA (P<0.05). These data indicate that knockdown of LI‑cadherin facilitates the invasion of cancer cells by degrading extracellular matrix components via activation of MMP‑2 and ‑9, and increases cancer cell adhesion and migration via altered expression of galectin‑3. This suggests that LI‑cadherin serves an important role in the invasion and metastasis of colorectal cancer, and may be used as a potential therapeutic target. PMID:27035870

  2. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications. PMID:22242647

  3. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2.

    PubMed

    Feng, Duan; Zhang, Yangyang; Feng, Tingting; Shi, Wen; Li, Xiaohua; Ma, Huimin

    2011-10-14

    A graphene oxide-peptide based fluorescence sensor has been developed for matrix metalloproteinase 2 (MMP2), and its applicability has been demonstrated by monitoring the concentration of MMP2 secreted by HeLa cells, revealing that HeLa cells with a density of 5.48 × 10(5) cells per mL can produce 22 nM in cell culture media in 24 h. PMID:21892449

  4. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-08-01

    Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension

  5. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  6. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    PubMed

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events. PMID:24499865

  7. Methodological aspects of QM/MM calculations: A case study on matrix metalloproteinase-2.

    PubMed

    Vasilevskaya, Tatiana; Khrenova, Maria G; Nemukhin, Alexander V; Thiel, Walter

    2016-07-15

    We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc-dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase-2 (MMP-2), that is, the nucleophilic attack of the zinc-coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM-based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP-2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0-2 Å) give unrealistic results because of structural reorganizations in the active-site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc. PMID:27140531

  8. A stromal interaction molecule 1 variant up-regulates matrix metalloproteinase-2 expression by strengthening nucleoplasmic Ca2+ signaling.

    PubMed

    Chen, Fengrong; Zhu, Liping; Cai, Lei; Zhang, Jiwei; Zeng, Xianqin; Li, Jiansha; Su, Yuan; Hu, Qinghua

    2016-04-01

    Very recent studies hold promise to reveal the role of stromal interaction molecule 1 (STIM1) in non-store-operated Ca2+ entry. Here we showed that in contrast to cytoplasmic membrane redistribution as previously noted, human umbilical vein endothelial STIM1 with a T-to-C nucleotide transition resulting in an amino acid substitution of leucine by proline in the signal peptide sequence translocated to perinuclear membrane upon intracellular Ca2+ depletion, amplified nucleoplasmic Ca2+ signaling through ryanodine receptor-dependent pathway, and enhanced the subsequent cAMP responsive element binding protein activity, matrix metalloproteinase-2 (MMP-2) gene expression, and endothelial tube forming. The abundance of mutated STIM1 and the MMP-2 expression were higher in native human umbilical vein endothelial cells of patients with gestational hypertension than controls and were significantly correlated with blood pressure. These findings broaden our understanding about structure-function bias of STIM1 and offer unique insights into its application in nucleoplasmic Ca2+, MMP-2 expression, endothelial dysfunction, and pathophysiological mechanism(s) of gestational hypertension. PMID:26775216

  9. Role of Matrix Metalloproteinases 2 and 9 in Lacrimal Gland Disease in Animal Models of Sjögren's Syndrome

    PubMed Central

    Aluri, Hema S.; Kublin, Claire L.; Thotakura, Suharika; Armaos, Helene; Samizadeh, Mahta; Hawley, Dillon; Thomas, William M.; Leavis, Paul; Makarenkova, Helen P.; Zoukhri, Driss

    2015-01-01

    Purpose Chronic inflammation of the lacrimal gland results in changes in the composition of the extracellular matrix (ECM), which is believed to compromise tissue repair. We hypothesized that increased production/activity of matrix metalloproteinases (MMPs), especially MMP-2 and -9, in inflamed lacrimal glands modifies the ECM environment, therefore disrupting tissue repair. Methods The lacrimal glands from female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for histology, immunohistochemistry, zymography, Western blotting, and RNA analyses. In another study, MRL/lpr mice were treated for 5 weeks with a selective MMP2/9 inhibitor peptide or a control peptide. At the end of treatment, the lacrimal glands were excised and the tissue was processed as described above. Results There was a 2.5- and 2.7-fold increase in MMP2 gene expression levels in MRL/lpr and NOD mice, respectively. Matrix metalloproteinase 2 and 9 enzymatic activities and protein expression levels were significantly upregulated in the lacrimal glands of MRL/lpr and NOD mice compared to controls. Treatment with the MMP2/9 inhibitor resulted in decreased activity of MMP-2 and -9 both in vitro and in vivo. Importantly, MMP2/9 inhibitor treatment of MRL/lpr mice improved aqueous tear production and resulted in reduced number and size of lymphocytic foci in diseased lacrimal glands. Conclusions We conclude that MMP2/9 expression and activity are elevated in lacrimal glands of two murine models of Sjögren's syndrome, suggesting that manipulation of MMP2/9 activity might be a potential therapeutic target in chronically inflamed lacrimal glands. PMID:26244298

  10. Expression and characterization of common carp (Cyprinus carpio) matrix metalloproteinase-2 and its activity against type I collagen.

    PubMed

    Wang, Ci; Zhan, Chun-Lan; Cai, Qiu-Feng; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2014-05-10

    Matrix metalloproteinases (MMPs) play essential roles in the metabolism of animal collagen while few reports are available for MMPs in aquatic animals. In this study, we report the complete sequence of matrix metalloproteinase-2 (MMP-2) gene from common carp (Cyprinus carpio) skeletal muscle. The full-length cDNA of MMP-2 was 2792bp which contains an open reading frame of 1974bp, corresponding to a protein of 657 amino acid residues. Based on the structural feature of MMP-2, the gene of the catalytic domain containing 351 amino acid residues was cloned and expressed in Escherichia coli. SDS-PAGE showed that the truncated recombinant MMP-2 (trMMP-2) with molecular mass of approximately 38kDa was in the form of inclusion body. The trMMP-2 was further purified by immobilized metal ion affinity chromatography. After renaturation, similar to native MMP-2, the trMMP-2 exhibited high hydrolyzing activity toward gelatin as appeared on gelatin zymography and optimal activity was at pH 8.0 and 40°C. The activity of the trMMP-2 was completely suppressed by metalloproteinase inhibitors, including EDTA, EGTA and 1,10-phenanthroline while other proteinase inhibitors did not show any inhibitory effect. Divalent metal ion Ca(2+) was necessary for the gelatinolytic activity, suggesting it is a calcium-dependent metalloproteinase. Moreover, the trMMP-2 effectively hydrolyzed native type I collagen at 37°C and even at 4°C, implying its potential application value as a collagenase for preparation of biologically active oligopeptides. PMID:24613299

  11. Matrix metalloproteinase-2 enhances platelet deposition on collagen under flow conditions.

    PubMed

    Guglielmini, Giuseppe; Appolloni, Viviana; Momi, Stefania; De Groot, Philip G; Battiston, Monica; De Marco, Luigi; Falcinelli, Emanuela; Gresele, Paolo

    2016-01-01

    Platelets contain and release matrix metalloproteinase-2 (MMP-2) that in turn potentiates platelet aggregation. Platelet deposition on a damaged vascular wall is the first, crucial, step leading to thrombosis. Little is known about the effects of MMP-2 on platelet activation and adhesion under flow conditions. We studied the effect of MMP-2 on shear-dependent platelet activation using the O'Brien filtration system, and on platelet deposition using a parallel-plate perfusion chamber. Preincubation of human whole blood with active MMP-2 (50 ng/ml, i.e. 0.78 nM) shortened filter closure time (from 51.8 ± 3.6 sec to 40 ± 2.7 sec, p<0.05) and increased retained platelets (from 72.3 ± 2.3% to 81.1 ± 1.8%, p<0.05) in the O'Brien system, an effect prevented by a specific MMP-2 inhibitor. High shear stress induced the release of MMP-2 from platelets, while TIMP-2 levels were not significantly reduced, therefore, the MMP-2/TIMP-2 ratio increased significantly showing enhanced MMP-2 activity. Preincubation of whole blood with active MMP-2 (0.5 to 50 ng/ml, i.e 0.0078 to 0.78 nM) increased dose-dependently human platelet deposition on collagen under high shear-rate flow conditions (3000 sec⁻¹) (maximum +47.0 ± 11.9%, p<0.05, with 50 ng/ml), while pre-incubation with a MMP-2 inhibitor reduced platelet deposition. In real-time microscopy studies, increased deposition of platelets on collagen induced by MMP-2 started 85 sec from the beginning of perfusion, and was abolished by a GPIIb/IIIa antagonist, while MMP-2 had no effect on platelet deposition on fibrinogen or VWF. Confocal microscopy showed that MMP-2 enhances thrombus volume (+20.0 ± 3.0% vs control) rather than adhesion. In conclusion, we show that MMP-2 potentiates shear-induced platelet activation by enhancing thrombus formation. PMID:26510894

  12. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  13. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  14. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  15. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  16. Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter.

    PubMed Central

    Bian, J; Sun, Y

    1997-01-01

    p53, a tumor suppressor and a transcription factor, has been shown to transcriptionally activate the expression of a number of important genes involved in the regulation of cell growth, DNA damage, angiogenesis, and apoptosis. In a computer search for other potential p53 target genes, we identified a perfect p53 binding site in the promoter of the human type IV collagenase (also called 72-kDa gelatinase or matrix metalloproteinase 2 [MMP-2]) gene. This p53 binding site was found to specifically bind to p53 protein in a gel shift assay. Transcription assays with luciferase reporters driven by the promoter or enhancer of the type IV collagenase gene revealed that (i) activation of the promoter activity is p53 binding site dependent in p53-positive cells but not in p53-negative cells and (ii) wild-type p53, but not p53 mutants commonly found in human cancers, transactivates luciferase expression driven by the type IV collagenase promoter as well as by a p53 site-containing enhancer element in the promoter. Significantly, expression of the endogenous type IV collagenase is also under the control of p53. Treatment of U2-OS cells, a wild-type p53-containing osteogenic sarcoma line, with a common p53 inducer, etoposide, induced p53 DNA binding and transactivation activities in a time-dependent manner. Induction of type IV collagenase expression followed the p53 activation pattern. No induction of type IV collagenase expression can be detected under the same experimental conditions in p53-negative Saos-2 cells. All these in vitro and in vivo assays strongly suggest that the type IV collagenase gene is a p53 target gene and that its expression is subject to p53 regulation. Our finding links p53 to a member of the MMP genes, a family of genes implicated in trophoblast implantation, wound healing, angiogenesis, arthritis, and tumor cell invasion. p53 may regulate these processes by upregulating expression of type IV collagenase. PMID:9343394

  17. Matrix Metalloproteinase-2 Knockout and Heterozygote Mice Are Protected from Hydronephrosis and Kidney Fibrosis after Unilateral Ureteral Obstruction

    PubMed Central

    Tveitarås, Maria K.; Skogstrand, Trude; Leh, Sabine; Helle, Frank; Chatziantoniou, Christos; Reed, Rolf K.; Hultström, Michael

    2015-01-01

    Matrix Metalloproteinase-2 (Mmp2) is a collagenase known to be important in the development of renal fibrosis. In unilateral ureteral obstruction (UUO) the obstructed kidney (OK) develops fibrosis, while the contralateral (CL) does not. In this study we investigated the effect of UUO on gene expression, fibrosis and pelvic remodeling in the kidneys of Mmp2 deficient mice (Mmp2-/-), heterozygous animals (Mmp2+/-) and wild-type mice (Mmp2+/+). Sham operated animals served as controls (Cntrl). UUO was prepared under isoflurane anaesthesia, and the animals were sacrificed after one week. UUO caused hydronephrosis, dilation of renal tubules, loss of parenchymal thickness, and fibrosis. Damage was most severe in Mmp2+/+ mice, while both Mmp2-/- and Mmp2+/- groups showed considerably milder hydronephrosis, no tubular necrosis, and less tubular dilation. Picrosirius red quantification of fibrous collagen showed 1.63±0.25% positivity in OK and 0.29±0.11% in CL (p<0.05) of Mmp2+/+, Mmp2-/- OK and Mmp2-/- CL exhibited only 0.49±0.09% and 0.23±0.04% (p<0.05) positivity, respectively. Mmp2+/- OK and Mmp2+/- CL showed 0.43±0.09% and 0.22±0.06% (p<0.05) positivity, respectively. Transcriptomic analysis showed that 26 genes (out of 48 examined) were differentially expressed by ANOVA (p<0.05). 25 genes were upregulated in Mmp2+/+ OK compared to Mmp2+/+ CL: Adamts1, -2, Col1a1, -2, -3a1, -4a1, -5a1, -5a2, Dcn, Fbln1, -5, Fmod, Fn1, Itga2, Loxl1, Mgp, Mmp2, -3, Nid1, Pdgfb, Spp1, Tgfb1, Timp2, Trf, Vim. In Mmp2-/- and Mmp2+/- 18 and 12 genes were expressed differentially between OK and CL, respectively. Only Mmp2 was differentially regulated when comparing Mmp2-/- OK and Mmp2+/- OK. Under stress, it appears that Mmp2+/- OK responds with less Mmp2 upregulation than Mmp2+/+ OK, suggesting that there is a threshold level of Mmp2 necessary for damage and fibrosis to occur. In conclusion, reduced Mmp2 expression during UUO protects mice against hydronephrosis and renal fibrosis

  18. [Effect of elastin peptides on the production of matrix metalloproteinase 2 by human skin fibroblasts in culture].

    PubMed

    Huet, E; Brassart, B; Wallach, J; Debelle, L; Haye, B; Emonard, H; Hornebeck, W

    2001-01-01

    Soluble elastin-derived peptides from alkaline or elastase hydrolysis of insoluble elastin, as well as tropoelastin, increase matrix metalloproteinase-2 (MMP-2) production by human skin fibroblasts in culture as determined by gelatin zymography and ELISA. Such an effect is time and concentration dependent; it can be reproduced by synthetic elastin: VGVAPG, PGAIPG, and laminin: LGTIPG, hexapeptides and inhibited by lactose and is therefore elastin receptor-mediated. The steady state levels of MMP-2 mRNAs are invariant following elastin-fibroblasts interaction. Inhibition of phospholipase C (D-609), ADP-ribosylation factor (brefeldin), protein kinase C (RO-318220) and phospholipase D (1-propanol) totally abolished the elastin-mediated increase of MMP-2 production. It suggested that the post-transcriptional mechanism controlling the elastin-mediated overproduction of MMP-2 involved a cascade leading to phospholipase D activation. PMID:11723829

  19. O-6-methylguanine-DNA Methyltransferase Inhibits Gastric Carcinoma Cell Migration and Invasion by Downregulation of Matrix Metalloproteinase 2.

    PubMed

    Li, Chenglong; Deng, Li; Shen, Hugang; Meng, Qingyou; Qian, Aimin; Sang, Hongfei; Xia, Jiazeng; Li, Xiaoqiang

    2016-01-01

    MGMT plays a key role in many kinds of cancers. However, the molecular mechanisms of MGMT involvement in gastric cancer (GC) are poorly elucidated. Here, we investigated the role of MGMT in GC cell migration, invasion and metastatic potential. Our data showed that MGMT expression was negatively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by downregulation of matrix metalloproteinase 2 (MMP2). Loss of MGMT expression induced increases in GC cell metastasis and invasion potential in vitro and in vivo. These effects were reversed by inhibition of MGMT and MMP2. MGMT overexpression downregulated MMP2 protein levels, whereas this effect was counteracted by MGMT siRNA. In summary, MGMT is involved in gastric carcinogenesis via downregulation of MMP2. The MGMT/MMP2 pathway plays an essential role in GC metastasis and may be a potential therapeutic target for GC treatment. PMID:27291049

  20. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  1. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  2. A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis.

    PubMed

    Munesue, Seiichi; Yoshitomi, Yasuo; Kusano, Yuri; Koyama, Yoshie; Nishiyama, Akiko; Nakanishi, Hayao; Miyazaki, Kaoru; Ishimaru, Takeshi; Miyaura, Shuichi; Okayama, Minoru; Oguri, Kayoko

    2007-09-21

    The syndecans comprise a family of cell surface heparan sulfate proteoglycans exhibiting complex biological functions involving the interaction of heparan sulfate side chains with a variety of soluble and insoluble heparin-binding extracellular ligands. Here we demonstrate an inverse correlation between the expression level of syndecan-2 and the metastatic potential of three clones derived from Lewis lung carcinoma 3LL. This correlation was proved to be a causal relationship, because transfection of syndecan-2 into the higher metastatic clone resulted in the suppression of both spontaneous and experimental metastases to the lung. Although the expression levels of matrix metalloproteinase-2 (MMP-2) and its cell surface activators, such as membrane-type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinase-2, were similar regardless of the metastatic potentials of the clones, elevated activation of MMP-2 was observed in the higher metastatic clone. Removal of heparan sulfate from the cell surface of low metastatic cells by treatment with heparitinase-I promoted MMP-2 activation, and transfection of syndecan-2 into highly metastatic cells suppressed MMP-2 activation. Furthermore, transfection of mutated syndecan-2 lacking glycosaminoglycan attachment sites into highly metastatic cells did not have any suppressive effect on MMP-2 activation, suggesting that this suppression was mediated by the heparan sulfate side chains of syndecan-2. Actually, MMP-2 was found to exhibit a strong binding ability to heparin, the dissociation constant value being 62 nM. These results indicate a novel function of syndecan-2, which acts as a suppressor for MMP-2 activation, causing suppression of metastasis in at least the metastatic system used in the present study. PMID:17623663

  3. Matrix Metalloproteinases 2 and 9 Are Differentially Expressed in Patients with Indeterminate and Cardiac Clinical Forms of Chagas Disease

    PubMed Central

    Fares, Rafaelle Christine Gomes; Gomes, Juliana de Assis Silva; Garzoni, Luciana Ribeiro; Waghabi, Mariana Caldas; Saraiva, Roberto Magalhães; Medeiros, Nayara Ingrid; Oliveira-Prado, Roberta; Sangenis, Luiz Henrique Conde; Chambela, Mayara da Costa; de Araújo, Fernanda Fortes; Teixeira-Carvalho, Andréa; Damásio, Marcos Paulo; Valente, Vanessa Azevedo; Ferreira, Karine Silvestre; Sousa, Giovane Rodrigo; Rocha, Manoel Otávio da Costa

    2013-01-01

    Dilated chronic cardiomyopathy (DCC) from Chagas disease is associated with myocardial remodeling and interstitial fibrosis, resulting in extracellular matrix (ECM) changes. In this study, we characterized for the first time the serum matrix metalloproteinase 2 (MMP-2) and MMP-9 levels, as well as their main cell sources in peripheral blood mononuclear cells from patients presenting with the indeterminate (IND) or cardiac (CARD) clinical form of Chagas disease. Our results showed that serum levels of MMP-9 are associated with the severity of Chagas disease. The analysis of MMP production by T lymphocytes showed that CD8+ T cells are the main mononuclear leukocyte source of both MMP-2 and MMP-9 molecules. Using a new 3-dimensional model of fibrosis, we observed that sera from patients with Chagas disease induced an increase in the extracellular matrix components in cardiac spheroids. Furthermore, MMP-2 and MMP-9 showed different correlations with matrix proteins and inflammatory cytokines in patients with Chagas disease. Our results suggest that MMP-2 and MMP-9 show distinct activities in Chagas disease pathogenesis. While MMP-9 seems to be involved in the inflammation and cardiac remodeling of Chagas disease, MMP-2 does not correlate with inflammatory molecules. PMID:23856618

  4. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain

    PubMed Central

    Miranpuri, Gurwattan S.; Schomberg, Dominic T.; Alrfaei, Bahauddeen; King, Kevin C.; Rynearson, Bryan; Wesley, Vishwas S.; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V.; Resnick, Daniel K.

    2016-01-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  5. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain.

    PubMed

    Miranpuri, Gurwattan S; Schomberg, Dominic T; Alrfaei, Bahauddeen; King, Kevin C; Rynearson, Bryan; Wesley, Vishwas S; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V; Resnick, Daniel K

    2016-03-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  6. Lactate promotes glioma migration by TGF-β2–dependent regulation of matrix metalloproteinase-2

    PubMed Central

    Baumann, Fusun; Leukel, Petra; Doerfelt, Anett; Beier, Christoph P.; Dettmer, Katja; Oefner, Peter J.; Kastenberger, Michael; Kreutz, Marina; Nickl-Jockschat, Thomas; Bogdahn, Ulrich; Bosserhoff, Anja-Katrin; Hau, Peter

    2009-01-01

    Lactate dehydrogenase type A (LDH-A) is a key metabolic enzyme catalyzing pyruvate into lactate and is excessively expressed by tumor cells. Transforming growth factor-β2 (TGF-β2) is a key regulator of invasion in high-grade gliomas, partially by inducing a mesenchymal phenotype and by remodeling the extracellular matrix. In this study, we tested the hypothesis that lactate metabolism regulates TGF-β2–mediated migration of glioma cells. Small interfering RNA directed against LDH-A (siLDH-A) suppresses, and lactate induces, TGF-β2 expression, suggesting that lactate metabolism is strongly associated with TGF-β2 in glioma cells. Here we demonstrate that TGF-β2 enhances expression, secretion, and activation of matrix metalloproteinase-2 (MMP-2) and induces the cell surface expression of integrin αvβ3 receptors. In spheroid and Boyden chamber migration assays, inhibition of MMP-2 activity using a specific MMP-2 inhibitor and blocking of integrin αvβ3 abrogated glioma cell migration stimulated by TGF-β2. Furthermore, siLDH-A inhibited MMP2 activity, leading to inhibition of glioma migration. Taken together, we define an LDH-A–induced and TGF-β2–coordinated regulatory cascade of transcriptional regulation of MMP-2 and integrin αvβ3. This novel interaction between lactate metabolism and TGF-β2 might constitute a crucial mechanism for glioma migration. PMID:19033423

  7. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  8. A Novel Poly-Naphthol Compound ST104P Suppresses Angiogenesis by Attenuating Matrix Metalloproteinase-2 Expression in Endothelial Cells

    PubMed Central

    Ma, Yi-Ling; Lin, Shih-Wei; Fang, Hua-Chang; Chou, Kang-Ju; Bee, Youn-Shen; Chu, Tian-Huei; Chang, Ming-Chi; Weng, Wen-Tsan; Wu, Chang-Yi; Cho, Chung-Lung; Tai, Ming-Hong

    2014-01-01

    Angiogenesis, the process of neovascularization, plays an important role in physiological and pathological conditions. ST104P is a soluble polysulfated-cyclo-tetrachromotropylene compound with anti-viral and anti-thrombotic activities. However, the functions of ST104P in angiogenesis have never been explored. In this study, we investigated the effects of ST104P in angiogenesis in vitro and in vivo. Application of ST104P potently suppressed the microvessels sprouting in aortic rings ex vivo. Furthermore, ST104P treatment significantly disrupted the vessels’ development in transgenic zebrafish in vivo. Above all, repeated administration of ST104P resulted in delayed tumor growth and prolonged the life span of mice bearing Lewis lung carcinoma. Mechanistic studies revealed that ST104P potently inhibited the migration, tube formation and wound closure of human umbilical endothelial cells (HUVECs). Moreover, ST104P treatment inhibited the secretion and expression of matrix metalloproteinase-2 (MMP-2) in a dose-dependent manner. Together, these results suggest that ST104P is a potent angiogenesis inhibitor and may hold potential for treatment of diseases due to excessive angiogenesis including cancer. PMID:25244013

  9. The Impact of Matrix Metalloproteinase 2 on Prognosis and Clinicopathology of Breast Cancer Patients: A Systematic Meta-Analysis

    PubMed Central

    Chen, Yiping; Wang, Xiaochen; Chen, Guodi; Dong, Caixia; Zhang, Depu

    2015-01-01

    Backgrounds Matrix metalloproteinase 2 (MMP-2) plays a crucial role in the progression of breast cancer (BC). The prognostic role of MMP-2 expression in BC patients has been widely reported, but the results were inconsistent. Thus, a meta-analysis was conducted to gain a better insight into the impact of MMP-2 expression on survival and clinicopathological features of BC patients. Methods Identical search strategies were used to search relevant literatures in electronic databases update to August 1, 2014. Individual hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (CIs) were extracted and pooled to evaluate the strength of the association between positive MMP-2 expression and survival results and clinicopathological features of BC patients. Begg’s tests, Egger’s tests and funnel plots were used to evaluate publication bias. Heterogeneity and sensitivity analysis were also assessed. All the work was completed using STATA. Results Pooled HRs and 95% CIs suggested that MMP-2 expression had an unfavorable impact on both OS (HR: 1.53, 95% CI: 1.29–1.82) and DFS/RFS/DDFS (HR: 1.41, 95% CI: 1.07–1.86) in BC patients. Furthermore, MMP-2 expression was significantly associated with lymph node metastasis (positive vs negative: OR 1.91, 95% CI 1.17–3.12). Conclusion In conclusion, positive MMP-2 expression might be a significant predictive factor for poor prognosis in patients with BC. PMID:25816052

  10. ßFTZ-F1 and Matrix metalloproteinase 2 are required for fat-body remodeling in Drosophila.

    PubMed

    Bond, Nichole D; Nelliot, Archana; Bernardo, Marsha K; Ayerh, Melanie A; Gorski, Kathryn A; Hoshizaki, Deborah K; Woodard, Craig T

    2011-12-15

    During metamorphosis, holometabolous insects eliminate obsolete larval tissues via programmed cell death. In contrast, tissues required for further development are retained and often remodeled to meet the needs of the adult fly. The larval fat body is involved in fueling metamorphosis, and thus it escapes cell death and is instead remodeled during prepupal development. The molecular mechanisms by which the fat body escapes programmed cell death have not yet been described, but it has been established that fat-body remodeling requires 20-hydroxyecdysone (20E) signaling. We have determined that 20E signaling is required within the fat body for the cell-shape changes and cell detachment that are characteristic of fat-body remodeling. We demonstrate that the nuclear hormone receptor ßFTZ-F1 is a key modulator of 20E hormonal induction of fat body remodeling and Matrix metalloproteinase 2 (MMP2) expression in the fat body. We show that induction of MMP2 expression in the fat body requires 20E signaling, and that MMP2 is necessary and sufficient to induce fat-body remodeling. PMID:21978772

  11. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  12. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  13. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders

    PubMed Central

    MURAKAMI, Kohei; MAEDA, Shingo; YONEZAWA, Tomohiro; MATSUKI, Naoaki

    2016-01-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes. PMID:26902805

  14. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma.

    PubMed

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  15. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma

    PubMed Central

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  16. Nuclear matrix metalloproteinase-2 in the cardiomyocyte and the ischemic-reperfused heart.

    PubMed

    Baghirova, Sabina; Hughes, Bryan G; Poirier, Mathieu; Kondo, Marcia Y; Schulz, Richard

    2016-05-01

    Matrix metalloproteinases (MMPs) are zinc-dependent proteases involved in intra- and extra-cellular matrix remodeling resulting from oxidative stress injury to the heart. MMP-2 was the first MMP to be localized to the nucleus; however, its biological functions there are unclear. We hypothesized that MMP-2 is present in the nucleus under normal physiological conditions but increases during myocardial ischemia-reperfusion (I/R) injury-induced oxidative stress, proteolyzing nuclear structural proteins. Lamins are intermediate filament proteins that provide structural support to the nucleus and are putative targets of MMP-2. To identify lamin susceptibility to MMP-2 proteolysis, purified lamin A or B was incubated with MMP-2 in vitro. Lamin A, but not lamin B, was proteolysed by MMP-2 into an approximately 50kDa fragment, which was also predicted by in silico cleavage site analysis. Immunofluorescent confocal microscopy and subcellular fractionation showed MMP-2 both in the cytosol and nuclei of neonatal rat ventricular myocytes. Rat hearts were isolated and perfused by the Langendorff method aerobically, or subjected to I/R injury in the presence or absence of o-phenanthroline, an MMP inhibitor. Nuclear fractions extracted from I/R hearts showed increased MMP-2 activity, but not protein level. The level of troponin I, a known sarcomeric target of MMP-2, was rescued in I/R hearts treated with o-phenanthroline, demonstrating the efficacy of MMP inhibition. However, lamin A or B levels remained unchanged in I/R hearts. MMP-2 has a widespread subcellular distribution in cardiomyocytes, including a significant presence in the nucleus. The increase in nuclear MMP-2 activity seen during stunning injury here, indicates yet unknown biological actions, other than lamin proteolysis, which may require more severe ischemia to effect. PMID:27079252

  17. Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2

    PubMed Central

    Lieu, Shirley; Hansen, Erik; Dedini, Russell; Behonick, Danielle; Werb, Zena; Miclau, Theodore; Marcucio, Ralph; Colnot, Céline

    2011-01-01

    SUMMARY The matrix metalloproteinase (MMP) family of extracellular proteases performs crucial roles in development and repair of the skeleton owing to their ability to remodel the extracellular matrix (ECM) and release bioactive molecules. Most MMP-null skeletal phenotypes that have been previously described are mild, thus permitting the assessment of their functions during bone repair in the adult. In humans and mice, MMP2 deficiency causes a musculoskeletal phenotype. In this study, we assessed the role of MMP2 during mouse fracture repair and compared it with the roles of MMP9 and MMP13. Mmp2 was expressed at low levels in the normal skeleton and was broadly expressed in the fracture callus. Treatment of wild-type mice with a general MMP inhibitor, GM6001, caused delayed cartilage remodeling and bone formation during fracture repair, which resembles the defect observed in Mmp9–/– mice. Unlike Mmp9- and Mmp13-null mutations, which affect both cartilage and bone in the callus, the Mmp2-null mutation delayed bone remodeling but not cartilage remodeling. This remodeling defect occurred without changes in either osteoclast recruitment or vascular invasion of the fracture callus compared with wild type. However, we did not detect changes in expression of Mmp9, Mmp13 or Mt1-Mmp (Mmp14) in the calluses of Mmp2-null mice compared with wild type by in situ hybridization, but we observed decreased expression of Timp2 in the calluses of Mmp2-, Mmp9- and Mmp13-null mice. In keeping with the skeletal phenotype of Mmp2-null mice, MMP2 plays a role in the remodeling of new bone within the fracture callus and impacts later stages of bone repair compared with MMP9 and MMP13. Taken together, our results indicate that MMPs play unique and distinct roles in regulating skeletal tissue deposition and remodeling during fracture repair. PMID:21135056

  18. Matrix metalloproteinases 2 and 9 and MMP9/NGAL complex activity in women with PCOS.

    PubMed

    Ranjbaran, Javad; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Karimi, Jamshid; Poormonsefi, Faranak; Khodadadi, Iraj

    2016-04-01

    It is believed that matrix metalloproteinases (MMPs) play important roles in follicular development and pathogenesis of polycystic ovary syndrome (PCOS). However, conflicting results are available about the alteration of MMP2 and MMP9 concentrations or activities in PCOS. In fact, there is no study entirely investigating both concentration and activity of these MMPs and serum levels of their tissue inhibitors TIMP2 and TIMP1, as well as lipocalin-bound form of MMP9 (MMP9/NGAL). Therefore, the thoroughness of previous studies is questionable. This study was conducted to determine circulatory concentration of MMP2, MMP9, MMP9/NGAL complex, TIMP1 and TIMP2 as well as gelatinase activities of MMP2, MMP9 and MMP9/NGAL complex in women with PCOS and controls. Mean age and BMI as well as serum levels of total cholesterol, triacylglycerol, HDL-C, LDL-C, fasting blood sugar (FBS), insulin, estradiol and sex hormone-binding globulin did not differ between groups, whereas a marked decrease in FSH and significant increases in LH, LH/FSH ratio, testosterone and free androgen index were observed. Women with PCOS and controls showed closed concentrations of MMP2, MMP9, MMP9/NGAL, TIMP1 and TIMP2. Gelatinase activity of MMP9 was found significantly higher in PCOS than in controls (64.53±15.32 vs 44.61±18.95 respectively) while patients and healthy subjects showed similar activities of MMP2 and MMP9/NGAL complex. Additionally, PCOS patients showed a higher MMP9/TIMP1 ratio compared with control women. Direct correlations were also observed between circulatory MMP9 level and the concentration and activity of MMP9/NGAL complex. In conclusion, based on the results of present study, we believe that MMP9 may be involved in the pathogenesis of PCOS. PMID:26733727

  19. Expressions of Matrix Metalloproteinases 2, 7, and 9 in Carcinogenesis of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Januszewska, Joanna; Sidorkiewicz, Iwona; Niewiński, Andrzej; Lewczuk, Łukasz; Kędra, Bogusław; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease, usually diagnosed in an advanced stage which gives a slight chance of recovery. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that participate in tissue remodeling and stimulate neovascularization and inflammatory response. The aim of the study was to evaluate the expression of MMP-2, MMP-7, and MMP-9 in normal ducts, tumor pancreatic adenocarcinoma cells, and peritumoral stroma in correlation with clinicohistopathological parameters. The study material was obtained from 29 patients with pancreatic ductal adenocarcinoma. The expressions of MMP-2, MMP-7, and MMP-9 were performed by immunohistochemical technique. Microvessel density (MVD) was visualized by special immunostaining. The expressions of MMP-2, MMP-7, and MMP-9 were mainly observed in tumor cells and peritumoral stroma. MMP-2 expression in cancer cells was correlated with female gender, stronger inflammation, and histopathological type of cancer (R = 0.460, p = 0.013; R = 0.690, p = 0.0001; R = −0.440, p = 0.005, resp.). The expression of MMP-7 in tumor cells was found to positively correlate with the presence of necrosis and negatively correlate with MVD (R = 0.402, p = 0.031; R = −0.682, p = 0.000). We also showed that positive MMP-9 expression in tumor cells was associated with MVD (R = 0.368, p = 0.084); however, it was not statistically significant. Our results demonstrate that MMP-2, MMP-7, and MMP-9 expressions correlate with various morphological features of the PDAC tumor such as inflammation, necrosis, and formation of the new blood vessels. PMID:27429508

  20. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    PubMed Central

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury. PMID:22345572

  1. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ordoñez, Marta; Rivera, Io-Guané; Presa, Natalia; Gomez-Muñoz, Antonio

    2016-08-01

    Cell migration is a complex biological function involved in both physiologic and pathologic processes. Although this is a subject of intense investigation, the mechanisms by which cell migration is regulated are not completely understood. In this study we show that the bioactive sphingolipid ceramide 1-phosphate (C1P), which is involved in inflammatory responses, causes upregulation of metalloproteinases (MMP) -2 and -9 in J774A.1 macrophages. This effect was shown to be dependent on stimulation of phosphatidylinositol 3-kinase (PI3K) and extracellularly regulated kinases 1-2 (ERK1-2) as demonstrated by treating the cells with specific siRNA to knockdown the p85 regulatory subunit of PI3K, or ERK1-2. Inhibition of MMP-2 or MMP-9 pharmacologically or with specific siRNA to silence the genes encoding these MMPs abrogated C1P-stimulated macrophage migration. Also, C1P induced actin polymerization and potently increased phosphorylation of the focal adhesion protein paxillin, which are essential factors in the regulation of cell migration. As expected, blockade of paxillin activation with specific siRNA significantly reduced actin polymerization. In addition, inhibition of actin polymerization with cytochalasin D completely blocked C1P-induced MMP-2 and -9 expression as well as C1P-stimulated macrophage migration. It was also observed that pertussis toxin (Ptx) inhibited Akt, ERK1-2, and paxillin phosphorylation, and completely blocked cell migration. The latter findings support the notion that C1P-stimulated macrophage migration is a receptor mediated effect, and point to MMP-2 and -9 as possible therapeutic targets to control inflammation. PMID:27164414

  2. Signal enhancement of silicon nanowire-based biosensor for detection of matrix metalloproteinase-2 using DNA-Au nanoparticle complexes.

    PubMed

    Choi, Jin-Ha; Kim, Han; Choi, Jae-Hak; Choi, Jeong-Woo; Oh, Byung-Keun

    2013-11-27

    Silicon nanowires have been used in the development of ultrasensitive biosensors or chemical sensors, which is originated in its high surface-to-volume ratio and function as field-effect transistor (FET). In this study, we developed an ultrasensitive DNA-gold (Au) nanoparticle complex-modified silicon nanowire field effect transistor (SiNW-FET) biosensor to detect matrix metalloproteinase-2 (MMP-2), which has been of particular interest as protein biomarker because of its relation to several important human diseases, through an enzymatic cleavage reaction of a specific peptide sequence (IPVSLRSG). SiNW patterns with a width of 100 nm and height of 100 nm were fabricated on a p-type silicon-on-insulator (SOI) wafer by electron-beam lithography. Next, negatively charged DNA-Au nanoparticle complexes coupled with the specific peptide (KKGGGGGG-IPVSLRSG-EEEEEE) were applied on the SiNWs to create a more sensitive system, which was then bound to aldehyde-functionalized SiNW. The enhanced negatively charged nanoparticle complexes by attached DNA were used to enhance the conductance change of the p-SiNW by MMP-2 cleavage reaction of the specific peptide. MMP-2 was successfully measured within a range of 100 fM to 10 nM, and the conductance signal of the p-type SiNW by the MMP-2 cleavage reaction was enhanced over 10-fold by using the DNA-Au nanoparticle complexes compared with using SiNW-attached negative single peptide sequences. PMID:24164583

  3. Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2.

    PubMed

    Chakraborti, Sajal; Mandal, Amritlal; Das, Sudip; Chakraborti, Tapati

    2004-03-17

    Treatment of bovine pulmonary artery smooth muscle microsomes with peroxynitrite (ONOO-) (100 microM) markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment of the microsomes with vitamin E (1 mM) and TIMP-2 (50 microg/ml) preserved the increase in MMP-2 activity, Ca2+ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na(+)-dependent Ca2+ uptake in the microsomes was inhibited by ONOO- and this was found to be reversed by vitamin E (1 mM) and TIMP-2 (50 microg/ml). However, changes caused by ONOO- in MMP-2 activity, ATP-dependent Ca2+ uptake and Na(+)-dependent Ca2+ uptake were not reversed upon pretreatment of the microsomes with a low concentration of 5 microg/ml of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg/ml)-mediated alteration on these parameters. The inhibition of Na(+)-dependent Ca2+ uptake by ONOO- and MMP-2 overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment with ONOO- abolished the inhibitory effect of TIMP-2 (5 microg/ml) on MMP-2 (1 microg/ml) causing 14C-gelatin degradation. Overall, the present study suggests that ONOO- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, and subsequently stimulated Ca2+ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na(+)-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle. PMID:15026147

  4. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation

    PubMed Central

    Wei, Ting; Zhang, Haihong; Cetin, Neslihan; Miller, Emily; Moak, Teri; Suen, James Y.; Richter, Gresham T.

    2016-01-01

    Extracranial arteriovenous malformations (AVMs) are rare but dangerous congenital lesions arising from direct arterial-venous shunts without intervening capillaries. Progressive infiltration, expansion, and soft tissue destruction lead to bleeding, pain, debilitation and disfigurement. The pathophysiology of AVMs is not well understood. Matrix Metalloproteinases (MMPs) are thought to play an important role in pathologic processes underlying many diseases. This study investigates the expression of MMP-9 and MMP-2 in aggressive extracranial AVMs. The differential expression of MMP-9 and its regulatory factors is also examined. Herein we demonstrate that mRNA and protein expressions of MMP-9, but not MMP-2, are significantly higher in AVM tissues compared to normal tissues. The serum level of MMP-9, but not MMP-2, is also elevated in AVM patients compared to healthy controls. MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex is also significantly increased in AVM tissues. The MMP-9/ tissue inhibitor of metalloproteases-1 (TIMP-1) complex presents as a major form detected in normal tissues. The increased and aberrant expression of MMP-9 and specific MMP-9 forms may help explain the constitutive vascular remodeling and infiltrative nature of these lesions. Specific MMP-9 inhibitors would be a promising treatment for AVMs. PMID:27075045

  5. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    SciTech Connect

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P. . E-mail: fpchou@csmu.edu.tw

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.

  6. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways.

    PubMed

    Liu, Kuo-Ching; Huang, An-Cheng; Wu, Ping-Ping; Lin, Hui-Yi; Chueh, Fu-Shin; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Meng, Menghsiao; Chung, Jing-Gung

    2011-07-01

    Epidemiological studies have demonstrated that a natural diet or consumption of fruits or vegetables can decrease the risk of cancer development. Cancer cells can migrate to and invade other organs or tissues that cause more difficulty to treat them and this also results in the need for treatments targeting multiple cellular pathways. Gallic acid (GA) has been demonstrated to possess multiple biological activities including anticancer function. However, no report exist on GA inhibited invasion and migration of human prostate cancer cells. We investigated the effects of migration and invasion in GA-treated PC-3 human prostate cancer cells with a series of in vitro experiments. Boyden chamber transwell assay was used to examine the migration and invasion of PC-3 cells. Western blotting, real-time PCR and gelatin zymography were used for determining the protein levels, gene expression and enzyme activities of matrix metalloproteinase-2 (MMP-2) and -9 in vitro. Results indicated that GA inhibited the invasion and migration of PC-3 cells and these effects are dose-dependent. GA inhibited the protein levels of MMP-2 and -9, son of sevenless homolog 1 (SOS1), growth factor receptor-bound protein 2 (GRB2), protein kinase C (PKC) and nuclear factor-κ B (NF-κB) p65, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38, p-AKT (Thr308) and p-AKT (Ser473), but it promoted the levels of phosphatidylinositol 3-kinase (PI3K) and AKT in PC-3 cells. GA also reduced the enzyme activities of MMP-2 and -9 in the examined cells. Moreover, the down-regulation of focal adhesion kinase (FAK) and Ras homolog gene family, member A (Rho A) mRNA expression levels, and up-regulation of the tissue inhibitor of metalloproteinase-1 (TIMP1) gene levels occurred in GA-treated PC-3 cells after 24 h treatment. Based on these observations, we suggest that GA might modulate through blocking the p38, JNK, PKC and PI3K/AKT signaling pathways and reducing the NF

  7. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension.

    PubMed

    Bagheri Varzaneh, Mina; Rahmani, Hamidreza; Jahanian, Rahman; Mahdavi, Amir Hossein; Perreau, Corinne; Perrot, Gwenn; Brézillon, Stéphane; Maquart, François-Xavier

    2016-08-01

    The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand. PMID:26749413

  8. Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis.

    PubMed

    Wang, Ling-Feng; Tai, Chih-Feng; Chien, Chen-Yu; Chiang, Feng-Yu; Chen, Jeff Yi-Fu

    2015-05-01

    Vitamin D and its derivatives have modulatory effects in immunological and inflammatory responses. Such properties suggest that they might have an impact on chronic inflammatory airway diseases, including nasal polyposis. The aim of this study was to understand the role of vitamin D in chronic rhinosinusitis with nasal polyps (CRSwNP) by investigating its effect on the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9 in nasal polyp-derived fibroblasts. Two primary fibroblast cultures were established from nasal polyp tissues obtained during surgery. The nasal polyp-derived fibroblasts were stimulated with tumor necrosis factor-α (TNF-α; 10 ng/mL) for 24 hours, followed by replacement with media alone or with vitamin D derivatives (calcitriol or tacalcitol; 10μM) and incubated for another 24 hours. After the treatments, the levels of MMP-2 and MMP-9 secreted were evaluated by both enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. ELISA results revealed that TNF-α could substantially stimulate the secretion of MMP-2 (p < 0.01) and MMP-9 (p < 0.001) in nasal polyp-derived fibroblasts. More importantly, such stimulatory effect was significantly suppressed by adding calcitriol (p ≤ 0.01 for MMP-2 and p < 0.001 for MMP-9) or tacalcitol (p < 0.005 for both MMP-2 and MMP-9). The ELISA results were also confirmed by Western blot analysis. The inhibitory effect of vitamin D derivatives on MMP-2 and MMP-9 secretion could potentiate their application in pharmacotherapy of Taiwanese CRSwNP patients. PMID:25910558

  9. Tissue Inhibitor of Metalloproteinase-2 Gene Delivery Ameliorates Post-Infarction Cardiac Remodeling

    PubMed Central

    Ramani, Ravi; Nilles, Kathleen; Gibson, Gregory; Burkhead, Benjamin; Mathier, Michael; McNamara, Dennis; McTiernan, Charles F.

    2011-01-01

    Hypothesis Adenoviral-mediated (AdV-T2) overexpression of TIMP-2 would blunt ventricular remodeling and improve survival in a murine model of chronic ischemic injury. Methods Male mice (n=124) aged 10–14 weeks underwent either 1) left coronary artery ligation to induce myocardial infarction (MI group, n=36), 2) myocardial injection of 6×1010 viral particles of AdV-T2 immediately post-MI (MI+T2 group, n=30), 3) myocardial injection of 6×1010 viral particles of a control adenovirus (MI+Ct, n=38), or 4) received no intervention (controls, n=20). On post-MI day 7, surviving mice (n=79) underwent echocardiographic, immunohistochemical and biochemical analysis. Results In infarcted animals, the MI+T2 group demonstrated improved survival (p< 0.02), better preservation of developed pressure and ventricular diameter (p<0.04), and the lowest expression and activity of MMP-2 and MMP-9 (P<0.04) compared with MI and MI+Ct groups.. All infarcted hearts displayed significantly increased inflammatory cell infiltration (p<0.04 versus control, MI, or MI+T2), with infiltration highest in the MI+Ct group and lowest in the MI+T2 group (p<0.04). Conclusions Adenoviral mediated myocardial delivery of the TIMP-2 gene improves post-MI survival and limits adverse remodeling in a murine model of myocardial infarction. PMID:21348952

  10. Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs.

    PubMed

    Zhu, Lin; Perche, Federico; Wang, Tao; Torchilin, Vladimir P

    2014-04-01

    Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid "core"; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. PMID:24529391

  11. Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry

    PubMed Central

    Aujla, Paven K.; Huntley, George W.

    2016-01-01

    Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes that contribute to pericellular remodeling in a variety of tissues, including brain, where they function in adult hippocampal synaptic structural and functional plasticity. Synaptic plasticity and remodeling are also important for development of connectivity, but it is unclear whether MMPs—particularly MMP-2 and -9, the major MMPs operative in brain—contribute at these stages. Here, we use a combination of biochemical and anatomical methods to characterize expression and localization of MMP-2 and MMP-9 in early postnatal and adult rat hippocampus. Gene and protein expression of these MMPs are evident throughout hippocampus at all ages examined, but expression levels were highest during the first postnatal week. MMP-2 and MMP-9 immunolocalized to punctate structures within the neuropil that codistributed with foci of proteolytic activity, as well as with markers of growing axons and synapses. Taken together, discrete foci of MMP proteolysis are likely important for actively shaping and remodeling cellular and connectional architecture as hippocampal circuitry is becoming established during early postnatal life. PMID:24114974

  12. High Levels of 17β-Estradiol Are Associated with Increased Matrix Metalloproteinase-2 and Metalloproteinase-9 Activity in Tears of Postmenopausal Women with Dry Eye

    PubMed Central

    Shen, Guanglin; Ma, Xiaoping

    2016-01-01

    Purpose. To determine the serum levels of sex steroids and tear matrix metalloproteinases (MMP) 2 and 9 concentrations in postmenopausal women with dry eye. Methods. Forty-four postmenopausal women with dry eye and 22 asymptomatic controls were enrolled. Blood was drawn and analyzed for serum levels of sex steroids and lipids. Then, the following tests were performed: tear collection, Ocular Surface Disease Index (OSDI) questionnaire, fluorescein tear film break-up time (TBUT), corneal fluorescein staining, Schirmer test, and conjunctival impression cytology. The conjunctival mRNA expression and tear concentrations of MMP-2 and MMP-9 were measured. Results. Serum 17β-estradiol levels were significantly higher in the dry eye subjects than in the controls (P = 0.03), whereas there were no significant differences in levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and progesterone. Tear MMP-2 and MMP-9 concentrations (P < 0.001), as well as the MMP-9 mRNA expression in conjunctival samples (P = 0.02), were significantly higher in dry eye subjects than in controls. Serum 17β-estradiol levels were positively correlated with tear MMP-2 and MMP-9 concentrations and negatively correlated with Schirmer test values. Conclusions. High levels of 17β-estradiol are associated with increased matrix metalloproteinase-2 and metalloproteinase-9 activity in tears of postmenopausal women with dry eye. PMID:26904272

  13. Serum Concentrations of Endothelin-1 and Matrix Metalloproteinases-2, -9 in Pre-Hypertensive and Hypertensive Patients with Type 2 Diabetes

    PubMed Central

    Kostov, Krasimir; Blazhev, Alexander; Atanasova, Milena; Dimitrova, Anelia

    2016-01-01

    Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its plasma or serum concentrations are elevated in some forms of experimental and human hypertension, this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9 (MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2 and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover. PMID:27490532

  14. Biocompatible nanoparticles sensing the matrix metallo-proteinase 2 for the on-demand release of anticancer drugs in 3D tumor spheroids.

    PubMed

    Cantisani, Marco; Guarnieri, Daniela; Biondi, Marco; Belli, Valentina; Profeta, Martina; Raiola, Luca; Netti, Paolo A

    2015-11-01

    The balance between dose-dependent tolerability, effectiveness and toxicity of systemically administered antitumor drugs is extremely delicate. This issue highlights the striking need for targeted release of chemotherapeutic drugs within tumors. In this work, a smart strategy of drug targeting to tumors relying upon biodegradable/biocompatible nanoparticles releasing cytotoxic drugs after sensing physiological variations intrinsic to the very nature of tumor tissues is exploited. Here, the well-known over-expression of matrix metallo-proteinase 2 (MMP2) enzyme in tumors has been chosen as a trigger for the release of a cytotoxic drug. Nanoparticles made up of a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA)--block--polyethylene glycol (PEG) copolymer (namely PELGA), blended with a tumor-activated prodrug (TAP) composed of a MMP2-sensitive peptide bound to doxorubicin (Dox) and to PLGA chain have been produced. The obtained devices are able to release Dox specifically upon MMP2 cleavage of the TAP. More interestingly, they can sense the differences in the expression levels of endogenous MMP2 protein, thus modulating drug penetration within a three-dimensional (3D) tumor spheroid matrix, accordingly. Therefore, the proposed nanoparticles hold promise as a useful tool for in vivo investigations aimed at an improved therapeutic efficacy of the conjugated drug payload. PMID:26340360

  15. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities

    PubMed Central

    ZHANG, HONGQI; CHU, GE; PAN, CHAO; HU, JIANZHONG; GUO, CHAOFENG; LIU, JINYANG; WANG, YUXIANG; WU, JIANHUANG

    2014-01-01

    This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9

  16. Matrix Metalloproteinase 2-sensitive Multifunctional Polymeric Micelles for Tumor-specific Co-delivery of siRNA and Hydrophobic Drugs

    PubMed Central

    Zhu, Lin; Perche, Federico; Wang, Tao; Torchilin, Vladimir P

    2014-01-01

    Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid “core”; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. PMID:24529391

  17. Promotion of breast cancer cells MDA-MB-231 invasion by di(2-ethylhexyl)phthalate through matrix metalloproteinase-2/-9 overexpression.

    PubMed

    Zhang, Shuya; Ma, Jiehua; Fu, Ziyi; Zhang, Zhilei; Cao, Jian; Huang, Lei; Li, Wenqu; Xu, Pengfei; Cao, Xin

    2016-05-01

    Di(2-ethylhexyl)phthalate (DEHP) is an estrogenic chemical that is widely used in polyvinyl products. We aimed to determine the mechanisms behind the effects of DEHP on ERα-negative breast cancer cells MDA-MB-231 invasion and matrix metalloproteinases-2/-9 (MMP-2/-9) up-regulation in this study. Transwell assay indicated that DEHP exposure (>50 μg/ml) significantly enhanced the invasion ability of MDA-MB-231 cells. Quantitative real-time PCR (qPCR) and western blotting revealed that MMP-2/-9 is overexpressed in mRNA and protein levels after DEHP treatment. Gelatin zymography consistently demonstrated that DEHP exposure also enhances the activity of MMP-2/-9. Immunofluorescence assay showed that DEHP could accelerate NF-kappaB (NF-κB) subunits-p65 translocation into the nucleus, which is confirmed by western blotting assay, suggesting that the ratio of nuclear/cytosolic level of p65 was significantly increased. Furthermore, the invasion and MMP-2/-9 overexpression of MDA-MB-231 cells after DEHP-treated were reversed by the NF-κB chemical inhibitor JSH-23 via drug inhibition assay. This study suggested that DEHP could promote ERα-negative breast cancer cells MDA-MB-231 invasion through activating NF-κB and MMP-2/-9 overexpression. PMID:26850096

  18. Data of the natural and pharmaceutical angiotensin-converting enzyme inhibitor isoleucine-tryptophan as a potent blocker of matrix metalloproteinase-2 expression in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-09-01

    The present data are related to the research article entitled "Whey peptide isoleucine-tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta" [1]. Here we present data on removal of endothelium from aorta, endothelium dependent aortic relaxation and inhibition of expression of pro-MMP2 by di-peptide isoleucine-tryptophan (IW). Experiments were performed in rat aortic endothelial cells (EC) and smooth muscle cells (SMC) in vitro, along with isolated rat aorta ex vivo. The cells and isolated aorta were stimulated with angiotensin II (ANGII) or angiotensin I (ANGI). ACE activity was inhibited by treatment with either IW or captopril (CA). Losartan was used as a blocker of angiotensin type-1 receptor. IW inhibited MMP2 protein expression induced with ANGI in a dose-dependent manner. IW was effective both in ECs and SMCs, as well as in isolated aorta. Similarly, captopril (CA) inhibited ANGI-induced MMP2 protein expression in both in vitro and ex vivo. Neither IW nor CA inhibited ANGII-induced MMP2 protein expression in contrast to losartan. The data also displays that removal of endothelium in isolated rat aorta abolished the endothelium-dependent relaxation induced with acetylcholine. However, SMC-dependent relaxation induced with sodium nitroprusside remained intact. Finally, the data provides histological evidence of selective removal of endothelial cells from aorta. PMID:27508250

  19. O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood-brain barrier.

    PubMed

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V; Lichtenwalter, Katerina; Suckow, Mark A; Schroeder, Valerie A; Wolter, William R; Mobashery, Shahriar; Chang, Mayland

    2013-10-24

    Brain metastasis occurs in 20-40% of cancer patients. Treatment is mostly palliative, and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor, were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however, higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases such as brain metastasis. PMID:24028490

  20. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood-Brain Barrier

    PubMed Central

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V.; Lichtenwalter, Katerina; Suckow, Mark A.; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    Brain metastasis occurs in 20% to 40% of cancer patients. Treatment is mostly palliative and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases, such as brain metastasis. PMID:24028490

  1. Effects of heparin on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells

    PubMed Central

    Guo, Hangyuan; Lee, Jong-Dae; Uzui, Hiroyasu; Yue, Hong; Wang, Ping; Toyoda, Kiyohiro; Geshi, Tooru; Ueda, Takanori

    2007-01-01

    OBJECTIVE: To study the effects of heparin on the production of homocysteine-induced extracellular matrix metalloproteinase-2 (MMP-2) in cultured rat vascular smooth muscle cells. METHODS: The effects of different homocysteine levels (0 μmol/L to 1000 μmol/L) on MMP-2 production and the effects of different heparin concentrations (0 μg/mL to 100 μg/mL) on homocysteine-induced MMP-2 in cultured rat vascular smooth muscle cells were examined using gelatin zymography and Western blotting. The changes in MMP-2 were further compared with various treatments for 24 h, 48 h and 72 h. RESULTS: Homocysteine (50 μmol/L to 1000 μmol/L) increased the production of MMP-2 significantly in a dose-dependent manner. Increased production of MMP-2 induced by homocysteine was reduced by the extracellular addition of heparin in a dose-dependent manner. Production of MMP-2 with various treatment regimens for 72 h was greater than for 24 h and 48 h. CONCLUSIONS: Extracellular addition of heparin decreased homocysteine-induced MMP-2 secretion. Data suggest a mechanism by which hyperhomocysteinemia is involved in the pathogenesis of coronary artery disease and demonstrate a beneficial effect of heparin on these conditions. PMID:17380220

  2. Characterisation of equine matrix metalloproteinase 2 and 9; and identification of the cellular sources of these enzymes in joints.

    PubMed

    Clegg, P D; Burke, R M; Coughlan, A R; Riggs, C M; Carter, S D

    1997-09-01

    The cellular production by resident articular cells and infiltrating inflammatory cells of the gelatinase matrix metalloproteinases (MMP) was investigated by tissue culture methods and analysis of cell supernatants by gelatin zymography. Peripheral blood neutrophils in short term culture produced MMP-9, as did peripheral blood monocytes in culture. Isolated articular chondrocytes in monolayer culture produced both MMP-2 and MMP-9, although articular cartilage maintained as explant culture produced MMP-2 alone. Synovial fibroblasts grown in monolayer culture produced MMP-2 alone, although synovial membrane in explant culture produced both MMP-2 and the active form of MMP-2. Lysis of blood polymorph neutrophils produced large quantities of MMP-9, but lysis of blood monocytes, synovial fibroblasts and articular chondrocytes produced little enzyme indicating that, unlike the other cell types, polymorph neutrophils store MMPs intracellularly. Equine MMP-2 was purified from synovial fibroblast cell culture supernatant, and equine MMP-9 from polymorph neutrophil cell culture supernatant, by gelatin-sepharose affinity chromatography. The 2 enzymes were identified from their molecular weights and by their respective N-terminal amino acid sequences which showed homology with the enzymes from other species. The demonstration that invasive cells and resident articular cells can produce enzymes which are capable of digestion of certain component molecules of the articular cartilage matrix, shows that therapeutic targeting of these enzymes could be a valid proposition in the prevention of cartilage destruction in osteoarthritis. PMID:9306058

  3. Dexamethasone Ameliorates H2S-Induced Acute Lung Injury by Alleviating Matrix Metalloproteinase-2 and -9 Expression

    PubMed Central

    Su, Chenglei; Chen, Junjie; Zhu, Baoli; Zhang, Hengdong; Xiao, Hang; Zhang, Jinsong

    2014-01-01

    Acute lung injury (ALI) is one of the fatal outcomes after exposure to high levels of hydrogen sulfide (H2S), and the matrix metalloproteinases (MMPs) especially MMP-2 and MMP-9 are believed to be involved in the development of ALI by degrading the extracellular matrix (ECM) of blood-air barrier. However, the roles of MMP-2 and MMP-9 in H2S-induced ALI and the mechanisms of dexamethasone (DXM) in treating ALI in clinical practice are still largely unknown. The present work was aimed to investigate the roles of MMP-2 and MMP-9 in H2S-induced ALI and the protective effects of DXM. In our study, SD rats were exposed to H2S to establish the ALI model and in parallel, A549 cells were incubated with NaHS (a H2S donor) to establish cell model. The lung HE staining, immunohistochemisty, electron microscope assay and wet/dry ratio were used to identify the ALI induced by H2S, then the MMP-2 and MMP-9 expression in both rats and A549 cells were detected. Our results revealed that MMP-2 and MMP-9 were obviously increased in both mRNA and protein level after H2S exposure, and they could be inhibited by MMP inhibitor doxycycline (DOX) in rat model. Moreover, DXM significantly ameliorated the symptoms of H2S-induced ALI including alveolar edema, infiltration of inflammatory cells and the protein leakage in BAFL via up-regulating glucocorticoid receptor(GR) to mediate the suppression of MMP-2 and MMP-9. Furthermore, the protective effects of DXM in vivo and vitro study could be partially blocked by co-treated with GR antagonist mifepristone (MIF). Our results, taken together, demonstrated that MMP-2 and MMP-9 were involved in the development of H2S-induced ALI and DXM exerted protective effects by alleviating the expression of MMP-2 and MMP-9. Therefore, MMP-2 and MMP-9 might represent novel pharmacological targets for the treatment of H2S and other hazard gases induced ALI. PMID:24722316

  4. Activity of matrix metalloproteinases 2 and 9 in cultured rabbit corneal epithelium cells stimulated by tumor necrosis factor alpha.

    PubMed

    Wu, Z-Q; Zhang, Z-L; Nie, S-W; Yuan, J; Yang, Y-N

    2015-01-01

    We studied the activity of matrix metalloproteinases (MMP) 2 and 9 generated by cultured rabbit corneal epithelium cells that had been stimulated with tumor necrosis factor alpha (TNF-α), to investigate the possible regulative mechanisms of MMP-2/9 and their potential effect on corneal inflammatory diseases. The rabbit corneal epithelium cells were cultured in vitro and incubated with different concentrations of TNF-α (0, 1, 10, and 100 ng/mL) for 24 h. The activity of MMP-2/9 was examined using gelatin zymography. The results were analyzed by computer image analysis and statistical tests. TNF-α stimulated the secretion of MMP-2/9 in a dose-dependent manner, and MMP-2 was activated by TNF-α. Inflammatory factors such as TNF-α can stimulate MMP-2/9 activity in corneal epithelium cells. This may be a potential manipulating mechanism of MMP expression in the pathogenesis of corneal diseases, and could play an important role in the prevention and treatment of corneal inflammatory diseases. PMID:26125840

  5. Matrix metalloproteinase-2 deletions protect against hemorrhagic transformation after 1 h of cerebral ischemia and 23 h of reperfusion.

    PubMed

    Lu, A; Suofu, Y; Guan, F; Broderick, J P; Wagner, K R; Clark, J F

    2013-12-01

    Although elevated matrix metalloproteinase (MMP)-2 levels were highly related to the degradation of tight junction (TJ) proteins and basal lamina and neuronal injury after ischemia, until very recently, little experimental evidence was available to test the role of the MMP-2 knockout (KO) in blood-brain-barrier (BBB) injury and the development of hemorrhage transformation (HT). Here, we assessed the role of the MMP-2 KO in BBB injury, HT and other brain injuries after 1h of ischemia and 23 h of reperfusion. Middle cerebral artery occlusion (MCAO) was performed in MMP-2 KO mice. Reperfusion was started 1h after the onset of MCAO. All mice were sacrificed 24h after the MCAO. MMP-2 deficiency reduced the decrease in protein levels of collagen IV and cellular membrane occludin (p<0.01 and 0.05 vs. wild-type (WT), respectively) and attenuated increase in cytosol occludin level in ischemic brain (p<0.01 vs. WT). The hemorrhage volume and brain infarction were significantly decreased in both the cortex and striatum in the MMP-2 KO mice (p<0.01 vs. WT). The MMP-2 KO also had reduced brain swelling in the cortex and improved neurological deficits (p<0.01 vs. WT). These studies provide direct evidence that targeting MMP-2 will effectively protect against collagen and occludin loss and HT after ischemia and reperfusion. PMID:24035828

  6. Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation.

    PubMed

    Greenlee, Kendra J; Corry, David B; Engler, David A; Matsunami, Risë K; Tessier, Philippe; Cook, Richard G; Werb, Zena; Kheradmand, Farrah

    2006-11-15

    Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma. PMID:17082650

  7. A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample.

    PubMed

    Song, Erqun; Cheng, Dan; Song, Yang; Jiang, Mingdong; Yu, Jifei; Wang, Yunyun

    2013-09-15

    Graphene oxide (GO) has been widely used to develop fluorescence resonance energy transfer (FRET) biosensors for tumor markers (e.g., matrix metalloproteinases, MMPs) due to its superior fluorescence quenching capacity and unique adsorption characteristics for biomolecules. In this study, fluorescein isothiocyanate-labeled peptide (Pep-FITC) was assembled onto the GO surface through covalent binding to construct a GO-Pep-FITC FRET sensor for sensitive, rapid, and accurate detection of MMP-2 in complex serum samples. Compared to similar GO-based FRET sensors fabricated through physical adsorption, the as prepared ones via covalent binding are significantly more stable under physiological conditions, enabling their detection of MMP-2 with high sensitivity (detection limit: 2.5ng/mL). More importantly, it allows for rapid MMP-2 detection (within 3h) even in complex biological samples with satisfactory accuracy and the relative standard deviation ≤7.03%. Our studies further suggest that such a platform developed here for sensitive, rapid, and accurate detection of biomarkers holds great promise for clinical diagnosis of protease-related diseases. PMID:23623988

  8. Matrix metalloproteinase 2 fused to GFP, expressed in E. coli, successfully tracked MMP-2 distribution in vivo.

    PubMed

    Azevedo, A; Prado, A F; Issa, J P M; Gerlach, R F

    2016-08-01

    Matrix Metalloproteinases (MMPs) participate in many physiological and pathological processes. One major limitation to a better understanding of the role MMPs play in these processes is the lack of well-characterized chimeric proteins and characterization of their fluorescence. The specialized literature has reported on few constructs bearing MMPs fused to the sequence of the green fluorescent protein (GFP), but none of the described constructs have been intended for expression in bacteria or for purification and use in vivo. This work has tested a recombinant reporter protein containing the MMP-2 catalytic domain fused to GFP in terms of purification efficiency, degradation of substrates in solution and in zymograms, kinetic activity, GFP fluorescence, and GFP fluorescence in whole animals after injection of the purified and lyophilized fluorescent protein. This work has also characterized rhMMP-2 (recombinant human MMP-2) and inactive clones and used them as negative controls in experiments employing catMMP-2/GFP and rhMMP-2. To our knowledge, this is the first study that has fully characterized a chimeric protein with the MMP-2 catalytic domain fused to GFP, that has efficiently purified such protein from bacteria in a single-step, and that has obtained an adequate chimeric protein for injection in animals and tracking of MMP-2 fate and activity in vivo. PMID:27156693

  9. Liver X receptor regulates rheumatoid arthritis fibroblast-like synoviocyte invasiveness, matrix metalloproteinase 2 activation, interleukin-6 and CXCL10.

    PubMed

    Laragione, Teresina; Gulko, Pércio S

    2012-01-01

    Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β-induced and IL-6-induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA. PMID:22634718

  10. Inhibition of matrix metalloproteinases-2 and -9 prevents cognitive impairment induced by pneumococcal meningitis in Wistar rats.

    PubMed

    Barichello, Tatiana; Generoso, Jaqueline S; Michelon, Cleonice M; Simões, Lutiana R; Elias, Samuel G; Vuolo, Franciele; Comim, Clarissa M; Dal-Pizzol, Felipe; Quevedo, João

    2014-02-01

    Pneumococcal meningitis is a relevant clinical disease characterized by an intense inflammatory reaction into the subarachnoid and ventricular spaces, leading to blood-brain barrier breakdown, hearing loss, and cognitive impairment. Matrix metalloproteinases (MMPs) are capable of degrading components of the basal laminin, thus contributing to BBB damage and neuronal injury. In the present study, we evaluated the effects of MMP-2, MMP-9, and MMP-2/9 inhibitors on BBB integrity, learning, and memory in Wistar rats subjected to pneumococcal meningitis. The animals underwent a magna cistern tap and received either 10 µL sterile saline as a placebo or an equivalent volume of a Streptococcus pneumoniae suspension at a concentration of 5 × 10(9)cfu/mL. The rats were randomized into different groups that received adjuvant treatment with MMP-2, MMP-9 or MMP-2/9 inhibitors. The BBB integrity was evaluated, and the animals were habituated to open-field and object recognition tasks 10 days after meningitis induction. Adjuvant treatments with inhibitors of MMP-2 or MMP-2/9 prevented BBB breakdown in the hippocampus, and treatments with inhibitors of MMP-2, MMP-9 or MMP-2/9 prevented BBB breakdown in the cortex. Ten days after meningitis induction, the animals that received adjuvant treatment with the inhibitor of MMP-2/9 demonstrated that animals habituated to the open-field task faster and enhanced memory during short-term and long-term retention test sessions in the object recognition task. Further investigation is necessary to provide support for MMP inhibitors as an alternative treatment for bacterial meningitis; however, these findings suggest that the meningitis model could be a good research tool for studying the biological mechanisms involved in the behavioral alterations associated with pneumococcal meningitis. PMID:24419461

  11. Magnobovatol inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression

    PubMed Central

    KANG, HYREEN; AHN, DONG HYEON; PAK, JHANG HO; SEO, KYEONG-HWA; BAEK, NAM-IN; JANG, SUNG-WUK

    2016-01-01

    The migration of vascular smooth muscle cells (VSMCs) may play a crucial role in the pathogenesis of vascular diseases, such as atherosclerosis and post-angioplasty restenosis. Platelet-derived growth factor (PDGF)-BB is a potent mitogen for VSMCs and plays an important role in the intimal accumulation of VSMCs. Magnobovatol, a new neolignan from the fruits of Magnolia obovata, has been shown to have anticancer properties. However, the effects of magnobovatol on VSMCs are unknown. In the present study, we examined the effects of magnobovatol on the PDGF-BB-induced migration of mouse and human VSMCs, as well as the underlying mechanisms. Magnobovatol significantly inhibited the PDGF-BB-induced migration of mouse and human VSMCs without inducing cell death (as shown by MTT assay and wound healing assay). Additionally, we demonstrated that magnobovatol significantly blocked the PDGF-BB-induced phosphorylation of the PDGF receptor (PDGF-R), Akt and extracellular signal-regulated kinase (ERK)1/2 by inhibiting the activation of the PDGF-BB signaling pathway. Moreover, in both mouse and human VSMCs, magnobovatol inhibited PDGF-induced matrix metalloproteinase (MMP)-2 expression at the mRNA and protein level, as well as the proteolytic activity of MMP-2 (as shown by western blot analysis, RT-PCR, gelatin zymography and ELISA). In addition, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by magnobovatol (as shown by aortic ring assay). Taken together, our findings indicate that magnobovatol inhibits VSMC migration by decreasing MMP-2 expression through PDGF-R and the ERK1/2 and Akt pathways. Our data may improve the understanding of the anti-atherogenic effects of magnobovatol in VSMCs. PMID:27049716

  12. Matrix metalloproteinase-2 and -9 expression increases in Mycoplasma-infected airways but is not required for microvascular remodeling.

    PubMed

    Baluk, Peter; Raymond, Wilfred W; Ator, Erin; Coussens, Lisa M; McDonald, Donald M; Caughey, George H

    2004-08-01

    Murine Mycoplasma pulmonis infection induces chronic lung and airway inflammation accompanied by profound and persistent microvascular remodeling in tracheobronchial mucosa. Because matrix metalloproteinase (MMP)-2 and -9 are important for angiogenesis associated with placental and long bone development and skin cancer, we hypothesized that they contribute to microvascular remodeling in airways infected with M. pulmonis. To test this hypothesis, we compared microvascular changes in airways after M. pulmonis infection of wild-type FVB/N mice with those of MMP-9(-/-) and MMP-2(-/-)/MMP-9(-/-) double-null mice and mice treated with the broad-spectrum MMP inhibitor AG3340 (Prinomastat). Using zymography and immunohistochemistry, we find that MMP-2 and MMP-9 rise strikingly in lungs and airways of infected wild-type FVB/N and C57BL/6 mice, with no zymographic activity or immunoreactivity in MMP-2(-/-)/MMP-9(-/-) animals. However, microvascular remodeling as assessed by Lycopersicon esculentum lectin staining of whole-mounted tracheae is as severe in infected MMP-9(-/-), MMP-2(-/-)/MMP-9(-/-) and AG3340-treated mice as in wild-type mice. Furthermore, all groups of infected mice develop similar inflammatory infiltrates and exhibit similar overall disease severity as indicated by decrease in body weight and increase in lung weight. Uninfected wild-type tracheae show negligible MMP-2 immunoreactivity, with scant MMP-9 immunoreactivity in and around growing cartilage. By contrast, MMP-2 appears in epithelial cells of infected, wild-type tracheae, and MMP-9 localizes to a large population of infiltrating leukocytes. We conclude that despite major increases in expression, MMP-2 and MMP-9 are not essential for microvascular remodeling in M. pulmonis-induced chronic airway inflammation. PMID:15075248

  13. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions. PMID:26515234

  14. Association of matrix metalloproteinase 2 plasma level with response and survival in patients treated with bevacizumab for recurrent high-grade glioma

    PubMed Central

    Tabouret, Emeline; Boudouresque, Françoise; Barrie, Maryline; Matta, Mona; Boucard, Celine; Loundou, Anderson; Carpentier, Antoine; Sanson, Marc; Metellus, Philippe; Figarella-Branger, Dominique; Ouafik, L'Houcine; Chinot, Olivier

    2014-01-01

    Background A predictive marker of bevacizumab activity is an unmet medical need. We evaluated the predictive value of selected circulating prebiomarkers involved in neoangiogenesis and invasion on patient outcome in recurrent high-grade glioma treated with bevacizumab. Methods Analyzed in plasma were a set of 11 prebiomakers of interest (vascular endothelial growth factor receptor [VEGF]; VEGF receptor 2; basic fibroblast growth factor; stromal cell derived factor 1; placenta growth factor; urokinase-type plasminogen activator; plasminogen activator inhibitor 1; matrix metalloproteinases 2, 7, and 9; and adrenomedulline), using ELISA, at baseline and 2 weeks after bevacizumab initiation in a prospective cohort of 26 patients (Cohort 1). Correlations were validated in a separate retrospective cohort (Cohort 2; n = 50) and tested in cohort patients treated with cytotoxic agents without bevacizumab (Cohort 3; n = 34). Dosages were correlated to objective response, progression-free survival (PFS), and overall survival (OS). Results In Cohort 1, high MMP2 baseline level was associated with a probability of objective response of 83.3% versus 15.4% for low MMP2 level (P = .001). In multivariate analysis, baseline level of MMP2 correlated with PFS (hazard ratio, 3.92; 95% confidence interval [CI]:1.46–10.52; P = .007) and OS (hazard ratio, 4.62; 95% CI: 1.58–13.53; P = .005), as decrease of VEGF (P = .038 for PFS and P = .013 for OS) and MMP9 (P = .016 for PFS and P = .025 for OS). In Cohort 2, MMP2, but not MMP9, confirmed its predictive significance. In Cohort 3, no association was found between MMP2, MMP9, and outcome. Conclusion In patients with recurrent high-grade glioma treated with bevacizumab, but not with cytotoxic agent, high MMP2 plasma levels are associated with prolonged tumor control and survival. MMP2 should be tested in randomized clinical trials that evaluate bevacizumab efficacy, and its biological role reassessed. PMID:24327581

  15. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    PubMed Central

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  16. Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways.

    PubMed

    Chen, Yongqiang; Zheng, Lu; Liu, Junquan; Zhou, Zhonghai; Cao, Xiliang; Lv, Xiaoting; Chen, Fuxing

    2014-08-01

    Metastasis is one of the most important factors related to prostate cancer therapeutic efficacy. In previous studies, shikonin, an active naphthoquinone isolated from the Chinese medicine Zi Cao, has various anticancer activities both in vivo and in vitro. However, the mechanisms underlying shikonin's anticancer activity are not fully elucidated on prostate cancer cells. In the present study, we aimed to investigate the potential effects of shikonin on prostate cancer cells and the underlying mechanisms by which shikonin exerted its actions. With cell proliferation, flow cytometric cell cycle, migration and invasion assays, we found that shikonin potently suppressed PC-3 and DU145 cell growth by cell cycle arrest at the G2 phase and metastasis in a dose-dependent manner. Mechanically, we presented that shikonin could suppress the metastasis of PC-3 and DU145 cells via inhibiting the matrix metalloproteinase-2 (MMP-2) and MMP-9 expression and activation. In addition, shikonin significantly decreased the phosphorylation of AKT and mTOR in a dose-dependent manner while it induced extracellular signal-regulated kinase (ERK), p38 mitogen activated protein kinase (MAPK) and c-Jun N terminal kinase (JNK) phosphorylation. Further investigation of the underlying mechanism revealed that shikonin also induced the production of reactive oxygen species (ROS) that was reversed by the ROS scavenger dithiothreitol (DTT). Additionally, DTT reversed the shikonin induced activation of ERK1/2, thereby maintaining MMP-2 and MMP-9 expression and restoring cell metastasis. Together, shikonin inhibits aggressive prostate cancer cell migration and invasion by reducing MMP-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways and presents a potential novel alternative agent for the treatment of human prostate cancer. PMID:24905636

  17. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  18. Preparation and evaluation of the effect of Fe3 O4 @piroctone olamine magnetic nanoparticles on matrix metalloproteinase-2: a preliminary in vitro study.

    PubMed

    Shakibaie, Mojtaba; Haghiri, Mahboobe; Jafari, Mandana; Amirpour-Rostami, Sahar; Ameri, Alieh; Forootanfar, Hamid; Mehrabani, Mitra

    2014-01-01

    In the present study, Fe3 O4 magnetic nanoparticles were synthesized by the coprecipitation of Fe(2+) and Fe(3+) ions and used as a nanocarrier for the production of piroctone-olamine-loaded Fe3 O4 nanoparticles (Fe3 O4 @PO NPs). The nanocrystalline structure of the prepared iron oxide species was confirmed by the X-ray diffraction spectroscopy method. Particle size distribution analysis showed that the size of Fe3 O4 @PO NPs was in the range of 5-55 nm. The magnetization curve of Fe3 O4 @PO NPs (with saturation magnetization of 28.2 emu/g) confirmed its ferromagnetic property. Loading of PO on the surface of Fe3 O4 NPs qualitatively verified by Fourier transform infrared spectrum obtained from Fe3 O4 @PO NPs. Cytotoxicity studies on the human fibrosarcoma cell line (HT-1080) revealed higher inhibitory effect of Fe3 O4 @PO NPs (50% cell death [IC50 ] of 8.1 µg/mL) as compared with Fe3 O4 NPs (IC50 of 117.1 µg/mL) and PO (IC50 of 71.2 µg/mL) alone. In the case of human normal fibroblast (Hs68), the viability percentage was found to be 75% in the presence of Fe3 O4 @PO NPs (120 µg/mL). Gelatin zymography showed 17.2% and 34.6% inhibition of matrix metalloproteinase-2 (MMP-2) in the presence of Fe3 O4 @PO and PO, respectively, at the same concentration of 40 µg/mL, whereas Fe3 O4 NPs did not inhibit MMP-2 at any concentration. PMID:24716879

  19. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-01-01

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future. PMID:27007357

  20. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells

    PubMed Central

    Gao, Zhenya; Huo, Lijun; Cui, Dongmei; Yang, Xiao; Zeng, Junwen

    2016-01-01

    Purpose All-trans retinoic acid (ATRA) plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE) cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 2 (MMP-2) and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19) cells. Methods The effects of ATRA (concentrations from 10−9 to 10−5 mol/l) on the expression of retinoic acid receptors (RARs) in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR) and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10−9 to 10−5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ. Results RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10−9 to 10−5 mol/l) with a maximum effect observed at 10−6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10−6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135. Conclusion ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated

  1. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  2. PDGF‑stimulated dispersal of cell clusters and disruption of fibronectin matrix on three-dimensional collagen matrices requires matrix metalloproteinase-2

    PubMed Central

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2015-01-01

    Formation of cell clusters is a common morphogenic cell behavior observed during tissue and organ development and homeostasis, as well as during pathological disorders. Dynamic regulation of cell clustering depends on the balance between contraction of cells into clusters and migration of cells as dispersed individuals. Previously we reported that under procontractile culture conditions, fibronectin fibrillar matrix assembly by human fibroblasts functioned as a nucleation center for cell clustering on three-dimensional collagen matrices. Here we report that switching preformed cell clusters from procontractile to promigratory culture conditions results in cell dispersal out of clusters and disruption of FN matrix. Experiments using small interfering RNA silencing and pharmacological inhibition demonstrated that matrix metalloproteinase activity involving MMP-2 was necessary for fibronectin matrix disruption and dispersal of cell clusters. PMID:25589674

  3. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP.

    PubMed Central

    Bernardo, M Margarida; Fridman, Rafael

    2003-01-01

    The matrix metalloproteinase (MMP)-2 has a crucial role in extracellular matrix degradation associated with cancer metastasis and angiogenesis. The latent form, pro-MMP-2, is activated on the cell surface by the membrane-tethered membrane type 1 (MT1)-MMP, in a process regulated by the tissue inhibitor of metalloproteinase (TIMP)-2. A complex of active MT1-MMP and TIMP-2 binds pro-MMP-2 forming a ternary complex, which permits pro-MMP-2 activation by a TIMP-2-free neighbouring MT1-MMP. It remains unclear how MMP-2 activity in the pericellular space is regulated in the presence of TIMP-2. To address this question, the effect of TIMP-2 on MMP-2 activity in the extracellular space was investigated in live cells, and their isolated plasma membrane fractions, engineered to control the relative levels of MT1-MMP and TIMP-2 expression. We show that both free and inhibited MMP-2 is detected in the medium, and that the net MMP-2 activity correlates with the level of TIMP-2 expression. Studies to displace MT1-MMP-bound TIMP-2 in a purified system with active MMP-2 show minimal displacement of inhibitor, under the experimental conditions, due to the high affinity interaction between TIMP-2 and MT1-MMP. Thus inhibition of MMP-2 activity in the extracellular space is unlikely to result solely as a result of TIMP-2 dissociation from its complex with MT1-MMP. Consistently, immunoblot analyses of plasma membranes, and surface biotinylation experiments show that the level of surface association of TIMP-2 is independent of MT1-MMP expression. Thus low-affinity binding of TIMP-2 to sites distinct to MT1-MMP may have a role in regulating MMP-2 activity in the extracellular space generated by the ternary complex. PMID:12755684

  4. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    SciTech Connect

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2

  5. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    PubMed Central

    Wan, Rong; Mo, Yiqun; Zhang, Xing; Chien, Sufan; Tollerud, David J.; Zhang, Qunwei

    2009-01-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO2, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression.. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO2. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells after

  6. (±)Equol inhibits invasion in prostate cancer DU145 cells possibly via down-regulation of matrix metalloproteinase-9, matrix metalloproteinase-2 and urokinase-type plasminogen activator by antioxidant activity

    PubMed Central

    Zheng, Wei; Zhang, Yumei; Ma, Defu; Shi, Yuhui; Liu, Changqiu; Wang, Peiyu

    2012-01-01

    Exposure to soy isoflavones has been associated with low mortality of prostate cancer. In this study, we examined the effects of (±)equol and two representative isoflavones, daidzein and genistein, on migration and invasion in human prostate cancer DU145 cells. First of all, the three regents did not show significant growth inhibitive effect in DU145 cells until the treatments last for 72 h. Treatment with 5 µM, 10 µM, 50 µM (±)equol, 0.5 µM, 1 µM, 5 µM daidzein and genistein for 24 h decreased cell migration and invasion significantly. (±)equol activated phosphatase and tensin homologue deleted on chromosome ten at protein level but not mRNA level, which activated antioxidants, including superoxide dismutase and nuclear factor (erythroid-derived 2)-like 2. A reduction of malondialdehyde concentration, the product of lipid per-oxidation, was observed as well. Moreover, matrix metalloproteinase-2, matrix metalloproteinase-9, and urokinase-type plasminogen activator, the crucial members in metastasis, were down-regulated. Overall, our data indicate that (±)equol, daidzein and genistein may have significant anti-invasion effect in DU145 cells (in vitro). The effects induced by (±)equol may relate to its anti-oxidant effect mediated by phosphatase and tensin homologue deleted on chromosome ten. PMID:22798715

  7. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials.

    PubMed

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-06-01

    The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas.We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method.Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61-11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91-3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63-7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52-6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06-2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48-2.20, P = 0.95).The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  8. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  9. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  10. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  11. Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays.

    PubMed

    Adhikari, Nilanjan; Halder, Amit K; Mallick, Sumana; Saha, Achintya; Saha, Kishna D; Jha, Tarun

    2016-09-15

    Broad range of selectivity possesses serious limitation for the development of matrix metalloproteinase-2 (MMP-2) inhibitors for clinical purposes. To develop potent and selective MMP-2 inhibitors, initially multiple molecular modeling techniques were adopted for robust design. Predictive and validated regression models (2D and 3D QSAR and ligand-based pharmacophore mapping studies) were utilized for estimating the potency whereas classification models (Bayesian and recursive partitioning analyses) were used for determining the selectivity of MMP-2 inhibitors over MMP-9. Bayesian model fingerprints were used to design selective lead molecule which was modified using structure-based de novo technique. A series of designed molecules were prepared and screened initially for inhibitions of MMP-2 and MMP-9, respectively, as these are designed followed by other MMPs to observe the broader selectivity. The best active MMP-2 inhibitor had IC50 value of 24nM whereas the best selective inhibitor (IC50=51nM) showed at least 4 times selectivity to MMP-2 against all tested MMPs. Active derivatives were non-cytotoxic against human lung carcinoma cell line-A549. At non-cytotoxic concentrations, these inhibitors reduced intracellular MMP-2 expression up to 78% and also exhibited satisfactory anti-migration and anti-invasive properties against A549 cells. Some of these active compounds may be used as adjuvant therapeutic agents in lung cancer after detailed study. PMID:27452283

  12. Dioscorea nipponica Makino inhibits migration and invasion of human oral cancer HSC-3 cells by transcriptional inhibition of matrix metalloproteinase-2 through modulation of CREB and AP-1 activity.

    PubMed

    Chien, Ming-Hsien; Ying, Tsung-Ho; Hsieh, Yih-Shou; Chang, Yu-Chao; Yeh, Chia-Ming; Ko, Jiunn-Liang; Lee, Wen-Sen; Chang, Jer-Hua; Yang, Shun-Fa

    2012-03-01

    Oral cancer mortality has increased during the last decade due to the difficulties in treating related metastasis. Dioscorea nipponica Makino, a popular folk medicine, exerts anti-obesity and anti-inflammation properties. However, the effect of this folk medicine on metastasis of oral cancer has yet to be fully elucidated. The present study demonstrates that D. nipponica extracts (DNE), at a range of concentrations (0-50 μg/mL), concentration-dependently inhibited migration/invasion capacities of human oral cancer cells, HSC-3, without cytotoxic effects. The anti-migration effect of DNE was also observed in two other OSCC cell lines, Ca9-22 and Cal-27. Zymography, real time PCR, and Western blotting analyses revealed that DNE inhibited matrix metalloproteinase-2 (MMP-2) enzyme activity, and RNA and protein expression. The inhibitory effects of DNE on MMP-2 proceeded by up-regulating tissue inhibitor of metalloproteinase-2 (TIMP-2), as well as suppressing nuclear translocation and DNA binding activity of cAMP response element-binding (CREB) and activating protein-1 (AP-1) on the MMP-2 promoter in HSC-3 cells. In conclusion, DNE inhibited the invasion of oral cancer cells and may have potential use as a chemopreventive agent against oral cancer metastasis. PMID:22210353

  13. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  14. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways.

    PubMed

    Lai, Wan-Wen; Hsu, Shu-Chun; Chueh, Fu-Shih; Chen, Ya-Yin; Yang, Jai-Sing; Lin, Jing-Pin; Lien, Jin-Cherng; Tsai, Chung-Hung; Chung, Jing-Gung

    2013-05-01

    Quercetin, a principal flavanoid compound in onions, has been shown to possess a wide spectrum of pharmacological properties, including anticancer activities. Our earlier study showed that quercetin induced cytotoxic effects on SAS human oral cancer cells. In this study, we found that quercetin significantly reduced wound closure of SAS cells in culture plates after 12- and 24-h treatments. Results indicated that quercetin inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, as measured by western blotting and gelatin zymography. The results from western blotting also showed that quercetin reduced the protein levels of MMP-2, -7, -9 and -10, vascular endothelial growth factor (VEGF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, inductible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), urokinase-type plasminogen activator (uPA), phosphatidylinositide-3 kinases (PI3K), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα), IKB-α/β, phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor kinase, alpha/beta (p-IKKα/β), focal adhesion kinase (FAK), son of sevenless homolog-1 (SOS1), growth factor receptor-bound protein-2 (GRB2), mitogen-activated protein kinase kinase kinase-3 (MEKK3), MEKK7, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2), p38, p-p38, Jun proto-oncogene (c-JUN) and p-c-JUN but it did not affect Ras homolog gene family, member A (RhoA), Protein kinase C (PKC) and rat sarcoma viral oncogene homolog (RAS) in SAS cells. Confocal laser microscopy also showed that quercetin promoted the expressions of RhoA and Rho-associated, coiled-coil containing protein kinase-1 (ROCK1), but inhibited the expression of NF-κB p65 in SAS cells. It is concluded from these data that inhibition of migration and invasion of SAS cells by quercetin is associated with the down

  15. Matrix Metalloproteinase 2 (MMP-2) Degrades Soluble Vasculotropic Amyloid-β E22Q and L34V Mutants, Delaying Their Toxicity for Human Brain Microvascular Endothelial Cells*

    PubMed Central

    Hernandez-Guillamon, Mar; Mawhirt, Stephanie; Fossati, Silvia; Blais, Steven; Pares, Mireia; Penalba, Anna; Boada, Merce; Couraud, Pierre-Olivier; Neubert, Thomas A.; Montaner, Joan; Ghiso, Jorge; Rostagno, Agueda

    2010-01-01

    Patients carrying mutations within the amyloid-β (Aβ) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Aβ synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AβE22Q and AβL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Aβ peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Aβ-(1–16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Aβ degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Aβ peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AβE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Aβ species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype. PMID:20576603

  16. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  17. A Lindera obtusiloba Extract Blocks Calcium-/Phosphate-Induced Transdifferentiation and Calcification of Vascular Smooth Muscle Cells and Interferes with Matrix Metalloproteinase-2 and Metalloproteinase-9 and NF-κB.

    PubMed

    Freise, Christian; Kim, Ki Young; Querfeld, Uwe

    2015-01-01

    Vascular calcifications bear the risk for cardiovascular complications and have a high prevalence among patients with chronic kidney disease. Central mediators of vascular calcifications are vascular smooth muscle cells (VSMC). They transdifferentiate into a synthetic/osteoblast-like phenotype, which is induced, for example, by elevated levels of calcium and phosphate (Ca/P) due to a disturbed mineral balance. An aqueous extract from Lindera obtusiloba (LOE) is known to exert antifibrotic and antitumor effects or to interfere with the differentiation of preadipocytes. Using murine and rat VSMC cell lines, we here investigated whether LOE also protects VSMC from Ca/P-induced calcification. Indeed, LOE effectively blocked Ca/P-induced calcification of VSMC as shown by decreased VSMC mineralization and secretion of alkaline phosphatase. In parallel, mRNA expression of the calcification markers osterix and osteocalcin was reduced. Vice versa, the Ca/P-induced loss of the VSMC differentiation markers alpha smooth muscle actin and smooth muscle protein 22-alpha was rescued by LOE. Further, LOE blocked Ca/P-induced mRNA expressions and secretions of matrix metalloproteinases-2/-9 and activation of NF-κB, which are known contributors to vascular calcification. In conclusion, LOE interferes with the Ca/P-induced transdifferentiation/calcification of VSMC. Thus, LOE should be further analysed regarding a potential complementary treatment option for cardiovascular diseases including vascular calcifications. PMID:26294927

  18. Matrix metalloproteinases 2 and 9 and their tissue inhibitors in the follicular fluid of patients with polycystic ovaries undergoing in vitro fertilisation.

    PubMed

    Baka, Stavroula; Zourla, Konstantina; Kouskouni, Evangelia; Makrakis, Evangelos; Demeridou, Stella; Tzanakaki, Despoina; Hassiakos, Dimitris; Creatsas, George

    2010-01-01

    The present study was undertaken to investigate the levels of matrix metalloproteinase (MMP)-2, MMP-9 and their tissue inhibitors (TIMP-2 and TIMP-1, respectively) in the follicular fluid of 39 patients with polycystic ovary syndrome (PCOS) and compare them with the levels found in 56 age- and weight-matched normally ovulating women, all undergoing in vitro fertilisation (IVF) treatment. Significantly higher levels of MMP-2 and MMP-9 (p=0.02 and p<0.001, respectively) as well as TIMP-2 and TIMP-1 (p=0.006 and p<0.001, respectively) were found in the PCOS group compared to controls. Women who achieved pregnancy had higher TIMP-1 levels compared to the non-pregnant ones in the control group (p=0.01). In conclusion, women with PCOS exhibited significantly increased gelatinolytic activity compared with controls of similar age and body mass index, thus indicating a more intense extracellular matrix remodelling in this group of patients during IVF treatment due to multiple follicular development and cyst formation. PMID:20555001

  19. Dual Inhibitory Pathways of Metallofullerenol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Araya-Secchi, Raul; Wang, Deqiang; Wang, Bo; Huynh, Tien; Zhou, Ruhong

    2014-04-01

    Cancer metastasis is an important criterion to evaluate tumor malignancy. Matrix metalloproteinases (MMPs) play a crucial role in cancer proliferation and migration by virtue of their proteolytic functions in angiogenesis and extracelluar matrix (ECM) degradation, making them potential targets of anti-metastaic therapeutics. Recently we showed with both in vivo and in vitro experiments that metallofullerenol Gd@C82(OH)22 can effectively inhibit MMP-2 and MMP-9 with high antitumoral efficacy. Furthermore, our in silico study revealed that Gd@C82(OH)22 could indirectly inhibit the proteolysis of MMP-9 via allosteric modulation exclusively at the ligand specificity S1' loop. Here, we expand our study toward another gelatinase, MMP-2, using molecular dynamics simulations. Despite the high structural similarity with 64.3% sequence identity, their responses to Gd@C82(OH)22 were quite different. Toward MMP-2, Gd@C82(OH)22 could block either the Zn2+-catalylitic site directly or the S1' loop indirectly. Surface electrostatics uniquely determines the initial adsorption of Gd@C82(OH)22 on MMP-2, and then its further location of the most favorable binding site(s). These findings not only illustrated how the inhibitory mechanism of Gd@C82(OH)22 is distinguished between the two gelatinase MMPs with atomic details, but also shed light on the de novo design of anti-metastatic nanotherapeutics with enhanced target specificity.

  20. The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures.

    PubMed

    Siméon, A; Emonard, H; Hornebeck, W; Maquart, F X

    2000-09-22

    Glycyl-histidyl-lysine-Cu2+ (GHK-Cu) is a tripeptide-copper complex known to be a potent wound healing agent. We previously showed its ability to stimulate in vitro and in vivo the synthesis of extracellular matrix components. The aim of this study was to determine the effects of GHK-Cu on MMP-2 synthesis by dermal fibroblasts in culture. We showed that GHK-Cu increased MMP-2 levels in conditioned media of cultured fibroblasts. This effect was reproduced by copper ions but not by the tripeptide GHK alone. This stimulation was accompanied by an increase of MMP-2 mRNA level. We also showed that GHK-Cu increased the secretion of the tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. Taken together, our results underline that GHK-Cu is not only an activator of connective tissue production but also of the remodeling of the extracellular matrix. It is able to modulate MMP expression by acting directly on wound fibroblasts. PMID:11045606

  1. Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression

    PubMed Central

    HWANG, TSANN-LONG; CHANGCHIEN, TZU-TSUNG; WANG, CHEE-CHAN; WU, CHI-MING

    2014-01-01

    Claudin-4 is a member of a large family of transmembrane proteins known as claudins, which are essential for the formation and maintenance of tight junctions. Our previous studies have revealed that claudin-4 proteins are overexpressed in metastatic gastric cancer. To clarify the roles of claudin-4 in gastric cancer metastasis, human gastric adenocarcinoma (AGS) cells constitutively expressing wild-type claudin-4 were generated. Expression of claudin-4 in AGS cells was found to increase cell invasion and migration, as measured by Boyden invasion chamber assays. Moreover, the claudin-4-expressing AGS cells were found to have increased matrix metalloproteinase (MMP)-2 and -9 expression, indicating that claudin-mediated increased invasion may be mediated through the activation of the MMP protein. Overall, the results suggest that claudin-4 overexpression may promote gastric cancer metastasis through the increased invasion of gastric cancer cells. PMID:25120725

  2. Intrafollicular levels of matrix metalloproteinases-2 and -9 in patients with polycystic ovaries are not associated with pregnancy rate during IVF cycle.

    PubMed

    Baka, Stavroula; Zourla, Konstantina; Malamitsi-Puchner, Ariadne; Makrakis, Evangelos; Kaparos, George; Demeridou, Stella; Moustakarias, Theodore; Tzanakaki, Despoina; Hassiakos, Dimitris; Kouskouni, Evangelia

    2009-01-01

    This study aimed to detect the levels of matrix metalloproteinases (MMP)-2 and -9, using enzyme-linked immunosorbent assays, in the follicular fluid of 35 patients with polycystic ovaries, compare them with the levels found in 35 normally ovulating women enrolled in their first in vitro fertilization (IVF) cycle and then correlate them with pregnancy rates in these two groups. Levels of MMP-9 were found significantly increased in women with polycystic ovaries when compared with the controls, while MMP-2 levels were higher in women with polycystic ovaries without reaching statistical significance. The two groups did not differ in age, in the number of embryos transferred or in pregnancy rates. In conclusion, the results indicated an increased gelatinolytic activity in patients with polycystic ovaries after ovarian stimulation for IVF treatment without detecting any association between levels of MMP-2 and 9 and IVF pregnancy rates. PMID:19368130

  3. Matrix Metalloproteinase 2 (MMP-2) Plays a Critical Role in the Softening of Common Carp Muscle during Chilled Storage by Degradation of Type I and V Collagens.

    PubMed

    Xu, Chao; Wang, Cheng; Cai, Qiu-Feng; Zhang, Qian; Weng, Ling; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2015-12-30

    Matrix metalloproteinases (MMPs) are proposed to play important roles in the degradation of collagens, thus causing the post-mortem softening of fish muscle, although the specific mechanism remains largely unresolved. Previously, we reported the existence of gelatinase-like proteinases in common carp (Cyprinus carpio) muscle. The primary structures of these proteinases, however, have never been investigated. In the present study, two MMPs with molecular masses of 66 and 65 kDa were purified to homogeneity from common carp muscle by ammonium sulfate fractionation and a series of column chromatographies. Matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) analysis indicated that they are completely identical to MMP-2 from common carp. During chilled storage of common carp at 4 °C, the enzymatic activity of MMP-2 increased to 212% in 12 h while the texture profile increased over the first 2 h and gradually decreased. On the other hand, type V collagen was purified to homogeneity and a specific polyclonal antibody against this protein was prepared. Both type I and V collagens were effectively hydrolyzed by MMP-2 at 30 °C and even at 4 °C. Furthermore, injection of metalloproteinase proteinase inhibitor EDTA into the blood vessel of live common carp suppressed post-mortem tenderization significantly. All of these results confirmed that MMP-2 is a major proteinase responsible for the degradation of collagens, resulting in the softening of fish muscle during chilled storage. PMID:26653826

  4. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways.

    PubMed

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  5. Quercetin Improves Postischemic Recovery of Heart Function in Doxorubicin-Treated Rats and Prevents Doxorubicin-Induced Matrix Metalloproteinase-2 Activation and Apoptosis Induction

    PubMed Central

    Barteková, Monika; Šimončíková, Petra; Fogarassyová, Mária; Ivanová, Monika; Okruhlicová, Ľudmila; Tribulová, Narcisa; Dovinová, Ima; Barančík, Miroslav

    2015-01-01

    Quercetin (QCT) is flavonoid that possesses various biological functions including anti-oxidative and radical-scavenging activities. Moreover, QCT exerts some preventive actions in treatment of cardiovascular diseases. The aim of present study was to explore effects of prolonged administration of QCT on changes induced by repeated application of doxorubicin (DOX) in rat hearts. We focused on the ultrastructure of myocardium, matrix metalloproteinases (MMPs), biometric parameters, and apoptosis induction. Our aim was also to examine effects of QCT on ischemic tolerance in hearts exposed to chronic effects of DOX, and to determine possible mechanisms underlying effects of QCT. Our results showed that QCT prevented several negative chronic effects of DOX: (I) reversed DOX-induced blood pressure increase; (II) mediated improvement of deleterious effects of DOX on ultrastructure of left ventricle; (III) prevented DOX-induced effects on tissue MMP-2 activation; and (iv) reversed effects of DOX on apoptosis induction and superoxide dismutase inhibition. Moreover, we showed that rat hearts exposed to effects of QCT were more resistant to ischemia/reperfusion injury. Effects of QCT on modulation of ischemic tolerance were linked to Akt kinase activation and connexin-43 up-regulation. Taken together, these results demonstrate that prolonged treatment with QCT prevented negative chronic effects of DOX on blood pressure, cellular damage, MMP-2 activation, and apoptosis induction. Moreover, QCT influenced myocardial responses to acute ischemic stress. These facts bring new insights into mechanisms of QCT action on rat hearts exposed to the chronic effects of DOX. PMID:25872140

  6. Up-regulation of matrix metalloproteinases-2 and -9 via an Erk1/2/NF-κB pathway in murine mast cells infected with Toxoplasma gondii.

    PubMed

    Wang, M-F; Lu, C-Y; Lai, S-C

    2013-01-01

    Mast cells are key effectors in inflammation and contain proteinases that are released on activation. This study investigates associations between extracellular signal-regulated kinase (Erk)1/2, nuclear factor (NF)-κB, matrix metalloproteinase (MMP)-2 and MMP-9 in mast cells infected with Toxoplasma gondii tachyzoites. T. gondii infection led to increased mast cell degranulation. Phosphorylated (p)-Erk1/2 and p-NF-κB were increased significantly in mast cells infected with T. gondii. Pretreatment with the Erk kinase inhibitor PD98059 significantly decreased the expression of p-Erk1/2, p-NF-κB, MMP-2 and MMP-9. Treatment with MG132, an indirect NF-κB inhibitor, effectively reduced p-IκBα, p-NF-κB, MMP-2 and MMP-9 expression. Collectively, these data show that suppression of an Erk1/2/NF-κB signalling pathway caused a reduction in MMP-2 and -9 activities. Inhibiting this signalling pathway for MMP-2 and MMP-9 expression might offer a potential way to control early T. gondii infection. This pathway for the generation of MMP-2 and MMP-9 is important for mast cell secretion and the NF-κB/Erk1/2 signalling pathway may be key in MMP-2 and MMP-9 production in host defense against toxoplasmosis. PMID:23664424

  7. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways

    PubMed Central

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  8. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    PubMed Central

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  9. Stereoselective suppressive effects of protopanaxadiol epimers on UV-B-induced reactive oxygen species and matrix metalloproteinase-2 in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Kho, Ye Eun; Kim, Kyunghoon; Jin, Chang Duck; Lim, Chang-Jin

    2015-01-01

    This study aimed to assess the skin-related anti-photoaging activities of the 2 epimeric forms of protopanaxadiol (PPD), 20(S)-PPD and 20(R)-PPD, in cultured human keratinocytes (HaCaT cells). The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), as well as cell viability for HaCaT cells under UV-B irradiation. The activities for MMP-2 and -1 in conditioned medium were determined using gelatin zymography, and MMP-2 protein in the conditioned medium was detected using Western blot analysis. 20(S)-PPD, but not 20(R)-PPD, suppressed UV-B-induced ROS elevation. Neither of the epimers, at the concentrations used, exhibited cytotoxicity, irrespective of UV-B irradiation. 20(S)-PPD, but not 20(R)-PPD, exhibited an inhibitory effect on UV-B-induced MMP-2 activity and expression in HaCaT cells. In brief, only 20(S)-PPD, a major metabolic product of PPD-type ginsenosides, inhibits UV-B-induced ROS and MMP-2 elevation, implying its stereospecific anti-photoaging activity on the skin. PMID:25405256

  10. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats.

    PubMed

    Pustovrh, María Carolina; Jawerbaum, Alicia; Capobianco, Evangelina; White, Verónica; Martínez, Nora; López-Costa, Juan José; González, Elida

    2005-12-01

    Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved. PMID:16298858

  11. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  12. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma.

    PubMed

    Firszt, Rafael; Francisco, Dave; Church, Tony D; Thomas, Joseph M; Ingram, Jennifer L; Kraft, Monica

    2014-02-01

    Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. We hypothesised that IL-13 stimulates collagen type-1 production by the airway fibroblast in a matrix metalloproteinase (MMP)- and transforming growth factor (TGF)-β1-dependent manner in human asthma as compared to healthy controls. Fibroblasts were cultured from endobronchial biopsies in 14 subjects with mild asthma and 13 normal controls that underwent bronchoscopy. Airway fibroblasts were treated with various mediators including IL-13 and specific MMP-inhibitors. IL-13 significantly stimulated collagen type-1 production in asthma compared to normal controls. Inhibitors of MMP-2 significantly attenuated collagen production in asthma but had no effect in normal controls. IL-13 significantly increased total and active forms of TGF-β1, and this activation was blocked using an MMP-2 inhibitor. IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-β1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma. PMID:23682108

  13. Perfluorooctanoic acid enhances colorectal cancer DLD-1 cells invasiveness through activating NF-κB mediated matrix metalloproteinase-2/-9 expression

    PubMed Central

    Miao, Chen; Ma, Jun; Zhang, Yajie; Chu, Yimin; Li, Ji; Kuai, Rong; Wang, Saiyu; Peng, Haixia

    2015-01-01

    Objective: Perfluorooctanoic acid (PFOA) is widely used in consumer products and detected in human serum. Our study meant to elucidate the uncovered molecular mechanisms underlying the PFOA induced colorectal cancer cell DLD-1 invasion and matrix metalloproteinases (MMP) expression. Methods and results: Trans-well filter assay appeared that PFOA treatment stimulated DLD-1 cells invasion significantly. Meanwhile, the results of luciferase reporter, quantitative real-time PCR, western blotting, and gelatin zymography showed that PFOA induced MMP-2/-9 expression and enzyme activation levels consistently (P < 0.05 each). Subsequently, western blotting and immunofluorescence assay demonstrated that PFOA could enhance nuclear factor kappaB (NF-κB) activity by stimulating NF-κB translocation into nuclear in DLD-1 cells. Furthermore, JSH-23, a well-known NF-κB inhibitor, could reverse the PFOA induced colorectal cancer cell invasion and MMP-2/-9 expression. Conclusions: Our study confirmed that PFOA could induce colorectal cancer cell DLD-1 invasive ability and MMP-2/-9 expression through activating NF-κB, which deserves more concerns on environmental pollutant-resulted public health risk. PMID:26617761

  14. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis.

    PubMed

    Dal-Pizzol, Felipe; Rojas, Hugo Alberto; dos Santos, Emilia Marcelina; Vuolo, Francieli; Constantino, Larissa; Feier, Gustavo; Pasquali, Matheus; Comim, Clarissa M; Petronilho, Fabrícia; Gelain, Daniel Pens; Quevedo, João; Moreira, José Cláudio Fonseca; Ritter, Cristiane

    2013-08-01

    There is no description on the mechanisms associated with blood-brain barrier (BBB) disruption during sepsis development. Thus, we here determined changes in permeability of the BBB in an animal model of severe sepsis and the role of matrix metalloproteinase (MMP)-2 and MMP-9 in the dysfunction of the BBB. Sepsis was induced in Wistar rats by cecal ligation and perforation. BBB permeability was assessed using the Evans blue dye method. The content of MMP-2 and MMP-9 in the cerebral microvessels was determined by western blot. The activity of MMP-2 and MMP-9 was determined using zymography. An inhibitor of MMP-2 and MMP-9 or specific inhibitors of MMP-2 or MMP-9 were administered to define the role of MMPs on BBB permeability, brain inflammatory response, and sepsis-induced cognitive alterations. The increase of BBB permeability is time-related to the increase of MMP-9 and MMP-2 in the microvessels, both in cortex and hippocampus. Using an MMP-2 and MMP-9 inhibitor, or specific MMP-2 or MMP-9 inhibitors, the increase in the permeability of the BBB was reversed. This was associated with lower brain levels of interleukin (IL)-6 and lower oxidative damage. In contrast, only the inhibition of both MMP-9 and MMP-2 was able to improve acute cognitive alterations associated with sepsis. In conclusion, MMP-2 and MMP-9 activation seems to be a major step in BBB dysfunction, but BBB dysfunction seems not to be associated with acute cognitive dysfunction during sepsis development. PMID:23479197

  15. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery

    PubMed Central

    Crisp, Jessica L.; Savariar, Elamprakash N.; Glasgow, Heather L.; Ellies, Lesley G.; Whitney, Michael A.; Tsien, Roger. Y.

    2014-01-01

    Activatable cell penetrating peptides (ACPPs) provide a general strategy for molecular targeting by exploiting the extracellular protease activities associated with disease. Previous work used a matrix metalloproteinase (MMP-2 and 9) cleavable sequence in the ACPP to target contrast agents for tumor imaging and fluorescence guided surgery. To improve specificity and sensitivity for MMP-2, an integrin αvβ3 binding domain, cyclic-RGD, was covalently linked to the ACPP. This co-targeting strategy relies on the interaction of MMP-2 with integrin αvβ3, which are known to associate via MMP-2’s hemopexin domain. In U87MG glioblastoma cells in culture, dual targeting greatly improved ACPP uptake compared to either MMP or integrin αvβ3 targeting alone. In vivo, dual-targeted ACPP treatment resulted in tumor contrast of 7.8±1.6, a 10 fold higher tumor fluorescence compared to the negative control peptide, and increased probe penetration into the core of MDA-MB-231 tumors. This platform also significantly improved efficacy of the chemotherapeutic monomethylauristatin E (MMAE) in both MDA-MB-231 orthotopic human and syngeneic Py230 murine breast tumors. Treatment with cyclic-RGD-PLGC(Me)AG-MMAE-ACPP resulted in complete tumor regression in one quarter of MDA-MB-231 tumor bearing mice, compared to no survival in the control groups. This rational mechanism for amplified delivery of imaging and potent chemotherapeutic agents avoids the use of antibodies and may be of considerable generality. PMID:24737028

  16. Increased matrix metalloproteinase-2 expression and reduced tissue factor pathway inhibitor-2 expression correlate with angiogenesis and early postoperative recurrence of pancreatic carcinoma

    PubMed Central

    Zhai, Lu-Lu; Wu, Yang; Huang, Da-Wei; Tang, Zhi-Gang

    2015-01-01

    Matrix metalloproteinase (MMP)-2 and tissue factor pathway inhibitor (TFPI)-2 are known to influence tumor angiogenesis and progression. This work aimed to describe the levels of MMP-2 and TFPI-2 expression associated with tumor angiogenesis and early postoperative recurrence in patients with pancreatic carcinoma. Expression of MMP-2 and TFPI-2 in carcinoma tissues and paracarcinomatous tissues was assayed by immunostaining. Expression of vascular endothelial growth factor (VEGF) and CD34 in tumor tissues was also assayed by immunostaining. The correlations of MMP-2 and TFPI-2 with VEGF, microvessel density (MVD), and early postoperative recurrence were analyzed. The results showed that MMP-2 expression was significantly increased (P < 0.05) and TFPI-2 expression was significantly decreased (P < 0.001) in carcinoma tissues compared with paracarcinomatous tissues. MMP-2 expression was positively correlated with VEGF (r = 0.594, P < 0.001) and MVD (r = 0.432, P < 0.001) in carcinoma tissues. TFPI-2 expression was negatively correlated with VEGF (r = -0.654, P < 0.001) and MVD (r = -0.360, P < 0.001) in carcinoma tissues. Multivariate logistic regression analysis showed that up-regulated MMP-2 and down-regulated TFPI-2 were independent predictors of early postoperative recurrence of pancreatic carcinoma. Receiver operating characteristic curve analysis showed that the combination of MMP-2 and TFPI-2 was a reliable predictive model of early recurrence. We conclude that increased MMP-2 expression and reduced TFPI-2 expression are closely linked to angiogenesis and early postoperative recurrence of pancreatic carcinoma. Immunohistochemical assay of MMP-2 and TFPI-2 may be useful for predicting early relapse of pancreatic carcinoma after surgery. PMID:26807187

  17. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    PubMed

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia. PMID:27038751

  18. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration

    PubMed Central

    Ali, Sumia; Driscoll, Heather E.; Newton, Victoria L.; Gardiner, Natalie J.

    2014-01-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  19. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands.

    PubMed

    Light, Allison; Hammes, Stephen R

    2015-09-01

    Oocyte maturation and cumulus cell expansion depend on luteinizing hormone (LH)-mediated upregulation of membrane-bound epidermal growth factor (EGF)-like ligands, including amphiregulin, epiregulin, and betacellulin. These ligands then transactivate the EGF receptor (EGFR) after release by matrix metalloproteinases (MMPs). However, direct measurement of released EGF-like ligands or MMPs from granulosa cells has not been formally evaluated, nor has direct identification of responsible MMPs. Here we address these issues by analyzing LH-induced steroidogenesis, which is also MMP and EGFR dependent, in freshly isolated mouse primary granulosa cells. We demonstrate a correlation between amphiregulin and epiregulin mRNA induction and steroid production in LH-treated granulosa cells as well as in ovaries of human chorionic gonadotropin-treated mice. In contrast, LH does not alter Mmp1, Mmp2, Mmp3, Mmp8, Mmp9, or Adam17 mRNA expression. We demonstrate that, in primary mouse granulosa cells, LH triggers release of soluble amphiregulin that correlates with steroid production, both of which are blocked by MMP2/9 inhibition, confirming that MMP2/9 likely regulates LH-induced amphiregulin release and downstream processes. Notably, LH does not alter secretion of MMP2/9 from primary granulosa cells, nor does it modulate MMP activity. These findings indicate that, in the ovary, LH dictates EGFR-mediated processes not by regulating MMPs, but instead by increasing EGF-like ligand availability. In contrast, LH stimulation of primary mouse Leydig cells does not induce EGF-like ligand expression or require MMP2/9 for steroidogenesis, confirming marked differences in LH receptor-induced processes in the testes. Our results suggest that MMP inhibition may be a means of attenuating excess ovarian steroid production in diseases like polycystic ovary syndrome. PMID:26203177

  20. STAT3 and ERK Signaling Pathways Are Implicated in the Invasion Activity by Oncostatin M through Induction of Matrix Metalloproteinases 2 and 9

    PubMed Central

    Ko, Hyun Sun; Park, Byung Joon; Choi, Sae Kyung; Kang, Hee Kyung; Kim, Ahyoung; Kim, Ho Shik; Park, In Yang

    2016-01-01

    Purpose Our previous studies have shown that oncostatin M (OSM) promotes trophoblast invasion activity through increased enzyme activity of matrix metalloproteinase (MMP)-2 and -9. We further investigated OSM-induced intracellular signaling mechanisms associated with these events in the immortalized human trophoblast cell line HTR8/SVneo. Materials and Methods We investigated the effects of OSM on RNA and protein expression of MMP-2 and -9 in the first-trimester extravillous trophoblast cell line (HTR8/SVneo) via Western blot. The selective signal transducer and activator of transcription (STAT)3 inhibitor, stattic, STAT3 siRNA, and extracellular signal-regulated kinase (ERK) siRNA were used to investigate STAT3 and ERK activation by OSM. The effects of STAT3 and ERK inhibitors on OSM-induced enzymatic activities of MMP-2 and -9 and invasion activity were further determined via Western blot and gelatin zymography. Results OSM-induced MMP-2 and -9 protein expression was significantly suppressed by STAT3 inhibition with stattic and STAT3 siRNA silencing, whereas the ERK1/2 inhibitor (U0126) and ERK silencing significantly suppressed OSM-induced MMP-2 protein expression. OSM-induced MMP-2 and MMP-9 enzymatic activities were significantly decreased by stattic pretreatment. The increased invasion activity induced by OSM was significantly suppressed by STAT3 and ERK1/2 inhibition, though to a greater extent by STAT3 inhibition. Conclusion Both STAT3 and ERK signaling pathways are involved in OSM-induced invasion activity of HTR8/SVneo cells. Activation of STAT3 appears to be critical for the OSM-mediated increase in invasiveness of HTR8/SVneo cells. PMID:26996579

  1. Eutopic endometrium and peritoneal, ovarian and bowel endometriotic tissues express a different profile of matrix metalloproteinases-2, -3 and -11, and of tissue inhibitor metalloproteinases-1 and -2.

    PubMed

    Uzan, Catherine; Cortez, Annie; Dufournet, Charlotte; Fauvet, Raffaèle; Siffroi, Jean-Pierre; Daraï, Emile

    2004-12-01

    Endometriosis is subsequent to the ability of endometrial glands to invade normal tissues. Matrix metalloproteinases (MMPs)--enzymes that mediate normal tissue turnover, including endometrial breakdown during menstruation-appear to be involved in this invasive process. Here, we examined the immunohistochemical expression of MMP-2, MMP-3, MMP-11, tissue inhibitor metalloproteinase (TIMP)-1 and TIMP-2 in endometrium from women with (n=9) or without endometriosis (n=18) in comparison with peritoneal (n=20), ovarian (n=20) and colorectal endometriosis (n=20). Women with endometriosis showed decreased endometrial MMP-2 expression compared with women without endometriosis (mean+/-SD positive cells: 24.3+/-28.3% and 69.3+/-12.1%), together with loss of MMP-3 expression (0 versus 17.5%+/-20.2). MMP-11, TIMP-1 and TIMP-2 expression was similar in the two groups. Endometrial MMP-2, -3 and -11 expression and TIMP-1 and -2 expression were similar in women with endometriosis and in those with peritoneal endometriosis. MMP-2, -3 and -11 expression was higher in colorectal endometriosis than in ovarian and peritoneal endometriosis. TIMP-2 expression was lower in colorectal endometriosis (P=0.0002) and ovarian endometriotic cysts (P=0.003) than in peritoneal endometriosis. TIMP-1 expression did not vary according to the location of endometriotic lesions. These results suggest that MMP-2 and -3 and TIMP-2 may be involved in the pathogenesis of endometriosis. Interestingly, MMP-2 and -3 overexpression was related to the infiltrative nature of endometriotic lesions, with possible sequential expression from peritoneal to colorectal endometriosis. PMID:15452706

  2. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration.

    PubMed

    Ali, Sumia; Driscoll, Heather E; Newton, Victoria L; Gardiner, Natalie J

    2014-11-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  3. Effect of photodynamic therapy combined with torasemide on the expression of matrix metalloproteinase 2 and sodium-potassium-chloride cotransporter 1 in rat peritumoral edema and glioma

    PubMed Central

    LI, BO; MENG, CHAO; ZHANG, XUFENG; CONG, DAMIN; GAO, XIN; GAO, WANLONG; JU, DONGHUI; HU, SHAOSHAN

    2016-01-01

    Peritumoral edema is a key stage in the infiltration and recurrence of glioma. Photodynamic therapy (PDT) increases the extent of peritumoral edema, which leads to a decrease in the effectiveness of PDT in treating glioma. The present study evaluated the effects of PDT combined with torasemide on the levels of matrix metalloproteinase (MMP) 2 and sodium-potassium-chloride cotransporter (NKCC) 1 in peritumoral edema regions of rat glioma. Adult male Wistar rats were inoculated with rat glioma C6 cells, and the presence of glioma was confirmed using magnetic resonance imaging 7 days subsequent to injection. The rats were randomly assigned to 4 groups (n=15): Control group, the rats received no treatment; PDT group, the rats received PDT at 80 J/cm2 for 10 min; torasemide group, the rats received 5 mg/kg torasemide intraperitoneally; and PDT + torasemide group, the rats received 5 mg/kg torasemide intraperitoneally for 3 days following PDT at 80 J/cm2 for 10 min. A total of 5 rats from each group were sacrificed 21 days following injection and the peritumoral edema tissues were harvested. MMP2 and NKCC1 expression levels were detected in the tissues using immunohistochemistry and western blot analysis. The mRNA expression levels of MMP2 and NKCC1 were observed using reverse transcription-quantitative polymerase chain reaction. Peritumoral edema was measured using a wet-to-dry weight (W/D) ratio, and survival times of the remaining 10 rats in each group were evaluated. Compared with the control group, tumor growth was significantly suppressed in the PDT group and the survival time was prolonged through a reduction in the expression of MMP2 (P<0.05), and an increased W/D ratio resulted in significantly increased expression of NKCC1 (P<0.05). Compared with the PDT group, the expression of NKCC1 and the W/D ratio in the PDT + torasemide group were significantly decreased (P<0.05), while no significant difference was observed in the expression levels of MMP2. In conclusion

  4. QM/MM Studies of the Matrix Metalloproteinase 2 (MMP2) Inhibition Mechanism of (S)-SB-3CT and its Oxirane Analogue

    PubMed Central

    Zhou, Jia; Tao, Peng; Fisher, Jed F.; Shi, Qicun; Mobashery, Shahriar; Schlegel, H. Bernhard

    2010-01-01

    SB-3CT, (4-phenoxyphenylsulfonyl)methylthiirane, is a potent, mechanism-based inhibitor of the gelatinase sub-class of the matrix metalloproteinase (MMP) family of zinc proteases. The gelatinase MMPs are unusual in that there are several examples where both enantiomers of a racemic inhibitor have comparable inhibitory abilities. SB-3CT is one such example. Here, the inhibition mechanism of the MMP2 gelatinase by the (S)-SB-3CT enantiomer and its oxirane analogue is examined computationally, and compared to the mechanism of (R)-SB-3CT. Inhibition of MMP2 by (R)-SB-3CT was shown previously to involve enzyme-catalyzed C–H deprotonation adjacent to the sulfone, with concomitant opening by β-elimination of the sulfur of the three-membered thiirane ring. Similarly to the R enantiomer, (S)-SB-3CT was docked into the active site of MMP2, followed by molecular dynamics simulation to prepare the complex for combined quantum mechanics and molecular mechanics (QM/MM) calculations. QM/MM calculations with B3LYP/6-311+G(d,p) for the QM part (46 atoms) and the AMBER force field for the MM part were used to compare the reaction of (S)-SB-3CT and its oxirane analogue in the active site of MMP2 (9208 atoms). These calculations show that the barrier for the proton abstraction coupled ring opening reaction of (S)-SB-3CT in the MMP2 active site is 4.4 kcal/mol lower than its oxirane analogue, and the ring opening reaction energy of (S)-SB-3CT is only 1.6 kcal/mol less exothermic than its oxirane analogue. Calculations also show that the protonation of the ring-opened products by water is thermodynamically much more favorable for the alkoxide obtained from the oxirane, than for the thiolate obtained from the thiirane. In contrast to (R)-SB-3CT and the R-oxirane analogue, the double bonds of the ring-opened products of (S)-SB-3CT and its S-oxirane analogue have the cis-configuration. Vibrational frequency and intrinsic reaction path calculations on a reduced size QM/MM model (2747

  5. Slit2‑Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E‑cadherin.

    PubMed

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-09-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2‑Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2‑Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2‑Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti‑human Robo1 antibody, R5, to inhibit the Slit2‑Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E‑cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E‑cadherin in the Tca8113 cells. These results suggested that Slit2‑Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E‑cadherin. PMID:27431199

  6. Role of G protein-coupled estrogen receptor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17β-stimulated bovine satellite cell proliferation.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2014-10-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. PMID:25010024

  7. Angiotensin II Induces an Increase in Matrix Metalloproteinase 2 Expression in Aortic Smooth Muscle Cells of Ascending Thoracic Aortic Aneurysms Through JNK, ERK1/2, and p38 MAPK Activation.

    PubMed

    Wang, Chunmao; Chang, Qian; Sun, Xiaogang; Qian, Xiangyang; Liu, Penghong; Pei, Huawei; Guo, Xiaobo; Liu, Wenzhi

    2015-09-01

    In this study, we hypothesized that angiotensin II (Ang II) induces matrix metalloproteinase 2 (MMP-2) upregulation in aneurysmal smooth muscle cells (ASMCs) derived from ascending thoracic aortic aneurysms (ATAAs). We compared MMP-2 protein levels in ascending aortic specimens using Western blot and plasma concentrations by enzyme-linked immunosorbent assay between ATAA (n = 40) and coronary heart disease patients (n = 40). Additionally, the protein level of angiotensinogen (AGT) in the ascending aorta and the plasma concentration of Ang II were detected by Western blot and radioimmunoassay, respectively, in ATAA and coronary heart disease patients. In ATAA patients, Ang II and MMP-2 plasma levels were significantly increased (P < 0.05). Additionally, AGT and MMP-2 protein levels in the aorta of ATAA patients were higher (P < 0.01). Enhanced AGT suggested that the amount of Ang II in aneurysmal aorta specimens may be also increased, which was confirmed by immunofluorescent staining for Ang II. Moreover, we investigated the effect of Ang II on MMP-2 upregulation by ASMCs and determined the Ang II receptors and intracellular signaling pathways that are involved. Our results showed that treatment with Ang II significantly increased the expression of MMP-2 through the Ang II type 1 receptor (AT1R) and activated the 3 major mitogen-activated protein kinases (MAPKs), JNK, ERK1/2, and p38 MAPK. In conclusion, these results indicate that Ang II can induce MMP-2 expression elevation through AT1R and MAPK pathways in ASMCs and suggest that there is therapeutic potential for angiotensin receptor blocker drugs and MAPK inhibitors in the prevention and treatment of ATAAs. PMID:25955575

  8. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers.

    PubMed Central

    Bergman, Marina R; Cheng, Sunfa; Honbo, Norman; Piacentini, Lucia; Karliner, Joel S; Lovett, David H

    2003-01-01

    Enhanced synthesis of a specific matrix metalloproteinase, MMP-2, has been demonstrated in experimental models of ventricular failure and in cardiac extracts from patients with ischaemic cardiomyopathy. Cultured neonatal rat cardiac fibroblasts and myocytes were used to analyse the determinants of MMP-2 synthesis, including the effects of hypoxia. Culture of rat cardiac fibroblasts for 24 h in 1% oxygen enhanced MMP-2 synthesis by more than 5-fold and augmented the MMP-2 synthetic responses of these cells to endothelin-1, angiotensin II and interleukin 1beta. A series of MMP-2 promoter-luciferase constructs were used to map the specific enhancer element(s) that drive MMP-2 transcription in cardiac cells. Deletion studies mapped a region of potent transactivating function within the 91 bp region from -1433 to -1342 bp, the activity of which was increased by hypoxia. Oligonucleotides from this region were cloned in front of a heterologous simian-virus-40 (SV40) promoter and mapped the enhancer activity to a region between -1410 and -1362 bp that included a potential activating protein 1 (AP-1)-binding sequence, C(-1394)CTGACCTCC. Site-specific mutagenesis of the core TGAC sequence (indicated in bold) eliminated the transactivating activity within the -1410 to -1362 bp sequence. Electrophoretic mobility shift assays (EMSAs) using the -1410 to -1362 bp oligonucleotide and rat cardiac fibroblast nuclear extracts demonstrated specific nuclear-protein binding that was eliminated by cold competitor oligonucleotide, but not by the AP-1-mutated oligonucleotide. Antibody-supershift EMSAs of nuclear extracts from normoxic rat cardiac fibroblasts demonstrated Fra1 and JunB binding to the -1410 to -1362 bp oligonucleotide. Nuclear extracts isolated from hypoxic rat cardiac fibroblasts contained Fra1, JunB and also included FosB. Co-transfection of cardiac fibroblasts with Fra1-JunB and FosB-JunB expression plasmids led to significant increases in transcriptional activity. These

  9. Elevated expression levels of androgen receptors and matrix metalloproteinase-2 and -9 in 30 cases of hepatocellular carcinoma compared with adjacent tissues as predictors of cancer invasion and staging

    PubMed Central

    ZHANG, YAN; SHEN, YUCHENG; CAO, BIN; YAN, AITING; JI, HAOMING

    2015-01-01

    The aim of the present study was to investigate the potential roles of the androgen receptor (AR) and matrix metalloproteinase (MMP)-2 and MMP-9 in hepatocellular carcinoma (HCC) tissues and whether their expression could be used as a predictor of the invasion and stage of cancer. The expression levels of AR, MMP-2 and MMP-9 in HCC tissues and tissues adjacent to the tumor were measured by immunohistochemical staining assay. The expression rates of AR, MMP-2 and MMP-9 in the HCC tissue were 76.67, 73.33 and 76.67%, respectively, all of which were significantly higher than those in the tissues adjacent to the tumor. The expression of these proteins represents the local invasion and stage. AR, MMP-2 and MMP-9 expression levels in HCC tissues have the potential to be employed as predictors of the progression of local cancer invasion and the tumor stage. PMID:25667651

  10. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways.

    PubMed

    Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Liu, Dandan; Li, Hui

    2016-07-01

    Lunasin is a naturally existing bioactive peptide with an Arg-Gly-Asp (RGD) motif, which competes with integrins to bind with the extracellular matrix (ECM) consequently suppressing the integrin-mediated signaling pathway. Owing to the RGD motif, lunasin has been proven as an effective anti-inflammatory, antitumor and antimetastatic agent in many types of cancer. However, knowledge of its inhibitory effect on metastasis and the related mechanism of action in breast cancer cells is limited. In this study, the inhibitory effect of lunasin on the proliferation, migration and invasion of two typical breast cancer cell lines, ER-negative MDA-MB-231 with αVβ3 expression and ER-positive MCF-7 with αVβ5/α5β1 expression, were examined in vitro as well the related mechanisms. The results demonstrated that lunasin (10-20 µM) effectively inhibited the migration and invasion activity and expression of matrix metalloproteinase (MMP)‑2/-9 in both breast cancer cell lines. Meanwhile, we also found that lunasin inhibited the phosphorylation of focal adhesion kinase (FAK), Src, Akt, ERK and nucleus translocation of NF-κB, which indicates that, possibly via competing with αVβ3 or αVβ5/α5β1 integrin, lunasin suppresses the metastasis of breast cancer cells through integrin-mediated FAK/Akt/ERK and NF-κB signaling pathways followed by downregulation of the activity and expression of MMP-2/-9. PMID:27175819

  11. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas

    PubMed Central

    Tan, Peng; Tang, Chih-Hsin; Hsiao, Michael; Hsieh, Feng-Koo; Chien, Ming-Hsien

    2015-01-01

    Osteosarcomas, the most common malignant bone tumors, show a potent capacity for local invasion and pulmonary metastasis. Resveratrol (RESV), a phytochemical, exhibits multiple tumor-suppressing activities and has been tested in clinical trials. However, the antitumor activities of RESV in osteosarcomas are not yet completely defined. In osteosarcoma cells, we found that RESV inhibited the migration/invasion in vitro and lung metastasis in vivo by suppressing matrix metalloproteinase (MMP)-2. We identified that RESV exhibited a transcriptional inhibitory effect on MMP-2 through reducing CREB-DNA-binding activity. Moreover, a microRNA (miR) analysis showed that miR-328 was predominantly upregulated after RESV treatment. Inhibition of miR-328 significantly relieved MMP-2 and motility suppression imposed by RESV treatment. Furthermore, ectopic miR-328 expression in highly invasive cells decreased MMP-2 expression and invasive abilities. Mechanistic investigations found that JNK and p38 MAPK signaling pathways were involved in RESV-regulated CREB-DNA-binding activity, miR328 expression, and cell motility. Clinical samples indicated inverse expression between MMP-2 and miR-328 in normal bone and osteosarcoma tissues. The inverse correlation of MMP-2 and miR-328 was also observed in tumor specimens, and MMP-2 expression was linked to tumor metastasis. Taken together, our results provide new insights into the role of RESV-induced molecular and epigenetic regulation in suppressing tumor metastasis. PMID:25605016

  12. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    PubMed Central

    Chen, Ying-Yi; Liu, Fon-Chang; Chou, Pei-Yu; Chien, Yi-Chung; Chang, Wun-Shaing Wayne; Huang, Guang-Jhong; Wu, Chieh-Hsi; Sheu, Ming-Jyh

    2012-01-01

    Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP-) 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002), ERK1/2 (PD98059), JNK (SP600125), and p38 MAPK (SB203580) decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells. PMID:22454661

  13. Bufalin inhibits migration and invasion in human hepatocellular carcinoma SK-Hep1 cells through the inhibitions of NF-kB and matrix metalloproteinase-2/-9-signaling pathways.

    PubMed

    Chen, Ya-Yin; Lu, Hsu-Feng; Hsu, Shu-Chun; Kuo, Chao-Lin; Chang, Shu-Jen; Lin, Jen-Jyh; Wu, Ping-Ping; Liu, Jia-You; Lee, Ching-Hsiao; Chung, Jing-Gung; Chang, Jin-Biou

    2015-01-01

    Metastasis plays an important role in mortality of cancer patients. Migration and invasion are the major characteristics of tumor metastasis. The induction of matrix metalloproteinases (MMPs) such as MMP-2 and -9 are particularly important for the invasiveness of various cancer cells. Bufalin, a class of toxic steroids, was purified from the skin glands of Bufo gargarizans or Bufo melanostictus; it is known to inhibit proliferation of human cancer cells. In this study, we investigated the antiinvasive mechanisms of bufalin in the human hepatocellular cancer cell line SK-Hep1. Bufalin significantly reduced serum-induced cell invasion and migration. Furthermore, bufalin markedly inhibited MMP-2 and -9 activity, mRNA expression and protein levels in SK-Hep1 cells. Bufalin attenuated phosphoinisitide-3-kinase (PI3K) and phosphorylation of AKT which was associated with reduced levels of nuclear factor kappa B (NF-κB). Bufalin also suppressed protein levels of FAK and Rho A, VEGF, MEKK3, MKK7, and uPA and it diminished NF-κB translocation. Based on these observations, we propose that bufalin is acts as an antiinvasive agent by inhibiting MMP-2 and -9 and involving PI3K/AKT and NF-κB pathways. Bufalin is a potential therapeutic agent that may have efficacy in preventing the invasion and metastasis of malignant liver tumors. PMID:23949904

  14. Tubulin-binding agents down-regulate matrix metalloproteinase-2 and -9 in human hormone-refractory prostate cancer cells – a critical role of Cdk1 in mitotic entry.

    PubMed

    Chang, Wei-Ling; Yu, Chia-Chun; Chen, Ching-Shih; Guh, Jih-Hwa

    2015-03-01

    Tubulin is an important target for anticancer therapy. Taxanes and vinca alkaloids are two groups of tubulin-binding agents in cancer chemotherapy. Besides tubulin binding, these groups of agents can also down-regulate protein levels of matrix metalloproteinase (MMP)-2 and -9, two important cancer-associated zinc-dependent endopeptidases in invasion and metastasis. However, the mechanism of action waits to be explored. In this study, protein levels but not mRNA expressions of MMP-2 and -9 were down-regulated by paclitaxel (a microtubule-stabilization agent), vincristine and evodiamine (two tubulin-depolymerization agents). These agents induced an increase of protein expression of cyclin B1, MPM2 (mitosis-specific phosphoprotein) and polo-like kinase (PLK) 1 phosphorylation. The data showed a negative relationship between the levels of mitotic proteins and MMP-2 and -9 expressions. MG132 (a specific cell-permeable proteasome inhibitor) blocked mitotic entry and arrested cell cycle at G2 phase, preventing down-regulation of MMP-2 and -9. Cell cycle synchronization experiments by thymidine block or nocodazole treatment showed that mitotic exit inhibited the down-regulation of MMP-2 and -9, confirming negative relationship between cell mitosis and protein levels of MMP-2 and -9 expressions. Cyclin-dependent kinase (Cdk) 1 is a key kinase in mitotic entry. Knockdown of Cdk1 almost completely inhibited the down-regulation of MMP-2 and -9 induced by tubulin-binding agents. In conclusion, the data suggest that mitotic entry and Cdk1 plays a central role in down-regulation of MMP-2 and -9 protein expressions. Tubulin-binding agents cause mitotic arrest and Cdk1 activation, which may contribute largely to the down-regulation of both MMP-2 and -9 expressions. PMID:25615907

  15. Recombinant snake venom metalloproteinase inhibitor BJ46A inhibits invasion and metastasis of B16F10 and MHCC97H cells through reductions of matrix metalloproteinases 2 and 9 activities.

    PubMed

    Ji, Ming-Kai; Shi, Yi; Xu, Jian-Wen; Lin, Xu; Lin, Jian-Yin

    2013-06-01

    Studies have shown that the recombinant BJ46a (rBJ46a) protein can reduce matrix metalloproteinase (MMP) activities and inhibit invasion and metastasis of melanoma cells. Here, we optimized the Pichia pastoris system to evaluate rBJ46a protein as an anticancer agent. The Enzchek gelatinase/collagenase assay showed that rBJ46a inhibited MMP activities (IC50=0.119 mg/ml). Kinetic analyses using a series of double reciprocal Lineweaver-Burk plots (1/V vs. 1/S) showed a competitive mode of inhibition with rBJ46a with inhibitory efficiency against MMPs (Ki=13.6 nmol/l). Matrigel invasion assays showed significant activity of rBJ46a on tumor cells. For lung colonization assays, C57BL/6 mice were inoculated in the lateral tail vein with B16F10 cells and were treated with three i.v. injections of rBJ46a (1, 2, and 4 mg/kg) 24 h before cell inoculation, and 2 and 24 h after cell inoculation. Administration of rBJ46a suppressed lung tumor colony formation significantly. For spontaneous metastasis assays, MHCC97H cells were inoculated subcutaneously into nude mice. After 24 h, rBJ46a was administered by i.p. injections: 1, 2, and 4 mg/kg once daily for 6 days. rBJ46a decreased lung tumor colony formation significantly. Gelatin zymography showed that MMP2/MMP9 enzymatic activities in tumor cells were suppressed by rBJ46a in a dose-dependent manner, and the Km values of rBJ46a against MMP2 and MMP9 activities that were expressed in both B16F10 and MHCC97H cells were 3.6 and 1.4 μmol/l, respectively. Thus, rBJ46a can inhibit the invasion and metastasis of tumor cells by reducing MMP2/MMP9 activities, indicating that rBJ46a may be a novel therapeutic agent for antimetastasis of tumor cells. PMID:23442578

  16. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation

    PubMed Central

    Zhang, Xiaoyan; Wang, Xiaofei; Zhong, Weitong; Ren, Xiaoqing; Sha, Xianyi; Fang, Xiaoling

    2016-01-01

    Since elevated expression of matrix metalloproteinase (MMP)-2 and MMP-9 is commonly observed in several malignant tumors, MMPs have been widely reported as key factors in the design of drug delivery systems. Several strategies have been proposed to develop MMPs-responsive nanoparticles to deliver chemotherapeutics to malignant solid tumors. A stimuli-responsive drug delivery system, which could be cleaved by MMPs, was proposed in this study. By inserting an MMP-2/9 cleavable oligopeptide GPVGLIGK-NH2 (GK8) as spacer between α-tocopherol succinate (α-TOS) and methoxy-polyethylene glycol molecular weight (MW 2000 Da) activated by N-hydroxysuccinimide (mPEG2K-NHS), mPEG2K-GK8-α-TOS (TGK) was synthesized as the primary ingredient for MMP-2/9-sensitive micelles composed of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and TGK (n:n =40:60, TGK micelles). mPEG2K-α-TOS (T2K) was similarly synthesized as nonsensitive control. The TGK micelles showed better stability than nonsensitive micelles composed of TPGS and T2K (n:n =40:60, T2K micelles) owing to the inserted peptide. Fluorescence resonance energy transfer results indicated that TGK micelles could be successfully cleaved by MMP-2/9. Effective drug release was demonstrated in the presence of collagenase type IV, a mixture of MMP-2 and MMP-9. Compared with nonsensitive micelles, docetaxel (DTX)-loaded TGK micelles showed a fold higher cellular uptake in HT1080 cells. While the half-maximal inhibitory concentration (IC50) of TGK and T2K micelles were similar (P>0.05) in MCF-7 cells (MMP-2/9 underexpression), the IC50 values of the aforementioned micelles were 0.064±0.006 and 0.122±0.009 μg/mL, respectively, in HT1080 cells (MMP-2/9 overexpression). The MMP-2/9-sensitive micelles also demonstrated desired tumor targeting and accumulation ability in vivo. The results of in vivo antitumor effect evaluation indicate that TGK micelles are potent against solid tumors while maintaining minimum systemic

  17. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation.

    PubMed

    Zhang, Xiaoyan; Wang, Xiaofei; Zhong, Weitong; Ren, Xiaoqing; Sha, Xianyi; Fang, Xiaoling

    2016-01-01

    Since elevated expression of matrix metalloproteinase (MMP)-2 and MMP-9 is commonly observed in several malignant tumors, MMPs have been widely reported as key factors in the design of drug delivery systems. Several strategies have been proposed to develop MMPs-responsive nanoparticles to deliver chemotherapeutics to malignant solid tumors. A stimuli-responsive drug delivery system, which could be cleaved by MMPs, was proposed in this study. By inserting an MMP-2/9 cleavable oligopeptide GPVGLIGK-NH2 (GK8) as spacer between α-tocopherol succinate (α-TOS) and methoxy-polyethylene glycol molecular weight (MW 2000 Da) activated by N-hydroxysuccinimide (mPEG2K-NHS), mPEG2K-GK8-α-TOS (TGK) was synthesized as the primary ingredient for MMP-2/9-sensitive micelles composed of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and TGK (n:n =40:60, TGK micelles). mPEG2K-α-TOS (T2K) was similarly synthesized as nonsensitive control. The TGK micelles showed better stability than nonsensitive micelles composed of TPGS and T2K (n:n =40:60, T2K micelles) owing to the inserted peptide. Fluorescence resonance energy transfer results indicated that TGK micelles could be successfully cleaved by MMP-2/9. Effective drug release was demonstrated in the presence of collagenase type IV, a mixture of MMP-2 and MMP-9. Compared with nonsensitive micelles, docetaxel (DTX)-loaded TGK micelles showed a fold higher cellular uptake in HT1080 cells. While the half-maximal inhibitory concentration (IC50) of TGK and T2K micelles were similar (P>0.05) in MCF-7 cells (MMP-2/9 underexpression), the IC50 values of the aforementioned micelles were 0.064±0.006 and 0.122±0.009 μg/mL, respectively, in HT1080 cells (MMP-2/9 overexpression). The MMP-2/9-sensitive micelles also demonstrated desired tumor targeting and accumulation ability in vivo. The results of in vivo antitumor effect evaluation indicate that TGK micelles are potent against solid tumors while maintaining minimum systemic

  18. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  19. Occurrence of two distinct types of tissue inhibitors of metallo-proteinases-2 in Fugu rubripes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshihiro; Tsukamoto, Hiroshi; Suzuki, Tohru; Mizuta, Shohshi; Yoshinaka, Reiji

    2005-07-01

    In this study, genes of two distinct tissue inhibitors of metalloproteinases-2 (TIMP-2) from Japanese puffer fish Fugu rubripes, Fugu TIMP-2a and TIMP-2b, were cloned. The open reading frames of Fugu TIMP-2a and TIMP-2b cDNAs are composed of 660 and 657 nucleotides and 220 and 219 amino acids, respectively. Both Fugu TIMP-2s contain 12 cysteine residues, which might form six disulfide bonds as in other animals’ TIMP-2s. Reverse-transcribed polymerase chain reaction analysis showed the mRNAs of Fugu TIMP-2a and TIMP-2b to be expressed in some tissues examined with different expression patterns. These findings suggest that the two distinct Fugu TIMP-2s might perform different functions in Fugu tissues.

  20. Gene evolution and functions of extracellular matrix proteins in teeth.

    PubMed

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-03-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the "core matrisome" in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  1. Osmotic Pressure Can Regulate Matrix Gene Expression in Bacillus subtilis

    PubMed Central

    Rubinstein, Shmuel M.; Kolodkin-Gal, Ilana; Mcloon, Anna; Chai, Liraz; Kolter, Roberto; Losick, Richard; Weitz, David A

    2012-01-01

    Many bacteria organize themselves into structurally complex communities known as biofilms in which the cells are held together by an extracellular matrix. In general, the amount of extracellular matrix is related to the robustness of the biofilm. Yet, the specific signals that regulate the synthesis of matrix remain poorly understood. Here we show that the matrix itself can be a cue that regulates the expression of the genes involved in matrix synthesis in Bacillus subtilis. The presence of the exopolysaccharide component of the matrix causes an increase in osmotic pressure that leads to an inhibition of matrix gene expression. We further show that non-specific changes in osmotic pressure also inhibit matrix gene expression and do so by activating the histidine kinase KinD. KinD, in turn, directs the phosphorylation of the master regulatory protein Spo0A, which at high levels represses matrix gene expression. Sensing a physical cue such as osmotic pressure, in addition to chemical cues, could be a strategy to non-specifically coordinate the behavior of cells in communities composed of many different species. PMID:22882172

  2. Analysis of skin patch test results and metalloproteinase-2 levels in a patient with contact dermatitis

    PubMed Central

    Czajkowski, Rafał; Kowaliszyn, Bogna; Żbikowska-Gotz, Magdalena; Bartuzi, Zbigniew

    2015-01-01

    Introduction The complex course of skin reactions that contact eczema involves is due in part to abnormalities of the extracellular matrix function. Proteins that degrade extracellular matrix components include metalloproteinases (MMP), which are divided into subcategories depending on the chemical structure and substrate specificity. Aim To analyse patch test results in contact dermatitis patients and to assess MMP-2 levels during skin lesion exacerbation and remission. Material and methods Fifty patients suffering from contact eczema were qualified to the study and 20 healthy volunteers as a control group. The study group patients had epidermal skin tests performed with the “European Standard” set. To assess the MMP-2 level in serum, venous blood was drawn, twice from study group patients – during contact dermatitis exacerbation and remission periods – and once from control group patients. Assessment of MMP-2 in serum was done with ELISA immunoassay. To verify the proposed hypotheses, parametric and nonparametric significance tests were used. Results Hands were the most frequent location of contact dermatitis. Nickel (II) sulphate was the most frequent sensitizing substance. Mean MMP-2 levels were statistically higher in the study group both in contact dermatitis exacerbation and remission periods than in the control group. There was no statistically significant difference between MMP-2 levels and skin patch test results. Conclusions Nickel is one of the most allergenic contact allergens in patients with contact dermatitis. Metalloproteinase-2 is a good marker of contact dermatitis in various stages of the disease. PMID:26161054

  3. Random matrix analysis of localization properties of gene coexpression network

    NASA Astrophysics Data System (ADS)

    Jalan, Sarika; Solymosi, Norbert; Vattay, Gábor; Li, Baowen

    2010-04-01

    We analyze gene coexpression network under the random matrix theory framework. The nearest-neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range and deviates afterwards. Eigenvector analysis of the network using inverse participation ratio suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets: (a) The nondegenerate part that follows RMT. (b) The nondegenerate part, at both ends and at intermediate eigenvalues, which deviates from RMT and expected to contain information about important nodes in the network. (c) The degenerate part with zero eigenvalue, which fluctuates around RMT-predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.

  4. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  5. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  6. Analysis of gene set using shrinkage covariance matrix approach

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-09-01

    Microarray methodology has been exploited for different applications such as gene discovery and disease diagnosis. This technology is also used for quantitative and highly parallel measurements of gene expression. Recently, microarrays have been one of main interests of statisticians because they provide a perfect example of the paradigms of modern statistics. In this study, the alternative approach to estimate the covariance matrix has been proposed to solve the high dimensionality problem in microarrays. The extension of traditional Hotelling's T2 statistic is constructed for determining the significant gene sets across experimental conditions using shrinkage approach. Real data sets were used as illustrations to compare the performance of the proposed methods with other methods. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  7. Expression of genes encoding extracellular matrix proteins: A macroarray study

    PubMed Central

    FUTYMA, KONRAD; MIOTŁA, PAWEŁ; RÓŻYŃSKA, KRYSTYNA; ZDUNEK, MAŁGORZATA; SEMCZUK, ANDRZEJ; RECHBERGER, TOMASZ; WOJCIEROWSKI, JACEK

    2014-01-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs. PMID:25231141

  8. Effects of diosgenin on myometrial matrix metalloproteinase-2 and -9 activity and expression in ovariectomized rats.

    PubMed

    Chang, Chi-Chen; Kuan, Tang-Ching; Hsieh, Yao-Yuan; Ho, Ying-Jui; Sun, Yu-Ling; Lin, Chih-Sheng

    2011-01-01

    Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects. PMID:21814480

  9. Effects of Diosgenin on Myometrial Matrix Metalloproteinase-2 and -9 Activity and Expression in Ovariectomized Rats

    PubMed Central

    Chang, Chi-Chen; Kuan, Tang-Ching; Hsieh, Yao-Yuan; Ho, Ying-Jui; Sun, Yu-Ling; Lin, Chih-Sheng

    2011-01-01

    Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects. PMID:21814480

  10. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Geetha, Arumugam; Yuvaraj, Sambandam; Parthasarathy, Chandrakesan

    2010-03-01

    Cancer metastasis is a complex multi-step process, responsible for a majority of cancer-related deaths by affecting the critical organs and causing complications in therapies. Hepatocellular carcinoma is a multi-factorial disease and is the third most common cause of cancer related mortality worldwide. Clinical and experimental studies have shown that MMP-2 and MMP-9 are involved in tumor invasion and metastases and their elevated expression has been associated with poor prognosis. Our recent studies showed a strong anti-oxidant and hepatoprotective effects of bacoside A (BA) against carcinogen. Nevertheless the effect of BA on the activities and expression of MMP-2 and MMP-9 during hepatocellular carcinoma is not yet recognized. Therefore, the present study was designed to assess the same. Results of gelatin zymography study showed that BA co-treatment significantly decreased the activities of MMP-2 and MMP-9, which is increased during hepatocellular carcinoma. Further immunoblot analysis showed decreased expression of MMP-2 and MMP-9 in rats co-treated with BA compared to DEN-induced hepatocellular carcinoma. Our results reveal that BA exerts its anti-metastatic effect against DEN-induced hepatocellular carcinoma by inhibiting the activities and expressions of MMP-2 and MMP-9. PMID:20084675

  11. Characterization of DNA-hyaluronan matrix for sustained gene transfer.

    PubMed

    Kim, Angela; Checkla, Daniel M; Dehazya, Philip; Chen, Weiliam

    2003-06-01

    DNA-Hyaluronan (DNA-HA) matrix formulations intended for use as gene delivery systems have been developed and their potential for delivering DNA encoding a model therapeutic cytokine, platelet-derived growth factor (PDGF), has been evaluated. The results of enzyme-mediated release kinetics studies suggested that the rate of DNA release from the DNA-HA matrices could be modulated by changing the DNA loading or the degree of crosslinking. SEM imaging of the DNA-HA matrix showed that it was gradually eroded by enzymatic action. The results of gel electrophoresis suggested that there was some degree of interaction between DNA and native HA and that portions of the DNA released from the DNA-HA matrices were associated with crosslinked HA fragments. Only fractions of the DNA released from the DNA-HA matrices were free and the rest was entrapped by HA fragments, which could serve as a mechanism for DNA protection. The results from cell transfection studies using DNA samples collected during the course of release studies confirmed this hypothesis. The PDGF produced by transfection of the DNA released from DNA-HA matrices induced human dermal fibroblast cells to proliferate. PMID:12767709

  12. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  13. Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    PubMed Central

    Mash, Deborah C.; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-01-01

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

  14. Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization

    PubMed Central

    Yang, Xuerui; Zhou, Yang; Jin, Rong; Chan, Christina

    2009-01-01

    Motivation: Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-regulation information of the genes. To address these limitations, we are introducing an alternative method, knowledge-driven matrix factorization (KMF) framework, to reconstruct phenotype-specific modular gene networks. Results: Considering the reconstruction of gene network as a matrix factorization problem, we first use the gene expression data to estimate a correlation matrix, and then factorize the correlation matrix to recover the gene modules and the interactions between them. Prior knowledge from Gene Ontology is integrated into the matrix factorization. We applied this KMF algorithm to hepatocellular carcinoma (HepG2) cells treated with free fatty acids (FFAs). By comparing the module networks for the different conditions, we identified the specific modules that are involved in conferring the cytotoxic phenotype induced by palmitate. Further analysis of the gene modules of the different conditions suggested individual genes that play important roles in palmitate-induced cytotoxicity. In summary, KMF can efficiently integrate gene expression data with prior knowledge, thereby providing a powerful method of reconstructing phenotype-specific gene networks and valuable insights into the mechanisms that govern the phenotype. Contact: krischan@msu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19542155

  15. Prognostic Value of Tissue Inhibitor of Metalloproteinase-2 Expression in Patients with Non–Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhu, Lin; Yu, Hong; Liu, Shi-Yuan; Xiao, Xiang-Sheng; Dong, Wei-Hua; Chen, Yi-Nan; Xu, Wei; Zhu, Tong

    2015-01-01

    Background and Objectives Tissue inhibitor of metalloproteinase-2 (TIMP-2) is a small secretory glycoprotein with anti–matrix metalloproteinase activity. Data on the value of TIMP-2 as a prognostic factor in non–small cell lung cancer (NSCLC) are discordant and remain controversial. A systematic review and meta-analysis was performed to explore this issue. Methods We identified the relevant literature by searching the PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, SinoMed, and Wanfang Data databases (search terms: “non-small cell lung cancer” or “NSCLC” or “Lung Carcinoma, Non-Small-Cell”, “Tissue Inhibitor of Metalloproteinase-2” or “TIMP-2”, and “prognosis” or “prognostic” or “survive”) for updates prior to March 1, 2014. The pooled hazard ratio (HR) of overall survival with a 95% confidence interval (95% CI) was used to evaluate the strength of the association between positive TIMP-2 expression and survival in patients with NSCLC. Results We included 12 studies in our systematic review; five studies involving 399 patients with NSCLC were meta-analyzed. The pooled HR of all included patients was 0.57 (95% CI: 0.43–0.77), and the HRs of subgroup analysis according to stage (I–IV), testing method (immunohistochemistry) and high TIMP-2 expression percentage (<50%) were 0.63 (95% CI: 0.43–0.92), 0.55 (95% CI: 0.41–0.74), and 0.50 (95% CI: 0.28–0.88), respectively. These data suggested that high TIMP-2 expression is associated with favorable prognosis in NSCLC. The meta-analysis did not reveal heterogeneity or publication bias. Conclusions TIMP-2 expression indicates favorable prognosis in patients with NSCLC; as a protective factor, it could help predict outcome and may guide clinical therapy in the future. PMID:25905787

  16. Construction and use of gene expression covariation matrix

    PubMed Central

    Hennetin, Jérôme; Pehkonen, Petri; Bellis, Michel

    2009-01-01

    Background One essential step in the massive analysis of transcriptomic profiles is the calculation of the correlation coefficient, a value used to select pairs of genes with similar or inverse transcriptional profiles across a large fraction of the biological conditions examined. Until now, the choice between the two available methods for calculating the coefficient has been dictated mainly by technological considerations. Specifically, in analyses based on double-channel techniques, researchers have been required to use covariation correlation, i.e. the correlation between gene expression changes measured between several pairs of biological conditions, expressed for example as fold-change. In contrast, in analyses of single-channel techniques scientists have been restricted to the use of coexpression correlation, i.e. correlation between gene expression levels. To our knowledge, nobody has ever examined the possible benefits of using covariation instead of coexpression in massive analyses of single channel microarray results. Results We describe here how single-channel techniques can be treated like double-channel techniques and used to generate both gene expression changes and covariation measures. We also present a new method that allows the calculation of both positive and negative correlation coefficients between genes. First, we perform systematic comparisons between two given biological conditions and classify, for each comparison, genes as increased (I), decreased (D), or not changed (N). As a result, the original series of n gene expression level measures assigned to each gene is replaced by an ordered string of n(n-1)/2 symbols, e.g. IDDNNIDID....DNNNNNNID, with the length of the string corresponding to the number of comparisons. In a second step, positive and negative covariation matrices (CVM) are constructed by calculating statistically significant positive or negative correlation scores for any pair of genes by comparing their strings of symbols

  17. Serum concentrations of metalloproteinase 2, metalloproteinase 9 and granzyme B in contact eczema patients

    PubMed Central

    Żbikowska-Gotz, Magdalena; Czajkowski, Rafał; Bartuzi, Zbigniew

    2013-01-01

    Introduction Contact eczema is a common skin condition with complex etiology, variable clinical presentation and lengthy therapy duration. The mechanism of contact eczema is complex, since it is affected by multiple inflammatory mediators. Aim To assess concentrations of metalloproteinase 2 (MMP-2), metalloproteinase 9 (MMP-9) and granzyme B (GzmB) in patients with contact eczema. Material and methods Seventy patients with contact eczema and 30 healthy persons as controls were included in the study. In all subjects, MMP-2, MMP-9 and GzmB were determined using ELISA immunoassay. In study group patients, concentrations were assayed in periods of disease exacerbation and remission. Obtained results were analyzed statistically. Results Mean MMP-2 and GzmB concentrations were found to be significantly higher in the study group than in the control group. Mean MMP-2, MMP-9 and GzmB levels were also statistically significantly higher during skin lesion relapse compared to contact eczema remission periods. Conclusions The presented paper demonstrates that MMP-2, MMP-9 and GzmB are good markers of contact eczema exacerbations. PMID:24278051

  18. Single-cell differences in matrix gene expression do not predict matrix deposition

    PubMed Central

    Cote, Allison J.; McLeod, Claire M.; Farrell, Megan J.; McClanahan, Patrick D.; Dunagin, Margaret C.; Raj, Arjun; Mauck, Robert L.

    2016-01-01

    Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for ‘superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level. PMID:26936319

  19. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  20. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression

    PubMed Central

    Oknin, Hilla; Steinberg, Doron; Shemesh, Moshe

    2015-01-01

    The objective of this study was to investigate the effect of Mg2+ ions on biofilm formation by Bacillus species, which are considered as problematic microorganisms in the food industry. We found that magnesium ions are capable to inhibit significantly biofilm formation of Bacillus species at 50 mM concentration and higher. We further report that Mg2+ ions don't inhibit bacterial growth at elevated concentrations; hence, the mode of action of Mg2+ ions is apparently specific to inhibition of biofilm formation. Biofilm formation depends on the synthesis of extracellular matrix, whose production in Bacillus subtilis is specified by two major operons: the epsA-O and tapA operons. We analyzed the effect of Mg2+ ions on matrix gene expression using transcriptional fusions of the promoters for eps and tapA to the gene encoding β galactosidase. The expression of the two matrix operons was reduced drastically in response to Mg2+ ions suggesting about their inhibitory effect on expression of the matrix genes in B. subtilis. Since the matrix gene expression is tightly controlled by Spo0A dependent pathway, we conclude that Mg2+ ions could affect the signal transduction for biofilm formation through this pathway. PMID:26441856

  1. Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line.

    PubMed

    Brassart, B; Randoux, A; Hornebeck, W; Emonard, H

    1998-08-01

    Soluble kappa-elastin peptides were shown to stimulate the expression of MMP-2 (but not MMP-9) by human fibrosarcoma HT-1080 cells, both at the protein and mRNA levels; maximal effect being observed at a concentration of 25 microg/ml of kappa-elastin. The stimulatory effect could be reproduced using Val-Gly-Val-Ala-Pro-Gly (VGVAPG) peptide, an elastin-derived hydrophobic hexapeptide which represented the elastin receptor binding sequence of tropoelastin. Furthermore, treatment of cells with lactose (30 mM), which dissociated 67-kDa elastin binding protein (EBP) from cell surfaces, completely abolished this effect, suggesting that the elastin receptor could mediate such a response. Using a specific monoclonal antibody, 67-kDa EBP was detected in HT-1080 membrane preparations by Western immunoblotting. Following treatment with 25 microg/ml kappa-elastin or 200 microg/ml VGVAPG, increased levels of the active 62-kDa form of MMP-2 were found in HT-1080 cell extracts. Stimulation of MT1-MMP mRNA expression by treatment with elastin-derived peptides (EDPs) was shown by competitive polymerase chain reaction (PCR). A reverse zymography analysis revealed that EDPs also stimulated TIMP-2 (but not TIMP-1) production by HT-1080 cells. Competitive PCR confirmed increased TIMP-2 mRNA expression by such treatment. These results suggest that occupancy of the 67-kDa elastin receptor by elastin-derived peptides enhanced both expression and activation of proMMP-2 and consequently, could promote the invasive/metastatic ability of tumor cells expressing this receptor. PMID:9872597

  2. Prion permissive pathways: extracellular matrix genes control susceptibility to prion infection

    PubMed Central

    Imberdis, Thibaut; Harris, David A

    2014-01-01

    There are wide variations in the susceptibility of humans, animals, and cultured cell lines to infection by prions. In this issue of The EMBO Journal, Marbiah et al (2014) identified a gene regulatory network that regulates the susceptibility of cultured cells to prion infection. Surprisingly, a number of these genes impact the structure of the extracellular matrix. These results have important implications for understanding mechanisms of prion infection and also suggest new therapeutic targets. PMID:24952893

  3. Impact of micronised purified flavonoid fraction on increased malondialdehyde and decreased metalloproteinase-2 and metalloproteinase-9 levels in varicocele: outcome of an experimentally induced varicocele.

    PubMed

    Dogan, F; Armagan, A; Oksay, T; Akman, T; Aylak, F; Bas, E

    2014-05-01

    To analyse the levels of an indirect marker of ROS-induced lipid peroxidation [i.e. malondialdehyde (MDA)] in both testes and the levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase inhibitor-1 (TIMP-1) in the left testis after induction of varicocele and investigated the impact of micronised purified flavonoid fraction (MPFF) on these markers. Forty-nine adolescent (6-week-old) male Wistar rats were included in this study. The rats were divided into seven groups as follows:Group-1, control; Group-2, sham; Group-3, left varicocele-induced; Group-4, varicocele + varicocelectomy + MPFF-treated (for 4 weeks); Group-5, varicocele + MPFF-treated (for 8 weeks); Group-6, varicocele-induced and 4 weeks later, MPFF-treated (for 4 weeks); and Group-7, varicocele + varicocelectomy. MDA was measured in the tissues of both testes using the thiobarbituric acid reactivity method. The ELISA method was used for the quantification of MMP-2, MMP-9 and TIMP-1 in the left testicular tissue. The levels of MDA were significantly higher in the varicocele group than in the other groups. The MDA levels in the left testicular tissues of Group-7 were significantly higher than those of Group 4 (P = 0.03). In the varicocele group, the MMP-2 and MMP-9 levels decreased, whereas the levels of TIMP-1 increased. The tissue levels of MMP-2 in Groups 4, 5 and 7 were significantly higher than those in Group 1 (P < 0.05). PMID:23550531

  4. Genomic Organization of channel catfish, Ictalurus punctatus, matrix metalloproteinase-9-gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced MMP-9 genomic DNA by using a Unversal GenomeWalker kit. The co...

  5. Interleukin 17A Promotes Hepatocellular Carcinoma Metastasis via NF-kB Induced Matrix Metalloproteinases 2 and 9 Expression

    PubMed Central

    Li, Jian; Lau, George Ka-Kit; Chen, Leilei; Dong, Sui-sui; Lan, Hui-Yao; Huang, Xiao-Ru; Li, Yan; Luk, John M.; Yuan, Yun-Fei; Guan, Xin-yuan

    2011-01-01

    Background  IL-17A is a pro-inflammatory cytokine that plays important role in inflammatory disease pathology and tumor microenvironment. The aim of this study is to investigate the effect of IL-17A on the progression of hepatocellular carcinoma (HCC). Methodology and Principal Finding Expression pattern of IL-17A in clinical HCC samples (n = 43) was determined by immunohistochemistry staining. Transcript levels of MMP2, MMP9 and IL-17A were measured in another 50 pairs (including tumor and related non-tumor tissues) HCC samples. Cell growth, focus formation, cell migration, invasion and western blot assays were used to characterize the functional and signaling mechanisms in IL-17A-treated HCC. Association study was used to identify clinical significance of IL-17A in HCC. Compared with paired non-tumor tissue, higher frequency of IL-17A-positive cells was detected in tumor tissues in HCCs with metastasis, and the frequency of IL-17A-positive cells was also significantly associated with poor prognosis of HCC (P = 0.01). Functional study found that IL-17A could promote HCC cell migration and invasion. Further molecular analysis also showed that IL-17A could upregulate MMP2 and MMP9 expression via NF-κB signaling activation. Conclusions  IL-17A could promote HCC metastasis by the upregulation of MMP2 and MMP9 expression via activating NF-κB signaling pathway. PMID:21760911

  6. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  7. A Class-Information-Based Penalized Matrix Decomposition for Identifying Plants Core Genes Responding to Abiotic Stresses

    PubMed Central

    Liu, Jin-Xing; Liu, Jian; Gao, Ying-Lian; Mi, Jian-Xun; Ma, Chun-Xia; Wang, Dong

    2014-01-01

    In terms of making genes expression data more interpretable and comprehensible, there exists a significant superiority on sparse methods. Many sparse methods, such as penalized matrix decomposition (PMD) and sparse principal component analysis (SPCA), have been applied to extract plants core genes. Supervised algorithms, especially the support vector machine-recursive feature elimination (SVM-RFE) method, always have good performance in gene selection. In this paper, we draw into class information via the total scatter matrix and put forward a class-information-based penalized matrix decomposition (CIPMD) method to improve the gene identification performance of PMD-based method. Firstly, the total scatter matrix is obtained based on different samples of the gene expression data. Secondly, a new data matrix is constructed by decomposing the total scatter matrix. Thirdly, the new data matrix is decomposed by PMD to obtain the sparse eigensamples. Finally, the core genes are identified according to the nonzero entries in eigensamples. The results on simulation data show that CIPMD method can reach higher identification accuracies than the conventional gene identification methods. Moreover, the results on real gene expression data demonstrate that CIPMD method can identify more core genes closely related to the abiotic stresses than the other methods. PMID:25180509

  8. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  9. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance. PMID:23667866

  10. Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene

    SciTech Connect

    Kaneoka, Hidenori; Miyake, Katsuhide; Iijima, Shinji

    2009-10-02

    The gene for tryptophan oxygenase (TO) is expressed in adult hepatocytes in a tissue- and differentiation-specific manner. The TO promoter has two glucocorticoid-responsive elements (GREs), and its expression is regulated by glucocorticoid hormone in the liver. We found a novel GRE in close proximity to a scaffold/matrix attachment region (S/MAR) that was located around -8.5 kb from the transcriptional start site of the TO gene by electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays. A combination of nuclear fractionation and quantitative PCR analysis showed that the S/MAR was tethered to the nuclear matrix in both fetal and adult hepatocytes. ChIP assay showed that, in adult hepatocytes, the S/MAR-GRE and the promoter proximal regions interacted with lamin and heterogeneous nuclear ribonucleoprotein U in a dexamethasone dependent manner, but this was not the case in fetal cells, suggesting that developmental stage-specific expression of the TO gene might rely on the binding of the enhancer (the -8.5 kb S/MAR-GRE) and the promoter to the inner nuclear matrix.

  11. Smooth muscle cell expression of extracellular matrix genes after arterial injury.

    PubMed Central

    Nikkari, S. T.; Järveläinen, H. T.; Wight, T. N.; Ferguson, M.; Clowes, A. W.

    1994-01-01

    Accumulation of extracellular matrix (ECM) after arterial injury is an important event in the development of intimal thickening and is modulated by heparin. To investigate the regulation of matrix protein expression, we have analyzed messenger RNA levels by Northern blotting for various ECM proteins in the rat carotid artery balloon injury model. RNA was extracted from normal arteries and from intima-medial preparations at 2 days, 1 week, 2 weeks, and 4 weeks after balloon injury of arteries in animals receiving either saline or heparin infusion. Transcripts for the heparan sulfate proteoglycans perlecan, syndecan, and ryudocan; the chondroitin sulfate proteoglycan versican; the dermatan sulfate proteoglycan biglycan; type I procollagen; and tropoelastin all were increased on Northern blots beginning at 1 week after injury. By in situ hybridization, the transcripts for elastin nd biglycan were primarily localized to smooth muscle cells in the intima and were diminished by heparin in proportion to the decrease in intimal mass. Other matrix genes (perlecan, ryudocan) were expressed in the intima and media and were not affected by heparin. The results support the conclusion that ECM gene expression is a relatively late event in the response of the carotid artery, and that some of the genes are expressed only in the intima whereas others are expressed in both the intima and media. Images Figure 2 Figure 3 Figure 4 PMID:8203472

  12. Porcine dentin matrix protein 1: gene structure, cDNA sequence, and expression in teeth

    PubMed Central

    Kim, Jung-Wook; Yamakoshi, Yasuo; Iwata, Takanori; Hu, Yuan Yuan; Zhang, Hengmin; Hu, Jan C.-C.; Simmer, James P.

    2015-01-01

    Dentin matrix protein 1 (DMP1) is an acidic non-collagenous protein that is necessary for the proper biomineralization of bone, cartilage, cementum, dentin, and enamel. Dentin matrix protein 1 is highly phosphorylated and potentially glycosylated, but there is no experimental data identifying which specific amino acids are modified. For the purpose of facilitating the characterization of DMP1 from pig, which has the advantage of large developing teeth for obtaining protein in quantity and extensive structural information concerning other tooth matrix proteins, we characterized the porcine DMP1 cDNA and gene structure, raised anti-peptide immunoglobulins that are specific for porcine DMP1, and detected DMP1 protein in porcine tooth extracts and histological sections. Porcine DMP1 has 510 amino acids, including a 16-amino acid signal peptide. The deduced molecular weight of the secreted, unmodified protein is 53.5 kDa. The protein has 93 serines and 12 threonines in the appropriate context for phosphorylation, and four asparagines in a context suitable for glycosylation. Dentin matrix protein 1 protein bands with apparent molecular weights between 30 and 45 kDa were observed in partially purified dentin extracts. In developing teeth, immunohistochemistry localized DMP1 in odontoblasts and the dentinal tubules of mineralized dentin and in ameloblasts, but not in the enamel matrix. PMID:16460339

  13. Microarray-based transcriptional and epigenetic profiling of matrix metalloproteinases, collagens, and related genes in cancer.

    PubMed

    Chernov, Andrei V; Baranovskaya, Svetlana; Golubkov, Vladislav S; Wakeman, Dustin R; Snyder, Evan Y; Williams, Roy; Strongin, Alex Y

    2010-06-18

    Epigenetic parameters (DNA methylation, histone modifications, and miRNAs) play a significant role in cancer. To identify the common epigenetic signatures of both the individual matrix metalloproteinases (MMPs) and the additional genes, the function of which is also linked to proteolysis, migration, and tumorigenesis, we performed epigenetic profiling of 486 selected genes in unrelated non-migratory MCF-7 breast carcinoma and highly migratory U251 glioma cells. Genome-wide transcriptional profiling, quantitative reverse transcription-PCR, and microRNA analyses were used to support the results of our epigenetic studies. Transcriptional silencing in both glioma and breast carcinoma cells predominantly involved the repressive histone H3 Lys-27 trimethylation (H3K27me3) mark. In turn, epigenetic stimulation was primarily performed through a gain in the histone H3 Lys-4 dimethylation (H3K4me2) and H3 hyperacetylation and by a global reduction of H3K27me3. Inactive pro-invasive genes in MCF-7 cells but not in U251 cells frequently exhibited a stem cell-like bivalent mark (enrichment in both H3K27me3 and H3K4me2), a characteristic of developmental genes. In contrast with other MMPs, MMP-8 was epigenetically silenced in both cell types, thus providing evidence for the strict epigenetic control of this anti-tumorigenic proteinase in cancer. Epigenetic stimulation of multiple collagen genes observed in cultured glioma cells was then directly confirmed using orthotopic xenografts and tumor specimens. We suggest that the epigenetic mechanisms allow gliomas to deposit an invasion-promoting collagen-enriched matrix and then to use this matrix to accomplish their rapid migration through the brain tissue. PMID:20404328

  14. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures

    PubMed Central

    Shaffer, John R.; Carlson, Jenna C.; Stanley, Brooklyn O. C.; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M.; Maher, Brion S.; Slayton, Rebecca L.; Willing, Marcia C.; Reis, Steven E.; McNeil, Daniel W.; Crout, Richard J.; Weyant, Robert J.; Levy, Steven M.; Vieira, Alexandre R.; Marazita, Mary L.

    2014-01-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of nonamelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N=3,600). Linear regression was used to model genetic associations and test gene-byfluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p<0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p<0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles. PMID:25373699

  15. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis.

    PubMed

    Haller, Gabe; Alvarado, David; Mccall, Kevin; Yang, Ping; Cruchaga, Carlos; Harms, Matthew; Goate, Alison; Willing, Marcia; Morcuende, Jose A; Baschal, Erin; Miller, Nancy H; Wise, Carol; Dobbs, Matthew B; Gurnett, Christina A

    2016-01-01

    Adolescent idiopathic scoliosis (AIS) is a complex inherited spinal deformity whose etiology has been elusive. While common genetic variants are associated with AIS, they explain only a small portion of disease risk. To explore the role of rare variants in AIS susceptibility, exome sequence data of 391 severe AIS cases and 843 controls of European ancestry were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level then by Gene Ontology terms. Novel non-synonymous/splice-site variants in extracellular matrix genes were significantly enriched in AIS cases compared with controls (P = 6 × 10(-9), OR = 1.7, CI = 1.4-2.0). Specifically, novel variants in musculoskeletal collagen genes were present in 32% (126/391) of AIS cases compared with 17% (146/843) of in-house controls and 18% (780/4300) of EVS controls (P = 1 × 10(-9), OR = 1.9, CI = 1.6-2.4). Targeted resequencing of six collagen genes replicated this association in combined 919 AIS cases (P = 3 × 10(-12), OR = 2.2, CI = 1.8-2.7) and revealed a highly significant single-gene association with COL11A2 (P = 6 × 10(-9), OR = 3.8, CI = 2.6-7.2). Importantly, AIS cases harbor mainly non-glycine missense mutations and lack the clinical features of monogenic musculoskeletal collagenopathies. Overall, our study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk. PMID:26566670

  16. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures.

    PubMed

    Shaffer, John R; Carlson, Jenna C; Stanley, Brooklyn O C; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M; Maher, Brion S; Slayton, Rebecca L; Willing, Marcia C; Reis, Steven E; McNeil, Daniel W; Crout, Richard J; Weyant, Robert J; Levy, Steven M; Vieira, Alexandre R; Marazita, Mary L

    2015-02-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of non-amelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N = 3,600). Linear regression was used to model genetic associations and test gene-by-fluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p < 0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p < 0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles. PMID:25373699

  17. Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo.

    PubMed Central

    Black, B L; Lyles, D S

    1992-01-01

    Infection by vesicular stomatitis virus (VSV) results in a rapid inhibition of host cell transcription and translation. To determine whether the viral matrix (M) protein was involved in this inhibition of host cell gene expression, an M protein expression vector was cotransfected with a target gene vector, encoding the target gene, encoding chloramphenicol acetyltransferase (CAT). Expression of M protein caused a decrease in CAT activity in a gene dosage-dependent manner, and inhibition was apparent by 12 h posttransfection. The inhibitory effect of M protein was quite potent. The level of M protein required for a 10-fold inhibition of CAT activity was less than 1% of the level of M protein produced during the sixth hour of VSV infection. Northern (RNA) analysis of cotransfected cells showed that expression of M protein caused a reduction in the steady-state level of the vector-encoded mRNAs. Expression of both CAT and M mRNAs was reduced in cells cotransfected with a plasmid encoding M protein, indicating that expression of small amounts of M protein from plasmid DNA inhibits further expression of both M and CAT mRNAs. Nuclear runoff transcription analysis demonstrated that expression of M protein inhibited transcription of the target genes. This is the first report of a viral gene product which is capable of inhibiting transcription in vivo in the absence of any other viral component. Images PMID:1318397

  18. Mitral valve prolapse is associated with altered extracellular matrix gene expression patterns.

    PubMed

    Greenhouse, David G; Murphy, Alison; Mignatti, Paolo; Zavadil, Jiri; Galloway, Aubrey C; Balsam, Leora B

    2016-07-15

    Mitral valve prolapse (MVP) is the leading indication for isolated mitral valve surgery in the United States. Disorganization of collagens and glycosaminoglycans in the valvular extracellular matrix (ECM) are histological hallmarks of MVP. We performed a transcriptome analysis to study the alterations in ECM-related gene expression in humans with sporadic MVP. Mitral valve specimens were obtained from individuals undergoing valve repair for MVP (n=7 patients) and from non-beating heart-tissue donors (n=3 controls). Purified RNA was subjected to whole-transcriptome microarray analysis. Microarray results were validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Gene ontology enrichment analysis was performed. 2046 unique genes showed significant differential expression (false discovery rate <0.5%). After demonstrating appropriate sample clustering, microarray results were globally validated using a subset of 22 differentially expressed genes by RT-qPCR (Pearson's correlation r=0.65, p=0.001). Gene ontology enrichment analyses performed with ErmineJ and DAVID Bioinformatics Database demonstrated overrepresentation of ECM components (p<0.05). Functional annotation clustering calculated enrichment of ECM-related ontology groups (enrichment score=4.1). ECM-related gene expression is significantly altered in MVP. Our study is consistent with the histologically observed alterations in collagen and mucopolysaccharide profiles of myxomatous mitral valves. Furthermore, whole-transcriptome analyses suggest dysregulation of multiple pathways, including TGF-beta signaling. PMID:27063507

  19. Prediction on the Inhibition Ratio of Pyrrolidine Derivatives on Matrix Metalloproteinase Based on Gene Expression Programming

    PubMed Central

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R2) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs. PMID:24971318

  20. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs. PMID:24971318

  1. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    PubMed

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1. PMID:24334769

  2. Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts

    PubMed Central

    Dohi, Teruyuki; Aoki, Masayo; Ogawa, Rei; Akaishi, Satoshi; Shimada, Takashi; Okada, Takashi; Hyakusoku, Hiko

    2015-01-01

    Background: Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. Methods: The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). Results: TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. Conclusion: These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids. PMID:26495233

  3. Hyperphagia and leptin resistance in Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) deficient mice

    PubMed Central

    Stradecki, Holly M.; Jaworski, Diane M.

    2011-01-01

    Obesity is a complex genetic and behavioral disorder arising from improper integration of peripheral signals at central autonomic centers. For the hypothalamus to respond to dynamic physiological alterations, it must retain a degree of plasticity throughout life. Evidence is mounting that an intricate balance between matrix metalloproteinase (MMP)-mediated extracellular matrix proteolysis and tissue inhibitor of metalloproteinase (TIMP)-mediated proteolysis inhibition contributes to tissue remodeling. However, few studies have examined the role of MMPs/TIMPs in hypothalamic remodeling and energy homeostasis. To determine TIMP-2’s contribution to hypothalamic regulation of feeding, body mass and food consumption was monitored in TIMP-2 knockout (KO) mice fed a standard chow or high fat diet (HFD). TIMP-2 KO mice of both sexes gained more weight than wild-type (WT) mice even when fed the chow diet. Prior to obesity onset, TIMP-2 KO mice were hyperphagic, without increased orexigenic or decreased anorexigenic neuropeptide expression, but leptin resistant (i.e. reduced leptin-induced anorexigenic response and STAT3 activation). HFD exacerbated weight gain and hyperleptinemia. In addition, proteolysis was increased in the arcuate nucleus of TIMP-2 KO mice. These data suggest a role for TIMP-2 in hypothalamic control of feeding and energy homeostasis. PMID:21175899

  4. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and {beta}1 integrin expression in vitro

    SciTech Connect

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2{sup -/-} myotube formation. When differentiated in horse serum-containing medium, TIMP-2{sup -/-} myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2{sup -/-} myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with {beta}1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2{sup -/-} myotube size and induces increased MMP-9 activation and decreased {beta}1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on {beta}1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and {beta}1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.

  5. Dependence of Enhancer-Mediated Transcription of the Immunoglobulin μ Gene on Nuclear Matrix Attachment Regions

    NASA Astrophysics Data System (ADS)

    Forrester, William C.; van Genderen, Courtney; Jenuwein, Thomas; Grosschedl, Rudolf

    1994-08-01

    Transcription of the immunoglobulin μ heavy chain locus is regulated by an intronic enhancer that is flanked on both sides by nuclear matrix attachment regions (MARs). These MARs have now been shown to be essential for transcription of a rearranged μ gene in transgenic B lymphocytes, but they were not required in stably transfected tissue culture cells. Normal rates of transcriptional initiation at a variable region promoter and the formation of an extended deoxyribonuclease I (DNase I)-sensitive chromatin domain were dependent on MARs, although DNase I hypersensitivity at the enhancer was detected in the absence of MARs. Thus, transcriptional activation of the μ gene during normal lymphoid development requires a synergistic collaboration between the enhancer and flanking MARs.

  6. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid.

    PubMed

    Poehlman, William L; Rynge, Mats; Branton, Chris; Balamurugan, D; Feltus, Frank A

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  7. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid

    PubMed Central

    Poehlman, William L.; Rynge, Mats; Branton, Chris; Balamurugan, D.; Feltus, Frank A.

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  8. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    PubMed Central

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  9. GUT GENES ASSOCIATED WITH THE PERITROPHIC MATRIX IN Reticulitermes flavipes (Blattodea: Rhinotermitidae): IDENTIFICATION AND CHARACTERIZATION.

    PubMed

    Sandoval-Mojica, Andres F; Scharf, Michael E

    2016-06-01

    The peritrophic matrix (PM) is an acellular structure that lines the gut of most insects. It is an attractive target for pest management strategies because of its close involvement in digestive processes and role as a barrier against pathogens and toxins. The purpose of this study was to identify and characterize the genes that translate for principal components of the Reticulitermes flavipes PM. Genes encoding a gut chitin synthase (CHS), two proteins with peritrophin-A domains, and a chitin deacetylase were identified from an R. flavipes symbiont-free gut cDNA library, a pyrosequencing study of termite lignocellulose digestion, and a metatranscriptomic analysis of R. flavipes fed on agricultural biomass. Quantitative expression analysis of the identified genes, in the termite digestive tract, revealed that the transcripts coding for a CHS (RfCHSB) and the proteins with peritrophin-A domains (RfPPAD1 and RfPPAD2) were predominantly expressed in the midgut, suggesting an association with the PM. The peritrophin identity of the RfPPAD2 gene was confirmed by immunodetection of its translated peptide in the midgut and PM. The discovery and characterization of PM components of R. flavipes provides a basis for further investigation of the viability of this structure as a target for candidate termiticides. PMID:27087028

  10. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  11. How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might Combine to Drive Cancer Progression

    PubMed Central

    Bischof, Ashley G.; Mannix, Robert J.; Tobin, Heather; Bar-Yam, Yaneer; Bellin, Robert M.; Ingber, Donald E.

    2013-01-01

    Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation. PMID:24098430

  12. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    PubMed Central

    2013-01-01

    Background Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results highlight the power of

  13. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    PubMed

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis. PMID:22042083

  14. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome.

    PubMed

    Derosa, Giuseppe; D'Angelo, Angela; Scalise, Filippo; Avanzini, Maria A; Tinelli, Carmine; Peros, Emmanouil; Fogari, Elena; Cicero, Arrigo F G

    2007-11-01

    We hypothesized that matrix metalloproteinase (MMP)-2, -9, and tissue inhibitor metalloproteinase-1, -2 (TIMP-1, -2) would be abnormal in diabetes and in acute coronary syndromes (ACS). We measured MMP-2, -9, and TIMP-1, -2 plasma levels in healthy subjects (controls), in type 2 diabetic patients, in nondiabetic patients with ACS (ACS) and in diabetic patients with ACS (DACS). We enrolled 165 controls, 181 diabetic patients, 78 ACS, and 46 DACS. We measured also BMI (body mass index), HbA(1c) (glycated hemoglobin) FPG (fasting plasma glucosa), FPI (fasting plasma insulin), HOMA index (homeostasis model assessment index), SBP (systolic blood pressure), DBP (diastolic blood pressure), TC (total cholesterol), LDL-C (low density lipoprotein cholesterol), HDL-C (high-density lipoprotein cholesterol), Tg (triglycerides), Lp(a) (lipoprotein(a)) PAI-1 (plasminogen activator inhibitor-1), Hct (homocysteine), Fg (fibrinogen), and hs-CRP (high-sensitivity C-reactive protein). A significant increase of BMI was observed in the diabetic group, in ACS and DACS patients compared to controls. A significant increase of SBP and DBP resulted in the diabetic and DACS groups, while only SBP improvement was present in ACS patients with respect to controls. A decrease in SBP and DBP was observed in the ACS group, while SBP variation was present in DACS patients compared to diabetics, and DBP increase was obtained in the DACS group with respect to ACS patients. TC, LDL-C, Tg, and Lp(a) increase was present in diabetics, while TC, Tg, and Lp(a) improvement was present in ACS and DACS patients with a significant decrease of HDL-C levels in diabetic, ACS, and DACS groups compared to controls. A decrease in LDL-C was obtained in ACS and DACS groups, while HDL-C increase was observed in these patients with respect to diabetics. Tg levels were higher in the DACS group compared to diabetics and ACS patients, respectively. Increases in PAI-1, Hct, Fg, and hs-CRP were present in diabetic and DACS

  15. Matrix metalloproteinase-3 gene promoter polymorphisms: A potential risk factor for pelvic organ prolapse

    PubMed Central

    Karachalios, Charalampos; Bakas, Panagiotis; Kaparos, Georgios; Demeridou, Styliani; Liapis, Ilias; Grigoriadis, Charalampos; Liapis, Aggelos

    2016-01-01

    Pelvic organ prolapse (POP) is a common multifactorial condition. Matrix metalloproteinases (MMPs) are enzymes capable of breaking down various connective tissue elements. Single-nucleotide polymorphisms (SNPs) in regulatory areas of MMP-encoding genes can alter their transcription rate, and therefore the possible effect on pelvic floor supporting structures. The insertion of an adenine (A) base in the promoter of the MMP-3 gene at position −1612/−1617 produces a sequence of six adenines (6A), whereas the other allele has five (5A). The aim of the present study was to investigate the possible association of MMP-3 gene promoter SNPs with the risk of POP. The patient group comprised 80 women with clinically significant POP [Stage II, III or IV; POP quantification (POP-Q) system]. The control group consisted of 80 females without any or important pelvic floor support defects (Stages 0 or I; POP-Q system). All the participants underwent the same preoperative evaluation. SNP detection was determined with whole blood sample DNA analysis by quantitative polymerase chain reaction (PCR) in LightCycler® PCR platforms, using the technique of sequence-specific hybridization probe-binding assays and melting temperature curve analysis. The results showed there was no statistically significant difference between 5A/5A, 5A/6A and 6A/6A MMP-3 gene promoter variants in the two study groups (P=0.4758). Therefore, MMP-3 gene promoter SNPs alone is insufficient to increase the genetic susceptibility to POP development. PMID:27588175

  16. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    PubMed Central

    Gencer, Salih; Cebeci, Anil

    2013-01-01

    Objective Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-15, MMP-17, MMP-23, MMP-28, and β-catenin genes. Methods The mRNA transcripts in the cells were determined by RT-PCR. Following H2O2 exposure, oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA). Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR. Results The expressions of MMP-1, MMP-7, MMP-14, MMP-15, MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased. Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure. β-catenin, a transcription factor for many genes including MMPs, also displayed decreased levels of expression in both of the cell lines following CAPE treatment. Conclusions Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress. PMID:23825909

  17. Transcriptional Factor DLX3 Promotes the Gene Expression of Enamel Matrix Proteins during Amelogenesis

    PubMed Central

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease. PMID:25815730

  18. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    PubMed

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease. PMID:25815730

  19. The Effects of Laser Irradiation of Cartilage on Chondrocyte Gene Expression and the Collagen Matrix

    PubMed Central

    Holden, Paul K.; Li, Chao; Da Costa, Victor; Sun, Chung-Ho; Bryant, Susan V.; Gardiner, David M.; Wong, Brian J.F.

    2014-01-01

    Objectives Laser reshaping of cartilage is an emerging technology aimed at replacing conventional techniques for aesthetic and reconstructive surgery. Little is known about the mechanisms of wound healing following the photothermal heating during laser reshaping and, ultimately, how collagen remodels in the irradiated tissue. Healthy hyaline and elastic cartilage as found in the ear, nose, larynx, and trachea does not express collagen type I which is characteristic of fibro-cartilage and scar tissue. The aim of the study was to determine if collagen I and II gene expression occurs within laser irradiated rabbit septal cartilage. Methods Nasal septum harvested from freshly euthanized New Zealand White rabbits were irradiated with an Nd:YAG laser. After 2 weeks in culture, the laser spot and surrounding non-irradiated regions were imaged using immunofluorescence staining and evaluated using reverse transcription polymerase chain reaction (RT-PCR) to determine the presence of collagen I and II, and ascertain collagen I and II gene expression, respectively. Results All laser irradiated specimens showed a cessation in collagen II gene expression within the center of the laser spot. Collagen II was expressed in the surrounding region encircling the laser spot and within the non-irradiated periphery in all specimens. Immunohistochemistry identified only type II collagen. Neither collagen I gene expression nor immunoreactivity were identified in any specimens regardless or irradiation parameters. Conclusions Laser irradiation of rabbit septal cartilage using dosimetry parameters similar to those used in laser reshaping does not result in the detection of either collagen I gene expression or immunoreactivity. Only collagen type II was noted after laser exposure in vitro following cell culture, which suggests that the cellular response to laser irradiation is distinct from that observed in conventional wound healing. Laser irradiation of cartilage can leave an intact

  20. The extracellular matrix regulates MaeuCath1a gene expression.

    PubMed

    Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R

    2013-01-01

    We have previously shown that the gene for MaeuCath1, a cathelicidin secreted in wallaby milk is alternately spliced into two variants, MaeuCath1a and MaeuCath1b which are temporally regulated in order to provide antimicrobial protection to the newborn and stimulate mammary growth, respectively. The current study investigated the extracellular matrix (ECM) for its regulatory role in MaeuCath1 gene expression. Reverse transcription qPCR using RNA isolated from mammary epithelial cells (WallMEC) cultured on ECM showed that ECM regulates MaeuCath1a gene expression in a lactation phase-dependent manner. Luciferase reporter-based assays and in silico analysis of deletion fragments of the 2245bp sequence upstream of the translation start site identified ECM-dependent positive regulatory activity in the -709 to -15 region and repressor activity in the -919 to -710 region. Electrophoretic Gel Mobility Shift Assays (EMSA) using nuclear extract from ECM-treated WallMEC showed differential band shift in the -839 to -710 region. PMID:23500515

  1. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Coactivators

    PubMed Central

    Zhao, Xueyan; Benveniste, Etty N.

    2008-01-01

    Summary Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme for matrix proteins, chemokines and cytokines, is a major target in cancer and autoimmune diseases since it is aberrantly upregulated. To control MMP-9 expression in pathological conditions, it is necessary to understand the regulatory mechanisms of MMP-9 expression. MMP-9 gene expression is regulated primarily at the transcriptional level. In this study, we investigated the role of multiple coactivators in regulating MMP-9 transcription. We demonstrate that multiple transcriptional coactivators are involved in MMP-9 promoter activation, including CBP/p300, PCAF, CARM1 and GRIP1. Furthermore, enhancement of MMP-9 promoter activity requires the histone acetyltransferase activity of PCAF but not that of CBP/p300, and the methyltransferase activity of CARM1. More importantly, these coactivators are not only able to activate MMP-9 promoter activity independently, but also function in a synergistic manner. Significant synergy was observed among CARM1, p300 and GRIP1, which is dependent on the interaction of p300 and CARM1 with the AD1 and AD2 domains of GRIP1, respectively. This suggests the formation of a ternary coactivator complex on the MMP-9 promoter. Chromatin immunoprecipitation assays demonstrate that these coactivators associate with the endogenous MMP-9 promoter, and that siRNA knockdown of expression of these coactivators reduces endogenous MMP-9 expression. Taken together, these studies demonstrate a new level of transcriptional regulation of MMP-9 expression by the cooperative action of coactivators. PMID:18790699

  2. Significance of caveolin-1 and matrix metalloproteinase 14 gene expression in canine mammary tumours.

    PubMed

    Ebisawa, M; Iwano, H; Nishikawa, M; Tochigi, Y; Komatsu, T; Endou, Y; Hirayama, K; Taniyama, H; Kadosawa, T; Yokota, H

    2015-11-01

    Canine mammary tumours (CMTs) are the most common neoplasms affecting female dogs. There is an urgent need for molecular biomarkers that can detect early stages of the disease in order to improve accuracy of CMT diagnosis. The aim of this study was to examine whether caveolin-1 (Cav-1) and matrix metalloproteinase 14 (MMP14) are associated with CMT histological malignancy and invasion. Sixty-five benign and malignant CMT samples and six normal canine mammary glands were analysed using quantitative reverse transcription-polymerase chain reaction. Cav-1 and MMP14 genes were highly expressed in CMT tissues compared to normal tissues. Cav-1 especially was overexpressed in malignant and invasive CMT tissues. When a CMT cell line was cultured on fluorescent gelatin-coated coverslips, localisation of Cav-1 was observed at invadopodia-mediated degradation sites of the gelatin matrix. These findings suggest that Cav-1 may be involved in CMT invasion and that the markers may be useful for estimating CMT malignancy. PMID:26364240

  3. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  4. Gene expression of matrix metalloproteinases and LH receptors in mare follicular development.

    PubMed

    Bastos, H B A; Kretzmann, N A; Santos, G O; Esmeraldino, A T; Rechsteiner, S Fiala; Mattos, R C; Neves, A P

    2014-11-01

    The period from the emergence of a dominant follicle until its formation requires tissue remodeling. Enzymes promoting collagen lysis, such as matrix metalloproteinases (MMPs), are fundamental for the process of extracellular matrix remodeling, which allows changes in ovarian tissue architecture during follicular growth. It has been suggested that the production of these enzymes may be affected by the rise in circulating concentrations of LH, which acts on the ovarian surface epithelium (OSE). The aim of this study was to determine the expression of MMP-1, MMP-2, and LH receptor (LHR) in the ovulation fossa and in the central portion of the equine ovary during follicular deviation and dominance. Ovaries of 12 cyclic mares were selected and subsequently divided into two groups: development (DEV) group and dominant (DOM) group. The DEV group consisted of ovaries from six animals whose follicles were less than 28 mm in diameter (follicular deviation), and the DOM group consisted of ovaries from six animals whose follicles measured 28 mm or more in diameter (dominant follicles). The latter group was divided into two subgroups: the group of ovaries with a dominant follicle (DOM-D) and the group of contralateral ovaries (DOM-C). Our results showed that mRNA for MMP-1, MMP-2, and LHR was present in the equine ovary during follicle development, in the ovulation fossa, and in the central portion of the ovary. MMP-1 and LHR gene expression was greater (P < 0.05) for the DOM-D group compared with the DOM-C group. In the DOM-D group, MMP-1, MMP-2, and LHR gene expression was greater (P < 0.05) in the ovarian stroma compared with the ovulation fossa. Using immunohistochemistry, OSE from the DOM group showed increased expression compared with the DEV group (P < 0.05). In conclusion, we demonstrated that MMP-1 and MMP-2 might be fundamental for events related to tissue remodeling, which occurs during follicular development until the formation of the dominant follicle. We also

  5. Symposium: Role of the extracellular matrix in mammary development. Regulation of milk protein and basement membrane gene expression: The influence of the extracellular matrix

    SciTech Connect

    Aggeler, J.; Park, C.S.; Bissell, M.J.

    1988-10-01

    Synthesis and secretion of milk proteins ({alpha}-casein, {beta}-casein, {gamma}-casein, and transferrin) by cultured primary mouse mammary epithelial cells is modulated by the extracellular matrix. In cells grown on released or floating type I collagen gels, mRNA for {beta}-casein and transferrin is increased as much as 30-fold over cells grown on plastic. Induction of {beta}-casein expression depends strongly on the presence of lactogenic hormones, especially prolactin, in the culture. When cells are plated onto partially purified reconstituted basement membrane, dramatic changes in morphology and milk protein gene expression are observed. Cells cultured on the matrix for 6 to 8 d in the presence of prolactin, insulin, and hydrocortisone form hollow spheres and duct-like structures that are completely surrounded by matrix. The cells lining these spheres appear actively secretory and are oriented with their apices facing the lumen. Hybridization experiments indicate that mRNA for {beta}-casein can be increased as much as 70-fold in these cultures. Because > 90% of the cultured cells synthesize immunoreactive {beta}-casein, as compared with only 40% of cells in the late pregnant gland, the matrix appears to be able to induce protein expression in previously silent cells. Synthesis of laminin and assembly of a mammary-specific basal lamina by cells cultured on different extracellular matrices also appears to depend on the presence of lactogenic hormones. These studies provide support for the concept of dynamic reciprocity in which complex interactions between extracellular matrix and the cellular cytoskeleton contribute to the induction and maintenance of tissue-specific gene expression in the mammary gland.

  6. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration.

    PubMed

    Pan, Haitao; Zheng, Qixin; Yang, Shuhua; Guo, Xiaodong; Wu, Bin; Zou, Zhenwei; Duan, Zhixia

    2014-08-01

    The osteogenic differentiation of bone marrow stromal cells (BMSCs) can be regulated by systemic or local growth factor, especially by transforming growth factor beta 1 (TGF-β1). However, how to maintain the bioactivity of exogenous TGF-β1 is a great challenge due to its short half-life time. The most promising solution is to transfer TGF-β1 gene into seed cells through transgenic technology and then transgenic cells to continuously secret endogenous TGF-β1 protein via gene expression. In this study, a novel non-viral vector (K)16GRGDSPC was chemically linked to bioactive bone matrices PLGA-[ASP-PEG]n using cross-linker to construct a novel non-viral gene transfer system. TGF-β1 gene was incubated with this system and subsequently rabbit-derived BMSCs were co-cultured with this gene-activated PLGA-[ASP-PEG]n, while co-cultured with PLGA-[ASP-PEG]n modified with (K)16GRGDSPC only and original PLGA-[ASP-PEG]n as control. Thus we fabricated three kinds of composites: Group A (BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); Group B (BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); and Group C (BMSCs-PLGA-[ASP-PEG]n composite). TGF-β1 and other osteogenic phenotype markers of alkaline phosphatase, osteocalcin, osteopontin and type I collagen in Group A were all significantly higher than the other two groups ex vivo. In vivo, 15-mm long segmental rabbit bone defects were created and randomly implanted the aforementioned composites separately, and then fixed with plate-screws. The results demonstrated that the implants in Group A significantly accelerated bone regeneration compared with the other implants based on X-rays, histological and biomechanical examinations. Therefore, we conclude this novel peptide-modified and gene-activated biomimetic bone matrix of TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n is a very promising scaffold biomaterial for accelerating bone regeneration. PMID:24115366

  7. NOTCH1 Regulates Matrix Gla Protein and Calcification Gene Networks in Human Valve Endothelium

    PubMed Central

    White, Mark P.; Theodoris, Christina V.; Liu, Lei; Collins, William J.; Blue, Kathleen W.; Lee, Joon Ho; Meng, Xianzhong; Robbins, Robert C.; Ivey, Kathryn N.; Srivastava, Deepak

    2015-01-01

    Valvular and vascular calcification are common causes of cardiovascular morbidity and mortality. Developing effective treatments requires understanding the molecular underpinnings of these processes. Shear stress is thought to play a role in inhibiting calcification. Furthermore, NOTCH1 regulates vascular and valvular endothelium, and human mutations in NOTCH1 can cause calcific aortic valve disease. Here, we determined the genome-wide impact of altering shear stress and NOTCH signaling on aortic valve endothelium. mRNA-sequencing of human aortic valve endothelial cells (HAVECs) with or without knockdown of NOTCH1, in the presence or absence of shear stress, revealed NOTCH1-dependency of the atherosclerosis-related gene connexin 40 (GJA5), and numerous repressors of endochondral ossification. Among these, Matrix GLA Protein (MGP) is highly expressed in aortic valve and vasculature, and inhibits soft tissue calcification by sequestering bone morphogenetic proteins (BMPs). Altering NOTCH1 levels affected MGP mRNA and protein in HAVECs. Furthermore, shear stress activated NOTCH signaling and MGP in a NOTCH1-dependent manner. NOTCH1 positively regulated endothelial MGP in vivo through specific binding motifs upstream of MGP. Our studies suggest that shear stress activates NOTCH1 in primary human aortic valve endothelial cells leading to downregulation of osteoblast-like gene networks that play a role in tissue calcification. PMID:25871831

  8. Fibroblasts behavior after N-acetylcysteine and amino acids exposure: extracellular matrix gene expression.

    PubMed

    Avantaggiato, Anna; Palmieri, Annalisa; Bertuzzi, Gianluigi; Carinci, Francesco

    2014-06-01

    Reactive oxygen species (ROS) are chemically reactive molecules with impaired electrons that make them unstable and able to react easily with a great variety of molecules. The main targets of ROS are DNA, proteins, and membrane phospholipids. In the skin, ROS are able to affect the production of collagen and elastin, the main components of the extracellular matrix (ECM). This action contributes to the skin's aging. N-Acetylcysteine (NAC) is an acetylated cysteine residue with excellent anti-oxidant activity that boosts glutathione (GSH) levels. This study evaluates the effect of a solution of NAC and amino acids, which is used in aesthetic medicine as an intra-dermal injective treatment, on fibroblast behavior. To this aim, the expression levels of some ECM-related genes (HAS1, HYAL1 ELN, ELANE, MMP2, MMP3, MMP13, COL1A1, COL3A1) were analyzed on cultured dermal fibroblasts using real-time reverse transcription polymerase chain reaction (RT-PCR). All but two collagen genes were up-regulated after 24 hr of treatment. PMID:24438160

  9. Differential expression of extracellular matrix genes in glenohumeral capsule of shoulder instability patients.

    PubMed

    Belangero, Paulo Santoro; Leal, Mariana Ferreira; Figueiredo, Eduardo Antônio; Cohen, Carina; Andreoli, Carlos Vicente; Smith, Marília Cardoso; Pochini, Alberto de Castro; Ejnisman, Benno; Cohen, Moises

    2016-07-01

    Anterior shoulder instability is a common orthopedic problem. After a traumatic shoulder dislocation, patients present a plastic deformation of the capsule. The shoulder instability biology remains poorly understood. We evaluated the expression of genes that encode the cartilage oligomeric matrix protein (COMP), fibronectin 1 (FN1), tenascin C (TNC) and tenascin XB (TNXB) in the glenohumeral capsule of anterior shoulder instability patients and controls. Moreover, we investigated the associations between gene expression and clinical parameters. The gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction in the antero-inferior (macroscopically injured region), antero-superior and posterior regions of the capsule of 29 patients with shoulder instability and 8 controls. COMP expression was reduced and FN1 and TNC expression was increased in the antero-inferior capsule region of cases compared to controls (p < 0.05). TNC expression was increased in the posterior capsule portion of shoulder instability patients (p = 0.022). COMP expression was reduced in the antero-inferior region compared to the posterior region of shoulder instability patients (p = 0.007). In the antero-inferior region, FN1 expression was increased in the capsule of patients with more than one year of symptoms (p = 0.003) and with recurrent dislocations (p = 0.004) compared with controls. FN1 and TNXB expression was correlated with the duration of symptoms in the posterior region (p < 0.05). Thus, COMP, FN1, TNC and TNXB expression was altered across the capsule of shoulder instability patients. Dislocation episodes modify FN1, TNC and TNXB expression in the injured tissue. COMP altered expression may be associated with capsule integrity after shoulder dislocation, particularly in the macroscopically injured portion. PMID:27093129

  10. Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures.

    PubMed Central

    Jaakkola, S; Peltonen, J; Riccardi, V; Chu, M L; Uitto, J

    1989-01-01

    Cutaneous neurofibromas, characteristic lesions of neurofibromatosis 1, are composed of an abundant extracellular matrix and nerve connective tissue-derived cell types: Schwann cells, perineurial cells, and fibroblasts. In this study, the extracellular matrix gene expression by these cells was examined under culture conditions that allowed them to be metabolically active and readily identifiable by morphologic and immunocytochemical criteria. Northern hybridizations demonstrated expression of genes for type I, III, IV, and VI collagens, as well as for fibronectin, laminin, and elastin. In situ hybridizations revealed that all three cell types expressed pro alpha 1 (I), pro alpha 2 (VI), and laminin B1 chain genes. However, fibroblasts did not contain [35S]cDNA-mRNA hybrids specific for type IV collagen, whereas both Schwann cells and perineurial cells expressed these genes. Perineurial cells and fibroblasts readily expressed the fibronectin gene whereas Schwann cells were essentially devoid of the corresponding mRNA. Perineurial cells also expressed the gene for laminin A chain. The results indicate that the extracellular matrix gene expression profiles of Schwann cells, perineurial cells, and fibroblasts are distinct: all three cell types are capable of expressing some of the genes for extracellular matrix components, such as type I and VI collagens, whereas Schwann cells and perineurial cells may have the primary role in synthesizing basement membrane zone components, type IV collagen and laminin. These observations potentially relate to the mechanisms of growth and development of human neurofibromas. The results attest to the applicability of the methodology utilized here to study other human tumors with mixed cell populations. Images PMID:2500456

  11. Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states.

    PubMed Central

    Pagenstecher, A.; Stalder, A. K.; Kincaid, C. L.; Shapiro, S. D.; Campbell, I. L.

    1998-01-01

    Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of inflammatory disorders of the central nervous system (CNS) whereas the contribution of the major endogenous counter-regulators of MMPs, the tissue inhibitors of the matrix metalloproteinases (TIMPs), is unclear. We investigated the temporal and spatial expression patterns in the CNS of nine MMP genes and three TIMP genes in normal mice, in mice with EAE, and in transgenic mice with astrocyte (glial fibrillary acidic protein)-targeted expression of the cytokines interleukin-3 (macrophage/microglial demyelinating disease), interleukin-6 (neurodegenerative disease), or tumor necrosis factor-alpha (lymphocytic encephalomyelitis). In normal mice, the MMPs MT1-MMP, stromelysin 3, and gelatinase B were expressed at low levels, whereas high expression of TIMP-2 and TIMP-3 was observed predominantly in neurons and in the choroid plexus, respectively. In EAE and the transgenic mice, significant induction or up-regulation of various MMP genes was observed, the pattern of which was somewhat specific for each of the models, and there was significant induction of TIMP-1. In situ localization experiments revealed a dichotomy between MMP expression that was restricted to leukocytes and possibly microglia within inflammatory lesions and TIMP-1 expression that was observed in activated astrocytes circumscribing the lesions. These findings demonstrate specific spatial and temporal regulation in the expression of individual MMP and TIMP genes in the CNS in normal and inflammatory states. The distinct localization of TIMP-1 and MMP expression during CNS inflammation suggests a dynamic state in which the interplay between these gene products may determine both the size and resolution of the destructive inflammatory focus. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9502415

  12. A Gene Expression-Based Comparison of Cell Adhesion to Extracellular Matrix and RGD-Terminated Monolayers

    PubMed Central

    Sobers, Courtney J.; Wood, Sarah E.; Mrksich, Milan

    2015-01-01

    This work uses global gene expression analysis to compare the extent to which model substrates presenting peptide adhesion motifs mimic the use of conventional extracellular matrix protein coated substrates for cell culture. We compared the transcriptional activities of genes in cells that were cultured on matrix-coated substrates with those cultured on self-assembled monolayers presenting either a linear or cyclic RGD peptide. Cells adherent to cyclic RGD were most similar to those cultured on native ECM, while cells cultured on monolayers presenting the linear RGD peptide had transcriptional activities that were more similar to cells cultured on the uncoated substrates. This study suggests that biomaterials presenting the cyclic RGD peptide are substantially better mimics of extracellular matrix than are uncoated materials or materials presenting the common linear RGD peptide. PMID:25818445

  13. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) expressed sequence tag (EST) was up-regulated after early Edwardsiella ictaluri infection. In this study, the CC MMP-9 gene was cloned, sequenced and ch...

  14. Single minded 2-s (SIM2-s) gene is expressed in human GBM cells and involved in GBM invasion.

    PubMed

    He, Qiaowei; Li, Gang; Su, Yuhang; Shen, Jie; Liu, Qinglin; Ma, Xiangyu; Zhao, Peng; Zhang, Jian

    2010-03-15

    The human single-minded 2 (SIM2) gene is mapped within the Down syndrome critical region (DSCR) of chromosome 21 and its short splice variant SIM2-s is suggested to be a molecular target for cancer therapy. It has been shown that SIM2-s is expressed in colon, pancreatic and prostate tumors but not in their corresponding normal tissues. In present study, we found that SIM2-s was expressed in glioma tissues as well as in glioblastoma (GBM) cell lines but not in other brain tumors or normal cortex. The invasive potential of GBM cells was significantly decreased by RNA interference targeting SIM2-s, while the proliferation was not affected. Further investigation showed that the mRNA and protein levels of matrix metalloproteinase 2 (MMP-2) were downregulated in cells treated with SIM2-s siRNA, concomitance with the upregulation of tissue inhibitor of matrix metalloproteinase 2 (TIMP-2). Moreover, the enzymatic activity of MMP-2 was clearly decreased. Our results collectively suggested that SIM2-s expressed in gliomas selectively and played a role in GBM cells invasion, which may be partly associated with the expression of MMP-2 and TIMP-2. PMID:20448453

  15. Achondrogenesis type IB: agenesis of cartilage interterritorial matrix as the link between gene defect and pathological skeletal phenotype.

    PubMed

    Corsi, A; Riminucci, M; Fisher, L W; Bianco, P

    2001-10-01

    Achondrogenesis type IB is a lethal osteochondrodysplasia caused by mutations in the diastrophic dysplasia sulfate transporter gene. How these mutations lead to the skeletal phenotype is not known. Histology of plastic-embedded skeletal fetal achondrogenesis type IB samples suggested that interterritorial epiphyseal cartilage matrix was selectively missing. Cartilage was organized in "chondrons" separated by cleft spaces; chondrocyte seriation, longitudinal septa, and, in turn, mineralized cartilaginous septa were absent. Agenesis of interterritorial matrix as the key histologic change was confirmed by immunohistology using specific markers of territorial and interterritorial matrix. Biglycan-enriched territorial matrix was preserved; decorin-enriched interterritorial areas were absent, although immunostaining was observed within chondrocytes. Thus, in achondrogenesis type IB: (1) a complex derangement in cartilage matrix assembly lies downstream of the deficient sulfate transporter activity; (2) the severely impaired decorin deposition participates in the changes in matrix organization with lack of development of normal interterritorial matrix; and (3) this change determines the lack of the necessary structural substrate for proper endochondral bone formation and explains the severe skeletal phenotype. PMID:11570921

  16. Endometrial gene expression of acute phase extracellular matrix components following estrogen disruption of pregnancy in pigs.

    PubMed

    Ashworth, Morgan D; Ross, Jason W; Stein, Daniel; White, Frank; Geisert, Rodney D

    2010-12-01

    In pigs, administration of estrogen to gilts on Days 9 and 10 of pregnancy causes conceptus fragmentation and death between Days 15 and 18 of gestation. Conceptus degeneration is associated with breakdown of the microvilli surface glycocalyx on the lumenal epithelium (LE). We previously identified endometrial expression of inter-α-trypsin inhibitor (ITI) and hyaluronic acid (HA), which are key components of extracellular matrix (ECM), during the period of conceptus attachment to the uterine surface in the pig. Tumor necrosis factor-α-inducible protein-6 (TNFAIP6) serves as a linker for ECM expansion and is stimulated by prostaglandin E (PGE). We hypothesized that early estrogen administration alters the normal ECM components forming glycocalyx on the LE. Bred gilts (4 gilts/trt/day) were treated with either 5mg estradiol cypionate (E) or corn oil (CO) on Days 9 and 10 of gestation. The uterus was surgically removed on either Days 10, 12, 13, 15 and 17 of gestation and endometrial tissue snap frozen in liquid nitrogen. Endometrial tumor necrosis factor-α (TNF), TNFAIP6, interleukin 6 (IL6), and inter-α-trypsin inhibitor heavy chains (ITIH) were detected during early pregnancy thereby indicating all components for maintenance of the extracellular glycocalyx are present in the endometrium of pigs. However, only gene expression of ITIH2 was suppressed by E-treatment. TNFAIP6 protein was detected across all days of gestation but was not affected by E-treatment. The present study demonstrates that while the pig endometrium expresses key components of ECM only ITIH2 gene expression was altered by E-treatment. A decrease in ITIH2 could lead to the possible loss of the uterine glycocalyx leading to conceptus degeneration; however, other factors may be involved with the loss of glycocalyx during implantation in the pig following E-treatment. PMID:20850941

  17. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter

  18. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study

    PubMed Central

    Le Maitre, Christine L; Hoyland, Judith A; Freemont, Anthony J

    2007-01-01

    Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD. PMID:17760968

  19. Matrix metalloproteinase gene polymorphisms and periodontitis susceptibility: a meta-analysis involving 6,162 individuals

    PubMed Central

    Weng, Hong; Yan, Yan; Jin, Ying-Hui; Meng, Xiang-Yu; Mo, Yuan-Yuan; Zeng, Xian-Tao

    2016-01-01

    We aimed to systematically investigate the potential association of matrix metalloproteinase (MMP)-9, -3, -2, and -8 gene polymorphisms with susceptibility to periodontitis using meta-analysis. A literature search in PubMed, Embase, and Web of Sciencewas conducted to obtain relevant publications. Finally a total of 16 articles with 24 case-control studies (nine on MMP-9-1562 C/T, seven on MMP-3-1171 A5/A6, four on MMP-2-753C/T, and four on MMP-8-799 C/T) were considered in this meta-analysis. The results based on 2,724 periodontitis patients and 3,438 controls showed that MMP-9-1562C/T, MMP-3-1171 A5/A6, and MMP-8-799C/T polymorphisms were associated with periodontitis susceptibility. No significant association was found between MMP-2-753 C/T and periodontitis susceptibility. Subgroup analyses suggested that the MMP-9-1562 C/T polymorphism reduced chronic periodontitis susceptibility and MMP-3-1171 A5/A6polymorphism increased chronic periodontitis susceptibility. In summary, current evidence demonstrated that MMP-9-753 C/Tpolymorphism reduced the risk of periodontitis, MMP-3-1171 5A/6A and MMP-8-799 C/Tpolymorphisms increased the risk of periodontitis, and MMP-2-753 C/T was not associated with risk of periodontitis. PMID:27095260

  20. Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes.

    PubMed

    Liacini, Abdelhamid; Sylvester, Judith; Zafarullah, Muhammad

    2005-02-01

    A hallmark of rheumatoid- and osteoarthritis (OA) is proinflammatory cytokine-induced degeneration of cartilage collagen and aggrecan by matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS). Effects of the Chinese herb, Tripterygium wilfordii Hook F (TWHF), on cartilage and its anti-arthritic mechanisms are poorly understood. This study investigated the impact of a purified derivative of TWHF, PG490 (triptolide), on cytokine-stimulated expression of the major cartilage damaging proteases, MMP-3, MMP-13, and ADAMTS4. PG490 inhibited cytokine-induced MMP-3, MMP-13 gene expression in primary human OA chondrocytes, bovine chondrocytes, SW1353 cells, and human synovial fibroblasts. Triptolide was effective at low doses and blocked the induction of MMP-13 by IL-1 in human and bovine cartilage explants. TWHF extract and PG490 also suppressed IL-1-, IL-17-, and TNF-alpha-induced expression of ADAMTS-4 in bovine chondrocytes. Thus, PG490 could protect cartilage from MMP- and aggrecanase-driven breakdown. The immunosuppressive, cartilage protective, and anti-inflammatory properties could make PG490 potentially a new therapeutic agent for arthritis. PMID:15629465

  1. [Role of Allelic Genes of Matrix Metalloproteinases and Their Tissue Inhibitors in the Peptic Ulcer Disease Development].

    PubMed

    Shaymardanova, E Kh; Nurgalieva, A Kh; Khidiyatova, I M; Gabbasova, L V; Kuramshina, O A; Kryukova, A Ya; Sagitov, R B; Munasipov, F R; Khusnutdinova, E Kh

    2016-03-01

    Peptic ulcer disease is a chronic disease of the gastrointestinal tract, mainly manifesting itself in the formation of the fairly persistent ulcer defect of the mucous membrane of the stomach and/or duodenum. Association analysis of common polymorphisms of matrix metalloproteinases genes MMP-1 (rs1799750, rs494379), MMP-2 (rs2285052), MMP-3 (rs3025058), MMP-9 (rs3918242, rs17576), and MMP-12 (rs2276109) and their tissue inhibitors TIMP-2 (rs8179090) and TIMP-3 (rs9619311) was carried out in 353 patients with a gastric ulcer or duodenal ulcer and in 325 unrelated healthy individuals from the Republic of Bashkortostan. Associations of polymorphic variants rs1799750 and rs494379 of gene MMP-1, rs3025058 of gene MMP-3, rs3918242 and rs17576 of gene MMP-9, and rs9619311 of gene TIMP-3 with the risk of peptic ulcer disease in Russians and Tatars were revealed. PMID:27281857

  2. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    PubMed Central

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes. PMID:26860065

  3. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  4. Longevity and aging: role of genes and of the extracellular matrix.

    PubMed

    Robert, L; Labat-Robert, J

    2015-02-01

    Longevity is different for every animal species as well as their genome, suggesting a correlation between genes and life-span. Estimates put the genetic effect from 5 to 35% approximately, suggesting that even genetic effects are dependent on environmental conditions. This contention is largely confirmed by the study of identical twins raised apart. They do not die at the same age and also for different reasons. Aging is not "genetically programmed", it is outside evolutionary constraint. Evolution favors early and efficient reproduction, but does not care for longevity. A number of mechanisms were shown to be involved in the age-dependent decline of vital functions, among them the Maillard reaction (non-enzymatic glycosylation) and the age-dependent upregulation of proteolytic activity. Aging of ECM is a complex process, comprising progressive modification of its macromolecular components and of cell-matrix interactions. An important process is the uncoupling with age of the elastin-receptor from its "young" transmission pathway loosing all physiological effects, but enhancing free radical and elastase release. These processes contribute to age-related ECM degradation, production of matrikins (ECM degradation products with biological activity) aggravating functional loss with age. Both genetic and post-genetic mechanisms are susceptible to be influenced by medical, pharmacological and dietary interventions. Among the genetic mechanisms, those attributed to Sirtuins (7 orthologs identified in the human genome) are especially important. Among the environmental effects, nutrition, hygiene and weather conditions play a role. These data justify some predictions on the evolution of life expectancy taking in account also socio-economic factors. Biological constraints become evident by the comparison of centenarians and supercentenarians (less than 1% of the centenarians) putting an upper limit to the attainable human lifespan. PMID:25502365

  5. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ☆

    PubMed Central

    Jones, Eleanor R.; Jones, Gavin C.; Legerlotz, Kirsten; Riley, Graham P.

    2013-01-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. PMID:23830915

  6. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    PubMed

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation. PMID:22689476

  7. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  8. SPARC mediates early extracellular matrix remodeling following myocardial infarction

    PubMed Central

    McCurdy, Sarah M.; Dai, Qiuxia; Zhang, Jianhua; Zamilpa, Rogelio; Ramirez, Trevi A.; Dayah, Tariq; Nguyen, Nguyen; Jin, Yu-Fang; Bradshaw, Amy D.

    2011-01-01

    Secreted protein, acidic, and rich in cysteine (SPARC) is a matricellular protein that functions in the extracellular processing of newly synthesized collagen. Collagen deposition to form a scar is a key event following a myocardial infarction (MI). Because the roles of SPARC in the early post-MI setting have not been defined, we examined age-matched wild-type (WT; n=22) and SPARC-deficient (null; n=25) mice at day 3 post-MI. Day 0 WT (n=28) and null (n=20) mice served as controls. Infarct size was 52 ± 2% for WT and 47 ± 2% for SPARC null (P=NS), indicating that the MI injury was comparable in the two groups. By echocardiography, WT mice increased end-diastolic volumes from 45 ± 2 to 83 ± 5 μl (P < 0.05). SPARC null mice also increased end-diastolic volumes but to a lesser extent than WT (39 ± 3 to 63 ± 5 μl; P < 0.05 vs. day 0 controls and vs. WT day 3 MI). Ejection fraction fell post-MI in WT mice from 57 ± 2 to 19 ± 1%. The decrease in ejection fraction was attenuated in the absence of SPARC (65 ± 2 to 28 ± 2%). Fibroblasts isolated from SPARC null left ventricle (LV) showed differences in the expression of 22 genes encoding extracellular matrix and adhesion molecule genes, including fibronectin, connective tissue growth factor (CTGF; CCN2), matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-2 (TIMP-2). The change in fibroblast gene expression levels was mirrored in tissue protein extracts for fibronectin, CTGF, and MMP-3 but not TIMP-2. Combined, the results of this study indicate that SPARC deletion preserves LV function at day 3 post-MI but may be detrimental for the long-term response due to impaired fibroblast activation. PMID:21602472

  9. Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue

    PubMed Central

    Asadzadeh, Reza; Khosravi, Shima; Zavareh, Saeed; Ghorbanian, Mohammad Taghi; Paylakhi, Seyed Hassan; Mohebbi, Seyed Reza

    2016-01-01

    Background: One of the most major obstacles of ovarian tissue vitrification is suboptimal developmental competence of follicles. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) and their tissue inhibitors TIMP-1 and TIMP-2 are involved in the remodeling of the extracellular matrix in the ovaries. Objective: This study aimed to evaluate the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 genes in the preantral follicles derived from vitrified mouse ovaries. Materials and Methods: In this experimental study, the gene expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the isolated preantral follicles derived from fresh and vitrified ovaries of 14-16 days old female mice through real time qRT-PCR was evaluated. Developmental parameters, including survival rate, growth, antrum formation and metaphase II oocytes were also analyzed. Results: The developmental parameters of fresh preantral follicles were significantly higher than vitrified preantral follicles. The TIMP-1 and MMP-9 expression levels showed no differences between fresh and vitrified preantral follicles (p=0.22, p=0.11 respectively). By contrast, TIMP-2 expression significantly decreased (p=0.00) and MMP-2 expression increased significantly (p=0.00) in vitrified preantral follicles compared with to fresh ones. Conclusion: Changes in expression of MMP-2 and TIMP-2 after ovarian tissues vitrification is partially correlated with decrease in follicle development. PMID:27294215

  10. Varying RGD concentration and cell phenotype alters the expression of extracellular matrix genes in vocal fold fibroblasts.

    PubMed

    Kosinski, Aaron M; Sivasankar, M Preeti; Panitch, Alyssa

    2015-09-01

    The impact of RGD integrin binding-peptide concentration and cell phenotype on directing extracellular matrix (ECM) gene expression in vocal fold fibroblasts is little understood. Less is known about cell response to RGD concentration on a biomaterial when fibroblasts are in a scar-like environment compared to a healthy environment. We investigated the effects of varying RGD integrin-binding peptide surface concentration on ECM gene expression of elastin, collagen type 3 alpha 1, decorin, fibronectin, hyaluronan synthase 2, and collagen type 1 alpha 2 in scarred and unscarred immortalized human vocal fold fibroblasts (I-HVFFs). Phenotype and RGD concentration affected ECM gene expression. Phenotype change from healthy to myofibroblast-like resulted in ECM gene up-regulation for all genes tested, except for decorin. Systematically altering RGD concentration affected the expression of elastin and collagen type 3 alpha 1 in a myofibroblast phenotype. Specifically greater up-regulation in gene expression was observed with higher RGD concentrations. This research demonstrates that controlling RGD concentration may influence ECM gene expression levels in fibroblasts. Such knowledge is critical in developing the next generation of bioactive materials that, when implanted into sites of tissue damage and scarring, will direct cells to regenerate healthy tissues with normal ECM ratios and morphologies. PMID:25778824